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Summary

Viscoelastic shells subjected to a pressure loading exhibit rich and complex time-dependent
responses. Here we focus on the phenomenon of pseudo-bistability, i.e. a viscoelastic shell can stay inverted
when a pressure is removed, and snap to its natural shape after a delay time. We model and explain the
mechanism of pseudo-bistability with a viscoelastic shell model. It combines the small strain, moderate
rotation shell theory with the standard linear solid as the viscoelastic constitutive law, and is applicable to
shells with arbitrary axisymmetric shapes. As a case study, we investigate the pseudo-bistable behavior of
viscoelastic ellipsoidal shells. Using the proposed model, we successfully predict buckling of a viscoelastic
ellipsoidal shell into its inverted configuration when subjected to an instantaneous pressure, creeping when
the pressure is held, staying inverted after the pressure is removed, and eventually snapping back after a
delay time. The stability transition of the shell from a monostable, temporarily bistable and eventually back

to the monostable state is captured by examining the evolution of the instantaneous pressure-volume change



relation at different time of the holding and releasing process. A systematic parametric study is conducted
to investigate the effect of geometry, viscoelastic properties and loading history on the pseudo-bistable

behavior.

Main Text

1. Introduction

Shell buckling has been intensively studied for almost a century [1], and will continuously attract
the great attention of researchers in the field of solid mechanics. Not only are shell structures broadly used
in various industrial sectors [2—4], but also the analysis of shell buckling can improve the understanding of
the motion and morphogenesis of organisms [5,6], which further inspires the design of materials and devices

with novel functionalities endowed by the nonlinearity and instability of shells [7,8].

Elastic shells can undergo snap-through buckling when loaded, in which they rapidly reconfigure
from one state to another when no stable equilibrium state exists nearby. Such instabilities are ubiquitous
in nature and our daily life: Venus flytrap, the famous plant capable of fast movement, can rapidly flip its
bistable leaves to catch preys [6], while hair clips can be quickly sprung up and down by fingers. The snap-
through buckling of elastic shells has been widely employed to achieve rapid deformation in various
applications, such as soft actuators [9-12], logic switches [13,14], and responsive surfaces [15]. Many of
these works are based on elastomeric shells, most of which exhibit viscoelasticity. The snap-through
buckling of shells could be profoundly influenced by viscoelasticity manifested by creep and stress
relaxation. One example is inducing the so-called “pseudo-bistable” behavior [16-21], which can be
illustrated by children’s jumping poppers [17]. A jumping popper is a rubber spherical cap that can be
buckled into an “inside-out” configuration. After being held for a while and released from the load, the
inverted popper undergoes slow creeping for certain delay time, as if it is in a stable equilibrium state,

before rapidly snapping back to its natural shape. The recovering time is governed by the viscous time scale



of the material, and is much longer than that for elastic snap-through buckling. This pseudo-bistable

behavior has been harnessed to achieve spatiotemporal control of morphing structures [16,22-24].

The mechanism of the pseudo-bistability exhibited in buckled viscoelastic shells, however, is far
from being clear. The straightforward explanation is that the originally monostable shell can temporarily
acquire stability while it is held in its buckled state. When the buckled shell is released, it gradually loses
its stability during creeping and eventually snaps back. However, quantitative modeling of viscoelastic
shells is essential to support this explanation. One effort is describing a viscoelastic shell by a discrete
spring-mass-dashpot system [17,21], where the stability transition is attributed to the change in the ratio of
bending to stretching energy caused by viscoelasticity. This argument is not entirely convincing, since it is
unclear how the ratio of bending to stretching energy evolves in viscoelastic shells, and how it is related to
the stability. Using finite element simulations together with experiments, researchers capture the pseudo-
bistable behavior of viscoelastic shells [16,21,22]. Although the numerical simulations can accurately
predict the responses of viscoelastic shells, they provide limited information on their stability. Recently,
Urbach and Efrati proposed a new approach in predicting the stability of viscoelastic solids [20]. In this
framework, the behavior of viscoelastic solids is modeled as an elastic response with respect to a temporally
evolving instantaneous reference metric, which determines the stability of the solids. While this approach
provides insights into the process of temporarily acquiring and eventually losing stability in the pseudo-
bistable behavior, the understanding of this delayed phenomenon is still unsatisfactory since the
instantaneous reference metric is complex and abstract, and moreover, the corresponding surface may not

exist in three-dimensional Euclidean spaces.

In this paper, we aim to model and explain the pseudo-bistability phenomenon by developing a
viscoelastic shell model. In our previous work, we have established a shell model for viscoelastic spherical
shells [25], based on the small strain, moderate rotation shell theory [26,27] combined with the viscoelastic
material law of standard linear solids. Here we further extend the viscoelastic shell model to shells with

arbitrary axisymmetric shapes. As a case study, we will investigate the pseudo-bistable behavior of



viscoelastic ellipsoidal shells. Since pseudo-bistability tends to occur in deep shells, which have relatively
high strain and rotation when fully inverted, in order to capture the pseudo-bistable behavior, but at the
same time, to limit the deformation within the assumption of small strain and moderate rotation, we will
carefully investigate and properly select the geometry, viscoelastic properties and boundary conditions of
the shells. Using the proposed shell model, we will predict buckling of a viscoelastic ellipsoidal shell into
its inverted configuration when subjected to an instantaneous pressure load, and snapping-through after a
delay time when the pressure load is held constantly for a while prior to being removed (Fig. 1). Moreover,
we will use the model to probe the stability of the shell at different time during the holding and releasing
process by plotting the corresponding instantaneous pressure-volume change relations. The evolution of
the instantaneous pressure-volume change relation confirms the stability transition of the shell from a
monostable state, temporarily bistable state and eventually back to the monostable state over time. Finally,
the critical creeping time, the minimum time period within which the pressure is held to achieve pseudo-
bistability, as well as the recovery time, the delay time before a shell snaps back when the pressure is

removed, are predicted using the proposed shell model.

This paper is structured as follows. In Section 2, a model for viscoelastic shells of arbitrary
axisymmetric shapes is formulated by combining the small strain, moderate rotation shell theory with the
linearly viscoelastic constitutive relation. The equilibrium equations are derived using the principle of
virtual work. In Section 3, the buckling of ellipsoidal shells of different geometry and viscoelastic properties
at different loading rates are investigated to provide insights into the pseudo-bistability of viscoelastic shells.
In Section 4, the pseudo-bistable behavior is captured by the proposed shell model. The instantaneous
pressure-volume change relations at different time during the holding and releasing process are obtained to
probe the stability transition. In Section 5, a parametric study on the critical creeping time and the recovery

time is conducted. The conclusion is made in Section 6.

2. Modeling viscoelastic shells with arbitrary axisymmetric shapes

2.1 Small strain, moderate rotation shell theory



The schematic of a shell structure with thickness h is shown in Fig. 2a. Here we limit ourselves to
axisymmetric shells about the e3 axis. Two surface coordinates (6, w) are used to describe the mid-surface
of the shell, in which 6 is the meridional angle ranging from 6,;, to /2 at the pole, and w is the
circumferential angle (not shown in Fig.2a). The mid-surface radius R(8), which quantifies the shape of

the shell, could be any smooth function of 6.

The small strain, moderate rotation shell theory [26-28] is used to describe the deformation of
viscoelastic shells. The position vector x of a material point with a coordinate (6, w) on the mid-surface of

the undeformed shell can be expressed in the three-dimensional Euclidean space as

x(0,w) = [R(6) cos O cosw]e; + [R(O) cosOsinw]e, + [R(O) sinO]e;, €))
where {e;, e,, 3} is a group of orthonormal bases in the Euclidean space. The displacement of this material

point can be written as

6(60,w) = uﬁxlﬁ + wN, 2
where x 3 = dx/9p and N denote the covariant bases and the normal vector of the mid-surface at the
undeformed state, respectively, and (uﬁ , W) are the corresponding displacements. A Greek index takes on
values of 6 and w, and a repeated Greek index means summation over 6 and w. In this paper, we only
consider axisymmetric deformations. As a result, u? and w are only functions of 8, u® = 0, and the
rotation about X g, ¢, = @“ = 0. The corresponding non-zero mid-surface strains and curvature strains

under axisymmetric deformation are [26,27]

EQ = ufT, + bow,
E§ = ub' + ulTfy + biw + %(nggg,
3)
K3 = ol
0 ’ 0
Kg = ¢" + ¢plgy,

where ()’ denotes d(-)/d8, ¢ = ¢? = g% @y, where @g denotes the rotation about x ,,



¢ =-w'g® +bju’, @)
g, and T, ge are Christoffel symbols (Eq. (A 22)), g4p and g*P are the covariant and contravariant
components of the first fundamental form of the mid-surface (Eq. (A 19)), and bg are the mixed
components of the second fundamental form of the mid-surface (Eq. (A 20)). Compared to spherical shells,
non-spherical shells have much more complex strains in Eq. (3) due to the non-constant R(6), since all the
coefficients of u?, w, ¢ and their derivatives depend on 8. The mid-surface and curvature strains in Eq. (3)
can be expressed in terms of u? and w, or equivalently in terms of ¢ and w. Here we choose ¢ and w as

the two independent variables by replacing u® with a function of ¢ and w obtained from Eq. (4). The strain

of the shell at an arbitrary position can be expressed as 85 = E(f + ZKf , where z is the coordinate in the

thickness direction of the shell and measured from the mid-surface.
2.2 Viscoelastic constitutive relations

Following our previous work [25], here we develop a viscoelastic constitutive relation for
viscoelastic shells. We use the Boltzmann superposition principle to quantify the effect of strain history on
the current stress state. The two-dimensional stress-strain relation of viscoelasticity under plane stress can

be written as

)

t E(t-7) degp(T) del (1)
0ap®) = Jy G |- =g +v—p

Jap|dr,
where E(t) is the relaxation modulus as a function of time t, v is the Poisson’s ratio, assumed to be a
constant, and a and f are two free indices taking on values 6 and w. We quantify the material
viscoelasticity using the standard linear solid model (Fig. 2b), which contains a Maxwell model with a

spring of modulus E; and a dashpot of viscosity 17, connected in parallel to a spring of modulus E.

Accordingly, the relaxation modulus takes the following form

E(t) = E, + Eje /™, (6)

where T, = n/E; represents the relaxation time.



Integrating the stresses in Eq. (5) and stresses multiplied by distance over the thickness yield the

resultant membrane stresses Ny (t) and the bending moments M, () at time t, respectively,

h h 7
Nap(©) = [ 0up (0d2, Map (6) = [y 0p()2d. 7

Substituting the non-zero strains in Eq. (3) and the constitutive relation in Eq. (5) into Eq. (7), we obtain

the non-zero resultant membrane stresses and the bending moments,

Ww w 4
oo =92t p( — 1) [dE;’T(’) +o dE;f)] dr,

06 0 2}
N9 () =20 [P B - o) |22 4y 0| g,
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R3g@® .t dK& (1) dKS (D)
M@ (t) = 12(f-u2) fo E(t—1) [ dT(T +v ;TT ] dr,

00, _ h3g%° .t N L0 dK2(T)
M (t)_12(1—u2)f0E(t 7) =t v——|dr.

2.3 Principle of virtual work and equilibrium equations

Following the literature [26,27], here we use the principle of virtual work to derive the equilibrium
equations at a given moment ¢t. Let ug and dw be the virtual displacements of the mid-surface of the shell

at time t. The associated virtual strains can be expressed as §eqp = 0Eqp + 26K, 5. The internal virtual

work (IVW) of the shell is

h
IVW = [¢ dS [?,dz0%PSeqp = [ [NPSEqp + M*P 6K ,p]dS, ©)
2

where S represents the area of the mid-surface of the shell. The external virtual work (EVW) due to a

uniform live pressure AP acting on the shell is [26,27] (Eq. (A 6))

EVW = [, [AP@Sug + AP(1 +ul, + bJw)sw]dS + 6. (T?Sug + Q6w — M,w,,)ds, (10)
where T? represents the edge resultant traction along X g, Q represents the normal edge force, and M,, =

MeB ngng is the component of the edge moment, ng denotes the components of the unit vector normal to



the boundary C tangent to the shell, and s is the length of the edge of the shell. Enforcing IVW = EVW

yields the following equilibrium equations (see Appendix A for details)

~Mejy + N%beg + (N o,) , = AP(1+u), + bYw),

(11)
0B aB,e 1 0 fayB 0 _
~NGF - M5 bg -2 (MPbE — M “ba)lﬁ + N, bg = APg,

where () 4 and () 4p are the first and second-order covariant derivatives of ().

In Eq. (11), ¢ and w are the two independent variables, and the highest order terms are ¢'"’ and
w'”, yielding a system of six-order nonlinear ordinary differential equations (ODESs). In order to limit the
deformation within the assumption of small strain and moderate rotation for a deep shell that possesses
pseudo-bistability when fully inverted, we choose the sliding boundary for the shell, i.e., on the boundary
at 8 = Oin, the shell is allowed to slide freely along e, but not along e3 (Fig. 1a). As a result, the traction

along e; is zero

R'sin6+R cos 6 — 0, (12)

(T9x,9 + QN) rey = TB(RI cosf —Rsinf) + Qz—2
VR'“4R

where T and Q are given by Eq. (A 8), and the displacement along e5 is zero,

w(R’ cos —Rsin 6) —0 (13)

8-e3=u(R'sinf + RcosH) — JRZ+R2
R'“+R

In addition, the assumption of axisymmetric deformation requires w' = ¢ = @' = 0 at the pole (6 = %).

@ and w at time t can be obtained by solving the above boundary value problem, using the bvp4c
solver and the finite difference method in Matlab. Here we consider three types of loading: i) pressure-
controlled loading, ii) displacement-controlled loading, and iii) volume-controlled loading. When the
pressure AP serves as the load parameter, the equilibrium equations in Eq. (11) are solved with prescribed

evolution of pressure as a function of time. Displacement-controlled loading means that the displacement

T

at the pole wyge = w (9 = 5) (Fig. 2a) is prescribed as the load parameter. With this loading type, the

pressure is treated as an extra variable. Correspondingly, an additional ODE, AP’ = 0, is added to the ODE



set. Volume-controlled loading is achieved by setting the volume of the shell as an additional variable and
adding an extra constraining ODE relating the volume and displacement to the ODE set, where the pressure
is regarded as an extra variable as well. In this paper, the pressure-controlled loading is used to demonstrate
the pseudo-bistable behavior while the volume-controlled loading is used to produce the instantaneous
pressure-volume change relations to examine the stability transition during the pseudo-bistability
phenomenon. Due to the low practicality in operation, the displacement-controlled loading is only used to
assist finding the equilibrium pressure-volume change paths for some elastic shells, especially for those

exhibiting unstable paths when the other two loading types are adopted.
3. Rate-dependent buckling behaviors

In Section 2, we establish a model for viscoelastic shells with arbitrary axisymmetric shapes. In

this section, we will study particular examples of ellipsoidal shells with the following R(6)

___ b 14
R(6) = V1-e2cos? @’ (14

where e = m denotes eccentricity, and a and b denote the half lengths of the major and minor
axes, respectively. Using the proposed shell model, we will first conduct the buckling analysis of elastic
shells to figure out how geometry influences the stability of the shells. We then examine the effect of
loading rates and viscoelastic properties on the rate-dependent buckling behavior of viscoelastic shells. The
analysis in this section provides insights into choosing proper geometric parameters and material properties

to achieve pseudo-bistability in viscoelastic shells.
3.1 Buckling of elastic shells

The buckling behavior of elastic ellipsoidal shells subjected to uniform live pressures can be
obtained by solving the equilibrium equations (Eq. (11)) and boundary conditions (Egs. (12)(13)) with the

following isotropic linearly elastic material law,

N = 20 [(1 - v)EY +vE) g*F]. (15)



af _ Eoh® _ ap Y af
M _—12(1_v2)[(1 VK +vK) gF],

where Ej denotes the Young’s modulus, and v is the Poisson’s ratio, which is assumed to equal 0.5
(incompressible material) throughout this paper. Fig. 3 shows the relations between the normalized pressure
AP /Ej and normalized displacement — wyp,q1e/a at the pole (Fig. 3a), as well as the relations between the
normalized pressure AP /E; and normalized volume change AV /V, (Fig. 3b) for elastic ellipsoidal shells
with h/a = 0.02,0,;, = 177/128, and different minor-to-major-length ratios b/a quantifying the
shallowness of the shells. Here AV is the volume change of the shell with respect to the undeformed state

at ¢ =0, and V, represent the negative volume of the shell in the undeformed state,

z 16
Vo=— fgzmin mR? cos? 6 (R'sin@ + R cos 6)d#. (16)

The shells with different minor-to-major-length ratios b/a exhibit quite different AP /E,-AV /V,
curves (Fig. 3b). When b/a = 0.28, AP /E|, increases monotonically with the increase of AV /V,,. For
b/a = 0.36, AP /E, initially increases, then decreases after the shell buckles, and increases again with the
increase of AV /V,, showing the features of snap-through buckling. The above two shells are monostable,
since their AP /E, remains positive. As b/a becomes large (b/a = 0.47), both AP /E, and AV /V,, change
non-monotonically, forming a very complex curve. Moreover, the AP /E-AV /V, curve intersects with the
horizontal line of AP = 0 (dashed line) at three points (Fig. 3b), where point 1 and 3 represent two stable
equilibrium states while point 2 represents an unstable equilibrium state when AP = 0. Therefore, the three
intersection points indicate that the shell with b/a = 0.47 is bistable. The stability of the shells can also be
measured by the local minimum pressure APy, /Eq of the AP/Ey-AV /V, curve. A positive APpyin/Eo
means monostability, whereas a negative APy,;,,/E, indicates that the shell has more than one stable state
when AP = 0, and therefore bistability. From Fig. 3 we can see that the stability of shells (monostability or
bistability) can be tuned by the minor-to-major-length ratio b/a: a deeper shell with a higher b/a is more
likely to be bistable. The AP /E,-AV /V, curves for b/a = 0.28 and 0.36 can be obtained by prescribing a

monotonic increase in the load parameter of either wyq1e/a or AV /V,. The two loading methods yield the



exactly same AP /E,-AV /V, curves. However, the AP /E,-AV /V, equilibrium path for b/a = 0.47 can
only be achieved by treating wyq1e/a as the load parameter, since wyq)e/a rather than AV /V,, or AP /g

increases monotonically along the equilibrium path.

To verify the axisymmetric deformation of the shells with the chosen geometry, we conduct finite
element analysis (FEA) for the shells without axisymmetric constraints using the commercial software
Abaqus/Standard. The static Riks method is implemented to capture the unstable equilibrium AP/E,-
AV /V, curve of the elastic ellipsoidal shells under pressure-controlled loading and the boundary condition
as shown in Egs. (12)(13). The shells are modeled as an incompressible linearly elastic material with 8-
node doubly curved thick shell elements with reduced integration (Abaqus type S8R). We plot the AP /E,-
AV [V, curves from FEA (circular dots in Fig. 3a-b) for the shells with b/a = 0.28 and 0.36. We find very
good agreement between the results from the shell model and FEA for b/a = 0.28, and the deformation of
the shell in FEA is also axisymmetric. For b/a = 0.36, although there is slight deviation between the
results from the shell model and FEA after the buckling, the AP /E,-AV /V, curves obtained from the shell
model can still reasonably capture the deformation process. Therefore, the shell model is still a good
analytical tool for us to understand the mechanism of pseudo-bistaiblity. Moreover, the deformation of the
shell with b/a = 0.36 in FEA is also axisymmetric. In Fig. 3¢ we plot the deformed shapes of the shell
with b/a = 0.36 when it is on the edge of buckling (AV/V, = 0.493), the pressure reaches a local
minimum (AV /V, = 1.107), and the shell is fully inverted (AV /V, = 1.754). The deformation mode for
b/a = 0.47 from FEA, however, is no longer axisymmetric. Therefore, in the following, we will limit

ourselves to shells with b/a < 0.36.
3.2 Buckling of viscoelastic shells

Next, we will examine the buckling behaviors of viscoelastic ellipsoidal shells under volume-
controlled loading over a wide range of loading rates. The influence of the relative modulus of relaxation,

Eie1 = E1/Ey, which is the ratio of the modulus in the Maxwell element E; to the instantaneous modulus



Ey = E; + E, on the buckling behavior is also studied. We define a dimensionless loading rate, yy, to

quantify the rate of changes in the volume,

— d(Av/Vp) 17
V" ait/t)

which indicates that in the relaxation time scale 7, the volume change is V,yy. In the following we will
take the shell with b/a = 0.36 as an example and study its rate-dependent buckling behavior. Other

geometric parameters are h/a = 0.02, 0,,;, = 177/128.

We first examine the influence of the loading rates on the AP/E,-AV /V, curve under volume-
controlled loading. The curves corresponding to different volume loading rates yy, ranging from 0.01 to 10
are plotted in Fig. 4a when the relative modulus of relaxation E, is fixed at 0.5. When yy, is very low
(yvy = 0.01), almost full relaxation occurs, and the response of the shell is governed by the long-term
modulus, E.,. As a result, the AP /E,-AV /V, curves at very low yy, approach that of the elastic shell with
modulus E = E,, (dot-dashed line in Fig. 4a). On the other hand, the very high yy (yy = 10) results in little
relaxation. Correspondingly, the effective modulus of the shell is close to the instantaneous modulus E, =
E; + E, and thus the AP /Ey-AV /V,, curves at very high y;, approach that of the elastic shell with modulus
Ey, = E; + E, (dashed line in Fig. 4a). The AP /Ey-AV /V, curves at moderate y;, are located in between
the two extreme cases, and the resultant pressure AP /E,, for a given volume change AV /V, increases as yy
increases. The buckling pressure AP,,.«/Ey at very high (low) yy, approaches that of the elastic shell with
E; + Ey (Ex) (Fig. 4b). In between the very low and very high yy,, the increase of yy, results in a notable
increase in AP, /Ey (Fig. 4b). The middle-surface profiles of the shell under different volume changes
AV /V, at the volume loading rate y,; = 0.5 is shown in Fig. 4c. The profile of the shells stays concave
before the pressure reaches the critical pressure for buckling when AV /V, = 0.475, and transitions from
concave to convex as the pressure decreases and the volume change increases (0.475 < AV /V, < 1.12).
Finally, the profile keeps convex while the pressure increases again with the increase of the volume change

(AV/V, = 1.12).



The AP /Ey-AV /V, curves for viscoelastic shells also highly depend on the relative modulus of
relaxation, E.o;. We consider a moderate loading rate y,; = 0.5, and plot the AP/Ey-AV /V, curves for
different E}.) ranging from O to 1, as shown in Fig. 4d. When E,¢; = 0, no relaxation occurs, and thus the
corresponding AP /Ey-AV /V,, curve coincides with that of the elastic shell with modulus Ey = E; + Eo,
(dashed line in Fig. 4d). As Ey increases from 0, the resultant pressure AP /E,, reduces notably for a given

volume change AV /V,, leading to a reduction in AP, ,«/E, (Fig. 4¢).
4. Mechanism of pseudo-bistability

In this section, we will first use the viscoelastic shell model formulated in Section 2 to demonstrate
the pseudo-bistability phenomenon, in which an inverted viscoelastic ellipsoidal shell snaps back to its
natural state with a delay time after a pressure load is held constantly for a while prior to being released.
We will then probe the stability of the shell at different time during this holding and releasing process by
plotting the corresponding instantaneous pressure-volume change relations. The obtained stability

transition provides insights into the mechanism of the pseudo-bistability.
4.1 Predicting pseudo-bistable behavior

Demonstrating pseudo-bistability in a viscoelastic shell requires a careful choice of geometry and
viscoelastic properties. The geometry should result in a monostable pressure AP /Ey-volume change AV /V,,
relation if the shell were elastic, but the minimum normalized pressure AP,/ E, is not too far away from
zero. On the other hand, the viscoelastic effects should be large enough to trigger pseudo-bistability. We
choose a viscoelastic shell with the geometric parameters as b/a = 0.36, h/a = 0.02, 6, = 177/128,
which corresponds to a monostable shell if it were elastic, and material parameter E.o; = 0.5. We apply an
instantaneous pressure load AP/E, = 2.67 X 10~°, which is above its buckling pressure AP,,./Eo, and
release this pressure after holding it for treep = 7, (Fig. 5a). The corresponding volume change AV /Vj as
a function of time t is computed based on the proposed shell model (Fig. 5b and Appendix video). We

observe that the shell immediately buckles into an inverted shape once the pressure is applied (Fig. Sb-c,



moment 2), and creeps with a small increase in volume change for tcpreep = 7 (Fig. Sb-c, from moment 2

to moment 4). After the pressure is removed, the viscoelastic shell can temporarily stay inverted for £ e =
1.1367, (Fig. 5b-c, from moment 5 to moment 7). At moment 7, a solution of the inverted state can no
longer be found using the solution of the last iteration as the initial guess with the ODE solver, but only a
solution of the unbuckled state can be found using the undeformed configuration as the initial guess.
Accordingly, the shell snaps from the inverted configuration (moment 7) back to the unbuckled
configuration (moment 8). After this snapping deformation, the shell gradually recovers its undeformed
shape, with AV /V, slowly decreasing to zero. The characteristics of this observed deformation history agree
with those of FEA simulations and experiments reported in literature [16,21,22], indicating that the

proposed viscoelastic shell model can capture the pseudo-bistability exhibited in viscoelastic shells.
4.2 Stability transition during delayed snap-through

Having successfully predicted the pseudo-bistable behavior of a viscoelastic shell using the
proposed shell model, we next investigate the stability transition of the shell during this holding and
releasing process. For an elastic shell, the number of the intersection points of its pressure-volume change
curve with the horizontal line of zero pressure determines its stability (Fig. 3b). One intersection point
indicates that the shell is monostable, since there is only one stable equilibrium state when no pressure is
applied. Three intersection points, on the other hand, indicate that the shell is bistable, since there are two
stable and one unstable equilibrium states at zero pressure. To probe the stability evolution of the
viscoelastic shell during the hold and releasing process, we need to plot the instantaneous pressure-volume
change relation at different time moments and check the number of intersection points with the horizontal
line of zero pressure. In Section 3, we have learned that an extremely fast loading y;, >> 1 can eliminate the
viscoelastic relaxation effects and yield an instantaneous pressure-volume change response of a shell.
Therefore, in the following we will conduct volume-controlled loading to different time moments of interest

in the holding and releasing process, and unload (or load for some cases) at an extremely high rate to obtain



the corresponding instantaneous pressure-volume change responses, which provide information on the

stability evolution of the viscoelastic shell.

We follow the same loading process up to the different time moments as in Fig. 5a, and unload at
a very high rate of changes in the volume y;; = 10 to obtain the instantaneous pressure AP /E,-volume
change AV /V, relations (Fig. 6a-f). When the shell is unloaded at moment 2, right after the instantaneous
pressure is applied (Fig. 5a), the instantaneous AP /E,-AV /V, relation (Fig. 6a) is exactly the same as the
AP /Ey-AV /V, curve for the elastic shell with the same geometry (the red curve in Fig. 3b). This agreement
is due to the fact that creeping has not yet started and thus viscoelasticity plays no role. At moment 2, the
local minimum pressure of the instantaneous AP /Ey-AV /V, curve, APy i,/ Ey, is larger than zero, so the
shell is monostable. When the pressure is held until moment 3, AP,,;,,/E, of the instantaneous AP /E-
AV /V, curve decreases to zero (Fig. 6b). When the pressure is held for an even longer time, for example
until moment 4, APy;,/E, of the instantaneous AP/E,-AV /V, curve becomes negative (Fig. 6c¢).
Accordingly, the number of the intersection points between the instantaneous AP /E,-AV /V,, curve and the
horizontal line of AP/E, = 0 (dashed line) changes from one (Fig. 6a) to two (Fig. 6b), and eventually to
three (Fig. 6¢). Thus, the stability of the shell transitions from a monostable state to bistable state due to

viscoelastic creeping, with moment 3 as the critical transition time, at which AP, /Eo = 0.

Right after the pressure is removed, the shell jumps from the configuration at moment 4 to the
closest stable configuration (moment 5 in Fig. 5b), which corresponds to the third intersection point between
the instantaneous AP /E-AV /V,, curve and the horizontal line of AP /E, = 0 (point 5 in Fig. 6¢). This jump
results in a sudden drop in AV /V,, (from moment 4 to 5 in Fig. 5b). After the load is released (AP/E, = 0),
the instantaneous AP /E,-AV /V, curve further evolves: APy, /E, starts to increase (Fig. 6d-¢), and the
third intersection point gradually shifts to the left (from point 5 in Fig. 6¢ to point 6 in Fig. 6d), resulting in
a slow decrease in AV /V,, (from moment 5 to 6 in Fig. 5b). The shell is bistable and stays inverted as long
as APpin/Eq < 0. When AP,,;,,/E increases back to zero at moment 7 (Fig. 6¢), the third and the second

intersection points merge into a single point (point 7 in Fig. 6¢) tangent to the horizontal line of AP /E, =



0. The shell at moment 7 is unstable and thus snaps to the only stable configuration (point 8 in Fig. 6e).
Correspondingly, the shell snaps from the inverted state (moment 7) to unbuckled state (moment 8).
Therefore, moment 7 is the critical moment at which the stability transitions from the bistable state back to
the monostable state. As the creeping process continues, APyi,/E, keeps increasing. As a result, only one
intersection point exists and shifts to the left (from point 8 in Fig. 6¢ to point 9 in Fig. 6f), leading to a
decrease in AV /V; (from moment 8 to 9 in Fig. 5b). At moment 9, the instantaneous AP /Ey-AV /V, curve
almost recovers the one at moment 2, the intersection point almost overlaps the origin, and the shell almost

recovers the stress-free shape and volume (Fig. 6f).

We summarize the APy, /E,-time relation in Fig. 7, from which we can clearly observe the
stability transition of the viscoelastic shell from a monostable state to a bistable state, and back to the
monostable state during the holding and releasing process. APpin/Ey, starting with a positive value,
monotonically decreases while the pressure is held constantly, and reaches its minimum when the pressure

isremoved at t /T, = tereep/Tr = 1. Accordingly, the shell is initially monostable, and switches to bistable
when AP,/ E, flips its sign from positive to negative, and stays bistable. Here we define the time period
within which APy, /E, decreases to zero as the critical creeping time t&reep, representing the minimum
creeping time required for the stability transition. Only if the pressure is held for a time period longer than
téreep» can the shell exhibit pseudo-bistability. After the shell is released at t/7, = 1, APy;n/Ej starts to
increase. When AP,/ E, flips its sign back to positive, the acquired stability is lost and the shell recovers
the monostable state, triggering snapping from the inverted configuration to the unbuckled configuration.

The time period within which AP, /E, increases from its minimum to zero is the recovery time tpqc

defined in Fig. 5b. As time goes on, AP,;,/E, continues increasing and approaches its initial value.
5. Influence of geometry, viscoelastic property and loading history on pseudo-bistability

In this section, we will investigate how the geometry and viscoelastic property of ellipsoidal shells,

and the loading history influence their pseudo-bistable behavior. Specifically, the minor-to-major-length



ratio b/ a, relative modulus of relaxation Ey|, and the holding time tcreep /7y are considered. A higher b/a
(a deeper shell) results in a smaller local minimum pressure APy, /E, in the instantaneous AP /Ey-AV /V,,
curve (Fig. 3b), and thus leads to a shell closer to a bistable one if it were elastic. A larger E,¢ causes a
stronger viscoelastic effect, while a longer tcreep /Ty results in a longer creeping process. Other parameters

such as h/a = 0.02, 0,,;, = 17m/128, and the applied pressure AP/E, = 2.67 X 107> are fixed. The
tCr

critical creeping time tcreep and the recovery time tye. will be investigated with respect to different values

of the parameters mentioned above.

We first examine the effect of the minor-to-major-length ratio b/a on the pseudo-bistable behavior.
We apply an instantaneous pressure and release this pressure after holding it for tepeep/7r = 1 (Fig. 5a).
The volume change AV /V as a function of time t, as well as the local minimum pressure AP,;, /E, of the
instantaneous AP /E,-AV /V, curve as a function of time t for shells with relative modulus of relaxation
E.e1 = 0.5 and different b/a are plotted in Fig. 8. From the AV /V,-t curves (Fig. 8a), we find that the shells
with b/a = 0.35 and 0.36 exhibit pseudo-bistability while the shell with b/a = 0.34 does not, and that
the shell with b/a = 0.36 has a longer delay time than the one with 0.35. This is because AP,/ Eo
decreases slower for a shallower shell (lower b/a) (Fig. 8b) during the holding process. At t/t. =
tereep/Tr = 1, the shells with b/a = 0.35 and 0.36 reach negative AP, /Ey, indicating that they are
temporally bistable. The shell with b/a = 0.36 has a smaller AP,,;,/E, than the one with b/a = 0.35.
Thus, it takes longer for the APy, /E, of the shell with b/a = 0.36 to recover a positive value after the
pressure is removed, leading to a longer recovery time tyqc. In addition, the critical creeping time t¢reep,
the intersection point between the AP, /Eo-t curve and the horizontal line of AP, /Eq = 0 (dashed line
in Fig. 8b), for b/a = 0.36 is smaller than the one for b/a = 0.35. The AP;n/E, for the shell with b/a =
0.34, however, remains positive at t/T. = tcreep/Tr = 1, indicating that it stays monostable during the

holding process and thus immediately snaps back after it is released. The shell with b/a = 0.34 needs



longer tereep/Tr to reduce APpin/Ey to a negative value in order to trigger pseudo-bistability. For all the

three shells, their APp,;, /E, recovers the initial values as t approaches 5t,.

We then investigate how the viscoelastic effect influences the pseudo-bistable behavior. We apply
the same loading process as shown in Fig. 5a, and plot the AV /V,-t /7, curves (Fig. 9a) and corresponding
APin/Eo-t/ 7, relations (Fig. 9b) for viscoelastic shells with b/a = 0.36 and different E,. Fig. 9a shows
that the shells with high (E.e; = 0.5) and intermediate (E. = 0.4) viscoelastic effects exhibit pseudo-
bistable behavior while the shell with a low viscoelastic effect (E.e; = 0.05) snaps back immediately after
the pressure is removed. In addition, a higher viscoelastic effect results in a longer recovery time t,ec. In
Fig. 9b, we can clearly see that the stability transitions from a monostable state (AP, /Eo > 0) to a bistable
state (APpin/Eo < 0) for the shells with E.q; = 0.4 and 0.5, whereas the shell with E.o; = 0.05 remains
monostable during the holding process. The AP, ;,/E, for the shell with E..; = 0.05 reduces more and
more slowly as t increases and reaches a plateau at /T, = tcreep/Tr = 1, meaning that increasing the
holding time can never reduce AP,,;,/E, to a negative value, and thus leads to no pseudo-bistable behavior.

Therefore, there exists a critical value of E.; for shells to achieve pseudo-bistability.

Moreover, we study the effect of time period of the holding process, tcreep/Tr, 0On the pseudo-
bistable behavior of viscoelastic shells. We fix b/a = 0.36 and Ey¢; = 0.5, and vary tereep/7r (Fig. 5a)
from 0.6134, 1 to 5, where tcreep/Tr = 0.6134 is the critical creeping time tfeep (moment 3 in Fig. 5b

and 6b). Therefore, the AV /V,-t/t, curve (Fig. 10a) shows no delay time after the shell is released.

Correspondingly, the AP, /E decreases to zero at tereep/Tr = 0.6134 and starts to increase, indicating
that the shell stays monostable during the holding process. The shells for both t¢eep /7 = 1 and 5 exhibit
pseudo-bistable behavior (Fig. 10a), and the shell for t¢reep /T = 5 shows a longer recovery time ty. than
the one for tereep/Tr = 1. This is because a longer time of holding process results in a smaller AP,y /Ey,
and therefore a longer time is needed for AP,,;,/E, to recover positive (Fig. 10b). In addition, Fig. 10b

shows that AP,;,/E, decreases more and more slowly as the time of holding process increases and almost



reaches a plateau when tcreep/7r = 5. This indicates that t.oc also approaches a plateau as tereep/7r

becomes very long.

We summarize the effect of geometry, viscoelastic property and loading history on the pseudo-
bistable behavior in Fig. 11 and 12. In Fig. 11, we show the effect of minor-to-major-length ratio b/a and
relative modulus of relaxation Ey¢ on the critical creeping time téreep. When b/a = 0.36, téreep increases
with the decrease of E,], and goes to infinity as E.,] approaches 0.214 (Fig. 11), indicating an infinite time
of holding required for pseudo-bistability. The viscoelastic shells with E}.o below 0.214 can never exhibit
pseodu-bistability no matter how long the pressure is held, since the viscoelastic effect is not strong enough.
As b/a decreases, the corresponding asymptotic lines (dashed line in Fig. 11) is shifted to the right,
meaning that a shallow shell (lower b/a) needs a stronger viscoelastic effect (larger E,¢) for the stability
transition to occur. For a given E¢, a deeper shell has a shorter t¢feep, and thus requires a shorter holding
time to acquire pseudo-bistability. Fig. 12 illustrates the influence of tcreep/Tr, b/a, and Epep on the
recovery time trec/T,. We find trec/7, increases with tereep /7, and saturates when tepeep /7, becomes
much longer than 1, regardless of b/a and E,. For fixed b/a = 0.36, a higher E,¢ results in a longer
trec/Tr» and requires a shorter tereep /Ty to trigger the pseudo-bistable behavior (tyec/7, > 0) (Fig. 12a).
Moreover, b/a also has a strong influence on t.o./7, (Fig. 12b). We find that a deeper monostable shell
with higher b/a, which is closer to that of bistable shells, leads to a more significantly delay time with
longer trec/Ty. The effects of tereep/Tr, b/a and Epep 0n trec /T, mentioned above are consistent with the

FEA simulations and experimental observations reported in literature [16,18,21,22].
6. Conclusion

In this paper, we model and explain the pseudo-bistable behavior of viscoelastic shells with a
viscoelastic shell model. The model combines the small strain, moderate rotation shell theory with the
standard linear solid as the viscoelastic constitutive law. The equilibrium equations are derived by using

the principle of virtual work based on the assumption of axisymmetric deformation. By numerically solving



the equilibrium equations, the time-dependent buckling behaviors of viscoelastic shells far beyond the

buckling point are obtained.

As an example, we apply the proposed model to investigate viscoelastic ellipsoidal shells. Time-
dependent buckling analyses are conducted for them under volume-controlled loading conditions. The
viscoelastic shells loaded extremely fast (slow) exhibit pressure-volume change relations approaching those
of the elastic shells with the short-time elastic modulus E; + E,, (long-time elastic modulus E,). For a
moderate loading rate, the pressure-volume change curve shifts downward as either the loading rate
decreases or the relative relaxation modulus E} increases. Correspondingly, the critical pressure for

buckling decreases.

Using the proposed viscoelastic shell model, we successfully predict the pseudo-bistable behavior
and reveal its mechanism by quantitatively probing the stability transition of viscoelastic shells during a
process of holding and releasing a pressure. We first apply an instantaneous pressure sufficient to buckle a
monostable shell, hold the pressure for certain amount of time, and then remove it. With an appropriate
choice of shallowness and viscoelasticity, the buckled shell creeps while the pressure is held, stays inverted
after the pressure is removed, and finally recovers from its inverted state after a delay time. The
characteristics of this time-dependent deformation agree with those obtained from FEA and experiments in
literature. Moreover, the viscoelastic shell model allows us to produce the evolution of the instantaneous
pressure-volume change relation, which indicates the stability of the shell, at different time during the
holding and releasing process. We observe that the shell’s stability transitions from a monostable state,
temporarily bistable state and eventually back to the monostable state. This observation confirms the
mechanism of the pseudo-bistability phenomenon. Finally, we conduct a parametric study to investigate
the influence of geometry, viscoelastic property and loading history on the pseudo-bistable behavior. We
find that a shallower shell requires a longer time of holding to achieve pseudo-bistability, and that the
recovery time can be increased by either enlarging the viscoelastic relaxation or reducing the shallowness

closer to that of bistable shells.
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Appendix A. Derivation of equilibrium equations using the principle of virtual work

In this section, the derivation for the equilibrium equations in Eq. (11) is presented in details. The

internal virtual work (IVW) can be expressed as,

IVW = [ [N®SEq5 + M 5K p)dS, (A
where 6E, 3 and 6K, are the virtual strain components, S denotes the area of the mid-surface of the shell.

Based on the small strain, moderate rotation shell theory [26,27], 6E,p and 6K, can be written as

1
SEOJB = E((Suaﬁ + Suﬂ_a) + baﬁ6W + (pa6§05 + gaﬁg‘b&l),
(A2)
SK,p = —6W 45 + by g6u¥ —=(bYSuy, + b8 +2(bg, 8uY, + by, Su",
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where
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1/\/g,whena=1,8=2 (A3)
E(Xﬂ = O,Whena = ,8 g = |gaﬁ|
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Substituting Eq. (A 2) into Eq. (A 1), the internal virtual work can be rewritten as

VW = [, {[—Ml‘;f? + Ny + (N By | ow + [—Njf - Mpl -

%(M“ﬁ bl — MYpf ) p + N @, bj — % (N;;f(peW),u] auy} ds +
' (A4)

$. {—M“ﬁnﬁna8w_n + [M“;ﬁna + (M*Fngt,) - N“ﬁ(panﬁ] Sw + (Nyﬁnﬁ +
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Corners’

where () o and () op are the first and second-order covariant derivatives of (), C is the boundary of
the mid-surface, n, and t, represent the components of the unit vectors normal and tangent to the edge C,
respectively. The external virtual work (EVW) due to a uniform pressure acting on the shell in the deformed

state (called live pressure) is [27]



EVW = [ APN - (6uPxp + 6wN)dS + §. (TY6u, + Q6w — M, 6w,)ds, (A5)
where N denotes the unit vector normal to the mid-surface of the deformed shell, S denotes the area of the

mid-surface of the shell in the deformed state. Under the condition of small strain and moderate rotation,

the EVW becomes

EVW = fs [AP(l + u)]/, + b)),/W)5W + AP(ggV + qﬁ(p"ez;)c?uy]dS + Sﬁc (TV6uy +

(A 6)
Qéw — Mné‘W'n)dS.
By enforcing IVW = EVW, we can obtain the following equilibrium equations
—Mef + N%bg + (N“Pgg) , = AP(1+u) + bYw),
1 1
=NIF =MbY — 2 (MDY — MYeDy) . N p bl 3 (NEPek?), = (A7)
AP((py + ¢<p”63]/),
and boundary conditions:
Specify N"Png +>M%ngbl -~ MYPbgn, + - N&pehrn, = T" oru,
Specify M%F ngng = My, orwy, (A8)

Specify M’%ﬁna + (M“ﬁnﬁta)'t - N"‘pranﬁ =Qorw.
The term —M*F ng t(,(5W|Corners in Eq. (A4) is related to the virtual work of concentrated loads at any

corners.

Since we only consider axisymmetric deformation, u? and w are only functions of 8, u® =0,
©® =@, =0, ¢ = 0. With the assumption of axisymmetric deformation, each term in Eq. (A 7) can be

written as
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where ()" denotes d(-)/d6, ¢ = ¢?, Jap and g®P are the covariant and contravariant components of the

first fundamental form of the mid-surface,
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bgp and bg‘ are the covariant and the mixed components of the second fundamental form of the mid-surface,
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and Fg{ s denotes the Christoffel symbols,
Fy =l YA (agal_i_agﬁl_agaﬁ) (A 21)
ap = 29 ap da ar )
yielding the following non-zero components
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Appendix videos

Appendix video. Modeling results showing the pseudo-bistable behavior of a viscoelastic shell. A
viscoelastic shell with geometric parameters b/a = 0.36, h/a = 0.02, 0,;, = 17m/128, and material
parameter E.o; = 0.5 is selected for demonstrating the phenomenon of pseudo-bistability. An instantaneous

pressure load AP/E, = 2.67 x 1075 is applied and released after holding it for tereep = Tr- The volume

change AV /V,-time t/7, relation, as well as deformation history is computed based on the proposed shell

model.
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Fig. 1 Schematic of the pseudo-bistable behavior exhibited in viscoelastic shells. A viscoelastic shell

snapping back

buckles into the inverted configuration when an instantaneous pressure AP is applied. It creeps under the
constant AP for a while before being released. The shell does not recover immediately, but instead, stays

inverted as if it were bistable. After a delay time, the shell snaps back to its unbuckled configuration.



Fig. 2 (a) Schematic of a viscoelastic shell. The shell with thickness # is subjected to a live pressure load
AP. The coordinate 6 is the meridional angle, ranging from 8,;, to % R(0) represents the middle surface
radius of the undeformed shell. The shell can slide freely along the e; axis but has zero displacement along
ez at 8 = Oy, and is subjected to the axisymmetric boundary condition about the e3 axis at 8 = % (b) A

standard linear solid containing a Maxwell model with a spring of modulus E; and a dashpot of viscosity

7, connected in parallel to a spring of modulus E,.
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Fig. 3 Buckling behavior of elastic ellipsoidal shells with h/a = 0.02,60,i, =
17m/128,and different b/a . (a) Normalized pressure AP/E, versus normalized displacement
—Wpole/ @ at the pole. (b) Normalized pressure AP /E,, versus normalized volume change AV /V,, where V
denotes the negative volume of the undeformed shell. The solid curves represent the theoretical results for
the shells with b/a = 0.28,0.36,and 0.47, and the circular dots represent the FEA results for the shell
with b/a = 0.28 and 0.36. The AP /E,-AV /V,, curve for b/a = 0.47 intersects with the horizontal line of
AP = 0 (dashed line) at three points, indicating that the shell with b/a = 0.47 is bistable. (¢) The deformed
shapes obtained from FEA for the shell with b/a = 0.36 at different volume changes are axisymmetric.

The contour represents the maximum principal strain.
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Fig.4. Buckling behaviors of viscoelastic shells with b/a = 0.36 under volume-controlled loading. (a)
Normalized pressure AP /E,-volume change AV /V, relations at different volume loading rates (y, =
0.01~10) when E.; = 0.5. (b) Buckling pressure AP,,.x/E, as a function of y;,. The dashed and dot-
dashed lines represent AP,,,x/E for elastic shells with moduli E,, + E; and E,,, respectively. (c) Middle-
surface profiles of the shell under different volume changes AV /V, when E. = 0.5 and y, = 0.5. (d)
Normalized pressure AP /E,-volume change AV /V, relations at different relative modulus of relaxation
(Ere; = 0~1) when y;, = 0.5. (¢) Buckling pressure AP,/ Eo as a function of E,¢;. The dashed and dot-
dashed lines in (a) and (d) represent the pressure-volume change relations for elastic shells with moduli

E + E; and E,, respectively.
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Fig. 5 Pseudo-bistable behavior of a viscoelastic shell. (a) Applied pressure-time relation and (b) the
corresponding volume change-time relation for a viscoelastic ellipsoidal shell with b/a = 0.36, h/a =
0.02, O1nin = 17m/128, and E.o; = 0.5. The time period within which a constant pressure is held is defined
as the creeping time t¢reep, and the time period within which the shell stays inverted after the pressure is
removed is defined as the recovery time ty.... T, = n/E; denotes the relaxation time constant of the

viscoelastic material. (¢) Middle-surface profiles of the shell at different time moments as labeled in (b).
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Fig. 6. (a-f) The instantaneous pressure-volume change relations at the time moments labeled in Fig. 5b.

The red dots represent the states of the shells for the corresponding time moments.



Fig. 7. Local minimum pressure AP,;,,/E, of the instantaneous pressure-volume change curve as a function
of time. The time period within which AP,,;,,/E, decreases to zero is defined as the critical creeping time

téreep» indicating the minimum creeping time required for pseudo-bistability.
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Fig. 8. (a) Volume change AV /V,-time t/7, relations and (b) local minimum pressure APy, /E, of the
instantaneous pressure-volume change curves as a function of time t/7, for viscoelastic ellipsoidal shells

with relative modulus of relaxation Ey; = 0.5 and different minor-to-major-length ratios b/a during the

holding for t¢reep/Tr = 1 and releasing process.
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Fig. 9. (a) Volume change AV /V,-time t/7, relations and (b) local minimum pressure AP,;,/E, of the

instantaneous pressure-volume change curves as

with minor-to-major-length ratio b/a = 0.36 and different relative moduli of relaxation Ee during the

holding for tcreep/Tr = 1 and releasing process.

a function of time t/7, for viscoelastic ellipsoidal shells
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Fig. 10. (a) Volume change AV /V,-time t/7, relations and (b) local minimum pressure APy, /E, of the
instantaneous pressure-volume change curves as a function of time t /7, for viscoelastic ellipsoidal shells
with minor-to-major-length ratio b/a = 0.36 and relative modulus of relaxation E.o; = 0.5 during the

holding for different t.reep /7, and releasing process.
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Fig. 11. Dependence of the critical creeping time tcreep on relative modulus of relaxation Eye) and minor-

to-major-length ratios b/a . The dashed lines represent the critical values of Eye for téfeep to

asymptotically reach infinity.
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Fig. 12. Dependence of the recovery time ¢y on the creep time tereep for different (a) relative modulus of

relaxation E.; and (b) minor-to-major-length ratios b/a.



