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Abstract

Viscoelastic spherical shells exhibit a wide range of time/rate-dependent buckling behaviors
when subjected to pressure. For certain loadings, buckling can even occur after a significant time
delay, termed creep buckling. To gain a thorough understanding of the nonlinear time-
dependent buckling behavior of viscoelastic spherical shells, this work develops an analytical
model employing the small-strain, moderate-rotation shell theory combined with a linearly
viscoelastic material law. Numerical results are presented for axisymmetric spherical shells
with geometric imperfections for two types of loading: a prescribed rate of volume change and
a prescribed pressure that remains constant after it is applied. The first type reveals the rate-
dependent behavior of viscoelastic buckling while the constant pressure loading is used to
quantify creep buckling phenomena. The results show that viscoelasticity and loading rates play
important roles in the load-carrying behavior of these shells, and the results for the constant
pressure loading reveal an unexpected and important connection between the short-time elastic
buckling limit and the long-time creep buckling limit. An imperfection sensitivity map is
constructed for the constant pressure loading showing three regimes with qualitatively different

behaviors: near-instantaneous buckling, creep buckling and no buckling.
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1 Introduction

Spherical shells, serving as essential and indispensable structures and structural
components, exhibit diverse functionalities (Bartlett et al., 2015; Cheng et al., 2021; Faber et
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al., 2020; Gorissen et al., 2020; Qiao et al., 2021; Vasios et al., 2021; Yang et al., 2021) and
have widespread utilization in various engineering fields (Blachut and Magnucki, 2008; Jose et
al., 2014). The buckling behavior of spherical shells has drawn considerable research attention
(Audoly and Hutchinson, 2019; Budiansky, 1974; Dong et al., 2020; Huang, 1963; Huang, 1964;
Hutchinson and Koiter, 1970; Karman and Tsien, 1939; Koiter, 1969; Paulose and Nelson, 2013;
Qiao et al., 2020), due to the ubiquitous importance of these structures and the fact that buckling
can result in their catastrophic collapse. On the other hand, shell buckling offers new
opportunities for functional designs of structures as demand by virtue of its nonlinear behavior
(Bartlett et al., 2015; Chen et al., 2022; Faber et al., 2020; Kochmann and Bertoldi, 2017; Qiao
et al., 2021; Reis, 2015).

Shell theories have been developed to quantitatively predict the critical buckling loads for
shells with linearly elastic material behavior (Huang, 1964; Hutchinson, 2016; Hutchinson and
Thompson, 2017; Karman and Tsien, 1939; Koga and Hoff, 1969; Koiter, 1969; Krenzke and
Kiernan, 1963). Decades of research has shown that there are significant discrepancies between
theoretically predicted buckling loads and experimental observations for spherical shells loaded
by external pressure, which is attributed to high imperfection sensitivity of shells (Carlson et
al., 1967; Hutchinson and Thompson, 2018; Kaplan and Fung, 1954; Karman and Tsien, 1939;
Koga and Hoff, 1969; Koiter, 1969). Recently, leveraging a rapid prototyping technique to
fabricate elastomeric spherical shells with precisely engineered imperfections, researchers have
demonstrated that shell theories can nevertheless accurately predict the buckling behavior as
long as imperfections of accurate geometry are appropriately introduced into the theories (Dong
et al., 2020; Hutchinson, 2016; Lee et al., 2016; Qiao et al., 2020).

Although the rich buckling behavior of shells with linearly elastic material behavior has
been extensively investigated, shells made from viscoelastic materials, on the other hand, can
introduce additional novel features to shell buckling behavior due to their inherent time-
dependent and rate-dependent properties (Brinkmeyer et al., 2012; Che et al., 2019; Dykstra et
al., 2019; Janbaz et al., 2020; Lakes, 1998; Liu et al., 2021). In particular, the phenomenon of
creep buckling, i.e. buckling of a viscoelastic shell after a certain delayed period of loading
when the shell is subjected to a load lower than its instantaneous buckling load, can occur
(Hayman, 1981; Minahen and Knauss, 1993; Miyazaki and Hagihara, 2015). Buckling of
viscoelastic shells has previously been investigated for metallic and composite shells at high
temperatures (Kao, 1981; Marques and Creus, 1994; Miyazaki and Hagihara, 2015; Wilson and
Vinson, 1984). The recent trend of building soft robots, architected materials and metamaterials
from viscoelastic elastomers motivated the following studies of viscoelastic shells (Bartlett et
al., 2015; Che et al., 2019; Chen et al., 2022; Dykstra et al., 2019; Faber et al., 2020; Janbaz et
al., 2020).

Buckling of viscoelastic beams and plates has been broadly studied (Hayman, 1981;



Kempner, 1954; Nachbar and Huang, 1967; Vinogradov, 1987). Creep buckling is analyzed in
viscoelastic columns (Vinogradov, 1987), shallow Mises trusses (Huang, 1967), shallow arches
(Huang, 1967), and other simple structural models (Hayman, 1981). The critical buckling time
and load, and the post-buckling deflection, have been determined (Huang, 1967). Comparing the
analytical prediction with the experimental measured creep buckling condition of viscoelastic
polymeric columns, Minahen and Knauss (1993) showed that analytical modeling can predict
the short-term and slow growth phases of the responses reasonably well. Buckling analysis was
also conducted for viscoelastic plates to demonstrate their time-dependent buckling behavior
(Hewitt and Mazumdar, 1977; Wilson and Vinson, 1984). The results show that viscoelasticity
can cause a significant decrease in buckling resistance (Wilson and Vinson, 1984) when the
loads are applied for sufficiently long periods of time.

Although the role of viscoelasticity on buckling of beams and plates, which tend to buckle
in a stable manner, has been established, an understanding of the buckling behavior of
viscoelastic shells, especially deep shells, which have the potential to buckle catastrophically,
remains to be revealed with more clarity. In early work by Huang (1965), the governing
equations of viscoelastic shallow shells were established by applying the corresponding
principle of an elastic case with the material property evolving as a function of time, from which
the critical time for buckling was evaluated numerically. Obrecht (1977) formulated an
incremental viscoelastic shell theory for cylindrical shells under axial compression. The
axisymmetric and/or non-axisymmetric buckling conditions were determined for spherical
shells and circular cylindrical shells by a perturbation method (Grigoliuk and Lipovtsev, 1969;
Jones, 1976; Obrecht, 1977; Vinogradov and Glockner, 1980; Xirouchakis and Jones, 1980), or
the finite element method (Miyazaki et al., 1977). Imperfections were shown to have a
significant impact on shortening the creep buckling time (Kao, 1981). Recently, the creep
buckling behavior of shell structures, including both cylindrical shells and spherical shells, was
reviewed, and creep buckling criteria were summarized (Miyazaki and Hagihara, 2015).
However, buckling analysis of viscoelastic shells, especially spherical shells, is largely based
on the shallow shell assumption. Relevant specifically to the present investigation is the study
of viscoelastic spherical shells made of a silicone elastomer (Stein-Montalvo et al., 2021),
where creep buckling of these shells is demonstrated experimentally and modelled by simply
treating the creep deformation as an evolving defect. Thus, there is ample opportunity to explore
the effect of viscoelasticity on the rate-dependent buckling and creep buckling of imperfection
sensitive shells -- this paper represents a step in that direction.

The present paper employs a shell theory capable of describing the deformation and
buckling of deep viscoelastic spherical shells subjected to external pressure. The small-strain,
moderate-rotation shell theory, combined with the standard linear viscoelastic solid for the shell

material, is used. Imperfection sensitivity of elastic shells (viscoelastic shells evaluated under
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rapid loading) is first analyzed, revealing the knockdown of the buckling pressure due to
geometric imperfections. Then, material viscoelasticity and loading rates are shown to have
appreciable effects on buckling. Distinctly different behaviors are quantified, including near-
instantaneous elastic buckling, creep buckling with time delays, and no buckling. An
imperfection sensitivity map of these distinct responses is constructed.

The paper is organized as follows. In Section 2, the small-strain, moderate-rotation shell
theory and the viscoelastic material law are combined to formulate the viscoelastic shell theory.
The equilibrium equations are developed using the principle of virtual work. In Section 3, the
imperfection sensitivity and the rate-dependent buckling behavior of viscoelastic shells are
illustrated for two types of loading: a prescribed constant rate of volume change and a prescribed
step loading of external pressure. In Section 4, the distinct buckling phenomena alluded to above
are identified by quantifying the buckling times for the step pressure loading. Systematic
responses are identified and summarized in a behavior map. The main findings of the paper are

summarized in Section 5.

2 Formulation of viscoelastic shell theory

2.1 Small-strain, moderate-rotation shell theory with a geometric imperfection

Fig.1 Schematic of a viscoelastic spherical shell with a Gaussian-shaped imperfection centered
at the pole. (a) Coordinates definition (6, w,r) and geometry of the shell. (b) A standard linear
solid with a free spring of modulus E,,, and a Maxwell element in parallel with a spring of
modulus E;, and a dashpot of viscosity 7.

The small-strain, moderate-rotation theory (Koiter, 1966; Sanders, 1963) is employed for
the shell buckling equations. The schematic and coordinates definition (6, w,r) are shown in
Fig.1, where 0 is the meridional angle, which equals 0 at the equator and /2 at the pole, w is
the circumferential angle, and r is the distance from the origin. The middle surface radius, base
angle and thickness of the perfect undeformed shell are denoted by R, a, and 4, respectively.

A material point on the middle surface of the undeformed shell with a coordinate (6, w, R)



will be located on the deformed shell at
r=uy,+ui +(R+w)i_, (1)

where (ig,i,,1,) are the unit vectors normal and tangent to the undeformed middle surface,
and (ug,u,,w) are the corresponding displacements. In this paper, only axisymmetric
deflections and imperfections are considered since the essence of spherical shell buckling is
captured within this limited class of deformations (Hutchinson, 2016); thus, ug and w are
only functions of §, and u, = 0.

An axisymmetric dimple-like geometric imperfection w;(6) is introduced at the apex of
the perfect shell shown in Fig.la. The profile of the imperfection is specified by a Gaussian

dimple,

w, =—8e ' * )

where & isthe amplitude of the inward deflection at the apex, f = m/2 — @ is the polar angle,
and B; sets the exponential decay width. The tensor equations of Sanders (Sanders, 1963) and
Koiter (Koiter, 1966) have been reduced to the classical form for spherical shells, and the
derivation of the middle surface strains and bending strains for spherical shells with an
imperfection undergoing non-axisymmetric deformation based on the small-strain, moderate-
rotation theory is listed in the papers of Hutchinson and Lee et al. (Hutchinson, 2016; Lee et
al., 2016). The corresponding non-zero middle surface strains and bending strains under

axisymmetric deformation are
E,, =W —-(p+W,)tan0,

1
Epy=W+@,+W, +5(P2 W, 0,

1 3)
K, = —E(Dtan 0,
1
Koo = R Po>
where the dimensionless displacements and rotation are defined as
w Wo | Uy Uy Wy 4
W=—,p=——"2420 U, =20 W, =L, 4)
R R R R R

with the subscripts  ,* and * ,,’ as the first and second derivatives with respect to 6,

respectively, and ¢ is the rotation. In deriving Eq.(3), the second equation in Eq.(4) has been



used to express ug in terms of W and ¢, which are regarded as the independent variables.
Consequently, the strain at an arbitrary position of the shell can be expressed as .3 = Eqp +
zKqp, where z is the coordinate in the thickness direction of the shell and measured from the

middle surface.

2.2 Viscoelastic constitutive relations

To formulate the viscoelastic shell theory, the time/rate-dependent constitutive equations
of viscoelasticity are developed in this section. The Boltzmann superposition principle, stating
that the compound response of a material is the sum of the responses to individual loads, is
adopted. The stress at time ¢ is the summation of the stress increments at earlier time intervals
dt. The two-dimensional stress-strain relations of viscoelasticity under plane stress can be
written as:

(o)

= jE(r D)t +— j E(t-1)é. 6, dr. (5)

1+v woap

where E is the modulus, which evolves with time, v is the Poisson’s ratio, which is assumed
to be constant, and €, = degp/dt. The Greek indices a & [ take on values 1 & 2

corresponding to 6 & w, and a repeated Greek index is summed over 1 and 2.

Specifically, the standard linear solid model (Fig.1b), which is a special case of the
generalized Maxwell-Wiechert model (Lakes, 1998), is used to describe the material
viscoelasticity. It can capture both relaxation and creep with the minimum number of Maxwell
elements. It consists of a free spring with a modulus E,,, a Maxwell element in parallel with a

spring of modulus E;, and a dashpot of viscosity 7. As a result, the modulus of a standard

_Ey
linear solid shows exponential decay with time during relaxation, E(t) = E,, + Eje 7 ‘

Substituting the time-dependent modulus £(?) into Eq.(5) gives

t ,ﬂ(,, E‘(z
o ,= E +Ee " g, d‘r+ E +Ee” £ 0 .dr
» 1+v!( L +E, )é — j( e, 8., ©
L E? _?,T L2 _?(t,
:1_[(5 +E,)E 5 — J-?‘e L et SI(E, +E)e, S, J.?‘e e, 8,,dr].
0 0

The resultant membrane stresses and the bending moments can be derived by integrating

the stresses through the thickness,
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N, = .[,ﬁ O'aﬂdZ,
; (7)

—|2

M, =% 0,5z2dz.

2

For a shell specialized to axisymmetric deformations, the non-zero resultant membrane

stresses are N,,,,, and Ngg, while the non-zero bending moments are M,,,,, and Mgg:

h ho (ED e
N{oa} = 2 (Ew+El)(Eww+VE09)_—2J_]e ! (Ea)(o+VE99)dT’
l-v l-viom
ho (ED e
NHH = 2 (Eoc+E1)(E90+VEww)_ 2 J._le " (E€€+VE(ua1)dT’
I-v I-viy
8
B X L2 By ®)
M,,=———(E+E)K,, +VKy)————|—e " (K, +VvK,)r,
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M W EvENK, vk - E _%(H)(K K )
=———(E + +v -———|—Le +v T.
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It is convenient to normalize these equations as
n_ = 12R" cos8 (E, +VE, —E j.e(T”(E +vE,,))dt")
oo — 724 .2 oo 00— “rel 1o20) 00 >
P (1-v?) 7
12R* cos @ T '
oo = m(Egﬁ +VEww o ErelJ.e v )(E99 + VE(ua))dT )’
Y ©)
m, =RcosO(K, +vK, — Ere,Ie_(T"')(wa +vK ,,)dt"),
0
T ’
m,, = RcosO(K,, +vK,, —Ere,J.e’(T”)(KHH +K,  )dt'),
0
with
E E +E )i’
[vzi’Erelz 1 ,T:L’flzi,Dz—( 1+ oo)zh ,
E, E+E, £, £, 12(1-v7) (10)
Rcos@ R?cos@
(ma)w’mﬁe) =

(Ma)w’MGQ)’(na)w’nﬂﬁ) = W(Nwa)’]vt%)’

where E,,; measures the modulus in the Maxwell element relative to the modulus governing
rapid straining. The viscoelastic timescale t,, is defined as the ratio of the material viscosity

1 to modulus E; in the Maxwell element, which is used to scale the time.



2.3 Principle of virtual work and equilibrium equations

To enforce the principle of virtual work, the virtual normal displacement and rotation of

the middle surface are indicated as §W and &¢, and the associated virtual strains are 5,5 =

0Eqp + z6K,p. The internal virtual work of the shell can be expressed as

h

W = dS > dzo,,5¢,, = [ (N,,0E,, + M ,6K ,,)dS , (11)
s 2 s

where S denotes the area of the middle surface with dS = 2wR%cos8d6 for a spherical shell.

When the shell is subjected to a uniform inward pressure p in the radius direction, the

external virtual work is

EVW = j pRSWAS + j [Q6W +T,6U, — M, W, Rds . (12)

where Q is the normal edge force, Ty is the in-plane edge resultant traction, C is the boundary,
and s denotes the length of the edge of the shell. M,, is the component of the edge moment,
M, = Mygn,ng, where the vector n is the normal to the edge tangent to the shell.

Next, the equilibrium equations are derived from the principle of virtual work, which states

that IVW=EVW for all admissible W and J§¢. The divergence theorem is applied to convert
the equations to the form that permits identification of independent variations. Besides the
dimensionless variables and parameters defined in Eq.(10), a normalized pressure is introduced

as

R’cos@
5o Rocoso (13)
P D p

The equilibrium equations are obtained as (see Appendix A for details)

Mgy 00+ (tan Qmww),g -1 —vz)[nww +1y,+(ny, (- W,’g))ﬂ] +p=0,

14
Mgy o +tanOm,,, +(1 —vz)(nm) tan@+ng, , —ny, (9 —W,,))=0. (14)

Finally, we take the time derivative of the above equilibrium equations, which can be
expressed in terms of ¢ and W through the constitutive equations Eq.(9) and the strain—
displacement relations Eq.(3). Only the terms related to the highest order of the unknowns are
expanded explicitly; the other terms are readily computed in the numerical code. The

equilibrium equations for the time rates of change become
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with the definition of

T 2
/ 12R
A=cosf(1—- ErelJ.e’(T*f )dr’), B= _7 A,
’ i (16)
12R
C= RVwa,HaAaD = h2_ VEa)w,eA'

The present formulation describing the deformation of viscoelastic spherical shells with
geometric imperfections has led to a system of nonlinear ordinary differential equations (ODEs),
which will be solved using the finite difference method and the combined bvp4c solver (a finite
difference code that implements the three-stage Lobatto IIla formula to solve boundary value
problems for ODEs) in MATLAB (Kierzenka and Shampine, 2000). The clamped boundary
condition requires W = Wy = ¢ = 0 at the base while the analytical nature of the functions
W and ¢ under the axisymmetric condition requires Wg = @ = @ g9 = 0 at the pole. And
note that numerical approximations are adopted, and high-order terms are neglected when
solving the ODEs. Buckling problems under two types of loading are examined in this work: 1)
a prescribed rate of change of the shell volume and ii) prescribed pressure that is held constant
once after it is applied. In addition, the case of a prescribed rate of volume change will be
compared with a case that is easier to implement numerically but of less physical interest, a
prescribed rate of change of the pole displacement. When the pressure serves as the control
variable, the equilibrium equations (Eq.(15)) and viscoelastic constitutive relations (Eq.(9)) are
solved with prescribed evolution of pressure with time. When the pole deflection is set as the
control parameter, the dimensionless pressure p = pR3/D is regarded as an extra unknown

with an additional ODE dp/d6 = 0 added to the set of equations, Eq.(15) and Eq.(9). The
9



deformation of the shell can be obtained numerically if dynamic snapping does not occur, which
would require consideration of inertia. Volume control is achieved by setting the volume of the
shell as an additional variable and adding an extra constraining ODE relating the volume and
deflection to the equation set. The pressure is again treated as an extra unknown variable. The
procedure under volume control also behaves well until conditions for dynamic snapping are

attained.

3 Rate-dependent buckling behaviors

In this section, we begin by investigating the effects of geometric imperfections on
buckling pressure of viscoelastic shells. It is known that the classical prediction for the critical
buckling pressure of a perfect elastic hemi-spherical shell with @, = 7/2 under uniform

pressure loading is only slightly different from the result for a full spherical shell (Zoelly, 1915),
pe = 2E(h/ R)2 /+/3(1 — v?2), where E is the Young’s modulus for the elastic shell. The precise

value for the hemispherical shell depends on whether it is clamped or simply supported at the
equator. The critical buckling pressure of imperfect shells can be significantly reduced below
p. due to the imperfection sensitivity of shell buckling, which leads to large knockdown factors
observed experimentally (Evkin and Lykhachova, 2017; Gerasimidis et al., 2018; Hutchinson
and Thompson, 2017; Hutchinson and Thompson, 2018; Karman and Tsien, 1939; Koga and
Hoff, 1969; Koiter, 1969; Krenzke and Kiernan, 1963; Leec et al., 2016; Liu et al., 2021; NASA,
1969). For the dimple imperfections of the type considered in this paper, buckling is localized
at the pole, and the boundary conditions at the equator, or at other values of «g, have no
influence on the buckling pressure if they are sufficiently strong and if the shell is sufficiently
deep, which typically corresponds to the dimensionless parameter [12(1 —
v2)]*cos(ap)/R/h > 3 (Evkin and Lykhachova, 2019; Huang, 1965; NASA, 1969). In this
paper, the ratio of the buckling pressure, the maximum pressure the shell can support p,, 44, to
pc 1s used to quantify the discrepancy of the actual buckling pressure from the theoretical
prediction; in the formula for p. the initial modulus (E; + E,) for the viscoelastic material
governing fast straining is used to replace the elastic modulus E of an elastic material to define

a reference critical buckling pressure, i.¢.,

_AEAE) Ky

2. v R)-

(17

3.1 Buckling under a prescribed volume change

We first examine the effect of imperfections on the loading-carrying behavior of
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viscoelastic shells under fast loading. For these calculations, the viscoelastic shell is loaded at
a high rate of volume change with the time-dependence of the pressure solved as described
earlier. The volume change rate is chosen sufficiently large such that the shell material responds
elastically with modulus (E; + E), i.e., viscoelastic effects are essentially absent. For purposes
that will be clear in what follows, we define two dimensionless loading rates, ;,, measuring

rate of volume change and y,; measuring the rate of the pole displacement:

dAV V. aw
7V=T° and y, =—ﬁ- (18)

where the dimensionless quantities, 7and Wy, have been defined earlier, AV is defined as

the volume change from ¢ =0 to time #, and V, =—27R’h(1-sine,)/ \/3(1 +v)/(1-v) is

an estimate of the volume change for the deep spherical shell associated with the critical
pressure in Eq.(17), which ignores the constraint of the clamped boundary in the small boundary
layer at the base of the shell.

The plots in Fig. 2 and 3 are computed with a prescribed, rapid rate of volume change,
Yy = 0.9623, with E,.; = 0.4. Throughout the paper, the geometric parameters are fixed at
ay,=mn/3, R/h=50 and p; = 10°, with Poisson’s ratio setat v = 0.5. Note that in this
paper, we will not provide the results for perfect and near-perfect shells to avoid numerical
singularity and other complex behavior near the buckling, such as localization (Audoly and
Hutchinson, 2019). Instead, we will focus on small, but realistic, imperfections with §/h >
0.2. For each choice of imperfection amplitude, §/h = 0.2,0.3,0.5, 1, the normalized pressure,
p/p., as a function of the displacement at the pole, here normalized by the shell thickness,
Wpote/ h, always first increases, reaches a maximum value, and then decreases monotonically
(Fig.2a). It is well known that the elastic buckling of shells is highly sensitive to imperfections
(Koiter, 1969), with an exceptionally dramatic reduction of buckling loads in the range of small
imperfections, and this is reflected in Fig. 2. As the imperfection amplitude increases, the
buckling pressure further decreases but tends to a plateau. The corresponding pole displacement
at the critical pressure increases monotonically but is never much larger than one, or at most
two, shell thicknesses at the maximum load point. The fact that shell buckling occurs at such
small deflections helps explain why the small-strain, moderate-rotation shell theory is accurate
in these applications. Fig.2b presents results for the same shells but as normalized pressure as
a function of normalized volume change, AV /V,. For shells with the smallest imperfection in
Fig. 2b (6/h =0.2), both p/p. and AV /V, decrease along the equilibrium path after
attaining the maximum pressure, which is a salient feature of a snapping-back buckling
(Budiansky, 1974; Chen and Jin, 2020), indicating that the shell will buckle unstably under
either pressure or volume control. For the larger imperfection amplitudes, the critical volume

at the onset of buckling becomes smaller, and the post-buckling slope changes from positive to
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negative, eventually reaching nearly zero. The buckling capacity of the shell is reached in the
range of relatively small pole deflections, with the attainment of the maximum pressure
occurring when wy,,;. = —h. In all cases in Figs. 2 and 3, the loading rate, v, = 0.9623, is
very high and there is virtually no viscoelastic relaxion. The buckling behavior of these
viscoelastic shells is essentially the same as an elastic shell with the short-time modulus E =
E; + E. Consequently, the results in these figures are essentially identical to those of the
elastic shells reported in the literature (Lee et al., 2016). This agreement provides one check on
our viscoelastic shell model.

Fig. 3 displays the data in Fig. 2 plotted against dimensionless time, as volume change
versus time in Fig. 3a and as pole displacement versus time in Fig. 3b. Because the rate of
volume change is prescribed to be constant with y,, = 0.9623, the plot in Fig. 3a is simply a
straight line, but the points at which the buckling pressure p,,q, is attained for the four
imperfection levels is indicated. In Fig. 3b, one can see that for the smallest imperfection,
6/h = 0.2, the curve terminates at the point where snap back would occur under this prescribed
rate of volume change. Note in Fig. 2 that the point of maximum pressure is nearly coincident
with snap back (the maximum pressure is attained just before snap back occurs, which is usually
the case for thin shells). The shells with the three larger imperfections have monotonically
increasing pole displacements over the time plotted (Fig. 3b), and it can be seen in Fig. 2b that
these shells having a prescribed constant rate of volume change do not undergo snap buckling at
the maximum pressure. Instead, these shells will undergo stable buckling after the maximum
pressure is attained with the buckle amplitude increasing monotonically with the increasing

volume change.

0.8 - 038
@ 5Ih=0.2 ®)
06 06
(8] [&]
204 204
02 f, 02"
of 0 - ‘ -
0 1 2 3 4 5 0 04 08 12 16 2
W AVIV,

Fig.2 Effect of the imperfection amplitude &§/h on the load-carrying behavior of viscoelastic
shells with E,.,;=0.4, under a high rate of volume change, v, = 0.9623, and with the other
parameters fixed at values used throughout the paper: ¢y = /3, R/h =50, f; = 10°%v =
0.5. (a) Normalized pressure versus normalized displacement at the pole. (b) Normalized
pressure as a function of normalized volume change. For the smallest imperfection shown,
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6/h = 0.2, snap back behavior occurs when p = p,,4, and those curves are terminated there.

(a) ' (b) 0P
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Fig. 3 Volume change and pole displacement with time for the imperfect viscoelastic shells in
Fig. 2. (a) Volume change as a function of time for imperfection amplitudes §/h =
0.2,0.3,0.5,1.0. AV is the volume change from ¢ = 0 to time ¢. (b) Normalized displacement
at the pole versus normalized time. The computation stops at infinite slope, where p = piax»
for §/h = 0.2. The additional parameters are those specified earlier and used throughout the

paper.

Fig. 4 displays the initial and deformed shapes of the middle surface of the imperfect
viscoelastic shell with §/h = 0.2 at three dimensionless times, t/t, = 0,0.024,0.029, for
both a fixed rate of volume change (y,, = 0.9623) and a fixed rate of pole displacement (y; =
0.458), where x/R and )/R are the normalized coordinates in the cross-section of the shell as
defined in Fig. 1. The two rate measures were chosen such that both loadings produced
essentially the same rate of volume change in the early stages of loading. Imposing the pole
deflection rate is simpler to implement numerically than the volume change rate, and the former
leads to a larger range of stable behavior than the latter, as will be seen. However, prescribing
the volume change rate is a much more accurate representation of how experiments are typically
performed. The initial shape of the shells deviates slightly, but visibly, from the perfectly
spherical shape due to the initial imperfection. In Fig. 4 at t/t, = 0.024 the shapes of the
imperfect viscoelastic shells deviate from those of the perfect, consistent with the amplitude of
the imperfection, and remain almost identical for the two loading conditions. However, in the
time between 0.024 and 0,029, the pole displacement of the shell subjected to a fixed rate of
prescribed volume change undergoes a sharp increase in the buckle deflection (c.f., Fig. 3b)
while the shell with a prescribed rate of pole displacement undergoes a much smaller change.
Although not shown, at even larger deflections when the pole displacement is larger than about
Wpote/R = 0.1, the vicinity of the pole is approximately an inverted cap with radius of

curvature —R.
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Fig. 4 Middle surface profiles of the initial and deformed states for the imperfect viscoelastic
shell with §/h = 0.3 in Fig. 2 under volume control with y, = 0.9623 compared with those
computed using pole displacement control with y; = 0.458. The latter rate is chosen such that
the two loading conditions give nearly coincident predictions in the early stages of loading. At
t/t, = 0.024, the shells under volume control and displacement control are deformed to almost
the same position. At t/t, = 0.029, a sharp increase of the buckling deflection has occurred
under volume control, which would be even more dramatic for smaller 6/h, and less so for
larger &/h. No drop exists for displacement control.

The viscoelastic material exhibits time- and rate-dependent behavior, which are expected
to result in new features of shell buckling. In this paper, the load-carrying behavior of
viscoelastic shells is examined over a wide range of loading rates, from extremely slow loading
(Y, = 0.0067) to extremely fast loading (y,, = 0.9608). As a comparison, buckling results for
shells having strictly elastic material are also generated. The isotropic linearly elastic material
law is employed for the elastic shell, i.e.,

Eh
o = —(l—vz) [(l—v)Eaﬂ +VEW5,1/;],
ER’
M ap ~ 2
12(1-v7)

19)
[A-WK,,; +VK 3,41,

- ap

and solved together with the equilibrium equations (Eq.(14)) and strain-displacement relations
(Eq-(3)).

For viscoelastic spherical shells undergoing a wide range of fixed rates of volume change,
strong strain-rate-dependency of the buckling pressure is observed in the plots of
D/Pc VS. —Wpoie/h in Fig.5a and in the companion plots of p/p, vs.AV /V, in Fig.5b. The
maximum normalized pressure, p/p,, increases with the increase of the loading rate due to the
reduction of relaxation, clearly indicating that higher pressures are required to buckle a

viscoelastic shell under a higher strain rate. Stated otherwise, the buckling pressure can be
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substantially reduced when the shell is loaded slowly and as much time is allowed under load
as needed. Two asymptotic limits of buckling pressure are relevant. For this example, at the
slower loading rates (y,, = 0.0067 & 0.0097), the time to attain the maximum pressure is 3
to 4 times the viscoelastic timescale, i.e., T = 3 or 4, as seen in the companion plot in Fig. 6,
where the time-dependence of the pole displacement of these shells is presented. The time to
deform the shell to displacements much larger than those at the maximum pressure, such as
—Wpote/R = 0.1 for example, is approximately 10 to 15 times the viscoelastic timescale as
seen in Fig. 6. In these two cases, almost full relaxation occurs, and the response is governed
by the long-term modulus, E. . As a result, the plots p/p.vs.—Wpe/h (Fig.5a) and
p/p. vs.AV [V, (Fig.5b) approach those of the elastic shell computed with modulus E = E.
On the other hand, for the two highest loading rates of y, = 0.3170 & 0.9608, the
corresponding dimensionless times are much smaller, and the level of relaxation is smaller.
Consequently, the effective modulus of the shell is close to the instantaneous modulus E; +
E, and the curves for the two high loading rates in Fig. 5 approach those of the elastic shell
computed with modulus E = E; + E,. The maximum pressure occurs at nearly the same value

of the pole deflection, i.e., Wy, = —h, for all the loading rates.

a b
@ 06 7,~0.0067, 0.0097, 0.0194, 0.0962, 0.3170, 0.9608 ( )0 6 7,=0.0067, 0.0097, 0.0194, 0.0962, 0.3170, 0.9608

0.5 Elastic (E=E,+E )
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Fig.5 Rate-dependent buckling behaviors of elastic and viscoelastic shells (E,..;=0.4, §/h =
0.3) under different volume control loading rates (y, = 0.0067~0.9608). (a) Normalized
pressure versus the normalized displacement at the pole. (b) Normalized pressure as a function
of the normalized volume change. The additional parameters are those specified earlier and

used throughout the paper.

15



0 2 4 6 8 10 12
tftV
Fig.6 Normalized displacement at the pole versus normalized time for the viscoelastic shells in Fig.5
under different loading rates (y,, = 0.0067~0.9608).

The influence of imperfection and loading rate on the normalized buckling pressure
Pmax/Pe Of viscoelastic shells is further revealed in Fig. 7. In Fig. 7a, Pyqx/Pe increases
significantly within the loading rate range 0 <y, < 0.1 and then reaches a plateau at larger
loading rates. In Fig. 7b, the qualitative dependence of py,qx/P. on imperfection amplitude
6/h is similar for all the loading rates. Further insights on this trend will be gained in the
investigation of the constant pressure loading. Almost all the increase of magnitude of
Pmax/Pc occurs when the loading rate increases from 0.0095 to 0.9549. However, as seen in
Fig. 7a, the change of pp,q,/p. With the loading rate under fixed §/h is highly nonlinear,

because of the exponential decay of the modulus with time.
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Fig.7 The influence of imperfection and loading rate on the normalized buckling pressure
Pmax/Pc of viscoelastic shells (E,;=0.4). (a) Normalized buckling pressure as a function of
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loading rate for different imperfection amplitudes (§/h = 0.3, 0.5, 1). (b) Normalized buckling
pressure as a function of the imperfection amplitude under different loading rates (y, =
0.0095,0.0955,0.9549 ). The additional parameters are those specified earlier and used
throughout the paper.

In Fig. 8 the load-carrying responses of the viscoelastic deep spherical shells are
investigated for three relative moduli of relaxation (E,;=0, 0.4, 0.8) under a moderate loading
rate y, = 0.0194 to reveal the dependence on E,.;. The predictions for an elastic shell
computed with E = E; + E,, are included in this figure. When E,,; =0, no relaxation occurs
in the material, and the corresponding curves in Fig. 8 almost coincide with those of the elastic
shell. Small discrepancies are observed in the vicinity of the peak pressure caused by small
numerical errors associated with the difference between the models in the time-dependent and
time-independent cases. On the other hand, when E,,. increases, notable decreases are
observed in p/p. and there is a small decrease in the pole displacement and volume at the

onset of buckling.

(a) 0.7 (b) 0.7
E =0 lies on top of the elastic curve -4 Elastic E =0 lies on top of the elastic curve [-4- Elastic
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Fig. 8 Effects of material viscoelasticity (E,;=0, 0.4, 0.8) on the loading-carrying behavior of
spherical shells subjected to a moderate loading rate y,, = 0.0194. (a) Normalized pressure
versus normalized displacement at the pole. (b) Normalized pressure as a function of the
normalized volume change. The additional parameters are those specified earlier and used
throughout the paper.

Next, we examine the situation when the shell is deformed under an extremely small
loading rate, y, = 9.62 x 10~>. Under this low loading rate, the effective modulus of the shell
is expected to be nearly the long-term nodulus E,,. Recall that the critical reference buckling
pressure, p., has been defined using the high strain-rate modulus, E; + E. , for the
viscoelastic shells. To delineate the slow rate limit for the buckling pressure, the ‘slow’ critical

reference bucking pressure is re-defined using E, i.c.,
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We normalize the pressure in two ways, p/p. and p/pc, and plot each as a function of
—Wpote/h and AV /V, for three values of Ey,; (Fig.9).It can be seen that p/p. fora given
—Wpote/h or AV /Vy decreases as E,.; changes from 0.4 to 0.8, as in the trend in Fig. 8, but
it is always lower than the corresponding value in Fig. 8 due to the lower loading rate. However,
with the pressure normalized by p¢°, curves for different values of E,,; (red dashed and dark
blue solid lines) overlap, and approach the curves identified by E,, =0 for
D/Pc VS. —Wpoie/h (Fig. 9a) and p/p. vs.AV /Vy (Fig. 9b). This indicates that for extremely
slow loading, the mechanical behavior of the shell is effectively governed by E,,, despite

different values of E,;.
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Fig. 9 Effects of material viscoelasticity (E,.;=0, 0.4, 0.8) on the load-carrying behavior of
shells at an extremely small volume control loading rate (y,, = 9.62 x 10~>), with the pressure
normalized by two critical buckling pressures, p. and pZ°. The other geometric parameters of
the shells are the same as those in Fig. 8. (a) Normalized pressure versus the normalized
displacement at the pole. (b) Normalized pressure as a function of the normalized volume
change. Blue solid lines and red dash lines are overlapped.

Before proceeding to discuss spherical shells subjected to step pressure loading, we digress
to emphasize that, with the exception of the results for AV /V,, the results for the buckling
pressure determined for the specific shell geometry and other parameters plotted in the figures
in Section 3.1, as well as those to follow in Sections 3.2 and 4, are approximately independent
of both #/R and «, assuming the shells are thin, deep and the imperfection width parameter,
B, scales with \/h/—R This assertion follows from the extensive study of Hutchinson (2016)

using dimensionless parameters. The imperfection scaling is detailed in that earlier reference,

and the fact that there is very little dependence on « if the spherical cap is deep follows from
18



the fact that the buckling mode is localized near the pole of the shell, as illustrated in Fig. 4.
There is a dependence of AV /V,, on A/R due to the fact that, when the pressure changes, the

entire shell undergoes some radial displacement.

3.2 Buckling under a rapidly applied pressure which is then held constant

The buckling behavior of viscoelastic spherical shells under prescribed constant rates of
volume change has been investigated in the above section. In this section, we will focus on the
buckling of viscoelastic shells under a constant prescribed pressure that is lower than the
maximum pressure P,q, the shell can support under rapid loading. Stated in another way, we
investigate the phenomenon of creep buckling of an imperfect shell of viscoelastic material
subjected to steadily applied external pressure. The evolution of the pole deflection and volume
change with time for different applied pressures and imperfections is computed, and it will be
seen that the buckling behavior of these viscoelastic shells can be classified into three categories.

In the simulations presented in Fig. 10, the external pressure is applied almost
instantaneously to a viscoelastic shell (eg = /3, R/h =50, §/h = 0.3, B; = 10° E,.o;=
0.4,v = 0.5) and then held constant. In carrying out the simulations, the pressure is increased
from 0 to the final steady value in the short time period t;5q4ing/ty = 0.01. Consequently, in
the nearly instantaneous ramp-up of the pressure, the shell responds effectively as if it were
elastic governed by the fast-loading modulus E,, + E;. The constant pressure applied, p/p,
ranges from 0.35 to 0.6, and it will be seen that a variety of shell buckling phenomena are
revealed. The computed pole deflections are plotted as functions of time under different
pressures in Fig. 10 for the shell with an imperfection having §/h = 0.3 that buckles
elastically at p/p, = 0.60 (with E = E; + E,, ). Following the rapid ramp-up, the pole
deflection increases over time caused by the creep occurring in the viscoelastic material under
constant stress. However, as seen in Fig. 10, the growth rate of the deflection is distinctly
different for different pressures. When this shell is subjected to a relatively low pressure
(p/p. = 0.35), the growth rate decreases with time, and finally reaches zero, indicating that
the shell does not buckle. Non-buckling behavior occurs for pressures below a pressure
threshold which depends on the level of imperfection. For pressures somewhat above this
threshold, the growth rate of the pole deflection increases with time until it becomes infinite
(i.e., a vertical slope in Fig. 10) at a finite time. The shell would undergo snap buckling at this
time. This phenomenon is an example of creep buckling as it occurs in imperfection-sensitive
shells. The simulations have been terminated at this critical time. The critical time is referred

to as the buckling time, t,ycxiing- In the range of applied pressures in which creep buckling

occurs (approximately 0.36 < p/p. < 0.58 for the cases in Fig. 10), the buckling time is a
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strong function of the applied pressure (see ahead the curve for this imperfection in Fig. 13).
The upper end of the pressure range for creep bucking (p/p, = 0.60 for the shell in Fig. 10)
is the elastic buckling pressure, which in turn is strongly dependent on the level of imperfection,

as discussed in more detail later.
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Fig.10 Pole deflections normalized by the shell thickness, Wy, /h, plotted against time for an
imperfect viscoelastic shell (§/h = 0.3, 8; = 10°) for different external pressures p/p, from
0.35 to 0.60 that are ramped up rapidly and then held constant. When subjected to different
levels of sustained pressures, the shell shows three types of response, including near-
instantaneous buckling under sufficiently high pressure, creep buckling under intermediate
pressure, and no buckling at sufficiently low pressure.

Based on the examples discussed above, the time range for the buckling behavior of a shell
subjected to a constant applied pressure is divided into three types: essentially instantaneous
buckling when the shell buckles elastically at p,,,,, creep buckling when the slope of the
Wpote/h - t/t, curve decreases with time and reaches negative infinity at a finite time
thuckiing» and no buckling when the slope of the wy,,./h - t/t, curve increases with time
and eventually approaches 0. These results explain the aspects of shell creep buckling observed
in experiments (Stein-Montalvo et al., 2021), and they quantify the relationship between the
buckling time and pressure. A material point in a viscoelastic shell that is subjected to a constant

pressure experiences a reduction in modulus with time, leading to creep of the shell. Even if the
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instantaneous elastic buckling pressure is higher than the prescribed pressure, the shell may
buckle after finite time due to the drift towards the lower effective modulus. If the applied
pressure is lower than the buckling pressure for a shell with the long-time modulus E,,
buckling cannot happen even after long times. By contrast, instantaneous buckling can be
expected if the pressure is higher than the buckling pressure for a shell with short time modulus,
Es + E;.

The results discussed above have been for a single imperfection (§/h = 0.3) that causes
the shell to buckle instantaneously at p/p. = 0.60. The effect of the imperfection amplitude
on the buckling process is shown in Fig. 11 with all the other geometric and material parameters
unchanged (¢g = n/3,R/h = 50,8, = 10° E,,; = 0.4, v = 0.5). The relation between the
applied steady pressure and the buckling time, tpyckiing/ty, is shown in Fig. 1la for the
imperfection amplitude considered above, §/h = 0.3, and for a larger imperfection amplitude
6/h = 1. For both imperfection amplitudes in Fig. 11a, the buckling time increases as the
applied pressure is lowered below the level causing instantaneous buckling, and the curve
reaches a plateau in pressure at buckling times greater than about tpycxiing/t, = 2 for each
of the two imperfection levels shown. For pressures below the plateau, buckling does not occur.
Fig. 11b cross-plots the buckling pressure versus the imperfection amplitude for three
dimensionless buckling times: short, intermediate and ‘long’. On each curve, the shell buckles
at the time indicated. We have only plotted one curve for ‘long’ buckling times (the lowest
curve in Fig. 11b), but this curve is approximately applicable for pressures applied for all times
greater than about tpyckiing/ty = 2. This is the long-time limit. At a given imperfection
amplitude, the shell will never buckle at pressures below the lowest curve. These imperfection-
sensitivity curves have features that are qualitatively similar to the corresponding curves for
elastic shells. For imperfection amplitudes greater than about §/h = 1, they level off at a
plateau pressure. Of course, the nature of the cross-plot is that the plateau is lower for a longer

time allowed for buckling, but the result for tpyckiing/ty = 3 is essentially the long-time limit.
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Fig. 11 Relation between prescribed pressure, buckling time and imperfection amplitude for
shells subjected to a rapidly applied pressure that is then held constant at p. (a) Pressure versus
buckling time for two imperfection amplitudes. (b) Pressure versus imperfection amplitude for
three fixed buckling times.

4 Viscoelastic behavior and a map of buckling behavior for viscoelastic shells

subjected to constant pressure

The material viscoelasticity determines the creep buckling behavior of the shells, and this
connection is pursued in this section. The viscosity 7 is embedded in the dimensionless time
while the relative modulus, E,.; = E;/(E; + Ey), is the other dimensionless parameter
controlling the time dependence with the limit E,.,; = 0 corresponding to the absence of
viscosity and non-zero values of E,,; corresponding to time-dependence. The example
presented in Fig. 12 illustrates the influence of E,.; on shell responses for pressures that are
rapidly applied and then held constant. For all the simulations in Fig. 12, the pressure is
p/p.=0.27 with responses computed for a wide range of the relative modulus, E,.; = 0.4 to
0.9. The other parameters are those used in the other examples (ay = n/3,R/h =50,6/h =
0.3,8 =10%v =0.5) . As in the previous simulations, the initial loading rate is
tioading/t»=0.01. The pole deflection as a function of time is plotted for six values of E;.
At the applied pressure and for the imperfection amplitude of the shell in Fig. 12, the shell does
not buckle when the relative relaxation is sufficiently low (E,.; <0.5), even after long-term
creep, and stabilizes in a deformed configuration that has been influenced by material creep.
When E,.; is greater than about 0.5 for this example, buckling occurs after a time delay that
depends on E,;: the larger E,..;, the less time required to buckle. Fig. 12 reveals that even for

E,2;=0.9 the shell does not buckle until t/t, approaches approximately 1 under the pressure
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Fig.12 Pole deflection, wy,,/h, as a function of time for different viscoelastic properties
(Ere;=0.4 to 0.9), when an external pressure p/p, = 0.27 is applied rapidly to the shells and
then held constant. The shell has imperfection amplitude, §/h = 0.3, with other parameters
given in the text.

The effect of Eyre; on tpycriing/ty under three pressures, p/p, = 0.25, 0.42 and 0.50,
is further explored (Fig.13) for the shell with imperfection amplitude §/h = 0.3. It is seen that,
subjected to certain pressures p/Pc, tpuckiing/ty can increase without bound as Ej.
diminishes to a limit depending on the pressure. For values of E,,; below this limit, buckling
will not occur. Moreover, this limiting value of E,,; increases with decreasing p/p.. For
p/p.=0.25 and 0.42, these limits are roughly E,,; = 0.55 and E,,; = 0.3, respectively. The
elastic buckling pressure of this shell is about p/p. = 0.60 (c.f,, Fig.7a), and thus the limiting
value of E,.; for the shell subjected to p/p, = 0.5 in Fig. 13 occurs somewhere in the range

Ere; = 0 to 0.2, outside the range in which computations were performed.
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Fig.13 Normalized buckling time, tpyckiing/ty, Of Viscoelastic shells as dependent on Ej,
and applied pressures. tpyciing/ty versus Erg for three pressure loadings (p/p=0.25, 0.42,
0.50) for a shell with imperfection §/h = 0.3 and other parameters given in the text.

The effects of the material viscoelasticity (E,.;) and holding pressure (p/p.) on the
buckling modes of imperfect viscoelastic shells with §/h = 0.3 are summarized in Fig.14.
Three types of buckling behavior are explicitly classified by tpyckiing/ty, including again
near-instantaneous buckling, creep bucking at finite time and no buckling. Note that
instantaneous buckling here is defined as tpyckiing/ty < 0.05, which is prone to occur for high
values of E,. and p/p.. On the other hand, shells do not buckle if E,, and p/p. are
relatively small. In the middle region, creep buckling is observed for moderate values of E,.;
and p/p.. For a fixed E,.;, the buckling mode changes in a sequence from no buckling, creep
bucking to instantaneous buckling with the increase of p/p.. As for a fixed p/p. in a wide
range of 0.1 < p/p. < 0.55, shells only exhibit the mode of no buckling and creep buckling,

and near-instantaneous buckling only takes place when p/p. = 0.55.
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Fig.14 Buckling modes for viscoelastic shells with imperfection §/h = 0.3 with respect to
the holding pressure p/p. and material viscoelasticity E,.,; . The color bar shows
thuckiing/ tv» Which changes from 0 to infinity, corresponding to three types of buckling
behaviors: near-instantaneous buckling, creep buckling at finite time, and no buckling.
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Fig.15 Two normalizations of the applied pressure (p/p. and p/pZ°) as functions of
thuckiing/tv for four values of the relative modulus (Ey¢;=0.2, 0.4, 0.6 and 0.8). The curves of

D/Pc VS. thuckiing/ ty converge forall Ero at tpyckiing/ty = 0, which is the elastic buckling
load for a shell with modulus E; + Eq. The curves of p/p¢° vs. tyyckiing/ty converge for all
Eye at the limit tpycxing/ty — 0, which is nearly same as the elastic buckling load for a
shell with modulus E,,. The two red dots represent the convergent values for p/p. and p/pc°.

Fig. 15 reveals important insights to time-dependent buckling of viscoelastic shells. As in
Fig. 13, the shell has an imperfection amplitude §/h = 0.3 and it is subjected to a rapidly
applied pressure p that is then held constant. In Fig. 15, the applied pressure on the vertical axis
is normalized in two ways, p/p. and p/pc°. The dimensionless time to buckling appears on
the horizontal axis. Curves for each of the two pressure normalizations are shown for four
values of the relative modulus, E,.; = 0.2, 0.4, 0.6 and 0.8. Recall that the short-time elastic
buckling pressure for the shell with this imperfection is p/p. = 0.60, and any pressure
exceeding this value will ‘instantaneously’ collapse the shell. The curves of p/p. vs.
thuckiing/ty in Fig. 15 show that at any pressure below p/p, = 0.60 either no buckling
occurs or the buckling time is finite, depending on E,.;. For every value of E,..;, the curves
for this normalization converge to the ‘short-time” buckling pressure, p/p. = 0.60, in the limit
of very short loading times. The convergence is expected, as discussed earlier, because for very
short buckling times viscous behavior plays essentially no role, and the material responds
elastically with modulus E; + E,, which is the modulus employed in defining p, in Eq. (17).
Now, consider the ‘long-time” buckling limit when tpycxiing/ty is large and focus on the
curves in Fig. 15 that employ the normalization p/pz°. These curves, for each value of E,.,
converge for large tpyckiing/ty to a common long-time limit, and, moreover, this limit is
almost the same numerically as the short-time limit just discussed, but now for the other

normalization, i.e., p/pd® = 0.60. Recall that pZ°, defined in Eq. (20), is the elastic buckling
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pressure of the perfect shell with the long-time modulus E,,, and note that

p/p;=0-E,) plp,. 21

The convergence in the long-time limit of p/p to a buckling pressure that is
independent of E,.; and equal to the short-time limit expressed as the other normalization can
be explained as follows. By Eq. (21), the short-time pressure p/pZ is always less than p/p,
and thus the shell does not buckle when the pressure is first applied. Correspondingly, because
the short-time modulus controls the very early deflections of the shell, those are less than
required to buckle the shell. In the ensuing response when the pressure is held constant, the
shell creeps and the deflections increase. In the long-time limit, the deflections are determined
only by E., with no influence of E,,;, and, thus, if p/pZ equals the short-time limit for
buckling, the shell will just reach the buckling condition at large times. The parameters
specifying the viscous behavior, E; and 1 have no influence on this limit. While this result
can be rationalized by the argument just given, it is a remarkable result. The results in Fig. 15
were computed for a shell with the imperfection amplitude, §/h = 0.3. We have carried out
additional calculations for 6/h = 0.5 and §/h =1 to verify that the long-time limit is
indeed equal to the short-time limit expressed in the other normalization and independent of
E,¢; for these two other levels of imperfection.

The coincidence of the short-time and long-time limits for the two respective pressure
normalizations, independent of E,..;, enables a simplified and insightful way of viewing
buckling under constant pressure for spherical shells made of viscoelastic materials of the
standard linear solid. We construct imperfection-sensitivity maps which divide the pressure
range into three regions: instantaneous elastic buckling, time-dependent creep buckling, and no
buckling. For plotting the maps, we use the following formulas for the two coincident limits

discussed above:

£ —0.2+0.8¢" (short-time limit) & - =0.2+0.8¢" (long-time limit). (22)

P. b,
The formula, p/p, =0.2+0.8¢7"" s arealistic representative approximation to the elastic

buckling of thin spherical shells with an imperfection at the pole for any h/R, as long as it is
sufficiently small so that the shell can be regarded as thin. The buckling pressure plateaus at
p/p. = 0.2 for ‘large’ imperfections. More accurate results depend on full details of the
imperfection, as can be found in Hutchinson (2016) and Lee, et al. (2016), and the formula used
in Eq. (22) can be readily replaced by any other elastic imperfection sensitivity relation.

It is straightforward to generate the imperfection sensitivity plots in Fig. 16 by making use
of the relation Eq. (21) between the two pressure normalizations, i.e., p/ p. =(1-E ,)p/p..
Consider first the plot using the normalization p/p. in Fig. 16a. In this plot, the short-time
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limit indicated by the heavy curve is the instantaneous buckling pressure for all E,.;. For
pressures on or above this curve the shell buckles immediately and catastrophically. The light
curves in this plot correspond to the long-time buckling pressure, dependent on E,,;. Any
pressure below this curve (for a given E,..;) does not result in buckling, while any pressure
between the heavy curve and the light curve produces creep buckling of the shell at some finite
time. The more significant the viscoelasticity, i.e., the larger E,..;, the larger the spread between
the long-time and short-time limits. The plot in Fig. 16b using the normalization p/pc°
reverses the juxtaposition of the curves. Now, the long-time limit indicated by the heavy curve
is independent of E,;, while the light curves representing short-time (instantaneous) elastic
buckling depend on E,.;. In Fig. 16b, buckling never occurs for pressures below the heavy
curve, while buckling is instantaneous for pressures above the light curve (for the given Ej.,;).
Creep buckling at finite time occurs for pressures between the heavy curve and light curve. It
is important to emphasize again that the imperfection sensitivity plots in Fig. 16 are essentially

independent of both 4/R and the base angle, «, if the shells are thin, deep and if [5; scales

with /h/R.

1 . . . 5 . :
(a) — short-time buckling (all E, ,) (b) — long-time buckling (all E )
08l long-time buckling ~—— short-time buckling
' 2AE+E) N, 4 2E h o,
= () pl =)
B R J3(1-v') R
0.6 3
o B0
- E=0.2,04,06,08 & E_=0.2,04,06, 0.8
0.4+ ? # 2 el AT T A
0.2 1
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§lh é/h

Fig. 16 Two imperfection sensitivity maps presenting the short-time and long-time limits for
buckling for pressures that are rapidly applied and then held constant at p. In (a) the
normalization p/p. is used, and in (b) the normalization p/p° is used. The construction of
the maps is described in the text. In (a), the short-time limit (heavy curve) for instantaneous
elastic buckling applies for all E,.;, and any pressure on or above this curve produces
immediate collapse of the shell. Each of the light curves, corresponding to a specific value of
E,;, gives the pressure at which the shell undergoes creep buckling with buckling occurring at
the long-time limit. Below this curve (for the given value of E,.,;), buckling never occurs. For
pressures lying between the short-time limit and the long-time limit, creep buckling occurs at
some finite time. In (b), the long-time limit (heavy curve) applies for all E,..;; for any pressure
below this curve buckling never occurs. For pressures lying on or above each of the light curves,
for a specific E,;, buckling occurs instantaneously. For pressures lying between the light curve
(for the given value of E,.,;) and the heavy curve, creep buckling occurs at some finite time.
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5 Conclusions

This paper establishes a viscoelastic shell theory for predicting the nonlinear time-
dependent buckling behavior of viscoelastic spherical shells subjected to uniform external
pressure. The small-strain, moderate-rotation shell theory is used in conjunction with the
standard linear solid to describe viscoelastic shells with geometric imperfections. The
equilibrium equations are obtained by the principle of virtual work. Analyses are carried out
numerically for two types of loadings representative of those employed in experimental studies,
one involving volume control and the other pressure control. Specifically, under volume control
a rate of volume change is prescribed, and under pressure control a pressure is prescribed that
is applied very rapidly and then held constant.

Buckling behavior of spherical shells is investigated for these two classes of loadings over
the full range of viscoelasticity and imperfection amplitude with emphasis on exposing the
imperfection sensitivity as well as the time-dependence. An important and unexpected
coincidence of the limits for short-time elastic buckling and long-time creep buckling is
discovered and discussed in Section 4 for the constant pressure loadings. The coincidence can
be stated simply as the following. For a given imperfection, the short-time elastic buckling limit,
normalized as p/p., is equal to the long-time creep buckling limit, normalized as p/pZ,
where p. is the elastic buckling pressure of the perfect shell determined using the short-time
elastic modulus, E; + E,, and p.° is the elastic buckling pressure of the perfect shell
determined using the long-time elastic modulus, E,. The simplicity of this result permits
construction of a map of buckling behavior over the entire range of pressure, imperfection
amplitude and viscosity. The map delineates three regimes of behavior: no buckling, creep
buckling at finite time, and essentially instantaneous elastic buckling.

In this work, we focus on the buckling of viscoelastic shells under the assumption of
axisymmetry. It should be noted that shells could undergo a secondary buckling transition,
where the dimple loses its axisymmetry at sufficiently large volume changes (Knoche and
Kierfeld, 2014), and the non-axisymmetric buckling has been studied in literature (Hutchinson,
2016; Knoche and Kierfeld, 2014; Taffetani et al., 2018). In those cases, non-axisymmetric
shell equations with bifurcation analysis are needed.

Experiments would be good validations for the theoretical predictions in this work. The
creep buckling phenomenon of spherical shells has been demonstrated in the existing literature
(Stein-Montalvo et al., 2021), but systematic experiments are needed, which will be a topic for

future work.
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Appendix A. Derivation of equilibrium equations using

principle of virtual work

In section 2.3, the equilibrium equations are derived by postulating the principle of virtual
work. Here, the details of the derivation are presented. According to Eq. (11), the internal virtual

work of the shell under axisymmetric deformation can be expressed as

5K, +M,,6K,,)dS . (A1)

ww ww ww

V"w=\|\(N_ O6E +N,O0E, +M
12 006

Based on the middle surface strains and bending strains in Eq. (3), the virtual strain components
are written as

OE,,=0W —(6p+JW,)tan0,

OEy, =0W +0¢,+0W 45+ @op—W, ,00,

oK, = —lé‘(o tan 0, (A-2)
R
1
5K€ = E 5¢,6 .
Substituting Eq. (A.2) into Eq. (A.1), the internal virtual work is given in Eq. (A.3),
VW = j [N, (W — (6@ + W ,)tan ) + N, (W + 6, + OW 5, + 0o — W, ,69)
(A3)

1 1
-M,, E&o tand+ M, Eé’gpﬁ]dS.

Applying the divergence theorem to the derivative terms (twice to the second derivative term),
we can obtain

1
cos’ @

YW

[2]0]

VW =[N, (6W —Sptan ) +(N,,,, tan 0 +N,,

+N gy (OW + @60 =W, ,00) = N gy 400 + N gy ,OW — %M Sptan 6 - %Mae,e&o]ds

[olo]

,(A4)
+[ (=N, @n 0,5 + Ny, 59— Ny 1,60 + Nyyiiyn, W,

—(Nggngte)’[ oW + %M%neé'(p)ds + Nyynyt, oW

corners
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where S denotes the area of the middle surface, C is the boundary, and ng and tg are the
normal and tangent unit vectors on C.

When the shell is subjected to a uniform inward pressure p in the radius direction, the
external virtual work is expressed as in Eq. (12). EVW can be expressed as Eq. (A.5) using the

second equation in Eq. (4).
EVW = [ pRSWdS + [ _[QSW +T,0p+(T,n,— M)W, +T,5W,t,1Rds. (A5)

Now we enforce IVW=EVW for all admissible virtual displacements §W and d¢ in S,
and get
N,,+tan@N,_ ,+ %Nww +Nyy+ Ny oo = PR,
Ccos 1 1 (A6)
—N,,tan0+ Ny —NyW, ;= Ny, —Etan oM, —EMGM =0.
The equations can be normalized using Eq. (10) and Eq. (13). Then the second equation, after
a derivative with respect to 6 is taken on both sides, is inserted into the first equation, and
finally the equilibrium equations in Eq. (14) are obtained. Similarly, by independently varying
6W, 8¢ and W, on the boundary C for non-zero terms, we can obtain the relations among

the boundary forces, moment and internal stress quantities
Q=-N,, tanOn, - N, ,n,,
1
Tg = Nggng +EM9'91’Z'9, (A7)
Tyny —M, = Ngyhyn,.
Either Q or W, Ty or ¢, and Tyng—M, or W, should be specified on C. Specifically, we

employ W =Wy = ¢ = 0 atthe base for the clamped boundary condition in this work, which

ensures the boundary term in Eq. (A.4) is satisfied.
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