

Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level

Wen Zhang¹ | Lu Xu^{2,3,4} | Haofei Zhang¹

¹Department of Chemistry, University of California, Riverside, California, USA

²NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA

³Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA

⁴Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA

Correspondence

Haofei Zhang, Department of Chemistry, University of California, Riverside, CA, USA.

Email: haofei.zhang@ucr.edu

Abstract

The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.

KEY WORDS

ambient ionization, chemical ionization, highly oxygenated molecules, isomer separation, organic aerosols, volatile organic compounds

Abbreviations: AeroFAPA, aerosol flowing ambient-pressure afterglow; AESI, ambient electrospray ionization; AMS, aerosol mass spectrometer; APCI, atmospheric pressure chemical ionization; CCS, collision cross section; CID, collision induced dissociation; CIMS, chemical ionization mass spectrometry; CI-Orbitrap, chemical ionization orbitrap mass spectrometry; DAI, droplet-assisted ionization; DART, direct analysis in real time; EESI, extractive electrospray ionization; EI, electron ionization; ESCI, electrospray chemical ionization; ESI, electrospray ionization; FID, flame ionization detector; FIMR, focusing ion-molecule reactor; GC, gas chromatography; GC-MS, gas chromatography-mass spectrometry; HOMs, highly oxygenated organic molecules; IEPOX, isoprene epoxydiols; IMR, ion-molecule reaction; IMS, ion mobility spectrometry; LC, liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; LTOF, long time-of-flight; nano-DESI, nanospray desorption electrospray ionization; NPF, new particle formation; OA, organic aerosols; OVOCs, oxygenated volatile organic compounds; POA, primary organic aerosols; PS, paper spray; PS-MS, paper spray ionization mass spectrometry; PTR3, PTR-TOF with a triple reaction chamber; PTR-MS, proton transfer reaction mass spectrometry; PTR-TOF, proton transfer reaction time-of-flight mass spectrometry; RF, radio frequency; SOA, secondary organic aerosols; SSI, sonic-spray ionization; TAG, thermal desorption aerosol gas chromatograph; TD, thermal desorption; TOF-CIMS, chemical ionization time-of-flight mass spectrometry; TOF-MS, time of flight mass spectrometry; VaPI, vacuum-assisted plasma ionization; VOCs, volatile organic compounds; Vocus, PTR-TOF based on a discharge reagent-ion source and focusing ion-molecule reactor; VUV, vacuum ultraviolet.

1 | INTRODUCTION

The chemical characterization of atmospheric gaseous and aerosol constituents has been a well-known challenge due to their extreme complexity caused by the enormous number and distinct properties of inorganic and organic species emitted and formed in the atmosphere. Both biogenic and anthropogenic sources as well as their chemical transformations contribute to the atmospheric complexity, with the chemical and physical properties affecting the Earth's climate, outdoor and indoor air quality, and human health (Boucher et al., 2013; Dockery et al., 1993; Jones, 1999; Merikanto et al., 2009; Watson, 2002). Volatile organic compounds (VOCs) are an important class of atmospheric compounds that could undergo photooxidation in the presence of various atmospheric oxidants, leading to the formation of gas-phase oxidation products with a highly variable and complex functionality and volatility (Claflin et al., 2018; Goldstein et al., 2007; Hallquist et al., 2009; Kroll & Seinfeld, 2008). VOCs also play a central role as precursors in the formation of secondary organic aerosols (SOA), while primary organic aerosols (POA) which are directly emitted into the air make up the other source of atmospheric organic aerosols (OA) (de Gouw & Jimenez, 2009; Hallquist et al., 2009; Jimenez et al., 2009; Zhang et al., 2007). Thus, characterization of the molecular compositions of both the gas- and particle-phase organic species in the atmosphere is of vital importance to understanding the atmospheric chemical kinetics and reaction mechanism for environment assessment and planning.

With the interest of identifying and quantifying organic molecules in the atmosphere, the application of mass spectrometry-based techniques has been popular for many decades. Mass spectrometry techniques accomplish the separation and detection of analyte molecules through three processes of sample introduction, ionization, and mass-to-charge ratio examination, while the advanced innovation in any operation results in the instrument's versatile and comprehensive applications (Laskin et al., 2018). Thus, mass spectrometry can provide qualitative and quantitative analysis for a broad range of chemical species with high sensitivity and short response time (Pratt & Prather, 2012a; Riva, Rantala, et al., 2019). It is widely applied in the identification of unknown chemicals, determination of the elements' isotopic composition in a molecule, and classification of compound structures via fragmentation detection. To elucidate the structures of unknown chemicals, gas chromatography (GC) and liquid chromatography (LC) coupled to mass spectrometers (i.e., GC-MS and LC-MS) emerged as the initial applications of mass spectrometry-

based instruments to identify substances in atmospheric gaseous and aerosol mixtures through offline analysis (Covey et al., 1986; Larsen et al., 1996). In these early studies, GC-MS has been widely used to separate and identify hydrocarbon mixtures as well as functionalized organics by employing derivatization techniques (Kawamura et al., 1996; Kubátová et al., 2000; Weschler, 1981; Yokouchi & Ambe, 1985; Yu et al., 1998, 1999), while LC-MS became a powerful technique to analyze relatively polar and high molecular-weight aerosol species (Murray et al., 1994; Willoughby & Browner, 1984; Winkler et al., 1988). With regard to aerosol compositional analysis, progress was made in the early 21st century to allow real-time characterization of atmospheric aerosols by the field-deployable aerosol mass spectrometer (AMS) (Canagaratna et al., 2007; DeCarlo et al., 2006; Tobias et al., 2000). The AMS employs particle size selection and thermal desorption followed by electrode impact (EI) ionization, allowing for quantitatively real-time measurements for the element composition, particle mass, and size distributions of atmospheric aerosols (Jayne et al., 2000; Jimenez et al., 2003; Pratt & Prather, 2012b). However, the EI ionization used in AMS is a hard ionization where electrons are accelerated to 70 eV to bombard samples, leading to a high degree of sample fragmentation and thence complicated mass spectra with limited molecular information (Canagaratna et al., 2007; DeCarlo et al., 2006; Tobias et al., 2000). Despite the lack of molecular information, the high time-resolution, near-complete mass coverage, and the potential to infer bulk aerosol characteristic metrics make AMS a popular device in both laboratory studies (Chhabra et al., 2010; Fortenberry et al., 2018; Hu et al., 2017; Kroll et al., 2011; Ng et al., 2011; Sato et al., 2012) and ambient aerosol research (Alfarra et al., 2004; Brüggemann et al., 2015; Chen et al., 2020; DeCarlo et al., 2006; Jimenez et al., 2003; Qi et al., 2019; Takegawa et al., 2005; Ye et al., 2021).

The continued pursuit of real-time and molecular-level characterization of atmospheric constituents led to the development of mass spectrometry instruments based on soft ionization techniques. Chemical ionization mass spectrometry (CIMS) is based on ion-molecule reactions to selectively ionize compounds of interest in the ion-molecule reactor (IMR) (Huey, 2007). As one of the most widely used soft ionization and real-time analysis tool in atmospheric chemistry, CIMS was largely built upon the early development decades ago (Huey, 2007; Viggiano, 1993). In its early versions, the majority of CIMS applications aimed to monitor inorganic compounds (Huey, 2007), except for proton transfer reaction mass spectrometers (PTR-MS), which is a CIMS that uses H_3O^+ as the reagent ion to measure chemically reduced

organic compounds with proton affinity higher than water (de Gouw & Warneke, 2007; Hansel et al., 1998). In the early 2010s, the advancement of CIMS with higher sensitivity, better mass resolution, and more versatile reagent ions expanded the measurement capability to a wide range of oxygenated organic species (Bertram et al., 2011; Crounse et al., 2011; Ehn et al., 2012; Lee et al., 2014). In particular, these new developments allowed for a much-improved characterization of moderately to highly oxidized organic species in the atmosphere. While CIMS detects gaseous species, coupling it to aerosol inlets allows for aerosol composition measurements (Eichler et al., 2015; Lopez-Hilfiker et al., 2014; Yatavelli et al., 2012). To measure aerosol constituents, another widely used soft ionization technique is electrospray ionization mass spectrometry (ESI-MS). ESI-MS was usually applied in offline analysis either by itself (Bateman et al., 2010, 2012; De Haan et al., 2009; George et al., 2007; Hastings et al., 2005; Lim et al., 2010; Nguyen et al., 2010) or by coupling with LC (Claeys et al., 2009; Müller et al., 2008; Surratt et al., 2006; Surratt, Kroll, et al., 2007; Warnke et al., 2006; Yasmeen et al., 2011; Zhang et al., 2011). In these studies, the aerosol samples were first collected on membrane filters, followed by solvent extraction procedures and LC-MS analysis. The sample collection, storage, and extraction may lead to undesired artifact reactions (Bateman et al., 2008; Fuller et al., 2014; Hu et al., 2011). To overcome such artifacts, a few methods such as the nanospray desorption electrospray ionization (nano-DESI) and the paper spray (PS) ionization have been explored by directly ionizing molecules from the filter or substrate samples without solvent extraction (Laskin et al., 2018; Liu et al., 2010; Rindelaub et al., 2016; Roach et al., 2010). However, they still require samples to be collected, which loses the time resolution to monitor aerosol formation and evolution. Improvements have been made in the early 2010s to apply soft ambient ionization mass spectrometry in real-time aerosol analysis. Notable examples include the extractive electrospray ionization (EESI) (Doezema et al., 2012; Gallimore & Kalberer, 2013), ambient electrospray ionization (AESI) (Horan et al., 2012), and direct analysis in real-time (DART) (Chan et al., 2013; Chan et al., 2014; Nah et al., 2013). These studies provide valuable insights and guidance for later developments of soft ambient ionization mass spectrometry for aerosol research.

There have been many previous reviews of mass spectrometry methods applied to studying atmospheric chemistry (Blake et al., 2009; Huey, 2007; Laskin et al., 2013, 2018; Sekimoto & Koss, 2021; Yuan et al., 2017; Zhao, 2018). But it is a rapidly growing field where many new analytical techniques, novel designs,

and extended applications based on soft ionization mass spectrometry have been published in the recent several years. This review builds on the previous work and summarizes the new mass spectrometry methods and developments in atmospheric chemistry research. We introduce the main principles and workflows of individual mass spectrometry instruments that favor a wider range of measurements for gas-phase compounds and aerosol particles, helping understand the environmental implication of atmospheric chemistry. We further present applications of these techniques in laboratory studies, as well as outdoor and indoor field measurements on a few important research topics. Finally, we discuss several current issues and future developing directions in this field.

2 | NEW SOFT IONIZATION MASS SPECTROMETRY TECHNIQUES AND METHODS

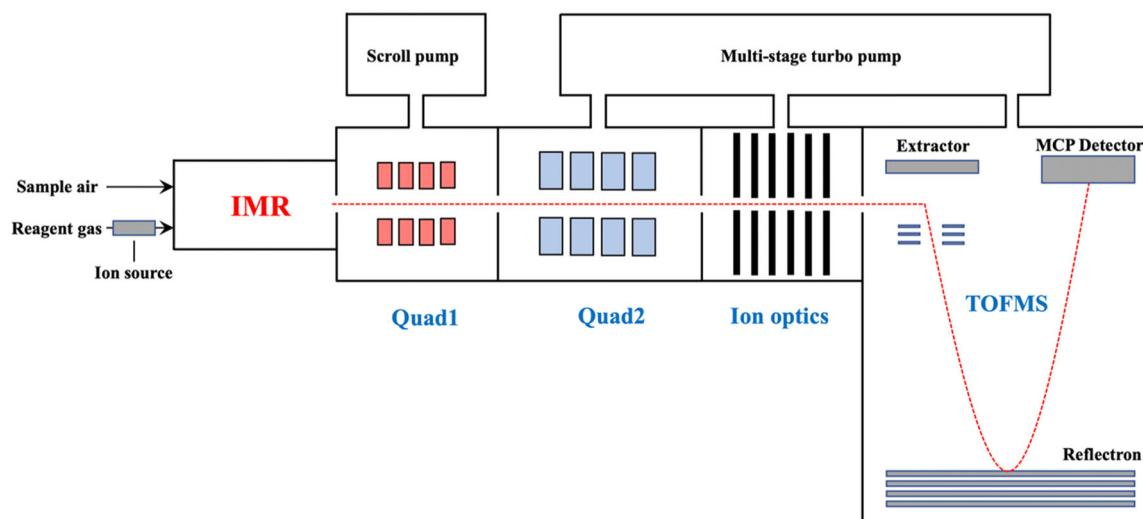
Currently, mass spectrometry characterization of gaseous and aerosol species using soft ionization techniques is a rapidly developing field in atmospheric chemistry for understanding chemical composition. In this section, we introduce several analytical techniques to highlight the improved capabilities for qualitative and quantitative measurements of atmospheric species in the last several years. The major applications and contributions to the atmospheric field of these newly designed mass spectrometry techniques are discussed in the next section.

2.1 | Chemical ionization mass spectrometry: New IMR designs and ionization chemistries

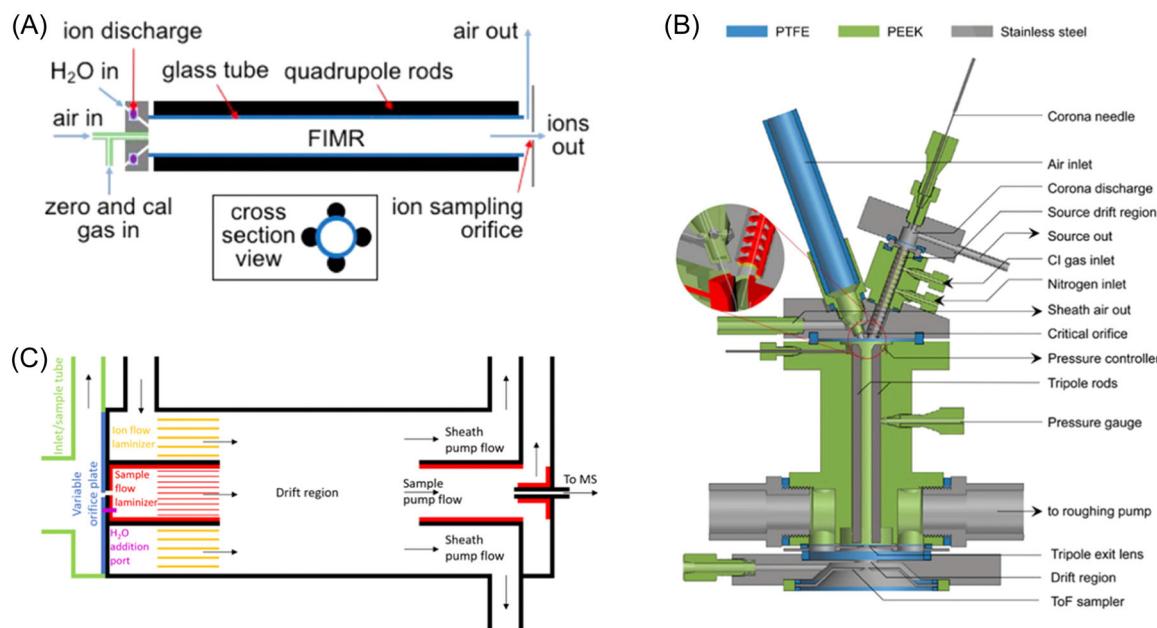
As described above, the development of CIMS has emerged for decades, providing sensitive and rapid measurements for a wide range of atmospheric trace gases. One of the early CIMS techniques applied in the atmospheric chemistry was PTR-MS, which uses H_3O^+ as the reagent ion to ionize analyte molecules through proton transfer reactions (Cappellin et al., 2010; de Gouw & Warneke, 2007; Graus et al., 2010; Kim et al., 2009; Lindinger & Jordan, 1998). CIMS with other reagent ions has also been developed. In particular, numerous studies have reported CIMS measurements using various reagent ions, such as CF_3O^- , $\text{CH}_3\text{C}(\text{O})\text{O}^-$, I^- , SF_6^- , Br^- , NO_3^- , NH_4^+ , $\text{C}_2\text{H}_5\text{OH}^+$, NO^+ , and so forth to selectively ionize specific molecules through different ion chemistries (Benson et al., 2010; Berry et al., 2018; Bertram et al., 2011; Brophy & Farmer, 2016; Crounse et al., 2011; Ehn

et al., 2012; Lawler et al., 2011; Lopez-Hilfiker et al., 2016; Nah et al., 2018; Sanchez et al., 2016; Zaytsev, Breitenlechner, et al., 2019; Zhao, 2018). In many of these development, CIMS with a time-of-flight (TOF) mass analyzer (TOF-CIMS) has been a powerful tool to quantitatively characterize inorganic and organic molecules as low as a few pptv with mass resolving power ($m/\Delta m$) up to 12,000 (Bertram et al., 2011; Krechmer et al., 2018). Figure 1 illustrates the basic configuration of a TOF-CIMS instrument. Ionization occurs in an IMR, where the configuration, residence time, pressure, electric field, and flow rate are optimized for the specific ion chemistry. In this section, we summarize new developments in recent years on IMR hardware designs, ion chemistries to enhance CIMS sensitivities and broaden measurable chemical ranges, and additional capabilities.

2.1.1 | New IMR designs


Vocus

Vocus is a newly developed chemical ionization source consisting of a discharge reagent-ion source and focusing ion-molecule reactor (FIMR) (Krechmer et al., 2018), with the configuration shown in Figure 2A. The reagent ions are produced at the central axis by a low-pressure discharge ion source comprised of two conical surfaces between which a plasma is generated. The produced ions enter through a ring offset from the central axis to ionize the air samples in the FIMR. The FIMR includes a quadrupole mounted outside of a glass tube with a resistive coating to build an inside axial electric field of a radio frequency (RF) quadrupole, focusing ions into a


narrow beam on the central axis to enhance the sensitivity. Comparing with a traditional PTR-TOF, a Vocus-equipped PTR-TOF is ~19 times more sensitive for many VOCs (Figure 3A). According to ambient measurement comparison between a Vocus-equipped PTR-TOF and a traditional PTR-TOF, Vocus also showed much higher detection precision due to the improved sensitivity and mass spectral resolution, which are paramount among other gas-phase measurement techniques (Koss et al., 2020; Riva, Rantala, et al., 2019; Wang, Mehra, et al., 2020; Wu et al., 2021; Zaytsev, Breitenlechner, et al., 2019). It is also worth mentioning that Vocus exhibits an almost independent sensitivity on the relative humidity of the sample air owing to the high water vapor mixing ratio in the FIMR, in contrast to conventional PTR-MS instruments (Figure 3B). The response times of Vocus-equipped PTR-TOF are about an order of magnitude shorter than a traditional PTR-TOF (Krechmer et al., 2018).

PTR3

PTR3 is developed based on a standard PTR-TOF equipped with a new center-sampling inlet and an innovative IMR design (Breitenlechner et al., 2017). A corona discharge ion source is operated in PTR3 followed by a source drift area (Figure 2B). The drift area is split into two regions, where chemical ionization gas and humidified nitrogen gas carrier are separately inserted and transported to a tripole IMR chamber. The design of splitting flow decreases the byproducts by preventing the formation of interfering primary ions and radicals. The tripole supplied with a RF voltage decouples the directions of sample gas flow (axial) and high-energy

FIGURE 1 An illustrative diagram of the CIMS configuration. CIMS, chemical ionization mass spectrometry. [Color figure can be viewed at wileyonlinelibrary.com]

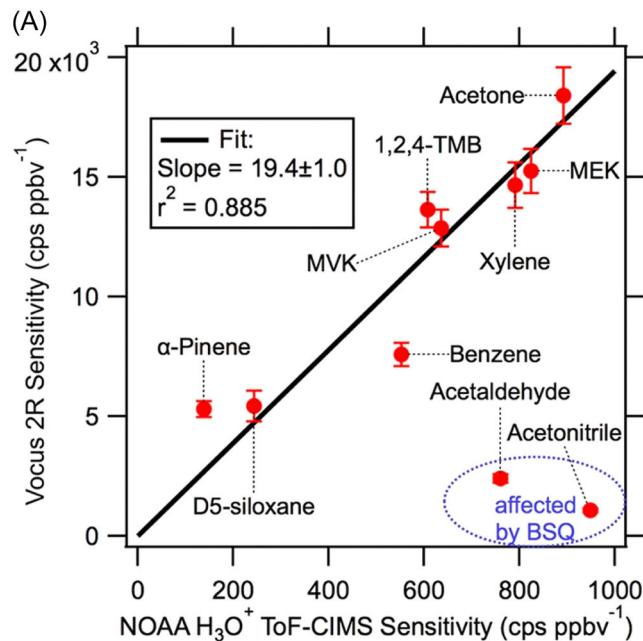
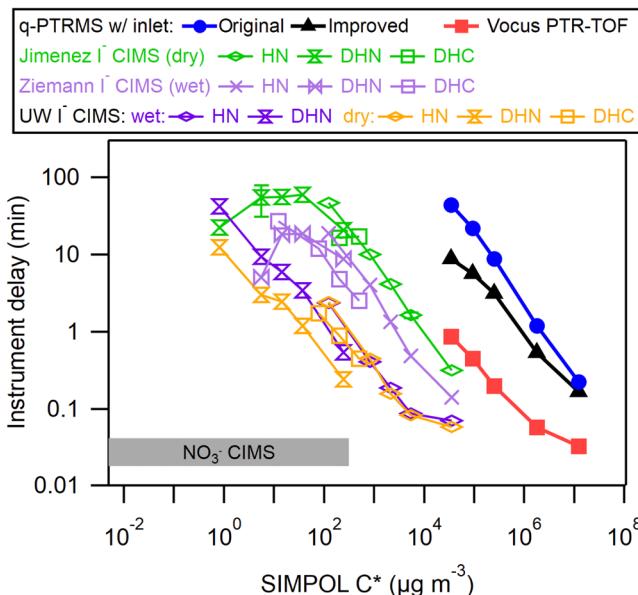


FIGURE 2 (A) Design of the Vocus consisting of a discharge reagent-ion source and a focusing ion–molecule reactor (FIMR). Reproduced with permission Krechmer et al. (2018). Copyright 2018 American Chemical Society. (B) Schematic representation of the PTR3 front part. Reproduced with permission Breitenlechner et al. (2017). Copyright 2017 American Chemical Society. (C) Schematic of the new coaxial, low-pressure IMR design to reduce wall interaction. Black lines represent stainless steel surfaces, green and blue lines represent PTFE Teflon, and red/yellow lines represent FEP or PFA Teflon. Reproduced with permission Palm et al. (2019). Copyright 2019 Palm et al. [Color figure can be viewed at wileyonlinelibrary.com]

collisions (radial). As a result, the reaction time, pressure, and reduced electric field strength of PTR3 are independent of each other, leading to the possible improvement of operational parameters. Another improvement is the inlet design which minimizes wall loss by controlling symmetrical exhaustion of the sheath gas around the core flow. The new designs of PTR3 extend the reaction time 30 times longer and the pressure 40 times higher compared to the standard PTR-TOF. After the pressure drops in the drift region, the gas flow is guided to a long TOF (LTOF) mass analyzer, further improving the resolving power for better separation of isobaric ions (Lehtipalo et al., 2018). Calibration tests of different compound classes showed a result of up to 18,000 counts per second (cps)/ppbv at a mass resolving power ($m/\Delta m$) of $>8,000$, which exhibits a much better performance than the standard PTR-TOF (Koss et al., 2018; Pagonis, Sekimoto, et al., 2019). Further, Piel et al. (2021) introduced an extended volatility range inlet coupled with PTR3 to improve its time response by inhibiting the surface interactions of low volatility analytes within the gas inlet and the tripole IMR chamber (Piel et al., 2021). Despite the promising features of PTR3, Holzinger et al. (2019) suggested that it tends to form larger water clusters and deprotonation species by comparing the performances of different PTR instruments in field work (Holzinger et al., 2019).


IMR design to reduce wall interactions

Reducing the interactions between relatively low-volatility analytes and IMR inner walls helps avoid sample loss and reduce response delay in CIMS measurements due to temporary adsorption of the analytes on inlet surfaces. In the study by Palm et al., a new coaxial, low-pressure IMR (Figure 2C) was designed to minimize wall loss meanwhile improving sensitivity of CIMS (Palm et al., 2019). The new design includes: (1) removing as many wall surfaces as possible and having any necessary wall surfaces be constructed from materials such as perfluoroalkoxy (PFA) Teflon, which have been reported to have minimized interactions with analytes (Deming et al., 2019; Liu, Deming, et al., 2019; Pagonis et al., 2017); (2) making the distance between analyte and surfaces as large as possible by controlling the analyte flow into a coaxial sheath, similar to previous IMR designs for the NO_3^- reagent ion (Jokinen et al., 2012; Massoli et al., 2018); (3) exhausting the desorbed compounds from wall surfaces by pumping a sheath flow radially outside of a sample flow; and (4) maintaining IMR pressure constant within the range of 200 to 760 Torr even on an aircraft platform through the design of a variable orifice on the upstream side of the IMR (Lee et al., 2018). The demonstration used I^- as the reagent ion but may be applicable to other reagent ions. As shown in Palm

FIGURE 3 (A) Comparison of sensitivities between the Vocus PTR-TOF and NOAA PTR-TOF. Vocus sensitivities were determined during the ACTRIS-PICAB field campaign and represent an average over 24 h (12 separate calibrations). Error bars represent the 1σ standard deviation. (B) Humidity dependence of the Vocus PTR-TOF product ion signals. Reproduced with permission Krechmer et al. (2018). Copyright 2018 American Chemical Society. NOAA, National Oceanic and Atmospheric Administration; PTR-TOF, proton transfer reaction time-of-flight mass spectrometry. [Color figure can be viewed at wileyonlinelibrary.com]

et al., I^- is introduced at the front of the drift region in the IMR and it ionizes analytes in the center of the drift region, such that less than 4% of the analytes have interactions with wall surface according to diffusion calculations. As a result, the delay time of CIMS coupling with this IMR design is 3–10 times lower than previous CIMS versions, as illustrated in Figure 4.

FIGURE 4 Delay times for a variety of organic molecules as a function of saturation vapor concentrations (C^* , $\mu\text{g m}^{-3}$), compared with previous IMR designs including a quadrupole PTR-MS, Vocus PTR-TOF, and several I^- -CIMS instruments with different IMRs. The delay time in a NO_3^- -CIMS is also shown for comparison. Reproduced with permission Palm et al. (2019). Copyright 2019 Palm et al. CIMS, chemical ionization mass spectrometry; IMR, ion-molecule reactor; PTR-MS, proton transfer reaction-mass spectrometry. [Color figure can be viewed at wileyonlinelibrary.com]

2.1.2 | Ionization chemistries in CIMS

CIMS has been widely used in in-situ measurements of a variety of atmospheric trace gases and aerosol species due to its excellent selectivity and sensitivity. The most common reagent ions used with CIMS include H_3O^+ , NO^+ , C_6H_6^+ , $\text{C}_2\text{H}_5\text{OH}^+$, NH_4^+ , and protonated amines in the positive ion mode, and I^- , $\text{CH}_3\text{C}(\text{O})\text{O}^-$, CF_3O^- , SF_6^- , Br^- , and NO_3^- in the negative ion mode. It is essential to choose an appropriate reagent ion for CIMS to selectively and effectively ionize one or several targeted classes of compounds from a complex system. A comparison of the types of ion chemistry and targeted species by different reagent ions is listed in Table 1. Here, we focus on describing new ion chemistries studied in recent years which allow for broader applications of CIMS in identification and quantification of molecules relevant to atmospheric chemistry.

For all types of ion chemistry, the reagent ions are created from reagent gases by a radioactive ion source (e.g., ^{210}Po and 10 MBq Am), discharge (Breitenlechner et al., 2017; Krechmer et al., 2018), X-rays (Bertram et al., 2011; Bianchi et al., 2019; Riva et al., 2020), or a vacuum ultraviolet (VUV) ion source (Breitenlechner

TABLE 1 Summary of common CIMS reagent ions and the corresponding ion chemistries and detectable compounds.

Reagent ion	Source gas	Ion source	IMR/mbar/ms	Primary ion chemistry	Detected compounds	References
H_3O^+	Water vapor	Hollow cathode discharge	Ring-stack drift tube /-2/-0.1	$\text{H}_3\text{O}^+ + \text{M}$ $\rightarrow [\text{M}+\text{H}]^+ + \text{H}_2\text{O}$	Compounds with proton affinity larger than water (e.g., majority of VOCs)	de Gouw et al. (2003); Hansel et al. (1995)
	Glow discharge	Focusing IMR /-1/-0.1				Krechmer et al. (2018)
	Corona discharge	Triple/80/3				Breitenlechner et al. (2017)
NO^+	Ultrahigh-purity air	Hollow cathode discharge	Ring-stack drift tube /-2/0.1-0.2	$\text{NO}^+ + \text{M}$ $\rightarrow \text{M}^+ \text{NO}$ $\rightarrow [\text{M}-\text{H}]^+ + \text{HNO}$ $\rightarrow [\text{M} \rightarrow + \text{NO}]^+$	Compounds with low ionization energy or hydride transfer reaction enthalpy, otherwise favoring adduct formation (e.g., carbonyl species, small branched alkenes, some alkanes)	Karl et al. (2012); Koss et al. (2016)
	^{210}Po		Canonical IMR/ 70/100	$(\text{C}_6\text{H}_6)_2^+ + \text{M}$ $\rightarrow \text{M}^+ + 2\text{C}_6\text{H}_6$ $\rightarrow [\text{M}+(\text{C}_6\text{H}_6)_2]^+$ $\rightarrow [\text{M} + \text{C}_6\text{H}_6]^+ + \text{C}_6\text{H}_6$	Compounds with ionization energy lower than benzene, and with C_6H_6^+ affinity ^a larger than benzene (e.g., dimethyl sulfide, isoprene, terpenes)	Kim et al. (2016); Lavi et al. (2018)
	$(\text{C}_2\text{H}_5\text{OH})_n\text{H}^+$	^{241}Am	Transverse IMR/ 1000/-7	$(\text{C}_2\text{H}_5\text{OH})_n\text{H}^+ + \text{M}$ $\rightarrow [\text{M}+(\text{C}_2\text{H}_5\text{OH})_{n-1}\text{H}]^+ + \text{C}_2\text{H}_5\text{OH}$ $\rightarrow [\text{M} + \text{H}]^+ + n\text{C}_2\text{H}_5\text{OH}$	Compounds with proton affinity larger than ethanol (e.g., dimethyl sulfide, ammonia and amines)	Nowak et al. (2002)
NH_4^+	$\text{N}_2/\text{H}_2\text{O}$ mixture	^{210}Po	Canonical IMR/20-200/-0.1			Berry et al. (2018); Yu and Lee (2012)
	NH_3	hollow cathode discharge	Ring-stack drift tube/ 2.3/-0.5	$\text{NH}_4^+ + \text{M}$ $\rightarrow [\text{M} + \text{NH}_4]^+$ $\rightarrow [\text{M} + \text{H}]^+ + \text{NH}_3$	Compounds with proton affinities higher than ammonia; compounds with high binding enthalpies to NH_4^+ (e.g., some VOCs, OVOCs, HOMs, amines, and RO_2^+)	Canaval et al. (2019)
	$\text{NH}_4^+\bullet\text{H}_2\text{O}$	$\text{NH}_3/\text{H}_2\text{O}$ mixture	Glow discharge	Focusing IMR /-3/0.2 $\rightarrow \text{NH}_4^+\bullet\text{H}_2\text{O} + \text{M}$ $\rightarrow [\text{M} + \text{NH}_4]^+ + \text{H}_2\text{O}$	Compounds with NH_4^+ affinity ^a larger than H_2O (e.g., monoterpenes, majority of OVOCs)	Khare et al. (2022); Xu et al. (2022a)
$\text{C}_3\text{H}_7\text{NH}_3^+$	n-propylamine	^{241}Am	Corona discharge	Triple/50-70/3		Zaytsev, Breitenlechner, et al. (2019)
			Flow tube IMR/1000/ 200-300	$\text{C}_3\text{H}_7\text{NH}_3^+ + \text{M}$ $\rightarrow [\text{M} + \text{C}_3\text{H}_7\text{NH}_3]^+$	HOMs, Criegee Intermediate, RO_2^+	Berndt et al. (2018b)

(Continues)

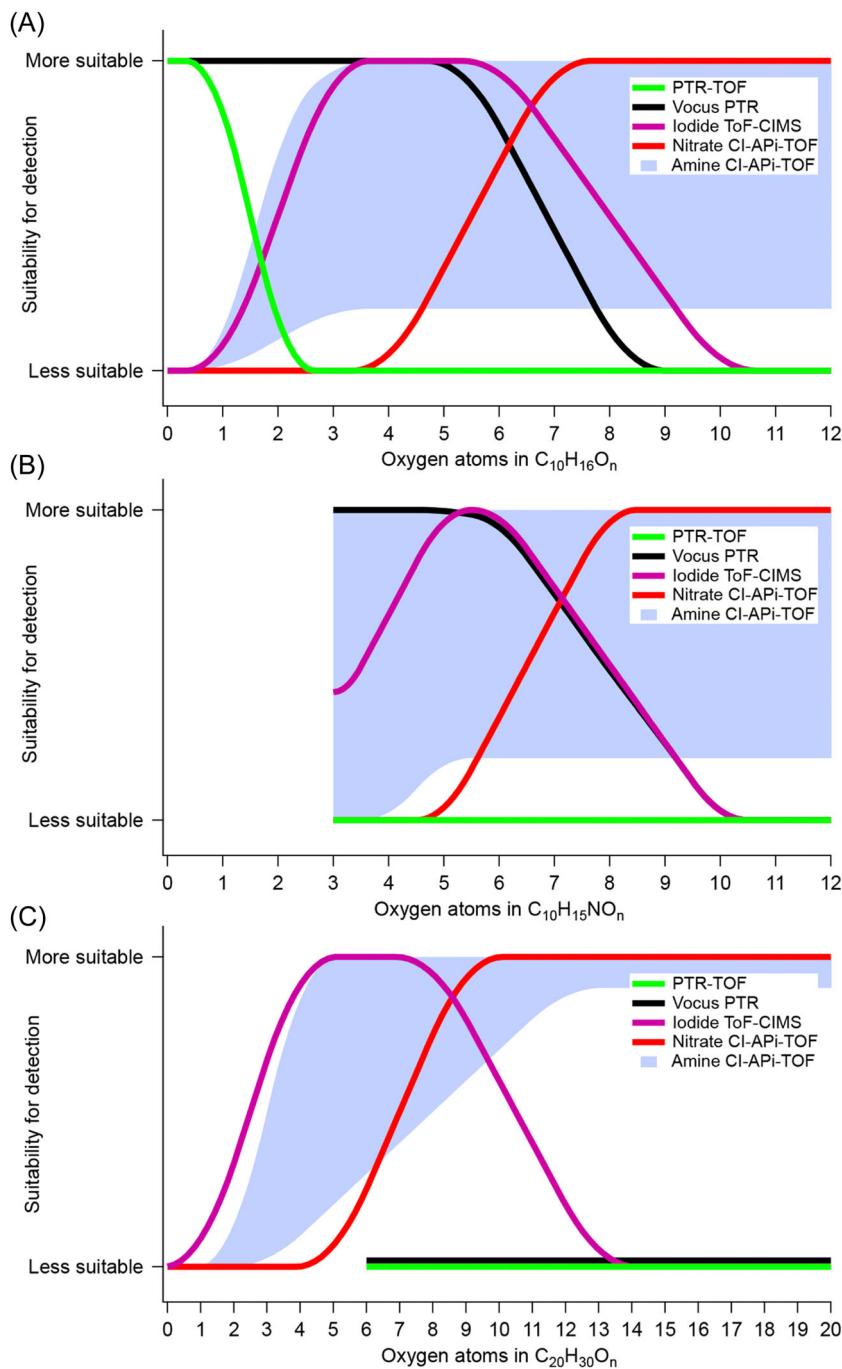
TABLE 1 (Continued)

Reagent ion	Source gas	Ion source	IMR/mbar/ms	Primary ion chemistry	Detected compounds	References
I^-	CH_3I	^{210}Po	Canonical IMR/ 90/~/120	$\text{I}^- + \text{M} \rightarrow [\text{M} + \text{I}]^-$	Compounds with high binding enthalpies to I^- (e.g., HONO , N_2O_5 , OVOCs, HOMs, RO_2^\bullet)	Lee et al. (2014)
	VUV		Flow tube IMR /20- 50/10-20			Ji et al. (2020)
	VUV		FIMR/9/30			Breitenlechner et al. (2022)
Br^-	CF_3Br	^{210}Po	Canonical IMR/ 100/70	$\text{Br}^- + \text{M} \rightarrow [\text{M} + \text{Br}]^-$	Compounds with high binding enthalpies to Br^- (e.g., OVOCs, HOMs, HO_2^\bullet , RO_2^\bullet , halogen species, and sulfuric acid)	Sanchez et al. (2016)
	CH_2Br_2	X-ray	MIION/1000/30			Rissanen et al. (2019)
$\text{CH}_3\text{C}(\text{O})\text{O}^-$	Acetic anhydride	^{210}Po	Flow tube IMR/ 43/~/80	$\text{CH}_3\text{C}(\text{O})\text{O}^- + \text{M} \rightarrow [\text{M} + \text{CH}_3\text{C}(\text{O})\text{O}]^-$ $\rightarrow [\text{M}-\text{H}]^- + \text{CH}_3\text{C}(\text{O})\text{OH}$	Compounds with gas-phase acidity larger than acetic acid (e.g., majority of organic acids, HOMs, and RO_2^\bullet)	Veres et al. (2008)
			Canonical IMR/20- 100/100			Bertram et al. (2011)
NO_3^-	HNO_3	^{241}Am	Flow tube IMR/ 1000/200	$\text{NO}_3^- + (\text{HNO}_3)_n + \text{M} \rightarrow [\text{M} + \text{NO}_3]^- + (\text{HNO}_3)_n$ $\rightarrow [\text{M}-\text{H} + \text{HNO}_3]^{-\text{b}} + (\text{HNO}_3)_n$	Compounds with gas-phase acidity larger than HNO_3 or high binding enthalpies to NO_3^- (e.g., sulfuric acid, nitroaromatics, HOMs, and RO_2^\bullet)	Eisele and Tanner (1993); Jokinen et al. (2012)
CF_3O^-	CF_3OOFC_3	^{210}Po	Transverse IMR/ 35/~/1	$\text{CF}_3\text{O}^- + \text{M} \rightarrow [\text{M} + \text{CF}_3\text{O}]^-$ $\rightarrow [\text{M}-\text{H} + \text{HF}]^{-\text{b}} + \text{CF}_2\text{O}$	Compounds with large gas-phase acidity or high binding enthalpies to CF_3O^- (e.g., organic acids, hydroperoxides, and nitrates, H_2O_2 , HNO_3 , HONO , HCN , SO_2)	Allen et al. (2022); Crounse et al. (2006)
SF_6^-	SF_6		Flow tube IMR/ ~12/5-10	$\text{SF}_6^- + \text{M} \rightarrow [\text{M} - \text{H} + \text{HF}]^{-\text{b}} + \text{SF}_5$ $\rightarrow [\text{M}-\text{H}]^- + \text{HF} + \text{SF}_5$	Inorganic compounds and organic acids	Nah et al. (2018)

^aAs analogous to proton affinity, we define NH_4^+ affinity and C_6H_6^+ affinity as the negative of the enthalpy change in the reaction between analyte and NH_4^+ or C_6H_6^+ , respectively.

^bThe “M-H” in these ion formulas indicates acid deprotonation.

et al., 2022; Ji et al., 2020). The reagent ions react with analytes in the IMR. The IMR operation conditions and configurations are designed for specific reagent ions and analyte molecules. The IMR can be held at atmospheric pressure or a reduced pressure. For instance, protonated amine and NO_3^- ion chemistries were often carried out under atmospheric pressure while most other ion chemistries require varied levels of low-pressure (2–200 mbar). The IMR also has a variety of designs. For example, the standard IMR used for I^- , $\text{CH}_3\text{C}(\text{O})\text{O}^-$, SF_6^- , Br^- , and so forth introduces the reagent ions perpendicularly with the mass spectrometer inlet nozzle and orthogonally to the sample flow with a mixing time ~100–200 ms (Bertram et al., 2011). The CF_3O^- -CIMS IMR was designed in a transverse fashion with the reagent ions accelerated toward the inlet orifice by the electric field and the sample flow in a perpendicular direction, at a much shorter mixing time ~1 ms (Crounse et al., 2006). The shorter reagent ion-molecule mixing time results in the reaction in the kinetic limited regime. Another important factor of IMR design is to minimize the analyte-wall interaction. For example, for the IMR in NO_3^- -CIMS targeting at low vapor pressure analytes, the reagent ions in a sheath flow are guided and accelerated via an electric field to meet the samples in parallel to minimize the wall interaction (Bianchi et al., 2019). After the IMR, the ionized samples are transmitted through the ion optics. In the example shown in Figure 1, the charged ions enter a small segmented quadrupole with tunable frequency and amplitude to be effectively guided, focused, and cooled, followed by a second big segmented quadrupole stage housed at nearly vacuum condition (Yuan et al., 2016). Weakly bounded ion-molecule clusters could experience collisional dissociation caused by the voltage difference between the two quadrupole regions (Aljawhary et al., 2013; Bertram et al., 2011; Huey, 2007; Lopez-Hilfiker et al., 2016). Finally, the primary beam travels through a series of DC optics to be further focused and accelerated before entering the mass analyzer.


With the above-described generic CIMS configuration, many ion chemistries can be employed (Table 1). The hydronium ions (H_3O^+) can ionize molecules with proton affinity higher than water, yielding protonated ion clusters via proton-transfer reactions in the drift tube. The reagent ion NO^+ is able to ionize VOCs through three different ionization mechanisms, charge transfer, hydride abstraction, and cluster formation, dependent on the reaction enthalpy of compound molecules (Koss et al., 2016). The proton- or hydride-transfer reactions are more favorable with a more negative proton- or hydride-transfer reaction enthalpy, otherwise the formation of $[\text{VOC} + \text{NO}]^+$ adducts occurs. Benzene cluster cations

have been used to detect dimethyl sulfide and terpenes by forming adducts (Kim et al., 2016; Lavi et al., 2018). The $[\text{C}_2\text{H}_5\text{OH} + \text{H}]^+$ clustering process is typically applied to detect dimethyl sulfoxide, a series of non-methane hydrocarbons, and amines (Benson et al., 2010; Berry et al., 2018; Nowak et al., 2002). The NH_4^+ ionization can detect a wide range of organic and inorganic species, including ketones, alcohols, peroxy radicals (RO_2^{\cdot}), and amines (Canaval et al., 2019; Hansel et al., 2018; Müller et al., 2020; Xu, et al., 2022b; Zaytsev, Breitenlechner, et al., 2019; Zhu et al., 2018). The protonated amine ion chemistry (e.g., *n*- or *tert*-butylamine or diethylamine) has been more specifically used to measure highly oxygenated molecules (HOMs) and RO_2^{\cdot} (Berndt et al., 2017; Berndt, Mentler, et al., 2018; Berndt, Scholz, et al., 2018). Among the negative reagent ions, I^- and Br^- have been widely used to measure atmospheric relevant inorganic and organic species, including halogen-containing species, moderately oxygenated VOCs (OVOCs), HOMs, and RO_2^{\cdot} (Lawler et al., 2011; Lee et al., 2014; Priestley et al., 2021; Rissanen et al., 2019; Sanchez et al., 2016, 2021). $\text{CH}_3\text{C}(\text{O})\text{O}^-$ can ionize inorganic and organic acids that are more acidic than acetic acid as well as HOMs (Berndt, Richters, et al., 2016; Bertram et al., 2011; Hansel et al., 2018). NO_3^- is also a well-known reagent ion to measure HOMs by forming adducts (Ehn et al., 2012, 2014; Rissanen et al., 2014, 2015), but may have distinct sensitivities for different HOMs in comparison to $\text{CH}_3\text{C}(\text{O})\text{O}^-$ (Berndt, Richters, et al., 2016). CF_3O^- has been used to detect OVOCs, organic hydroperoxides, and nitrates through ion-molecule clustering or fluoride transfer reactions (Crounse et al., 2006; Paulot et al., 2009; Vasquez, Crounse, et al., 2020). SF_6^- ionizes some inorganic compounds and organic acids through proton or fluoride transfer reactions (Huey et al., 1995; Nah et al., 2018; Slusher et al., 2001). As described here, the same class of organic compounds can be detected by several different ion chemistries. Figure 5 shows a comparison between several popular ion chemistries in the detection suitability of α -pinene oxidation products with varied molecular composition (Riva, Rantala, et al., 2019). Depending on the volatility, stability, and degree of oxygenation, the detection suitability for different ion chemistries also varies.

2.1.3 | Extended capabilities of CIMS

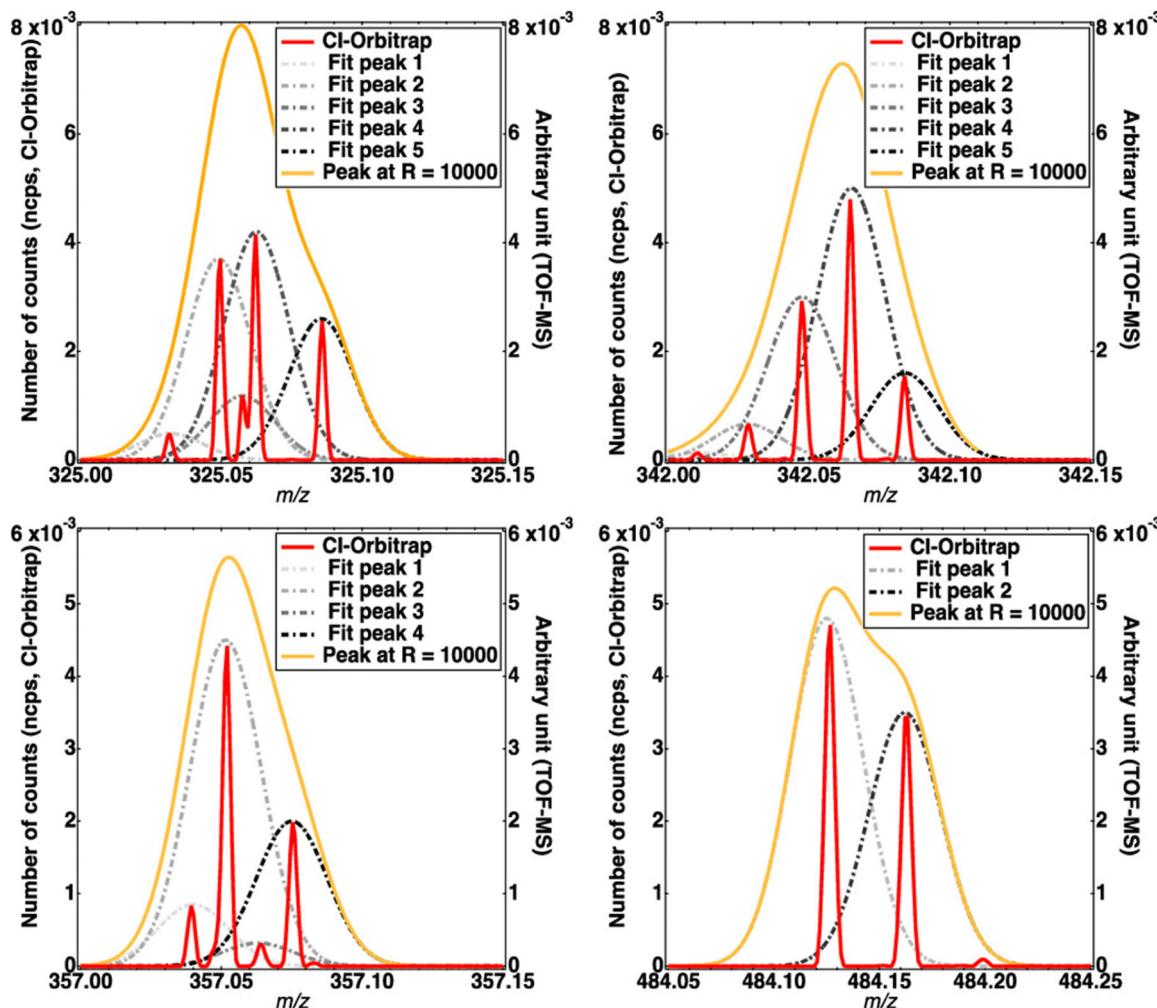
Switchable reagent ion CIMS

For both laboratory research and field studies, the selective nature of CIMS may inhibit comprehensive measurements of a wide range of chemicals of interest.

FIGURE 5 Estimated detection suitability of the different CIMS techniques for α -pinene and its oxidation products, plotted as a function of the number of oxygen atoms. Each panel symbolizes a compound group: (A) monomers, (B) organic nitrate monomers, and (C) dimers. Reproduced with permission Riva, Rantala, et al. (2019). Copyright 2019 Riva et al. CIMS, chemical ionization mass spectrometry. [Color figure can be viewed at wileyonlinelibrary.com]

To overcome this limitation, a few studies have developed a switchable reagent ion (SRI, also known as selective reagent ion) approach to allow two or more reagent ion chemistries alternate during CIMS measurements. For example, the SRI-PTR-MS (or SRI-PTR-TOF) that enables switching between H_3O^+ , NO^+ , and O_2^+ has been used to more comprehensively characterize VOCs for years (Jordan et al., 2009; Smith & Španěl, 2005; Sulzer et al., 2013). In addition, Brophy and Farmer developed an SRI-CIMS to switch between I^- and $CH_3C(O)O^-$ reagent ions to measure compounds across a large

mass range and focus on specific species (Brophy & Farmer, 2015). Based on the development of PTR3, more recently, Zaytsev et al. introduced a PTR3-based SRI-CIMS that can switch between H_3O^+ and NH_4^+ reagent ion chemistries within 2 min (Koss et al., 2020; Zaytsev, Koss, et al., 2019). Rissanen et al. developed a Multi-scheme chemical ionization inlet (MION) for fast switching between Br^- and NO_3^- , allowing multiple consecutive chemical ionization in fast repetition at atmospheric pressure (Rissanen et al., 2019). The ion chemistry scheme can be changed within a second


timescale by simply switching low-voltage settings, and the ion-molecule reaction time is adjustable by changing the length between two ion sources. Breitenlechner et al. recently coupled a VUV ion source to a commercial Vocus PTR-TOF in which the discharge ion source is replaced with two VUV lamps (Breitenlechner et al., 2022). Different from the glow discharge ion source, the VUV ion source can efficiently generate both positive and negative reagent ions, allowing for the switchable polarities to access different ion chemistries such as the original H_3O^+ -PTR-MS and the widely used I^- -CIMS. Meanwhile, the VUV ion source not only reduces ion fragmentation but also inhibits the sputtering processes of fast ions which contributes to longer lifetime of the ion source region.

Thermal desorption-based CIMS for aerosol analysis
Although CIMS was originally designed for real-time analysis of atmospheric trace gases, its coupling with thermal desorption-based inlets allows for measurements of chemical composition in the particle phase. One commonly used aerosol inlet in the past few years is the Filter Inlet for Gases and Aerosols (FIGAERO), which simultaneously sample gas species and collects aerosol particles on a Teflon filter followed by temperature-ramped thermal desorption to vaporize particle-phase chemicals into the gas phase (Lopez-Hilfiker et al., 2014). The relatively short sampling time (hourly) due to its high sensitivity allowed the usage of FIGAERO-CIMS in the laboratory settings and real atmosphere (Lopez-Hilfiker et al., 2015; Mohr et al., 2017; Zhang et al., 2018). Without filter collection, real-time particle-phase composition analysis can be achieved by direct thermal desorption, though the detection limit is degraded than the filter-based method (Zhao, Yang, et al., 2020). Two common examples of such inlets are described below. The first one is the “chemical analysis of aerosol online” (CHARON) inlet system for online chemical characterization of semi-volatile submicron particles (Eichler et al., 2015). The CHARON particle inlet consists of a gas phase denuder which removes gas-phase organic compounds, an aerodynamic lens which concentrates aerosols in the subsampling flow with the combination of an inertial sampler, and a thermal desorption unit which operates at a reduced pressure of ~10 mbar and a constant heating temperature in the range of 50–250°C for particle volatilization before the chemical analysis by PTR-MS (Eichler et al., 2015; Pagonis et al., 2021; Piel et al., 2021). The CHARON-PTR-MS has been successfully used for detection of organic compounds and ammonium constituents in aerosol particles (Eichler et al., 2015; Leglise et al., 2019; Piel et al., 2021).

The second example is the Vocus inlet for aerosols (VIA), recently introduced by Häkkinen et al. for measurements of particle-phase HOMs by coupling to NO_3^- -CIMS (Häkkinen et al., 2022; Zhao, Häkkinen, et al., 2022). Similar to the CHARON inlet, the VIA first passes aerosols samples through an activated charcoal gas denuder to remove gas-phase constituents (Zhao, Häkkinen, et al., 2022). Then the remaining aerosol species are evaporated at a chosen temperature between 25°C and 300°C by a Sulfinert-coated stainless-steel thermal desorption tube under ambient pressure (Avery et al., 2023; Häkkinen et al., 2022). A dilution flow of clean air is introduced to cool down the samples before they enter the IMR.

CIMS with Orbitrap as the mass analyzer

Chemical ionization coupled to an Orbitrap mass spectrometry (CIMS-Orbitrap) has become a new technique among high-resolution CIMS instruments in atmospheric chemistry (Riva, Ehn, et al., 2019; Zuth et al., 2018). Orbitrap is an ion trap mass analyzer essentially consisting of three electrodes (Makarov, 2000; Zubarev & Makarov, 2013). Two outer barrel-like electrodes face each other and are electrically isolated, held together with a coaxial inner spindle-like central electrode. A strictly linear electric field is generated when the voltage is applied to the outer and the central electrodes, while ions are trapped to the central electrode by the radial electric component. Ions cycle around the inner electrode by balancing the electrostatic attraction and the centrifugal force of tangential movements. Meanwhile, the axial electric component forces ions moving back and forth along the axis. As a result, the trajectories of ions inside the trap are nearly circular spiral. Ions with different mass-to-charge ratios move with the same axial frequency but different rotational frequencies, thus ions of interest with a specific mass-to-charge ratio could be selected and guided to the analyzer. Compared to TOF-CIMS, CI-Orbitrap has much higher mass resolving power ($m/\Delta m$ of 140,000), and has been proved to be able to measure VOCs and RO_2^+ at atmospherically relevant concentrations (Riva et al., 2020). Direct mass spectra comparisons of CI-Orbitrap with typical TOF-CIMS are shown in Figure 6, demonstrating the superior peak identification and formula assignment using CI-Orbitrap. A recent study showed improved sensitivity in measuring the OVOC with low concentrations down to 5×10^4 molecules cm^{-3} as well as the number of detected compounds above the 50% sensitivity threshold by optimizing different governing parameters of the chemical ionization Orbitrap Fourier transform mass spectrometry (Cai et al., 2022). Moreover, its ability to

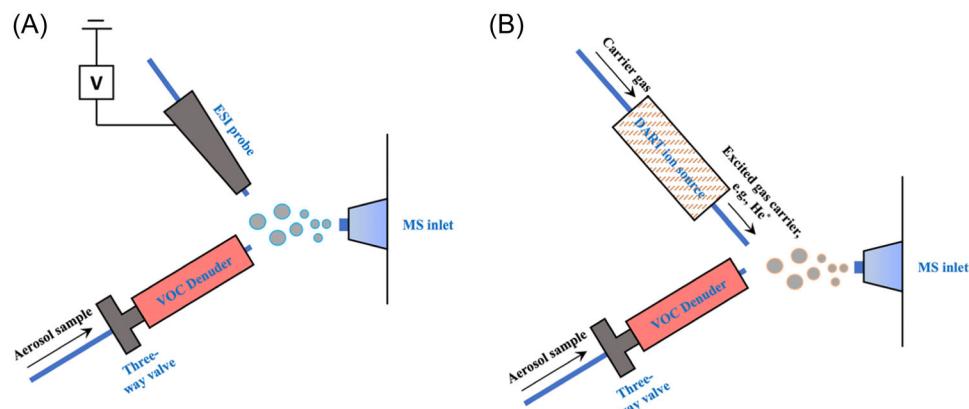
FIGURE 6 Mass spectra (red) of different HOM, at m/z 325, 342, 357, and 484, measured by a NO_3 -CI-Orbitrap during limonene ozonolysis. The orange trace represents the spectrum that would be observed using an instrument with mass resolving power of 10,000. Dashed lines stand for the fits of individual ions. The TOF-MS signals represent synthetic data using arbitrary units and do not aim at matching the surface area measured using the CI-Orbitrap. Reproduced with permission Riva, Rantala, et al. (2019). Copyright 2019 American Chemical Society. HOM, highly oxidized molecule; TOF-MS, time of flight mass spectrometry. [Color figure can be viewed at wileyonlinelibrary.com]

use tandem mass spectrometry analysis allows for structural analysis of target molecules, leading to its potential applications in detecting trace-level components of atmospheric complex chemical mixtures.

2.2 | Ambient ionization techniques designed for aerosol analysis

Ambient ionization usually refers to ionization methods in which molecules are ionized in their native environment, typically for condensed-phase samples in air. In the past, many ambient ionization mass spectrometry techniques were employed based on physical-chemical processes such as laser ablation,

thermal desorption, and vibrational excitation, enabling analysis of environmental samples (Feider et al., 2019). In atmospheric chemistry, especially for aerosol research, ambient ionization mass spectrometry techniques are used to ionize molecules in aerosols directly in the air, allowing for nearly real-time sampling and the subsequent analysis for aerosol molecular chemical composition without sample collection, preparation, or extraction (Brüggemann et al., 2015; Feider et al., 2019). Recently, real-time and direct aerosol mass spectrometry analysis with soft ambient ionization has made large progress, such as EESI and DART. The key advances of these soft ambient ionization mass spectrometry techniques are summarized in this section.


2.2.1 | ESI-based techniques

EESI-MS

ESI is a well-known technique that uses electrospray to ionize polar molecules under high voltage and transfer the ions from solution phase into the gas phase as the sprayed microdroplets evaporate. As described in the Introduction, the early applications of ESI-MS in aerosol research were mostly through direct infusion of liquid samples after aerosol collection and extraction (Reemtsma et al., 2006; Zhang et al., 2011). The EESI technique combines ESI with online aerosol measurement as the simplified configuration shown in Figure 7A (Chen et al., 2006; Doezena et al., 2012; Gallimore & Kalberer, 2013; Gallimore et al., 2017; Lopez-Hilfiker et al., 2019). Gas-scrubbed aerosol samples can be directly introduced into the EESI inlet, where the sample flow collides with a charged and stable solvent electrospray plume to be extracted into the bulk electrospray, which is generated by the potential difference between an ESI probe and the mass spectrometer inlet (Figure 7A). The electrospray solution is usually doped with a strong ionic compound such as sodium iodide to promote ionization by providing stronger adducts and reference signals for mass calibration (Pospisilova et al., 2021; Zhao, Chan, et al., 2017). The angle and the distance between aerosol sample flow, the ESI probe, and the mass spectrometer inlet could be optimized for best ion signals. The aerosol molecules are ionized and ejected into the gas phase by the rapid evaporation of electrospray solvent through the Coulomb explosion mechanism (Kebarle & Peschke, 2000). Then aerosol samples enter a heated ion capillary to ensure the evaporation of electrospray droplets during the ~1 ms capillary transit before mass spectrometry analysis. Finally, the generated molecular ions are detected by a

mass analyzer to obtain real-time aerosol composition measurements at a near-molecular level (Lee et al., 2020). The reported detection limit using recently developed sensitive EESI-MS is typically on the order of 1–10 ng m⁻³ in 5 s (Gallimore et al., 2017; Lopez-Hilfiker et al., 2019).

EESI-MS provides a controlled ionization scheme to avoid the reliance of the conventional methods on thermal desorption, fragmentation causing by hard ionization or separated collection-extraction-analysis stages (Brown et al., 2021; Pospisilova et al., 2020; Surdu et al., 2021). Although EESI-MS showed significantly different sensitivity towards different organic compounds by up to a factor of 30, the ion signals of a respective compound exhibit a linear response to compound mass over several orders of magnitude, highlighting the potential benefits of EESI to quantify atmospheric aerosols (Gallimore et al., 2017; Lopez-Hilfiker et al., 2019). According to ambient measurements, potential factors affecting the instrument response, including the soluble inorganic matrix, varied water vapor, and largely varied particle sizes, only slightly disturb the aerosol detection and analysis (Gallimore et al., 2017; Lopez-Hilfiker et al., 2019; Pagonis et al., 2021). With the increasing needs of using soft ambient ionization mass spectrometry methods to perform real-time measurements and quantitative characterization of aerosol compositions at the molecular level, EESI-MS is expected to provide comprehensive analysis of atmospheric aerosol species (Hems et al., 2021; Huang et al., 2019). For example, EESI-MS is promising as an alternative of the offline LC-ESI-MS to measure key atmospheric SOA tracers such as organosulfates in real-time (Brüggemann et al., 2020). EESI-MS also exhibits a quantitative capability to monitor the dynamic concentrations of individual compounds in mixed organic-

FIGURE 7 Schematics of (A) EESI and (B) DART ion sources interfacing with mass spectrometry. DART, direct analysis in real-time; EESI, extractive electrospray ionization. [Color figure can be viewed at wileyonlinelibrary.com]

inorganic particles during the formation and aging of SOA, meanwhile proving a near molecular-level measurement with high resolution (Gallimore et al., 2017). Furthermore, EESI could combine high time resolution, high resolving power, and detailed structural analysis to provide in-depth understanding of atmospheric chemistry. For instance, Lee et al. have developed an EESI inlet coupled to an Orbitrap to acquire molecular composition of the aerosol components at atmospherically relevant concentrations with ultrahigh mass accuracy and resolution, meanwhile shown the instrument's ability to perform online tandem mass spectrometry analysis (Lee et al., 2020).

Electrospray chemical ionization mass spectrometry (ESCI-MS)

Zhao et al. recently presented a new in-situ ESCI-MS technique by coupling an ESI source to a time-of-flight mass spectrometer (TOF-MS), for the detection of atmospheric inorganic and organic species in the gas phase (Zhao, Chan, et al., 2017). The electrospray is achieved by generating spray droplets via a high-voltage power supply. The salt solutions dissolved in methanol are emitted through a fused silica spray needle housed in a cylindrical evaporation tube and are carried out by a flow of ultrahigh-purity N₂ gas to the IMR, followed by a stainless-steel capillary tube which act as atmospheric pressure interface between the IMR and the mass spectrometer. Any unevaporated droplets are moved out of the effective ionization region by reagent ion source flow, excluding the interference of secondary or extractive ESI. Thus, the sample molecule reacts with the reagent ion to form an ion-molecule adduct via ligand-switching reactions under atmospheric pressure in the IMR. This ESCI technique provides an extended option for both ESI-MS and CIMS applications in measurements of a broad range of atmospheric compounds. Using I⁻ as the ESCI reagent ion under atmospheric pressure ionization showed high sensitivity for RO₂[•], allowing for probing specific RO₂[•] chemistry (Zhao, Thornton, et al., 2018).

PS ionization mass spectrometry (PS-MS)

The PS-MS is a variant of ESI-MS, allowing for direct and indirect detection of dissolved compounds on aerosol filter samples under ambient temperature and pressure (Rindelaub et al., 2016). It has been regarded as a promising offline technique to provide quick and effective filter sample analysis with quantitative capabilities in ambient measurements (Chiang et al., 2018). The paper substrate is soaked or continuously saturated with apposite solvent matrix to generate an electrospray plume from the paper tip under a certain high voltage

(Espy et al., 2012; Rindelaub et al., 2016). The typical PS-MS analysis requires no sample preparation, where samples are directly deposited onto the substrate and analyzed by a mass spectrometer (Chiang et al., 2018). Recently, PS-MS has also been used in single droplet analysis, where the filter chromatography papers are cut into triangular piece and then attached to a high-voltage power supply (Kohli & Davies, 2021; Willis et al., 2020). Microdroplets are allowed to fall on the paper. During the formation and transportation process of the spray plume, the analytes in the microdroplets are ionized and transmitted towards the mass spectrometer inlet. Because deposition location of analyte droplets on the paper substrate impact the instrument performance, the spray tip angle and substrate geometry are adjusted to obtain the reproducibility and time scale (Kohli & Davies, 2020, 2021; Willis et al., 2020).

2.2.2 | Other ambient ionization techniques

DART-MS

Among the non-ESI-based ambient ionization mass spectrometry for real-time aerosol characterization, DART is a plasma-based technique that excites ambient molecules into ions through corona discharge of a carrier gas, such as helium, argon or nitrogen (Feider et al., 2019; Zhao, Fairhurst, et al., 2017). Among them, helium is one of the most frequently adopted carrier gas because its electronically excited 2³S state has 19.8eV of energy capable of ionizing atmospheric molecules (Ai et al., 2018). The excited gas carrier containing metastable atoms flow out of the source to thermally volatilize and ionize analyte molecules which are directly introduced into the ionization region between the DART ion source and the mass spectrometer inlet (Figure 7B) (Feider et al., 2019; Nah et al., 2013). The heated gas can improve the instrument sensitivity by increasing the surface desorption of analyte samples (Wingen & Finlayson-Pitts, 2019). The metastable carrier gas atoms can react with atmospheric water and oxygen molecules to produce a secondary ionizing species such as protonated water clusters (H₃O⁺) and molecular oxygen ions (O₂⁺) which could ionize sample molecules to form [M+H]⁺ in the positive mode, and superoxide anions (O₂⁻) which incite analytes to [M-H]⁻ and M⁻ ions in the negative ion mode through ion-molecule reactions (Cody et al., 2005; Nah et al., 2013; Zhou et al., 2016). Analytes with low ionization energy could be ionized directly during the process (Lam, Kwong, et al., 2019). In recent years, DART-MS has been commonly used to measure aerosol components in multiphase chemistry, such as studying the uptake of gaseous hypochlorous

acids (Schwartz-Narbonne et al., 2019), OH[•] (Davies & Wilson, 2015; Kwong, Chim, et al., 2018; Lam, Kwong, et al., 2019), and O₃ (Zhou et al., 2016; Zhou, Joudan, et al., 2019; Zhou, Zhou, et al., 2019) on aerosol particles, contributing to the understand of the reaction kinetics and chemical mechanisms of OA aging.

Aerosol flowing ambient-pressure afterglow (AeroFAPA)-MS

The AeroFAPA is another plasma-based soft ambient ionization mass spectrometry used in atmospheric research for real-time characterizing the molecular composition of complex aerosol matrices (Brüggemann et al., 2015, 2017; Fandino et al., 2020; Shelley et al., 2011). This source is based on a helium glow discharge plasma to excite and ionize helium species as the primary reagent ions (Brüggemann et al., 2015). The helium discharge gas can directly desorb and ionize a large range of OA compounds at atmospheric pressure within its high-energy metastable state for mass spectrometry detection in the afterglow region. The particle-phase analytes need to have a certain volatility to be ionized during the temperature-driven desorption process. Besides, the usage of helium source allows for longer lifetime of the ion source electrodes due to its low sputtering activity. Similar to the DART source, the AeroFAPA technique utilizes ambient O₂ and H₂O to produce O₂[−] ions through the interaction of thermal electrons and subsequently ionize aerosol molecules to form negatively charged analyte ions (Aghaei & Bogaerts, 2021). In addition to O₂[−] ions, the signals of other reagent ions, like O[−], OH[−], HO₂[−], O₃[−], NO₂[−], and NO₃[−] ions are observed in the negative mode (Schilling et al., 2010; Shelley et al., 2011). On the other hand, in the positive-mode measurements, the presence of O₂⁺, N₂⁺, NO⁺, O₂⁺, NO₂⁺ as well as protonated water clusters has been reported, and these reagent ions are produced via the charge-transfer reactions between the AeroFAPA source with N₂ and H₂O molecules in the air (Schilling et al., 2010).

Ambient ionization without external energy

A few ambient ionization methods were recently employed to study OA composition that do not require external energy such as high voltage or heating. Sonic-spray ionization (SSI) is one of these methods (Hirabayashi et al., 1994; 1995; Wingen & Finlayson-Pitts, 2019). In SSI, the mechanical action of sheath gas flow approaches sonic velocities and generates excess charges on aerosol particles and droplets, leading to gas-phase ions. In a recent study by Wingen and Finlayson-Pitts, this method was applied to solid particles with core-shell morphologies (Wingen et al., 2019a). SSI

turned out to be surface-sensitive and was used to probe the surface composition of laboratory OA. Similar to SSI, droplet-assisted ionization (DAI) as an inlet ionization technique has been recently developed for online aerosol characterization, with the advantage of no need for sample preparation or high voltage utilization (Kerecman et al., 2021). The inlet interface consists of a temperature-controlled stainless-steel capillary tube. The analyte-doped droplets within water matrix are charged when they pass through the capillary from atmospheric pressure into a vacuum, and then gas-phase molecular ions are produced after these droplets undergo aerodynamic and/or thermal breakup due to pressure and temperature gradients (Apsokardu et al., 2020, 2021; Horan et al., 2017; Kerecman et al., 2021). DAI-MS has been applied in characterization of airborne nanoparticles (Horan et al., 2017) and the molecular components of α -pinene SOA including HOM monomers and dimers with oxygen atom number as high as 14 (Kerecman et al., 2021). Another soft ambient ionization method without coupling to an external ionization source named inlet or vacuum ionization has been developed to study aerosol surface composition (Pagnotti et al., 2011). In a recent work reported by Qin et al., a triple quadrupole mass spectrometer is used to monitor aerosol interfacial molecular composition without an ion source (Qin et al., 2022). Instead, the sublimation of solid core materials (e.g., glutaric acid) in the particles leads to the ejection of molecular ions of the surface compounds. By comparing the mass spectral intensities of core and surface materials under different coating thicknesses, the proposed ionization scheme was verified. These surface-sensitive approaches were also found to have minimal decomposition of the analyte, providing new paths for understanding the surface composition of atmospheric aerosols.

2.3 | Novel coupling of separation techniques and mass spectrometry

Despite that the greatly improved mass spectrometry techniques for atmospheric chemistry in the past few years have enabled lower detection limits, higher mass and time resolutions, and more comprehensiveness, structure identification, and isomer separation are still challenging for mass spectrometry by itself. Tandem mass spectrometry is useful to study chemical structures for targeted analysis, but to resolve the structural/isomeric information of complex and unknown atmospheric species in a nontargeted fashion, mass spectrometry needs to be coupled with separation techniques. Column-polarity-based methods (e.g., GC and LC) are

well-established separation techniques to characterize atmospheric species on the isomer-resolved level. In addition, ion mobility spectrometry (IMS) separation coupling to mass spectrometry has been recently shown as a promising approach in aerosol research. In this section, we review new advances in GC, LC, and IMS coupled to mass spectrometry.

2.3.1 | GC-CIMS

GC can separate and quantitatively characterize chemical components in complex mixtures with structural information. However, previous GC analysis usually requires sample collection and preconditioning steps, and the separation effectiveness for certain chemical classes largely relies upon the column selection (Bi et al., 2021b). The traditional GC-MS uses either the hard EI ionization, or the relatively softer chemical ionization with reagents such as methane (Jaoui et al., 2005, 2008; Yu et al., 1998). In the past several years, the development of CIMS with a variety of ionization methods led to the emergence of coupling GC and CIMS in new fashions, to provide near real-time isomer identification and quantification.

In the recently developed real-time GC-CIMS by the Wennberg group at Caltech which focused on polar oxygenated VOCs (Bates et al., 2014; Teng et al., 2015, 2017; Vasquez et al., 2018; Xu et al., 2019; Xu, Møller, et al., 2020), the sampling gases are firstly collected on the head of an RTX 1701 GC column cooled to a desired temperature using an isopropanol bath or liquid CO₂. Then analytes elute in an order depending on their polarity and are separated by the retention time. The GC eluates are diluted by carrier N₂ gas and transmitted to the IMR region of CIMS that uses CF₃O⁻ as the reagent ion (see Section 2.1.2). The GC-CF₃O⁻-CIMS can determine important atmospheric isomeric components, such as isoprene epoxydiols (IEPOX) (Bates et al., 2014) and organonitrates (Kurtén et al., 2017; Praske et al., 2018; Teng et al., 2015; Vasquez et al., 2018).

Recently, Bi et al. coupled a thermal desorption aerosol gas chromatograph (TAG) to CIMS to expand GC-CIMS capability to also measure particle-phase compounds (Bi et al., 2021a). The TAG is a custom-built instrument including a sampling cell, an automatic liquid injection system, and preseparation process of a polar GC column (Isaacman et al., 2014; Williams et al., 2006; Zhao et al., 2013). In TAG-CIMS, aerosol samples are collected by the sampling cell while chemical standards are injected into the cell automatically by a liquid injection program. These compounds are thermally desorbed in helium to the column head and are

separated by passing through the GC column. Moreover, the analytes may be derivatized to improve transmission efficiency and stability for the analysis of oxygenated organic compounds (Isaacman-VanWertz et al., 2016). By coupling a TAG to a CIMS, the mass resolution of individual molecules is enhanced at the cost of extended analysis time. Bi et al. further developed a multi-reagent ionization mode for TAG-CIMS in which I⁻ and zero air are both used as reagent gases (Bi et al., 2021a). This mode could determine additional chemical species by the high abundance of non-adduct ions without losing the original advantage to use I⁻ clusters to identify oxygenated compounds.

2.3.2 | New methods based on LC-MS

Similar to GC-MS, LC-MS is another well-established analytical chemistry technique to combine the separation of dissolved aerosol mixtures by LC and the mass analysis capabilities of molecularly resolved information provided by mass spectrometry. A LC-MS system equipped with an ESI and/or an atmospheric pressure chemical ionization (APCI) source is extensively used for molecular-level characterization and analysis of polar or water-soluble organic molecules commonly found in complex samples of atmospheric aerosols (Brecht et al., 2020; Dye & Yttri, 2005; Souverain et al., 2004; Surratt et al., 2006; Surratt, Kroll, et al., 2007; Surratt, Lewandowski, et al., 2007; Szmigielski et al., 2007; Zhang, Dalleska, et al., 2016).

Iodometry-assisted LC-MS

Organic peroxides have been shown to account for a major fraction of SOA (Bateman et al., 2011; Docherty et al., 2005; Epstein et al., 2014; Li et al., 2016; Mertes et al., 2012; Yao et al., 2019). In traditional studies, quantification of organic peroxides was achieved by using spectroscopic techniques coupled with iodometry. However, this method only determines total organic peroxide molar mass. Molecular characterization cannot be achieved using this approach, hindering the understanding of the organic peroxide composition. Recently, Zhao et al. combined the iodometry with LC-ESI-MS and showed that by comparing the peaks in the LC-ESI-MS with and without the iodometry treatment, specific organic peroxide species in SOA can be identified with molecular and sometimes structural information (Zhao, Kenseth, Huang, Dalleska, Kuang, et al., 2018; Zhao, Kenseth, Huang, Dalleska, & Seinfeld, 2018). In this approach, the collected SOA samples on filters are first extracted using traditional methods (Surratt et al., 2006; Zhang et al., 2011). The extract solutions are

subsequently divided into two aliquots of which one is treated with iodometry and the other without, and the concentration of a peroxide compound is achieved by comparing the signals of ions with the same retention time according to the base peak intensity chromatograms. The iodometry-assisted LC-ESI-MS were furthered used for isomer-level identification and characterization of organic peroxides from monoterpene SOA (Wang et al., 2021; Yao et al., 2022; Zhao, Yao, et al., 2022), as well as for kinetics and chemical aging of isomer-resolved peroxide hydrolysis in aqueous-phase (Liu et al., 2022).

LC-MS with HILIC column

Another recent development of LC techniques is to use a hydrophilic interaction liquid chromatography (HILIC) to study polar hydrophilic species in aerosol chemistry. Traditionally, reverse-phase liquid chromatography (RPLC) has been a popular method to detect polar and water-soluble components. However, RPLC measurements are extremely limited by its performance in short retention times, ion suppression effects or poor peak shapes. It has been proved that HILIC could effectively separate water-soluble organosulfates, showing its potential to identify and quantify isoprene SOA constituents (Hettiyadura et al., 2015, 2017; Spolnik et al., 2018). In the study by Cui et al., an ultra-performance liquid chromatography (UPLC) with a HILIC column is interfaced to ESI-MS to measure water-soluble IEPOX-derived SOA isomers in the negative mode (Cui et al., 2018). The UPLC parameters, such as buffers, pH values, and column temperatures, can be optimized to increase the sensitivity. The mobile phases are composed of eluents containing ammonium acetate and water, sometimes ACN, of which the eluent pH is adjusted to 9.0 with NH₄OH buffer. The column is held at a constant heated temperature (~35°C). The relatively low temperature used in the HILIC method reduces the decomposition of organosulfates and other IEPOX-derived components, improving its ability to distinguish water-soluble isomers and evaluate SOA yields in isoprene-rich regions.

2.3.3 | IMS-MS

IMS as a powerful analytical technique has gained attention and prominence for separating structural isomers that have different molecular shapes over the last 20 years (Ewing et al., 2001; Kanu et al., 2008). But only very recently, this technique started to be applied in the field of atmospheric chemistry to separate and detect both gas- and particle-phase atmospheric

constituents on the isomeric level (Krechmer et al., 2016; Mayorga et al., 2021; West et al., 2023; Zhang, Krechmer, et al., 2016; Zhao, Mayorga, et al., 2020; Zhao et al., 2021). In the drift-tube-based IMS, ionized molecules can be separated based on their ion mobilities which arises from their collisional cross sections (CCS) and ion-molecule interactions in an inert carrier buffer gas (e.g., He or N₂). An ionization source (usually ESI and APCI) can generate charged analytes of interest under controlled pressure and temperature, and the ions are then separated in the IMS drift tube (Mayorga et al., 2021; Valadbeigi et al., 2019; Valadbeigi, Azizmohammadi, et al., 2020; Valadbeigi, Ilbeigi, et al., 2020; Zhao, Tolentino, et al., 2019; Zhao, Mayorga, et al., 2020; Zhao et al., 2021; Zheng et al., 2018). The IMS drift tube is followed by a pressure reduction interface, after which ions are transmitted into the mass analyzer (Kanu et al., 2008).

The recently developed IMS-MS by Tofwerk Inc. and Aerodyne Research Inc. uses the TOF mass analyzer, similar to their TOF-CIMS configuration (see Section 2.1). Between the IMS and the TOF, the potential differences between the two quadrupoles are used for collision-induced dissociation (CID) analysis where molecular ions are fragmented and weakly bound ion clusters are dissociated (Kaplan et al., 2010). The resultant fragmentation mass spectrum is similar to traditional tandem mass spectrometry measurements but providing additional information of relationships between precursor ions and fragment ions as well as spectra over the entire mass-to-charge range (Krechmer et al., 2016). IMS-MS measurements are not constrained by solvent or stationary-phase like traditional LC or GC, but still allow for the ability to distinguish organic species with different structures. The drift times are instrumental-dependent value which are transferable under the same buffer gas and temperature conditions, so that the measured CCS therefore are comparable to provide structural information (Krechmer et al., 2016).

Another recent application of IMS-MS was used in the real-time analysis of aerosol particles in prebiotic chemistry with a vacuum-assisted plasma ionization (VaPI) source to ionize organic molecules (Blair et al., 2018). The VaPI ion source utilizes a glow discharge at near atmospheric pressure to generate heated plasma gases. The aerosols sampled by a sampling tee collide with the plasma gas to be chemically ionized through proton transfer reactions. Then ions of interest are transferred from the sampling tee to an IMS-MS instrument for real-time analysis. Besides, the signals of oligomer clusters formed from ion-molecule reactions are observed in real-time, indicating the high reactivity of the

VaPI source to provide new insights into the prebiotic aerosol chemistry.

3 | APPLICATIONS OF THE NEW MASS SPECTROMETRY TECHNIQUES IN ATMOSPHERIC CHEMISTRY RESEARCH

The advances in mass spectrometry techniques described above are crucial for understanding the molecular and even isomeric compositions of complex atmospheric components in both the gas and particle phases and help elucidate the processes that lead to the formation and evolution of atmospheric organic species (Ehn et al., 2014; Kroll & Seinfeld, 2008; Smith et al., 2009). In the forthcoming section, we summarize the recent applications of these techniques to highlight the key progress in the characterization and identification of a broad range of organic species in atmospheric chemistry.

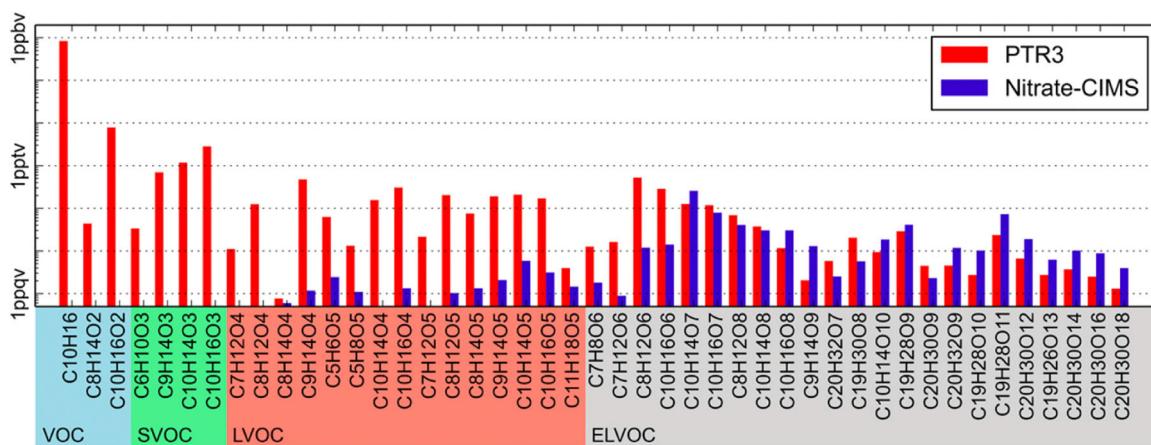
3.1 | Detection of atmospheric VOCs from traditional and emerging sources

VOCs are ubiquitous in the Earth's atmosphere. Speciation and quantification of VOCs are thus critical for understanding their emission sources, oxidation chemistry, and impacts on air quality and climate. PTR-MS is a key technique to quantitatively and sensitively measure a large variety of VOCs in real-time. The design and performance of PTR-MS have been extensively reviewed in previous publications (de Gouw & Warneke, 2007; Yuan et al., 2017). The sensitivities to different VOCs increase linearly as a function of the proton-transfer reaction rate, illustrating the quantitative ability of PTR-MS to atmospheric gas tracers (Krechmer et al., 2018; Sekimoto et al., 2017). Yet, some VOCs under ambient conditions may have very low concentrations (e.g., pptv or even sub-pptv levels), for which detection and quantification are still challenging. In this section, we will mainly focus on specific applications of the new versions of PTR-MS, namely Vocus and PTR3, in laboratory investigation and field work of atmospheric organic vapors and show their comparison with conventional PTR-MS.

With the greatly improved sensitivity and resolving power, the Vocus PTR-TOF allows for better quantification for VOCs with high molecular weight (e.g., m/z 150–300 Th) than traditional PTR-TOF (Figure 4) (Riva, Rantala, et al., 2019). It has been recently used to characterize and quantify VOCs and their oxidation products in both laboratory studies and field

measurements (Koss et al., 2020; Krechmer et al., 2018; Li et al., 2021; Sumlin et al., 2021; Wang, Mehra, et al., 2020; Wu et al., 2021; Zaytsev, Koss, et al., 2019). For example, in the first study of VOCs in forested regions using Vocus PTR-TOF, abundant terpene-derived VOCs consisting of comprehensive elemental composition classes with CH, CHO, CHN, CHS, CHON, CHOS were reported, while oxygenated products with carbon numbers of 5–10, 15, and 20 are dominant among the hydrocarbon categories (Li et al., 2020). The low-volatility diterpenes was observed in real-time in ambient air for first time using Vocus PTR-TOF at 2 ppt level. Vocus PTR-TOF can also efficiently detect the less oxidized organic nitrates and other nitrogen-containing organic compounds (DeVault & Ziemann, 2021), such as the product of alkyl nitrite photolysis (Nihill et al., 2021) and the organic nitrates from aromatic VOCs oxidation under varied NO_x conditions (Mehra et al., 2020). Besides the detection of atmospheric VOCs from traditional biogenic and anthropogenic sources, Vocus PTR-TOF has also shown promising capability to study VOCs from emerging sources such as the volatile chemical products (VCP) and wildfires (Jensen et al., 2021; Liang et al., 2022; Majluf et al., 2022). In addition, Vocus PTR-TOF has allowed for the quantitative source attribution of indoor VOC emissions (Liu & Abbatt, 2021; Pagonis, Price, et al., 2019). For instance, it is applied in the detection and quantification of numerous products from human skin ozonolysis (Morrison et al., 2021), the quantitative analysis of metabolic exhaled breath (Bruderer et al., 2019), the dark production of potentially toxic cyanogen chloride during bleach cleaning process (Mattila et al., 2020), and the examination of VOCs and crystal monomers released from liquid crystal display screens (Liu & Abbatt, 2021).

Very similar to Vocus PTR-TOF, PTR3 is well suited to detect atmospheric VOCs due to its high sensitivity to atmospheric trace gases, resulting in one of its widest usages to monitor the gas-phase reactant precursors in the new particle formation (NPF) studies. For example, PTR3 has been used in NPF studies through monitoring the gas-phase reactant concentrations of isoprene (Caudillo et al., 2021; Heinritzi et al., 2020), monoterpenes (Caudillo et al., 2021; Lehtipalo et al., 2018; Pullinen et al., 2020; Wagner et al., 2017; Yan et al., 2020) and other VOCs (Koss et al., 2020; Lehtipalo et al., 2018; Stolzenburg et al., 2020; Wang, Kong, et al., 2020). In α -pinene ozonolysis experiments conducted in the CLOUD chamber, PTR3 shows good agreement of oxidation products with a NO_3^- -TOF-CIMS (Bianchi et al., 2019; Breitenlechner et al., 2017). In this study, over 1000 formulas were obtained by PTR3, showing a detection range for broader volatility compound species with much


higher sensitivity to α -pinene and monomeric and dimeric oxidation products (Figure 8) (Breitenlechner et al., 2017). Further, as mentioned above, Zaytsev et al. developed a novel instrumentation based on PTR3 with switching reagent ions of H_3O^+ and NH_4^+ for qualitative and quantitative measurements of VOCs with a large range of volatilities (Zaytsev, Breitenlechner, et al., 2019). This technique was used to detect and quantify both ring-retaining products and ring-scission products derived from a series of toluene and 1,2,4-trimethylbenzene photooxidation, while the H_3O^+ mode is more sensitive to less oxidized molecules but NH_4^+ to larger and more functionalized compounds (Zaytsev, Koss, et al., 2019).

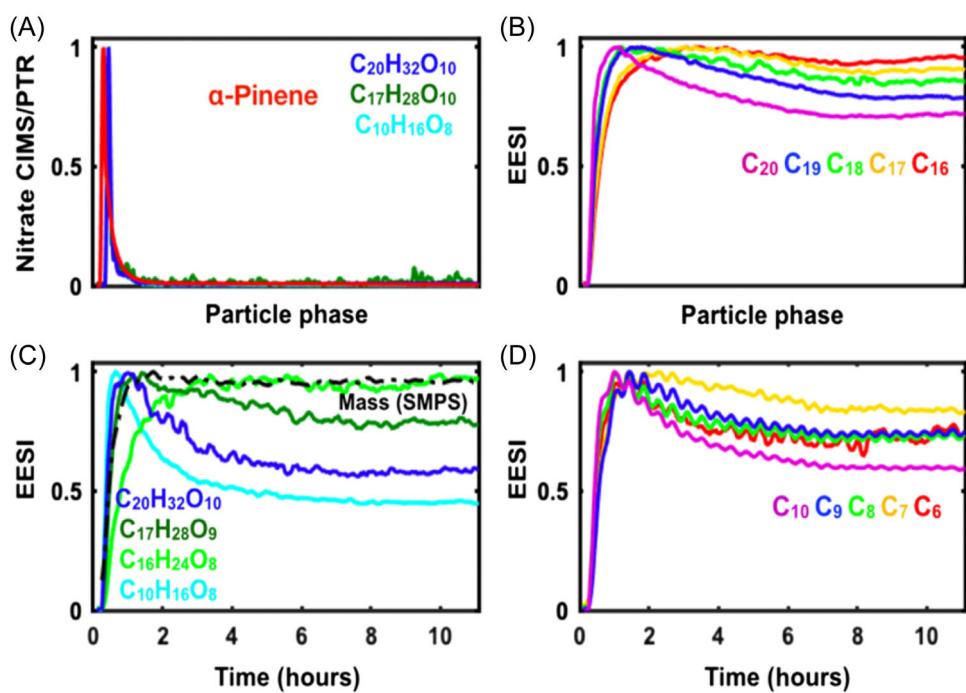
3.2 | Highly oxidized molecules (HOMs)

The HOMs are a class of organic compounds containing six or more oxygen atoms with high O/C ratios, usually formed via autoxidation chemistry involving RO_2^\cdot in the atmosphere (Bianchi et al., 2019; Ehn et al., 2014; Krechmer et al., 2015). They consist of a wide range of chemical functional groups (e.g. $-\text{OH}$, $=\text{O}$, and $-\text{OOH}$) and may be key components of atmospheric SOA after partitioning to the particle phase due to their extremely low volatility (Berndt, Richters, et al., 2016; Crounse et al., 2013; Jokinen et al., 2015). In this section, we will review recent studies that applied the above-described mass spectrometry techniques to characterize and quantify HOMs.

Because HOMs are formed from RO_2^\cdot autoxidation, it is thus important to detect not only the closed-shell HOMs themselves but also the HOMs- RO_2^\cdot . This was shown to be feasible by using CIMS with NO_3^- , $\text{CH}_3\text{C}(\text{O})\text{O}^-$.

O^- , I^- , Br^- , NH_4^+ , and pronated amines as the reagent ions (see Table 1) (Berndt, Herrmann, et al., 2016; Berndt et al., 2017; Berndt, Scholz, et al., 2018; Hansel et al., 2018; Priestley et al., 2021; Wang, Kong, et al., 2020; Zaytsev, Koss, et al., 2019; Ehn et al., 2014). Among these methods, NO_3^- -CIMS has the highest selectivity to HOMs with high number of oxygens and was the first technique developed for HOMs detection (Berndt, Richters, et al., 2016; Ehn et al., 2014; Jokinen et al., 2015; Richters et al., 2016). It observed HOMs formation from oxidation of monoterpenes (Ehn et al., 2012; Ehn et al., 2014; Jokinen et al., 2015; Rissanen et al., 2019), isoprene (Jokinen et al., 2015; Massoli et al., 2018), aromatic VOCs (Guo, Yan, et al., 2022; Molteni et al., 2018; Priestley et al., 2021), and other VOCs (Bianchi et al., 2016; Richters et al., 2016; Rissanen et al., 2019). Initial studies using NO_3^- -CIMS, concluded that HOMs are formed at higher yields in monoterpene ozonolysis, but not in $\cdot\text{OH}$ oxidation (Ehn et al., 2014). However, later studies by Berndt et al. found that $\cdot\text{OH}$ oxidation of monoterpenes also produces high yields of HOMs, which can be more sensitively detected by $\text{CH}_3\text{C}(\text{O})\text{O}^-$ -CIMS (Berndt, Richters, et al., 2016). This results also suggest that CIMS with different ionization methods may lead to distinct sensitivities for different HOMs molecules. In addition, Br^- and I^- are the other two reagent ions to couple with CIMS and measure HOMs (Mohr et al., 2017; Priestley et al., 2021; Wang, Kong, et al., 2020; Zhao, Thornton, et al., 2018; Zhao et al., 2021). They are less selective than NO_3^- and $\text{CH}_3\text{C}(\text{O})\text{O}^-$. Further, NH_4^+ -CIMS is the least selective method among the mentioned ion chemistries which measures a wide range of species from hydrocarbons to HOMs (Hansel et al., 2018). Consistently, the new NH_4^+ PTR3 has been

FIGURE 8 PTR3 (red) and NO_3^- -TOF-CIMS (blue) results from an ozonolysis experiment of 1 ppb α -pinene and 40 ppb ozone at the CLOUD chamber at 5°C and a relative humidity of 38%. Exact masses were used to assign sum formulas that are organized as a function of saturation vapor pressure ranging by volatilities. Reproduced with permission Breitenlechner et al. (2017). Copyright 2017 American Chemical Society. [Color figure can be viewed at wileyonlinelibrary.com]

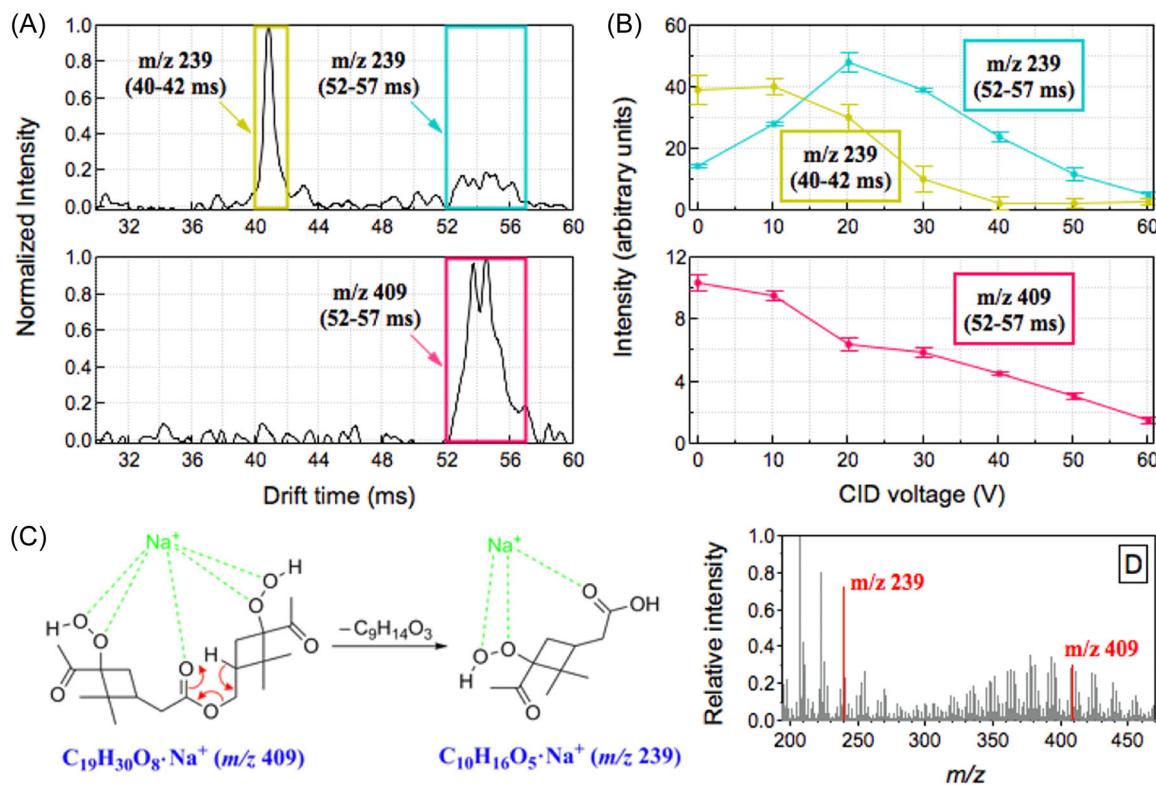

shown to be more sensitive to HOMs with low volatility in the atmosphere than a typical PTR-TOF (Breitenlechner et al., 2017). Lastly, protonated amines as the reagent ions have been used to measure HOM dimer formation from RO_2^{\cdot} cross-reactions in the oxidation of α -pinene (Berndt, Mentler, et al., 2018) and 1,3,5-trimethylbenzene (Berndt, Scholz, et al., 2018).

In addition to CIMS, Zhao et al. applied different reagent ions (e.g., I^- , NO_3^- , $\text{C}_2\text{H}_3\text{O}^-$, Li^+ , Na^+ , K^+ , and NH_4^+) to the ESCI-MS, and compared the obtained gas-phase chemical composition including HOMs from α -pinene ozonolysis with typical CIMS (Zhao, Chan, et al., 2017). They concluded that ESCI-MS with I^- as reagent ions have high sensitivity, comparable to the I^- -CIMS. It was also found that monomeric products ($n_C \leq 10$) are evident in all ion modes, but most dimeric products are only observed in the Na^+ ion mode. Besides, the reagent ion Na^+ is more sensitive to less oxidized species ($n_O \leq 3$) than I^- or NO_3^- , consistent with the observations in previous studies (Hyttinen et al., 2015; Iyer et al., 2016; Lee et al., 2014). CIMS with both I^- and NO_3^- could detect HOMs with similar oxygen contents, while the different signal intensities might be caused by the identities and locations of the functional groups (Berndt, Richters, et al., 2016; Lee et al., 2014). In a later study, Zhao et al. used I^- -ESCI-MS coupled with a LTOF device to detect HOMs derived from α -pinene ozonolysis, including 150 gaseous dimers identified as $\text{C}_{16-20}\text{H}_{24-34}\text{O}_{4-13}$ which contribute to 5%–60% of SOA mass yields (Zhao, Thornton, et al., 2018).

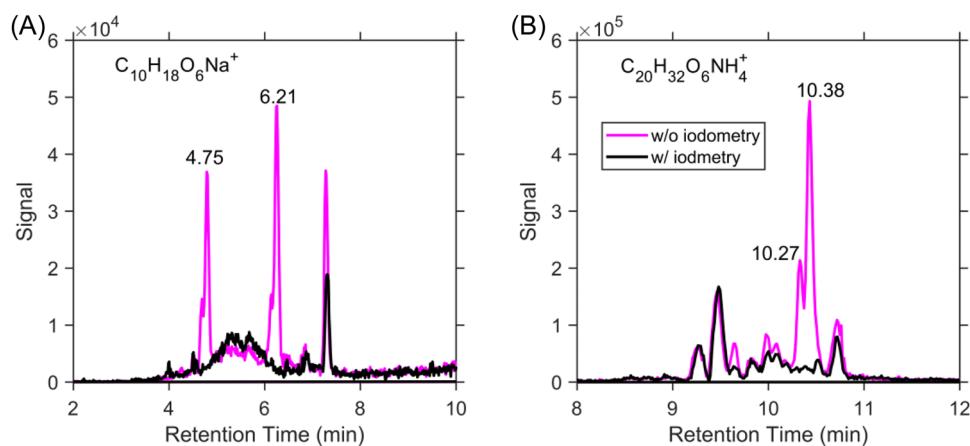
Besides the measurements of gaseous HOMs using CIMS with the above-mentioned reagent ions, CIMS can be coupled with a FIGAERO to detect the condensed HOMs in the particle phase (Lopez-Hilfiker et al., 2015; Mohr et al., 2017; Mutzel et al., 2015; Zhang et al., 2015). For example, Mohr et al. reported an ambient observation in Finland that a large variety of dimers with $\text{C}_{16-20}\text{H}_y\text{O}_{6-9}$ were formed from monoterpene oxidation in both the gas and particle phases by employing $\text{CH}_3\text{C}(\text{O})\text{O}^-$ and I^- as the reagent ions in FIGAERO-CIMS (Mohr et al., 2017). In this study, the total dimer concentrations were quantified in the two phases on the same order of magnitude and estimated a dimer contribution of 5% to the early stage of particle growth, highlighting the importance of HOMs condensation for aerosol growth. In addition to the FIGAERO-CIMS measurements, ESI-based techniques have also been used to monitor HOMs in the particle phase, both in real-time and offline. Specifically, EESI-MS has been used to characterize HOMs in SOA from α -pinene ozonolysis as well as the real-time degradation of individual monomer and dimer HOMs species to investigate the effect of HOMs on the SOA evolution (Figure 9) (Pospisilova

et al., 2021). Through the online EESI-MS characterization of SOA composition, this study further proposed that particle-phase reactions such as the decomposition of reactive oxygen species and the evaporation of volatile carboxylic acid play an important role in the SOA aging (Pospisilova et al., 2020). Lee et al. used EESI-MS to measure the monomer and dimer HOM distributions in α -pinene SOA, which showed good agreement with other particle-phase HOMs measurements using offline techniques (Bianchi et al., 2019; Kerecman et al., 2021; Lee et al., 2020). Furthermore, in a Zurich field deployment of EESI-MS, a similar result of dominant factors and mechanisms in the oxidation of monoterpenes has been reported to be consistent with NO_3^- -CIMS measurements of gas-phase HOM formation in a Finland forest (Stefenelli et al., 2019; Yan et al., 2016). Finally, organic nitrate HOMs were observed in the NO_3^- -derived α -pinene SOA using both FIGAERO-CIMS and EESI-MS, suggesting their large contribution to SOA aging (Bell et al., 2022; Guo, Shen, et al., 2022).

Other than the CIMS and EESI applications, recent developments in the combination of separation methods with mass spectrometry have also enabled new findings on HOM formation and composition. Krechmer et al. employed IMS-MS with the NO_3^- chemical ionization source for online measurements of gas-phase HOMs derived from α -pinene and limonene oxidation, meanwhile the number of isomers for each HOM formula is obtained by drift times (Krechmer et al., 2016). Zhang et al. present the characterization of α -pinene derived HOMs in the form of $\text{C}_{8-10}\text{H}_{12-18}\text{O}_{4-9}$ monomers and $\text{C}_{16-20}\text{H}_{24-36}\text{O}_{8-14}$ dimers using IMS-MS with ESI (Zhang et al., 2017). In this work, through the application of CID to fragment dimer ions after mobility separation, the fragmented monomer ions with the same drift time can be determined; hence, IMS-MS enables the investigation of HOM dimer structures (Figure 10). Zhao et al. coupled IMS-MS with I^- -CIMS analysis to separate and identify isomeric HOMs from α -pinene ozonolysis, and proposed an autoxidation rate of 20-fold faster of ring-opened $\text{C}_{10}\text{H}_{15}\text{O}_4 \text{RO}_2^{\cdot}$ than the ring-retained ones which are produced simultaneously in α -pinene ozonolysis (Zhao et al., 2021). Integrating IMS-MS and I^- -CIMS measurements, Mayorga et al. observed a series of HOMs characterized as organic nitrates and nitrooxy RO_2^{\cdot} derived from the oxidation of limonene, meanwhile emphasized a significant contribution of nitrooxy RO_2^{\cdot} autoxidation and sequential NO_3^{\cdot} oxidation to HOM yields (Mayorga et al., 2022). Moreover, the iodometry-assisted LC-ESI-MS method was used to study the fate of peroxide monomers ($\text{C}_{8-10}\text{H}_{12-18}\text{O}_{5-8}$) and dimers ($\text{C}_{15-20}\text{H}_{22-34}\text{O}_{5-14}$) in SOA samples derived from α -pinene oxidation, demonstrating the potential of


FIGURE 9 Time evolution of particle and gas-phase composition for α -pinene ozonolysis. (A) α -Pinene injection into the chamber (~ 35 ppbv) measured by PTR-TOF and gas-phase evolution of its oxidation products measured by NO_3^- -TOF-CIMS. (B) Time evolution of particle phase dimers, grouped by their carbon number. (C) Time evolution of three dimers and one monomer measured in the particle phase showing very distinct behavior despite similar saturation vapor concentration. (D) Time evolution of particle phase monomers, grouped by their carbon number. All signals are normalized to the maximum EESI-MS signal recorded for the respective ion during the displayed period. Reproduced with permission Pospisilova et al. (2020). Copyright 2020 Pospisilova et al. CIMS, chemical ionization mass spectrometer; EESI-MS, extractive electrospray ionization-mass spectrometry; PTR-TOF, proton transfer reaction-time-of-flight. [Color figure can be viewed at wileyonlinelibrary.com]

iodometry-assisted LC-ESI-MS to separate and identify HOMs that contain peroxide functional groups on the isomeric level (Figure 11) (Yao et al., 2022).


3.3 | Real-time OA bulk and surface molecular composition

Real-time measurements of OA molecular composition have long been desired. Although thermal desorption methods coupled with CIMS have made this possible (Lopez-Hilfiker et al., 2014; Thornton et al., 2020; Zhao, Xu, et al., 2019), heating-induced artifacts have been a concern to interfere accurate interpretation of OA molecular composition. In contrast, the recently developed EESI-MS overcomes the issue and is able to perform online OA molecular composition without extensive heating (Lopez-Hilfiker et al., 2019; Pagonis et al., 2021; Qi et al., 2019). Despite the ongoing debate of the ionization mechanism by EESI, it is often considered to measure the compositions of the aerosol bulk (Pagonis et al., 2021). In recent EESI-MS studies, the spray solution is usually a mixture of water and

methanol/acetonitrile, doped with ~ 100 ppm of a strong ionic compound like sodium iodide, such that analytes are detected as $[\text{M}+\text{Na}]^+$ adducts in positive mode and as $[\text{M}-\text{H}]^-$ ions in the negative mode (Lee et al., 2020; Lopez-Hilfiker et al., 2019; Pagonis et al., 2021). EESI-MS quantification can be accomplished by performing mass calibrations of atomized aerosol particles, where ion abundance displays a linear response to mass due to the lack of matrix interference (Brown et al., 2021; Gallimore et al., 2017; Stefenelli et al., 2019). EESI-MS has been successfully deployed for ground-based ambient sampling, aircraft tests, and laboratory experiments, demonstrating its versatile applications and reliable performance in various environmental conditions (Heald & Kroll, 2020; Hodshire et al., 2019; Lopez-Hilfiker et al., 2019; Pagonis et al., 2021; Pospisilova et al., 2020; Takhar et al., 2021). In an example of EESI-MS performance shown in Figure 12, the time series of levoglucosan and nitrocatechol measured by EESI-MS in wildfire smoke aerosols exhibited excellent agreements with other bulk aerosol measurements and gas-phase tracers (Pagonis et al., 2021).

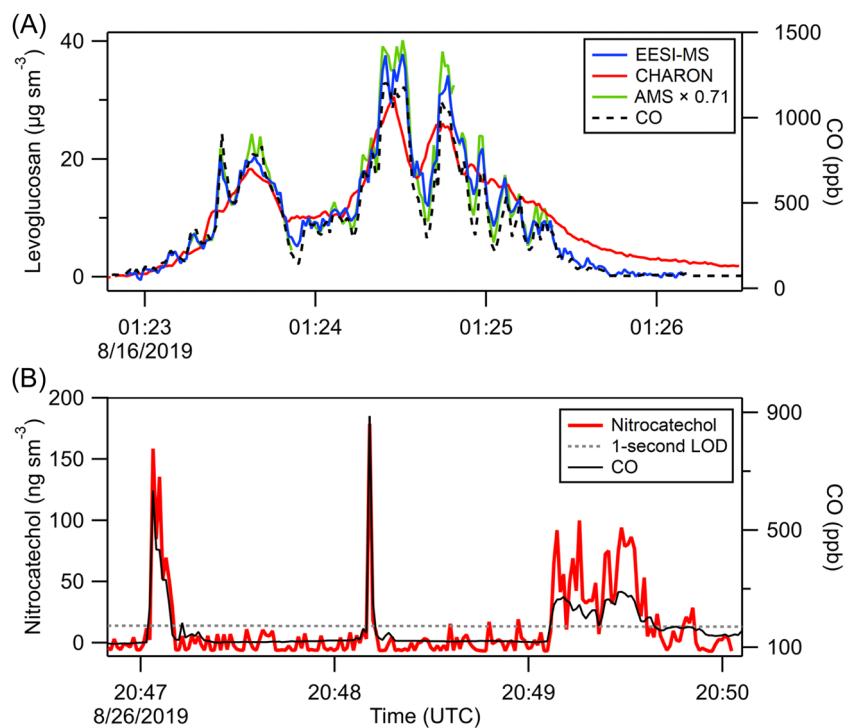


FIGURE 10 (A) Ion mobility spectra for one pair of precursor-fragment ion adducts as a representative example of the dimers from α -pinene ozonolysis. The ion adduct at m/z 239 Th with a drift time of 40–42 ms is assigned to a monomer product ($\text{C}_{10}\text{H}_{16}\text{O}_5$) and the ion adduct at m/z 409 Th with a drift time of 52–57 ms is assigned to a dimer product ($\text{C}_{19}\text{H}_{30}\text{O}_8$). The ion adduct at m/z 239 Th with a drift time of 52–57 ms is assigned to the fragment ion from CID of its precursor ion at m/z 409 Th. (B) Intensity profiles of these three ion adducts as a function of the collision energy, as characterized by the CID voltage. (C) Proposed McLafferty rearrangement for the CID of the $\text{C}_{19}\text{H}_{30}\text{O}_8\text{Na}^+$ dimer to the $\text{C}_{10}\text{H}_{16}\text{O}_5\text{Na}^+$ monomer. (D) Positive IMS-MS mass spectrum of SOA from α -pinene ozonolysis. Reproduced with permission Zhang et al. (2017). Copyright 2017 American Chemical Society. CID, collision-induced dissociation. [Color figure can be viewed at wileyonlinelibrary.com]

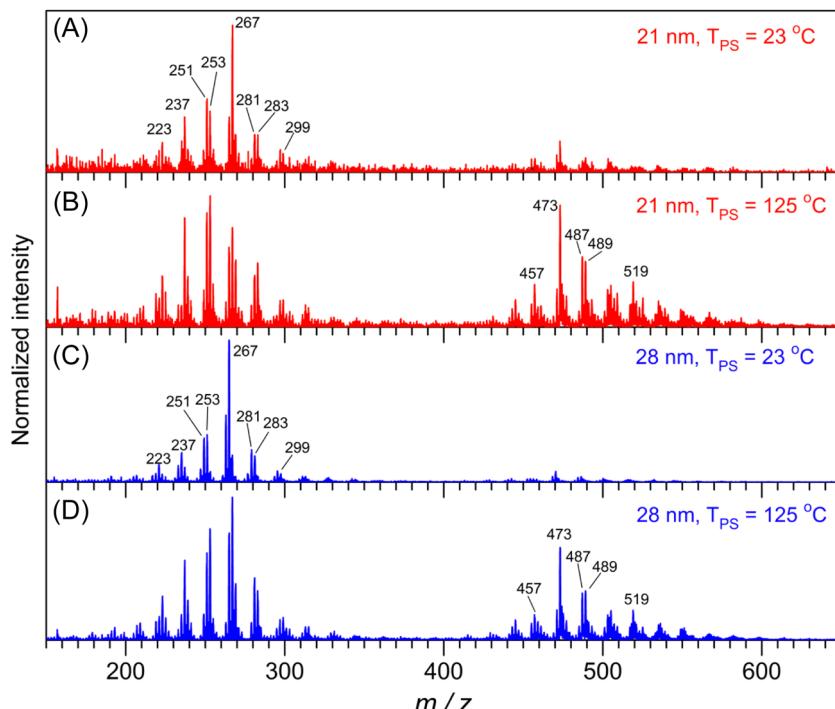
FIGURE 11 Extracted LC-ESI-MS ion chromatograms of (A) $\text{C}_{10}\text{H}_{18}\text{O}_6\text{Na}^+$ and (B) $\text{C}_{20}\text{H}_{32}\text{O}_6\text{NH}_4^+$ measured for SOA samples treated with (black) and without (magenta) iodometry. The isomer peaks of $\text{C}_{10}\text{H}_{18}\text{O}_6\text{Na}^+$ at 4.75 and 6.21 min and $\text{C}_{20}\text{H}_{32}\text{O}_6\text{NH}_4^+$ at 10.27 and 10.38 min are assigned to organic peroxides. Reproduced with permission Yao et al. (2022). Copyright 2022 American Chemical Society. LC-ESI-MS, liquid chromatography-electrospray ionization-mass spectrometry. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Examples of (A) levoglucosan and (B) nitrocatechol time series measured by EESI-MS from wildfire smoke aerosol, including comparison to CHARON PTR-MS and AMS (scaled by a factor of 0.71 to show temporal agreement). Carbon monoxide measurements are included to show the boundaries and structure of the smoke plumes. Reproduced with permission Pagonis et al. (2021). Copyright 2021 Pagonis et al. AMS, aerosol mass spectrometer; EESI-MS, extractive electrospray ionization mass spectrometry; PTR-MS, proton transfer reaction-mass spectrometry. [Color figure can be viewed at wileyonlinelibrary.com]

Qi et al. and Stefenelli et al. presented some of the first ambient measurements using EESI-MS to characterize OA molecular composition in Zurich, a Switzerland urban site (Qi et al., 2019; Stefenelli et al., 2019). In these studies, the real-time analysis for atmospheric aerosols on a near-molecular level was provided to determine the emissions sources and investigate physicochemical processes. Coupling the EESI-MS measurements with positive matrix factorization (PMF) analysis, these studies determined biogenic emissions as major and secondary sources contributing to OA mass during summer and winter, respectively. Furthermore, through combining with colocated measurements, various EESI-MS studies of the ground and aircraft aerosol samples provided valuable insights into the OA bulk properties and molecular composition, suggesting that the urban OA were mostly derived from oxidation of terpenes and aromatic hydrocarbons (Chen et al., 2020; Mehra et al., 2020), biomass burning (Pagonis et al., 2021; Qi et al., 2019, 2020; Yazdani et al., 2021), cigarette smoke (Qi et al., 2019, 2020), and cooking emissions (Takhar et al., 2021). EESI-MS has also been applied in *in-situ* analysis of metals in aerosols. A wide range of ion adducts formed by the reactions between disodium ethylenediamine tetraacetic acid (EDTA) dihydrate and water-soluble metal compounds and trace elements were detected using the negative ion mode (Giannoukos et al., 2020). Moreover, EESI-MS was used in the indoor air studies for quantitative OA composition measurements. Brown et al. have detected over 200 unique indoor

OA molecular species using EESI-MS, including fatty acids, carbohydrates, phthalates, and low-volatility siloxanes, which are strongly consistent with the results from FIGAERO-CIMS and other techniques (Brown et al., 2021).

In laboratory studies, researchers have used EESI-MS to measure the molecular composition and time series of oxidation products in α -pinene derived SOA in both positive and negative ion modes (Gallimore et al., 2017; Pospisilova et al., 2021). Liu et al. have utilized EESI to measure the particle-phase products formed from \cdot OH heterogeneous oxidation of organophosphate flame retardants and liquid crystal monomers in real-time, to study their toxicological mechanism on photooxidation (Liu, Liggio, et al., 2019; Liu et al., 2020). Besides, EESI-MS was often combined with gas-phase analytical approaches to characterize the formation and evolution of SOA in laboratory research. Lamkaddam et al. demonstrated that over half of isoprene oxidation products partitioned into the cloud droplets and were further oxidized, leading to the formation of in-cloud aqueous SOA, by determining the particle bulk molecular composition using EESI-MS and the gaseous composition using PTR-TOF and NO_3^- -CIMS (Lamkaddam et al., 2021). Because of the capability to detect aerosols with a large range of particle sizes, EESI-MS has also been used to study the molecular composition of ultrafine particles as small as 20 nm from naphthalene or β -caryophyllene oxidation (Surdu et al., 2021).


In contrast to that EESI-MS is used in both ambient aerosol composition studies and laboratory SOA composition, the other ambient ionization mass spectrometry such as DART-MS has been more often used to measure laboratory aerosol composition in multiphase chemistry, such as the heterogeneous oxidation of model OA systems, including multifunctional carboxylic acids (Chan et al., 2014; Cheng et al., 2015, 2016; Chim et al., 2017; Davies & Wilson, 2015; Lam, Shum, et al., 2019), alkenes (Lee & Wilson, 2016; Schwartz-Narbonne et al., 2019; Zhou et al., 2016), organosulfates (Kwong, Chim, Davies, et al., 2018; Kwong, Chim, Hoffmann, et al., 2018; Lam, Kwong, et al., 2019; Xu, Ge, et al., 2020). In most of these studies, the comprehensive molecular characterization of the oxidation products by DART-MS allowed for elucidation of the OA heterogeneous oxidation mechanisms. In addition, the quantitative nature of DART-MS measurements also make it possible to use the kinetic results to help understand the effects of aerosol phase state (Chan et al., 2014), aerosol viscosity (Davies & Wilson, 2015), and organic-inorganic mixing (Lam, Shum, et al., 2019).

In addition to the aerosol bulk composition, it is often important to also understand the surface composition of aerosol particles, especially when it is different than that of the aerosol bulk. The surface chemistry provides unique insights in aerosol formation and evolution, helping better understanding their impacts on air quality, human health, and atmospheric climate. In fact, the above-described DART-MS was first reported to be a surface-sensitive technique, when not assisted by sample

vaporization (Davies & Wilson, 2015; Nah et al., 2013; Zhao, Fairhurst, et al., 2017). For example, Zhao et al. studied the multiphase reactions between submicron diacid particles and gas-phase amines, proposing that DART-MS probes ~ 30 nm the surface layer of the particles (Zhao, Chan, et al., 2017). Using this technique, the surface composition of SOA from α -cedrene oxidation were characterized (Figure 13) (Zhao, Chan, et al., 2017). Besides DART-MS, the ambient SSI mass spectrometry and the inlet ionization mass spectrometry are also powerful approaches to uniquely identify the surface molecular components of OA in the atmosphere. Wingen and Finlayson-Pitts and Qin et al. has utilized these techniques to study the surface compositions of organic particles using model OA and SOA systems, providing new insights into aerosol surface composition, chemistry, and gas-particle interactions (Qin et al., 2022; Wingen & Finlayson-Pitts, 2019).

3.4 | Isomer-level identification and quantification

Atmospheric organic constituents are largely comprised of structural isomers, from VOCs to low-volatility species in aerosols (Goldstein & Galbally, 2007). Thus, resolving the atmospheric organic mixtures on the isomeric level is crucial for understanding reaction kinetics, chemical mechanisms, and environmental impacts. The GC preseparation process before mass spectrometry analysis

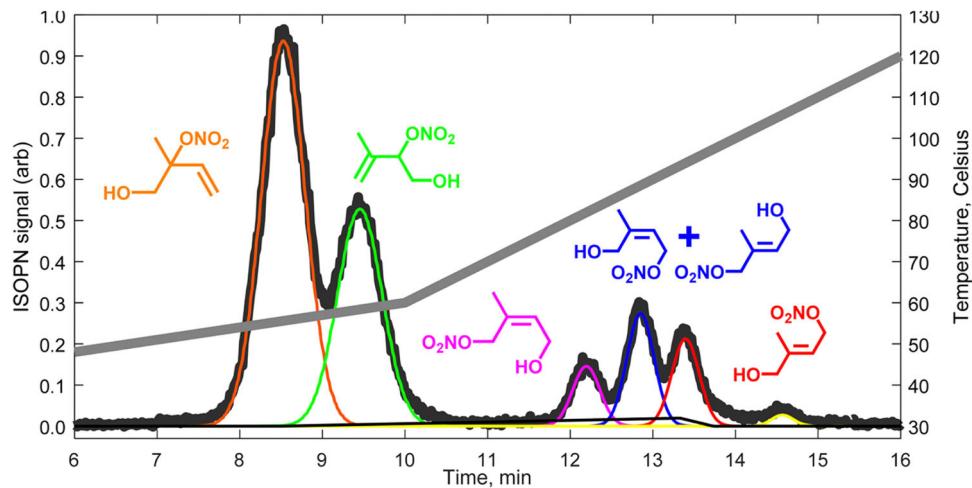


FIGURE 13 DART-MS mass spectra of polydisperse α -cedrene SOA particles with surface weighted geometric mean diameters of 21 nm (A, B) and 28 nm (C, D) at particle stream temperatures (T_{PS}) of 23°C and 125°C. Reproduced with permission Zhao et al. (2017). Copyright 2017 Zhao et al. DART-MS, direct analysis in real-time-mass spectrometry; SOA, secondary organic aerosol. [Color figure can be viewed at wileyonlinelibrary.com]

has the ability to offer unique retention time for isomers, leading to the potential of GC-CIMS in detecting isomeric distributions derived from the oxidation of diverse atmospheric species. GC-CIMS using CF_3O^- as the reagent ion has been largely used in these applications to unravel the reaction kinetics, oxidation products, and reaction mechanisms. For example, Teng et al. resolved the gas-phase isomeric hydroxy nitrates that are formed via reactions of $\text{NO} + \text{RO}_2^\cdot$ derived from OH-initiated oxidation of isoprene to quantify the RO_2^\cdot isomerization rates and the reversible conversion between alkyl radical and RO_2^\cdot (Figure 14) (Teng et al., 2017). Vasquez et al. used the same technique and showed that different isoprene-derived hydroxy nitrate isomers have distinct hydrolysis rates and hence different effects on NO_x recycling (Vasquez et al., 2020b). Kurtén et al. suggested that nitrate radical oxidation of α -pinene favors the formation of volatile pinonaldehyde via bond scissions of nitrooxy alkoxy radicals over low-volatility organonitrate by experimentally quantifying the isomeric hydroperoxy nitrates using GC- CF_3O^- -CIMS and computationally calculating the barriers and rate constants of the different bond scission pathways (Kurtén et al., 2017). In addition to biogenic VOC oxidation processes, the isomer-resolved identification and quantification of dominated phenol and hydroxy nitrates from the oxidation of bicyclic RO_2^\cdot radicals in the presence of NO have implied the new benzene oxidation mechanism under atmospheric conditions (Xu, Møller, et al., 2020). Other reagent ions such as NO^+ and its hydrated ion $\text{NO}\cdot\text{H}_2\text{O}^+$ were developed in the positive mode of GC-CIMS to characterize less oxygenated compounds, such as, non-methane organic gaseous isomers from biomass burning via GC- NO^+ -

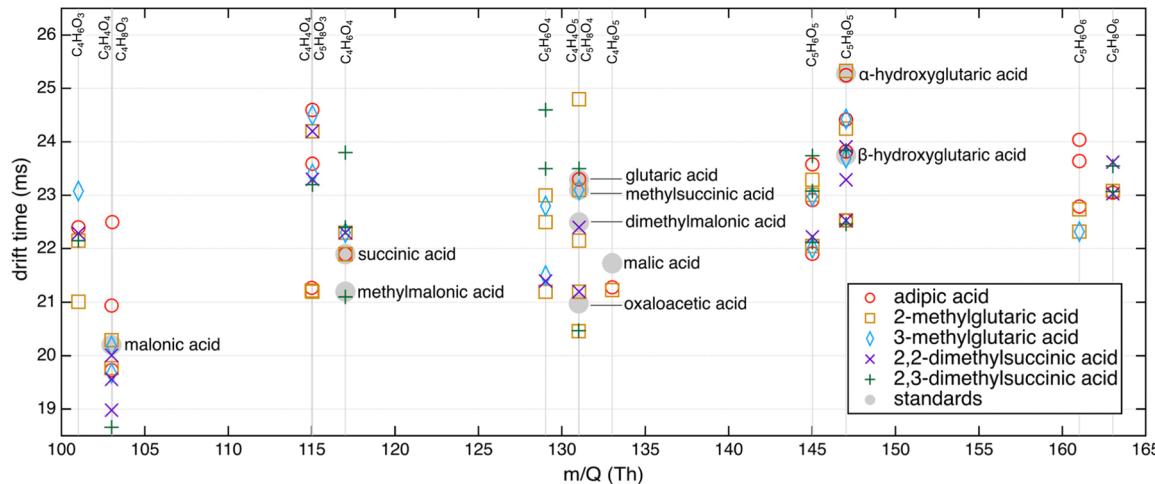
CIMS (Koss et al., 2018), and benzene and its oxidation product glyoxal via GC- $\text{NO}\cdot\text{H}_2\text{O}^+$ -CIMS (Xu, Møller, et al., 2020).

Iodometry-assisted LC-ESI-MS has been a helpful method to separate and distinguish organic peroxide isomers. As has been mentioned earlier, isomer-resolved characterization of peroxide monomers and dimers produced from α -pinene ozonolysis was achieved by this technique (Yao et al., 2022). In this work, a total of 75 organic peroxides were observed in α -pinene-derived SOA via iodometry-assisted LC-ESI-MS in both the positive and negative ion modes. Meanwhile, the varied abundance of most organic peroxides during the evaporation process suggested the significance to develop a comprehensive technique in aerosol chemistry to identify molecular structure of peroxide isomers and other atmospheric species. In the study by Zhao et al., α -acyloxyalkyl hydroperoxides as organic peroxides formed via stabilized Criegee intermediates from α -pinene ozonolysis reacting with carboxylic acids were identified using iodometry-assisted LC-ESI-MS (Zhao et al., 2018b). They determined the total organic peroxide content in α -pinene SOA and reported a lower total mass yield than previous work using the spectroscopic method, which could be explained by the rapid decomposition or inefficient ionization in LC-ESI-MS for certain peroxides (Badali et al., 2015; Docherty et al., 2005; Epstein et al., 2014; Li et al., 2016; Mertes et al., 2012; Wang et al., 2011). This group further utilized the technique to characterize isomer-resolved molecular composition of α -pinene and isoprene oxidation, including identifying isomer-resolved dimer esters derived from acyl RO_2^\cdot during α -pinene ozonolysis (Zhao, Yao, et al., 2022),

FIGURE 14 The distribution of isoprene hydroxynitrate isomers from isoprene photooxidation measured by the Caltech GC-CIMS. These isomers are separated using GC and detected as a cluster ion with CF_3O^- observed at m/z 232 Th. The grey line shows the GC oven temperature as a function of time. Reproduced with permission Teng et al. (2017). Copyright 2017 American Chemical Society. GC-CIMS, gas chromatography-chemical ionization mass spectrometer. [Color figure can be viewed at wileyonlinelibrary.com]

measuring C₅–C₂₀ isomeric species during the oxidation of isoprene and monoterpene mixtures (Wang et al., 2021), and investigating the hydrolysis stability of individual peroxide compounds (Liu et al., 2022).

The IMS-MS could separate isomeric compounds based on ion mobilities by providing a unique drift time of each isomer at the same mass-to-charge ratio, indicating its ability to resolve structural isomers which are otherwise challenging to be distinguished in typical mass spectrometry measurements. In the study carried out by Krechmer et al., three isomers of hydroxy sulfate ester derived from the reactive uptake of IEPOX onto wet acidic sulfate aerosols were characterized over distinct drift times by IMS-MS (Krechmer et al., 2016). Further studies have used this capability to demonstrate OA compositional evolution during aging (Zhao, Le, et al., 2019) and heating (Zhao, Yang, et al., 2020) on the isomeric level. In addition, by comparing with the ion mobilities of authentic standards, oxidation products during heterogeneous ·OH oxidation of model OA compounds can be structurally verified, hence providing important insights into the multiphase oxidation mechanisms (Figure 15) (Zhao, Mayorga, et al., 2020). Lastly, the IMS-MS was used to distinguish actual dimers with covalent bonds from artifact clusters resulted from ESI by monitoring the dimer ion fragmentation with increased collision-induced dissociation voltage (Zhao, Tolentino, et al., 2019). This led to the first report of dimer formation during heterogeneous ·OH oxidation of OA. Most of these above-mentioned IMS-MS applications were possible owing to the additional mobility separation. Otherwise, the formula-level measurements and


potential matrix effects in typical ESI-MS would make the findings challenging to explain.

4 | CURRENT ISSUES AND FUTURE DIRECTIONS

In this review, we summarized new developments of mass spectrometry techniques in the field of atmospheric chemistry and their applications to identify and quantify a broad range of atmospheric chemicals in both the gas and particle phases. Although these new developments have made unprecedented advancements in understanding atmospheric composition and processes, a few unsolved issues still remain. In this section, we discuss these issues and possible future developments to further advance the field of atmospheric chemistry.

4.1 | Instrument artifacts

Despite versatile CIMS development with new IMR designs and various reagent ions, a remaining issue is the measurement artifacts. The artifacts may arise from a number of physical and chemical processes. First, the interactions between relatively low-volatile analytes and instrument inner walls, such as absorption or desorption processes, have been suggested to contribute to negative or positive artifacts in measured chemical concentrations (Palm et al., 2019; Rivera-Rios et al., 2014). Second, chemical reactions may occur in the sample inlets. For example, artifacts were found by different air sampling

FIGURE 15 IMS-MS drift time— m/z diagram of major fragmentation products in the heterogeneous oxidation of five studied OA systems (see legend). The drift times of relevant available chemical standards are labeled, helping identifying oxidation products. Reproduced with permission Zhao et al. (2020). Copyright 2020 American Chemical Society. IMS-MS, ion mobility spectrometry–mass spectrometry; OA, organic aerosols. [Color figure can be viewed at wileyonlinelibrary.com]

configurations due to the reactions between air samples and overloading filters (Koss et al., 2018; Liu, Deming, et al., 2019). Third, secondary chemistry between components in the IMR during chemical ionization may cause interference to chemical composition analysis. Dörich et al. reported the biased detection of HNO_3 as NO_3^- in the presence of peroxyacetic nitric anhydride (PAN), peroxyacetic acid and O_3 using I^- -CIMS (Dörich et al., 2021). Zhang et al. further proposed the interactions between a strong oxygen donor such as O_3 or peracids and acidic organics such as carboxylic acids or organic hydroperoxides in the IMR region of I^- -CIMS, causing the formation of monomer and dimer iodide adducts to interfere the measurement of molecular compositions (Zhang & Zhang, 2021). In addition, Bernhammer et al. reported secondary reactions between organic precursors in the PTR3 reaction chamber that interference the measurements of isoprene-derived HOMs and might cause an overestimation of both the nucleation rate and the growth rate (Bernhammer et al., 2018). Last but not least, fragmentation of chemicals or ions may occur for certain ionization chemistries. For instance, Li et al. showed that the commonly observed peroxide dimers using many CIMS techniques were found to have small signals in Vocus PTR-TOF, because the protonation in PTR leads to fragmentation of such compounds (Li et al., 2022). However, as we described earlier, many of the same dimers were successfully measured by PTR3 (Figure 8), despite its similar ionization technique with Vocus PTR-TOF (Breitenlechner et al., 2017). The contrasting results may suggest that the dimer fragmentation in Vocus PTR-TOF could be caused by other reasons rather than protonation. Further investigation is warranted.

In addition to the artifacts for gas-phase CIMS measurements, a common problem in characterizing particle-phase compounds using vaporization-based methods is thermal decomposition (Lopez-Hilfiker et al., 2015; Stark et al., 2017; Thompson et al., 2017; Yang et al., 2021). More importantly, thermal decomposition was found to occur even at moderately heated temperatures for multifunctional compounds (Zhao, Yang, et al., 2020). For the ESI-based techniques that apply minimal heating, artifact may also exist. In particular, ESI has been known to generate microdroplets with charges at the surface, where chemistry could occur at much faster rates than in the bulk (Anglada et al., 2020; Banerjee & Zare, 2015; Jacobs et al., 2019; Ruiz-Lopez et al., 2020). It is thus unclear whether some of the products observed via ESI-MS could be formed during ESI, rather than in the intrinsic aerosol processing. Another uncertainty is whether the entire microdroplet or aerosol sample is probed by ESI and EESI.

Some previous studies have reported that ESI-MS only sample the outermost surface layers of the microdroplet (Colussi & Enami, 2019). We suggest these questions to be carefully investigated in future research to better understand the measurements of atmospheric aerosol molecular composition.

4.2 | Quantification of complex organic mixtures

Accurate quantification using mass spectrometry remains a major challenge for atmospheric organic species, especially for the oxygenated molecules without authentic standards. The CIMS sensitivities depend on a number of factors, including the ion-molecule reaction rate, the yield of the product ion, the stability and transmission efficiency of the product ion, IMR temperature, relative humidity, electric fields, and so forth. As a result, it is challenging to constrain the sensitivities using physically based models (Iyer et al., 2016). Such complex dependence could be simplified to some extent by the selection of ion chemistry and the design of IMR, allowing the sensitivities to be controlled by fewer factors.

The sensitivities of some instruments have been shown to be proportional to the ion-molecule reaction rate constants. These instruments include CF_3O^- -CIMS, PTR-MS, and NO_3^- -CIMS (Garden et al., 2009; Paulot et al., 2009; Sekimoto et al., 2017). In CF_3O^- -CIMS, the ion-molecule reaction is in the kinetic-limited regime, as the reaction time is on the order of 1 ms, enabled by the transverse IMR in the Caltech CIMS. The reaction time in PTR-MS is even shorter (i.e., ~0.1 ms) because of the drift voltage. In addition, the protonated ions produced from the proton transfer reactions are stable in the electric fields. In NO_3^- -CIMS, even though the reaction time is relatively long (~200 ms), the analyte• NO_3^- cluster is extremely stable and does not break apart in the electric fields, so that it is often assumed that the analytes charges are at their collision frequency with NO_3^- (Ehn et al., 2014). The ion-molecule reaction rate constants, which are essential to constrain the sensitivities under this condition, can be calculated based on analyte dipole moment and polarizability (Garden et al., 2009), estimated based on the analyte molecular mass, elemental composition, and functional group (Sekimoto et al., 2017), assumed at collision limit (Hansel et al., 2018), or considered to be the same as another analyte which can be experimentally calibrated (Bernd, Richters, et al., 2016; Bianchi et al., 2019; Ehn et al., 2014; Guo, Yan, et al., 2022; Jokinen et al., 2015; Molteni et al., 2018; Rissanen et al., 2019).

Instead of ion-molecule reaction rate constants, the controlling factor of sensitivities in some CIMS is the stability of product ion. This applies to the IMR design in which the ion-molecule reactions are in thermodynamic equilibrium because of the long reaction time (~100 ms in I^- -CIMS; Lee et al., 2014, C_6H_6^+ -CIMS; Kim et al., 2016, and $(\text{C}_2\text{H}_5\text{OH})\text{H}^+$ -CIMS; Yu & Lee, 2012) or when a strong declustering electric field exists (e.g., NH_4^+ -CIMS; Xu et al., 2022a; Zaytsev, Breitenlechner, et al., 2019). To constrain the sensitivity, the stability of product ion can be experimentally estimated using the voltage scanning tests, in which the change in the product ion signal is monitored in response of a systematic change in the voltage gradient between two ion optics (Lopez-Hilfiker et al., 2016; Xu et al., 2022a; Zaytsev, Breitenlechner, et al., 2019). However, the uncertainties of this approach could be substantial, as a recent study by Bi et al. showed that this method may carry uncertainties on the order of 0.5 to 1 magnitude for individual analytes in I^- -CIMS (Bi et al., 2021b).

In addition to intrinsic properties of IMR, an environmental factor affecting CIMS sensitivity is the relative humidity. The sensitivities of a vast majority of analytes in most CIMS show dependence on relative humidity. The relative humidity can increase or decrease the sensitivity by affecting the distribution of reagent ion clusters and product ions, stabilizing the ion clusters with in-excess collision energy, affecting the transmission of water-soluble gases, and other mechanisms (Iyer et al., 2016; Lee et al., 2014). Such water dependence largely complicates the quantification. It is an active research area to minimize the relative humidity dependence. For example, Vocus deliberately adds a large amount of water vapor into the IMR, such that the variation in ambient relative humidity causes minimal disturbance in the IMR and the water dependence in both H_3O^+ and $\text{NH}_4^+\text{H}_2\text{O}^+$ chemistry is negligible (Krechmer et al., 2018; Xu et al., 2022b).

The quantification challenge is further compounded by the fact that atmospheric organic species are often very complex mixtures, enriched with isomers. Yet, many of the above-described mass spectrometry techniques cannot separate isomers. To explore the isomer-dependent sensitivities, Bi et al. coupled a TAG-CIMS using I^- to a quantitative flame ionization detector (FID) and reported that in I^- -CIMS measurements an average number of three to five isomers were found per chemical formula (Bi et al., 2021a), but the isomers' sensitivities could vary by a maximum of 2 orders of magnitude (Bi et al., 2021b).

The quantification issues may be more challenging for particle-phase organics using ambient ionization mass spectrometry. For example, although the analyte

response and sensitivity in EESI-MS is less affected by changing OA matrix compared to traditional infusion ESI systems, individual species have different sensitivities by a factor of 30 or more (Lopez-Hilfiker et al., 2019). In contrast, in the study by Brown et al., although the measured signals using EESI-MS are correlated and comparable with those measured by FIGAERO-CIMS, the relative sensitivities to various compounds change by a factor of 100 (Brown et al., 2021). During an aircraft measurement, Pagonis et al. showed that variability of EESI-MS calibration factor is 60% (1σ), implying further concerns of the quantitative capability of EESI-MS in field studies (Pagonis et al., 2021). Moreover, the characteristic of corona discharge in DART-MS prevents the potential of precise quantitative assays due to the lack of enough desorption and ionization information (Brüggemann et al., 2015; Feider et al., 2019). Very limited efforts have been made to quantify speciated OA compounds using other ambient ionization techniques (Kenseth et al., 2020).

4.3 | Bias caused by selectivity of ionization methods

Besides the challenges to quantify organic species in complex atmospheric mixtures, it is important to point out that selectivity of ionization methods can often cause bias for molecular analysis of these complex mixtures qualitatively and quantitatively. As described earlier, the HOM formation yield from α -pinene + OH may have very different results by using NO_3^- -CIMS versus $\text{CH}_3\text{C}(\text{O})\text{O}^-$ -CIMS (Berndt, Richters, et al., 2016; Ehn et al., 2014). In another example, it was reported that very different light-absorbing chromophores in biomass burning OA were determined using ESI versus atmospheric pressure photoionization (Lin et al., 2018). These results suggest that multiple complementary ionization methods need to be applied to the same sample or same reaction system for more comprehensive characterization.

4.4 | Real-time characterization of structures or functional groups

In recent years, the focus of real-time mass spectrometry developments has been to improve mass resolution, sensitivity, and the range of detectable compounds. It remains challenging to inform chemical structures or functional groups during these measurements. Complementary analysis could fill the gap on this aspect, such as the iodometry-assisted LC-MS (Yao et al., 2022; Zhao, Kenseth, Huang, Dallaeska, Kuang, et al., 2018; Zhao,

Kenseth, Huang, Dallaeska, & Seinfeld, 2018; Zhao, Yao, et al., 2022), IMS-MS (Krechmer et al., 2016; Zhang et al., 2019; Zhao, Tolentino, et al., 2019; Zhao, Yang, et al., 2020), and spectrophotometric methods (Aimanant & Ziemann, 2013; Ranney & Ziemann, 2016, 2017). However, most of these approaches are offline, particle-bound focused, and require sample collection, extraction, and so forth. It would be helpful to develop continuous sampling approaches and auxiliary platform methods to convert the “offline” mode to an “online” mode for the above techniques. The information regarding chemical structures and functional groups in real-time would greatly benefit mechanistic understanding of processes in both the gas and particle phases. Recently, online derivatization methods have been designed to couple with AMS for determining particle-phase peroxides based on redox reactions (Weloe & Hoffmann, 2020): supersaturated gaseous triphenylphosphine is continuously added to mix with SOA samples in the front of AMS inlet, and the formed triphenylphosphine oxide is then monitored and quantified by AMS with a time resolution of 2 min. By combining with such online derivatization method, the real-time peroxide quantification in the SOA could be achieved. It is anticipated that other derivatization techniques could be developed for soft ionization mass spectrometry to provide functional group information.

ACKNOWLEDGMENTS

W. Z. and H. Z. thank the support of NSF (CHE-2002413) and the Regents of University of California for the Faculty Development Award. L. X. thanks for the support of the NOAA cooperative agreement with CIRES (TS4NA17OAR4320101).

ORCID

Wen Zhang <https://orcid.org/0000-0002-2628-8992>
 Lu Xu <https://orcid.org/0000-0002-0021-9876>
 Haofei Zhang <https://orcid.org/0000-0002-7936-4493>

REFERENCES

Aghaei M, Bogaerts A. Flowing atmospheric pressure afterglow for ambient ionization: reaction pathways revealed by modeling. *Anal Chem.* 2021;93(17):6620-6628.

Ai W, Nie H, Song S, Liu X, Bai Y, Liu H. A versatile integrated ambient ionization source platform. *J Am Soc Mass Spectrom.* 2018;29(7):1408-1415.

Aimanant S, Ziemann PJ. Development of spectrophotometric methods for the analysis of functional groups in oxidized organic aerosol. *Aerosol Sci Tech.* 2013;47(6):581-591.

Alfarra MR, Coe H, Allan JD, Bower KN, Boudries H, Canagaratna MR, Jimenez JL, Jayne JT, Garforth AA, Li S-M, Worsnop DR. Characterization of urban and rural organic particulate in the lower Fraser valley using two aerodyne aerosol mass spectrometers. *Atmos Environ.* 2004;38(34): 5745-5758.

Aljawhary D, Lee AKY, Abbatt JPD. High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing. *Atmos Meas Tech.* 2013;6(11):3211-3224.

Allen HM, Crounse JD, Kim MJ, Teng AP, Ray EA, McKain K, Sweeney C, Wennberg PO. H₂O₂ and CH₃OOH (MHP) in the remote atmosphere: 1. Global distribution and regional influences. *J Geophys Res Atmos.* 2022;127(6):e2021JD035701.

Anglada JM, Martins-Costa MTC, Francisco JS, Ruiz-López MF. Photoinduced oxidation reactions at the air-water interface. *J Am Chem Soc.* 2020;142(38):16140-16155.

Apsokardu MJ, Kerecman DE, Johnston MV. Ion formation in droplet-assisted ionization. *Rapid Commun Mass Spectrom.* 2021;35(S1):e8227.

Apsokardu MJ, Krasnomowitz JM, Jiang S, Johnston MV. Ion formation from rapidly heated aqueous droplets by droplet-assisted ionization. *J Phys Chem A.* 2020;124(36):7313-7321.

Avery AM, Alton MW, Canagaratna MR, Krechmer JE, Sueper DT, Bhattacharyya N, Hildebrandt Ruiz L, Brune WH, Lambe AT. Comparison of the yield and chemical composition of secondary organic aerosol generated from the OH and Cl oxidation of decamethylcyclopentasiloxane. *ACS Earth Space Chem.* 2023;7(1):218-229.

Badali KM, Zhou S, Aljawhary D, Antiñolo M, Chen WJ, Lok A, Mungall E, Wong JPS, Zhao R, Abbatt JPD. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material. *Atmos Chem Phys.* 2015;15(14):7831-7840.

Banerjee S, Zare RN. Syntheses of isoquinoline and substituted quinolines in charged microdroplets. *Angew Chem Int Ed.* 2015;54(49):14795-14799.

Bateman AP, Nizkorodov SA, Laskin J, Laskin A. High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler. *Anal Chem.* 2010;82(19):8010-8016.

Bateman AP, Nizkorodov SA, Laskin J, Laskin A. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. *Phys Chem Chem Phys.* 2011;13(26):12199-12212.

Bateman AP, Laskin J, Laskin A, Nizkorodov SA. Applications of high-resolution electrospray ionization mass spectrometry to measurements of average oxygen to carbon ratios in secondary organic aerosols. *Environ Sci Technol.* 2012;46(15):8315-8324.

Bateman AP, Walser ML, Desyaterik Y, Laskin J, Laskin A, Nizkorodov SA. The effect of solvent on the analysis of secondary organic aerosol using electrospray ionization mass spectrometry. *Environ Sci Technol.* 2008;42(19):7341-7346.

Bates KH, Crounse JD, St. Clair JM, Bennett NB, Nguyen TB, Seinfeld JH, Stoltz BM, Wennberg PO. Gas phase production and loss of isoprene epoxydiols. *J Phys Chem A.* 2014;118(7): 1237-1246.

Bell DM, Wu C, Bertrand A, Graham E, Schoonbaert J, Giannoukos S, Baltensperger U, Prevot ASH, Riipinen I, El Haddad I, Mohr C. Particle-phase processing of α -pinene NO₃ secondary organic aerosol in the dark. *Atmos Chem Phys.* 2022;22(19):13167-13182.

Benson DR, Markovich A, Al-Refai M, Lee SH. A chemical ionization mass spectrometer for ambient measurements of ammonia. *Atmos Meas Tech.* 2010;3(4):1075-1087.

Berndt T, Herrmann H, Kurtén T. Direct probing of criegee intermediates from gas-phase ozonolysis using chemical ionization mass spectrometry. *J Am Chem Soc.* 2017;139(38):13387-13392.

Berndt T, Herrmann H, Sipilä M, Kulmala M. Highly oxidized second-generation products from the gas-phase reaction of OH radicals with isoprene. *J Phys Chem A.* 2016;120(51):10150-10159.

Berndt T, Mentler B, Scholz W, Fischer L, Herrmann H, Kulmala M, Hansel A. Accretion product formation from ozonolysis and OH radical reaction of α -pinene: Mechanistic insight and the influence of isoprene and ethylene. *Environ Sci Technol.* 2018;52(19):11069-11077.

Berndt T, Scholz W, Mentler B, Fischer L, Herrmann H, Kulmala M, Hansel A. Accretion product formation from self- and cross-reactions of RO₂ radicals in the atmosphere. *Angew Chem Int Ed.* 2018;57(14):3820-3824.

Berndt T, Richters S, Jokinen N, Kurtén T, Otkjær RV, Kjaergaard HG, Stratmann F, Herrmann H, Sipilä M, Kulmala M, Ehn M. Hydroxyl radical-induced formation of highly oxidized organic compounds. *Nat Comm.* 2016;7(1):13677.

Bernhammer AK, Fischer L, Mentler B, Heinritzi M, Simon M, Hansel A. Production of highly oxygenated organic molecules (HOMs) from trace contaminants during isoprene oxidation. *Atmos Meas Tech.* 2018;11(8):4763-4773.

Berry JL, Day DA, Elseberg T, Palm BB, Hu W, Abdelhamid A, Schroder JC, Karst U, Jimenez JL, Browne EC. Laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry for ambient surface imaging. *Anal Chem.* 2018;90(6):4046-4053.

Bertram TH, Kimmel JR, Crisp TA, Ryder OS, Yatavelli RLN, Thornton JA, Cubison MJ, Gonin M, Worsnop DR. A field-deployable, chemical ionization time-of-flight mass spectrometer. *Atmos Meas Tech.* 2011;4(7):1471-1479.

Bi C, Krechmer JE, Frazier GO, Xu W, Lambe AT, Claflin MS, Lerner BM, Jayne JT, Worsnop DR, Canagaratna MR, Isaacman-VanWertz G. Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds. *Atmos Meas Tech.* 2021a;14(5):3895-3907.

Bi C, Krechmer JE, Frazier GO, Xu W, Lambe AT, Claflin MS, Lerner BM, Jayne JT, Worsnop DR, Canagaratna MR, Isaacman-VanWertz G. Quantification of isomer-resolved iodide chemical ionization mass spectrometry sensitivity and uncertainty using a voltage-scanning approach. *Atmos Meas Tech.* 2021b;14(10):6835-6850.

Bianchi F, Kurtén T, Riva M, Mohr C, Rissanen MP, Roldin P, Berndt T, Crounse JD, Wennberg PO, Mentel TF, Wildt J, Junninen H, Jokinen T, Kulmala M, Worsnop DR, Thornton JA, Donahue N, Kjaergaard HG, Ehn M. Highly oxygenated organic molecules (HOM) from gas-phase autoxidation involving peroxy radicals: a key contributor to atmospheric aerosol. *Chem Rev.* 2019;119(6):3472-3509.

Bianchi F, Tröstl J, Junninen H, Frege C, Henne S, Hoyle CR, Molteni U, Herrmann E, Adamov A, Bukowiecki N, Chen X, Duplissy J, Gysel M, Hutterli M, Kangasluoma J, Kontkanen J, Kürten A, Manninen HE, Münch S, Peräkylä O, Petäjä T, Rondo L, Williamson C, Weingartner E, Curtius J, Worsnop DR, Kulmala M, Dommen J, Baltensperger U. New particle formation in the free troposphere: a question of chemistry and timing. *Science.* 2016;352(6289):1109-1112.

Blair SL, Ng NL, Zambrzycki SC, Li A, Fernández FM. Aerosol vacuum-assisted plasma ionization (Aero-VaPI) coupled to ion mobility-mass spectrometry. *J Am Soc Mass Spectrom.* 2018;29(4):635-639.

Blake RS, Monks PS, Ellis AM. Proton-transfer reaction mass spectrometry. *Chem Rev.* 2009;109(3):861-896.

Boucher O, Randall D, Artaxo P, Bretherton C, Feingold C, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang X-Y. *Clouds and Aerosols.* IPCC; 2013.

Brecht D, Uteschil F, Schmitz OJ. Development of a fast-switching dual (ESI/APCI) ionization source for liquid chromatography/mass spectrometry. *Rapid Commun Mass Spectrom.* 2020;34(17):e8845.

Breitenlechner M, Novak GA, Neuman JA, Rollins AW, Veres PR. A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry. *Atmos Meas Tech.* 2022;15(5):1159-1169.

Breitenlechner M, Fischer L, Hainer M, Heinritzi M, Curtius J, Hansel A. PTR3: An instrument for studying the lifecycle of reactive organic carbon in the atmosphere. *Anal Chem.* 2017;89(11):5824-5831.

Brophy P, Farmer DK. A switchable reagent ion high-resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study. *Atmos Meas Tech.* 2015;8(7):2945-2959.

Brophy P, Farmer DK. Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-resolution time-of-flight mass spectrometry. *Atmos Meas Tech.* 2016;9(8):3969-3986.

Brown WL, Day DA, Stark H, Pagonis D, Krechmer JE, Liu X, Price DJ, Katz EF, DeCarlo PF, Masoud CG, Wang DS, Hildebrandt Ruiz L, Arata C, Lunderberg DM, Goldstein AH, Farmer DK, Vance ME, Jimenez JL. Real-time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. *Indoor Air.* 2021;31(1):141-155.

Bruderer T, Gaisl T, Gaugg MT, Nowak N, Streckenbach B, Müller S, Moeller A, Kohler M, Zenobi R. On-line analysis of exhaled breath. *Chem Rev.* 2019;119(19):10803-10828.

Brüggemann M, Karu E, Stelzer T, Hoffmann T. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS). *Environ Sci Technol.* 2015;49(9):5571-5578.

Brüggemann M, Poulain L, Held A, Stelzer T, Zuth C, Richters S, Mutzel A, van Pinxteren D, Iinuma Y, Katkevica S, Rabe R, Herrmann H, Hoffmann T. Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACH 2014 field study. *Atmos Chem Phys.* 2017;17(2):1453-1469.

Brüggemann M, Xu R, Tilgner A, Kwong KC, Mutzel A, Poon HY, Otto T, Schaefer T, Poulain L, Chan MN, Herrmann H. Organosulfates in ambient aerosol: state of knowledge and future research directions on formation, abundance, fate, and importance. *Environ Sci Technol.* 2020;54(7):3767-3782.

Cai R, Huang W, Meder M, Bourgain F, Aizikov K, Riva M, Bianchi F, Ehn M. Improving the sensitivity of fourier transform mass spectrometer (orbitrap) for online measurements of atmospheric vapors. *Anal Chem.* 2022;94(45):15746-15753.

Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kolb CE, Davidovits P, Worsnop DR. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. *Mass Spectrom Rev.* 2007;26(2):185-222.

Canaval E, Hyttinen N, Schmidbauer B, Fischer L, Hansel A. NH_4^+ association and proton transfer reactions with a series of organic molecules. *Front Chem.* 2019;7:191.

Cappellin L, Biasioli F, Fabris A, Schuhfried E, Soukoulis C, Märk TD, Gasperi F. Improved mass accuracy in PTR-TOF-MS: another step towards better compound identification in PTR-MS. *Int J Mass Spectrom.* 2010;290(1):60-63.

Caudillo L, Rörup B, Heinritzi M, Marie G, Simon M, Wagner AC, Müller T, Granzin M, Amorim A, Ataei F, Baalbaki R, Bertozzi B, Brasseur Z, Chiu R, Chu B, Dada L, Duplissy J, Finkenzeller H, Gonzalez Carracedo L, He XC, Hofbauer V, Kong W, Lamkaddam H, Lee CP, Lopez B, Mahfouz NGA, Makhmutov V, Manninen HE, Marten R, Massabò D, Mauldin RL, Mentler B, Molteni U, Onnela A, Pfeifer J, Philippov M, Piedehierro AA, Schervish M, Scholz W, Schulze B, Shen J, Stolzenburg D, Stozhkov Y, Surdu M, Tauber C, Tham YJ, Tian P, Tomé A, Vogt S, Wang M, Wang DS, Weber SK, Welti A, Yonghong W, Yusheng W, Zauner-Wieczorek M, Baltensperger U, El Haddad I, Flagan RC, Hansel A, Höhler K, Kirkby J, Kulmala M, Lehtipalo K, Möhler O, Saathoff H, Volkamer R, Winkler PM, Donahue NM, Kürten A, Curtius J. Chemical composition of nanoparticles from α -pinene nucleation and the influence of isoprene and relative humidity at low temperature. *Atmos Chem Phys.* 2021;21(22):17099-17114.

Chan MN, Nah T, Wilson KR. Real-time in situ chemical characterization of sub-micron organic aerosols using direct analysis in real-time mass spectrometry (DART-MS): the effect of aerosol size and volatility. *Analyst.* 2013;138(13):3749-3757.

Chan MN, Zhang H, Goldstein AH, Wilson KR. Role of water and phase in the heterogeneous oxidation of solid and aqueous succinic acid aerosol by hydroxyl radicals. *J Phys Chem C.* 2014;118(50):28978-28992.

Chen H, Venter A, Cooks RG. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. *Chem Commun.* 2006(19):2042-2044.

Chen Y, Takeuchi M, Nah T, Xu L, Canagaratna MR, Stark H, Baumann K, Canonaco F, Prévôt ASH, Huey LG, Weber RJ, Ng NL. Chemical characterization of secondary organic aerosol at a rural site in the southeastern US: insights from simultaneous high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and FIGAERO chemical ionization mass spectrometer (CIMS) measurements. *Atmos Chem Phys.* 2020;20(14):8421-8440.

Cheng CT, Chan MN, Wilson KR. The role of alkoxy radicals in the heterogeneous reaction of two structural isomers of dimethylsuccinic acid. *Phys Chem Chem Phys.* 2015;17(38):25309-25321.

Cheng CT, Chan MN, Wilson KR. Importance of unimolecular HO_2 elimination in the heterogeneous OH reaction of highly oxygenated tartaric acid aerosol. *J Phys Chem A.* 2016;120(29):5887-5896.

Chhabra PS, Flagan RC, Seinfeld JH. Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer. *Atmos Chem Phys.* 2010;10(9):4111-4131.

Chiang S, Zhang W, Ouyang Z. Paper spray ionization mass spectrometry: recent advances and clinical applications. *Expert Rev Proteomics.* 2018;15(10):781-789.

Chim MM, Chow CY, Davies JF, Chan MN. Effects of relative humidity and particle phase water on the heterogeneous OH oxidation of 2-methylglutaric acid aqueous droplets. *J Phys Chem A.* 2017;121(8):1666-1674.

Claeys M, Iinuma Y, Szmigelski R, Surratt JD, Blockhuys F, Van Alsenoy C, Böge O, Sierau B, Gómez-González Y, Vermeylen R, Van der Veken P, Shahgholi M, Chan AWH, Herrmann H, Seinfeld JH, Maenhaut W. Terpenylic acid and related compounds from the oxidation of α -pinene: implications for new particle formation and growth above forests. *Environ Sci Technol.* 2009;43(18):6976-6982.

Claflin MS, Krechmer JE, Hu W, Jimenez JL, Ziemann PJ. Functional group composition of secondary organic aerosol formed from ozonolysis of α -pinene under high VOC and autoxidation conditions. *ACS Earth Space Chem.* 2018;2(11):1196-1210.

Cody R, Laramee JA, Nilles JM, Durst HD. Direct analysis in real-time (DART) mass spectrometry. *JEOL News.* 2005;40:8-12.

Colussi JA, Enami S. Detecting intermediates and products of fast heterogeneous reactions on liquid surfaces via online mass spectrometry. *Atmosphere.* 2019;10(2):47.

Covey TR, Lee ED, Henion JD. High-speed liquid chromatography/ tandem mass spectrometry for the determination of drugs in biological samples. *Anal Chem.* 1986;58(12):2453-2460.

Crounse JD, McKinney KA, Kwan AJ, Wennberg PO. Measurement of gas-phase hydroperoxides by chemical ionization mass spectrometry. *Anal Chem.* 2006;78(19):6726-6732.

Crounse JD, Paulot F, Kjaergaard HG, Wennberg PO. Peroxy radical isomerization in the oxidation of isoprene. *Phys Chem Chem Phys.* 2011;13(30):13607-13613.

Crounse JD, Nielsen LB, Jørgensen S, Kjaergaard HG, Wennberg PO. Autoxidation of organic compounds in the atmosphere. *J Phys Chem Lett.* 2013;4(20):3513-3520.

Cui T, Zeng Z, dos Santos EO, Zhang Z, Chen Y, Zhang Y, Rose CA, Budisulistiorini SH, Collins LB, Bodnar WM, de Souza RAF, Martin ST, Machado CMD, Turpin BJ, Gold A, Ault AP, Surratt JD. Development of a hydrophilic interaction liquid chromatography (HILIC) method for the chemical characterization of water-soluble isoprene epoxydiol (IEPOX)-derived secondary organic aerosol. *Environ Sci Process Impacts.* 2018;20(11):1524-1536.

Davies JF, Wilson KR. Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces. *Chem Sci.* 2015;6(12):7020-7027.

de Gouw J, Warneke C. Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-

reaction mass spectrometry. *Mass Spectrom Rev s.* 2007;26(2):223-257.

de Gouw J, Jimenez JL. Organic aerosols in the earth's atmosphere. *Environ Sci Technol.* 2009;43(20):7614-7618.

de Gouw J, Warneke C, Karl T, Eerdekens G, van der Veen C, Fall R. Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. *Int J Mass Spectrom.* 2003;223-224:365-382.

De Haan DO, Tolbert MA, Jimenez JL. Atmospheric condensed-phase reactions of glyoxal with methylamine. *Geophys Res Lett.* 2009;36(11):L11819.

DeCarlo PF, Kimmel JR, Trimborn A, Northway MJ, Jayne JT, Aiken AC, Gonin M, Fuhrer K, Horvath T, Docherty KS, Worsnop DR, Jimenez JL. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. *Anal Chem.* 2006;78(24):8281-8289.

Deming BL, Pagonis D, Liu X, Day DA, Talukdar R, Krechmer JE, de Gouw JA, Jimenez JL, Ziemann PJ. Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas-wall interactions. *Atmos Meas Tech.* 2019;12(6):3453-3461.

DeVault MP, Ziemann PJ. Gas- and particle-phase products and their mechanisms of formation from the reaction of Δ -3-carene with NO_3 radicals. *J Phys Chem A.* 2021;125(47):10207-10222.

Docherty KS, Wu W, Lim YB, Ziemann PJ. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O_3 . *Environ Sci Technol.* 2005;39(11):4049-4059.

Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. An association between air pollution and mortality in six U.S. cities. *N Engl J Med.* 1993;329(24):1753-1759.

Doezema LA, Longin T, Cody W, Perraud V, Dawson ML, Ezell MJ, Greaves J, Johnson KR, Finlayson-Pitts BJ. Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS). *RSC Adv.* 2012;2(7):2930-2938.

Dörich R, Eger P, Lelieveld J, Crowley JN. Iodide-CIMS and m/z 62: the detection of HNO_3 as NO_3^- in the presence of PAN, peracetic acid, and O_3 . *Atmos Meas Tech Discuss.* 2021;2021:1-26.

Dye C, Yttri KE. Determination of monosaccharide anhydrides in atmospheric aerosols by use of high-performance liquid chromatography combined with high-resolution mass spectrometry. *Anal Chem.* 2005;77(6):1853-1858.

Ehn M, Kleist E, Junninen H, Petäjä T, Lönn G, Schobesberger S, Dal Maso M, Trimborn A, Kulmala M, Worsnop DR, Wahner A, Wildt J, Mentel TF. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. *Atmos Chem Phys.* 2012;12(11):5113-5127.

Ehn M, Thornton JA, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I-H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen LB, Jørgensen S, Kjaergaard HG, Canagaratna M, Maso MD, Berndt T, Petäjä T, Wahner A, Kerminen V-M, Kulmala M, Worsnop DR, Wildt J, Mentel TF. A large source of low-volatility secondary organic aerosol. *Nature.* 2014;506(7489):476-479.

Eichler P, Müller M, D'Anna B, Wisthaler A. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter. *Atmos Meas Tech.* 2015;8(3):1353-1360.

Eisele FL, Tanner DJ. Measurement of the gas phase concentration of H_2SO_4 and methane sulfonic acid and estimates of H_2SO_4 production and loss in the atmosphere. *J Geophys Res Atmos.* 1993;98(D5):9001-9010.

Epstein SA, Blair SL, Nizkorodov SA. Direct photolysis of α -pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content. *Environ Sci Technol.* 2014;48(19):11251-11258.

Espy RD, Muliadi AR, Ouyang Z, Cooks RG. Spray mechanism in paper spray ionization. *Int J Mass Spectrom.* 2012;325-327:167-171.

Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ. A critical review of ion mobility spectrometry for the detection of explosives and explosive-related compounds. *Talanta.* 2001;54(3):515-529.

Fandino J, Orejas J, Chauvet L, Blanco D, Guillot P, Pisonero J, Bordel N. Evaluation of a modified halo flowing atmospheric pressure afterglow ion source for the analysis of directly injected volatile organic compounds. *J Anal At Spectrom.* 2020;35(9):2002-2010.

Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. *Anal Chem.* 2019;91(7):4266-4290.

Fortenberry CF, Walker MJ, Zhang Y, Mitroo D, Brune WH, Williams BJ. Bulk and molecular-level characterization of laboratory-aged biomass burning organic aerosol from oak leaf and heartwood fuels. *Atmos Chem Phys.* 2018;18(3):2199-2224.

Fuller SJ, Wragg FPH, Nutter J, Kalberer M. Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols. *Atmos Environ.* 2014;92:97-103.

Gallimore PJ, Kalberer M. Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry analysis of organic aerosols. *Environ Sci Technol.* 2013;47(13):7324-7331.

Gallimore PJ, Giorio C, Mahon BM, Kalberer M. Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry. *Atmos Chem Phys.* 2017;17(23):14485-14500.

Garden AL, Paulot F, Crounse JD, Maxwell-Cameron IJ, Wennberg PO, Kjaergaard HG. Calculation of conformationally weighted dipole moments useful in ion-molecule collision rate estimates. *Chem Phys Lett.* 2009;474(1):45-50.

George II, Vlasenko A, Slowik JG, Broekhuizen K, Abbott JPD. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. *Atmos Chem Phys.* 2007;7(16):4187-4201.

Giannoukos S, Lee CP, Tarik M, Ludwig C, Biollaz S, Lamkaddam H, Baltensperger U, Henry Prevot AS, Slowik J. Real-time detection of aerosol metals using online extractive electrospray ionization mass spectrometry. *Anal Chem.* 2020;92(1):1316-1325.

Goldstein AH, Galbally IE. Known and unexplored organic constituents in the Earth's atmosphere. *Environ Sci Technol.* 2007;41(5):1514-1521.

Graus M, Müller M, Hansel A. High-resolution PTR-TOF: quantification and formula confirmation of VOC in real-time. *J Am Soc Mass Spectrom.* 2010;21(6):1037-1044.

Guo Y, Shen H, Pullinen I, Luo H, Kang S, Vereecken L, Fuchs H, Hallquist M, Acir IH, Tillmann R, Rohrer F, Wildt J, Kiendler-Scharr A, Wahner A, Zhao D, Mentel TF. Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical. *Atmos Chem Phys.* 2022;22(17):11323-11346.

Guo Y, Yan C, Liu Y, Qiao X, Zheng F, Zhang Y, Zhou Y, Li C, Fan X, Lin Z, Feng Z, Zheng P, Tian L, Nie W, Wang Z, Huang D, Daellenbach KR, Yao L, Dada L, Bianchi F, Jiang J, Kerminen VM, Kulmala M. Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol. *Atmos Chem Phys.* 2022;22(15): 10077-10097.

Häkkinen E, Zhao J, Graeffe F, Fauré N, Krechmer J, Worsnop D, Timonen H, Ehn M, Kangasluoma J. Online measurement of highly oxygenated compounds from organic aerosol. *EGU Sphere.* 2022;2022:1-29.

Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prévôt ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J. The formation, properties and impact of secondary organic aerosol: current and emerging issues. *Atmos Chem Phys.* 2009;9(14):5155-5236.

Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindner W. Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. *Int J Mass Spectrom Ion Process.* 1995;149-150:609-619.

Hansel A, Jordan A, Warneke C, Holzinger R, Lindner W. Improved detection limit of the proton-transfer reaction mass spectrometer: on-line monitoring of volatile organic compounds at mixing ratios of a few pptv. *Rapid Com Mass Spectrom.* 1998;12(13):871-875.

Hansel A, Scholz W, Mentler B, Fischer L, Berndt T. Detection of RO₂ radicals and other products from cyclohexene ozonolysis with NH₄⁺ and acetate chemical ionization mass spectrometry. *Atmos Environ.* 2018;186:248-255.

Hastings WP, Koehler CA, Bailey EL, De Haan DO. Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis. *Environ Sci Technol.* 2005;39(22):8728-8735.

Heald CL, Kroll JH. The fuel of atmospheric chemistry: toward a complete description of reactive organic carbon. *Sci Adv.* 2020;6(6):eaay8967.

Heinritzi M, Dada L, Simon M, Stolzenburg D, Wagner AC, Fischer L, Ahonen LR, Amanatidis S, Baalbaki R, Baccarini A, Bauer PS, Baumgartner B, Bianchi F, Brilke S, Chen D, Chiu R, Dias A, Dommen J, Duplissy J, Finkenzeller H, Frege C, Fuchs C, Garmash O, Gordon H, Granzin M, El Haddad I, He X, Helm J, Hofbauer V, Hoyle CR, Kangasluoma J, Keber T, Kim C, Kürten A, Lamkaddam H, Laurila TM, Lampilahti J, Lee CP, Lehtipalo K, Leiminger M, Mai H, Makhmutov V, Manninen HE, Marten R, Mathot S, Mauldin RL, Mentler B, Molteni U, Müller T, Nie W, Nieminen T, Onnela A, Partoll E, Passananti M, Petäjä T, Pfeifer J, Pospisilova V, Quéléver LLJ, Rissanen MP, Rose C, Schobesberger S, Scholz W, Scholze K, Sipilä M, Steiner G, Stozhkov Y, Tauber C, Tham YJ, Vazquez-Pufleau M, Virtanen A, Vogel AL, Volkamer R, Wagner R, Wang M, Weitz L, Wimmer D, Xiao M, Yan C, Ye P, Zha Q, Zhou X, Amorim A, Baltensperger U, Hansel A, Kulmala M, Tomé A, Winkler PM, Worsnop DR, Donahue NM, Kirkby J, Curtius J. Molecular understanding of the suppression of new-particle formation by isoprene. *Atmos Chem Phys.* 2020;20(20): 11809-11821.

Hems RF, Schnitzler EG, Liu-Kang C, Cappa CD, Abbatt JPD. Aging of atmospheric brown carbon aerosol. *ACS Earth Space Chem.* 2021;5(4):722-748.

Hettiyadura APS, Jayarathne T, Baumann K, Goldstein AH, de Gouw JA, Koss A, Keutsch FN, Skog K, Stone EA. Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama. *Atmos Chem Phys.* 2017;17(2):1343-1359.

Hettiyadura APS, Stone EA, Kundu S, Baker Z, Geddes E, Richards K, Humphry T. Determination of atmospheric organosulfates using HILIC chromatography with MS detection. *Atmos Meas Tech.* 2015;8(6):2347-2358.

Hirabayashi A, Sakairi M, Koizumi H. Sonic spray ionization method for atmospheric pressure ionization mass spectrometry. *Anal Chem.* 1994;66(24):4557-4559.

Hirabayashi A, Sakairi M, Koizumi H. Sonic spray mass spectrometry. *Anal Chem.* 1995;67(17):2878-2882.

Hodshire AL, Akherati A, Alvarado MJ, Brown-Steiner B, Jathar SH, Jimenez JL, Kreidenweis SM, Lonsdale CR, Onasch TB, Ortega AM, Pierce JR. Aging effects on biomass burning aerosol mass and composition: a critical review of field and laboratory studies. *Environ Sci Technol.* 2019;53(17): 10007-10022.

Holzinger R, Acton WJF, Bloss WJ, Breitenlechner M, Crilley LR, Dusanter S, Gonin M, Gros V, Keutsch FN, Kiendler-Scharr A, Kramer LJ, Krechmer JE, Languille B, Locoge N, Lopez-Hilfiker F, Materić D, Moreno S, Nemitz E, Quéléver LLJ, Sarda Esteve R, Sauvage S, Schallhart S, Sommariva R, Tillmann R, Wedel S, Worton DR, Xu K, Zaytsev A. Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. *Atmos Meas Tech.* 2019;12(11):6193-6208.

Horan AJ, Apsokardu MJ, Johnston MV. Droplet-assisted inlet ionization for online analysis of airborne nanoparticles. *Anal Chem.* 2017;89(2):1059-1062.

Horan AJ, Gao Y, Hall WA, Johnston MV. Online characterization of particles and gases with an ambient electrospray ionization source. *Anal Chem.* 2012;84(21):9253-9258.

Hu KS, Darer AI, Elrod MJ. Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates. *Atmos Chem Phys.* 2011;11(16):8307-8320.

Hu W, Campuzano-Jost P, Day DA, Croteau P, Canagaratna MR, Jayne JT, Worsnop DR, Jimenez JL. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species. *Atmos Meas Tech.* 2017;10(8):2897-2921.

Huang W, Saathoff H, Shen X, Ramisetty R, Leisner T, Mohr C. Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany. *Atmos Chem Phys.* 2019;19(18):11687-11700.

Huey LG, Hanson DR, Howard CJ. Reactions of SF₆⁻ and I⁻ with atmospheric trace gases. *J Phys Chem.* 1995;99(14):5001-5008.

Huey LG. Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. *Mass Spectrom Rev.* 2007;26(2):166-184.

Hyttinen N, Kupiainen-Määttä O, Rissanen MP, Muuronen M, Ehn M, Kurtén T. Modeling the charging of highly oxidized cyclohexene ozonolysis products using nitrate-based chemical ionization. *J Phys Chem A.* 2015;119(24):6339-6345.

Isaacman G, Kreisberg NM, Yee LD, Worton DR, Chan AWH, Moss JA, Hering SV, Goldstein AH. Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG). *Atmos Meas Tech.* 2014;7(12):4417-4429.

Isaacman-VanWertz G, Yee LD, Kreisberg NM, Wernis R, Moss JA, Hering SV, de Sá SS, Martin ST, Alexander ML, Palm BB, Hu W, Campuzano-Jost P, Day DA, Jimenez JL, Riva M, Surratt JD, Viegas J, Manzi A, Edgerton E, Baumann K, Souza R, Artaxo P, Goldstein AH. Ambient gas-particle partitioning of tracers for biogenic oxidation. *Environ Sci Technol.* 2016;50(18):9952-9962.

Iyer S, Lopez-Hilfiker F, Lee BH, Thornton JA, Kurtén T. Modeling the detection of organic and inorganic compounds using iodide-based chemical ionization. *J Phys Chem A.* 2016;120(4):576-587.

Jacobs MI, Davis RD, Rapf RJ, Wilson KR. Studying chemistry in micro-compartments by separating droplet generation from ionization. *J Am Soc Mass Spectrom.* 2019;30(2):339-343.

Jaoui M, Edney EO, Kleindienst TE, Lewandowski M, Offenberg JH, Surratt JD, Seinfeld JH. Formation of secondary organic aerosol from irradiated α -pinene/toluene/NO_x mixtures and the effect of isoprene and sulfur dioxide. *J Geophys Res Atmos.* 2008;113(D9):D09303.

Jaoui M, Kleindienst TE, Lewandowski M, Offenberg JH, Edney EO. Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 2. Organic tracer compounds from monoterpenes. *Environ Sci Technol.* 2005;39(15):5661-5673.

Jayne JT, Leard DC, Zhang X, Davidovits P, Smith KA, Kolb CE, Worsnop DR. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. *Aerosol Sci Technol.* 2000;33(1-2):49-70.

Jensen A, Liu Z, Tan W, Dix B, Chen T, Koss A, Zhu L, Li L, de Gouw J. Measurements of volatile organic compounds during the COVID-19 lockdown in Changzhou, China. *Geophys Res Lett.* 2021;48(20):e2021GL095560.

Ji Y, Huey LG, Tanner DJ, Lee YR, Veres PR, Neuman JA, Wang Y, Wang X. A vacuum ultraviolet ion source (VUV-IS) for iodide-chemical ionization mass spectrometry: a substitute for radioactive ion sources. *Atmos Meas Tech.* 2020;13(7):3683-3696.

Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, DeCarlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea EJ, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR. 2009. Evolution of organic aerosols in the atmosphere. *Science.* 2009;326:1525-1529.

Jimenez JL, Jayne JT, Shi Q, Kolb CE, Worsnop DR, Yourshaw I, Seinfeld JH, Flagan RC, Zhang X, Smith KA, Morris JW, Davidovits P. Ambient aerosol sampling using the aerodyne aerosol mass spectrometer. *J Geophys Res Atmos.* 2003;108(D7):8425.

Jokinen T, Berndt T, Makkonen R, Kerminen V-M, Junninen H, Paasonen P, Stratmann F, Herrmann H, Guenther AB, Worsnop DR, Kulmala M, Ehn M, Sipilä M. Production of extremely low volatile organic compounds from biogenic emissions: measured yields and atmospheric implications. *Proc Natl Acad Sci USA.* 2015;112(23):7123-7128.

Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G, Hakala J, Petäjä T, Mauldin III RL, Kulmala M, Worsnop DR. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. *Atmos Chem Phys.* 2012;12(9):4117-4125.

Jones AP. Indoor air quality and health. *Atmos Environ.* 1999;33(28):4535-4564.

Jordan A, Haidacher S, Hanel G, Hartungen E, Herbig J, Märk L, Schottkowsky R, Seehauser H, Sulzer P, Märk TD. An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI-MS). *Int J Mass Spectrom.* 2009;286(1):32-38.

Kanu AB, Dwivedi P, Tam M, Matz L, Hill Jr. HH. Ion mobility-mass spectrometry. *J Mass Spectrom.* 2008;43(1):1-22.

Kaplan K, Graf S, Tanner C, Gonin M, Fuhrer K, Knochenmuss R, Dwivedi P, Hill HH. Resistive glass IM-TOFMS. *Anal Chem.* 2010;82(22):9336-9343.

Karl T, Hansel A, Cappellin L, Kaser L, Herdlinger-Blatt I, Jud W. Selective measurements of isoprene and 2-methyl-3-butene-2-ol based on NO⁺ ionization mass spectrometry. *Atmos Chem Phys.* 2012;12(24):11877-11884.

Kawamura K, Sempéré R, Imai Y, Fujii Y, Hayashi M. Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. *J Geophys Res Atmos.* 1996;101(D13):18721-18728.

Kebarle P, Peschke M. On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. *Anal Chim Acta.* 2000;406(1):11-35.

Kenseth CM, Hafeman NJ, Huang Y, Dalleska NF, Stoltz BM, Seinfeld JH. Synthesis of carboxylic acid and dimer ester surrogates to constrain the abundance and distribution of molecular products in α -pinene and β -pinene secondary organic aerosol. *Environ Sci Technol.* 2020;54(20):12829-12839.

Kerecman DE, Apsokardu MJ, Talledo SL, Taylor Jr. MS, Haugh DN, Zhang Y, Johnston MV. Online characterization of organic aerosol by condensational growth into aqueous droplets coupled with droplet-assisted ionization. *Anal Chem.* 2021;93(5):2793-2801.

Khare P, Krechmer JE, Machesky JE, Hass-Mitchell T, Cao C, Wang J, Majluf F, Lopez-Hilfiker F, Malek S, Wang W, Seltzer K, Pye HOT, Commane R, McDonald BC, Toledo-Crow R, Mak JE, Gentner DR. Ammonium-adduct chemical

ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air. *Atmos Chem Phys Discuss.* 2022;2022:1-39.

Kim MJ, Zoerb MC, Campbell NR, Zimmerman KJ, Blomquist BW, Huebert BJ, Bertram TH. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds. *Atmos Meas Tech.* 2016;9(4):1473-1484.

Kim S, Karl T, Helmig D, Daly R, Rasmussen R, Guenther A. Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS). *Atmos Meas Tech.* 2009;2(1):99-112.

Kohli RK, Davies JF. Paper spray mass spectrometry for the analysis of picoliter droplets. *Analyst.* 2020;145(7):2639-2648.

Kohli RK, Davies JF. Measuring the chemical evolution of levitated particles: a study on the evaporation of multicomponent organic aerosol. *Anal Chem.* 2021;93(36):12472-12479.

Koss AR, Canagaratna MR, Zaytsev A, Krechmer JE, Breitenlechner M, Nihill KJ, Lim CY, Rowe JC, Roscioli JR, Keutsch FN, Kroll JH. Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments. *Atmos Chem Phys.* 2020;20(2):1021-1041.

Koss AR, Sekimoto K, Gilman JB, Selimovic V, Coggon MM, Zarzana KJ, Yuan B, Lerner BM, Brown SS, Jimenez JL, Krechmer J, Roberts JM, Warneke C, Yokelson RJ, de Gouw J. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. *Atmos Chem Phys.* 2018;18(5):3299-3319.

Koss AR, Warneke C, Yuan B, Coggon MM, Veres PR, de Gouw JA. Evaluation of NO^+ reagent ion chemistry for online measurements of atmospheric volatile organic compounds. *Atmos Meas Tech.* 2016;9(7):2909-2925.

Krechmer J, Lopez-Hilfiker F, Koss A, Hutterli M, Stoermer C, Deming B, Kimmel J, Warneke C, Holzinger R, Jayne J, Worsnop D, Fuhrer K, Gonin M, de Gouw J. Evaluation of a new reagent-ion source and focusing ion-molecule reactor for use in proton-transfer-reaction mass spectrometry. *Anal Chem.* 2018;90(20):12011-12018.

Krechmer JE, Coggon MM, Massoli P, Nguyen TB, Crounse JD, Hu W, Day DA, Tyndall GS, Henze DK, Rivera-Rios JC, Nowak JB, Kimmel JR, Mauldin RL, Stark H, Jayne JT, Sipilä M, Junninen H, St. Clair JM, Zhang X, Feiner PA, Zhang L, Miller DO, Brune WH, Keutsch FN, Wennberg PO, Seinfeld JH, Worsnop DR, Jimenez JL, Canagaratna MR. Formation of low volatility organic compounds and secondary organic aerosol from isoprene hydroxyhydroperoxide low-NO oxidation. *Environ Sci Technol.* 2015;49(17):10330-10339.

Krechmer JE, Groessl M, Zhang X, Junninen H, Massoli P, Lambe AT, Kimmel JR, Cubison MJ, Graf S, Lin YH, Budisulistiorini SH, Zhang H, Surratt JD, Knochenmuss R, Jayne JT, Worsnop DR, Jimenez JL, Canagaratna MR. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species. *Atmos Meas Tech.* 2016;9(7):3245-3262.

Kroll JH, Donahue NM, Jimenez JL, Kessler SH, Canagaratna MR, Wilson KR, Altieri KE, Mazzoleni LR, Wozniak AS, Bluhm H, Mysak ER, Smith JD, Kolb CE, Worsnop DR. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. *Nat Chem.* 2011;3(2):133-139.

Kroll JH, Seinfeld JH. Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. *Atmos Environ.* 2008;42(16):3593-3624.

Kubátová A, Vermeylen R, Claeys M, Cafmeyer J, Maenhaut W, Roberts G, Artaxo P. Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds. *Atmos Environ.* 2000;34(29):5037-5051.

Kurtén T, Møller KH, Nguyen TB, Schwantes RH, Misztal PK, Su L, Wennberg PO, Fry JL, Kjaergaard HG. Alkoxy radical bond scissions explain the anomalously low secondary organic aerosol and organonitrate yields from α -pinene + NO_3 . *J Phys Chem Lett.* 2017;8(13):2826-2834.

Kwong KC, Chim MM, Davies JF, Wilson KR, Chan MN. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate. *Atmos Chem Phys.* 2018;18(4):2809-2820.

Kwong KC, Chim MM, Hoffmann EH, Tilgner A, Herrmann H, Davies JF, Wilson KR, Chan MN. Chemical transformation of methanesulfonic acid and sodium methanesulfonate through heterogeneous OH oxidation. *ACS Earth Space Chem.* 2018;2(9):895-903.

Lam HK, Kwong KC, Poon HY, Davies JF, Zhang Z, Gold A, Surratt JD, Chan MN. Heterogeneous OH oxidation of isoprene-epoxydiol-derived organosulfates: kinetics, chemistry and formation of inorganic sulfate. *Atmos Chem Phys.* 2019;19(4):2433-2440.

Lam HK, Shum SM, Davies JF, Song M, Zuend A, Chan MN. Effects of inorganic salts on the heterogeneous OH oxidation of organic compounds: insights from methylglutaric acid-ammonium sulfate. *Atmos Chem Phys.* 2019;19(14): 9581-9593.

Lamkaddam H, Dommen J, Ranjithkumar A, Gordon H, Wehrle G, Krechmer J, Majluf F, Salionov D, Schmale J, Bjelić S, Carslaw KS, El Haddad I, Baltensperger U. Large contribution to secondary organic aerosol from isoprene cloud chemistry. *Sci Adv.* 2021;7(13):eabe2952.

Larsen BS, McEwen CN, Kitson FG. 1996. Dedication. In: Kitson FG et al., eds. *Gas Chromatography and Mass Spectrometry*. San Diego: Academic Press. v.

Laskin J, Laskin A, Nizkorodov SA. New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. *Int Rev Phys Chem.* 2013;32(1): 128-170.

Laskin J, Laskin A, Nizkorodov SA. Mass spectrometry analysis in atmospheric chemistry. *Anal Chem.* 2018;90(1):166-189.

Lavi A, Vermeuel MP, Novak GA, Bertram TH. The sensitivity of benzene cluster cation chemical ionization mass spectrometry to select biogenic terpenes. *Atmos Meas Tech.* 2018;11(6): 3251-3262.

Lawler MJ, Sander R, Carpenter LJ, Lee JD, von Glasow R, Sommariva R, Saltzman ES. HOCl and Cl_2 observations in marine air. *Atmos Chem Phys.* 2011;11(15):7617-7628.

Lee BH, Lopez-Hilfiker FD, Mohr C, Kurtén T, Worsnop DR, Thornton JA. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. *Environ Sci Technol.* 2014;48(11):6309-6317.

Lee BH, Lopez-Hilfiker FD, Veres PR, McDuffie EE, Fibiger DL, Sparks TL, Ebbin CJ, Green JR, Schroder JC, Campuzano-Jost P, Iyer S, D'Ambro EL, Schobesberger S, Brown SS, Wooldridge PJ, Cohen RC, Fiddler MN, Bililign S, Jimenez JL, Kurtén T, Weinheimer AJ, Jaegle L, Thornton JA. Flight deployment of a high-resolution time-of-flight chemical ionization mass spectrometer: observations of reactive halogen and nitrogen oxide species. *J Geophys Res Atmos.* 2018;123(14):7670-7686.

Lee CP, Riva M, Wang D, Tomaz S, Li D, Perrier S, Slowik JG, Bourgoin F, Schmale J, Prevot ASH, Baltensperger U, George C, El Haddad I. Online aerosol chemical characterization by extractive electrospray ionization-ultrahigh-resolution mass spectrometry (EESI-Orbitrap). *Environ Sci Technol.* 2020;54(7):3871-3880.

Lee L, Wilson K. The reactive-diffusive length of OH and ozone in model organic aerosols. *J Phys Chem A.* 2016;120(34): 6800-6812.

Leglise J, Müller M, Piel F, Otto T, Wisthaler A. Bulk organic aerosol analysis by proton-transfer-reaction mass spectrometry: an improved methodology for the determination of total organic mass, O:C and H:C elemental ratios, and the average molecular formula. *Anal Chem.* 2019;91(20):12619-12624.

Lehtipalo K, Yan C, Dada L, Bianchi F, Xiao M, Wagner R, Stolzenburg D, Ahonen LR, Amorim A, Baccarini A, Bauer PS, Baumgartner B, Bergen A, Bernhammer A-K, Breitenlechner M, Brilke S, Buchholz A, Mazon SB, Chen D, Chen X, Dias A, Dommen J, Draper DC, Duplissy J, Ehn M, Finkenzeller H, Fischer L, Frege C, Fuchs C, Garmash O, Gordon H, Hakala J, He X, Heikkilä L, Heinritzi M, Helm JC, Hofbauer V, Hoyle CR, Jokinen T, Kangasluoma J, Kerminen V-M, Kim C, Kirkby J, Kontkanen J, Kürten A, Lawler MJ, Mai H, Mathot S, Mauldin RL, Molteni U, Nichman L, Nie W, Nieminen T, Ojdanic A, Onnela A, Passananti M, Petäjä T, Piel F, Pospisilova V, Quéléver LLJ, Rissanen MP, Rose C, Sarnela N, Schallhart S, Schuchmann S, Sengupta K, Simon M, Sipilä M, Tauber C, Tomé A, Tröstl J, Väistönen O, Vogel AL, Volkamer R, Wagner AC, Wang M, Weitz L, Wimmer D, Ye P, Ylisirniö A, Zha Q, Carslaw KS, Curtius J, Donahue NM, Flagan RC, Hansel A, Riipinen I, Virtanen A, Winkler PM, Baltensperger U, Kulmala M, Worsnop DR. Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. *Sci Adv.* 2018;4(12):eaau5363.

Li H, Almeida TG, Luo Y, Zhao J, Palm BB, Daub CD, Huang W, Mohr C, Krechmer JE, Kurtén T, Ehn M. Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides. *Atmos Meas Tech.* 2022;15(6):1811-1827.

Li H, Canagaratna MR, Riva M, Rantala P, Zhang Y, Thomas S, Heikkilä L, Flaud PM, Villenave E, Perraudin E, Worsnop D, Kulmala M, Ehn M, Bianchi F. Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: insights into monoterpene and sesquiterpene oxidation processes. *Atmos Chem Phys.* 2021;21(5):4123-4147.

Li H, Chen Z, Huang L, Huang D. Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol. *Atmos Chem Phys.* 2016;16(3): 1837-1848.

Li H, Riva M, Rantala P, Heikkilä L, Daellenbach K, Krechmer JE, Flaud PM, Worsnop D, Kulmala M, Villenave E, Perraudin E, Ehn M, Bianchi F. Terpenes and their oxidation products in the French Landes forest: insights from Vocus PTR-TOF measurements. *Atmos Chem Phys.* 2020;20(4):1941-1959.

Liang Y, Stamatis C, Fortner EC, Wernis RA, Van Rooy P, Majluf F, Yacovitch TI, Daube C, Herndon SC, Kreisberg NM, Barsanti KC, Goldstein AH. Emissions of organic compounds from western US wildfires and their near-fire transformations. *Atmos Chem Phys.* 2022;22(15):9877-9893.

Lim YB, Tan Y, Perri MJ, Seitzinger SP, Turpin BJ. Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. *Atmos Chem Phys.* 2010;10(21):10521-10539.

Lin P, Fleming LT, Nizkorodov SA, Laskin J, Laskin A. Comprehensive molecular characterization of atmospheric brown carbon by high-resolution mass spectrometry with electrospray and atmospheric pressure photoionization. *Anal Chem.* 2018;90(21):12493-12502.

Lindner W, Jordan A. Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. *Chem Soc Rev.* 1998;27(5):347-375.

Liu J, Wang H, Manicke NE, Lin J-M, Cooks RG, Ouyang Z. Development, characterization, and application of paper spray ionization. *Anal Chem.* 2010;82(6):2463-2471.

Liu Q, Abbatt JPD. Liquid crystal display screens as a source for indoor volatile organic compounds. *Proc Natl Acad Sci USA.* 2021;118(23):e2105067118.

Liu Q, Liggio J, Wentzell J, Lee P, Li K, Li S-M. Atmospheric OH oxidation chemistry of particulate liquid crystal monomers: an emerging persistent organic pollutant in air. *Environ Sci Technol Lett.* 2020;7(9):646-652.

Liu Q, Liggio J, Wu D, Saini A, Halappanavar S, Wentzell JJB, Harner T, Li K, Lee P, Li S-M. Experimental study of OH-initiated heterogeneous oxidation of organophosphate flame retardants: kinetics, mechanism, and toxicity. *Environ Sci Technol.* 2019;53(24):14398-14408.

Liu X, Deming B, Pagonis D, Day DA, Palm BB, Talukdar R, Roberts JM, Veres PR, Krechmer JE, Thornton JA, de Gouw JA, Ziemann PJ, Jimenez JL. Effects of gas-wall interactions on measurements of semivolatile compounds and small polar molecules. *Atmos Meas Tech.* 2019;12(6): 3137-3149.

Liu Z, Zhao Y, Yao M, Wang S, Li Z, Li C, Xiao H. Persistence of monoterpene-derived organic peroxides in the atmospheric aqueous phase. *ACS Earth Space Chem.* 2022;6(9): 2226-2235.

Lopez-Hilfiker FD, Iyer S, Mohr C, Lee BH, D'Ambro EL, Kurtén T, Thornton JA. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. *Atmos Meas Tech.* 2016;9(4):1505-1512.

Lopez-Hilfiker FD, Mohr C, Ehn M, Rubach F, Kleist E, Wildt J, Mentel TF, Lutz A, Hallquist M, Worsnop D, Thornton JA. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). *Atmos Meas Tech.* 2014;7(4):983-1001.

Lopez-Hilfiker FD, Mohr C, Ehn M, Rubach F, Kleist E, Wildt J, Mentel TF, Carrasquillo AJ, Daumit KE, Hunter JF, Kroll JH, Worsnop DR, Thornton JA. Phase partitioning and volatility of secondary organic aerosol components formed from α -pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. *Atmos Chem Phys.* 2015;15(14):7765-7776.

Lopez-Hilfiker FD, Pospisilova V, Huang W, Kalberer M, Mohr C, Stefanelli G, Thornton JA, Baltensperger U, Prevot ASH, Slowik JG. An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. *Atmos Meas Tech.* 2019;12(9):4867-4886.

Majluf FY, Krechmer JE, Daube C, Knighton WB, Dyroff C, Lambe AT, Fortner EC, Yacovitch TI, Roscioli JR, Herndon SC, Worsnop DR, Canagaratna MR. Mobile near-field measurements of biomass burning volatile organic compounds: emission ratios and factor analysis. *Environ Sci Technol Lett.* 2022;9(5):383-390.

Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. *Anal Chem.* 2000;72(6):1156-1162.

Massoli P, Stark H, Canagaratna MR, Krechmer JE, Xu L, Ng NL, Mauldin III RL, Yan C, Kimmel J, Misztal PK, Jimenez JL, Jayne JT, Worsnop DR. Ambient measurements of highly oxidized gas-phase molecules during the southern oxidant and aerosol study (SOAS) 2013. *ACS Earth Space Chem.* 2018;2(7):653-672.

Mattila JM, Arata C, Wang C, Katz EF, Abeleira A, Zhou Y, Zhou S, Goldstein AH, Abbatt JPD, DeCarlo PF, Farmer DK. Dark chemistry during bleach cleaning enhances oxidation of organics and secondary organic aerosol production indoors. *Environ Sci Technol Lett.* 2020;7(11):795-801.

Mayorga R, Xia Y, Zhao Z, Long B, Zhang H. Peroxy radical autoxidation and sequential oxidation in organic nitrate formation during limonene nighttime oxidation. *Environ Sci Technol.* 2022;56(22):15337-15346.

Mayorga RJ, Zhao Z, Zhang H. Formation of secondary organic aerosol from nitrate radical oxidation of phenolic VOCs: implications for nitration mechanisms and brown carbon formation. *Atmos Environ.* 2021;244:117910.

Mehra A, Wang Y, Krechmer JE, Lambe A, Majluf F, Morris MA, Priestley M, Bannan TJ, Bryant DJ, Pereira KL, Hamilton JF, Rickard AR, Newland MJ, Stark H, Croteau P, Jayne JT, Worsnop DR, Canagaratna MR, Wang L, Coe H. Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation. *Atmos Chem Phys.* 2020;20(16):9783-9803.

Merikanto J, Spracklen DV, Mann GW, Pickering SJ, Carslaw KS. Impact of nucleation on global CCN. *Atmos Chem Phys.* 2009;9(21):8601-8616.

Mertes P, Pfaffenberger L, Dommen J, Kalberer M, Baltensperger U. Development of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP). *Atmos Meas Tech.* 2012;5(10):2339-2348.

Mohr C, Lopez-Hilfiker FD, Yli-Juuti T, Heitto A, Lutz A, Hallquist M, D'Ambro EL, Rissanen MP, Hao L, Schobesberger S, Kulmala M, Mauldin III RL, Makkonen U, Sipilä M, Petäjä T, Thornton JA. Ambient observations of dimers from terpene oxidation in the gas phase: implications for new particle formation and growth. *Geophys Res Lett.* 2017;44(6):2958-2966.

Molteni U, Bianchi F, Klein F, El Haddad I, Frege C, Rossi MJ, Dommen J, Baltensperger U. Formation of highly oxygenated organic molecules from aromatic compounds. *Atmos Chem Phys.* 2018;18(3):1909-1921.

Morrison GC, Eftekhar A, Majluf F, Krechmer JE. Yields and variability of ozone reaction products from human skin. *Environ Sci Technol.* 2021;55(1):179-187.

Müller L, Reinnig MC, Warnke J, Hoffmann T. Unambiguous identification of esters as oligomers in secondary organic aerosol formed from cyclohexene and cyclohexene/ α -pinene ozonolysis. *Atmos Chem Phys.* 2008;8(5):1423-1433.

Müller M, Piel F, Gutmann R, Sulzer P, Hartungen E, Wisthaler A. A novel method for producing NH_4^+ reagent ions in the hollow cathode glow discharge ion source of PTR-MS instruments. *Int J Mass Spectrom.* 2020;447:116254.

Murray KK, Lewis TM, Beeson MD, Russell DH. Aerosol matrix-assisted laser desorption ionization for liquid chromatography/time-of-flight mass spectrometry. *Anal Chem.* 1994;66(10):1601-1609.

Mutzel A, Poulain L, Berndt T, Iinuma Y, Rodigast M, Böge O, Richters S, Spindler G, Sipilä M, Jokinen T, Kulmala M, Herrmann H. Highly oxidized multifunctional organic compounds observed in tropospheric particles: a field and laboratory study. *Environ Sci Technol.* 2015;49(13):7754-7761.

Nah T, Chan M, Leone SR, Wilson KR. Real-time in situ chemical characterization of submicrometer organic particles using direct analysis in real-time-mass spectrometry. *Anal Chem.* 2013;85(4):2087-2095.

Nah T, Ji Y, Tanner DJ, Guo H, Sullivan AP, Ng NL, Weber RJ, Huey LG. Real-time measurements of gas-phase organic acids using SF_6^- chemical ionization mass spectrometry. *Atmos Meas Tech.* 2018;11(9):5087-5104.

Ng NL, Canagaratna MR, Jimenez JL, Chhabra PS, Seinfeld JH, Worsnop DR. Changes in organic aerosol composition with aging inferred from aerosol mass spectra. *Atmos Chem Phys.* 2011;11(13):6465-6474.

Nguyen TB, Bateman AP, Bones DL, Nizkorodov SA, Laskin J, Laskin A. High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. *Atmos Environ.* 2010;44(8):1032-1042.

Nowak JB, Huey LG, Eisele FL, Tanner DJ, Mauldin III RL, Cantrell C, Kosciuch E, Davis DD. Chemical ionization mass spectrometry technique for detection of dimethylsulfoxide and ammonia. *J Geophys Res Atmos.* 2002;107(D18):4363.

Pagnotti VS, Inutan ED, Marshall DD, McEwen CN, Trimpin S. Inlet ionization: a new highly sensitive approach for liquid chromatography/mass spectrometry of small and large molecules. *Anal Chem.* 2011;83(20):7591-7594.

Pagonis D, Campuzano-Jost P, Guo H, Day DA, Schueneman MK, Brown WL, Nault BA, Stark H, Siemens K, Laskin A, Piel F, Tomsche L, Wisthaler A, Coggon MM, Gkatzelis GI, Halliday HS, Krechmer JE, Moore RH, Thomson DS, Warneke C, Wiggins EB, Jimenez JL. Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. *Atmos Meas Tech.* 2021;14(2):1545-1559.

Pagonis D, Krechmer JE, de Gouw J, Jimenez JL, Ziemann PJ. Effects of gas-wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds. *Atmos Meas Tech.* 2017;10(12):4687-4696.

Pagonis D, Price DJ, Algrim LB, Day DA, Handschy AV, Stark H, Miller SL, de Gouw J, Jimenez JL, Ziemann PJ. Time-resolved measurements of indoor chemical emissions, deposition, and reactions in a university art museum. *Environ Sci Technol.* 2019;53(9):4794-4802.

Pagonis D, Sekimoto K, de Gouw J. A library of proton-transfer reactions of H_3O^+ ions used for trace gas detection. *J Am Soc Mass Spectr.* 2019;30(7):1330-1335.

Palm BB, Liu X, Jimenez JL, Thornton JA. Performance of a new coaxial ion-molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions. *Atmos Meas Tech.* 2019;12(11):5829-5844.

Paulot F, Crounse JD, Kjaergaard HG, Kroll JH, Seinfeld JH, Wennberg PO. Isoprene photooxidation: new insights into the production of acids and organic nitrates. *Atmos Chem Phys.* 2009;9(4):1479-1501.

Piel F, Müller M, Winkler K, Skytte af Sätra J, Wisthaler A. Introducing the extended volatility range proton-transfer-reaction mass spectrometer (EVR PTR-MS). *Atmos Meas Tech.* 2021;14(2):1355-1363.

Pospisilova V, Bell DM, Lamkaddam H, Bertrand A, Wang L, Bhattu D, Zhou X, Dommen J, Prevot ASH, Baltensperger U, El Haddad I, Slowik JG. Photodegradation of α -pinene secondary organic aerosol dominated by moderately oxidized molecules. *Environ Sci Technol.* 2021;55(10):6936-6943.

Pospisilova V, Lopez-Hilfiker FD, Bell DM, El Haddad I, Mohr C, Huang W, Heikkinen L, Xiao M, Dommen J, Prevot ASH, Baltensperger U, Slowik JG. On the fate of oxygenated organic molecules in atmospheric aerosol particles. *Sci Adv.* 2020;6(11):eaax8922.

Praske E, Otkjær RV, Crounse JD, Hethcox JC, Stoltz BM, Kjaergaard HG, Wennberg PO. Atmospheric autoxidation is increasingly important in urban and suburban North America. *Proc Natl Acad Sci USA.* 2018;115(1):64-69.

Pratt KA, Prather KA. Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part I: Off-line mass spectrometry techniques. *Mass Spectrom Rev.* 2012a;31(1):1-16.

Pratt KA, Prather KA. Mass spectrometry of atmospheric aerosols—recent developments and applications. Part II: on-line mass spectrometry techniques. *Mass Spectrom Rev.* 2012b;31(1):17-48.

Priestley M, Bannan TJ, Le Breton M, Worrall SD, Kang S, Pullinen I, Schmitt S, Tillmann R, Kleist E, Zhao D, Wildt J, Garmash O, Mehra A, Bacak A, Shallcross DE, Kiendler-Scharr A, Hallquist ÅM, Ehn M, Coe H, Percival CJ, Hallquist M, Mentel TF, McFiggans G. Chemical characterisation of benzene oxidation products under high- and low- NO_x conditions using chemical ionisation mass spectrometry. *Atmos Chem Phys.* 2021;21(5):3473-3490.

Pullinen I, Schmitt S, Kang S, Sarrafzadeh M, Schlag P, Andres S, Kleist E, Mentel TF, Rohrer F, Springer M, Tillmann R, Wildt J, Wu C, Zhao D, Wahner A, Kiendler-Scharr A. Impact of NO_x on secondary organic aerosol (SOA) formation from α -pinene and β -pinene photooxidation: the role of highly oxygenated organic nitrates. *Atmos Chem Phys.* 2020;20(17):10125-10147.

Qi L, Chen M, Stefenelli G, Pospisilova V, Tong Y, Bertrand A, Hueglin C, Ge X, Baltensperger U, Prévôt ASH, Slowik JG. Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS)—part 2: biomass burning influences in winter. *Atmos Chem Phys.* 2019;19(12):8037-8062.

Qi L, Vogel AL, Esmaeilirad S, Cao L, Zheng J, Jaffrezo JL, Fermo P, Kasper-Giebel A, Daellenbach KR, Chen M, Ge X, Baltensperger U, Prévôt ASH, Slowik JG. A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). *Atmos Chem Phys.* 2020;20(13):7875-7893.

Qin Y, Wingen LM, Finlayson-Pitts BJ. Toward a molecular understanding of the surface composition of atmospherically relevant organic particles. *Proc Natl Acad Sci USA.* 2022;119(35):e2209134119.

Ranney AP, Ziemann PJ. Microscale spectrophotometric methods for quantification of functional groups in oxidized organic aerosol. *Aerosol Sci Tech.* 2016;50(9):881-892.

Ranney AP, Ziemann PJ. Identification and quantification of oxidized organic aerosol compounds using derivatization, liquid chromatography, and chemical ionization mass spectrometry. *Aerosol Sci Technol.* 2017;51(3):342-353.

Reemtsma T, These A, Venkatachari P, Xia X, Hopke PK, Springer A, Linscheid M. Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. *Anal Chem.* 2006;78(24):8299-8304.

Richters S, Herrmann H, Berndt T. Different pathways of the formation of highly oxidized multifunctional organic compounds (HOMs) from the gas-phase ozonolysis of β -caryophyllene. *Atmos Chem Phys.* 2016;16(15):9831-9845.

Rindelaub JD, Wiley JS, Cooper BR, Shepson PB. Chemical characterization of α -pinene secondary organic aerosol constituents using gas chromatography, liquid chromatography, and paper spray-based mass spectrometry techniques. *Rapid Com Mass Spectrom.* 2016;30(13):1627-1638.

Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kausiala O, Garmash O, Kjaergaard HG, Petäjä T, Worsnop DR, Ehn M, Kulmala M. Effects of chemical complexity on the autoxidation mechanisms of endocyclic alkene ozonolysis products: from methylcyclohexenes toward understanding α -pinene. *J Phys Chem A.* 2015;119(19):4633-4650.

Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kangasluoma J, Sarnela N, Junninen H, Jørgensen S, Schallhart S, Kajos MK, Taipale R, Springer M, Mentel TF, Ruuskanen T, Petäjä T, Worsnop DR, Kjaergaard HG, Ehn M. The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. *J Am Chem Soc.* 2014;136(44):15596-15606.

Rissanen MP, Mikkilä J, Iyer S, Hakala J. Multi-scheme chemical ionization inlet (MION) for fast switching of reagent ion chemistry in atmospheric pressure chemical ionization mass spectrometry (CIMS) applications. *Atmos Meas Tech.* 2019;12(12):6635-6646.

Riva M, Brüggemann M, Li D, Perrier S, George C, Herrmann H, Berndt T. Capability of CI-orbitrap for gas-phase analysis in

atmospheric chemistry: a comparison with the CI-APi-TOF technique. *Anal Chem.* 2020;92(12):8142-8150.

Riva M, Ehn M, Li D, Tomaz S, Bourgoin F, Perrier S, George C. CI-Orbitrap: an analytical instrument to study atmospheric reactive organic species. *Anal Chem.* 2019;91(15):9419-9423.

Riva M, Rantala P, Krechmer JE, Peräkylä O, Zhang Y, Heikkinen L, Garmash O, Yan C, Kulmala M, Worsnop D, Ehn M. Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. *Atmos Meas Tech.* 2019;12(4):2403-2421.

Rivera-Rios JC, Nguyen TB, Crounse JD, Jud W, St. Clair JM, Mikoviny T, Gilman JB, Lerner BM, Kaiser JB, de Gouw J, Wisthaler A, Hansel A, Wennberg PO, Seinfeld JH, Keutsch FN. Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. *Geophys Res Lett.* 2014;41(23):8645-8651.

Roach PJ, Laskin J, Laskin A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. *Analyst.* 2010;135(9):2233-2236.

Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. Molecular reactions at aqueous interfaces. *Nat Rev Chem.* 2020;4(9):459-475.

Sanchez J, Tanner DJ, Chen D, Huey LG, Ng NL. A new technique for the direct detection of HO₂ radicals using bromide chemical ionization mass spectrometry (Br-CIMS): initial characterization. *Atmos Meas Tech.* 2016;9(8):3851-3861.

Sato K, Takami A, Kato Y, Seta T, Fujitani Y, Hikida T, Shimono A, Imamura T. AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1,3,5-trimethylbenzene in the presence of NO_x: effects of chemical structure on SOA aging. *Atmos Chem Phys.* 2012;12(10):4667-4682.

Schilling GD, Shelley JT, Barnes JH, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM. Detection of positive and negative ions from a flowing atmospheric pressure afterglow using a mattauch-herzog mass spectrograph equipped with a faraday-strip array detector. *J Am Soc Mass Spectrom.* 2010;21(1):97-103.

Schwartz-Narbonne H, Wang C, Zhou S, Abbatt JPD, Faust J. Heterogeneous chlorination of squalene and oleic acid. *Environ Sci Technol.* 2019;53(3):1217-1224.

Sekimoto K, Koss AR. Modern mass spectrometry in atmospheric sciences: Measurement of volatile organic compounds in the troposphere using proton-transfer-reaction mass spectrometry. *J Mass Spectrom.* 2021;56(3):e4619.

Sekimoto K, Li S-M, Yuan B, Koss A, Coggon M, Warneke C, de Gouw J. Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. *Int J Mass Spectrom.* 2017;421:71-94.

Shelley JT, Wiley JS, Hieftje GM. Ultrasensitive ambient mass spectrometric analysis with a pin-to-capillary flowing atmospheric-pressure afterglow source. *Anal Chem.* 2011;83(14):5741-5748.

Slusher DL, Pitteri SJ, Haman BJ, Tanner DJ, Huey LG. A chemical ionization technique for measurement of pernitric acid in the upper troposphere and the polar boundary layer. *Geophys Res Lett.* 2001;28(20):3875-3878.

Smith JD, Kroll JH, Cappa CD, Che DL, Liu CL, Ahmed M, Leone SR, Worsnop DR, Wilson KR. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. *Atmos Chem Phys.* 2009;9(9):3209-3222.

Smith D, Španěl P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. *Mass Spectrom Rev.* 2005;24(5):661-700.

Souverain S, Rudaz S, Veuthey J-L. Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. *J Chromatogr A.* 2004;1058(1):61-66.

Spolnik G, Wach P, Rudzinski KJ, Skotak K, Danikiewicz W, Szmiigelski R. Improved UHPLC-MS/MS methods for analysis of isoprene-derived organosulfates. *Anal Chem.* 2018;90(5):3416-3423.

Stark H, Yatavelli RLN, Thompson SL, Kang H, Krechmer JE, Kimmel JR, Palm BB, Hu W, Hayes PL, Day DA, Campuzano-Jost P, Canagaratna MR, Jayne JT, Worsnop DR, Jimenez JL. Impact of thermal decomposition on thermal desorption instruments: advantage of thermogram analysis for quantifying volatility distributions of organic species. *Environ Sci Technol.* 2017;51(15):8491-8500.

Stefenelli G, Pospisilova V, Lopez-Hilfiker FD, Daellenbach KR, Hüglin C, Tong Y, Baltensperger U, Prévôt ASH, Slowik JG. Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS)—Part 1: biogenic influences and day-night chemistry in summer. *Atmos Chem Phys.* 2019;19(23):14825-14848.

Stolzenburg D, Simon M, Ranjithkumar A, Kürten A, Lehtipalo K, Gordon H, Ehrhart S, Finkenzeller H, Pichelstorfer L, Nieminen T, He XC, Brilke S, Xiao M, Amorim A, Baalbaki R, Baccarini A, Beck L, Bräkling S, Caudillo Murillo L, Chen D, Chu B, Dada L, Dias A, Dommen J, Duplissy J, El Haddad I, Fischer L, Gonzalez Carracedo L, Heinritzi M, Kim C, Koenig TK, Kong W, Lamkaddam H, Lee CP, Leiminger M, Li Z, Makhmutov V, Manninen HE, Marie G, Marten R, Müller T, Nie W, Partoll E, Petäjä T, Pfeifer J, Philippov M, Rissanen MP, Rörup B, Schobesberger S, Schuchmann S, Shen J, Sipilä M, Steiner G, Stozhkov Y, Tauber C, Tham YJ, Tomé A, Vazquez-Pufleau M, Wagner AC, Wang M, Wang Y, Weber SK, Wimmer D, Wlasits PJ, Wu Y, Ye Q, Zauner-Wieczorek M, Baltensperger U, Carslaw KS, Curtius J, Donahue NM, Flagan RC, Hansel A, Kulmala M, Lelieveld J, Volkamer R, Kirkby J, Winkler PM. Enhanced growth rate of atmospheric particles from sulfuric acid. *Atmos Chem Phys.* 2020;20(12):7359-7372.

Sulzer P, Agarwal B, Jürschik S, Lanza M, Jordan A, Hartungen E, Hanel G, Märk L, Märk TD, González-Méndez R, Watts P, Mayhew CA. Applications of switching reagent ions in proton transfer reaction mass spectrometric instruments for the improved selectivity of explosive compounds. *Int J Mass Spectrom.* 2013;354-355:123-128.

Sumlin B, Fortner E, Lambe A, Shetty NJ, Daube C, Liu P, Majluf F, Herndon S, Chakrabarty RK. Diel cycle impacts on the chemical and light absorption properties of organic carbon

WILEY

aerosol from wildfires in the western United States. *Atmos Chem Phys.* 2021;21(15):11843-11856.

Surdu MA-O, Pospisilova VA-O, Xiao M, Wang M, Mentler B, Simon M, Stolzenburg D, Hoyle CR, Bell DA-O, Lee CA-O, Lamkaddam H, Lopez-Hilfiker F, Ahonen LR, Amorim A, Baccarini AA-OX, Chen D, Dada L, Duplissy JA-O, Finkenzeller H, He XC, Hofbauer V, Kim C, Kürten A, Kvashnin A, Lehtipalo K, Makhmutov V, Molteni U, Nie W, Onnela A, Petäjä T, Quéléver LLJ, Tauber C, Tomé A, Wagner R, Yan C, Prevot ASH, Dommen J, Donahue NA-O, Hansel A, Curtius J, Winkler PM, Kulmala MA-O, Volkamer R, Flagan RC, Kirkby J, Worsnop DR, Slowik JG, Wang DS, Baltensperger U, El Haddad IA-O. Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. *Environ Sci: Atmos.* 2021;1(6):434-448.

Surratt JD, Kroll JH, Kleindienst TE, Edney EO, Claeys M, Sorooshian A, Ng NL, Offenberg JH, Lewandowski M, Jaoui M, Flagan RC, Seinfeld JH. Evidence for organosulfates in secondary organic aerosol. *Environ Sci Technol.* 2007;41(2): 517-527.

Surratt JD, Lewandowski M, Offenberg JH, Jaoui M, Kleindienst TE, Edney EO, Seinfeld JH. Effect of acidity on secondary organic aerosol formation from isoprene. *Environ Sci Technol.* 2007;41(15):5363-5369.

Surratt JD, Murphy SM, Kroll JH, Ng NL, Hildebrandt L, Sorooshian A, Szmigielski R, Vermeylen R, Maenhaut W, Claeys M, Flagan RC, Seinfeld JH. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. *J Phys Chem A.* 2006;110(31):9665-9690.

Szmigielski R, Surratt JD, Gómez-González Y, Van der Veken P, Kourtchev I, Vermeylen R, Blockhuys F, Jaoui M, Kleindienst TE, Lewandowski M, Offenberg JH, Edney EO, Seinfeld JH, Maenhaut W, Claeys M. 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol. *Geophys Res Lett.* 2007;34(24):L24811.

Takegawa N, Miyazaki Y, Kondo Y, Komazaki Y, Miyakawa T, Jimenez JL, Jayne JT, Worsnop DR, Allan JD, Weber RJ. Characterization of an aerodyne aerosol mass spectrometer (AMS): intercomparison with other aerosol instruments. *Aerosol Sci Technol.* 2005;39(8):760-770.

Takhar M, Li Y, Chan AWH. Characterization of secondary organic aerosol from heated-cooking-oil emissions: evolution in composition and volatility. *Atmos Chem Phys.* 2021;21(6): 5137-5149.

Teng AP, Crounse JD, Wennberg PO. Isoprene peroxy radical dynamics. *J Am Chem Soc.* 2017;139(15):5367-5377.

Teng AP, Crounse JD, Lee L, St. Clair JM, Cohen RC, Wennberg PO. Hydroxy nitrate production in the OH-initiated oxidation of alkenes. *Atmos Chem Phys.* 2015;15(8): 4297-4316.

Thompson SL, Yatavelli RLN, Stark H, Kimmel JR, Krechmer JE, Day DA, Hu W, Isaacman-VanWertz G, Yee L, Goldstein AH, Khan MAH, Holzinger R, Kreisberg N, Lopez-Hilfiker FD, Mohr C, Thornton JA, Jayne JT, Canagaratna M, Worsnop DR, Jimenez JL. Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. *Aerosol Sci Technol.* 2017;51(1):30-56.

Thornton JA, Mohr C, Schobesberger S, D'Ambro EL, Lee BH, Lopez-Hilfiker FD. Evaluating organic aerosol sources and evolution with a combined molecular composition and volatility framework using the filter inlet for gases and aerosols (FIGAERO). *Acc Chem Res.* 2020;53(8):1415-1426.

Tobias HJ, Kooiman PM, Docherty KS, Ziemann PJ. Real-time chemical analysis of organic aerosols using a thermal desorption particle beam mass spectrometer. *Aerosol Sci Technol.* 2000;33:170-190.

Valadbeigi Y, Azizmohammadi S, Ilbeigi V. Small host-guest systems in the gas phase: Tartaric acid as a host for both anionic and cationic guests in the atmospheric pressure chemical ionization source of ion mobility spectrometry. *J Phys Chem A.* 2020;124(17):3386-3397.

Valadbeigi Y, Ilbeigi V, Mirsharifi MS. Mechanism of atmospheric pressure chemical ionization of morphine, codeine, and thebaine in corona discharge-ion mobility spectrometry: Protonation, ammonium attachment, and carbocation formation. *J Mass Spectrom.* 2020;55(10):e4586.

Valadbeigi Y, Ilbeigi V, Michalczuk B, Sabo M, Matejcik S. Study of atmospheric pressure chemical ionization mechanism in corona discharge ion source with and without NH₃ dopant by ion mobility spectrometry combined with mass spectrometry: a theoretical and experimental study. *J Phys Chem A.* 2019;123(1):313-322.

Vasquez KA, Crounse JA, Schulze BA, Bates KA, Teng AP, Xu LA, Allen HA, Wennberg PO. Rapid hydrolysis of tertiary isoprene nitrate efficiently removes NO_x from the atmosphere. *Proc Natl Acad Sci USA.* 2020a;117(52):33011-33016.

Vasquez KT, Allen HM, Crounse JD, Praske E, Xu L, Noelscher AC, Wennberg PO. Low-pressure gas chromatography with chemical ionization mass spectrometry for quantification of multifunctional organic compounds in the atmosphere. *Atmos Meas Tech.* 2018;11(12):6815-6832.

Vasquez KT, Crounse JD, Schulze BC, Bates KH, Teng AP, Xu L, Allen HM, Wennberg PO. Rapid hydrolysis of tertiary isoprene nitrate efficiently removes NO_x from the atmosphere. *Proc Natl Acad Sci USA.* 2020b;117(52):33011-33016.

Veres P, Roberts JM, Warneke C, Welsh-Bon D, Zahniser M, Herndon S, Fall R, de Gouw J. Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere. *Int J Mass Spectrom.* 2008;274(1):48-55.

Viggiano AA. In situ mass spectrometry and ion chemistry in the stratosphere and troposphere. *Mass Spectrom Rev.* 1993;12(2): 115-137.

Wagner R, Yan C, Lehtipalo K, Duplissy J, Nieminen T, Kangasluoma J, Ahonen LR, Dada L, Kontkanen J, Manninen HE, Dias A, Amorim A, Bauer PS, Bergen A, Bernhammer AK, Bianchi F, Brilke S, Mazon SB, Chen X, Draper DC, Fischer L, Frege C, Fuchs C, Garmash O, Gordon H, Hakala J, Heikkilä L, Heinritzi M, Hofbauer V, Hoyle CR, Kirkby J, Kürten A, Kvashnin AN, Laurila T, Lawler MJ, Mai H, Makhmutov V, Mauldin III RL, Molteni U, Nichman L, Nie W, Ojdanic A, Onnela A, Piel F, Quéléver LLJ, Rissanen MP, Sarnela N, Schallhart S, Sengupta K, Simon M, Stolzenburg D, Stozhkov Y, Tröstl J, Viisanen Y, Vogel AL, Wagner AC, Xiao M, Ye P, Baltensperger U, Curtius J, Donahue NM, Flagan RC,

Gallagher M, Hansel A, Smith JN, Tomé A, Winkler PM, Worsnop D, Ehn M, Sipilä M, Kerminen VM, Petäjä T, Kulmala M. The role of ions in new particle formation in the CLOUD chamber. *Atmos Chem Phys*. 2017;17(24):15181-15197.

Wang M, Kong W, Marten R, He X-C, Chen D, Pfeifer J, Heitto A, Kontkanen J, Dada L, Kürten A, Yli-Juuti T, Manninen HE, Amanatidis S, Amorim A, Baalbaki R, Baccarini A, Bell DM, Bertozi B, Bräkling S, Brilke S, Murillo LC, Chiu R, Chu B, De Menezes L-P, Duplissy J, Finkenzeller H, Carracedo LG, Granzin M, Guida R, Hansel A, Hofbauer V, Krechmer J, Lehtipalo K, Lamkaddam H, Lampimäki M, Lee CP, Makhmutov V, Marie G, Mathot S, Mauldin RL, Mentler B, Müller T, Onnela A, Partoll E, Petäjä T, Philippov M, Pospisilova V, Ranjithkumar A, Rissanen M, Rörup B, Scholz W, Shen J, Simon M, Sipilä M, Steiner G, Stolzenburg D, Tham YJ, Tomé A, Wagner AC, Wang DS, Wang Y, Weber SK, Winkler PM, Wlasits PJ, Wu Y, Xiao M, Ye Q, Zauner-Wieczorek M, Zhou X, Volkamer R, Riipinen I, Dommen J, Curtius J, Baltensperger U, Kulmala M, Worsnop DR, Kirkby J, Seinfeld JH, El-Haddad I, Flagan RC, Donahue NM. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. *Nature*. 2020;581(7807):184-189.

Wang Y, Kim H, Paulson SE. Hydrogen peroxide generation from α - and β -pinene and toluene secondary organic aerosols. *Atmos Environ*. 2011;45(18):3149-3156.

Wang Y, Mehra A, Krechmer JE, Yang G, Hu X, Lu Y, Lambe A, Canagaratna M, Chen J, Worsnop D, Coe H, Wang L. Oxygenated products formed from OH-initiated reactions of trimethylbenzene: autoxidation and accretion. *Atmos Chem Phys*. 2020;20(15):9563-9579.

Wang Y, Zhao Y, Li Z, Li C, Yan N, Xiao H. Importance of hydroxyl radical chemistry in isoprene suppression of particle formation from α -pinene ozonolysis. *ACS Earth Space Chem*. 2021;5(3):487-499.

Warnke J, Bandur R, Hoffmann T. Capillary-HPLC-ESI-MS/MS method for the determination of acidic products from the oxidation of monoterpenes in atmospheric aerosol samples. *Anal Bioanal Chem*. 2006;385(1):34-45.

Watson JG. Visibility: Science and regulation. *J Air Waste Manage*. 2002;52(6):628-713.

Weloe M, Hoffmann T. Application of time-of-flight aerosol mass spectrometry for the real-time measurement of particle-phase organic peroxides: an online redox derivatization-aerosol mass spectrometer (ORD-AMS). *Atmos Meas Tech*. 2020;13(10):5725-5738.

Weschler CJ. Identification of selected organics in the Arctic aerosol. *Atmos Environ* (1967). 1981;15(8):1365-1369.

West CP, Mesa Sanchez D, Morales AC, Hsu Y-J, Ryan J, Darmody A, Slipchenko LV, Laskin J, Laskin A. Molecular and structural characterization of isomeric compounds in atmospheric organic aerosol using ion mobility-mass spectrometry. *J Phys Chem A*. 2023;127(7):1656-1674.

Williams BJ, Goldstein AH, Kreisberg NM, Hering SV. An in-situ instrument for speciated organic composition of atmospheric aerosols: Thermal desorption aerosol GC/MS-FID (TAG). *Aerosol Sci Tech*. 2006;40(8):627-638.

Willis MD, Rovelli G, Wilson KR. Combining mass spectrometry of picoliter samples with a multicompartiment electrodynamic trap for probing the chemistry of droplet arrays. *Anal Chem*. 2020;92(17):11943-11952.

Willoughby RC, Browner RF. Monodisperse aerosol generation interface for combining liquid chromatography with mass spectroscopy. *Anal Chem*. 1984;56(14):2626-2631.

Wingen LM, Finlayson-Pitts BJ. Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS). *Chem Sci*. 2019;10(3):884-897.

Winkler PC, Perkins DD, Williams WK, Browner RF. Performance of an improved monodisperse aerosol generation interface for liquid chromatography/mass spectrometry. *Anal Chem*. 1988;60(5):489-493.

Wu R, Vereecken L, Tsiligiannis E, Kang S, Albrecht SR, Hantschke L, Zhao D, Novelli A, Fuchs H, Tillmann R, Hohaus T, Carlsson PTM, Shenolikar J, Bernard F, Crowley JN, Fry JL, Brownwood B, Thornton JA, Brown SS, Kiendler-Scharr A, Wahner A, Hallquist M, Mentel TF. Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical. *Atmos Chem Phys*. 2021;21(13):10799-10824.

Xu L, Coggon MM, Stockwell CE, Gilman JB, Robinson MA, Breitenlechner M, Lamplugh A, Neuman JA, Novak GA, Veres PR, Brown SS, Warneke C. A chemical ionization mass spectrometry utilizing ammonium ions (NH_4^+ CIMS) for measurements of organic compounds in the atmosphere. *Atmos Meas Tech Discuss*. 2022a;2022:1-31.

Xu L, Coggon MM, Stockwell CE, Gilman JB, Robinson MA, Breitenlechner M, Lamplugh A, Crounse JD, Wennberg PO, Neuman JA, Novak GA, Veres PR, Brown SS, Warneke C. Chemical ionization mass spectrometry utilizing ammonium ions (NH_4^+ CIMS) for measurements of organic compounds in the atmosphere. *Atmos Meas Tech*. 2022b;15(24):7353-7373.

Xu L, Møller KH, Crounse JD, Kjaergaard HG, Wennberg PO. New insights into the radical chemistry and product distribution in the OH-initiated oxidation of benzene. *Environ Sci Technol*. 2020;54(21):13467-13477.

Xu L, Møller KH, Crounse JD, Otkjær RV, Kjaergaard HG, Wennberg PO. Unimolecular reactions of peroxy radicals formed in the oxidation of α -pinene and β -pinene by hydroxyl radicals. *J Phys Chem A*. 2019;123(8):1661-1674.

Xu R, Ge Y, Kwong KC, Poon HY, Wilson KR, Yu JZ, Chan MN. Inorganic sulfur species formed upon heterogeneous OH oxidation of organosulfates: a case study of methyl sulfate. *ACS Earth Space Chem*. 2020;4(11):2041-2049.

Yan C, Nie W, Äijälä M, Rissanen MP, Canagaratna MR, Massoli P, Junninen H, Jokinen T, Sarnela N, Häme SAK, Schobesberger S, Canonaco F, Yao L, Prévôt ASH, Petäjä T, Kulmala M, Sipilä M, Worsnop DR, Ehn M. Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. *Atmos Chem Phys*. 2016;16(19):12715-12731.

Yan C, Nie W, Vogel AL, Dada L, Lehtipalo K, Stolzenburg D, Wagner R, Rissanen MP, Xiao M, Ahonen L, Fischer L, Rose C, Bianchi F, Gordon H, Simon M, Heinritzi M, Garmash O, Roldin P, Dias A, Ye P, Hofbauer V, Amorim A, Bauer PS, Bergen A, Bernhammer AK,

Breitenlechner M, Brilke S, Buchholz A, Mazon SB, Canagaratna MR, Chen X, Ding A, Dommen J, Draper DC, Duplissy J, Frege C, Heyn C, Guida R, Hakala J, Heikkinen L, Hoyle CR, Jokinen T, Kangasluoma J, Kirkby J, Kontkanen J, Kürten A, Lawler MJ, Mai H, Mathot S, Mauldin RL, Molteni U, Nichman L, Nieminen T, Nowak J, Ojdanic A, Onnela A, Pajunoja A, Petäjä T, Piel F, Quéléver LLJ, Sarnela N, Schallhart S, Sengupta K, Sipilä M, Tomé A, Tröstl J, Väistänen O, Wagner AC, Ylisirniö A, Zha Q, Baltensperger U, Carslaw KS, Curtius J, Flagan RC, Hansel A, Riipinen I, Smith JN, Virtanen A, Winkler PM, Donahue NM, Kerminen VM, Kulmala M, Ehn M, Worsnop DR. Size-dependent influence of NO_x on the growth rates of organic aerosol particles. *Sci Adv.* 2020;6(22):eaay4945.

Yang LH, Takeuchi M, Chen Y, Ng NL. Characterization of thermal decomposition of oxygenated organic compounds in FIGAERO-CIMS. *Aerosol Sci Technol.* 2021;55(12):1321-1342.

Yao M, Li Z, Li C, Xiao H, Wang S, Chan AWH, Zhao Y. Isomer-resolved reactivity of organic peroxides in monoterpenes-derived secondary organic aerosol. *Environ Sci Technol.* 2022;56(8):4882-4893.

Yao M, Zhao Y, Hu M, Huang D, Wang Y, Yu JZ, Yan N. Multiphase reactions between secondary organic aerosol and sulfur dioxide: Kinetics and contributions to sulfate formation and aerosol aging. *Environ Sci Technol Lett.* 2019;6(12):768-774.

Yasmeen F, Szmigelski R, Vermeylen R, Gómez-González Y, Surratt JD, Chan AWH, Seinfeld JH, Maenhaut W, Claeys M. Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α -pinene, β -pinene, d-limonene, and $\Delta 3$ -carene in fine forest aerosol. *J Mass Spectrom.* 2011;46(4):425-442.

Yatavelli RLN, Lopez-Hilfiker F, Wargo JD, Kimmel JR, Cubison MJ, Bertram TH, Jimenez JL, Gonin M, Worsnop DR, Thornton JA. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species. *Aerosol Sci Technol.* 2012;46(12):1313-1327.

Yazdani A, Dudani N, Takahama S, Bertrand A, Prévôt ASH, El Haddad I, Dillner AM. Characterization of primary and aged wood burning and coal combustion organic aerosols in an environmental chamber and its implications for atmospheric aerosols. *Atmos Chem Phys.* 2021;21(13):10273-10293.

Ye C, Yuan B, Lin Y, Wang Z, Hu W, Li T, Chen W, Wu C, Wang C, Huang S, Qi J, Wang B, Song W, Wang X, Zheng E, Krechmer JE, Ye P, Zhang Z, Worsnop DR, Shao M. Chemical characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air. *Atmos Chem Phys.* 2021;21(11):8455-8478.

Yokouchi Y, Ambe Y. Aerosols formed from the chemical reaction of monoterpenes and ozone. *Atmos Environ* (1967). 1985;19(8): 1271-1276.

Yu H, Lee S-H. Chemical ionisation mass spectrometry for the measurement of atmospheric amines. *Environ Chem.* 2012;9(3):190-201.

Yu J, Cocker DR, Griffin RJ, Flagan RC, Seinfeld JH. Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. *J Atmos Chem.* 1999;34(2):207-258.

Yu J, Flagan RC, Seinfeld JH. Identification of products containing $-\text{COOH}$, $-\text{OH}$, and $-\text{CO}$ in atmospheric oxidation of hydrocarbons. *Environ Sci Technol.* 1998;32(16):2357-2370.

Yuan B, Koss AR, Warneke C, Coggon M, Sekimoto K, de Gouw JA. Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. *Chem Rev.* 2017;117(21): 13187-13229.

Yuan B, Koss A, Warneke C, Gilman JB, Lerner BM, Stark H, de Gouw JA. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H_3O^+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere. *Atmos Meas Tech.* 2016;9(6): 2735-2752.

Zaytsev A, Breitenlechner M, Koss AR, Lim CY, Rowe JC, Kroll JH, Keutsch FN. Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (NH_4^+ CIMS) to oxygenated volatile organic compounds. *Atmos Meas Tech.* 2019;12(3):1861-1870.

Zaytsev A, Koss AR, Breitenlechner M, Krechmer JE, Nihill KJ, Lim CY, Rowe JC, Cox JL, Moss J, Roscioli JR, Canagaratna MR, Worsnop DR, Kroll JH, Keutsch FN. Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. *Atmos Chem Phys.* 2019;19(23):15117-15129.

Zhang H, Surratt JD, Lin YH, Bapati J, Kamens RM. Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions. *Atmos Chem Phys.* 2011;11(13):6411-6424.

Zhang H, Yee LD, Lee BH, Curtis MP, Worton DR, Isaacman-VanWertz G, Offenberg JH, Lewandowski M, Kleindienst TE, Beaver MR, Holder AL, Lonneman WA, Docherty KS, Jaoui M, Pye HOT, Hu W, Day DA, Campuzano-Jost P, Jimenez JL, Guo H, Weber RJ, de Gouw J, Koss AR, Edgerton ES, Brune W, Mohr C, Lopez-Hilfiker FD, Lutz A, Kreisberg NM, Spielman SR, Hering SV, Wilson KR, Thornton JA, Goldstein AH. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. *Proc Natl Acad Sci USA.* 2018;115(9):2038-2043.

Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfara MR, Takami A, Middlebrook AM, Sun YL, Dzepina K, Dunlea E, Docherty K, DeCarlo PF, Salcedo D, Onasch T, Jayne JT, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Griffin RJ, Rautiainen J, Sun JY, Zhang YM, Worsnop DR. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. *Geophys Res Lett.* 2007;34:L13801.

Zhang W, Zhang H. Secondary ion chemistry mediated by ozone and acidic organic molecules in iodide-adduct chemical ionization mass spectrometry. *Anal Chem.* 2021;93(24): 8595-8602.

Zhang X, Dalleska NF, Huang DD, Bates KH, Sorooshian A, Flagan RC, Seinfeld JH. Time-resolved molecular characterization of organic aerosols by PILS + UPLC/ESI-Q-TOFMS. *Atmos Environ.* 2016;130:180-189.

Zhang X, Krechmer JE, Groessl M, Xu W, Graf S, Cubison M, Jayne JT, Jimenez JL, Worsnop DR, Canagaratna MR. A novel framework for molecular characterization of atmospherically relevant organic compounds based on collision cross section and mass-to-charge ratio. *Atmos Chem Phys*. 2016;16(20):12945-12959.

Zhang X, Lambe AT, Upshur MA, Brooks WA, Gray Bé A, Thomson RJ, Geiger FM, Surratt JD, Zhang Z, Gold A, Graf S, Cubison MJ, Groessl M, Jayne JT, Worsnop DR, Canagaratna MR. Highly oxygenated multifunctional compounds in α -pinene secondary organic aerosol. *Environ Sci Technol*. 2017;51(11):5932-5940.

Zhang X, McVay RC, Huang DD, Dalleska NF, Aumont B, Flagan RC, Seinfeld JH. Formation and evolution of molecular products in α -pinene secondary organic aerosol. *Proc Natl Acad Sci USA*. 2015;112(46):14168-14173.

Zhang X, Zhang H, Xu W, Wu X, Tyndall GS, Orlando JJ, Jayne JT, Worsnop DR, Canagaratna MR. Molecular characterization of alkyl nitrates in atmospheric aerosols by ion mobility mass spectrometry. *Atmos Meas Tech*. 2019;12(10):5535-5545.

Zhao J, Häkkinen E, Graeffe F, Krechmer JE, Canagaratna MR, Worsnop DR, Kangasluoma J, Ehn M. A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOM) from α -pinene ozonolysis. *EGUspHERE*. 2022;2022:1-30.

Zhao R, Kenseth CM, Huang Y, Dalleska NF, Seinfeld JH. Iodometry-assisted liquid chromatography-electrospray ionization mass spectrometry for analysis of organic peroxides: an application to atmospheric secondary organic aerosol. *Environ Sci Technol*. 2018;52(4):2108-2117.

Zhao R, Kenseth CM, Huang Y, Dalleska NF, Kuang XM, Chen J, Paulson SE, Seinfeld JH. Rapid aqueous-phase hydrolysis of ester hydroperoxides arising from criegee intermediates and organic acids. *J Phys Chem A*. 2018;122(23):5190-5201.

Zhao R. 2018. The recent development and application of chemical ionization mass spectrometry in atmospheric chemistry. In: Encyclopedia of Analytical Chemistry. Chichester, UK: John Wiley & Sons, Ltd. 2018;1-33.

Zhao Y, Chan JK, Lopez-Hilfiker FD, McKeown MA, D'Ambro EL, Slowik JG, Riffell JA, Thornton JA. An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors. *Atmos Meas Tech*. 2017;10(10):3609-3625.

Zhao Y, Fairhurst MC, Wingen LM, Perraud V, Ezell MJ, Finlayson-Pitts BJ. New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS). *Atmos Meas Tech*. 2017;10(4):1373-1386.

Zhao Y, Kreisberg NM, Worton DR, Teng AP, Hering SV, Goldstein AH. Development of an in situ thermal desorption gas chromatography instrument for quantifying atmospheric semi-volatile organic compounds. *Aerosol Sci Technol*. 2013;47(3):258-266.

Zhao Y, Thornton JA, Pye HOT. Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpane-derived peroxy radical chemistry. *Proc Natl Acad Sci USA*. 2018;115(48):12142-12147.

Zhao Z, Le C, Xu Q, Peng W, Jiang H, Lin Y-H, Cocker DR, Zhang H. Compositional evolution of secondary organic aerosol as temperature and relative humidity cycle in atmospherically relevant ranges. *ACS Earth Space Chem*. 2019;3(11):2549-2558.

Zhao Z, Mayorga R, Lee J, Yang X, Tolentino R, Zhang W, Vuong A, Zhang H. Site-specific mechanisms in OH-initiated organic aerosol heterogeneous oxidation revealed by isomer-resolved molecular characterization. *ACS Earth Space Chem*. 2020;4(5):783-794.

Zhao Y, Yao M, Wang Y, Li Z, Wang S, Li C, Xiao H. Acylperoxy radicals as key intermediates in the formation of dimeric compounds in α -pinene secondary organic aerosol. *Environ Sci Technol*. 2022;56(20):14249-14261.

Zhao Z, Tolentino R, Lee J, Vuong A, Yang X, Zhang H. Interfacial dimerization by organic radical reactions during heterogeneous oxidative aging of oxygenated organic aerosols. *J Phys Chem A*. 2019;123(50):10782-10792.

Zhao Z, Xu Q, Yang X, Zhang H. Heterogeneous ozonolysis of endocyclic unsaturated organic aerosol proxies: Implications for criegee intermediate dynamics and later-generation reactions. *ACS Earth Space Chem*. 2019;3(3):344-356.

Zhao Z, Yang X, Lee J, Tolentino R, Mayorga R, Zhang W, Zhang H. Diverse reactions in highly functionalized organic aerosols during thermal desorption. *ACS Earth Space Chem*. 2020;4(2):283-296.

Zhao Z, Zhang W, Alexander T, Zhang X, Martin DBC, Zhang H. Isolating α -pinene ozonolysis pathways reveals new insights into peroxy radical chemistry and secondary organic aerosol formation. *Environ Sci Technol*. 2021;55(10):6700-6709.

Zheng X, Dupuis KT, Aly NA, Zhou Y, Smith FB, Tang K, Smith RD, Baker ES. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. *Anal Chim Acta*. 2018;1037:265-273.

Zhou S, Forbes MW, Abbatt JPD. Kinetics and products from heterogeneous oxidation of squalene with ozone. *Environ Sci Technol*. 2016;50(21):11688-11697.

Zhou S, Joudan S, Forbes MW, Zhou Z, Abbatt JPD. Reaction of condensed-phase Criegee intermediates with carboxylic acids and perfluoroalkyl carboxylic acids. *Environ Sci Technol Lett*. 2019;6(4):243-250.

Zhou Z, Zhou S, Abbatt JPD. Kinetics and condensed-phase products in multiphase ozonolysis of an unsaturated triglyceride. *Environ Sci Technol*. 2019;53(21):12467-12475.

Zhu L, Mikoviny T, Kolstad Morken A, Tan W, Wisthaler A. A compact and easy-to-use mass spectrometer for online monitoring of amines in the flue gas of a post-combustion carbon capture plant. *Int J Greenh Gas Control*. 2018;78:349-353.

Zubarev RA, Makarov A. Orbitrap mass spectrometry. *Anal Chem*. 2013;85(11):5288-5296.

Zuth C, Vogel AL, Ockenfeld S, Huesmann R, Hoffmann T. Ultrahigh-resolution mass spectrometry in real-time: atmospheric pressure chemical ionization orbitrap mass spectrometry of atmospheric organic aerosol. *Anal Chem*. 2018;90(15):8816-8823.


WILEY
AUTHOR BIOGRAPHIES

Wen Zhang is a doctoral researcher in atmospheric chemistry at the University of California, Riverside with Dr. Haofei Zhang. She received her bachelor's degree of chemistry at the University of Science and Technology of China (2018). Her main expertise is various analytical techniques, including ionization and separation approaches, and mass spectrometry methods. Her research is interested in aerosol chemistry, including secondary organic aerosol formation and multiphase aerosol aging.

Lu Xu obtained his Ph.D. (2016) from Georgia Institute of Technology, working with Dr. Nga Lee Ng to understand the effects of anthropogenic emissions on the formation of biogenic secondary organic aerosol. He was a postdoc and then staff scientist (2017-2021) at California Institute of Technology with Dr. Paul Wennberg to study the autoxidation of organic peroxy radicals using chemical ionization mass spectrometry. He is now a research scientist in the Chemical Science Laboratory for National Oceanic and Atmospheric Administration (NOAA) and will start as an assistant professor at the Department of Energy, Environmental and Chemical Engineering at Washington University in St. Louis in 2023 September. His research focuses on the atmospheric chemistry of organic compounds from diverse sources (wildfires, vegetation, power

plants, etc.) and the subsequent impacts on air quality, human health and climate. He also develops analytical methods based on mass spectrometry to characterize the complex atmospheric composition. His research involves laboratory studies, field measurements and instrument development.

Haofei Zhang obtained his Ph.D. (2012) from University of North Carolina, Chapel Hill, working on understanding isoprene photooxidation chemistry using mass spectrometry and kinetic modeling with Drs. Richard Kamens and Jason Surratt. He was a postdoc (2012-2016) at LBNL and UC Berkeley with Drs. Kevin Wilson and Allen Goldstein to study organic aerosol composition in laboratory oxidation experiments and ambient observations using mass spectrometry. He joined faculty of the Department of Chemistry, UC Riverside in 2017. His research aims to improve mechanistic understandings of oxidation of organic molecules in the atmospheric gas and particle phases, as well as at the interfaces.

How to cite this article: Zhang W, Xu L, Zhang H. Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level. *Mass Spectrometry Reviews*, (2023);1-44. <https://doi.org/10.1002/mas.21857>