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Abstract 

Viscoelastic spherical shells exhibit a wide range of time/rate-dependent buckling behaviors 

when subjected to pressure. For certain loadings, buckling can even occur after a significant time 

delay, termed creep buckling. To gain a thorough understanding of the nonlinear time-

dependent buckling behavior of viscoelastic spherical shells, this work develops an analytical 

model employing the small-strain, moderate-rotation shell theory combined with a linearly 

viscoelastic material law. Numerical results are presented for axisymmetric spherical shells 

with geometric imperfections for two types of loading: a prescribed rate of volume change and 

a prescribed pressure that remains constant after it is applied. The first type reveals the rate-

dependent behavior of viscoelastic buckling while the constant pressure loading is used to 

quantify creep buckling phenomena. The results show that viscoelasticity and loading rates play 

important roles in the load-carrying behavior of these shells, and the results for the constant 

pressure loading reveal an unexpected and important connection between the short-time elastic 

buckling limit and the long-time creep buckling limit. An imperfection sensitivity map is 

constructed for the constant pressure loading showing three regimes with qualitatively different 

behaviors: near-instantaneous buckling, creep buckling and no buckling.  
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1 Introduction 

Spherical shells, serving as essential and indispensable structures and structural 

components, exhibit diverse functionalities (Bartlett et al., 2015; Cheng et al., 2021; Faber et 
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al., 2020; Gorissen et al., 2020; Qiao et al., 2021; Vasios et al., 2021; Yang et al., 2021) and 

have widespread utilization in various engineering fields (Błachut and Magnucki, 2008; Jose et 

al., 2014). The buckling behavior of spherical shells has drawn considerable research attention 

(Audoly and Hutchinson, 2019; Budiansky, 1974; Dong et al., 2020; Huang, 1963; Huang, 1964; 

Hutchinson and Koiter, 1970; Karman and Tsien, 1939; Koiter, 1969; Paulose and Nelson, 2013; 

Qiao et al., 2020), due to the ubiquitous importance of these structures and the fact that buckling 

can result in their catastrophic collapse. On the other hand, shell buckling offers new 

opportunities for functional designs of structures as demand by virtue of its nonlinear behavior 

(Bartlett et al., 2015; Chen et al., 2022; Faber et al., 2020; Kochmann and Bertoldi, 2017; Qiao 

et al., 2021; Reis, 2015). 

Shell theories have been developed to quantitatively predict the critical buckling loads for 

shells with linearly elastic material behavior (Huang, 1964; Hutchinson, 2016; Hutchinson and 

Thompson, 2017; Karman and Tsien, 1939; Koga and Hoff, 1969; Koiter, 1969; Krenzke and 

Kiernan, 1963). Decades of research has shown that there are significant discrepancies between 

theoretically predicted buckling loads and experimental observations for spherical shells loaded 

by external pressure, which is attributed to high imperfection sensitivity of shells (Carlson et 

al., 1967; Hutchinson and Thompson, 2018; Kaplan and Fung, 1954; Karman and Tsien, 1939; 

Koga and Hoff, 1969; Koiter, 1969). Recently, leveraging a rapid prototyping technique to 

fabricate elastomeric spherical shells with precisely engineered imperfections, researchers have 

demonstrated that shell theories can nevertheless accurately predict the buckling behavior as 

long as imperfections of accurate geometry are appropriately introduced into the theories (Dong 

et al., 2020; Hutchinson, 2016; Lee et al., 2016; Qiao et al., 2020).  

Although the rich buckling behavior of shells with linearly elastic material behavior has 

been extensively investigated, shells made from viscoelastic materials, on the other hand, can 

introduce additional novel features to shell buckling behavior due to their inherent time-

dependent and rate-dependent properties (Brinkmeyer et al., 2012; Che et al., 2019; Dykstra et 

al., 2019; Janbaz et al., 2020; Lakes, 1998; Liu et al., 2021). In particular, the phenomenon of 

creep buckling, i.e. buckling of a viscoelastic shell after a certain delayed period of loading 

when the shell is subjected to a load lower than its instantaneous buckling load, can occur 

(Hayman, 1981; Minahen and Knauss, 1993; Miyazaki and Hagihara, 2015). Buckling of 

viscoelastic shells has previously been investigated for metallic and composite shells at high 

temperatures (Kao, 1981; Marques and Creus, 1994; Miyazaki and Hagihara, 2015; Wilson and 

Vinson, 1984). The recent trend of building soft robots, architected materials and metamaterials 

from viscoelastic elastomers motivated the following studies of viscoelastic shells (Bartlett et 

al., 2015; Che et al., 2019; Chen et al., 2022; Dykstra et al., 2019; Faber et al., 2020; Janbaz et 

al., 2020).  

Buckling of viscoelastic beams and plates has been broadly studied (Hayman, 1981; 
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Kempner, 1954; Nachbar and Huang, 1967; Vinogradov, 1987). Creep buckling is analyzed in 

viscoelastic columns (Vinogradov, 1987), shallow Mises trusses (Huang, 1967), shallow arches 

(Huang, 1967), and other simple structural models (Hayman, 1981). The critical buckling time 

and load, and the post-buckling deflection, have been determined (Huang, 1967). Comparing the 

analytical prediction with the experimental measured creep buckling condition of viscoelastic 

polymeric columns, Minahen and Knauss (1993) showed that analytical modeling can predict 

the short-term and slow growth phases of the responses reasonably well. Buckling analysis was 

also conducted for viscoelastic plates to demonstrate their time-dependent buckling behavior 

(Hewitt and Mazumdar, 1977; Wilson and Vinson, 1984). The results show that viscoelasticity 

can cause a significant decrease in buckling resistance (Wilson and Vinson, 1984) when the 

loads are applied for sufficiently long periods of time.  

Although the role of viscoelasticity on buckling of beams and plates, which tend to buckle 

in a stable manner, has been established, an understanding of the buckling behavior of 

viscoelastic shells, especially deep shells, which have the potential to buckle catastrophically, 

remains to be revealed with more clarity. In early work by Huang (1965), the governing 

equations of viscoelastic shallow shells were established by applying the corresponding 

principle of an elastic case with the material property evolving as a function of time, from which 

the critical time for buckling was evaluated numerically. Obrecht (1977) formulated an 

incremental viscoelastic shell theory for cylindrical shells under axial compression. The 

axisymmetric and/or non-axisymmetric buckling conditions were determined for spherical 

shells and circular cylindrical shells by a perturbation method (Grigoliuk and Lipovtsev, 1969; 

Jones, 1976; Obrecht, 1977; Vinogradov and Glockner, 1980; Xirouchakis and Jones, 1980), or 

the finite element method (Miyazaki et al., 1977). Imperfections were shown to have a 

significant impact on shortening the creep buckling time (Kao, 1981). Recently, the creep 

buckling behavior of shell structures, including both cylindrical shells and spherical shells, was 

reviewed, and creep buckling criteria were summarized (Miyazaki and Hagihara, 2015). 

However, buckling analysis of viscoelastic shells, especially spherical shells, is largely based 

on the shallow shell assumption. Relevant specifically to the present investigation is the study 

of viscoelastic spherical shells made of a silicone elastomer (Stein-Montalvo et al., 2021), 

where creep buckling of these shells is demonstrated experimentally and modelled by simply 

treating the creep deformation as an evolving defect. Thus, there is ample opportunity to explore 

the effect of viscoelasticity on the rate-dependent buckling and creep buckling of imperfection 

sensitive shells -- this paper represents a step in that direction. 

The present paper employs a shell theory capable of describing the deformation and 

buckling of deep viscoelastic spherical shells subjected to external pressure. The small-strain, 

moderate-rotation shell theory, combined with the standard linear viscoelastic solid for the shell 

material, is used. Imperfection sensitivity of elastic shells (viscoelastic shells evaluated under 
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rapid loading) is first analyzed, revealing the knockdown of the buckling pressure due to 

geometric imperfections. Then, material viscoelasticity and loading rates are shown to have 

appreciable effects on buckling. Distinctly different behaviors are quantified, including near-

instantaneous elastic buckling, creep buckling with time delays, and no buckling. An 

imperfection sensitivity map of these distinct responses is constructed.  

The paper is organized as follows. In Section 2, the small-strain, moderate-rotation shell 

theory and the viscoelastic material law are combined to formulate the viscoelastic shell theory. 

The equilibrium equations are developed using the principle of virtual work. In Section 3, the 

imperfection sensitivity and the rate-dependent buckling behavior of viscoelastic shells are 

illustrated for two types of loading: a prescribed constant rate of volume change and a prescribed 

step loading of external pressure. In Section 4, the distinct buckling phenomena alluded to above 

are identified by quantifying the buckling times for the step pressure loading. Systematic 

responses are identified and summarized in a behavior map. The main findings of the paper are 

summarized in Section 5.  

2 Formulation of viscoelastic shell theory 

2.1 Small-strain, moderate-rotation shell theory with a geometric imperfection 

 

 

Fig.1 Schematic of a viscoelastic spherical shell with a Gaussian-shaped imperfection centered 

at the pole. (a) Coordinates definition (𝜃, 𝜔, 𝑟) and geometry of the shell. (b) A standard linear 

solid with a free spring of modulus 𝐸∞, and a Maxwell element in parallel with a spring of 

modulus 𝐸1, and a dashpot of viscosity 𝜂. 

 

The small-strain, moderate-rotation theory (Koiter, 1966; Sanders, 1963) is employed for 

the shell buckling equations. The schematic and coordinates definition (𝜃, 𝜔, 𝑟) are shown in 

Fig.1, where θ is the meridional angle, which equals 0 at the equator and 𝜋 2⁄  at the pole, ω is 

the circumferential angle, and r is the distance from the origin. The middle surface radius, base 

angle and thickness of the perfect undeformed shell are denoted by R, 𝛼0 and h, respectively. 

A material point on the middle surface of the undeformed shell with a coordinate (𝜃, 𝜔, 𝑅) 
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will be located on the deformed shell at 

 ( ) ru u R w     r = i i i , (1) 

where (𝐢𝜃 , 𝐢𝜔, 𝐢𝑟) are the unit vectors normal and tangent to the undeformed middle surface, 

and (𝑢𝜃 , 𝑢𝜔, 𝑤)  are the corresponding displacements. In this paper, only axisymmetric 

deflections and imperfections are considered since the essence of spherical shell buckling is 

captured within this limited class of deformations (Hutchinson, 2016); thus, 𝑢𝜃 and 𝑤 are 

only functions of θ, and 𝑢𝜔 = 0. 

An axisymmetric dimple-like geometric imperfection 𝑤𝐼(𝜃) is introduced at the apex of 

the perfect shell shown in Fig.1a. The profile of the imperfection is specified by a Gaussian 

dimple, 
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where 𝛿 is the amplitude of the inward deflection at the apex, 𝛽 = 𝜋/2 − 𝜃 is the polar angle, 

and 𝛽𝐼 sets the exponential decay width. The tensor equations of Sanders (Sanders, 1963) and 

Koiter (Koiter, 1966) have been reduced to the classical form for spherical shells, and the 

derivation of the middle surface strains and bending strains for spherical shells with an 

imperfection undergoing non-axisymmetric deformation based on the small-strain, moderate-

rotation theory is listed in the papers of Hutchinson and Lee et al. (Hutchinson, 2016; Lee et 
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where the dimensionless displacements and rotation are defined as 
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with the subscripts ‘ ,    and ‘ ,    as the first and second derivatives with respect to 𝜃 , 

respectively, and 𝜑 is the rotation. In deriving Eq.(3), the second equation in Eq.(4) has been 
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used to express 𝑢𝜃 in terms of W and 𝜑, which are regarded as the independent variables. 

Consequently, the strain at an arbitrary position of the shell can be expressed as 𝜀𝛼𝛽 = 𝐸𝛼𝛽 +

𝑧𝐾𝛼𝛽, where 𝑧 is the coordinate in the thickness direction of the shell and measured from the 

middle surface. 

2.2 Viscoelastic constitutive relations 

To formulate the viscoelastic shell theory, the time/rate-dependent constitutive equations 

of viscoelasticity are developed in this section. The Boltzmann superposition principle, stating 

that the compound response of a material is the sum of the responses to individual loads, is 

adopted. The stress at time t is the summation of the stress increments at earlier time intervals 

𝑑𝜏 . The two-dimensional stress-strain relations of viscoelasticity under plane stress can be 

written as: 

            
2

0 0
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where 𝐸 is the modulus, which evolves with time, v is the Poisson s ratio, which is assumed 

to be constant, and 𝜀𝛼̇𝛽 = 𝑑𝜀𝛼𝛽/𝑑𝜏 . The Greek indices 𝛼 & 𝛽  take on values 1 & 2 

corresponding to 𝜃 & ω, and a repeated Greek index is summed over 1 and 2.  

Specifically, the standard linear solid model (Fig.1b), which is a special case of the 

generalized Maxwell-Wiechert model (Lakes, 1998), is used to describe the material 

viscoelasticity. It can capture both relaxation and creep with the minimum number of Maxwell 

elements. It consists of a free spring with a modulus 𝐸∞, a Maxwell element in parallel with a 

spring of modulus 𝐸1, and a dashpot of viscosity 𝜂. As a result, the modulus of a standard 

linear solid shows exponential decay with time during relaxation, 𝐸(𝑡) = 𝐸∞ + 𝐸1𝑒
−
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Substituting the time-dependent modulus E(t) into Eq.(5) gives 
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The resultant membrane stresses and the bending moments can be derived by integrating 

the stresses through the thickness,  
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For a shell specialized to axisymmetric deformations, the non-zero resultant membrane 

stresses are 𝑁𝜔𝜔, and 𝑁𝜃𝜃, while the non-zero bending moments are 𝑀𝜔𝜔, and 𝑀𝜃𝜃: 
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It is convenient to normalize these equations as 

 

2
( )

2 2

0

2
( )

2 2

0

( )

0

( )

12 cos
( ( ) ),

(1 )

12 cos
( ( ) ),

(1 )

cos ( ( ) ),

cos (

T

T

rel

T

T

rel

T

T

rel

T

rel

R
n E vE E e E vE d

h

R
n E vE E e E vE d

h

m R K K E e K vK d

m R K K E e



    



    



    



  











  

 

 

 

 

 

   


   


   

  







0

( ) ),

T

K vK d   

 (9) 

with  
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where 𝐸𝑟𝑒𝑙  measures the modulus in the Maxwell element relative to the modulus governing 

rapid straining. The viscoelastic timescale 𝑡𝑣 is defined as the ratio of the material viscosity 

𝜂 to modulus 𝐸1 in the Maxwell element, which is used to scale the time.  
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2.3 Principle of virtual work and equilibrium equations 

To enforce the principle of virtual work, the virtual normal displacement and rotation of 

the middle surface are indicated as 𝛿𝑊 and 𝛿𝜑, and the associated virtual strains are 𝛿𝜀𝛼𝛽 =

𝛿𝐸𝛼𝛽 + 𝑧𝛿𝐾𝛼𝛽. The internal virtual work of the shell can be expressed as 

 2

2

( )
h

h
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where S denotes the area of the middle surface with 𝑑𝑆 = 2𝜋𝑅2𝑐𝑜𝑠𝜃𝑑𝜃 for a spherical shell. 

When the shell is subjected to a uniform inward pressure p in the radius direction, the 

external virtual work is 

 
,[ ]n n
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where Q is the normal edge force, 𝑇𝜃 is the in-plane edge resultant traction, C is the boundary, 

and s denotes the length of the edge of the shell. 𝑀𝑛 is the component of the edge moment, 

𝑀𝑛 = 𝑀𝛼𝛽𝑛𝛼𝑛𝛽, where the vector 𝒏 is the normal to the edge tangent to the shell. 

Next, the equilibrium equations are derived from the principle of virtual work, which states 

that IVW=EVW for all admissible 𝛿𝑊 and 𝛿𝜑. The divergence theorem is applied to convert 

the equations to the form that permits identification of independent variations. Besides the 

dimensionless variables and parameters defined in Eq.(10), a normalized pressure is introduced 

as 
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The equilibrium equations are obtained as (see Appendix A for details) 
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Finally, we take the time derivative of the above equilibrium equations, which can be 

expressed in terms of 𝜑  and W through the constitutive equations Eq.(9) and the strain–

displacement relations Eq.(3). Only the terms related to the highest order of the unknowns are 

expanded explicitly; the other terms are readily computed in the numerical code. The 

equilibrium equations for the time rates of change become 
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with the definition of  
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The present formulation describing the deformation of viscoelastic spherical shells with 

geometric imperfections has led to a system of nonlinear ordinary differential equations (ODEs), 

which will be solved using the finite difference method and the combined bvp4c solver (a finite 

difference code that implements the three-stage Lobatto IIIa formula to solve boundary value 

problems for ODEs) in MATLAB (Kierzenka and Shampine, 2000). The clamped boundary 

condition requires 𝑊 = 𝑊,𝜃 = 𝜑 = 0 at the base while the analytical nature of the functions 

𝑊 and 𝜑 under the axisymmetric condition requires 𝑊,𝜃 = 𝜑 = 𝜑,𝜃𝜃 = 0 at the pole. And 

note that numerical approximations are adopted, and high-order terms are neglected when 

solving the ODEs. Buckling problems under two types of loading are examined in this work: i) 

a prescribed rate of change of the shell volume and ii) prescribed pressure that is held constant 

once after it is applied. In addition, the case of a prescribed rate of volume change will be 

compared with a case that is easier to implement numerically but of less physical interest, a 

prescribed rate of change of the pole displacement. When the pressure serves as the control 

variable, the equilibrium equations (Eq.(15)) and viscoelastic constitutive relations (Eq.(9)) are 

solved with prescribed evolution of pressure with time. When the pole deflection is set as the 

control parameter, the dimensionless pressure 𝑝̂ = 𝑝𝑅3/𝐷 is regarded as an extra unknown 

with an additional ODE 𝑑𝑝̂ 𝑑𝜃⁄ = 0 added to the set of equations, Eq.(15) and Eq.(9). The 
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deformation of the shell can be obtained numerically if dynamic snapping does not occur, which 

would require consideration of inertia. Volume control is achieved by setting the volume of the 

shell as an additional variable and adding an extra constraining ODE relating the volume and 

deflection to the equation set. The pressure is again treated as an extra unknown variable. The 

procedure under volume control also behaves well until conditions for dynamic snapping are 

attained.  

3 Rate-dependent buckling behaviors  

In this section, we begin by investigating the effects of geometric imperfections on 

buckling pressure of viscoelastic shells. It is known that the classical prediction for the critical 

buckling pressure of a perfect elastic hemi-spherical shell with 𝛼0 = 𝜋 2⁄   under uniform 

pressure loading is only slightly different from the result for a full spherical shell (Zoelly, 1915), 

𝑝𝑐 = 2𝐸(ℎ 𝑅)⁄ 2
√3(1 − 𝑣2)⁄ , where E is the Young s modulus for the elastic shell. The precise 

value for the hemispherical shell depends on whether it is clamped or simply supported at the 

equator. The critical buckling pressure of imperfect shells can be significantly reduced below 

𝑝𝑐 due to the imperfection sensitivity of shell buckling, which leads to large knockdown factors 

observed experimentally (Evkin and Lykhachova, 2017; Gerasimidis et al., 2018; Hutchinson 

and Thompson, 2017; Hutchinson and Thompson, 2018; Karman and Tsien, 1939; Koga and 

Hoff, 1969; Koiter, 1969; Krenzke and Kiernan, 1963; Lee et al., 2016; Liu et al., 2021; NASA, 

1969). For the dimple imperfections of the type considered in this paper, buckling is localized 

at the pole, and the boundary conditions at the equator, or at other values of 𝛼0 , have no 

influence on the buckling pressure if they are sufficiently strong and if the shell is sufficiently 

deep, which typically corresponds to the dimensionless parameter [12(1 −

𝑣2)]1 4⁄ cos (𝛼0)√𝑅/ℎ > 3 (Evkin and Lykhachova, 2019; Huang, 1965; NASA, 1969). In this 

paper, the ratio of the buckling pressure, the maximum pressure the shell can support 𝑝𝑚𝑎𝑥, to 

𝑝𝑐  is used to quantify the discrepancy of the actual buckling pressure from the theoretical 

prediction; in the formula for 𝑝𝑐 the initial modulus (𝐸1 + 𝐸∞) for the viscoelastic material 

governing fast straining is used to replace the elastic modulus E of an elastic material to define 

a reference critical buckling pressure, i.e., 

 21
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3.1 Buckling under a prescribed volume change 

We first examine the effect of imperfections on the loading-carrying behavior of 
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viscoelastic shells under fast loading. For these calculations, the viscoelastic shell is loaded at 

a high rate of volume change with the time-dependence of the pressure solved as described 

earlier. The volume change rate is chosen sufficiently large such that the shell material responds 

elastically with modulus (𝐸1 + 𝐸∞), i.e., viscoelastic effects are essentially absent. For purposes 

that will be clear in what follows, we define two dimensionless loading rates, 𝛾𝜈  measuring 

rate of volume change and 𝛾𝑑 
measuring the rate of the pole displacement:  

                0/
v

d V V

dT



  and  pole

d

dW

dT
   .      (18) 

where the dimensionless quantities, T and 𝑊𝑝𝑜𝑙𝑒, have been defined earlier, ∆𝑉 is defined as 

the volume change from t = 0 to time t, and 
2

0 02 (1 sin ) / 3(1 ) / (1 )V R h         is 

an estimate of the volume change for the deep spherical shell associated with the critical 

pressure in Eq.(17), which ignores the constraint of the clamped boundary in the small boundary 

layer at the base of the shell. 

The plots in Fig. 2 and 3 are computed with a prescribed, rapid rate of volume change, 

γ𝑣 = 0.9623, with 𝐸𝑟𝑒𝑙 = 0.4. Throughout the paper, the geometric parameters are fixed at 

𝛼0 = 𝜋 3⁄ ,  𝑅 ℎ⁄ = 50  𝑎𝑛𝑑  𝛽𝐼 = 10°, with Poisson s ratio set at 𝑣 = 0.5. Note that in this 

paper, we will not provide the results for perfect and near-perfect shells to avoid numerical 

singularity and other complex behavior near the buckling, such as localization (Audoly and 

Hutchinson, 2019). Instead, we will focus on small, but realistic, imperfections with 𝛿 ℎ⁄ ≥

0.2. For each choice of imperfection amplitude, 𝛿 ℎ⁄ = 0.2, 0.3, 0.5, 1, the normalized pressure, 

𝑝 𝑝𝑐⁄ , as a function of the displacement at the pole, here normalized by the shell thickness, 

𝑤𝑝𝑜𝑙𝑒 ℎ⁄ , always first increases, reaches a maximum value, and then decreases monotonically 

(Fig.2a). It is well known that the elastic buckling of shells is highly sensitive to imperfections 

(Koiter, 1969), with an exceptionally dramatic reduction of buckling loads in the range of small 

imperfections, and this is reflected in Fig. 2. As the imperfection amplitude increases, the 

buckling pressure further decreases but tends to a plateau. The corresponding pole displacement 

at the critical pressure increases monotonically but is never much larger than one, or at most 

two, shell thicknesses at the maximum load point. The fact that shell buckling occurs at such 

small deflections helps explain why the small-strain, moderate-rotation shell theory is accurate 

in these applications. Fig.2b presents results for the same shells but as normalized pressure as 

a function of normalized volume change, ∆𝑉 𝑉0⁄ . For shells with the smallest imperfection in 

Fig. 2b (𝛿 ℎ⁄ = 0.2 ), both 𝑝 𝑝𝑐⁄   and ∆𝑉 𝑉0⁄   decrease along the equilibrium path after 

attaining the maximum pressure, which is a salient feature of a snapping-back buckling 

(Budiansky, 1974; Chen and Jin, 2020), indicating that the shell will buckle unstably under 

either pressure or volume control. For the larger imperfection amplitudes, the critical volume 

at the onset of buckling becomes smaller, and the post-buckling slope changes from positive to 
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negative, eventually reaching nearly zero. The buckling capacity of the shell is reached in the 

range of relatively small pole deflections, with the attainment of the maximum pressure 

occurring when 𝑤𝑝𝑜𝑙𝑒 ≅ −ℎ. In all cases in Figs. 2 and 3, the loading rate, γ𝑣 = 0.9623, is 

very high and there is virtually no viscoelastic relaxion. The buckling behavior of these 

viscoelastic shells is essentially the same as an elastic shell with the short-time modulus 𝐸 =

𝐸1 + 𝐸∞ . Consequently, the results in these figures are essentially identical to those of the 

elastic shells reported in the literature (Lee et al., 2016). This agreement provides one check on 

our viscoelastic shell model.  

Fig. 3 displays the data in Fig. 2 plotted against dimensionless time, as volume change 

versus time in Fig. 3a and as pole displacement versus time in Fig. 3b. Because the rate of 

volume change is prescribed to be constant with γ𝑣 = 0.9623, the plot in Fig. 3a is simply a 

straight line, but the points at which the buckling pressure 𝑝𝑚𝑎𝑥  is attained for the four 

imperfection levels is indicated. In Fig. 3b, one can see that for the smallest imperfection, 

𝛿 ℎ⁄ = 0.2, the curve terminates at the point where snap back would occur under this prescribed 

rate of volume change. Note in Fig. 2 that the point of maximum pressure is nearly coincident 

with snap back (the maximum pressure is attained just before snap back occurs, which is usually 

the case for thin shells). The shells with the three larger imperfections have monotonically 

increasing pole displacements over the time plotted (Fig. 3b), and it can be seen in Fig. 2b that 

these shells having a prescribed constant rate of volume change do not undergo snap buckling at 

the maximum pressure. Instead, these shells will undergo stable buckling after the maximum 

pressure is attained with the buckle amplitude increasing monotonically with the increasing 

volume change.  

 

Fig.2 Effect of the imperfection amplitude 𝛿 ℎ⁄  on the load-carrying behavior of viscoelastic 

shells with 𝐸𝑟𝑒𝑙=0.4, under a high rate of volume change, γ𝑣 = 0.9623, and with the other 

parameters fixed at values used throughout the paper: 𝛼0 = 𝜋 3⁄ ,  𝑅 ℎ⁄ = 50, 𝛽𝐼 = 10°, 𝑣 =
0.5 . (a) Normalized pressure versus normalized displacement at the pole. (b) Normalized 

pressure as a function of normalized volume change. For the smallest imperfection shown, 
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𝛿 ℎ⁄ = 0.2, snap back behavior occurs when 𝑝 ≅ 𝑝𝑚𝑎𝑥 and those curves are terminated there.  

 

 

Fig. 3 Volume change and pole displacement with time for the imperfect viscoelastic shells in 

Fig. 2. (a) Volume change as a function of time for imperfection amplitudes 𝛿 ℎ⁄ =
0.2, 0.3, 0.5, 1.0. ∆V is the volume change from t = 0 to time t. (b) Normalized displacement 

at the pole versus normalized time. The computation stops at infinite slope, where 𝑝 ≅ 𝑝𝑚𝑎𝑥, 

for 𝛿 ℎ⁄ = 0.2. The additional parameters are those specified earlier and used throughout the 

paper.  

 

Fig. 4 displays the initial and deformed shapes of the middle surface of the imperfect 

viscoelastic shell with 𝛿 ℎ⁄ = 0.2 at three dimensionless times, 𝑡 𝑡𝑣⁄ = 0, 0.024, 0.029, for 

both a fixed rate of volume change (γ𝑣 = 0.9623) and a fixed rate of pole displacement (γ𝑑 =

0.458), where x/R and y/R are the normalized coordinates in the cross-section of the shell as 

defined in Fig. 1. The two rate measures were chosen such that both loadings produced 

essentially the same rate of volume change in the early stages of loading. Imposing the pole 

deflection rate is simpler to implement numerically than the volume change rate, and the former 

leads to a larger range of stable behavior than the latter, as will be seen. However, prescribing 

the volume change rate is a much more accurate representation of how experiments are typically 

performed. The initial shape of the shells deviates slightly, but visibly, from the perfectly 

spherical shape due to the initial imperfection. In Fig. 4 at 𝑡 𝑡𝑣⁄ = 0.024 the shapes of the 

imperfect viscoelastic shells deviate from those of the perfect, consistent with the amplitude of 

the imperfection, and remain almost identical for the two loading conditions. However, in the 

time between 0.024 and 0,029, the pole displacement of the shell subjected to a fixed rate of 

prescribed volume change undergoes a sharp increase in the buckle deflection (c.f., Fig. 3b) 

while the shell with a prescribed rate of pole displacement undergoes a much smaller change. 

Although not shown, at even larger deflections when the pole displacement is larger than about 

𝑤𝑝𝑜𝑙𝑒 𝑅⁄ = 0.1 , the vicinity of the pole is approximately an inverted cap with radius of 

curvature −R. 
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Fig. 4 Middle surface profiles of the initial and deformed states for the imperfect viscoelastic 

shell with 𝛿 ℎ⁄ = 0.3 in Fig. 2 under volume control with γ𝑣 = 0.9623 compared with those 

computed using pole displacement control with γ𝑑 = 0.458. The latter rate is chosen such that 

the two loading conditions give nearly coincident predictions in the early stages of loading. At 

𝑡 𝑡𝑣⁄ = 0.024, the shells under volume control and displacement control are deformed to almost 

the same position. At 𝑡 𝑡𝑣⁄ = 0.029, a sharp increase of the buckling deflection has occurred 

under volume control, which would be even more dramatic for smaller 𝛿 ℎ⁄ , and less so for 

larger 𝛿 ℎ⁄ . No drop exists for displacement control.  

 

The viscoelastic material exhibits time- and rate-dependent behavior, which are expected 

to result in new features of shell buckling. In this paper, the load-carrying behavior of 

viscoelastic shells is examined over a wide range of loading rates, from extremely slow loading 

(γ𝑣 = 0.0067) to extremely fast loading (γ𝑣 = 0.9608). As a comparison, buckling results for 

shells having strictly elastic material are also generated. The isotropic linearly elastic material 

law is employed for the elastic shell, i.e., 
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and solved together with the equilibrium equations (Eq.(14)) and strain-displacement relations 

(Eq.(3)).  

For viscoelastic spherical shells undergoing a wide range of fixed rates of volume change, 

strong strain-rate-dependency of the buckling pressure is observed in the plots of 

𝑝 𝑝𝑐⁄ 𝑣𝑠. −𝑤𝑝𝑜𝑙𝑒/ℎ in Fig.5a and in the companion plots of 𝑝 𝑝𝑐⁄ 𝑣𝑠. ∆𝑉 𝑉0⁄  in Fig.5b. The 

maximum normalized pressure, 𝑝 𝑝𝑐⁄ , increases with the increase of the loading rate due to the 

reduction of relaxation, clearly indicating that higher pressures are required to buckle a 

viscoelastic shell under a higher strain rate. Stated otherwise, the buckling pressure can be 
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substantially reduced when the shell is loaded slowly and as much time is allowed under load 

as needed. Two asymptotic limits of buckling pressure are relevant. For this example, at the 

slower loading rates (γ𝑣 = 0.0067 & 0.0097), the time to attain the maximum pressure is 3 

to 4 times the viscoelastic timescale, i.e., 𝑇 ≅ 3 or 4, as seen in the companion plot in Fig. 6, 

where the time-dependence of the pole displacement of these shells is presented. The time to 

deform the shell to displacements much larger than those at the maximum pressure, such as 

−𝑤𝑝𝑜𝑙𝑒 𝑅⁄ = 0.1 for example, is approximately 10 to 15 times the viscoelastic timescale as 

seen in Fig. 6. In these two cases, almost full relaxation occurs, and the response is governed 

by the long-term modulus, 𝐸∞ . As a result, the plots 𝑝 𝑝𝑐⁄ 𝑣𝑠. −𝑤𝑝𝑜𝑙𝑒/ℎ  (Fig.5a) and 

𝑝 𝑝𝑐⁄ 𝑣𝑠. ∆𝑉 𝑉0⁄  (Fig.5b) approach those of the elastic shell computed with modulus 𝐸 = 𝐸∞. 

On the other hand, for the two highest loading rates of γ𝑣 = 0.3170 & 0.9608 , the 

corresponding dimensionless times are much smaller, and the level of relaxation is smaller. 

Consequently, the effective modulus of the shell is close to the instantaneous modulus 𝐸1 +

𝐸∞, and the curves for the two high loading rates in Fig. 5 approach those of the elastic shell 

computed with modulus 𝐸 = 𝐸1 + 𝐸∞. The maximum pressure occurs at nearly the same value 

of the pole deflection, i.e., 𝑤𝑝𝑜𝑙𝑒 ≅ −ℎ, for all the loading rates. 

 

 
Fig.5 Rate-dependent buckling behaviors of elastic and viscoelastic shells (𝐸𝑟𝑒𝑙=0.4, 𝛿 ℎ⁄ =

0.3 ) under different volume control loading rates (γ𝑣 = 0.0067~0.9608 ). (a) Normalized 

pressure versus the normalized displacement at the pole. (b) Normalized pressure as a function 

of the normalized volume change. The additional parameters are those specified earlier and 

used throughout the paper.  
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Fig.6 Normalized displacement at the pole versus normalized time for the viscoelastic shells in Fig.5 

under different loading rates (γ𝑣 = 0.0067~0.9608).  

 

The influence of imperfection and loading rate on the normalized buckling pressure 

𝑝𝑚𝑎𝑥 𝑝𝑐⁄  of viscoelastic shells is further revealed in Fig. 7. In Fig. 7a, 𝑝𝑚𝑎𝑥 𝑝𝑐⁄  increases 

significantly within the loading rate range 0 < γ𝑣 < 0.1 and then reaches a plateau at larger 

loading rates. In Fig. 7b, the qualitative dependence of 𝑝𝑚𝑎𝑥 𝑝𝑐⁄  on imperfection amplitude 

𝛿 ℎ⁄  is similar for all the loading rates. Further insights on this trend will be gained in the 

investigation of the constant pressure loading. Almost all the increase of magnitude of 

𝑝𝑚𝑎𝑥 𝑝𝑐⁄  occurs when the loading rate increases from 0.0095 to 0.9549. However, as seen in 

Fig. 7a, the change of 𝑝𝑚𝑎𝑥 𝑝𝑐⁄  with the loading rate under fixed 𝛿 ℎ⁄  is highly nonlinear, 

because of the exponential decay of the modulus with time.   

 

 

Fig.7 The influence of imperfection and loading rate on the normalized buckling pressure 

𝑝𝑚𝑎𝑥 𝑝𝑐⁄  of viscoelastic shells (𝐸𝑟𝑒𝑙=0.4). (a) Normalized buckling pressure as a function of 
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loading rate for different imperfection amplitudes (𝛿 ℎ⁄ = 0.3, 0.5, 1). (b) Normalized buckling 

pressure as a function of the imperfection amplitude under different loading rates ( γ𝑣 =
0.0095, 0.0955, 0.9549 ). The additional parameters are those specified earlier and used 

throughout the paper.  

 

In Fig. 8 the load-carrying responses of the viscoelastic deep spherical shells are 

investigated for three relative moduli of relaxation (𝐸𝑟𝑒𝑙=0, 0.4, 0.8) under a moderate loading 

rate γ𝑣 = 0.0194   to reveal the dependence on 𝐸𝑟𝑒𝑙 .  The predictions for an elastic shell 

computed with 𝐸 = 𝐸1 + 𝐸∞ are included in this figure. When 𝐸𝑟𝑒𝑙 = 0, no relaxation occurs 

in the material, and the corresponding curves in Fig. 8 almost coincide with those of the elastic 

shell. Small discrepancies are observed in the vicinity of the peak pressure caused by small 

numerical errors associated with the difference between the models in the time-dependent and 

time-independent cases. On the other hand, when 𝐸𝑟𝑒𝑙  increases, notable decreases are 

observed in 𝑝 𝑝𝑐⁄  and there is a small decrease in the pole displacement and volume at the 

onset of buckling.   

 

Fig. 8 Effects of material viscoelasticity (𝐸𝑟𝑒𝑙=0, 0.4, 0.8) on the loading-carrying behavior of 

spherical shells subjected to a moderate loading rate γ𝑣 = 0.0194. (a) Normalized pressure 

versus normalized displacement at the pole. (b) Normalized pressure as a function of the 

normalized volume change. The additional parameters are those specified earlier and used 

throughout the paper. 

 

Next, we examine the situation when the shell is deformed under an extremely small 

loading rate, γ𝑣 = 9.62 × 10−5. Under this low loading rate, the effective modulus of the shell 

is expected to be nearly the long-term nodulus 𝐸∞. Recall that the critical reference buckling 

pressure, 𝑝𝑐 , has been defined using the high strain-rate modulus, 𝐸1 + 𝐸∞ , for the 

viscoelastic shells. To delineate the slow rate limit for the buckling pressure, the ‘slow  critical 

reference bucking pressure is re-defined using 𝐸∞, i.e., 
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We normalize the pressure in two ways, 𝑝 𝑝𝑐⁄   and 𝑝 𝑝𝑐
∞⁄  , and plot each as a function of 

−𝑤𝑝𝑜𝑙𝑒/ℎ and ∆𝑉 𝑉0⁄  for three values of 𝐸𝑟𝑒𝑙  (Fig. 9). It can be seen that 𝑝 𝑝𝑐⁄  for a given 

−𝑤𝑝𝑜𝑙𝑒/ℎ or ∆𝑉 𝑉0⁄  decreases as 𝐸𝑟𝑒𝑙  changes from 0.4 to 0.8, as in the trend in Fig. 8, but 

it is always lower than the corresponding value in Fig. 8 due to the lower loading rate. However, 

with the pressure normalized by 𝑝𝑐
∞, curves for different values of 𝐸𝑟𝑒𝑙  (red dashed and dark 

blue solid lines) overlap, and approach the curves identified by 𝐸𝑟𝑒𝑙 = 0  for 

𝑝 𝑝𝑐⁄ 𝑣𝑠. −𝑤𝑝𝑜𝑙𝑒/ℎ (Fig. 9a) and 𝑝 𝑝𝑐⁄ 𝑣𝑠. ∆𝑉 𝑉0⁄  (Fig. 9b). This indicates that for extremely 

slow loading, the mechanical behavior of the shell is effectively governed by 𝐸∞ , despite 

different values of 𝐸𝑟𝑒𝑙.  

 

Fig. 9 Effects of material viscoelasticity (𝐸𝑟𝑒𝑙=0, 0.4, 0.8) on the load-carrying behavior of 

shells at an extremely small volume control loading rate (γ𝑣 = 9.62 × 10−5), with the pressure 

normalized by two critical buckling pressures, 𝑝𝑐 and 𝑝𝑐
∞. The other geometric parameters of 

the shells are the same as those in Fig. 8. (a) Normalized pressure versus the normalized 

displacement at the pole. (b) Normalized pressure as a function of the normalized volume 

change. Blue solid lines and red dash lines are overlapped. 

 

Before proceeding to discuss spherical shells subjected to step pressure loading, we digress 

to emphasize that, with the exception of the results for ∆𝑉 𝑉0⁄ , the results for the buckling 

pressure determined for the specific shell geometry and other parameters plotted in the figures 

in Section 3.1, as well as those to follow in Sections 3.2 and 4, are approximately independent 

of both h/R and 𝛼0, assuming the shells are thin, deep and the imperfection width parameter, 

𝛽𝐼, scales with √ℎ 𝑅⁄ . This assertion follows from the extensive study of Hutchinson (2016) 

using dimensionless parameters. The imperfection scaling is detailed in that earlier reference, 

and the fact that there is very little dependence on 𝛼0 if the spherical cap is deep follows from 
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the fact that the buckling mode is localized near the pole of the shell, as illustrated in Fig. 4. 

There is a dependence of ∆𝑉 𝑉0⁄  on h/R due to the fact that, when the pressure changes, the 

entire shell undergoes some radial displacement. 

3.2 Buckling under a rapidly applied pressure which is then held constant 

The buckling behavior of viscoelastic spherical shells under prescribed constant rates of 

volume change has been investigated in the above section. In this section, we will focus on the 

buckling of viscoelastic shells under a constant prescribed pressure that is lower than the 

maximum pressure 𝑝𝑚𝑎𝑥 the shell can support under rapid loading. Stated in another way, we 

investigate the phenomenon of creep buckling of an imperfect shell of viscoelastic material 

subjected to steadily applied external pressure. The evolution of the pole deflection and volume 

change with time for different applied pressures and imperfections is computed, and it will be 

seen that the buckling behavior of these viscoelastic shells can be classified into three categories.  

In the simulations presented in Fig. 10, the external pressure is applied almost 

instantaneously to a viscoelastic shell (𝛼0 = 𝜋 3⁄ ,  𝑅 ℎ⁄ = 50, 𝛿 ℎ⁄ = 0.3, 𝛽𝐼 = 10°, 𝐸𝑟𝑒𝑙 = 

0.4, 𝑣 = 0.5) and then held constant. In carrying out the simulations, the pressure is increased 

from 0 to the final steady value in the short time period 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑣⁄ = 0.01. Consequently, in 

the nearly instantaneous ramp-up of the pressure, the shell responds effectively as if it were 

elastic governed by the fast-loading modulus 𝐸∞ + 𝐸1. The constant pressure applied, 𝑝 𝑝𝑐⁄ , 

ranges from 0.35 to 0.6, and it will be seen that a variety of shell buckling phenomena are 

revealed. The computed pole deflections are plotted as functions of time under different 

pressures in Fig. 10 for the shell with an imperfection having 𝛿 ℎ⁄ = 0.3  that buckles 

elastically at 𝑝 𝑝𝑐⁄ ≅ 0.60  (with 𝐸 = 𝐸1 + 𝐸∞ ). Following the rapid ramp-up, the pole 

deflection increases over time caused by the creep occurring in the viscoelastic material under 

constant stress. However, as seen in Fig. 10, the growth rate of the deflection is distinctly 

different for different pressures. When this shell is subjected to a relatively low pressure 

(𝑝 𝑝𝑐⁄ = 0.35), the growth rate decreases with time, and finally reaches zero, indicating that 

the shell does not buckle. Non-buckling behavior occurs for pressures below a pressure 

threshold which depends on the level of imperfection. For pressures somewhat above this 

threshold, the growth rate of the pole deflection increases with time until it becomes infinite 

(i.e., a vertical slope in Fig. 10) at a finite time. The shell would undergo snap buckling at this 

time. This phenomenon is an example of creep buckling as it occurs in imperfection-sensitive 

shells. The simulations have been terminated at this critical time. The critical time is referred 

to as the buckling time, 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔. In the range of applied pressures in which creep buckling 

occurs (approximately 0.36 < 𝑝 𝑝𝑐⁄ < 0.58 for the cases in Fig. 10), the buckling time is a 
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strong function of the applied pressure (see ahead the curve for this imperfection in Fig. 13). 

The upper end of the pressure range for creep bucking (𝑝 𝑝𝑐⁄ ≅ 0.60 for the shell in Fig. 10) 

is the elastic buckling pressure, which in turn is strongly dependent on the level of imperfection, 

as discussed in more detail later. 

 

Fig.10 Pole deflections normalized by the shell thickness, 𝑤𝑝𝑜𝑙𝑒 ℎ⁄ , plotted against time for an 

imperfect viscoelastic shell (𝛿 ℎ⁄ = 0.3, 𝛽𝐼 = 10°) for different external pressures 𝑝 𝑝𝑐⁄  from 

0.35 to 0.60 that are ramped up rapidly and then held constant. When subjected to different 

levels of sustained pressures, the shell shows three types of response, including near-

instantaneous buckling under sufficiently high pressure, creep buckling under intermediate 

pressure, and no buckling at sufficiently low pressure.   

 

Based on the examples discussed above, the time range for the buckling behavior of a shell 

subjected to a constant applied pressure is divided into three types: essentially instantaneous 

buckling when the shell buckles elastically at 𝑝𝑚𝑎𝑥 , creep buckling when the slope of the 

𝑤𝑝𝑜𝑙𝑒 ℎ⁄   -  𝑡 𝑡𝑣⁄   curve decreases with time and reaches negative infinity at a finite time 

𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔, and no buckling when the slope of the 𝑤𝑝𝑜𝑙𝑒 ℎ⁄  - 𝑡 𝑡𝑣⁄  curve increases with time 

and eventually approaches 0. These results explain the aspects of shell creep buckling observed 

in experiments (Stein-Montalvo et al., 2021), and they quantify the relationship between the 

buckling time and pressure. A material point in a viscoelastic shell that is subjected to a constant 

pressure experiences a reduction in modulus with time, leading to creep of the shell. Even if the 
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instantaneous elastic buckling pressure is higher than the prescribed pressure, the shell may 

buckle after finite time due to the drift towards the lower effective modulus. If the applied 

pressure is lower than the buckling pressure for a shell with the long-time modulus 𝐸∞ , 

buckling cannot happen even after long times. By contrast, instantaneous buckling can be 

expected if the pressure is higher than the buckling pressure for a shell with short time modulus, 

𝐸∞ + 𝐸1. 

The results discussed above have been for a single imperfection (𝛿 ℎ⁄ = 0.3) that causes 

the shell to buckle instantaneously at 𝑝 𝑝𝑐⁄ ≅ 0.60. The effect of the imperfection amplitude 

on the buckling process is shown in Fig. 11 with all the other geometric and material parameters 

unchanged (𝛼0 = 𝜋 3⁄ , 𝑅 ℎ⁄ = 50, 𝛽𝐼 = 10°, 𝐸𝑟𝑒𝑙 = 0.4, 𝑣 = 0.5). The relation between the 

applied steady pressure and the buckling time, 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  , is shown in Fig. 11a for the 

imperfection amplitude considered above, 𝛿 ℎ⁄ = 0.3, and for a larger imperfection amplitude 

𝛿 ℎ⁄ = 1 . For both imperfection amplitudes in Fig. 11a, the buckling time increases as the 

applied pressure is lowered below the level causing instantaneous buckling, and the curve 

reaches a plateau in pressure at buckling times greater than about 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄ = 2 for each 

of the two imperfection levels shown. For pressures below the plateau, buckling does not occur. 

Fig. 11b cross-plots the buckling pressure versus the imperfection amplitude for three 

dimensionless buckling times: short, intermediate and ‘long . On each curve, the shell buckles 

at the time indicated. We have only plotted one curve for ‘long  buckling times (the lowest 

curve in Fig. 11b), but this curve is approximately applicable for pressures applied for all times 

greater than about 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄ = 2 . This is the long-time limit. At a given imperfection 

amplitude, the shell will never buckle at pressures below the lowest curve. These imperfection-

sensitivity curves have features that are qualitatively similar to the corresponding curves for 

elastic shells. For imperfection amplitudes greater than about 𝛿 ℎ⁄ = 1 , they level off at a 

plateau pressure. Of course, the nature of the cross-plot is that the plateau is lower for a longer 

time allowed for buckling, but the result for 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄ = 3 is essentially the long-time limit. 



22 

 

 

Fig. 11 Relation between prescribed pressure, buckling time and imperfection amplitude for 

shells subjected to a rapidly applied pressure that is then held constant at p. (a) Pressure versus 

buckling time for two imperfection amplitudes. (b) Pressure versus imperfection amplitude for 

three fixed buckling times. 

 

4 Viscoelastic behavior and a map of buckling behavior for viscoelastic shells 

subjected to constant pressure 

The material viscoelasticity determines the creep buckling behavior of the shells, and this 

connection is pursued in this section. The viscosity 𝜂 is embedded in the dimensionless time 

while the relative modulus, 𝐸𝑟𝑒𝑙 = 𝐸1 (𝐸1 + 𝐸∞)⁄  , is the other dimensionless parameter 

controlling the time dependence with the limit 𝐸𝑟𝑒𝑙 = 0  corresponding to the absence of 

viscosity and non-zero values of 𝐸𝑟𝑒𝑙  corresponding to time-dependence. The example 

presented in Fig. 12 illustrates the influence of 𝐸𝑟𝑒𝑙  on shell responses for pressures that are 

rapidly applied and then held constant. For all the simulations in Fig. 12, the pressure is 

𝑝 𝑝𝑐⁄ =0.27 with responses computed for a wide range of the relative modulus, 𝐸𝑟𝑒𝑙 = 0.4 to 

0.9. The other parameters are those used in the other examples (𝛼0 = 𝜋 3⁄ , 𝑅 ℎ⁄ = 50, 𝛿 ℎ⁄ =

0.3, 𝛽𝐼 = 10°, 𝑣 = 0.5) . As in the previous simulations, the initial loading rate is 

𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑣⁄ =0.01. The pole deflection as a function of time is plotted for six values of 𝐸𝑟𝑒𝑙.  

At the applied pressure and for the imperfection amplitude of the shell in Fig. 12, the shell does 

not buckle when the relative relaxation is sufficiently low (𝐸𝑟𝑒𝑙 ≤0.5), even after long-term 

creep, and stabilizes in a deformed configuration that has been influenced by material creep. 

When 𝐸𝑟𝑒𝑙 is greater than about 0.5 for this example, buckling occurs after a time delay that 

depends on 𝐸𝑟𝑒𝑙: the larger 𝐸𝑟𝑒𝑙 , the less time required to buckle. Fig. 12 reveals that even for 

𝐸𝑟𝑒𝑙=0.9 the shell does not buckle until 𝑡 𝑡𝑣⁄  approaches approximately 1 under the pressure 



23 

 

𝑝 𝑝𝑐⁄ =0.27.  

 

Fig.12 Pole deflection, 𝑤𝑝𝑜𝑙𝑒 ℎ⁄  , as a function of time for different viscoelastic properties 

(𝐸𝑟𝑒𝑙=0.4 to 0.9), when an external pressure 𝑝 𝑝𝑐⁄ = 0.27 is applied rapidly to the shells and 

then held constant. The shell has imperfection amplitude, 𝛿 ℎ⁄ = 0.3, with other parameters 

given in the text. 

 

The effect of 𝐸𝑟𝑒𝑙  on 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  under three pressures, 𝑝 𝑝𝑐⁄ = 0.25, 0.42 and 0.50, 

is further explored (Fig.13) for the shell with imperfection amplitude 𝛿 ℎ⁄ = 0.3. It is seen that, 

subjected to certain pressures 𝑝 𝑝𝑐⁄  , 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄   can increase without bound as 𝐸𝑟𝑒𝑙 

diminishes to a limit depending on the pressure. For values of 𝐸𝑟𝑒𝑙 below this limit, buckling 

will not occur. Moreover, this limiting value of 𝐸𝑟𝑒𝑙  increases with decreasing 𝑝 𝑝𝑐⁄  . For 

𝑝 𝑝𝑐⁄ =0.25 and 0.42, these limits are roughly 𝐸𝑟𝑒𝑙 = 0.55 and 𝐸𝑟𝑒𝑙 = 0.3, respectively. The 

elastic buckling pressure of this shell is about 𝑝 𝑝𝑐⁄ ≅ 0.60 (c.f., Fig.7a), and thus the limiting 

value of 𝐸𝑟𝑒𝑙 for the shell subjected to 𝑝 𝑝𝑐⁄ = 0.5 in Fig. 13 occurs somewhere in the range 

𝐸𝑟𝑒𝑙 = 0 𝑡𝑜 0.2, outside the range in which computations were performed.  
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Fig.13 Normalized buckling time, 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄ , of viscoelastic shells as dependent on 𝐸𝑟𝑒𝑙  

and applied pressures. 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  versus 𝐸𝑟𝑒𝑙 for three pressure loadings (𝑝 𝑝𝑐⁄ =0.25, 0.42, 

0.50) for a shell with imperfection 𝛿 ℎ⁄ = 0.3 and other parameters given in the text.  

 

The effects of the material viscoelasticity (𝐸𝑟𝑒𝑙 ) and holding pressure (𝑝 𝑝𝑐⁄  ) on the 

buckling modes of imperfect viscoelastic shells with 𝛿 ℎ⁄ = 0.3 are summarized in Fig.14. 

Three types of buckling behavior are explicitly classified by 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  , including again 

near-instantaneous buckling, creep bucking at finite time and no buckling. Note that 

instantaneous buckling here is defined as 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄ < 0.05, which is prone to occur for high 

values of 𝐸𝑟𝑒𝑙   and 𝑝/𝑝𝑐 . On the other hand, shells do not buckle if 𝐸𝑟𝑒𝑙   and 𝑝/𝑝𝑐  are 

relatively small. In the middle region, creep buckling is observed for moderate values of 𝐸𝑟𝑒𝑙 

and 𝑝/𝑝𝑐. For a fixed 𝐸𝑟𝑒𝑙 , the buckling mode changes in a sequence from no buckling, creep 

bucking to instantaneous buckling with the increase of 𝑝/𝑝𝑐. As for a fixed 𝑝/𝑝𝑐 in a wide 

range of 0.1 ≤ 𝑝/𝑝𝑐 ≤ 0.55, shells only exhibit the mode of no buckling and creep buckling, 

and near-instantaneous buckling only takes place when 𝑝/𝑝𝑐 ≥ 0.55.  

 

Fig.14 Buckling modes for viscoelastic shells with imperfection 𝛿 ℎ⁄ = 0.3 with respect to 

the holding pressure 𝑝/𝑝𝑐  and material viscoelasticity 𝐸𝑟𝑒𝑙 . The color bar shows 

𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  , which changes from 0 to infinity, corresponding to three types of buckling 

behaviors: near-instantaneous buckling, creep buckling at finite time, and no buckling.  
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Fig.15 Two normalizations of the applied pressure ( 𝑝/𝑝𝑐  and 𝑝/𝑝𝑐
∞ ) as functions of 

𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  for four values of the relative modulus (𝐸𝑟𝑒𝑙=0.2, 0.4, 0.6 and 0.8). The curves of 

𝑝 𝑝𝑐⁄ 𝑣𝑠. 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  converge for all 𝐸𝑟𝑒𝑙 at 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄ = 0, which is the elastic buckling 

load for a shell with modulus 𝐸1 + 𝐸∞. The curves of 𝑝 𝑝𝑐
∞⁄ 𝑣𝑠. 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄  converge for all 

𝐸𝑟𝑒𝑙 at the limit 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄ → ∞, which is nearly same as the elastic buckling load for a 

shell with modulus 𝐸∞. The two red dots represent the convergent values for 𝑝/𝑝𝑐 and 𝑝/𝑝𝑐
∞.  

 

Fig. 15 reveals important insights to time-dependent buckling of viscoelastic shells. As in 

Fig. 13, the shell has an imperfection amplitude 𝛿 ℎ⁄ = 0.3 and it is subjected to a rapidly 

applied pressure p that is then held constant. In Fig. 15, the applied pressure on the vertical axis 

is normalized in two ways, 𝑝 𝑝𝑐⁄  and 𝑝/𝑝𝑐
∞. The dimensionless time to buckling appears on 

the horizontal axis. Curves for each of the two pressure normalizations are shown for four 

values of the relative modulus, 𝐸𝑟𝑒𝑙 = 0.2, 0.4, 0.6 and 0.8. Recall that the short-time elastic 

buckling pressure for the shell with this imperfection is 𝑝 𝑝𝑐⁄ ≅ 0.60 , and any pressure 

exceeding this value will ‘instantaneously  collapse the shell. The curves of 𝑝 𝑝𝑐⁄   vs. 

𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄   in Fig. 15 show that at any pressure below 𝑝 𝑝𝑐⁄ ≅ 0.60  either no buckling 

occurs or the buckling time is finite, depending on 𝐸𝑟𝑒𝑙. For every value of 𝐸𝑟𝑒𝑙, the curves 

for this normalization converge to the ‘short-time  buckling pressure, 𝑝 𝑝𝑐⁄ ≅ 0.60, in the limit 

of very short loading times. The convergence is expected, as discussed earlier, because for very 

short buckling times viscous behavior plays essentially no role, and the material responds 

elastically with modulus 𝐸1 + 𝐸∞, which is the modulus employed in defining 𝑝𝑐 in Eq. (17). 

Now, consider the ‘long-time  buckling limit when 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄   is large and focus on the 

curves in Fig. 15 that employ the normalization 𝑝/𝑝𝑐
∞. These curves, for each value of 𝐸𝑟𝑒𝑙, 

converge for large 𝑡𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑡𝑣⁄   to a common long-time limit, and, moreover, this limit is 

almost the same numerically as the short-time limit just discussed, but now for the other 

normalization, i.e., 𝑝 𝑝𝑐
∞⁄ ≅ 0.60. Recall that 𝑝𝑐

∞, defined in Eq. (20), is the elastic buckling 
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pressure of the perfect shell with the long-time modulus 𝐸∞, and note that 

   / (1 ) /c rel cp p E p p   .       (21) 

The convergence in the long-time limit of 𝑝 𝑝𝑐
∞⁄   to a buckling pressure that is 

independent of 𝐸𝑟𝑒𝑙 and equal to the short-time limit expressed as the other normalization can 

be explained as follows. By Eq. (21), the short-time pressure 𝑝 𝑝𝑐
∞⁄  is always less than 𝑝 𝑝𝑐⁄  

and thus the shell does not buckle when the pressure is first applied. Correspondingly, because 

the short-time modulus controls the very early deflections of the shell, those are less than 

required to buckle the shell. In the ensuing response when the pressure is held constant, the 

shell creeps and the deflections increase. In the long-time limit, the deflections are determined 

only by 𝐸∞ , with no influence of 𝐸𝑟𝑒𝑙 , and, thus, if 𝑝 𝑝𝑐
∞⁄   equals the short-time limit for 

buckling, the shell will just reach the buckling condition at large times. The parameters 

specifying the viscous behavior, 𝐸1 and 𝜂 have no influence on this limit. While this result 

can be rationalized by the argument just given, it is a remarkable result. The results in Fig. 15 

were computed for a shell with the imperfection amplitude, 𝛿 ℎ⁄ = 0.3. We have carried out 

additional calculations for 𝛿 ℎ⁄ = 0.5  and 𝛿 ℎ⁄ = 1  to verify that the long-time limit is 

indeed equal to the short-time limit expressed in the other normalization and independent of 

𝐸𝑟𝑒𝑙 for these two other levels of imperfection. 

The coincidence of the short-time and long-time limits for the two respective pressure 

normalizations, independent of 𝐸𝑟𝑒𝑙 , enables a simplified and insightful way of viewing 

buckling under constant pressure for spherical shells made of viscoelastic materials of the 

standard linear solid. We construct imperfection-sensitivity maps which divide the pressure 

range into three regions: instantaneous elastic buckling, time-dependent creep buckling, and no 

buckling. For plotting the maps, we use the following formulas for the two coincident limits 

discussed above: 

3 /0.2 0.8 (short-time limit)h

c

p
e

p

   & 3 /0.2 0.8 (long-time limit)h

c

p
e

p




  . (22) 

The formula, 
3 // 0.2 0.8 h

cp p e   , is a realistic representative approximation to the elastic 

buckling of thin spherical shells with an imperfection at the pole for any ℎ/𝑅, as long as it is 

sufficiently small so that the shell can be regarded as thin. The buckling pressure plateaus at 

𝑝 𝑝𝑐⁄ = 0.2  for ‘large  imperfections. More accurate results depend on full details of the 

imperfection, as can be found in Hutchinson (2016) and Lee, et al. (2016), and the formula used 

in Eq. (22) can be readily replaced by any other elastic imperfection sensitivity relation.   

 It is straightforward to generate the imperfection sensitivity plots in Fig. 16 by making use 

of the relation Eq. (21) between the two pressure normalizations, i.e., / (1 ) /c rel cp p E p p   .  

Consider first the plot using the normalization 𝑝 𝑝𝑐⁄  in Fig. 16a. In this plot, the short-time 
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limit indicated by the heavy curve is the instantaneous buckling pressure for all 𝐸𝑟𝑒𝑙  . For 

pressures on or above this curve the shell buckles immediately and catastrophically. The light 

curves in this plot correspond to the long-time buckling pressure, dependent on 𝐸𝑟𝑒𝑙  . Any 

pressure below this curve (for a given 𝐸𝑟𝑒𝑙) does not result in buckling, while any pressure 

between the heavy curve and the light curve produces creep buckling of the shell at some finite 

time. The more significant the viscoelasticity, i.e., the larger 𝐸𝑟𝑒𝑙 , the larger the spread between 

the long-time and short-time limits. The plot in Fig. 16b using the normalization 𝑝 𝑝𝑐
∞⁄  

reverses the juxtaposition of the curves. Now, the long-time limit indicated by the heavy curve 

is independent of 𝐸𝑟𝑒𝑙, while the light curves representing short-time (instantaneous) elastic 

buckling depend on 𝐸𝑟𝑒𝑙 . In Fig. 16b, buckling never occurs for pressures below the heavy 

curve, while buckling is instantaneous for pressures above the light curve (for the given 𝐸𝑟𝑒𝑙). 

Creep buckling at finite time occurs for pressures between the heavy curve and light curve. It 

is important to emphasize again that the imperfection sensitivity plots in Fig. 16 are essentially 

independent of both h/R and the base angle, 𝛼0, if the shells are thin, deep and if 𝛽𝐼 scales 

with √ℎ 𝑅⁄ . 

 

Fig. 16 Two imperfection sensitivity maps presenting the short-time and long-time limits for 

buckling for pressures that are rapidly applied and then held constant at p. In (a) the 

normalization 𝑝 𝑝𝑐⁄  is used, and in (b) the normalization 𝑝 𝑝𝑐
∞⁄  is used. The construction of 

the maps is described in the text. In (a), the short-time limit (heavy curve) for instantaneous 

elastic buckling applies for all 𝐸𝑟𝑒𝑙 , and any pressure on or above this curve produces 

immediate collapse of the shell. Each of the light curves, corresponding to a specific value of 

𝐸𝑟𝑒𝑙, gives the pressure at which the shell undergoes creep buckling with buckling occurring at 

the long-time limit. Below this curve (for the given value of 𝐸𝑟𝑒𝑙), buckling never occurs. For 

pressures lying between the short-time limit and the long-time limit, creep buckling occurs at 

some finite time. In (b), the long-time limit (heavy curve) applies for all 𝐸𝑟𝑒𝑙; for any pressure 

below this curve buckling never occurs. For pressures lying on or above each of the light curves, 

for a specific 𝐸𝑟𝑒𝑙 , buckling occurs instantaneously. For pressures lying between the light curve 

(for the given value of 𝐸𝑟𝑒𝑙) and the heavy curve, creep buckling occurs at some finite time.  
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5 Conclusions 

This paper establishes a viscoelastic shell theory for predicting the nonlinear time-

dependent buckling behavior of viscoelastic spherical shells subjected to uniform external 

pressure. The small-strain, moderate-rotation shell theory is used in conjunction with the 

standard linear solid to describe viscoelastic shells with geometric imperfections. The 

equilibrium equations are obtained by the principle of virtual work. Analyses are carried out 

numerically for two types of loadings representative of those employed in experimental studies, 

one involving volume control and the other pressure control. Specifically, under volume control 

a rate of volume change is prescribed, and under pressure control a pressure is prescribed that 

is applied very rapidly and then held constant. 

Buckling behavior of spherical shells is investigated for these two classes of loadings over 

the full range of viscoelasticity and imperfection amplitude with emphasis on exposing the 

imperfection sensitivity as well as the time-dependence. An important and unexpected 

coincidence of the limits for short-time elastic buckling and long-time creep buckling is 

discovered and discussed in Section 4 for the constant pressure loadings. The coincidence can 

be stated simply as the following. For a given imperfection, the short-time elastic buckling limit, 

normalized as 𝑝 𝑝𝑐⁄  , is equal to the long-time creep buckling limit, normalized as 𝑝 𝑝𝑐
∞⁄  , 

where 𝑝𝑐 is the elastic buckling pressure of the perfect shell determined using the short-time 

elastic modulus, 𝐸1 + 𝐸∞ , and 𝑝𝑐
∞  is the elastic buckling pressure of the perfect shell 

determined using the long-time elastic modulus, 𝐸∞ . The simplicity of this result permits 

construction of a map of buckling behavior over the entire range of pressure, imperfection 

amplitude and viscosity. The map delineates three regimes of behavior: no buckling, creep 

buckling at finite time, and essentially instantaneous elastic buckling. 

In this work, we focus on the buckling of viscoelastic shells under the assumption of 

axisymmetry. It should be noted that shells could undergo a secondary buckling transition, 

where the dimple loses its axisymmetry at sufficiently large volume changes (Knoche and 

Kierfeld, 2014), and the non-axisymmetric buckling has been studied in literature (Hutchinson, 

2016; Knoche and Kierfeld, 2014; Taffetani et al., 2018). In those cases, non-axisymmetric 

shell equations with bifurcation analysis are needed. 

Experiments would be good validations for the theoretical predictions in this work. The 

creep buckling phenomenon of spherical shells has been demonstrated in the existing literature 

(Stein-Montalvo et al., 2021), but systematic experiments are needed, which will be a topic for 

future work. 
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Appendix A. Derivation of equilibrium equations using 

principle of virtual work 

In section 2.3, the equilibrium equations are derived by postulating the principle of virtual 

work. Here, the details of the derivation are presented. According to Eq. (11), the internal virtual 

work of the shell under axisymmetric deformation can be expressed as 

      
s
( )IVW N E N E M K M K dS              .         (A.1) 

Based on the middle surface strains and bending strains in Eq. (3), the virtual strain components 

are written as  
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Substituting Eq. (A.2) into Eq. (A.1), the internal virtual work is given in Eq. (A.3),  
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Applying the divergence theorem to the derivative terms (twice to the second derivative term), 

we can obtain  
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where S denotes the area of the middle surface, C is the boundary, and 𝑛𝜃 and 𝑡𝜃 are the 

normal and tangent unit vectors on C.  

When the shell is subjected to a uniform inward pressure p in the radius direction, the 

external virtual work is expressed as in Eq. (12). EVW can be expressed as Eq. (A.5) using the 

second equation in Eq. (4). 

, ,[ ( ) ] .n n t
s C

EVW pR WdS Q W +T T n M W T W t Rds                (A.5) 

Now we enforce IVW=EVW for all admissible virtual displacements 𝛿𝑊 and 𝛿𝜑 in S, 

and get 
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The equations can be normalized using Eq. (10) and Eq. (13). Then the second equation, after 

a derivative with respect to 𝜃 is taken on both sides, is inserted into the first equation, and 

finally the equilibrium equations in Eq. (14) are obtained. Similarly, by independently varying 

𝛿𝑊, 𝛿𝜑 and 𝛿𝑊,𝑛 on the boundary C for non-zero terms, we can obtain the relations among 

the boundary forces, moment and internal stress quantities 
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Either 𝑄 or W, 𝑇𝜃 or 𝜑, and 𝑇𝜃𝑛𝜃−𝑀𝑛 or 𝑊,𝑛 should be specified on C. Specifically, we 

employ 𝑊 = 𝑊,𝜃 = 𝜑 = 0 at the base for the clamped boundary condition in this work, which 

ensures the boundary term in Eq. (A.4) is satisfied.  
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