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Summary 

Viscoelastic shells subjected to a pressure loading exhibit rich and complex time-dependent 

responses. Here we focus on the phenomenon of pseudo-bistability, i.e. a viscoelastic shell can stay inverted 

when a pressure is removed, and snap to its natural shape after a delay time. We model and explain the 

mechanism of pseudo-bistability with a viscoelastic shell model. It combines the small strain, moderate 

rotation shell theory with the standard linear solid as the viscoelastic constitutive law, and is applicable to 

shells with arbitrary axisymmetric shapes. As a case study, we investigate the pseudo-bistable behavior of 

viscoelastic ellipsoidal shells. Using the proposed model, we successfully predict buckling of a viscoelastic 

ellipsoidal shell into its inverted configuration when subjected to an instantaneous pressure, creeping when 

the pressure is held, staying inverted after the pressure is removed, and eventually snapping back after a 

delay time. The stability transition of the shell from a monostable, temporarily bistable and eventually back 

to the monostable state is captured by examining the evolution of the instantaneous pressure-volume change 



relation at different time of the holding and releasing process. A systematic parametric study is conducted 

to investigate the effect of geometry, viscoelastic properties and loading history on the pseudo-bistable 

behavior. 

Main Text 

1. Introduction 

 Shell buckling has been intensively studied for almost a century [1], and will continuously attract 

the great attention of researchers in the field of solid mechanics. Not only are shell structures broadly used 

in various industrial sectors [2–4], but also the analysis of shell buckling can improve the understanding of 

the motion and morphogenesis of organisms [5,6], which further inspires the design of materials and devices 

with novel functionalities endowed by the nonlinearity and instability of shells [7,8]. 

Elastic shells can undergo snap-through buckling when loaded, in which they rapidly reconfigure 

from one state to another when no stable equilibrium state exists nearby. Such instabilities are ubiquitous 

in nature and our daily life: Venus flytrap, the famous plant capable of fast movement, can rapidly flip its 

bistable leaves to catch preys [6], while hair clips can be quickly sprung up and down by fingers. The snap-

through buckling of elastic shells has been widely employed to achieve rapid deformation in various 

applications, such as soft actuators [9–12], logic switches [13,14], and responsive surfaces [15]. Many of 

these works are based on elastomeric shells, most of which exhibit viscoelasticity. The snap-through 

buckling of shells could be profoundly influenced by viscoelasticity manifested by creep and stress 

relaxation. One example is inducing the so-called “pseudo-bistable” behavior [16–21], which can be 

illustrated by children’s jumping poppers [17]. A jumping popper is a rubber spherical cap that can be 

buckled into an “inside-out” configuration. After being held for a while and released from the load, the 

inverted popper undergoes slow creeping for certain delay time, as if it is in a stable equilibrium state, 

before rapidly snapping back to its natural shape. The recovering time is governed by the viscous time scale 



of the material, and is much longer than that for elastic snap-through buckling. This pseudo-bistable 

behavior has been harnessed to achieve spatiotemporal control of morphing structures [16,22–24]. 

The mechanism of the pseudo-bistability exhibited in buckled viscoelastic shells, however, is far 

from being clear. The straightforward explanation is that the originally monostable shell can temporarily 

acquire stability while it is held in its buckled state. When the buckled shell is released, it gradually loses 

its stability during creeping and eventually snaps back. However, quantitative modeling of viscoelastic 

shells is essential to support this explanation. One effort is describing a viscoelastic shell by a discrete 

spring-mass-dashpot system [17,21], where the stability transition is attributed to the change in the ratio of 

bending to stretching energy caused by viscoelasticity. This argument is not entirely convincing, since it is 

unclear how the ratio of bending to stretching energy evolves in viscoelastic shells, and how it is related to 

the stability. Using finite element simulations together with experiments, researchers capture the pseudo-

bistable behavior of viscoelastic shells [16,21,22]. Although the numerical simulations can accurately 

predict the responses of viscoelastic shells, they provide limited information on their stability. Recently, 

Urbach and Efrati proposed a new approach in predicting the stability of viscoelastic solids [20]. In this 

framework, the behavior of viscoelastic solids is modeled as an elastic response with respect to a temporally 

evolving instantaneous reference metric, which determines the stability of the solids. While this approach 

provides insights into the process of temporarily acquiring and eventually losing stability in the pseudo-

bistable behavior, the understanding of this delayed phenomenon is still unsatisfactory since the 

instantaneous reference metric is complex and abstract, and moreover, the corresponding surface may not 

exist in three-dimensional Euclidean spaces. 

In this paper, we aim to model and explain the pseudo-bistability phenomenon by developing a 

viscoelastic shell model. In our previous work, we have established a shell model for viscoelastic spherical 

shells [25], based on the small strain, moderate rotation shell theory [26,27] combined with the viscoelastic 

material law of standard linear solids. Here we further extend the viscoelastic shell model to shells with 

arbitrary axisymmetric shapes. As a case study, we will investigate the pseudo-bistable behavior of 



viscoelastic ellipsoidal shells. Since pseudo-bistability tends to occur in deep shells, which have relatively 

high strain and rotation when fully inverted, in order to capture the pseudo-bistable behavior, but at the 

same time, to limit the deformation within the assumption of small strain and moderate rotation, we will 

carefully investigate and properly select the geometry, viscoelastic properties and boundary conditions of 

the shells. Using the proposed shell model, we will predict buckling of a viscoelastic ellipsoidal shell into 

its inverted configuration when subjected to an instantaneous pressure load, and snapping-through after a 

delay time when the pressure load is held constantly for a while prior to being removed (Fig. 1). Moreover, 

we will use the model to probe the stability of the shell at different time during the holding and releasing 

process by plotting the corresponding instantaneous pressure-volume change relations. The evolution of 

the instantaneous pressure-volume change relation confirms the stability transition of the shell from a 

monostable state, temporarily bistable state and eventually back to the monostable state over time. Finally, 

the critical creeping time, the minimum time period within which the pressure is held to achieve pseudo-

bistability, as well as the recovery time, the delay time before a shell snaps back when the pressure is 

removed, are predicted using the proposed shell model. 

This paper is structured as follows. In Section 2, a model for viscoelastic shells of arbitrary 

axisymmetric shapes is formulated by combining the small strain, moderate rotation shell theory with the 

linearly viscoelastic constitutive relation. The equilibrium equations are derived using the principle of 

virtual work. In Section 3, the buckling of ellipsoidal shells of different geometry and viscoelastic properties 

at different loading rates are investigated to provide insights into the pseudo-bistability of viscoelastic shells. 

In Section 4, the pseudo-bistable behavior is captured by the proposed shell model. The instantaneous 

pressure-volume change relations at different time during the holding and releasing process are obtained to 

probe the stability transition. In Section 5, a parametric study on the critical creeping time and the recovery 

time is conducted. The conclusion is made in Section 6. 

2. Modeling viscoelastic shells with arbitrary axisymmetric shapes 

2.1 Small strain, moderate rotation shell theory 



 The schematic of a shell structure with thickness ℎ is shown in Fig. 2a. Here we limit ourselves to 

axisymmetric shells about the 𝑒3 axis. Two surface coordinates (𝜃, 𝜔) are used to describe the mid-surface 

of the shell, in which 𝜃  is the meridional angle ranging from 𝜃min  to 𝜋 2⁄  at the pole, and 𝜔  is the 

circumferential angle (not shown in Fig.2a). The mid-surface radius 𝑅(𝜃), which quantifies the shape of 

the shell, could be any smooth function of 𝜃.  

The small strain, moderate rotation shell theory [26–28] is used to describe the deformation of 

viscoelastic shells. The position vector 𝒙 of a material point with a coordinate (𝜃, 𝜔) on the mid-surface of 

the undeformed shell can be expressed in the three-dimensional Euclidean space as  

 𝒙(𝜃, 𝜔) = [𝑅(𝜃) cos 𝜃 cos 𝜔]𝒆1 + [𝑅(𝜃) cos 𝜃 sin 𝜔]𝒆2 + [𝑅(𝜃) sin 𝜃]𝒆3, (1) 

where {𝑒1, 𝑒2, 𝑒3} is a group of orthonormal bases in the Euclidean space. The displacement of this material 

point can be written as 

 𝜹(𝜃, 𝜔) = 𝑢𝛽𝒙,𝛽 + 𝑤𝑵, (2) 

where 𝒙,𝛽 = 𝜕𝒙 𝜕𝛽⁄  and 𝑵 denote the covariant bases and the normal vector of the mid-surface at the 

undeformed state, respectively, and (𝑢𝛽 , 𝑤) are the corresponding displacements. A Greek index takes on 

values of 𝜃 and 𝜔, and a repeated Greek index means summation over 𝜃 and 𝜔. In this paper, we only 

consider axisymmetric deformations. As a result, 𝑢𝜃  and 𝑤  are only functions of 𝜃 , 𝑢𝜔 = 0, and the 

rotation about 𝒙,𝜃, 𝜑𝜔 = 𝜑𝜔 = 0. The corresponding non-zero mid-surface strains and curvature strains 

under axisymmetric deformation are [26,27] 

 𝐸𝜔
𝜔 = 𝑢𝜃Γ𝜃𝜔

𝜔 + 𝑏𝜔
𝜔𝑤, 

𝐸𝜃
𝜃 = 𝑢𝜃′

+ 𝑢𝜃Γ𝜃𝜃
𝜃 + 𝑏𝜃

𝜃𝑤 +
1

2
𝜑2𝑔𝜃𝜃, 

𝐾𝜔
𝜔 = 𝜑Γ𝜃𝜔

𝜔 , 

𝐾𝜃
𝜃 = 𝜑′ + 𝜑Γ𝜃𝜃

𝜃 , 

(3) 

where (∙)′ denotes 𝑑(∙) 𝑑𝜃⁄ , 𝜑 = 𝜑𝜃 = 𝑔𝜃𝜃𝜑𝜃, where 𝜑𝜃 denotes the rotation about 𝒙,𝜔, 



 𝜑 = −𝑤′𝑔𝜃𝜃 + 𝑏𝜃
𝜃𝑢𝜃, (4) 

Γ𝜃𝜔
𝜔  and Γ𝜃𝜃

𝜃  are Christoffel symbols (Eq. (A 22)), 𝑔𝛼𝛽  and 𝑔𝛼𝛽  are the covariant and contravariant 

components of the first fundamental form of the mid-surface (Eq. (A 19)), and 𝑏𝛼
𝛽

 are the mixed 

components of the second fundamental form of the mid-surface (Eq. (A 20)). Compared to spherical shells, 

non-spherical shells have much more complex strains in Eq. (3) due to the non-constant 𝑅(𝜃), since all the 

coefficients of 𝑢𝜃, 𝑤, 𝜑 and their derivatives depend on 𝜃. The mid-surface and curvature strains in Eq. (3) 

can be expressed in terms of 𝑢𝜃 and 𝑤, or equivalently in terms of 𝜑 and 𝑤. Here we choose 𝜑 and 𝑤 as 

the two independent variables by replacing 𝑢𝜃 with a function of 𝜑 and 𝑤 obtained from Eq. (4). The strain 

of the shell at an arbitrary position can be expressed as 𝜀𝛼
𝛽

= 𝐸𝛼
𝛽

+ 𝑧𝐾𝛼
𝛽

, where 𝑧 is the coordinate in the 

thickness direction of the shell and measured from the mid-surface. 

2.2 Viscoelastic constitutive relations 

 Following our previous work [25], here we develop a viscoelastic constitutive relation for 

viscoelastic shells. We use the Boltzmann superposition principle to quantify the effect of strain history on 

the current stress state. The two-dimensional stress-strain relation of viscoelasticity under plane stress can 

be written as 

 
𝜎𝛼𝛽(𝑡) = ∫

𝐸(𝑡−𝜏)

1−𝜐2 [(1 − 𝜐)
𝑑𝜀𝛼𝛽(𝜏)

𝑑𝜏
+ 𝜐

𝑑𝜀𝛾
𝛾(𝜏)

𝑑𝜏
𝑔𝛼𝛽] 𝑑𝜏

𝑡

0
, 

(5) 

where 𝐸(𝑡) is the relaxation modulus as a function of time 𝑡, 𝜐 is the Poisson’s ratio, assumed to be a 

constant, and 𝛼  and 𝛽  are two free indices taking on values 𝜃  and 𝜔 . We quantify the material 

viscoelasticity using the standard linear solid model (Fig. 2b), which contains a Maxwell model with a 

spring of modulus 𝐸1  and a dashpot of viscosity 𝜂 , connected in parallel to a spring of modulus 𝐸∞ . 

Accordingly, the relaxation modulus takes the following form 

 𝐸(𝑡) = 𝐸∞ + 𝐸1𝑒−𝑡 𝜏𝑟⁄ , (6) 

where 𝜏𝑟 = 𝜂 𝐸1⁄  represents the relaxation time.  



 Integrating the stresses in Eq. (5) and stresses multiplied by distance over the thickness yield the 

resultant membrane stresses 𝑁𝛼𝛽(𝑡) and the bending moments 𝑀𝛼𝛽(𝑡) at time 𝑡, respectively, 

 
𝑁𝛼𝛽(𝑡) = ∫ 𝜎𝛼𝛽(𝑡)𝑑𝑧

ℎ

2

−
ℎ

2

, 𝑀𝛼𝛽(𝑡) = ∫ 𝜎𝛼𝛽(𝑡)𝑧𝑑𝑧
ℎ

2

−
ℎ

2

. 
(7) 

Substituting the non-zero strains in Eq. (3) and the constitutive relation in Eq. (5) into Eq. (7), we obtain 

the non-zero resultant membrane stresses and the bending moments, 

 
𝑁𝜔𝜔(𝑡) =

ℎ𝑔𝜔𝜔

1−𝜐2 ∫ 𝐸(𝑡 − 𝜏) [
𝑑𝐸𝜔

𝜔(𝜏)

𝑑𝜏
+ 𝜐

𝑑𝐸𝜃
𝜃(𝜏)

𝑑𝜏
] 𝑑𝜏

𝑡

0
, 

𝑁𝜃𝜃(𝑡) =
ℎ𝑔𝜃𝜃

1−𝜐2 ∫ 𝐸(𝑡 − 𝜏) [
𝑑𝐸𝜃

𝜃(𝜏)

𝑑𝜏
+ 𝜐

𝑑𝐸𝜔
𝜔(𝜏)

𝑑𝜏
] 𝑑𝜏

𝑡

0
, 

𝑀𝜔𝜔(𝑡) =
ℎ3𝑔𝜔𝜔

12(1−𝜐2)
∫ 𝐸(𝑡 − 𝜏) [

𝑑𝐾𝜔
𝜔(𝜏)

𝑑𝜏
+ 𝜐

𝑑𝐾𝜃
𝜃(𝜏)

𝑑𝜏
] 𝑑𝜏

𝑡

0
, 

𝑀𝜃𝜃(𝑡) =
ℎ3𝑔𝜃𝜃

12(1−𝜐2)
∫ 𝐸(𝑡 − 𝜏) [

𝑑𝐾𝜃
𝜃(𝜏)

𝑑𝜏
+ 𝜐

𝑑𝐾𝜔
𝜔(𝜏)

𝑑𝜏
] 𝑑𝜏

𝑡

0
. 

(8) 

2.3 Principle of virtual work and equilibrium equations 

 Following the literature [26,27], here we use the principle of virtual work to derive the equilibrium 

equations at a given moment 𝑡. Let 𝛿𝑢𝜃 and 𝛿𝑤 be the virtual displacements of the mid-surface of the shell 

at time 𝑡. The associated virtual strains can be expressed as 𝛿𝜀𝛼𝛽 = 𝛿𝐸𝛼𝛽 + 𝑧𝛿𝐾𝛼𝛽. The internal virtual 

work (IVW) of the shell is 

 
IVW = ∫ 𝑑𝑆

𝑆
∫ 𝑑𝑧𝜎𝛼𝛽𝛿𝜀𝛼𝛽

ℎ

2

−
ℎ

2

= ∫ [𝑁𝛼𝛽𝛿𝐸𝛼𝛽 + 𝑀𝛼𝛽𝛿𝐾𝛼𝛽]𝑑𝑆
𝑆

, (9) 

where 𝑆 represents the area of the mid-surface of the shell. The external virtual work (EVW) due to a 

uniform live pressure Δ𝑃 acting on the shell is [26,27] (Eq. (A 6)) 

 EVW = ∫ [Δ𝑃𝜑𝛿𝑢𝜃 + Δ𝑃(1 + 𝑢,𝛾
𝛾

+ 𝑏𝛾
𝛾

𝑤)𝛿𝑤]𝑑𝑆
𝑆

+ ∮ (𝑇𝜃𝛿𝑢𝜃 + 𝑄𝛿𝑤 − 𝑀𝑛𝛿𝑤,𝑛)𝑑𝑠
𝐶

, (10) 

where 𝑇𝜃 represents the edge resultant traction along 𝒙,𝜃, 𝑄 represents the normal edge force, and 𝑀𝑛 =

𝑀𝛼𝛽𝑛𝛼𝑛𝛽 is the component of the edge moment, 𝑛𝛽 denotes the components of the unit vector normal to 



the boundary C tangent to the shell, and s is the length of the edge of the shell. Enforcing IVW = EVW 

yields the following equilibrium equations (see Appendix A for details) 

 −𝑀,𝛼𝛽
𝛼𝛽

+ 𝑁𝛼𝛽𝑏𝛼𝛽 + (𝑁𝛼𝛽𝜑𝛼)
,𝛽

= Δ𝑃(1 + 𝑢,𝛾
𝛾

+ 𝑏𝛾
𝛾

𝑤), 

−𝑁,𝛽
𝜃𝛽

− 𝑀,𝛽
𝛼𝛽

𝑏𝛼
𝜃 −

1

2
(𝑀𝛼𝛽𝑏𝛼

𝜃 − 𝑀𝜃𝛼𝑏𝛼
𝛽

)
,𝛽

+ 𝑁𝛼𝛽𝜑𝛼𝑏𝛽
𝜃 = Δ𝑃𝜑, 

(11) 

where ( ),𝛼 and ( ),𝛼𝛽 are the first and second-order covariant derivatives of ( ).  

In Eq. (11), 𝜑 and 𝑤 are the two independent variables, and the highest order terms are 𝜑′′′ and 

𝑤′′′, yielding a system of six-order nonlinear ordinary differential equations (ODEs). In order to limit the 

deformation within the assumption of small strain and moderate rotation for a deep shell that possesses 

pseudo-bistability when fully inverted, we choose the sliding boundary for the shell, i.e., on the boundary 

at 𝜃 = 𝜃min, the shell is allowed to slide freely along 𝑒1, but not along 𝑒3 (Fig. 1a). As a result, the traction 

along 𝑒1 is zero 

 (𝑇𝜃𝒙,𝜃 + 𝑄𝑵) ∙ 𝑒1 = 𝑇𝜃(𝑅′ cos 𝜃 − 𝑅 sin 𝜃) + 𝑄
𝑅′ sin 𝜃+𝑅 cos 𝜃

√𝑅′2
+𝑅2

= 0, (12) 

where 𝑇𝜃 and 𝑄 are given by Eq. (A 8), and the displacement along 𝑒3 is zero, 

 𝜹 ∙ 𝑒3 = 𝑢𝜃(𝑅′ sin 𝜃 + 𝑅 cos 𝜃) −
𝑤(𝑅′ cos 𝜃−𝑅 sin 𝜃)

√𝑅′2
+𝑅2

= 0. 
(13) 

In addition, the assumption of axisymmetric deformation requires 𝑤′ = 𝜑 = 𝜑′′ = 0 at the pole (𝜃 =
𝜋

2
). 

 𝜑 and 𝑤 at time 𝑡 can be obtained by solving the above boundary value problem, using the bvp4c 

solver and the finite difference method in Matlab. Here we consider three types of loading: i) pressure-

controlled loading, ii) displacement-controlled loading, and iii) volume-controlled loading. When the 

pressure Δ𝑃 serves as the load parameter, the equilibrium equations in Eq. (11) are solved with prescribed 

evolution of pressure as a function of time. Displacement-controlled loading means that the displacement 

at the pole 𝑤pole = 𝑤 (𝜃 =
𝜋

2
) (Fig. 2a) is prescribed as the load parameter. With this loading type, the 

pressure is treated as an extra variable. Correspondingly, an additional ODE, Δ𝑃′ = 0, is added to the ODE 



set. Volume-controlled loading is achieved by setting the volume of the shell as an additional variable and 

adding an extra constraining ODE relating the volume and displacement to the ODE set, where the pressure 

is regarded as an extra variable as well. In this paper, the pressure-controlled loading is used to demonstrate 

the pseudo-bistable behavior while the volume-controlled loading is used to produce the instantaneous 

pressure-volume change relations to examine the stability transition during the pseudo-bistability 

phenomenon. Due to the low practicality in operation, the displacement-controlled loading is only used to 

assist finding the equilibrium pressure-volume change paths for some elastic shells, especially for those 

exhibiting unstable paths when the other two loading types are adopted.  

3. Rate-dependent buckling behaviors 

 In Section 2, we establish a model for viscoelastic shells with arbitrary axisymmetric shapes. In 

this section, we will study particular examples of ellipsoidal shells with the following 𝑅(𝜃) 

 𝑅(𝜃) =
𝑏

√1−𝑒2 cos2 𝜃
, (14) 

where 𝑒 = √1 − (𝑏 𝑎⁄ )2 denotes eccentricity, and 𝑎 and 𝑏 denote the half lengths of the major and minor 

axes, respectively. Using the proposed shell model, we will first conduct the buckling analysis of elastic 

shells to figure out how geometry influences the stability of the shells. We then examine the effect of 

loading rates and viscoelastic properties on the rate-dependent buckling behavior of viscoelastic shells. The 

analysis in this section provides insights into choosing proper geometric parameters and material properties 

to achieve pseudo-bistability in viscoelastic shells. 

3.1 Buckling of elastic shells 

 The buckling behavior of elastic ellipsoidal shells subjected to uniform live pressures can be 

obtained by solving the equilibrium equations (Eq. (11)) and boundary conditions (Eqs. (12)(13)) with the 

following isotropic linearly elastic material law, 

 𝑁𝛼𝛽 =
𝐸0ℎ

1−𝜈2 [(1 − 𝜐)𝐸𝛼𝛽 + 𝜐𝐸𝛾
𝛾

𝑔𝛼𝛽], (15) 



𝑀𝛼𝛽 =
𝐸0ℎ3

12(1−𝜈2)
[(1 − 𝜐)𝐾𝛼𝛽 + 𝜐𝐾𝛾

𝛾
𝑔𝛼𝛽], 

where 𝐸0  denotes the Young’s modulus, and 𝜐  is the Poisson’s ratio, which is assumed to equal 0.5 

(incompressible material) throughout this paper. Fig. 3 shows the relations between the normalized pressure 

∆𝑃 𝐸0⁄  and normalized displacement − 𝑤pole 𝑎⁄  at the pole (Fig. 3a), as well as the relations between the 

normalized pressure ∆𝑃 𝐸0⁄  and normalized volume change ∆𝑉 𝑉0⁄  (Fig. 3b) for elastic ellipsoidal shells 

with ℎ 𝑎⁄ = 0.02, 𝜃min = 17𝜋 128⁄ , and different minor-to-major-length ratios 𝑏 𝑎⁄  quantifying the 

shallowness of the shells. Here Δ𝑉 is the volume change of the shell with respect to the undeformed state 

at t = 0, and 𝑉0 represent the negative volume of the shell in the undeformed state, 

 
𝑉0 = − ∫ 𝜋𝑅2 cos2 𝜃 (𝑅′ sin 𝜃 + 𝑅 cos 𝜃)𝑑𝜃

𝜋

2

𝜃min
. 

(16) 

The shells with different minor-to-major-length ratios 𝑏 𝑎⁄  exhibit quite different ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  

curves (Fig. 3b). When 𝑏 𝑎⁄ = 0.28, ∆𝑃 𝐸0⁄  increases monotonically with the increase of ∆𝑉 𝑉0⁄ . For 

𝑏 𝑎⁄ = 0.36, ∆𝑃 𝐸0⁄  initially increases, then decreases after the shell buckles, and increases again with the 

increase of ∆𝑉 𝑉0⁄ , showing the features of snap-through buckling. The above two shells are monostable, 

since their ∆𝑃 𝐸0⁄  remains positive. As 𝑏 𝑎⁄  becomes large (𝑏 𝑎⁄ = 0.47), both ∆𝑃 𝐸0⁄  and ∆𝑉 𝑉0⁄  change 

non-monotonically, forming a very complex curve. Moreover, the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve intersects with the 

horizontal line of ∆𝑃 = 0 (dashed line) at three points (Fig. 3b), where point 1 and 3 represent two stable 

equilibrium states while point 2 represents an unstable equilibrium state when ∆𝑃 = 0. Therefore, the three 

intersection points indicate that the shell with 𝑏 𝑎⁄ = 0.47 is bistable. The stability of the shells can also be 

measured by the local minimum pressure ∆𝑃min 𝐸0⁄  of the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve. A positive ∆𝑃min 𝐸0⁄  

means monostability, whereas a negative ∆𝑃min 𝐸0⁄  indicates that the shell has more than one stable state 

when ∆𝑃 = 0, and therefore bistability. From Fig. 3 we can see that the stability of shells (monostability or 

bistability) can be tuned by the minor-to-major-length ratio 𝑏 𝑎⁄ : a deeper shell with a higher 𝑏 𝑎⁄  is more 

likely to be bistable. The ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves for 𝑏 𝑎⁄ = 0.28 and 0.36 can be obtained by prescribing a 

monotonic increase in the load parameter of either 𝑤pole 𝑎⁄  or ∆𝑉 𝑉0⁄ . The two loading methods yield the 



exactly same ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves. However, the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  equilibrium path for 𝑏 𝑎⁄ = 0.47 can 

only be achieved by treating 𝑤pole 𝑎⁄  as the load parameter, since 𝑤pole 𝑎⁄  rather than ∆𝑉 𝑉0⁄  or ∆𝑃 𝜇0⁄  

increases monotonically along the equilibrium path.  

 To verify the axisymmetric deformation of the shells with the chosen geometry, we conduct finite 

element analysis (FEA) for the shells without axisymmetric constraints using the commercial software 

Abaqus/Standard. The static Riks method is implemented to capture the unstable equilibrium ∆𝑃 𝐸0⁄ -

∆𝑉 𝑉0⁄  curve of the elastic ellipsoidal shells under pressure-controlled loading and the boundary condition 

as shown in Eqs. (12)(13). The shells are modeled as an incompressible linearly elastic material with 8-

node doubly curved thick shell elements with reduced integration (Abaqus type S8R). We plot the ∆𝑃 𝐸0⁄ -

∆𝑉 𝑉0⁄  curves from FEA (circular dots in Fig. 3a-b) for the shells with 𝑏 𝑎⁄ = 0.28 and 0.36. We find very 

good agreement between the results from the shell model and FEA for 𝑏 𝑎⁄ = 0.28, and the deformation of 

the shell in FEA is also axisymmetric. For 𝑏 𝑎⁄ = 0.36, although there is slight deviation between the 

results from the shell model and FEA after the buckling, the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves obtained from the shell 

model can still reasonably capture the deformation process. Therefore, the shell model is still a good 

analytical tool for us to understand the mechanism of pseudo-bistaiblity. Moreover, the deformation of the 

shell with 𝑏 𝑎⁄ = 0.36 in FEA is also axisymmetric. In Fig. 3c we plot the deformed shapes of the shell 

with 𝑏 𝑎⁄ = 0.36  when it is on the edge of buckling (∆𝑉 𝑉0⁄ = 0.493), the pressure reaches a local 

minimum (∆𝑉 𝑉0⁄ = 1.107), and the shell is fully inverted (∆𝑉 𝑉0⁄ = 1.754). The deformation mode for 

𝑏 𝑎⁄ = 0.47 from FEA, however, is no longer axisymmetric. Therefore, in the following, we will limit 

ourselves to shells with 𝑏 𝑎⁄ ≤ 0.36. 

3.2 Buckling of viscoelastic shells  

 Next, we will examine the buckling behaviors of viscoelastic ellipsoidal shells under volume-

controlled loading over a wide range of loading rates. The influence of the relative modulus of relaxation, 

𝐸rel = 𝐸1 𝐸0⁄ , which is the ratio of the modulus in the Maxwell element 𝐸1 to the instantaneous modulus 



𝐸0 = 𝐸1 + 𝐸∞, on the buckling behavior is also studied. We define a dimensionless loading rate, 𝛾𝑉, to 

quantify the rate of changes in the volume, 

 𝛾𝑉 =
𝑑(Δ𝑉 𝑉0⁄ )

𝑑(𝑡 𝜏𝑟⁄ )
, (17) 

which indicates that in the relaxation time scale 𝜏𝑟 the volume change is 𝑉0𝛾𝑉. In the following we will 

take the shell with 𝑏 𝑎⁄ = 0.36  as an example and study its rate-dependent buckling behavior. Other 

geometric parameters are ℎ 𝑎⁄ = 0.02, 𝜃min = 17𝜋 128⁄ . 

 We first examine the influence of the loading rates on the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve under volume-

controlled loading. The curves corresponding to different volume loading rates 𝛾𝑉 ranging from 0.01 to 10 

are plotted in Fig. 4a when the relative modulus of relaxation 𝐸rel is fixed at 0.5. When 𝛾𝑉 is very low 

(𝛾𝑉 = 0.01), almost full relaxation occurs, and the response of the shell is governed by the long-term 

modulus, 𝐸∞. As a result, the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves at very low 𝛾𝑉 approach that of the elastic shell with 

modulus 𝐸 = 𝐸∞ (dot-dashed line in Fig. 4a). On the other hand, the very high 𝛾𝑉 (𝛾𝑉 = 10) results in little 

relaxation. Correspondingly, the effective modulus of the shell is close to the instantaneous modulus 𝐸0 =

𝐸1 + 𝐸∞, and thus the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves at very high 𝛾𝑉 approach that of the elastic shell with modulus 

𝐸0 = 𝐸1 + 𝐸∞ (dashed line in Fig. 4a). The ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves at moderate 𝛾𝑉 are located in between 

the two extreme cases, and the resultant pressure ∆𝑃 𝐸0⁄  for a given volume change ∆𝑉 𝑉0⁄  increases as 𝛾𝑉 

increases. The buckling pressure ∆𝑃max/𝐸0 at very high (low) 𝛾𝑉 approaches that of the elastic shell with 

𝐸1 + 𝐸∞ (𝐸∞) (Fig. 4b). In between the very low and very high 𝛾𝑉, the increase of 𝛾𝑉 results in a notable 

increase in ∆𝑃max/𝐸0 (Fig. 4b). The middle-surface profiles of the shell under different volume changes 

∆𝑉 𝑉0⁄  at the volume loading rate 𝛾𝑉 = 0.5 is shown in Fig. 4c. The profile of the shells stays concave 

before the pressure reaches the critical pressure for buckling when ∆𝑉 𝑉0⁄ = 0.475, and transitions from 

concave to convex as the pressure decreases and the volume change increases (0.475 < ∆𝑉 𝑉0⁄ < 1.12). 

Finally, the profile keeps convex while the pressure increases again with the increase of the volume change 

(∆𝑉 𝑉0⁄ ≥ 1.12). 



The ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves for viscoelastic shells also highly depend on the relative modulus of 

relaxation, 𝐸rel . We consider a moderate loading rate 𝛾𝑉 = 0.5, and plot the ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curves for 

different 𝐸rel ranging from 0 to 1, as shown in Fig. 4d. When 𝐸rel = 0, no relaxation occurs, and thus the 

corresponding ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve coincides with that of the elastic shell with modulus 𝐸0 = 𝐸1 + 𝐸∞ 

(dashed line in Fig. 4d). As 𝐸rel increases from 0, the resultant pressure ∆𝑃 𝐸0⁄  reduces notably for a given 

volume change ∆𝑉 𝑉0⁄ , leading to a reduction in ∆𝑃max/𝐸0 (Fig. 4e). 

4. Mechanism of pseudo-bistability 

 In this section, we will first use the viscoelastic shell model formulated in Section 2 to demonstrate 

the pseudo-bistability phenomenon, in which an inverted viscoelastic ellipsoidal shell snaps back to its 

natural state with a delay time after a pressure load is held constantly for a while prior to being released. 

We will then probe the stability of the shell at different time during this holding and releasing process by 

plotting the corresponding instantaneous pressure-volume change relations. The obtained stability 

transition provides insights into the mechanism of the pseudo-bistability. 

4.1 Predicting pseudo-bistable behavior  

 Demonstrating pseudo-bistability in a viscoelastic shell requires a careful choice of geometry and 

viscoelastic properties. The geometry should result in a monostable pressure ∆𝑃 𝐸0⁄ -volume change ∆𝑉 𝑉0⁄  

relation if the shell were elastic, but the minimum normalized pressure ∆𝑃min 𝐸0⁄  is not too far away from 

zero. On the other hand, the viscoelastic effects should be large enough to trigger pseudo-bistability. We 

choose a viscoelastic shell with the geometric parameters as 𝑏 𝑎⁄ = 0.36, ℎ 𝑎⁄ = 0.02, 𝜃min = 17𝜋/128, 

which corresponds to a monostable shell if it were elastic, and material parameter 𝐸rel = 0.5. We apply an 

instantaneous pressure load ∆𝑃 𝐸0⁄ = 2.67 × 10−5, which is above its buckling pressure ∆𝑃max/𝐸0, and 

release this pressure after holding it for 𝑡creep = 𝜏𝑟 (Fig. 5a). The corresponding volume change ∆𝑉 𝑉0⁄  as 

a function of time 𝑡 is computed based on the proposed shell model (Fig. 5b and Appendix video). We 

observe that the shell immediately buckles into an inverted shape once the pressure is applied (Fig. 5b-c, 



moment 2), and creeps with a small increase in volume change for 𝑡creep = 𝜏𝑟 (Fig. 5b-c, from moment 2 

to moment 4). After the pressure is removed, the viscoelastic shell can temporarily stay inverted for 𝑡rec =

1.136𝜏𝑟 (Fig. 5b-c, from moment 5 to moment 7). At moment 7, a solution of the inverted state can no 

longer be found using the solution of the last iteration as the initial guess with the ODE solver, but only a 

solution of the unbuckled state can be found using the undeformed configuration as the initial guess. 

Accordingly, the shell snaps from the inverted configuration (moment 7) back to the unbuckled 

configuration (moment 8). After this snapping deformation, the shell gradually recovers its undeformed 

shape, with ∆𝑉 𝑉0⁄  slowly decreasing to zero. The characteristics of this observed deformation history agree 

with those of FEA simulations and experiments reported in literature [16,21,22], indicating that the 

proposed viscoelastic shell model can capture the pseudo-bistability exhibited in viscoelastic shells.  

4.2 Stability transition during delayed snap-through  

 Having successfully predicted the pseudo-bistable behavior of a viscoelastic shell using the 

proposed shell model, we next investigate the stability transition of the shell during this holding and 

releasing process. For an elastic shell, the number of the intersection points of its pressure-volume change 

curve with the horizontal line of zero pressure determines its stability (Fig. 3b). One intersection point 

indicates that the shell is monostable, since there is only one stable equilibrium state when no pressure is 

applied. Three intersection points, on the other hand, indicate that the shell is bistable, since there are two 

stable and one unstable equilibrium states at zero pressure. To probe the stability evolution of the 

viscoelastic shell during the hold and releasing process, we need to plot the instantaneous pressure-volume 

change relation at different time moments and check the number of intersection points with the horizontal 

line of zero pressure. In Section 3, we have learned that an extremely fast loading 𝛾𝑉 ≫ 1 can eliminate the 

viscoelastic relaxation effects and yield an instantaneous pressure-volume change response of a shell. 

Therefore, in the following we will conduct volume-controlled loading to different time moments of interest 

in the holding and releasing process, and unload (or load for some cases) at an extremely high rate to obtain 



the corresponding instantaneous pressure-volume change responses, which provide information on the 

stability evolution of the viscoelastic shell. 

We follow the same loading process up to the different time moments as in Fig. 5a, and unload at 

a very high rate of changes in the volume 𝛾𝑉 = 10 to obtain the instantaneous pressure ∆𝑃 𝐸0⁄ -volume 

change ∆𝑉 𝑉0⁄  relations (Fig. 6a-f). When the shell is unloaded at moment 2, right after the instantaneous 

pressure is applied (Fig. 5a), the instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  relation (Fig. 6a) is exactly the same as the 

∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve for the elastic shell with the same geometry (the red curve in Fig. 3b). This agreement 

is due to the fact that creeping has not yet started and thus viscoelasticity plays no role. At moment 2, the 

local minimum pressure of the instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve, ∆𝑃min 𝐸0⁄ , is larger than zero, so the 

shell is monostable. When the pressure is held until moment 3, ∆𝑃min 𝐸0⁄  of the instantaneous ∆𝑃 𝐸0⁄ -

∆𝑉 𝑉0⁄  curve decreases to zero (Fig. 6b). When the pressure is held for an even longer time, for example 

until moment 4,  ∆𝑃min 𝐸0⁄  of the instantaneous ∆𝑃 𝐸0⁄ - ∆𝑉 𝑉0⁄  curve becomes negative (Fig. 6c). 

Accordingly, the number of the intersection points between the instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve and the 

horizontal line of ∆𝑃 𝐸0⁄ = 0 (dashed line) changes from one (Fig. 6a) to two (Fig. 6b), and eventually to 

three (Fig. 6c). Thus, the stability of the shell transitions from a monostable state to bistable state due to 

viscoelastic creeping, with moment 3 as the critical transition time, at which ∆𝑃min 𝐸0⁄ = 0.  

Right after the pressure is removed, the shell jumps from the configuration at moment 4 to the 

closest stable configuration (moment 5 in Fig. 5b), which corresponds to the third intersection point between 

the instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve and the horizontal line of ∆𝑃 𝐸0⁄ = 0 (point 5 in Fig. 6c). This jump 

results in a sudden drop in ∆𝑉 𝑉0⁄  (from moment 4 to 5 in Fig. 5b). After the load is released (∆𝑃 𝐸0⁄ = 0), 

the instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve further evolves: ∆𝑃min 𝐸0⁄  starts to increase (Fig. 6d-e), and the 

third intersection point gradually shifts to the left (from point 5 in Fig. 6c to point 6 in Fig. 6d), resulting in 

a slow decrease in ∆𝑉 𝑉0⁄  (from moment 5 to 6 in Fig. 5b). The shell is bistable and stays inverted as long 

as ∆𝑃min 𝐸0⁄ < 0. When ∆𝑃min 𝐸0⁄  increases back to zero at moment 7 (Fig. 6e), the third and the second 

intersection points merge into a single point (point 7 in Fig. 6e) tangent to the horizontal line of ∆𝑃 𝐸0⁄ =



0. The shell at moment 7 is unstable and thus snaps to the only stable configuration (point 8 in Fig. 6e). 

Correspondingly, the shell snaps from the inverted state (moment 7) to unbuckled state (moment 8). 

Therefore, moment 7 is the critical moment at which the stability transitions from the bistable state back to 

the monostable state. As the creeping process continues, ∆𝑃min 𝐸0⁄  keeps increasing. As a result, only one 

intersection point exists and shifts to the left (from point 8 in Fig. 6e to point 9 in Fig. 6f), leading to a 

decrease in ∆𝑉 𝑉0⁄  (from moment 8 to 9 in Fig. 5b). At moment 9, the instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve 

almost recovers the one at moment 2, the intersection point almost overlaps the origin, and the shell almost 

recovers the stress-free shape and volume (Fig. 6f).  

We summarize the ∆𝑃min 𝐸0⁄ -time relation in Fig. 7, from which we can clearly observe the 

stability transition of the viscoelastic shell from a monostable state to a bistable state, and back to the 

monostable state during the holding and releasing process. ∆𝑃min 𝐸0⁄ , starting with a positive value, 

monotonically decreases while the pressure is held constantly, and reaches its minimum when the pressure 

is removed at 𝑡 𝜏r⁄ = 𝑡creep 𝜏r⁄ = 1. Accordingly, the shell is initially monostable, and switches to bistable 

when ∆𝑃min 𝐸0⁄  flips its sign from positive to negative, and stays bistable. Here we define the time period 

within which ∆𝑃min 𝐸0⁄  decreases to zero as the critical creeping time 𝑡creep
cr , representing the minimum 

creeping time required for the stability transition. Only if the pressure is held for a time period longer than 

𝑡creep
cr , can the shell exhibit pseudo-bistability. After the shell is released at 𝑡 𝜏r⁄ = 1, ∆𝑃min 𝐸0⁄  starts to 

increase. When ∆𝑃min 𝐸0⁄  flips its sign back to positive, the acquired stability is lost and the shell recovers 

the monostable state, triggering snapping from the inverted configuration to the unbuckled configuration. 

The time period within which ∆𝑃min 𝐸0⁄  increases from its minimum to zero is the recovery time 𝑡rec 

defined in Fig. 5b. As time goes on, ∆𝑃min 𝐸0⁄  continues increasing and approaches its initial value. 

5. Influence of geometry, viscoelastic property and loading history on pseudo-bistability 

 In this section, we will investigate how the geometry and viscoelastic property of ellipsoidal shells, 

and the loading history influence their pseudo-bistable behavior. Specifically, the minor-to-major-length 



ratio 𝑏 𝑎⁄ , relative modulus of relaxation 𝐸rel, and the holding time 𝑡creep 𝜏r⁄  are considered. A higher 𝑏 𝑎⁄  

(a deeper shell) results in a smaller local minimum pressure ∆𝑃min 𝐸0⁄  in the instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  

curve (Fig. 3b), and thus leads to a shell closer to a bistable one if it were elastic. A larger 𝐸rel causes a 

stronger viscoelastic effect, while a longer 𝑡creep 𝜏r⁄  results in a longer creeping process. Other parameters 

such as ℎ 𝑎⁄ = 0.02, 𝜃min = 17𝜋/128, and the applied pressure ∆𝑃 𝐸0⁄ = 2.67 × 10−5  are fixed. The 

critical creeping time 𝑡creep
cr  and the recovery time 𝑡rec will be investigated with respect to different values 

of the parameters mentioned above. 

We first examine the effect of the minor-to-major-length ratio 𝑏 𝑎⁄  on the pseudo-bistable behavior. 

We apply an instantaneous pressure and release this pressure after holding it for 𝑡creep 𝜏r⁄ = 1 (Fig. 5a). 

The volume change ∆𝑉 𝑉0⁄  as a function of time 𝑡, as well as the local minimum pressure ∆𝑃min 𝐸0⁄  of the 

instantaneous ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve as a function of time 𝑡 for shells with relative modulus of relaxation 

𝐸rel = 0.5 and different 𝑏 𝑎⁄  are plotted in Fig. 8. From the ∆𝑉 𝑉0⁄ -𝑡 curves (Fig. 8a), we find that the shells 

with 𝑏 𝑎⁄ = 0.35 and 0.36 exhibit pseudo-bistability while the shell with 𝑏 𝑎⁄ = 0.34 does not, and that 

the shell with 𝑏 𝑎⁄ = 0.36 has a longer delay time than the one with 0.35. This is because ∆𝑃min 𝐸0⁄  

decreases slower for a shallower shell (lower 𝑏 𝑎⁄ ) (Fig. 8b) during the holding process. At 𝑡 𝜏r⁄ =

𝑡creep 𝜏r⁄ = 1, the shells with 𝑏 𝑎⁄ = 0.35 and 0.36 reach negative ∆𝑃min 𝐸0⁄ , indicating that they are 

temporally bistable. The shell with 𝑏 𝑎⁄ = 0.36 has a smaller ∆𝑃min 𝐸0⁄  than the one with 𝑏 𝑎⁄ = 0.35. 

Thus, it takes longer for the ∆𝑃min 𝐸0⁄  of the shell with 𝑏 𝑎⁄ = 0.36 to recover a positive value after the 

pressure is removed, leading to a longer recovery time 𝑡rec. In addition, the critical creeping time 𝑡creep
cr , 

the intersection point between the ∆𝑃min 𝐸0⁄ -𝑡 curve and the horizontal line of ∆𝑃min 𝐸0⁄ = 0 (dashed line 

in Fig. 8b), for 𝑏 𝑎⁄ = 0.36 is smaller than the one for 𝑏 𝑎⁄ = 0.35. The ∆𝑃min 𝐸0⁄  for the shell with 𝑏 𝑎⁄ =

0.34, however, remains positive at 𝑡 𝜏r⁄ = 𝑡creep 𝜏r⁄ = 1, indicating that it stays monostable during the 

holding process and thus immediately snaps back after it is released. The shell with 𝑏 𝑎⁄ = 0.34 needs 



longer 𝑡creep 𝜏r⁄  to reduce ∆𝑃min 𝐸0⁄  to a negative value in order to trigger pseudo-bistability. For all the 

three shells, their ∆𝑃min 𝐸0⁄  recovers the initial values as 𝑡 approaches 5𝜏r. 

We then investigate how the viscoelastic effect influences the pseudo-bistable behavior. We apply 

the same loading process as shown in Fig. 5a, and plot the ∆𝑉 𝑉0⁄ -𝑡 𝜏r⁄  curves (Fig. 9a) and corresponding 

∆𝑃min 𝐸0⁄ -𝑡 𝜏r⁄  relations (Fig. 9b) for viscoelastic shells with 𝑏 𝑎⁄ = 0.36 and different 𝐸rel. Fig. 9a shows 

that the shells with high (𝐸rel = 0.5) and intermediate (𝐸rel = 0.4) viscoelastic effects exhibit pseudo-

bistable behavior while the shell with a low viscoelastic effect (𝐸rel = 0.05) snaps back immediately after 

the pressure is removed. In addition, a higher viscoelastic effect results in a longer recovery time 𝑡rec. In 

Fig. 9b, we can clearly see that the stability transitions from a monostable state (∆𝑃min 𝐸0⁄ > 0) to a bistable 

state (∆𝑃min 𝐸0⁄ < 0) for the shells with 𝐸rel = 0.4 and 0.5, whereas the shell with 𝐸rel = 0.05 remains 

monostable during the holding process. The ∆𝑃min 𝐸0⁄  for the shell with 𝐸rel = 0.05 reduces more and 

more slowly as 𝑡 increases and reaches a plateau at 𝑡 𝜏r⁄ = 𝑡creep 𝜏r⁄ = 1, meaning that increasing the 

holding time can never reduce ∆𝑃min 𝐸0⁄  to a negative value, and thus leads to no pseudo-bistable behavior. 

Therefore, there exists a critical value of 𝐸rel for shells to achieve pseudo-bistability. 

Moreover, we study the effect of time period of the holding process, 𝑡creep 𝜏r⁄ , on the pseudo-

bistable behavior of viscoelastic shells. We fix 𝑏 𝑎⁄ = 0.36 and 𝐸rel = 0.5, and vary 𝑡creep 𝜏r⁄  (Fig. 5a) 

from 0.6134, 1 to 5, where 𝑡creep 𝜏r⁄ = 0.6134 is the critical creeping time 𝑡creep
cr  (moment 3 in Fig. 5b 

and 6b). Therefore, the ∆𝑉 𝑉0⁄ -𝑡 𝜏r⁄  curve (Fig. 10a) shows no delay time after the shell is released. 

Correspondingly, the ∆𝑃min 𝐸0⁄  decreases to zero at 𝑡creep 𝜏r⁄ = 0.6134 and starts to increase, indicating 

that the shell stays monostable during the holding process. The shells for both 𝑡creep 𝜏r⁄ = 1 and 5 exhibit 

pseudo-bistable behavior (Fig. 10a), and the shell for 𝑡creep 𝜏r⁄ = 5 shows a longer recovery time 𝑡rec than 

the one for 𝑡creep 𝜏r⁄ = 1. This is because a longer time of holding process results in a smaller ∆𝑃min 𝐸0⁄ , 

and therefore a longer time is needed for ∆𝑃min 𝐸0⁄  to recover positive (Fig. 10b). In addition, Fig. 10b 

shows that ∆𝑃min 𝐸0⁄  decreases more and more slowly as the time of holding process increases and almost 



reaches a plateau when 𝑡creep 𝜏r⁄ = 5 . This indicates that 𝑡rec  also approaches a plateau as 𝑡creep 𝜏r⁄  

becomes very long. 

We summarize the effect of geometry, viscoelastic property and loading history on the pseudo-

bistable behavior in Fig. 11 and 12. In Fig. 11, we show the effect of minor-to-major-length ratio 𝑏 𝑎⁄  and 

relative modulus of relaxation 𝐸rel on the critical creeping time 𝑡creep
cr . When 𝑏 𝑎⁄ = 0.36, 𝑡creep

cr  increases 

with the decrease of 𝐸rel, and goes to infinity as 𝐸rel approaches 0.214 (Fig. 11), indicating an infinite time 

of holding required for pseudo-bistability. The viscoelastic shells with 𝐸rel below 0.214 can never exhibit 

pseodu-bistability no matter how long the pressure is held, since the viscoelastic effect is not strong enough. 

As 𝑏 𝑎⁄  decreases, the corresponding asymptotic lines (dashed line in Fig. 11) is shifted to the right, 

meaning that a shallow shell (lower 𝑏 𝑎⁄ ) needs a stronger viscoelastic effect (larger 𝐸rel) for the stability 

transition to occur. For a given 𝐸rel, a deeper shell has a shorter 𝑡creep
cr , and thus requires a shorter holding 

time to acquire pseudo-bistability. Fig. 12 illustrates the influence of 𝑡creep 𝜏𝑟⁄ , 𝑏 𝑎⁄ , and 𝐸rel  on the 

recovery time 𝑡rec 𝜏𝑟⁄ . We find 𝑡rec 𝜏𝑟⁄  increases with 𝑡creep 𝜏𝑟⁄  and saturates when 𝑡creep 𝜏𝑟⁄  becomes 

much longer than 1, regardless of 𝑏 𝑎⁄  and 𝐸rel. For fixed 𝑏 𝑎⁄ = 0.36, a higher 𝐸rel results in a longer 

𝑡rec 𝜏𝑟⁄ , and requires a shorter 𝑡creep 𝜏𝑟⁄  to trigger the pseudo-bistable behavior (𝑡rec 𝜏𝑟⁄ > 0) (Fig. 12a). 

Moreover, 𝑏 𝑎⁄  also has a strong influence on 𝑡rec 𝜏𝑟⁄  (Fig. 12b). We find that a deeper monostable shell 

with higher 𝑏 𝑎⁄ , which is closer to that of bistable shells, leads to a more significantly delay time with 

longer 𝑡rec 𝜏𝑟⁄ . The effects of 𝑡creep 𝜏𝑟⁄ , 𝑏 𝑎⁄  and 𝐸rel on 𝑡rec 𝜏𝑟⁄  mentioned above are consistent with the 

FEA simulations and experimental observations reported in literature [16,18,21,22]. 

6. Conclusion 

In this paper, we model and explain the pseudo-bistable behavior of viscoelastic shells with a 

viscoelastic shell model. The model combines the small strain, moderate rotation shell theory with the 

standard linear solid as the viscoelastic constitutive law. The equilibrium equations are derived by using 

the principle of virtual work based on the assumption of axisymmetric deformation. By numerically solving 



the equilibrium equations, the time-dependent buckling behaviors of viscoelastic shells far beyond the 

buckling point are obtained.  

As an example, we apply the proposed model to investigate viscoelastic ellipsoidal shells. Time-

dependent buckling analyses are conducted for them under volume-controlled loading conditions. The 

viscoelastic shells loaded extremely fast (slow) exhibit pressure-volume change relations approaching those 

of the elastic shells with the short-time elastic modulus 𝐸1 + 𝐸∞ (long-time elastic modulus 𝐸∞). For a 

moderate loading rate, the pressure-volume change curve shifts downward as either the loading rate 

decreases or the relative relaxation modulus 𝐸rel  increases. Correspondingly, the critical pressure for 

buckling decreases.  

Using the proposed viscoelastic shell model, we successfully predict the pseudo-bistable behavior 

and reveal its mechanism by quantitatively probing the stability transition of viscoelastic shells during a 

process of holding and releasing a pressure. We first apply an instantaneous pressure sufficient to buckle a 

monostable shell, hold the pressure for certain amount of time, and then remove it. With an appropriate 

choice of shallowness and viscoelasticity, the buckled shell creeps while the pressure is held, stays inverted 

after the pressure is removed, and finally recovers from its inverted state after a delay time. The 

characteristics of this time-dependent deformation agree with those obtained from FEA and experiments in 

literature. Moreover, the viscoelastic shell model allows us to produce the evolution of the instantaneous 

pressure-volume change relation, which indicates the stability of the shell, at different time during the 

holding and releasing process. We observe that the shell’s stability transitions from a monostable state, 

temporarily bistable state and eventually back to the monostable state. This observation confirms the 

mechanism of the pseudo-bistability phenomenon. Finally, we conduct a parametric study to investigate 

the influence of geometry, viscoelastic property and loading history on the pseudo-bistable behavior. We 

find that a shallower shell requires a longer time of holding to achieve pseudo-bistability, and that the 

recovery time can be increased by either enlarging the viscoelastic relaxation or reducing the shallowness 

closer to that of bistable shells.  



Acknowledgments 

This work is supported by the startup fund from Henry Samueli School of Engineering and Applied 

Science at the University of California, Los Angeles, and National Science Foundation through a CAREER 

Award No. CMMI-2048219. T. L. acknowledges the support from the Fundamental Research Funds for the 

Central Universities (No. 2242022R20022) and Jiangsu Funding Program for Excellent Postdoctoral Talent 

(No. 2022ZB133). The authors thank Prof Simos Gerasimidis at University of Massachusetts Amherst for 

the inspiring comments, and Prof John Hutchinson at Harvard University for the insightful discussion. 

  



Appendix A. Derivation of equilibrium equations using the principle of virtual work 

In this section, the derivation for the equilibrium equations in Eq. (11) is presented in details. The 

internal virtual work (IVW) can be expressed as, 

 IVW = ∫ [𝑁𝛼𝛽𝛿𝐸𝛼𝛽 + 𝑀𝛼𝛽𝛿𝐾𝛼𝛽]𝑑𝑆
𝑆

, (A 1) 

where 𝛿𝐸𝛼𝛽 and 𝛿𝐾𝛼𝛽 are the virtual strain components, 𝑆 denotes the area of the mid-surface of the shell. 

Based on the small strain, moderate rotation shell theory [26,27], 𝛿𝐸𝛼𝛽 and 𝛿𝐾𝛼𝛽 can be written as 

 𝛿𝐸𝛼𝛽 =
1

2
(𝛿𝑢𝛼,𝛽 + 𝛿𝑢𝛽,𝛼) + 𝑏𝛼𝛽𝛿𝑤 + 𝜑𝛼𝛿𝜑𝛽 + 𝑔𝛼𝛽𝜙𝛿𝜙, 

𝛿𝐾𝛼𝛽 = −𝛿𝑤,𝛼𝛽 + 𝑏𝛼𝛾,𝛽𝛿𝑢𝛾 −
1

4
(𝑏𝛽

𝛾
𝛿𝑢𝛼,𝛾 + 𝑏𝛼

𝛾
𝛿𝑢𝛽,𝛾) +

3

4
(𝑏𝛽𝛾𝛿𝑢,𝛼

𝛾
+ 𝑏𝛼𝛾𝛿𝑢,𝛽

𝛾
), 

(A 2) 

where  

 𝜑𝛼 = −𝑤,𝛼 + 𝑏𝛼
𝛾

𝑢𝛾, 𝛿𝜑𝛼 = −𝛿𝑤,𝛼 + 𝑏𝛼
𝛾

𝛿𝑢𝛾, 𝜙 =
1

2
𝜖𝛼𝛽𝑢𝛽,𝛼 𝛿𝜙 =

1

2
𝜖𝛼𝛽𝛿𝑢𝛽,𝛼, 

𝜖𝛼𝛽 = {

1 √𝑔⁄ , when 𝛼 = 1, 𝛽 = 2

0, when 𝛼 = 𝛽

− 1 √𝑔⁄ , when 𝛼 = 2, 𝛽 = 1

, 𝑔 = |𝑔𝛼𝛽|. 

(A 3) 

Substituting Eq. (A 2) into Eq. (A 1), the internal virtual work can be rewritten as 

 
IVW = ∫ {[−𝑀,𝛼𝛽

𝛼𝛽
+ 𝑁𝛼𝛽𝑏𝛼𝛽 + (𝑁𝛼𝛽𝜑𝛼)

,𝛽
] 𝛿𝑤 + [−𝑁,𝛽

𝛾𝛽
− 𝑀,𝛽

𝛼𝛽
𝑏𝛼

𝛾
−

𝑆

1

2
(𝑀𝛼𝛽𝑏𝛼

𝛾
− 𝑀𝛾𝛼𝑏𝛼

𝛽
)

,𝛽
+ 𝑁𝛼𝛽𝜑𝛼𝑏𝛽

𝛾
−

1

2
(𝑁𝛼

𝛼𝜙𝜖𝜇𝛾),𝜇] 𝛿𝑢𝛾} 𝑑𝑆 +

∮ {−𝑀𝛼𝛽𝑛𝛽𝑛𝛼𝛿𝑤,𝑛 + [𝑀,𝛽
𝛼𝛽

𝑛𝛼 + (𝑀𝛼𝛽𝑛𝛽𝑡𝛼)
,𝑡

− 𝑁𝛼𝛽𝜑𝛼𝑛𝛽] 𝛿𝑤 + (𝑁𝛾𝛽𝑛𝛽 +
𝐶

3

2
𝑀𝛼𝛽𝑛𝛽𝑏𝛼

𝛾
−

1

2
𝑀𝛾𝛽𝑏𝛽

𝛼𝑛𝛼 +
1

2
𝑁𝛼

𝛼𝜙𝜖𝜇𝛾𝑛𝜇) 𝛿𝑢𝛾} 𝑑𝑠 − 𝑀𝛼𝛽𝑛𝛽𝑡𝛼𝛿𝑤|
corners

, 

(A 4) 

where ( ),𝛼 and ( ),𝛼𝛽 are the first and second-order covariant derivatives of ( ), 𝐶 is the boundary of 

the mid-surface, 𝑛𝛼 and 𝑡𝛼 represent the components of the unit vectors normal and tangent to the edge C, 

respectively. The external virtual work (EVW) due to a uniform pressure acting on the shell in the deformed 

state (called live pressure) is [27] 



 EVW = ∫ Δ𝑃𝑵̅ ∙ (𝛿𝑢𝛽𝒙,𝛽 + 𝛿𝑤𝑵)𝑑𝑆̅
𝑆̅ + ∮ (𝑇𝛾𝛿𝑢𝛾 + 𝑄𝛿𝑤 − 𝑀𝑛𝛿𝑤,𝑛)𝑑𝑠

𝐶
, (A 5) 

where 𝑵̅ denotes the unit vector normal to the mid-surface of the deformed shell, 𝑆̅ denotes the area of the 

mid-surface of the shell in the deformed state. Under the condition of small strain and moderate rotation, 

the EVW becomes 

 EVW = ∫ [Δ𝑃(1 + 𝑢,𝛾
𝛾

+ 𝑏𝛾
𝛾

𝑤)𝛿𝑤 + Δ𝑃(𝜑𝛾 + 𝜙𝜑𝜂𝜖𝜂
𝛾

)𝛿𝑢𝛾]𝑑𝑆
𝑆

+ ∮ (𝑇𝛾𝛿𝑢𝛾 +
𝐶

𝑄𝛿𝑤 − 𝑀𝑛𝛿𝑤,𝑛)𝑑𝑠. 

(A 6) 

By enforcing IVW = EVW, we can obtain the following equilibrium equations 

 −𝑀,𝛼𝛽
𝛼𝛽

+ 𝑁𝛼𝛽𝑏𝛼𝛽 + (𝑁𝛼𝛽𝜑𝛼)
,𝛽

= Δ𝑃(1 + 𝑢,𝛾
𝛾

+ 𝑏𝛾
𝛾

𝑤), 

−𝑁,𝛽
𝛾𝛽

− 𝑀,𝛽
𝛼𝛽

𝑏𝛼
𝛾

−
1

2
(𝑀𝛼𝛽𝑏𝛼

𝛾
− 𝑀𝛾𝛼𝑏𝛼

𝛽
)

,𝛽
+ 𝑁𝛼𝛽𝜑𝛼𝑏𝛽

𝛾
−

1

2
(𝑁𝛼

𝛼𝜙𝜖𝜇𝛾),𝜇 =

Δ𝑃(𝜑𝛾 + 𝜙𝜑𝜂𝜖𝜂
𝛾

), 

(A 7) 

and boundary conditions: 

 Specify 𝑁𝛾𝛽𝑛𝛽 +
3

2
𝑀𝛼𝛽𝑛𝛽𝑏𝛼

𝛾
−

1

2
𝑀𝛾𝛽𝑏𝛽

𝛼𝑛𝛼 +
1

2
𝑁𝛼

𝛼𝜙𝜖𝜇𝛾𝑛𝜇 = 𝑇𝛾 or 𝑢𝛾 

Specify 𝑀𝛼𝛽𝑛𝛽𝑛𝛼 = 𝑀𝑛 or 𝑤,𝑛 

Specify 𝑀,𝛽
𝛼𝛽

𝑛𝛼 + (𝑀𝛼𝛽𝑛𝛽𝑡𝛼)
,𝑡

− 𝑁𝛼𝛽𝜑𝛼𝑛𝛽 = 𝑄 or 𝑤. 

(A 8) 

The term −𝑀𝛼𝛽𝑛𝛽𝑡𝛼𝛿𝑤|
corners

 in Eq. (A4) is related to the virtual work of concentrated loads at any 

corners. 

 Since we only consider axisymmetric deformation, 𝑢𝜃  and 𝑤  are only functions of 𝜃, 𝑢𝜔 = 0, 

𝜑𝜔 = 𝜑𝜔 = 0, 𝜙 = 0. With the assumption of axisymmetric deformation, each term in Eq. (A 7) can be 

written as 



 −𝑀,𝛼𝛽
𝛼𝛽

= 𝑀𝜔𝜔′
Γ𝜔𝜔

𝜃 − 2𝑀𝜃𝜃(Γ𝜃𝜔
𝜔 )2 − 𝑀𝜃𝜃′′

− 3𝑀𝜃𝜃′
Γ𝜃𝜃

𝜃 − 2𝑀𝜃𝜃Γ𝜃𝜃
𝜃 ′

− 2𝑀𝜃𝜃Γ𝜃𝜃
𝜃 2

− 𝑀𝜃𝜃′
Γ𝜃𝜔

𝜔 − 𝑀𝜃𝜃Γ𝜃𝜔
𝜔 ′

− 𝑀𝜔𝜔′
Γ𝜔𝜔

𝜃 − 𝑀𝜔𝜔Γ𝜔𝜔
𝜃 ′

− Γ𝜃𝜃
𝜃 (𝑀𝜃𝜃Γ𝜃𝜔

𝜔 + 𝑀𝜔𝜔Γ𝜔𝜔
𝜃 ) − Γ𝜔𝜔

𝜃 (𝑀𝜔𝜔′
+ 2𝑀𝜔𝜔Γ𝜃𝜔

𝜔 )

− Γ𝜃𝜔
𝜔 (𝑀𝜃𝜃′

+ 2𝑀𝜃𝜃Γ𝜃𝜃
𝜃 ) + Γ𝜃𝜔

𝜔 (𝑀𝜔𝜔Γ𝜔𝜔
𝜃 + 𝑀𝜃𝜃Γ𝜃𝜔

𝜔 ), 

(A 9) 

 𝑁𝛼𝛽𝑏𝛼𝛽 = 𝑁𝜔𝜔𝑏𝜔
𝜔𝑔𝜔𝜔 + 𝑁𝜃𝜃𝑏𝜃

𝜃𝑔𝜃𝜃 , (A 10) 

 (𝑁𝛼𝛽𝜑𝛼)
,𝛽

= −𝑁𝜔𝜔𝜑𝑔𝜃𝜃Γ𝜔𝜔
𝜃 + (𝑁𝜃𝜃′

+ 𝑁𝜃𝜃Γ𝜃𝜃
𝜃 ) 𝜑𝑔𝜃𝜃 + 𝑁𝜃𝜃(𝜑′𝑔𝜃𝜃 + 𝜑𝑔𝜃𝜃′)

+ 𝜑𝑔𝜃𝜃(𝑁𝜔𝜔Γ𝜔𝜔
𝜃 + 𝑁𝜃𝜃Γ𝜃𝜔

𝜔 ), 

(A 11) 

 Δ𝑃(1 + 𝑢,𝛾
𝛾

+ 𝑏𝛾
𝛾

𝑤) = Δ𝑃 [1 + 𝑢𝜃Γ𝜃𝜔
𝜔 + 𝑢𝜃′

+ 𝑢𝜃Γ𝜃𝜃
𝜃 + (𝑏𝜔

𝜔 + 𝑏𝜃
𝜃)𝑤], (A 12) 

 −𝑁,𝛽
𝛾𝛽

= −𝑁,𝛽
𝜃𝛽

= −𝑁𝜔𝜔Γ𝜔𝜔
𝜃 − 𝑁𝜃𝜃Γ𝜃𝜔

𝜔 − 𝑁𝜃𝜃′
− 2𝑁𝜃𝜃Γ𝜃𝜃

𝜃 , (A 13) 

 −𝑀,𝛽
𝛼𝛽

𝑏𝛼
𝛾

= −𝑀,𝛽
𝛼𝛽

𝑏𝛼
𝜃 = −𝑏𝜃

𝜃 (𝑀𝜔𝜔Γ𝜔𝜔
𝜃 + 𝑀𝜃𝜃Γ𝜃𝜔

𝜔 + 𝑀𝜃𝜃′
+ 2𝑀𝜃𝜃Γ𝜃𝜃

𝜃 ), (A 14) 

 
−

1

2
(𝑀𝛼𝛽𝑏𝛼

𝛾
− 𝑀𝛾𝛼𝑏𝛼

𝛽
)

,𝛽
= −

1

2
(𝑀𝛼𝛽𝑏𝛼

𝜃 − 𝑀𝜃𝛼𝑏𝛼
𝛽

)
,𝛽

= −
1

2
𝑏𝜃

𝜃 (𝑀𝜔𝜔Γ𝜔𝜔
𝜃 + 𝑀𝜃𝜃Γ𝜃𝜔

𝜔 + 𝑀𝜃𝜃′
+ 2𝑀𝜃𝜃Γ𝜃𝜃

𝜃 )

−
1

2
𝑀𝜔𝜔Γ𝜔𝜔

𝜃 (𝑏𝜔
𝜔 − 𝑏𝜃

𝜃) −
1

2
𝑀𝜃𝜃𝑏𝜃

𝜃′
+

1

2
𝑏𝜔

𝜔(𝑀𝜔𝜔Γ𝜔𝜔
𝜃 + 𝑀𝜃𝜃Γ𝜃𝜔

𝜔 )

+
1

2
𝑏𝜃

𝜃 (𝑀𝜃𝜃′
+ 2𝑀𝜃𝜃Γ𝜃𝜃

𝜃 ) +
1

2
𝑀𝜃𝜃 (𝑏𝜃

𝜃′
+ 𝑏𝜃

𝜃Γ𝜃𝜔
𝜔 − 𝑏𝜔

𝜔Γ𝜃𝜔
𝜔 ) = 0, 

(A 15) 

 𝑁𝛼𝛽𝜑𝛼𝑏𝛽
𝛾

= 𝑁𝛼𝛽𝜑𝛼𝑏𝛽
𝜃 = 𝑁𝜃𝜃𝑏𝜃

𝜃𝜑𝑔𝜃𝜃 , (A 16) 

 
−

1

2
(𝑁𝛼

𝛼𝜙𝜖𝜇𝛾),𝜇 = −
1

2
(𝑁𝛼

𝛼𝜙𝜖𝜇𝜃)
,𝜇

= 0 (A 17) 

 Δ𝑃(𝜑𝛾 + 𝜙𝜑𝜂𝜖𝜂
𝛾

) = Δ𝑃(𝜑𝜃 + 𝜙𝜑𝜂𝜖𝜂
𝜃) = Δ𝑃𝜑, (A 18) 

where (∙)′ denotes 𝑑(∙) 𝑑𝜃⁄ , 𝜑 = 𝜑𝜃, 𝑔𝛼𝛽 and 𝑔𝛼𝛽 are the covariant and contravariant components of the 

first fundamental form of the mid-surface, 



 𝑔𝜔𝜔 =
1

𝑔𝜔𝜔 = 𝒙,𝜔 ∙ 𝒙,𝜔 = 𝑅2 cos2 𝜃, 𝑔𝜃𝜃 =
1

𝑔𝜃𝜃 = 𝒙,𝜃 ∙ 𝒙,𝜃 = 𝑅′2
+ 𝑅2, 

𝑔𝜔𝜃 = 𝑔𝜃𝜔 = 𝑔𝜔𝜃 = 𝑔𝜃𝜔 = 0, 

(A 19) 

𝑏𝛼𝛽 and 𝑏𝛽
𝛼 are the covariant and the mixed components of the second fundamental form of the mid-surface, 

 𝑏𝜔𝜔 = −𝑵 ∙ 𝒙,𝜔𝜔 =
𝑅 cos 𝜃(𝑅′ sin 𝜃+𝑅 cos 𝜃)

√𝑅′2
+𝑅2

, 𝑏𝜔
𝜔 = 𝑏𝜔𝜔𝑔𝜔𝜔 =

𝑅′ sin 𝜃+𝑅 cos 𝜃

𝑅 cos 𝜃√𝑅′2
+𝑅2

, 

𝑏𝜃𝜃 = −𝑵 ∙ 𝒙,𝜃𝜃 =
2𝑅′2

−𝑅𝑅′′+𝑅2

√𝑅′2
+𝑅2

, 𝑏𝜃
𝜃 = 𝑏𝜃𝜃𝑔𝜃𝜃 =

2𝑅′2
−𝑅𝑅′′+𝑅2

(𝑅′2
+𝑅2)

3 2⁄ , 

𝑏𝜔𝜃 = 𝑏𝜃𝜔 = 𝑏𝜔
𝜃 = 𝑏𝜃

𝜔 = 0, 

(A 20) 

and Γ𝛼𝛽
𝛾

 denotes the Christoffel symbols, 

 Γ𝛼𝛽
𝛾

=
1

2
𝑔𝛾𝜆 (

𝜕𝑔𝛼𝜆

𝜕𝛽
+

𝜕𝑔𝛽𝜆

𝜕𝛼
−

𝜕𝑔𝛼𝛽

𝜕𝜆
),  (A 21) 

yielding the following non-zero components 

 Γ𝜃𝜔
𝜔 = Γ𝜔𝜃

𝜔 =
𝑅′ cos 𝜃−𝑅 sin 𝜃

𝑅 cos 𝜃
, Γ𝜃𝜃

𝜃 =
𝑅′𝑅′′+𝑅𝑅′

𝑅′2
+𝑅2

, Γ𝜔𝜔
𝜃 =

−𝑅𝑅′ cos2 𝜃+𝑅2 cos 𝜃 sin 𝜃

𝑅′2
+𝑅2

. (A 22) 

 

Appendix videos 

Appendix video. Modeling results showing the pseudo-bistable behavior of a viscoelastic shell. A 

viscoelastic shell with geometric parameters 𝑏 𝑎⁄ = 0.36, ℎ 𝑎⁄ = 0.02, 𝜃min = 17𝜋/128, and material 

parameter 𝐸rel = 0.5 is selected for demonstrating the phenomenon of pseudo-bistability. An instantaneous 

pressure load ∆𝑃 𝐸0⁄ = 2.67 × 10−5 is applied and released after holding it for 𝑡creep = 𝜏𝑟. The volume 

change ∆𝑉 𝑉0⁄ -time 𝑡 𝜏r⁄  relation, as well as deformation history is computed based on the proposed shell 

model. 
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Fig. 1 Schematic of the pseudo-bistable behavior exhibited in viscoelastic shells. A viscoelastic shell 

buckles into the inverted configuration when an instantaneous pressure ∆𝑃 is applied. It creeps under the 

constant ∆𝑃 for a while before being released. The shell does not recover immediately, but instead, stays 

inverted as if it were bistable. After a delay time, the shell snaps back to its unbuckled configuration. 

  



 

Fig. 2 (a) Schematic of a viscoelastic shell. The shell with thickness h is subjected to a live pressure load 

∆𝑃. The coordinate 𝜃 is the meridional angle, ranging from 𝜃min to 
𝜋

2
. 𝑅(𝜃) represents the middle surface 

radius of the undeformed shell. The shell can slide freely along the 𝑒1 axis but has zero displacement along 

𝑒3 at 𝜃 = 𝜃min, and is subjected to the axisymmetric boundary condition about the 𝑒3 axis at 𝜃 =
𝜋

2
. (b) A 

standard linear solid containing a Maxwell model with a spring of modulus 𝐸1 and a dashpot of viscosity 

𝜂, connected in parallel to a spring of modulus 𝐸∞. 

  



 

Fig. 3 Buckling behavior of elastic ellipsoidal shells with ℎ 𝑎⁄ = 0.02, 𝜃min =

17𝜋 128⁄ , and different 𝑏 𝑎⁄  . (a) Normalized pressure ∆𝑃 𝐸0⁄  versus normalized displacement 

−𝑤pole 𝑎⁄  at the pole. (b) Normalized pressure ∆𝑃 𝐸0⁄  versus normalized volume change ∆𝑉 𝑉0⁄ , where 𝑉0 

denotes the negative volume of the undeformed shell. The solid curves represent the theoretical results for 

the shells with 𝑏 𝑎⁄ = 0.28, 0.36, and 0.47, and the circular dots represent the FEA results for the shell 

with 𝑏 𝑎⁄ = 0.28 and 0.36. The ∆𝑃 𝐸0⁄ -∆𝑉 𝑉0⁄  curve for 𝑏 𝑎⁄ = 0.47 intersects with the horizontal line of 

∆𝑃 = 0 (dashed line) at three points, indicating that the shell with 𝑏 𝑎⁄ = 0.47 is bistable. (c) The deformed 

shapes obtained from FEA for the shell with 𝑏 𝑎⁄ = 0.36 at different volume changes are axisymmetric. 

The contour represents the maximum principal strain. 



 

Fig.4. Buckling behaviors of viscoelastic shells with 𝑏 𝑎⁄ = 0.36 under volume-controlled loading. (a) 

Normalized pressure ∆𝑃 𝐸0⁄ -volume change ∆𝑉 𝑉0⁄  relations at different volume loading rates (𝛾𝑉 =

0.01~10) when 𝐸rel = 0.5. (b) Buckling pressure ∆𝑃max/𝐸0  as a function of 𝛾𝑉 . The dashed and dot-

dashed lines represent ∆𝑃max/𝐸0 for elastic shells with moduli 𝐸∞ + 𝐸1 and 𝐸∞, respectively. (c) Middle-

surface profiles of the shell under different volume changes ∆𝑉 𝑉0⁄  when 𝐸rel = 0.5 and 𝛾𝑉 = 0.5. (d) 

Normalized pressure ∆𝑃 𝐸0⁄ -volume change ∆𝑉 𝑉0⁄  relations at different relative modulus of relaxation 

(𝐸rel = 0~1) when 𝛾𝑉 = 0.5. (e) Buckling pressure ∆𝑃max/𝐸0 as a function of 𝐸rel. The dashed and dot-

dashed lines in (a) and (d) represent the pressure-volume change relations for elastic shells with moduli 

𝐸∞ + 𝐸1 and 𝐸∞, respectively. 



 

Fig. 5 Pseudo-bistable behavior of a viscoelastic shell. (a) Applied pressure-time relation and (b) the 

corresponding volume change-time relation for a viscoelastic ellipsoidal shell with 𝑏 𝑎⁄ = 0.36, ℎ 𝑎⁄ =

0.02, 𝜃min = 17𝜋/128, and 𝐸rel = 0.5. The time period within which a constant pressure is held is defined 

as the creeping time 𝑡creep, and the time period within which the shell stays inverted after the pressure is 

removed is defined as the recovery time 𝑡rec . 𝜏r = 𝜂/𝐸1  denotes the relaxation time constant of the 

viscoelastic material. (c) Middle-surface profiles of the shell at different time moments as labeled in (b).  

  



 

Fig. 6. (a-f) The instantaneous pressure-volume change relations at the time moments labeled in Fig. 5b. 

The red dots represent the states of the shells for the corresponding time moments. 

  



 

Fig. 7. Local minimum pressure ∆𝑃min 𝐸0⁄  of the instantaneous pressure-volume change curve as a function 

of time. The time period within which ∆𝑃min 𝐸0⁄  decreases to zero is defined as the critical creeping time 

𝑡creep
cr , indicating the minimum creeping time required for pseudo-bistability.  

  



 

Fig. 8. (a) Volume change ∆𝑉 𝑉0⁄ -time 𝑡 𝜏r⁄  relations and (b) local minimum pressure ∆𝑃min 𝐸0⁄  of the 

instantaneous pressure-volume change curves as a function of time 𝑡 𝜏r⁄  for viscoelastic ellipsoidal shells 

with relative modulus of relaxation 𝐸rel = 0.5 and different minor-to-major-length ratios 𝑏 𝑎⁄  during the 

holding for 𝑡creep 𝜏r⁄ = 1 and releasing process. 

  



 

Fig. 9. (a) Volume change ∆𝑉 𝑉0⁄ -time 𝑡 𝜏r⁄  relations and (b) local minimum pressure ∆𝑃min 𝐸0⁄  of the 

instantaneous pressure-volume change curves as a function of time 𝑡 𝜏r⁄  for viscoelastic ellipsoidal shells 

with minor-to-major-length ratio 𝑏 𝑎⁄ = 0.36 and different relative moduli of relaxation 𝐸rel during the 

holding for 𝑡creep 𝜏r⁄ = 1 and releasing process. 

  



 

Fig. 10. (a) Volume change ∆𝑉 𝑉0⁄ -time 𝑡 𝜏r⁄  relations and (b) local minimum pressure ∆𝑃min 𝐸0⁄  of the 

instantaneous pressure-volume change curves as a function of time 𝑡 𝜏r⁄  for viscoelastic ellipsoidal shells 

with minor-to-major-length ratio 𝑏 𝑎⁄ = 0.36 and relative modulus of relaxation 𝐸rel = 0.5 during the 

holding for different 𝑡creep 𝜏r⁄  and releasing process. 

  



 

Fig. 11. Dependence of the critical creeping time 𝑡creep
cr  on relative modulus of relaxation 𝐸rel and minor-

to-major-length ratios 𝑏 𝑎⁄ . The dashed lines represent the critical values of 𝐸rel  for 𝑡creep
cr  to 

asymptotically reach infinity. 

  



 

Fig. 12. Dependence of the recovery time 𝑡rec on the creep time 𝑡creep for different (a) relative modulus of 

relaxation 𝐸rel and (b) minor-to-major-length ratios 𝑏 𝑎⁄ .  

 

 


