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GLOBAL EIGENVALUE FLUCTUATIONS OF RANDOM BIREGULAR
BIPARTITE GRAPHS

IOANA DUMITRIU AND YIZHE ZHU

ABSTRACT. We compute the eigenvalue fluctuations of uniformly distributed random biregular
bipartite graphs with fixed and growing degrees for a large class of analytic functions. As a key
step in the proof, we obtain a total variation distance bound for the Poisson approximation of
the number of cycles and cyclically non-backtracking walks in random biregular bipartite graphs,
which might be of independent interest. We also prove a semicircle law for random (d1, d2)-biregular
bipartite graphs when Z—; — 00. As an application, we translate the results to adjacency matrices
of uniformly distributed random regular hypergraphs.

1. INTRODUCTION

1.1. Eigenvalue fluctuations of random matrices. The study of fluctuations from the limiting
empirical spectral distributions (ESDs) for random matrices is a well-established topic of interest
in random matrix theory, originated in [41, 43, 58], see also [2] and all references therein. More
recently, it has been extended to sparse random matrices and random graph-related matrices in
various regimes of sparsity and independence ([55, 56, 10, 30, 9]), and the natural next target is
hypergraphs ([34]).

The ultimate goal in these studies is to see the equivalent of the one-dimensional Central Limit
Theorem (CLT) emerge, when examining linear statistics of the spectra of random matrices and
random graphs. More precisely, denote by Aq,..., A, the eigenvalues of the random matrix, suitably
scaled to put them with high probability on a compact set, and let f be a suitably smooth function.
When the matrices in question are not extremely sparse, one can almost invariably prove that the
linear statistic

L) =) fN)
=1

has the property that, when centered, it converges to a normal distribution whose variance depends
on f:

L(f) —E(L(f)) — N(0,07) .

1.1.1. Dense and not-too-sparse Wigner cases. There is an interesting phenomenon taking place
with respect to sparsity; the variance a]% is the same in the case of Gaussian Orthogonal Ensembles
(GOEs) as in the case of the random regular graph under the permutation model with growing
degrees [30]:

(o]
(1.1) o} = 2> kaj,
k=1
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where ay, is the k-th coefficient of f in the Chebyshev polynomial basis expansion. Small variations
of this expression also occur in dense Wigner variants and the uniform regular graph model, as
follows. For real Wigner and generalized Wigner matrices in the dense case [39, 6, 3, 22, 60], o also
depends on the fourth moments of the off-diagonal entries and the variance of the diagonal entries,
which yields corrections to the constants in front of a?,a3 (see Theorem 1.1 in [6] for an explicit
expression). Similarly, in the uniform regular graph model [40], a correction must be introduced as
there are no one- or two-cycles (as the graph is simple), and so the terms corresponding to k = 1
and k = 2 in the sum (1.1) are not present.

However, in the case of sparse Wigner matrices (corresponding to Erd6s-Rényi graphs G(n,p)
with p — 0,np — oo, [56]), the fluctuations are impacted by the fact that the number of nonzero
entries in each row (i.e., the degree of each vertex) fluctuates, and the 4th moment of the scaled
adjacency matrix entries grows. The variance U]% blows up, necessitating another multiplicative
scaling of the linear statistic £(f) — E(L(f)) by /p, and extracting only part of the expression
(1.1) (see Theorem 1 in [56]).

1.1.2. Dense Wishart cases. A similar phenomenon occurs in the Wishart case, i.e., for sample co-
variance matrices (corresponding to bipartite graphs); in the case of dense matrices with converging
aspect ratio, the variance is given in different forms in [4, 5]. Although these expressions are not
explicit in terms of a Chebyshev polynomial expansion, in [19, 44], it is shown that the covariance
between two linear statistics is diagonalized by shifted Chebyshev polynomials. When the aspect
ratio goes to oo, [24] computes the variance which is consistent with the Wigner case in [6]. So
far, we are not aware of any CLT results for sparse bipartite Erdés-Rényi graphs, but a similar
argument as in [56] should apply.

For dependent entries (biregular bipartite graphs), we obtain here the variance of the eigenvalue
fluctuation in Theorem 4.7, and it matches the one in [24], except for the first coefficient.

c

1.1.3. Constant (expected or deterministic) degree. When p = £, the explicit limiting spectral
distribution for Erdds-Rényi graphs G(n, p) is not known, although it is known that the measure g,
exists for every ¢ (given, e.g., by a Stieltjes transform equation as in [14]), and if ¢ > 1 it consists
of a continuous part and an atomic part [15]. Convergence of p. to the semicircular distribution
is studied in [33, 42], where asymptotic expressions for the moments of y. with an o(1/c) term are
computed (as ¢ — 00, . converges to the semicircle law).

However, a CLT for Erdés-Rényi graphs G(n, <) still holds [55, 10] with a more complicated
variance that does not follow the same expression as in (1.1), see Theorem 2.2 in [10]. By contrast,
in the random d-regular graph case with d finite, the fluctuations are no longer Gaussian. Instead,
they are modeled by an infinitely divisible distribution, expressed as a sum of Poisson variables
(see [30] for the permutation model, and [40, 50] for the uniform model). Notably, in the case
when the matrix is not symmetric and corresponds to the (directed) cycle structure of a random
permutation, [9] showed that the global fluctuations could be computed, and whether or not the
limiting distribution is Gaussian depends on how smooth the test function is. For random regular
graphs with fixed degree d, we will not see the effect of degree fluctuation. But for Erdds-Rényi
graphs G(n, %) with expected degree d, the degree fluctuation contributes to the fluctuation of
linear statistics, and there is an extra n~'/2 normalization in the CLT (see [55, Theorem 4]). Such
a difference shows that eigenvalues of random d-regular graphs for fixed d are more rigid than the
corresponding Erdés-Rényi graph G(n, %)

For the bipartite Erdés-Rényi case, once again, the limiting distribution is not known, but
results that are similar to [33] can be found in [53]. We are not aware of any CLT-like results
for the fluctuations in this case. We compute the fluctuations for the uniformly random biregular
bipartite with fixed degrees. Just like in the regular case [30], we see that the fluctuations are
modeled by a sum of Poisson variables (Theorem 4.4).
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Another important class of random graphs is the configuration model. The ESD of the configu-
ration model with a large mean degree is not generally given by the semicircle law [28, 51], but no
linear statistics result is known. When the degrees grow with the size of the graph, similar to Erdds-
Rényi graphs and random regular graphs, we expect a central limit theorem for linear statistics
holds. There are linear statistics results for inhomogeneous matrix models beyond Wigner matri-
ces [22, 1], and it might be possible to apply their techniques, together with a coupling argument
introduced in [28], to study the linear statistics for the configuration model.

1.2. Random biregular bipartite graphs. Biregular bipartite graphs have found applications
in error correcting codes, matrix completion, and community detection, see for example [38, 61, 59,
36, 16, 18, 11, 26, 27]. An (n,m, dy, ds)-biregular bipartite graph is a bipartite graph G = (V1, V3, E)
where |V1| = n,|Vo| = m and every vertex in V] has degree d; and every vertex in V5 has degree
dy. Here we must have nd; = mds = |E|. When the number of vertices is clear, we call it a
(d1, dg)-biregular bipartite graph for simplicity.

Let X € {0,1}"*™ be a matrix indexed by Vi x V5 such that X;; = 1 if and only if (¢, ) € E.
The adjacency matrix of a (dy, d2)-biregular bipartite graph with Vj = [n], Vo = [m] can be written
as

0 X
0 asf2 ]
All eigenvalues of A come in pairs as {—A, A}, where |A| is a singular value of X, along with extra
|n — m| zero eigenvalues. It’s easy to see A\j(A) = —Apim(4) = Vdids.

The empirical spectral distribution for uniformly distributed random biregular bipartite graphs
(RBBGs), which is the equivalent of the Kesten-McKay law, was first computed in [37, 52] for the
case of fixed di, ds. For growing degrees, when g—; converges to a positive constant, the analogue to
the Marcenko-Pastur law was proved in [29, 63, 65].

In this paper, instead of examining the spectrum of A, we will be looking at the spectrum of the
matrix X X " —d;I. This serves two purposes: one, it allows for an immediate parallel to the sample
covariance matrix (Wishart) case, and two, it allows us to deal with all regimes in a unitary fashion.
The eigenvalues of X X | —d I are the shifted squares of the eigenvalues of A. Any result on global
fluctuations for linear statistics of the spectrum of XX ' — d;I is automatically converted into an
equivalent result for the spectrum of A. However, because any result of fluctuations must necessarily
put most of the eigenvalues (with the exception of the deterministic outliers) on a compact interval,
scaling must be involved. This works perfectly fine when the ratio d; /ds is bounded, but it becomes
tricky when it is not, and the matrix X X " —d; I allows us to do the scaling in a more natural way,
similarly to the sample covariance (Wishart) matrix with unbounded aspect ratio in [24].

To prove a result on eigenvalue fluctuations, we need two special ingredients: eigenvalue con-
finement on a compact interval and asymptotic behavior of cycle counts. For the former, we make
use of the spectral gap shown in [16] for the fixed degree case and [66] for the growing degree case.
Previous results of this kind were obtained for random regular graphs [35, 13] for a fixed degree,
and [17, 25, 62, 8] for growing degrees.

For the latter, we use Stein’s method to approximate cycle counts as Poisson random variables
by bounding the total variation distance (Theorem 2.10) and obtain a Poisson approximation of the
number of cyclically non-backtracking walks (Corollary 2.15). Note that computing cycle counts is
a fundamental problem in the study of random graphs, ever since the seminal papers of [47] and
more general [48, 49].

To prove our results, we follow the recipe of [40] by using switching to construct exchangeable
pairs of graphs that allow us to estimate cycle counts. The switching we use here differs from [40]
and is suitable for biregular bipartite graphs. In the analysis of switchings, a new challenge is an
imbalance between the parameters dy, ds when the aspect ratio is unbounded. Our results on cycle
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counts hold for a large range of dy, ds, and are notably independent of the aspect ratio as long as
the cycle length is small. It is also worth noting that the method of switching has been applied to
other problems on random biregular bipartite graphs, for example, [21, 20, 54].

Finally, we also obtain an algebraic relation between linear eigenvalue statistics on modified
Chebyshev polynomials and cyclically non-backtracking walks (Theorem 2.17). Then based on the
spectral gap results in [16, 66] and approximation theory for Chebyshev polynomials [64], we extend
the eigenvalue fluctuation results to a general class of analytic functions.

1.3. Main results. Our main contributions are represented by Theorems 4.4, 4.7, establishing the
behavior of the global fluctuations for the linear statistics of eigenvalues of RBBGs in the fixed
di, do, respectively, in the di - do — 0o cases. Note that Theorem 4.7 describes the behavior of the
fluctuations even in the case when the limiting ESD does not exist since it merely requires d; /ds to
be bounded, rather than to converge to a number in [1, 00) (which would be the necessary condition
for the ESD to converge). In addition, we show that the covariance between two linear statistics
with different test functions is given by the coefficients in their Chebyshev expansions.

As part of the proofs for our main results, we also describe the asymptotic behavior of the
cycle counts (Theorem 2.10). Based on the cycle counts estimates, we then use the locally tree-
like structure of RBBGs to prove a global semicircle law in the case when the degree goes slowly
(dy = n°D) and dy /dy is unbounded (Theorem 5.3).

Finally, as an important application, we obtain equivalent results for uniformly distributed ran-
dom regular hypergraphs, including cycle counts, global laws, spectral gaps, and eigenvalue fluctu-
ations.

1.4. Organization of the paper. In Section 2 we prove our results on cycle counts in random
biregular bipartite graphs. Section 3 collects relevant results for the spectral gap and eigenvalue
confinement on a compact interval from the literature. Section 4 proves our main results, Theorems
4.4 and 4.7. Section 5 proves a global semicircle law for RBBGs when d;/dy is unbounded. In
Section 6, we use the connections established in [32] to prove several results on uniformly distributed
regular hypergraphs.

2. CYCLE COUNTS

2.1. Counting switchings. In this section, we estimate the number of switchings that create or
delete a cycle in a biregular bipartite graph. The precise definitions of switchings for our purposes
are given in Definition 2.4 and Definition 2.5. These estimates will be used in Section 2.2 to show
that cycle counts converge in distribution to Poisson random variables.

Definition 2.1 (cycle). Throughout the paper, when we say a cycle, we mean a simple cycle, i.e.,
all vertices in a cycle are distinct.

Let K, be the complete bipartite graph on n + m vertices with V; = [n], Vo = [m]. Let H C
K, m be a subgraph with v vertices. For any ¢ € K, ,, let g;, h; denote the degree of i considered
as a vertex in a biregular bipartite graph G = (V4, Vs, F) and the subgraph H, respectively. Let
hmax be the largest value of h; and |H| be the number of edges of H. Denote by

]l =2(x—=1)---(x —a+1)
the falling factorial. The following estimate is given in [48].

Proposition 2.2 (Theorem 3.5 in [48]). Assume dy > da and ndy > 2d1(di + hmax — 2) + |H| + 1.
Then )
P(H CG) < Hi:l[ggi]hi )
[nd1 - 4d1 - 1}\H|
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We first prove several estimates on random biregular bipartite graphs based on Proposition 2.2.

Lemma 2.3. Let G be a random (dy,da)-biregular bipartite graph with ds < dy < nt/3.
(1) Suppose H is a subgraph of the complete graph K, ,, in which every vertex has degree at
least 2. Let e be the number of edges in H. Suppose e = o(n'/3). Then

. . e/2
(2.1) P(HCG) < ¢ ((dl DIC 1)> .
nm
(2) Let o be a cycle of length 2k in the complete bipartite graph K, . Suppose k < nt/10 then
k
(2.2) P(a CG)<a <(d1 — Didz - 1)> .
nm

(8) Let B be another cycle of length 25 < 2nt/10 in the complete bipartite graph Ky m. Suppose
a, B share f edges. Then

(d1 —1)(d2 — 1>)j*’“‘f -

(2.3) PlaUB CG) < (

Proof. 1t suffices to prove (2.1). Then (2.2) and (2.3) follow as special cases. Since H has e edges,
and H is bipartite, it satisfies
DU Sy

%] i€Va
Since h; > 2 for all i € V(H), we know [g;]n, < (gi(gi — 1))"/2. Therefore from Proposition 2.2,

(di(di — 1))*/*(da(dy — 1))*/?

P(H CG) <

[’I’Ldl - 4d% — 1]@
B <<d1 —1)(dz — 1))6/2 (nd;)®
B nm [nd; — 4d? — 1],

Recall d; < n'/? e = o(n'/?), and (1 + z)" = 14 O(rz) if rz — 0. We have for some absolute
constant ¢; > 0,

(ndy)® nd; c 4d3 + e ¢
2.4 < — (1 2T ) <o
(24) nd, — A2 — 1], = \nd; — 4d% — e T —aE—e) =@

This proves (2.1). O

Let G be a (dy,ds)-biregular bipartite graph. Let C; be the number of cycles of length 2j in
G. We will always represent a cycle by a vertex sequence starting from a vertex in Vi. Suppose
a = (1,1, , Tk, Yx) is a cycle of length 2k in G with x; € Vi,y; € Vo, 1 < i < k, where y, is
connected to z; in the cycle a.

Let e; = u;v;, €, = u,v} be the edges with with u;, u} € Vi, v;,v, € Vo, 1 < i < k such that neither
ui, w, is adjacent to y; for 1 <14 < k and neither v;, v} is adjacent to x;. See the left part of Figure
1 for an example.

We now introduce our definitions of switching for biregular bipartite graphs.

Definition 2.4 (forward a-switching). Consider the action of deleting all 4k edges €;,1 < i < 2k
and e;, e;, 1 <i <k, and replacing them by the edges x;v;, z;v}, yiu;, yju, for 1 < i < k. We obtain
a new biregular bipartite graph G’ with the cycle a deleted. We call this action induced by the
6 sequences (x;), (i), (u;), (u}), (v;), (v)),1 < i < k a forward a-switching. See Figure 1 for an
example. We will consider forward a-switchings only up to cyclic rotation and inversion of indices
in [k]; that is, we identify the 2k different forward a-switchings obtained by applying the same
cyclic rotation or inversion on [k] to the 6 sequences (x;), (vi), (w;), (u}), (v;), (v}),1 <i < k.
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FIGURE 1. A forward « switching from the left to the right, where oo = (z1, y1, z2, y2).

Definition 2.5 (backward a-switching). Suppose G contains paths v;z;v, and u;y;u; for 1 <i <k,
where x;, i, uw, € Vi,y;,v;, v, € Va. Consider deleting all 4k edges vz, vz, u;y;, uiy; for 1 <i <k,
and replacing them with u;v;, u/v}, x;y;, yiziy1 for 1 < i < k. We obtain a new graph G’ with a
cycle @ = (z1,y1,- - , Tk, yg). Such action is called a backward a-switching induced by the sequences
(i), (i), (wi), (u)), (v3), (v]),1 < i < k. We also identify the 2k different backward a-switchings

obtained by applying the same cyclic rotation or inversion on the index set [k].

Definition 2.6 (short cycles). Let r be an integer; we say that a cycle is short if its length is less
than or equal to 2r.

We call a a-switching valid if « is the only short cycle created or destroyed by the switching.
For each forward a-switching from G to G’, there is a corresponding backward a-switching from
G’ to G by simply reversing the operation (i.e. from right to left in Figure 1).

Let F, be the number of all valid forward a-switchings from G to some G’ and let B, be the
number of all valid backward a-switchings from some G’ to G. In the following two lemmas, we
estimate Fy, and B, for biregular bipartite graphs.

Lemma 2.7. Let G be a deterministic (dy,ds)-biregular bipartite graph with di > da and cycle
counts Ci,2 < k < r. For any short cycle a« C G of length 2k, we have

(2.5) F, < [n]i[m]pdtds.

If a does not share an edge with another short cycle, then for an absolute constant c1 > 0, we have

oo
(2.6) Fo > et (1 B 4k 5705 + C;Z(1d1 —1)"(dg — 1)r> |

Proof. Consider a cycle denoted by a = (z1,y1,- - , Tk, Yx). Denote edges

(2.7) € = TilYi, Citk = YiTit1,1 < i <Kk,

where 2,1 := x1. There are at most [n]pd¥[m]zd5 many ways to choose edges e; = u;v; and

ei = wv) for 1 < i < k, which gives the upper bound (2.5). For the k edges e;,1 < i < k, we
require distinct u; € V1,1 <4 < k, and we have d; choices for each v;, given the degree constraint
on ;. This gives [n],d¥ many choices altogether. For the remaining edges e/, 1 < i < k we require
distinct v} € V5,1 < i < k and each for each u, we have dy choices, giving us a factor of [m)] kd’;.
Therefore (2.5) holds.

For the rest of the proof, we always use the same way to count a-switchings by counting the
choices of e;, €;. We use the parameter d; to control the choices from e;,1 < i < k and the parameter
ds for the choices from €, 1 <i < k.
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To prove the lower bound in (2.6), we choose a subset of configurations that are guaranteed to
have a valid forward a-switching. Consider e;,e},1 <4 < k such that the following holds:

(1) e; and € are not contained in any short cycle in G for 1 < i < k.

(2) The distance from any vertex in {e;, e;} to any vertex in ¢é; is at least 2r for any 1 < i < k.

(3) The distance between any two different edges among the 2k edges {e;, e}, 1 < i < k} is at
least r.

(4) For all 1 < i <k, the distance between v; and vl/- is at least 2r, and the distance between u;
and v} is at least 2r.

Recall the definition of ¢; in (2.7). By Condition (2), for all 1 < i < k, u;,u; are not adjacent
to y;, also v;, v, are not adjacent to x;, which satisfies the definition of a forward a-switching. Let
G’ be the graph obtained by applying the forward a-switching from G. We need to check that « is
the only cycle deleted in G by this switching, and no other short cycles are created in G’.

Since « shares no edges with other short cycles by our assumptions, deleting a will not destroy
other short cycles. From Condition (1), deleting e;, e/ will not destroy any short cycles either.

Next, we show no other short cycles are created in G’. Suppose there exists a new short cycle 3
in G’ created by the switching. Then 3 contains paths in G NG’ separated by edges created in the
forward switching in G’ (8 must contain at least such edge because it is created). Any such path
in G N G’ must have a length at least r, because

e if it starts and ends at vertices in « and has length less than r, then combining this path
with a path in « gives a short cycle in G that intersects «, which is a contradiction to our
assumption on «;

e if it starts in « and ends in {u;,v;,u},v.} for some ¢ and has length less than r, then
combining this path with a path in « gives a path between €;, e; or between ¢€;, ¢/ of length
less than 2r, which violates Condition (2);

e if it starts and ends in different edges among {e;,e},1 < i < k}, then it must have length
at least r by Condition (3);

e if it starts at some vertex in e; and ends at some vertex in e;, then the path must start and
end at different vertices in e;. Otherwise, S is not a cycle in the sense of Definition 2.1.
Then the path combined with e; is a cycle. By Condition (1), it has a length at least r, a
contradiction. In the same way, it cannot start at some vertex in e} and end at some vertex
in €.

This implies 3 contains exactly one path in G N G’. If not, the two separated paths together with
new edges in G’ have lengths greater than 2r, a contradiction to the condition that § is a short
cycle. Given the path in G NG, the remainder of 5 has two cases:

e a single edge that can be x;v;, x;v}, y;u;, or y;u, for some 1 < ¢ < k, then by Condition (2),
the path in G NG’ connecting the two vertices in the edge has length at least 2r, which is
a contradiction to the fact that S is a short cycle;

e a single path v;z;v] or w;y;ul, which is impossible by Condition (4).

From the analysis above, no such 3 can exist, hence any a-switching satisfying Conditions (1)-(4)
is valid.

Next, we find the number of all switchings satisfying Conditions (1) to (4) to have a lower bound
on F,. We will do this by bounding from above the number of switchings out of the [n][m]pd}d5
many choices counted in (2.5) that fail one of the Conditions (1)-(4). We treat the 4 conditions in
the following (a)-(d) parts.

(a) There are a total of at most » ;_,2jC; edges in all short cycles of G. For some 1 < i <k,
if we choose one edge e; from a short cycle and the other (2k — 1) edges arbitrarily, we obtain a
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forward a-switching that fails Condition (1). The number of all possible choices is at most

kY 2§C; - [n— g_1[m]edy ™ d5.
j=2
And if we choose €} from a short cycle and the other (2k — 1) edges arbitrarily, the number of all
possible choices is at most

kY 2iC; - [n]gm — 1p_1dids ™.
j=2

Altogether the number of choices is at most

4 o N
(2.8) nidl[n]k:[m]k(dldﬂ ka;]Cj'

(b) To fail Condition (2), we can obtain a-forward switchings by choosing (2k — 1) edges ar-
bitrarily, and then choose one edge e; or €, that is at most of distance 2r — 1 from é; for some
1 <4 < k. From the degree constraints, the number of edges of distance less than 2r from some
edge is at most O((d; —1)"(d2 —1)"). Similar to Part (a), by considering whether e; or €} is chosen
for 1 <7 <k, the number of such switchings is at most

(I = 1ot d5 + [lafm — pdfds™) - k- O((dr — 1)"(dy ~ 1)")

1
7nd1

(c) For Condition (3), there are three cases to consider depending on whether the pair is (e;, e;),
(e}, €}) or (e, €}).

Suppose the pair e;, e; violates Condition (3). We pick the pair of edges that are within distance
r — 1 and pick the remaining (2k — 2) edges arbitrarily. There are (nd;) many ways to choose
ei. When e; is fixed, there are at most O((dy — 1)"+1/2(dy — 1)("+1)/2) choices for e;. Hence the
number of switchings that fail Condition (3) is at most

(ndy) - [O((dr = D)V (dy = IV ke(k = 1) - ([0 — 2g-2[m]pdy~>db)
1
——[nlu[m]did} - k% - O ((d1 — 1)+ D/2(gy — 1)0““)/2) .
na,
By the same argument, if the pair is (e}, e;-), the number of switchings that fail Condition (3) is at
most

(2.9) [n}k[m]k(dldg)kkO((dl — 1>T(d2 — 1>T).

1 s T
o Inlemlxdidgk? -0 ((d = D2y — 1) D72

When the two edges of the pair violating Condition (3) are e;, e; for some i, 7, the number is at
most

(ndr) - [O((dr — )"V (dy = D] (262 - ([0 — Uy [ — Ypoady ')
1
“ndy

Combining the three cases in Part (c¢), the number of switchings that violate Condition (3) is at
most

[n]k[m]kdlfdgk:ZO ((dl _ 1)(T+1)/2(d2 . 1)(r+1)/2) ‘

1
(2.10) g PRl (e1da) 2 O ((dy = 1) FD/2(dy — 1)lre0/2)
(d) Since the distance between a pair of vertices in V4 or V5 must be even, to violate Condition
(4), we can choose a pair u;, u, € V; or v;, v, € Vo that are within distance 2r — 2 first, then choose
8



other edges arbitrarily. Similar to the cases above, the number of switchings that fail Condition
(4) is at most

n
nd1
Combining the 4 Cases (a)-(d) above, from (2.8), (2.9),(2.10), and (2.11), we have at most

(2.11) [n]i[m]edfd5kO((dy — 1)"(d2 — 1)").

4

E[n]k[m]k(dldz)k kY §Cj+ O(k(dy — 1) (dy — 1))

=2

many switchings that fail one of the Conditions (1)-(4) among the [n];[m]x(d1ds)¥ possible switch-
ings. Then for an absolute constant ¢; > 0,

4k Z;ZQjCj + c1k(dy —1)"(d2 — 1)"
nd1 '

F, > [n]k[m]kd]fdg (1 —

Therefore (2.6) holds. O

For the number of backward switchings, we obtain a similar upper bound, but the lower bound
is only in expectation.

Lemma 2.8. Let G be a random (dy,ds)-biregular bipartite graph and let o be a cycle of length
2k < 2r in the complete bipartite graph K, ,,. Let B, be the number of valid backward switchings
from G that create oo. Then

(2.12) By < (di(dy — 1))"(da(d2 — 1))*,

and there is an absolute constant cg > 0 such that

(2.13) EBy > (di(dy —1))*(da(dy — 1))" (1 BT 1)T> :

nd1

Proof. Given «, from the degree constraints, the number of choices for u;, u}, v;, v}, 1 < i < k that
yield a valid backward o« switching is at most (di(d; — 1))*(da(d2 — 1))*, which gives (2.12).

For the lower bound, we consider the quantity B := 3 Bg, where 3 is summing over all possible
cycles of length 2k in the complete bipartite graph K, ,,. As in the proof of Lemma 2.7, we give
conditions that guarantee a valid backward switching.

Assume 5 = (z1,y1, - , Tk, Yr). We first consider backward switchings that create 8. Suppose
the paths v;x;v}, uiy;u},1 < i <k in G satisfy the following conditions:

(1) The edges x;v;, z;v,, yju;, and y;u, are not contained in any short cycles.

(2) For 1 < i < k, the distance between any vertex in the path Uia:ivg and any vertex in the
path u;y;u) is at least 2r.

(3) Forall 1 <i <k and 1< j<k/2, the distance between the paths v;z;v; and v} ;@1 jv
(the index ¢ + j is calculated modulo k) and the distance between w;y;u} and w;yjy;y;ju
are at least 2r — 25 4+ 1.

(4) For 1 <i<k,1<j<k/2, the distance between Uz-xwg and ui+jyi+ju§+]~, and the distance
between u;y;u; and vi+jxi+jvz’-+j are at least 2r — 25 + 2.

/
i+j
/

i+j

We will show the four conditions above guarantee a valid backward g-switching.

By Condition (1), no short cycles are deleted. We denote = « y if two vertices x,y are not
connected in G. An immediate consequence of Condition (2) ensures that z; % y; and u; % v,
u} 7 v}, and Condition (4) ensures that y; ¢ z;41. Therefore such switching can be applied.

Let G’ be the graph obtained by applying the backward S-switching. We need to check that no
short cycles other than 3 are created in G’.

9



Suppose a short cycle 3’ # 3 is created. Then 3’ possibly consists of paths in G N G’, portions
of 8, and edges u;v;, w,v} for some 1 < i < k. Any such path in G N G’ must have length at least r
because

e if it starts in one of the sets {z;,v;, v} or {y;, u;,u;} for 1 <i < k, and ends at a different
set {z;,vj,v}} or {yj,us,uj} for 1 < j <k, then Conditions (2), (3) and (4) imply this;

e if it starts and ends in the same set {z;,v;,v}} or {y;, u;, u;}, then it follows from Condition
(1) that the path must have length at least r.

It follows that 3’ must contain exactly one such path, otherwise, if two such paths are included in
B, the length of 3’ is greater than 2r, a contradiction to the fact that 3’ is a short cycle.

Besides this path in G N G’, the remainder of 5’ must either be an edge w;v; or u}v!, or a portion

17
of B. If the remainder is some u;v;, then the distance between u; and v; in G is at most 2r — 1, a
contradiction to Condition (2). The same holds if the remainder is some w,v.

If the remainder is a portion of 3, then there exist two vertices in 8 connected by the path in
G NG’ contained in ’. If the two vertices are xi, xiqj for some 1 <1i < k,1 <j < k/2, then from
Condition (3), the path in GNG’ contained in B’ that connects the two vertices has length at least
2r —2j 4+ 1. Since the path in 8 connecting x;, z;1; has length 2j, this implies 5’ has length at
least (2r — 25 + 1) +2j = 2r + 1, a contradiction. In the same way, if the two vertices are y;, ¥i4;
for some 1 < i< k,1<j<k/2, we can find a contradiction for ' from Condition (3).

If the two vertices connected by the path are x;, y;4; with 1 <i < k,1 < j < k/2, then the path
in 3 connecting the two vertices has length at least 25 — 1. Combining the path in GNG’ contained
in 4, from Condition (4), we conclude that " has length at least (2r —2j +2)+ (2j — 1) = 2r +1,
a contradiction. By the same argument, if the two vertices connected by the path are y;,z;4; for
some 1 <1i<k,1<j<k/2, we can find a contradiction that 5’ is not a short cycle.

Therefore such ' does not exist, and all backward switchings satisfying Conditions (1)-(4) are
valid.

There are [n];[m];/(2k) choices for the 2k-cycle 8 in the complete bipartite graph K, ,,, and at
most (dy(dy — 1))*(d2(dz2 — 1))* choices for u;, u}, v;,v!,1 < i < k given 3. We now count how many
possible backward switchings violate one of the four Conditions (1)-(4) to get a lower bound on B.
We treat the Conditions (1)-(4) in 4 parts.

(a) Suppose Condition (1) is violated. We estimate the number of switchings by choosing one
edge from the set of edges in short cycles and the other edges arbitrarily. Note that by our definition
of switchings, we identify 2k different switchings by applying the cyclic rotation or inversion on [k].
Suppose we choose an edge z;v; or z;v; from short cycles, similar to the analysis in Lemma (2.7),
the number of switchings is at most

27?227@' (di—=1) | - <21k[n — Up—1(di(dr — 1))* - m]k(da(do — 1))k>
=

:i[n]k[m]k[dlul (e~ 34
j=2

Similarly, if we choose an edge y;u; or y;u} from short cycles, the number of switchings is at most

~. . 1 B
20322105 (62 =D | - (gl ~ thes(dne = )/t ~ 1))

:nfll[n]k[m]k[dl(dl — 1)do(dy — 1) ;jcﬂ'-

10



Combining two parts, the number of switchings that violate Condition (1) is at most

8k

2.14 —
(2.14) ds

[n]k[m]k[di (d1 — 1)da(dy — 1)]* chj-

b) Suppose for some 1 < ¢ < k, two paths v;z;v) and u;y;u’ are within distance 2r — 1. The
pp ) b i Yily
number of switching is at most

[n—1g_1[m — 1]x
2k

[n]k[m]i(di(dy — 1))*(da(da — 1))*O((dy — 1)"(da — 1)").

[di(dy — 1)do(dy — D)]*7L - (kndy(dy — 1)) - O((dy — 1)"(dg — 1)"T1)

1

2.15) =—-
(2.15) =7

(c) Suppose for some 1 <i < k,1 < j < k/2, two paths {v,x;v], viﬂxiﬂvgﬂ-} are within distance
2r — 2j. The number of switchings is at most

k. [k/2]

P 1)l D) s~ 1) 2 ; O((ds — 1)+ (dy — 1))
bl e~ 1)y — 1) O~ 17y — 1)),

Suppose for some 1 < i < k,1 < j < k/2, two paths {u;y;uj, uit;yit+ju;,;} are within distance
2r — 2j. Similarly, the number of switchings is bounded by

1 _
n—ch[n]k[m]k(dﬂm — 1))¥(da(d2 = 1))*O((dr = 1)"(d2 = 1)" ).

Therefore the number of switchings that violate Condition (3) is at most

1

nfil[n]k[m]k(dl(m — 1))"(da(dz — 1))*O((dr — 1) (d2 — 1) ).

(2.16)

d) Suppose two paths v;z;v!, Uit iysssul,  for some 1 < ¢ < k,1 < j < k/2 are within distance
pp p i Wit YitjUiy g ) J
2r — 2j 4+ 1. The number of choices is at most

[n]glm — 1]p—1 k k—1 A r—j+1 r—j+2
S (di(dy — 1) (da(dz — 1)) E; > O((dy — 1) (dy — 1)
i=1 j=1

:ﬁ[”]k[m]’f(dl(dl —1))¥(da(dz — 1))*O ((dh — 1)"(d2 — 1)").

Suppose two paths uiyiug,viﬂ:ciﬂvgﬂ for some 1 < i < k,1 < j < k/2 are within distance
2r — 2j 4+ 1. By the same argument, the number of choices is at most
1
nidl[n]k[m]k(dl(dl —1))*(da(d2 — 1))*O ((d1 — 1)"(d2 — 1)").
Then the number of switchings that violate Condition (4) is at most
1
nd1

From (2.14), (2.15), (2.16) and (2.17), the lower bound of B is given by
 8kY T 5iCi + O(k(dy — 1)"(d2 — 1)T)>

(2.17) [n]k[m]i(di(dy — 1))*(da(d2 — 1))*O ((dy — 1)"(da — 1)").

(] [m]x
2k

2.18) B>
( ) = ndy

(dy(dy —1))*(da(dy — 1))* (1

11



By Lemma 2.3 (b),
[n]k[m]k Cl(dl — 1)k(d2 — 1)k < 01(d1 — l)k(dg — 1)k
2k nkmk - 2k ’
Applying the inequality above to (2.18), we obtain
nlgm O(k(dy — 1)"(do — 1)
25 > P 4y 0, — 1))yt - 1 (1 - P D 2D

By the exchangeability of the vertex labels in the uniformly distributed RBBG model, the law
of Bg is the same for any 2k-cycle 3. Then

ECk <

2k cok(dy —1)"(d2 — 1)"
EB, = ———EB > (di(dy — 1)da(dy — 1))* [ 1 —
[n]k[m]k = ( 1( 1 ) 2( 2 )) < nd, )
for an absolute constant co > 0. This completes the proof. ]

2.2. Poisson approximation of cycle counts. In this section, we prove the cycle counts in
RBBGs are asymptotically distributed as Poisson random variables. The main tool we will use is
the following total variation distance bound from [23].

Lemma 2.9 (Proposition 10 in [23]). Let W = (Wh,...,W,) be a random vector taking values
in N", and let the coordinates of Z = (Z1,...,Z;) be independent Poisson random variables with
EZ, = pg. Let W' = (W{,...,W/) be defined on the same space as W, with (W, W') an exchange-
able pair. For any choice of o-algebra F with respect to which W is measurable and any choice of
constants ¢, we have

(2.19) drv(W, 2) <3 & (EBlus — (AL | P)| + EW — axP(AL | F))
k=1
. ~1/2
where &, := min{1, 1.4y, """} and
(2.20) AF =W =W+ LW, = Wi,k <j<r},
(2.21) A]: ::{W]é =Wy —1, Wj = Wj{, k<j< 7’}.

We apply Stein’s method to obtain the following Poisson approximation in total variation dis-
tance.

Theorem 2.10. Let G be a random (dy, ds)-biregular bipartite graph with cycle counts (Ci, k > 2).
Let (Zy, k > 2) be independent Poisson random variables with
(di — 1)*(dz — 1)"
2k '
For anyn,m > 1 and r > 2,d; > 3, there exists an absolute constant cg > 0 such that

ce\/T(d1 — 1)%7/2(dy — 1)37/2
d O (Do ) < .
v((Ca,...,Cr), (2o ) ndy

pr = EZp =

Proof. If di > n'/3 or r > n/19, then
06\/77((11 _ 1)3r/2(d2 _ 1)37‘/2

> 1
ndy

for a sufficiently large choice of ¢g and the theorem holds trivially. Thus we assume d; < n'/? and
r < n'/10. We now construct an exchangeable pair of random biregular bipartite graphs by taking
a step in a reversible Markov chain.
Define a graph G whose vertex set consists of all (dy,d2)-biregular bipartite graphs. If there is
a valid forward or backward a-switching from a (dp, ds)-biregular bipartite graph Gy to another
12



graph G1 with the length of a being 2k, we make an undirected edge in G between Gg,G1 and
place a weight of
1
(] [mli(drd2)*
on each such edge. Define the degree of a vertex in G to be the sum of weights from all adjacent
edges. Let dy be the largest degree in G. To make G regular, we add a weighted loop to each vertex
if necessary to increase the degree of all vertices to dy.

Now consider the simple random walk on G. This is a reversible Markov chain with respect to the
uniform distribution on (dj, d2)-biregular bipartite graphs. Thus suppose G is a uniformly chosen
random biregular bipartite graph, we can obtain another random biregular bipartite graph G’ by
taking an extra step in the random walk from G, and the pair (G, G’) is exchangeable.

Let Ji be the collection of cycles of length 2k in K, ,,, with k < r. We have |J;| = [n]x[m|r/2k.
Define I, = 1{a C G}. Then C =3 7 1a- Let I, C} be defined on G’ in the same way. Since
G and G’ are exchangeable, the vectors (Cs,...,C,) and (C%,...,C]) are also exchangeable. We
can then apply Lemma 2.9 to this exchangeable pair of vectors. Now define two events

Ay ={C,=C,+1,C;=Cjk<j<r}

Through our construction of the exchangeable pair,

P(AF1G) =)

S5 doln dldg)
P(A; | G)= >

ot do[n d1d2)

Applying Lemma 2.9 with all ¢ = dg,1 < k < r, we have
drv((Cs,...,Cp),(Zs, ..., Z;))

r B, F,
N P SRR TRCITAL *ZﬁE@‘ZvMMme

a€Jg aEJy

< (dy — 1)¥(ds — 1" F,
I L P e i e d@ *Z@EZI i (drda)F

acJy e
(2.22)
- (d — 1)*(dz — 1)¥ B, F
S2 E‘ - + S E|L -
b= g% b [WWMWVCEC [nlslm]i(drdz)*
For the rest of the proof, we estimate the following two sums
(d1 — 1)k(d2 — 1)’“ B,
2.23 E B 7
22 a;jk ' [n]k[m]k [n]k[m]k(d1d2)*
Fy
2.24 E|L —
22 2 [n]k[m]x(dida)*

a€Jk

from (2.22) in different ways.
13



(1) The upper bound on (2.23). From Lemma 2.8, for all a € Jy,

E ‘ (di = D)F(dy —1)F B, _ (di— f(da — 1% EB,
[n][m]x [n]k[mli(drd2)* [n][mlx [n]e[mlk(dd2)*
CQk(dl _ 1)r+k(d2 1)r+k
- ndy [ni[m]y ’
where the first line is from (2.12) and the second line is from (2.13). Therefore (2.23) satisfies
(di —1)*(dy — 1)* Ba co[(dy — 1)(dp — D))" *
em) 2 E e md

(2) The upper bound on (2.24). To bound the summation in (2.24), for a given short cycle a, we
consider a partition of G in the following way:

= {G does not contain a},
= {G contains «, which does not share an edge with another short cycle in G},
3 = {G contains «, which shares an edge with another short cycle in G}.

Conditioned on A{, we have I, = F, = 0. Conditioned on A, both the upper and lower bounds
in Lemma 2.7 can apply, which yield the following inequality:

(2.26) 7 F, 4k Z§:2j0j + c1k(dy —1)"(d2 — 1)"
' “ [k [mlk(dida)k | nds ‘
Conditioned on A§, we have I, =1, F, = 0.
With the partition of G, the following inequality holds:
F, F,
E|l, — 2 =E |12 |l — 2 + P(AS
|~ B 1 1o~ pp ) HEAD
k(di —1)"(de — 1)"
(2.27) < —]E 1ag 22]0 cikld = 1)"(d2 = 1) P(AS) + P(A$).

nd1

Let J. be the set of all short cycles in Kmm that share no edges with a. On the event A§, the
graph G contains no short cycles outside J, except for a. Define |3] be the length of the cycle 3.

Then
szc =2k+ Y |BlIs.
ﬁGJa
Therefore the right-hand side of (2.27) can be bounded by

4k'2 Clk‘(dl — 1)T(d2 — 1)T

P(AS) +—E El, Iz + P(AY) + P(AS
nd1 B ! geg. 7 ’ ndy (42) (45)
4k2 Clk‘(dl — 1)r(d2 — 1)r 2k Z o

! BETa
By Lemma 2.3(1),

B o (I )

ndy @& ndy (nm)*
cik(dy — 1) (dy — 1) GUASDIG R
1k(dy v 2 Pla CG)=0 < 1 ndl(nfn)k ) ‘
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Hence the first and the second term in (2.28) combine to yield a corresponding upper bound in
(2.24) of

(2.29) Z (Wp(a CG)+ cik(di —1)"(d2 — 1)TIP’(04 c G)) _o ([(dl —1)(dy — 1)]k+r> |

nd nd
a€ Ty 1 1

From Lemma 2.3 (3), we have for any 8 € J, with |3] = 27,
c1[(dy — 1)(dp — 1)PH*

For 2 < j <r, there are at most [n];[m];/(2j) cycles in J, of length 2j. The third term in (2.28)
then satisfies

El,Ig =PlaUB € G) <

2k 2k < [n];[m]; .. c[(di —1)(dg — 1)]7HF
nd; gg;a Pl <y 2 T G

_ o (Kl(di = 1)(d2 —1)]HF

=0 ( ndy (nm)k > ’

Summing over all possible a € Jj, we obtain a corresponding term in (2.24) of

_ _ r+k
(2.30) 3 idkl S BELLI; = O ([(d1 1)(ds — 1))+ >

nd
a€Ti Y BETa !

Now given (2.29) and (2.30), to control (2.24), it remains to estimate >_ ., P(A%). Let Ky be
the set of all short cycles in K, ,, that share an edge with o, not including « itself. By a union
bound,

(2.31) Y PAH <D D PlauBcaq)
acJy a€Jy BEKq

From (2.3) in Lemma 2.3, the upper bound for P(« U C G) depends on the lengths of «, 3, and
the number of edges that «, 8 share. To get an upper bound on (2.31), we will classify and count
the number of pairs («, 3) based on the structure of aeU g.

Recall « has length 2k. Suppose (3 has length 2j. Let H = (V(a) NV (8), E(a) N E(B)) be the
intersection of o and 3. Suppose H has p components and f edges. Since H is the intersection of
two different cycles, H must be a forest with p+ f vertices. So aUp has 2j 42k —p— f vertices and

27 + 2k — f edges. Let a, b be the number of vertices in aU 8 that are from V; and V5, respectively.
Then

(2.32) a+b=2j+2k—p—f.

Let v1,v2 be the number of vertices in Vi and V5 for H, respectively. Then we have a =
j+k—wv,b=j+k—wvy and |a — b| = |v; — v2|. Note that each component in H is a path. For
each path, the difference between the number of vertices from V; and Vs is at most 1. This implies

(2.33) la —b| = |v1 — v2] < p.

From the proof of Corollary 21 in [29], the number of all possible isomorphism types of oo U
given |al, |B| < 2r and p, f < 2r is at most

(16r3)P—1

(p—11H*
For each isomorphism type, as a subgraph in K, ,,, the number of ways to label it is at most
[n]alm]p + [n]p[m]e, where the two terms come from assigning vertices in V1,V in two ways (pick

an arbitrary starting vertex, decide whether it is from V; or Vs, then choose labels accordingly).
15



From (2.32), (2.33), and the assumption that n < m, we have that when f is even,
[n]almle + [n]o[m]a < 207 TRTP=T I tR=T/2 = on =P ()T TR /2,
And when f is odd,
[n]a[m]p + [n]p[m]e < 2n7p+1(nm)j+k7f/271/2.

By (2.3) in Lemma 2.3, the probability of any realization of the isomorphism type as a subgraph

in G is bounded by
cr[(di = 1)(dp — 1) AT/
(nm)j'f’k—f/Q

With all the estimates above, the right-hand side of (2.31) is now bounded by

. el(dy — 5 — 1)|iTk=1/2
Z Z 16 .([n]a[m]b + [nfy[m]a) - l (nlr)rf;lj%_i)/];

7=21<p, f<2r

r % n - J+k—f/2\
éj: 1<Zf:<gr((p—1)!) (207 (nm) )

1673)P—1 _ e
+ Z M - (2P (pm)THR=F/2-1/2)
j=21<p,f<2r

<[( —1)(dy — 1)]k+r—1> o ([(dl —1)(dsy — 1)]r+k—1/2>

c1[(dy — 1)(dy — 1)PHR=1/2

()i 12 1{f is even}

c1l(dy — 1)(dy — 1)]FTh=7/2

()i =172 1{f is odd}

n (nm)1/2
(2.34)
o ([(dy = 1)(dg = D)FFT
_O < nd1 ) )

Combining all estimates from (2.29), (2.30) and (2.34), we finally obtain

2.35) sl , <[<d1 —1)(dz 1>r+k) |

ndy
a€Jk

Fy
[m]x(did2)k

This provides an upper bound for (2.24).
(3) The upper bound on (2.22). Now the upper bounds on (2.23) and (2.24) have been provided
n (2.25) and (2.35), respectively. We are ready to estimate (2.22). Recall

2.8Vk
[(d1 — 1)(d2 — 1)]*/2°

Then from (2.25) and (2.35), there is an absolute constant c¢7 > 0 such that (2.22) is bounded by

&, = min{1, 1.4,u;1/2} =

r _ _ 1\]r+k/2 B y13r/2
(2.36) o eVl =D = 1R (ﬁ[(dl 1)(d2 — 1)) ) |
nd1 ndl
k=2
This completes the proof. .

2.3. Cyclically non-backtracking walks and the Chebyshev polynomials. In this section,
we study non-backtracking walks in biregular bipartite graphs and relate them to the Chebyshev
polynomials. The relation will be used in Section 4 to study eigenvalue fluctuations for random

biregular bipartite graphs.
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Definition 2.11 (non-backtracking walk). We define a non-backtracking walk of length 2k in a
biregular bipartite graph to be a walk (u1,v1,. .., ug, Vg, ug+1) such that u; € Vi, v; € Vo, uip1 # uj,
for all 1 <4 < k and v;41 # v; for all 1 <7 < k — 1. Note that in our definition, all such walks
start and end at some vertices from V;.

FIGURE 2. (ug,v2,us,vs,uq, vy, us, Vs, uz) is a cyclically non-backtracking walk.
(u1,v1, ug, v, U3, V3, Ug, V4, Us, U5, U2, V1, u1) IS a closed non-backtracking but is not
cyclically non-backtracking.

Definition 2.12 (cyclically non-backtracking walk). A walk of length 2k denoted by

(ulyvly s ,Uk,'Uk-,Uk+1)

is closed if ugy1 = wi. A cyclically non-backtracking walk is a closed non-backtracking walk such
that its last two steps are not the reverse of its first two steps. Namely, (u1,v1,u2) # (Ugt1, Vg, Ug)-
Figure 2 gives an example of a closed non-backtracking walk that is not cyclic non-backtracking.

Let Gy, be a random (dy, da)-biregular bipartite graph and C,in) be the number of cycles of length

2k in GG,,. Denote NBW%”) to be the number of non-backtracking walk of length 2k, and CNBW,(Cn)

to be the number of cyclically non-backtracking walks of length 2k in G,. Let (C,goo), k > 2) be
independent Poisson random variables with mean

[(di = 1)(dz — D]*

2k

We also define Cfoo) = C’fn) = 0. For k > 1, denote

(2.37) CNBW) = 572501,
Jlk

For any cycle of length 2j in G,, with j | k, we can obtain 2j cyclically non-backtracking walks
by choosing a starting point from V7, fixing a direction and then walking around the cycle of length
2k repeatedly. The next lemma shows that CNBW,(:) can be approximated by the count of those
repeated walks around cycles.

Lemma 2.13. Let G,, be a random (dy, dg2)-biregular bipartite graph. Suppose d; < n/3, k < nt/10,
define

(2.38) B = cNBWYY - 3250
Jlk
to be the number of cyclically non-backtracking walks of length 2k in G, that are not repeated walks
around cycles. Then
crk™[(dy — 1)(dy — 1)]*

n

EB™ <
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We call a cyclically non-backtracking walk bad if it’s not a repeated walk on a cycle. Then from
(2.38), B,(Cn) counts the number of bad cyclically non-backtracking walks of length 2k.

Let (wo,ws, ..., wa) with wey = wp € V1 be a bad cyclically non-backtracking walk in K, ,,, of
length 2k. For any 1 <14 < 2k, we say that the i-th step of the walk is

e free if w; did not previously occur in the walk;
e q coincidence if w; previously occurred in the walk, but the edge w;_jw; didn’t;
e forced if the edge w;_jw; previously occurred in the walk.

Let x + 1 be the number of coincidences and f be the number of forced steps in the walk. Let
x1 + 1 and x2 be the number of coincidence steps ending at a vertex from Vi and Va, respectively.
Let f1, fo be the number of forced steps ending at a vertex from V7 and Vs, respectively. Denote
v, e the number of distinct vertices and edges in the cyclically non-backtracking walk, respectively.
We now have the following relations:

X+1=x1+x2+1,

f=f+fo
v=02k+1)-(x+1)—f=2k-x—f,
e=2k—f.

For any repeated walk on a cycle, the number of coincidences is 1 and y = 0. Therefore if the walk
is bad, we must have xy > 1.
The following lemma bounds the number of cyclically non-backtracking walks with given param-

eters XlaX?afl) and f2-

Lemma 2.14. Consider cyclically non-backtracking walks of length 2k on K, ,, such that in the
subgraph spanned by this walk, all vertices from Vi have degrees at most dy and vertices from Vi
have degrees at most do. Then the number of such walks with given x1, X2, f1, fo satisfying x > 1
15 al most

(Qk)S(X1+X2)+2(d1 _ 1)f2 (dy — 1)f1nk—X1—f1mk—X2—f2.

Moreover, we must have |f1 — fa| < x + 1.

Proof. We count the number of such cyclically non-backtracking walks by choosing the coincidences,
forced steps, and free steps separately. Given that there are x + 1 coincidences, there are (;fl)
many possible subsets of indices in {1,...,2k} where coincidences can happen. The vertices at a
coincidence have already occurred in the walk, so there are at most 2k choices for each of them,
giving us a total of (xzfl) (2k)X*! < (2k)2X*+2 many choices.

For forced steps, they can only occur after a coincidence or another forced step. After each
coincidence, imagine assigning some number of steps to be forced. The number of ways to do this
is at most the number of weak compositions of f elements into x + 1 parts, which is (f ;X) < (2k)X.
For each forced step ending at a vertex from Vj, the walk can only move along an edge that has
already been traversed, so there are at most (do — 1) possible choices at every step due to the
non-backtracking property. Similarly, for each forced step ending at a vertex from Vs there are at
most d; — 1 possible choices. Altogether this gives us at most (2k)X(d; — 1)#2(ds — 1)1 choices for
all forced steps.

There are k — x — 1 — f; many free steps ending at a vertex from Vj, we have at most n choices
for the next vertex, and we have an additional n choices for wy € Vi, which gives a total of at most
n*=X1=/1 many choices. Similarly, the number of free steps ending at a vertex from Vs is at most
mF=Xx2=F2 Multiplying together every part from coincidences, forced steps, and free steps give us
at most

(2k)3x+2(d1 _ 1)f2 (do — 1)f1nk‘—X1—f1mk—X2—f2
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many such cyclically non-backtracking walks.

Next, we bound |f; — f2|. Recall that forced steps can only occur after a coincidence or another
forced step. Then there are at most x + 1 many consecutive forced steps starting from a certain
coincidence step. In each consecutive forced step, the number of vertices from Vi and V5 differ by
at most 1, since the subgraph spanned by any consecutive forced steps is a path. Hence we have
Ifi—fol <x+1. O

Equipped with Lemma 2.14, we continue to prove Lemma 2.13.

Proof of Lemma 2.15. By Part (a) in Lemma 2.3, the probability that a given bad walk appears in
G, is at most

¢ <(d1 —1)(ds — 1))k—f/2 |

nm

From the upper bound on the number of such walks in Lemma 2.14, summing over all possibilities
of X1, x2, f1, f2, we have

EB!™
— _ k=f/2
< Z Z (Qk)3x+2(d1 _ 1))‘2 (dy — 1)f1nk—x1—f1mk—x2_f201 <(d1 1)(da 1)>

nm
X1,X2:  0<f1, fa<k—1
Xitxe2l | ;= fl<x+1

(fi—=rf2)/
=c1[(dy — 1)(dg — 1)]* Z n X X2 (2k) 30 xe) +2 Z <M2—1)m> fi—f 2'

x> o< frcho1 \ (@ 1n
[f1—fo|<x+1
Since (dy — 1)dy < (dy — 1)da, the following inequality holds:
(2 39) Z (dy — 1)m (fr—1f2)/2 B Z (dy — 1)d; (fr—f2)/2
' (d1 — 1)77, - (dl — 1)d2
0<f1,f2<k—1 0< f1,fa<k—1
[f1—f2| <x+1 |f1—f2| <x+1
12 ((d1 - 1)d2)<x+l>/2.
- (dz — 1)d1

Since di < n'/?, k <n'/19, (2.39) implies

g (D2
EBY < clk[(di — 1)(dz = 1)) Y n Vim0 (2k)P 00t ((dl Ddz)

X1+x221 (d2 = 1)y
o vk (((2K)%(di = 1)da
—Hld b ) O< n(ds — 1)ds >

n

This completes the proof of Lemma 2.13. O

Recall the definition of CNBW;OO) from (2.37). The following corollary holds.

1/10

Corollary 2.15. Suppose di < nt/3 and r <n There exists a constant cg > 0 such that

_ _ 3r/2
(240)  dry ((CNBW(, 2 < & <), (ONBW), 2 < k< 1)) < V= D Z DT
nay
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Proof. By the definition of total variation distance, for any measurable map f and random variable
X,Y, we have

It follows from Theorem 2.10 that

 con/Fllds = 1)(dy = D
- ndq .

(242) drv | [ Y 20 2<k<r], (CNBW,(;"’), 2<k< r>
ilk

By Markov’s inequality and Lemma 2.13,

n crk™[(dy — 1)(dz2 — D)]*
(2.43) P(BM™ > 1) < - .
Summing these probabilities for k£ = 2,...,r implies
9.44 2ic™ o<k <r| = (CNBWW™ 2 <k <y
J k
Jlk

with probability 1 — O (M). Therefore by the coupling inequality,

n

7 _ _ r
(245) drv | [ Y2 2 <k <r| (CNBWY,2<k<7r)| =0 (7’ (1 17)1(d2 L] ) .
ilk
From (2.42) and (2.45),
dry ((CNBW}P, 2 <k <r),(CNBW™ 2 <k < r)>

S%W%h—wﬁ—DW”+O(Wm—UMr4W>:O<WWh—M®—DW”>

ndy n ndi

O

Let Ay > --- > A, be the eigenvalues of %. For the rest of this section, we connect
1— 2—
S XXT T iy Chebyshev polynomials and cyclically non-backtracking walks.

the spectrum of
(d1—1)(d2—1)

Define
FO(:L') = 1,
x dl -2
(2.46) Pop(2) = 2Tok (§> TR
x
(2.47) Dok+1(2) = 2Tk 41 (5) :

Here {T}(z)} are the Chebyshev polynomials of the first kind on [—1, 1] which satisfy
To(z) =1, Ti(z)=x,
(2.48) Ti+1(z) = 22T(x) — Tp—1(z).
Let {Ui(z)} be the Chebyshev polynomials of the second kind on [—1, 1] such that
U_i(z) =0, Uy(x)=1,
Uks1(x) = 22U (z) — Ug—1(x).
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Define
(2.49) pr(z) = Uy (g) - dll_lUk—Q (g) :

We begin with representing closed non-backtracking walks with py(z). The following lemma gives
a deterministic identity. Recall in our Definition 2.11, all closed non-backtracking walks start and
end at vertices in V7.

Lemma 2.16. Let NBW,(:) be the number of closed non-backtracking walks of length 2k in a

“bi ; ; _XXT—dil
(d1, dg)-biregular bipartite graph G. Let A1 > > An be the eigenvalues of J& DD
have
(2.50) Zpk = (dy — 1)7*2(dy — 1) */2NBW.

Proof. Let A%®) be the n x n matrix such that Agf) is the number of non-backtracking walks of
length 2k from ¢ to j, where i, 5 € Vi. We have the following relations:

AW = XXT —ai1, A® = (AW —dy(dy — 1)1,

(2.51) AFFD — AW AR _ (g —1)(dy — 1)A*D | vk > 2,
The expressions of A1) and A® follow from the definition of non-backtracking walks. Since a
non-backtracking walk of length 2k 42 can be decomposed as a non-backtracking walk of length 2k

and a non-backtracking walk of length 2 which avoid backtracking at the 2k-th step, the expression
(2.51) holds. We now claim that for k& > 1,

XXT —dyI
(2.52) Pk = = [(dy — 1)(dg — 1)]*/24®8),
V(di =1)(d2 — 1)
and prove it by induction. Note that from (2.49),
1
pi(z) =z, po(z) =2 —1- 41

It is easy to check (2.52) holds for £ = 1,2. Since pg(x) is a linear combination of Uy(x/2) and
Uk—2(z/2), it satisfies the recursive relation for Uy(x/2), which is

() = zpi(T) — pr—1(T).
Assume (2.52) holds for k < s. Let M = XX — dyI. Then

M
P\ V-0 - 1)

)ﬂ”¢—M@—M*HWWWMM—Mﬁ—m*“@W”

—[(dy — 1)(dg — 1)](+D/2 (MA(S) —(di — 1)(do — 1),4(8—1))
=[(dy — 1)(dy — 1)]" D2 AL+,

where the last equality is from (2.51). Therefore (2.52) holds. Taking trace on both sides in (2.52),
we obtain (2.50). 0

The next theorem is an algebraic relation between I'y, and the number of cyclic non-backtracking
walks. Together with Lemma 2.15, it implies the polynomials I'y(z) of the eigenvalues for RBBGs
converges in distribution to a sum of Poisson random variables.
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Theorem 2.17. Let G be a (dy,dg)-biregular bipartite graph and Ay > --- > X\, be the eigenvalues

of s Then for any > 1, we have
(253) ZI‘,C()\I) — (dl _ 1)—k/2(d2 . 1)_k/ZCNBW§€n)

Proof. We first relate the number of cyclically non-backtracking closed walks CNBW,(:) to the
number of closed non-backtracking walks NBW,(CH).

A closed non-backtracking walk of length 2k is either cyclically non-backtracking, or it can be
obtained from a closed non-backtracking walk of length 2(k — 2) by adding a new walk of length
2 (which we call a tail) to the beginning of the walk and its reverse to the end (see Figure 2 for
an example). For any cyclically non-backtracking walk of length 2(k — 2), we can add a tail in
(di — 2)(d2 — 1) many ways. For any closed non-backtracking walk of length 2(k — 2) that is not
cyclically non-backtracking, we can add a tail in (d; — 1)(d2 — 1) many ways. Therefore for k > 3,
we have the following equation

NBW" = CNBW™ + (d; — 2)(dy — 1)CNBW, + (dy — 1)(dy — 1)(NBW!", — CNBW"),)
= ONBW 4 (dy — 1)(dy — )NBW", — (dy — 1)CNBW"

which can be written as
(2.54) CNBW — (dy — 1) ONBW™, = NBW\" — (d; — 1)(dy — 1)NBW!"),.

29

Note that CNBW,E:") = NBW](:) for k = 1,2. Applying (2.54) recursively, we have when k is
even,

(2.55) CNBW

=NBW\" — (d; — 2)[(dy — YUNBW™),, + (dy — 1)2NBW\, + -+ + (dy — 1)"2 NBW{™)].
And when £k is odd,
(2.56) CNBW!"

=NBW!" — (d; — 2)[(dy — UNBW\"), + (dy — 1)2NBW\", + - + (dy — 1)"2 NBW{Y).

Denote
NBWVY i=(dy — 1)*/2NBW",  CNBW.” := (dy — 1)"*/2CNBW".

We can simplify the above equations (2.55) and (2.56) a
(2.57) CNBW."” = NBW\" — (d; — 2) (NBW‘") +NBW, 4t NBWS”) ,

where a = 2 if k is even and a = 1 if k is odd. Also (2.50) can be written as
(2.58) 3 pr(h) = (d — 1) HANBWL.

From the proof of Proposition 32 in [30], we have the following relation between I'y(x) and pg(z)
for k£ > 1:

(2.59) Top(z) = po(z) — (di — 2) <P2k2(a:) n p2k74(a:)2 P ])2(33)> |

dy —1 (dy —1) (dy — 1)k—1
B8 Fate)=pnte) =2 (T G )
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Then from (2.58) and (2.57),

n

(di — 1)"*CNBWS}) = > <p2k(/\i) —(d1 —2) <])2;1_2_()1\1) + -+ m>> = To(N),

i=1 =1
where the last equality is from (2.59). Similarly, from (2.60),
(di — 1)~D/2CNBWY_| = Zn:r%_l(xi).
i=1
Therefore for all k > 1,

znjl“k()\i) = (dy — 1) *2ONBWL = [(dy — 1)(da — 1)) */2CNBW™.

i=1
This completes the proof of Theorem 2.17. O

3. SPECTRAL GAP

In this section, we provide some estimates on the second largest eigenvalue of the random bireg-
ular bipartite graphs that will be used to study eigenvalue fluctuations in Section 4. Note that the
largest eigenvalue of XX T —d;I is \; = dy(ds —1). In the next theorem, we provide upper bounds
on || for all eigenvalues A # ;.

Theorem 3.1. Let G be a (dy,ds)-random biregular bipartite graph with dy > da. Let Ay > -+- > A,
be the eigenvalues of XX T —dy1.

(1) For fized dy,da, there exists a sequence £, — 0 such that for any eigenvalue X # A1,
(3.1) P(IA — (da — 2)| > 2/(d1 — 1)(d2 — 1) +&,) = 0
as n — 0o.
(2) Suppose dy < %nz/?’, dy > dy > cdy for some constant ¢ € (0,1). Then for some constant
a1 > 0 depending on ¢ and any eigenvalue X # A1,

(32) P (1N > /[ —D(d 1)) < .

n

(3) Suppose dy < Cy, di < n?, there erists a constant ay depending on C1 such that for any
eigenvalue A\ # A,

(3.3) P (1N > 02/~ Dd 1)) < .

Remark 3.2. The probability estimates in (3.2) and (3.3) can be improved, see [66]. In order to
prove the main theorems in Section 4, we only include a weaker version for simplicity.

proof of Theorem 3.1. Theorem 4 in [16] states that for a random biregular bipartite graph with
di > do, the eigenvalues of the adjacency matrix A satisfy the following estimates with high
probability:

(1) the second eigenvalue of A satisfies A\y(A) < /d1 — 1+ /dy — 1+ 0(1),

(2) the smallest positive eigenvalue of A satisfies A, (4) > /dy —1—y/dy — 1 — o(1).

Since eigenvalues of X X T are the squares of the eigenvalues for A, we have with high probability,
M(XXT)—dy — (dy —2) < 2/(dy —1)(dg — 1) + o(1),
M(XXT) —dy — (do —2) > =2y/(d1 — 1)(dz — 1) — 0(1),

therefore (3.1) holds.
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Theorem 1.1 in [66] states that if do < %nw 3 and d; > dy, there exists a constant o > 0 such that
A2(A) < an/dy with probability at least 1 —m™2. This implies for any eigenvalue A of XX T —dy T
with X # dj(de — 1), we have

P(—di <A<a’dy—di) >1-m?2>1-n"2
Since dy > do > cdi, we can find a constant o; > 0 depending on « and ¢ such that
P (m < ar/(dr — 1)(ds — 1)) >1-n2

Therefore (3.2) holds. Theorem 1.5 in [66] states that if do < C1,d; < n?, there exists a constant
a9 depending on C] such that

]P< max  |A\(A) — d4| 2042\/(d1—1)(d2—1)) <n 72

2<i<m4n—1

Then (3.3) follows from the algebraic relation between the spectra of A and XX T — d; 1. O

4. EIGENVALUE FLUCTUATIONS

Lemma 2.17 and Corollary 2.15 in Section 2.3 imply the limiting laws for " | T'x()\;) are given
by a sum of Poisson random variables. In this section, we extend the results to a more general class
of function f and study the behavior of " | f(\;) for RBBGs with fixed and growing degrees.

The following set-up for weak convergence will be used in Section 4.2 to prove Theorem 4.7. We
will closely follow the definitions and notations used in [30]. See Section 2 in [30] for more details.

Denote N := {1,2,...}. Let 1 = (wm)men be a sequence of positive weights. Let L?(1) be the
space of sequences (z,)men that are square-integrable with respect to o, i.e., > 22 Wy, < 00.
We define a complete separable metric space X = (L?(w), || - ||), where for any sequence (2, )men,

0o 1/2
]| = (Z fﬂfnwm> :
m=1

Denote the space of probability measures on the Borel o-algebra of X by P(X). We use the
Prokhorov metric for weak convergence as the metric on P(X). The following results are proved in
Section 2 of [30].

Proposition 4.1 (Lemma 2-4 in [30]). The following holds for the complete separable metric space
X.

(1) Let (am)men € L?(0) be such that ay, > 0 for every m. Then the set
{(bin)men € L*(@) : 0 < |bm| < am,¥m € N}

is compact in (L?(0), ] - ||).

(2) Suppose {X,} and X are random sequences taking values in L*() such that X,, converges
in distribution to X. Then for any b € L*(w), the random variables (b, X,,) converges in
distribution to (b, X).

(8) Let x € X and P,Q be two probability measures in P(X). Suppose for any finite collection
of indices (i1, ... 1), the law of random vector (z;,,...,x;,) is the same under both P and
Q. Then P = (@ on the entire Borel o-algebra of X .

We also need the following results from the approximation theory.

Definition 4.2 (Bernstein ellipse). For p > 1, let E, be the image of the map z + (z 4+ 271)/2
of the open disc of radius p in the complex plain centered at the origin. We can E, the Bernstein
ellipse of radius p. The ellipse has foci at £1, and the sum of the major semi-axis and minor
semi-axis is exactly p.
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Proposition 4.3 ([64], Theorem 8.1). Suppose f : [—1,1] — R can be analytically extended to E,
and is bounded by M on E,. Then f has a unique expansion on [—1,1] as

= a;Ti(x)
k=0

where Ty (z) is the Chebyshev polynomial of the first kind defined in (2.48), and the coefficients of
this expansion satisfy

|CLO‘ < M, |ak| < T

Define fy(z) = Zl o @ Tx (). Applying the bound |Tj(x)| < 1 when x € [—1,1] and Proposition
4.3, we obtain for all z € [—1,1],
2M
4.1 f(x) = fe(@)| < 77—
(4.1) [f (@) = fr(a)] 1)

4.1. Poisson fluctuations with fixed degrees. Now fix d; and ds as constants. We are ready
to extend our results in Section 2.3 to a more general class of functions as follows. Note that the
following theorem is given for a sequence of RBBGs with growing n. For ease of notation, we drop

the dependence on n when writing the matrix X and eigenvalues Aq, ..., A,.
Theorem 4.4. For fized dy > dy > 2 and (dy,dz2) # (2,2), let Gy, be a sequence of random (dy, ds)-
biregular bipartite graph. Let \y > --- > A, be the eigenvalues of XX —di]

\/W Suppose f is a
function such that f(2z) is analytic on E,, where p = [(dy — 1)(dy — 1) for some a > L. Then
f(x) can be expanded on [—2,2] as

(4.2) @) =3 axTe(@)
k=0

and the random variable

(4.3) Y =3 F(\) — nag
i=1
converges in distribution as n — oo to the infinitely divisible random variable
S % (<)
4.4 Yy = CNBW, ™,
4 1= 2 a1~ o OBV

where CNBW,E:OO) is defined in (2.37).
Proof. Define

k
x) = Z a; ()
i=0
We first show that fi(z) is a good approximation of f(x). Applying Proposition 4.3 to f(2zx) gives
an expansion (4.2) with
(45) jak] < Cl(dy — 1)(ds — 1]

for some constant C' that depends only on di,d> and the constant M given in Proposition 4.3.
By the proprieties of Chebyshev polynomials on any interval [—K K], we have

(4.6) max [Ty(a)] = V2= DT+ I+ VEZ — P

|z| <K 2
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From (2.46) and (2.47), we have I';(z) = z, and for any k > 2,

w o = (3)] - s <ol (9]
From (4.6),

k k
melr ()| - (5-) < (3+%2)

Then for all k£ > 2, with (4.7) we obtain

k
(4.8) sup |T'x(z)| < <3 + ?) +2 < gkl

j21<3 2
and the same bound holds when k = 1. From (4.5) and (4.8), for all xz € [-3, 3],

oo
> larTe(@)| < 302 ((d1 = 1)(dz — 1))"*]F < o0,
k=0
where the last inequality comes from the fact that (d1 —1)(d2 — 1) > 2 and @ > I. Hence the series

> re o arlk(x) is absolutely convergent on [—3, 3], which implies the expansion of f in (4.2) is valid
n [—3,3]. Then we have for a constant C; > 0 depending on C,

(4.9) sup | f(z) — fr(z)] < sup Z |ail(x)| < C1[3(dy — 1)(dp — 1)) H1.
|z|<3 lz[<3,Z k+1
Denote
-1
K| =\ = m
di —1

For sufficiently large k, from (4.6) and (4.7),

sup |Ti(z)] < (2K1)*.
|z <K1

And from (4.5) and the assumption a > 7/2,

D larTk(z)| < CY 2K ((dy — 1)(dp — 1)) *]F < o0.
k=0 k=0

It implies the series Y~ ;apI'x(x) is also absolutely convergent on [—K7, K], and the expansion
of fin (4.2) is valid on [— K7, K1].
Since 2K1 < 4[(dy — 1)(d2 — 1)]*/? and (d; — 1)(dy — 1) > 2, for a constant Cy > 0,
sup | f(2) — fu(2)| < Co[2K1((dr — 1)(d2 — 1))7*)**

|z <Kq

(4.10) < Gy [4((ar ~ )z - 1)+3]

< G [((d ~ 1)tz 1) +3]

Therefore f; converges to f uniformly on [—K7, K1|, and the interval [— K7, K;| deterministically
XXT—dy1
(d1—1)(d2—1)"

By the definition of CNBW,E:OO) in (2.37), Equation (4.4) can be written as

_ o0 00 Qij (00)
=22 27O
j=1i=1 [(dy — 1)(dg — 1)]/2 I

contains all eigenvalues of




where Y7 is a sum of independent random variables, and E[Y}|* < oo by (4.5).
Denote o :=a —2 > % Choose f satisfying 5 < B < % and define
Blogn
Log[(dl —1)(d2 — 1)]J

Ty =
X =y L CNBW'",
! Z:: [(dr = 1)(d2 — 1)]#/2 g
) _ - a (0)
v = CNBW™.
f T (= 1)(dp — 1) ¢
Note that CNBW&n) =0, from (2.53),
n = a n
(4.11) X =3 i CNBW" = me ;) — nao.

— [(d1 — 1)(da — 1)]}/2

By Corollary 2.15,

csy/Tnl(di — 1)(dg — 1)/

nd1

< = o(1).

drv ((CNBW,@, 2<k<r,), (CNBW™ 2 <k < rn)) <

Since X}n) and fff(n) are measurable functions of

(CNBW™ 2 <k <r,) and (CNBW™ 2<k<nr,),
respectively, we have
drv (X}”), if“”) < dry ((CNBW,Q”), 2 <k<r), (CNBW™ 2 <k < rn)> = o(1).

f
Note that }7}(") converges almost surely to Y; by (4.5), so X}n) converges in distribution to Y;.

By Slutsky’s theorem, to show Yf(n) defined in (4.3) converges in distribution to Yy, it remains
XXT—di1

v/ (d1—1)(d2—1)

to show that Yf(n) — X](c") converges to zero in probability. The largest eigenvalue of

is K71, so from (4.10) we have
lim fi(A1) = f(A1).
k—o00

Then for any § > 0 and sufficiently large n,

(4.12) [FA) = fra (M) <0/2.
From (4.3), (4.11) and (4.12), we have for sufficiently large n,

Z\f — Frn (M) 5 er = Fra(N)].

Suppose that all the non-trivial elgenvalues A #£ A1 are contalned in [—3, 3], from (4.9),

(4.13) ‘ — x| <

Z [f(N) = fra ()] < Ci(n = 1)[3(dr — 1)(dz — 1))

< Cinf(dy — 1)(dg — 1)~ < Cin' =8 = o(1),
which combining (4.13) implies for sufficiently large n,

OO
‘Yf — Xy
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Recall (3.1) and the assumption d; > da. With high probability, for a sequence €, — 0, we have
XXT—di1

—== %l is contained in
(d1—1)(d2—1)

the nontrivial eigenvalues of

dz —2 2+e,+ dy — 2
Vi =1)(d -1 " ldi = 1)(dp — 1

for sufficiently large n. Therefore

[—2—8n+ )] - [_353]

P (‘Yf(") - X}”)‘ > 5) <P <max | > 3) = o(1).

2<i<n

This finishes the proof. ([l

As a corollary of Theorem 4.4, we obtain eigenvalue fluctuations for the adjacency matrices of
RBBGs as follows.

Corollary 4.5. For fized di > do > 2 and (dy,d2) # (2,2), let Gy, be a sequence of random
(dy,da)-bireqular bipartite graph. Let \y > -+ > Ay be the eigenvalues of its adjacency matriz
A. Suppose [ satisfies the same conditions as in Theorem /.J. Then the random variable

m)._ 1 Ao AL~ da —(m—n —d —na
i 2[;f<\/(d1—1)(d2—1)> ( >f<\/(d1—1)(d2—1)>] "

converges in distribution as n — oo to the infinitely divisible random variable

o
Y=
k=2

a
[(dy — 1)(da — 1)]+/2

CNBW(™),

where CNBWECOO) is defined in (2.37).

Proof. Recall from Section 1.2 that all eigenvalues of A consist of two parts. There are 2n eigen-
values in pair as {—\, A} where X\ is a singular value of X. In addition, there are (m — n) extra
zero eigenvalues. the result then follows from the algebraic relation between eigenvalues of A and
eigenvalues of XX T —d; 1. O

4.2. Gaussian fluctuations with growing degrees. In this section, we consider the eigenvalue
fluctuations of RBBGs when dp - do — 0.
We first prove the following weak convergence result for a normalized and centered version of

CNBW™),

Lemma 4.6. Suppose that dy - dy — o0, 1, — 00 as n — oo. For k > 2, define

1

(n) ._
S N = D@ o

(ONBW) — ECNBW) 14,

Let {Zj }k>2 be independent Gaussian random variables with EZ, = 0 and IEZ,? = 2k. Define the
weight wy, = by/(k*log(k + 1)), where (by)ren is any fived positive summable sequence.

Let P, be the law of the sequence (ngn))kzg. Then as an element in P(X), P, converges weakly
to the law of the random vector (Zy)k>2.

Proof. We first prove the following Claim (1): for any fixed r, (N én))gg k<r converges in distribution

to (Zk)o<k<r-
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For any fixed k, when n is sufficiently large, we can write (4.14) as

(419 ngn) B [di — 1)(d12 — 1)Jk/2 (2kC’£OO) — (= 1){dz = 1)]k>
e 1)(52 —oe 2 (MO [ =Dz - D).

jlk,g<k

Recall C,goo) is a Poisson random variable with mean %. The first term in (4.15)
converges in distribution to a centered Gaussian random variable Zj with variance 2k as n — o

from the Gaussian approximation of Poisson distribution.

To show the convergence of N, ]gn) for a fixed k, it remains to show the second term in (4.15)
converges to zero in probability. Note that the second term in (4.15) has a zero mean and its
variance is given by

1 . ~(00) j _ ) B B i
Var [d — 1)(dg — 1)]¥/2 j|§'<k (QJCj —[(d1 = 1)(d2 — 1)] ) = j“%ik 27[(dy — 1)(dg — 1)] k

which goes to 0 as n — co. Then by Chebyshev’s inequality, this term converges to 0 in probability.
Therefore Claim (1) holds.

We further define Nl(n) = 0,77 = 0, and consider the weak convergence of (N,gn))keN as an
element in L?(w). Since

o0

EZ(Zk Zklog kE+1) < %0

k=1

(Zk)ken € L?(wW) almost surely. From Claim (1), every sub-sequential limit of P, has the same
finite-dimensional distributions as (Zj)ken. From Proposition 4.1 (3), every sub-sequential weak
limit of P, in P(X) is equal to the law of (Zy)ken.

By Prokhorov’s Theorem (see for example [57, Chapter 14, Theorem 1.5]), if {P,},en is tight,
and every weakly convergent sub-sequence has the same limit g in P(X’), then the sequence { P, } ,en
converges weakly to p. Since we have already shown every sub-sequential weak limit of P, is the
law of (Zj)ken in P(X), to finish the proof, it remains to show {P, },en is tight.

From the description of compact sets in L () given in Proposition 4.1 (1), it suffices to show
for any ¢ > 0, there exists an element (ag)ren € L?(W) with ag > 0,Vk € N, such that

U{!N !>ak} —SUPP[U{W |>ak}

keN k=1

(4.16) sup P <g,
n

where (J oy {\N,En)\ > ak} is the complement of a compact set in L? ().

For any fixed € > 0, choose ar = ak+/log(k + 1) for a constant a? > 32 depending on ¢, then

ap)reny € L?(W) and ap, > 0,Vk € N. According to the definition of N™ in (4.14 , the above
k
Condition (4.16) is equivalent to

(4.17) sup P [U {|CNBW§;°> — ECNBW'™| > a[(dy — 1)(dy — 1)]k/2}] <e.
" k=1
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From the proof of Theorem 22 in [30], CNBW,(:O), as a sum of independent Poisson random
variables, satisfies the following concentration inequality: for any ¢ > 0,

(c0) (00) t t
4.1 P NB — ECNB t) <2 ——1 1 .
(18) P (|CNBW ~ EONBW,™)| > ¢) < eXp( 3K °g< *%[(dl—n(dz—mk))

Since log(1 + x) > x/2 for x € [0, 1], we have from (4.18), for sufficiently large n and all k < r,,
P (|CNBW,§°°) — ECNBW'™)| > ay[(dy — 1)(dy — 1)]k/2)

ax[(dy — 1)(dp — 1)]F/2 o
<2exp (— Sk log <1 + 2k[(dy — 1)(d2 — 1)]k/2>>

2

a 2
<2 — k) =2(k4+1)7*/%2,
<oxp (55t ) =20k+ )
With the assumption a? > 32, we can make > po 2(k + 1)—0‘2/32 < ¢ by choosing a sufficiently
large constant o depending on &, which guarantees (4.16). Hence { P, },en is tight. This completes
the proof. O
XXT—dy I
(d1—1)(d2—1)
stating the main result, we make several assumptions on the test function f. Define

<I>0(a;) = 1, (I)k(.%') = 2Tk(.73/2), Vk > 1.

We now continue to study the eigenvalue fluctuation for when d; - dy — oco. Before

Assume f is an entire function on C. Let K; = max{a1, a2}, where a; and g are the constants
in (3.2), (3.3), respectively. Then from Proposition 4.3, f has the expansion

(4.19) fl@)=>"a;%()
=0

on [— K, K1]. Denote

Suppose the following conditions hold for f:
(1) For some o > 3/2 and M > 0,

(4.20) ‘ 721;{ |f(z) = fu(z)| < M exp(—akh(k)),

where h is a function such that h(r,) > log[(d; — 1)(d2 — 1)] for a sequence

_ Blogn
(4.21) Tn = Log[(dl —1)(d2 — 1)]J
with a constant § < 1/a.
(2)
" hd-) \_ -y )|
(4.22) nl_wo frn (\/(dl —1)(dy — 1)) / (\/(dl —1)(d2 — 1)) ' '

Let ug(dy,d2) := ECNBWSCOO). We define the following sequence:

ak
[(d1 —1)(d2 — 1)]

(4.23) m{ = nag + Z " (,uk(dl, dy) —n(dy — 2) - (dy — D21 {k is even}) .
k=1
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Now we are ready to state our results for eigenvalue fluctuations when dj - do — oo. Here dy, do,
(M\i)1<i<n and the matrix X are quantities depending on n, but for simplicity of notations, we drop
the dependence on n.

Theorem 4.7. Let G, be a sequence of random (dy,dz)-biregular bipartite graphs with
d1d2 — 00, d1d2 = no(l).

Let \y > -+ > )\, be the eigenvalues of XX dl] . Suppose one of the following two assumptions

V(d1—1)(
holds:

(1) There ezists a constant ¢ > 1 such that 1 < % <e.
(2) There exists a constant ¢y such that do < ¢y for all n.

Let f be an entire function on C satisfying (4.20) and (4.22). Then as n — oo, the random variable
(4.24) v = Z Fx

converges in distribution to a centered Gausszan random variable with variance of =2 32, kaj.
Moreover, for any fixed t, consider the entire functions gi,...,g: satisfying (4.20) and (4.22).

The corresponding random vector (Yg(1 ), . Yg(t )) converges in distribution to a centered Gaussian
random vector (Zg,, ..., Zy,) with covariance

oo
(4.25) Cov(Zy,, Zg,) =2 kay(gi)ar(g;)

k=2

for 1 < i,j < t, where ar(gi),ar(gj) are the k-th coefficients in the expansion (4.19) for gi,g;,
respectively.

Proof. We first prove the CLT for a single test function f. Define

(n) aj, () = a (00)
XM .= CNBW™ _E CNBW(™)|

! g::z [(d1 = 1)(da — 1)]F/2 : kz_: dy — 1)(dz — 1)/ g
Sn) aj, () 1 a (00)
Xp=3 CNBW,™ —E) CNBW,>.

k=2 [(dy —1)(d — 1)]k/2

Recall the definition of m¢(n) in (4.23). From (2.46), (2.47), and (2.53), X](c") can be written as

Tn

ag
= giz;aka()\i) — 2T —1)(ds - 1)}k/2uk(d1,d2)

( 2) - ag
= ;2; <2aka )\ /2 ( )k/2 1{k is even}) kZZ [(dl _ 1)(d2 — 1)}k/2uk<d1,d2)

Tn

nak d1 - 2 ag
- an l —nag + is even} — Mk:(dla d2)
Z Z k/? ks = [ Ty~

=3 () =
1=1

where in the third line we use the fact given in (2.53) that

> 20Ti(A/2) = ) ali(N) = al(dr — 1)(dz - 1)]~2eNBW = 0.
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From the definition of N\ in (4.14),
X =3"aN".
k=2

By Lemma 4.6 and Proposition 4.1 (2), X](cn) converges in distribution to a centered Gaussian
random variable with variance of = 372, 2ka2.

From Corollary 2.15, the total variation distance between X}n) and )N(](cn) satisfies
drv(X§Y, X)) < dry ((ONBW(Y,2 <k < ), (ONBWE, 2 < b < 1))

< csy/Tnl(d1 — 1)(dg — 1)]3m/?
a nd1

bl

which converges to 0 as n — oo from the assumption (4.21). Therefore Xj([n) and X'J(cn) converge to
the same limit.
It remains to show Yf(n) and X}n) converge in distribution to the same limit. We have f, (A1) —
f(A1) as m — oo from (4.22). Then for any § > 0, |f(A1) — fr,,(A1)] < /2 for sufficiently large n.
Suppose that all the non-trivial eigenvalues are contained in [— K7, K1]. From Condition (4.20),
we have for sufficiently large n,

v - X

< Z |f(N) = frn(N)] < g + (n — )M exp(—aryh(ry,)) < g + Mnl=o8 <.
=1

Therefore

(4.26) P (‘Yf(”) - x

> 5) <P <max | > K1> — o(1),

2<i<n

where the last inequality is from parts (2) and (3) in Theorem 3.1. Hence Yf(

in distribution to the same limit. This proves the CLT for (4.24).

We now extend the results to a random vector (Yy,,...,Y,,). By Lemma 4.6 and part (2)

in Proposition 4.1, the random vector (X;?), e ,Xé?)) converges in distribution to the Gaussian
random vector (Zg,, ..., Z,,) with covariance given in (4.25).
Note that each entry in the vector (X é?), o X g(,?)) is a measurable function of (CNBWEC’,L))QS k<rn>
and we can find a measurable map 1 such that
GONBW M )gcpcr ) = (X, XY, ((CNBW)gcpey ) = (X, X (),

g1’ g g1 >’ PTGt

") and X](cn) converge

Since any measurable map reduces the total variation distance between two random variables, we
obtain from (2.41),

doy (X5, X00), (R0, X))
<dry ((CNBW{,2 < & < 1), (CNBWYS), 2 < k < 7y))

_esy/Tnl(d1 = 1)(dp — )P/
- ndy

=o(1).

Therefore (ng), e ,Xé?)) converges in distribution to (Zy,, ..., Z,,). Finally, according to (4.26),

<X g(,?), e X é?)) and (Yg(ln ), cee Yg(tn)) converge in distribution to the same limit. This finishes the

proof. O
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Remark 4.8. In [24], the authors proved a CLT for linear spectral statistics for normalized sample
covariance matrices A = \/#nfp(XX—r — pl), where p/n — oo and X = (Xj;)nxp has i.i.d. entries

with mean 0 variance 1. It is shown in Theorem 1 of [24] that the fluctuations of linear statistics for
two analytic functions g1, g2 converge in distribution to a centered Gaussian vector with covariance
given by (v4 — 3)a1(g1)a1(g2) + 2> ney kax(g1)ak(g2), where vy = EX{,. The covariance given in
(4.25) is the same, except for the fact that the coefficient in front of ai(fi)ai(f2) is 0. This can
be explained by the fact that the number of 2-cycles is 0 in RBBGs, whereas in the model used
in [24] it is not. The same phenomenon was also observed in uniform random regular graphs [40],
where the limiting variance is the same as the eigenvalue fluctuations for the GOE except for the
first two terms, see Remark 22 in [40].

5. GLOBAL SEMICIRCLE LAW

Consider a random (n, m, d1, da)-biregular bipartite graph with d; > dy. We assume dy, dy satisfy
the following:

(5.1) lim d; = oo,
n—oo
(5.2) di = o(n®), Ve>0,
dy

5.3 — — 0.

(53) T
Here ds can be fixed or a parameter depending on n. In this section, we prove a semicircle law for

XXT—dil

the matrix W e under the assumptions (5.1)-(5.3).
1— 2—
For RBBGs in this regime, we have the locally tree-like structure in the following sense. Let R

be fixed and 7 be the set of vertices in V; without any cycles in the R-neighborhood. The following
lemma holds.

Lemma 5.1. Then under Condition (5.2),

P (Tb_w > n—1/4) = o(n~%%).
n

To prove Lemma 5.1, the following estimates on the expectation and variance of the cycle counts
of RBBGs given in [29] are needed.
Lemma 5.2 (Proposition 4 in [29]). Let Cj be the number of cycles of length 2k in a random

(di,da)-biregular bipartite graph. Denote puj = w. If dy = o(n),k = O(logn) and
kdy = o(n), then

(5.4) ECk = ux (1 +0 (M» ,

n

d3* (k(dy /d)* " + (dy1/dg)Fdy) >>

n

(5.5) Var[Cy] = px <1 +0 <

Proof of Lemma 5.1. From Lemma 5.2, for each fixed k, under Condition (5.2),
(5.6) ECy, = (L +o(1))pg,  Var[Cyx] = (1 + o(1)) py-

If a vertex vy € Vj is not in 71, then for some s with 2 < s < R, there exists a 2s-cycle within
(R — s)-neighborhood of v;. Hence the size of all (R — s)-neighborhoods of 2s-cycles from V; gives
an upper bound on (n — |71|).

For any 2s-cycle, the size of its (R — s)-neighborhood from V; is bounded by

crs[(dy — 1) (dg — 1)]F=9)/2+1
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with an absolute constant ¢;. Define

R
Ngi=c1 Y _sl(di —1)(dp — 1)]E2HC,
s=2

We then have n — 71 < Ng. From (5.6), ENg = O([(dy — 1)(dg — 1)]F+1).
Recall R is fixed. By Cauchy inequality,

R
Var[Ng] < cfRY_ s*[(dy — 1)(dy — 1)]F " Var[Cy] = O([(dy — 1)(dz — 1)]7+?).
s=2

Then from Markov’s inequality, together with our assumptions (5.1)-(5.3),

P (” —Inl n-1/4> =P(n— |n1| > n®*) <P(Ng > n*)
n

= O([(d1 —1)(dz — DPP*?n=5/%) = o(n™5/").
O

We now state our main result in this section. The proof is based on the moment method and
the tree approximation of local neighborhoods, which were previously applied to random regular
graphs in [31].

Theorem 5.3. Let G,, be a sequence of random (dy,dz)-biregular bipartite graph. Under assump-
XXT—diI

tions (5.1)-(5.3), the empirical spectral distribution of Tie DD converyes weakly to the semi-
1— 2—

circle law almost surely.

Remark 5.4. Recall in [29], when the ratio di/ds > 1 converges to a positive constant, the ESD of
X [i)f i converges to Marcenko-Pastur law. With different scaling parameters, we obtain a different
semicircle law when dy/dy — oo. This can be seen as an analog of the semicircle law for sample

covariance matrices proved in [7] when the aspect ratio is unbounded.

Proof of Theorem 5.3. Note that for all ¢ € V1, by the degree constraint,

(57) (XXT)M = ZXinji = ZXij = deg(i) = dl.
J J
Denote M = —2X =il _ e start with the trace expansion of M.

(d1—1)(d2—1)

1 1
“trMb = tr(XXT —d D)k
WM L - - ™ )
1
5.8 - Xioji Xijs - Xoosn Xivie.
) o | S Fe e K
11742, ik F01
]1,,jk€[m}

From (5.7), the diagonal entries of X X7 — d;I are 0, therefore we have the constraint that i; #
’iQ, e ,ik 7& ’il in (58)

Let A;°(v,v) be the number of all closed walks of length 2k in G starting from v € V; that use r
distinct vertices from Vi, ¢ distinct vertices from Vs, with the restriction that iy # io, ..., # i1.
We have r < k41 and ¢ < k, since there are at most k + 1 vertices in V; and k vertices in V5 that
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are visited in one closed walk of length 2k. From (5.8), the k-th moment of the empirical spectral
distribution u, satisfies

k+1 k

1 1 re(
(5.9) /xkd,un(x):nter:n((dl_ s k/QZZZA v,v)

veV) r=1 c=1

Since di > do, for any fixed v € Vi, we have

Z Ap(v,v) < a2k

r<k+1,c<k

For ease of notation, in the following equations, we often omit the range of 7, ¢ in the summation.

We may decompose the sum in (5.9) into two parts depending on whether v € 71 or not. For
any v € 11, we write A° =: A°(v,v) since all neighborhoods of v € 71 of radius k looks the same
and the number of such closed walks is independent of v. Now we have the following upper bound

n (5.9):

/xkdu (z) < S5 A (v, v) (n — |m[)ds*
T n((dy - 1) d2 —1))k/2 = n((dy — 1)(dy — 1))k/2
_ 7] re (= |nl)df*
~ n((dy — 1)(dg — 1))k/2 ZA n((dy — 1)(ds _11))k/2

< 1 Z{:AT7 n-—\71]d2k
(= 1)(d = D)2 = n((d = 1)(dz = 1))

Similarly, a lower bound holds by only counting closed walks starting with vertices in 7:

TC ‘T‘ r,c
/xkd#n( ) = ((d1—1 ))k/2 ZZZA v, v) n((dy — 112 ))k/2 ZZA

VET1T T

From Lemma 5.1 and assumption (5.2), with probability at least 1 — o(n~°/%), for any fixed
k>0,
(n— ) ok |71]
di®* =o0(1), and —
n((dy — 1)(dy — 1))k/271 M) n
To show the almost sure convergence of the empirical measure to semicircle law, by the upper and
lower bounds above, it suffices to show

1 .f .
(5.10) lim Z ATe = 0 i k is odd,
n—=oo ((dy — 1)(dg — 1))*/2 v Cyso if kis even,

=1—o(n /4.

where C}, := k%&—l (gkk) is the k-th Catalan number.

Recall A} counts the closed walks of length 2k on a rooted (di, d2)-biregular tree starting from
a root with degree di, ending at the same root. Now we consider the quantity

1 7,C
((dy — 1)(dg — 1))k/2 ;Ak

more carefully. We first consider possible ranges of r and ¢ in the expression above.

The walk (i1, j1,%2, 2, - -k, jk, 1) in the summation satisfies i; # 49, -+ ,ik—1 # ik, ik 7 1.
This implies when a walk goes from i; to j; for some t, it cannot backtrack immediately to i;.
Namely, any such walk is not allowed to backtrack at even depths (here, we define the depth of
the root in a tree as 1). To have a closed walk of length 2k on a tree, each edge is repeated at
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least twice, so the number of distinct edges is at most k. Therefore the number of distinct vertices
satisfies

(5.11) r+e<k+1.

For fixed r and ¢, the number of such unlabeled rooted trees with r 4+ ¢ — 1 distinct edges is
Cric—1. Let I be the set of vertices in the odd depths of the biregular tree and J be the set of
vertices in the even depths. Since the first vertex of the walk is fixed (we always start from the
fixed root), for any closed walk, there are at most df many ways to choose distinct vertices from J
and dg_l many ways to choose distinct vertices from I. Therefore we have

(5.12) AYC < d5dy T Crpen < dSdy M C,

where the last inequality is from (5.11). We also know that » — 1 > ¢, because whenever a new
vertex in J is reached by the walk, the walk cannot backtrack, so it must reach a new vertex in 1.
Therefore we have

c<r—1 and r+c<k+1,

which implies the following conditions on ¢ and r:
(5.13) c<k/2 and r—1<k-—c
From (5.12), for any (r, c) satisfying (5.13), the following holds:
Ape d§ dy! ds ds°
< Ci < Cy.
((dy = 1)(dz = D2 = (dy = DF2 (dy = P25 = (dy = 12 (dy = 2"

Now we discuss two cases depending on the parity of k. When k is odd, from (5.13), ¢ < %
Since dy /dy — 00, we obtain

1 e _ (d1\° dkcy, dy \ ¢k B
519 = 1as = e 2 (&) @ s (3)  #o-ow

When £ is even, to have a non-vanishing term in the limit for AZ’C, we must have ¢ = k/2 and
r =k/2+ 1. Then we have

(5.14)

1 re 1 k/241,k/2
5.16 ATC — ’ 0.
(5:16) ((d1 — 1)(dg — 1))k/2 ; k ((d1 — 1)(dy — 1))F/27F +0(1)
We continue our proof with a more refined estimate on A’,z/ HLE/2 Gince every edge is repeated

exactly twice in the closed walk, it’s a depth-first search on the biregular tree.

If the root is at level 1, and subsequent vertices are at a level 7 + 1 where 7 is the distance from
the root, then all leaves must be at odd levels, since we can never backtrack at an even level. This
implies that every vertex at an even level has at least one child, which means r > ¢ + 1, with
equality if and only if every vertex at an even level has exactly one child. Thus, one can see the
tree as a subdivision of a smaller tree, where a vertex has been introduced on each edge (the “new”
vertices being the vertices on an even level in the bigger tree). This is a bijection between the kind
of planar rooted tree on k + 1 vertices we are trying to count and the set of all planar rooted trees
on k/2+1 vertices. There are Cy, /5 of the latter. See Figure 3 for an example of a valid closed walk
and an illustration of the aforementioned bijection.

Moreover, given a fixed root with a vertex label, the number of all possible ways to label the tree
with vertices in a biregular bipartite graph is between d’f/Z(dQ —1)*/2 and (dy — k/2)*/?(dy — 1)*/2,
so the following inequality for A:/ LR o]ds:

(5.17) (dy — /2 — 1)F2(dy — 1)972Cy )y < AFPTVRZ < @20y — )92y .
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FIGURE 3. On the left we have a closed walk (1,2,3,4,5,4,3,6,7,6,3,2,1,8,9,8,1)
on a rooted planar tree which only backtracks at odd depths, and the tree has no new
branches at any even depth along the walk. Its correspondent under the bijection is
the closed walk (1,2,3,2,4,2,1,5,1) on the smaller rooted planar tree induced by
the depth-first search on the right.

From (5.16) and (5.17), we obtain for even k,

1

5.18 li A = Cyh/.
o) A =1y — e 2

With (5.15) and (5.18), the asymptotic behavior of moments given in (5.10) holds. This completes
the proof of Theorem 5.3. ]

6. RANDOM REGULAR HYPERGRAPHS

We first include some definitions for hypergraphs and describe a bijection between a subset of
biregular bipartite graphs and the set of regular hypergraphs studied in [32]. We will use the map
given in Definition 6.2 to apply some of our results for RBBGs to random regular hypergraphs, see
[32] for more details.

Definition 6.1 (hypergraph). A hypergraph H consists of a set V' of vertices and a set E of
hyperedges such that each hyperedge is a nonempty set of V. A hypergraph H is k-uniform for an
integer k > 2 if every hyperedge e € F contains exactly k vertices. The degree of i, denoted deg(i),
is the number of all hyperedges incident to 7. A hypergraph is d-regular if all of its vertices have
degree d. A hypergraph is (d, k)-regular if it is both d-regular and k-uniform.

Definition 6.2 (incidence matrix and associated bipartite graph). A vertex i is incident to a
hyperedge e if and only v is an element of e. We can define the incidence matriz X of a hypergraph
H = (V,E) to be a |[V| x |E| matrix indexed by elements in V" and E such that X; . =1if i € e and
0 otherwise. Moreover, if we regard X as the adjacency matrix of a graph, it defines a bipartite
graph G with two vertex sets V and E. We call G the bipartite graph associated to H, given by a
map ® (so ®(H) = G). See Figure 4 for an example.

Definition 6.3 (adjacency matrix). For a hypergraph H with n vertices, we associate a n X n
symmetric matrix A called the adjacency matriz of H. For ¢ # j, we define A;; as the number of
hyperedges containing both ¢ and j; we define A;; = 0 for all 1 < ¢ < n. When the hypergraph is
2-uniform (i.e., it is a graph), this is the usual definition for the adjacency matrix of a graph.

The following lemma connects the adjacency matrix of a regular hypergraph with its associated
biregular bipartite graph. It formally appears in [45, 32], and it is also informally mentioned in
[34].
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FIGURE 4. a (2, 3)-regular hypergraph and its associated biregular bipartite graph
where all vertices in V5 have different neighborhoods in V;

Lemma 6.4 (Lemma 4.5 in [32]). Let H be a (dy,ds)-reqular hypergraph, and let G be the corre-
sponding (dy,dg)-bireqular bipartite graph. Let Ag be the adjacency matriz of H and Ag be the
adjacency matriz of G given by

(6.1) A = ()?T ;0<>

Then Ag = XX —di1.

Definition 6.5 (walks and cycles). A walk of length [ on a hypergraph H is a vertex-hyperedge
sequence (ig,e1,41, - ,er, 1) such that ij_1 # ¢; and {i;_1,4;} Ce; for all 1 < j <. A walk is
closed if ig = i;. A cycle of length [ in a hypergraph H is a closed walk (vg,e1,...,v_1,€1,v141)
such that all edges are distinct and all vertices are distinct subject to v;11 = vg. In the associated
bipartite graph G, a cycle of length 2 corresponds to a cycle of length [ in H.

Let G(n,m,d;,d2) be the set of all simple biregular bipartite random graphs with vertex set
V = Vi UV, such that |Vi| = n,|Va| = m, and every vertex in V; has degree d; for i = 1,2.
Without loss of generality, we assume d; > dy. Let H(n,d;,dz2) be the set of all simple (without
multiple hyperedges) (di, d2)-regular hypergraphs with labeled vertex set [n] and %1 many labeled
hyperedges denoted by {e1, ..., enq,/d, }-

Remark 6.6. We can also consider all (dy, d2)-regular hypergraphs with labeled vertices and unla-
beled hyperedges. Since all hyperedges are distinct, any such regular hypergraph with unlabeled
hyperedges corresponds to (ndy/de)! regular hypergraphs with labeled hyperedges.

It is well known (see for example [34]) that the map ® defined can be extended to a bijection
® between labeled regular multi-hypergraphs and biregular bipartite graphs. See Figure 4 as an
example of the bijection. For a given biregular bipartite graph, if there are two vertices in V5
that have the same set of neighbors in V1, the corresponding regular hypergraph will have multiple
hyperedges, see Figure 5. Let G'(n,m,d;,d2) be a subset of G(n,m,dy,ds) such that for any
G € G'(n,m,dy,ds), any two vertices in V5 have different neighborhoods in V;. The following
lemma holds.

Lemma 6.7 (Lemma 4.2 in [32]). ® is the restriction of the bijection ® to H(n,dy,ds) and its
image is G' (n,m,dy,ds). Hence |H(n,di,ds)| = |G" (n,m,dy,ds)|.

From Lemma 6.7, the uniform distribution on G’ (n,m,dy,ds) for biregular bipartite graphs
induces the uniform distribution on H(n,d;,ds) for regular hypergraphs. With this observation,
we can translate some of the results for spectra of random biregular bipartite graphs into results
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U3 €2

FIGURE 5. a subgraph in a biregular bipartite graph which gives multiple hyper-
edges e and es in the corresponding regular hypergraph

for spectra of random regular hypergraphs. A similar approach was applied in [12] to enumerate
uniform hypergraphs with given degrees.

Lemma 6.8 (Lemma 4.8 in [32]). Let G be a random biregular bipartite graph sampled uniformly
from G (n,m, dy,dz) such that 3 < dy < dy < g5. Let G’ (n,m,dy,ds) be the set of biregular bipartite
graphs corresponding to simple reqular hypergraphs. Then

2 da
(6.2) P (G € G (n,m,dy,dy)) >1— <”d1> <46d2> .
d2 n
In particular,
2
(6.3) P(G e (nym,dyds)) =1 O <d12> .
nds;

Lemma 6.8 implies the following total variation bound.

Lemma 6.9 (total variation bound). Let p, be the probability measure of the random (di,ds)-
reqular hypergraph with n vertices induced on the set of all (n,m,dy,ds)-biregular bipartite graphs,
and let pl, be the uniform measure on the set of all (n,m,dy,ds)-biregular bipartite graphs. We
have

di \? [ dedy\©
(6.4) drv (i, py) < (Z;) ( - 2) :

n

Proof. Since G'(n,m,dy,ds) is the set of all biregular bipartite graphs that are bijective to regular
hypergraphs. We have pu,(G'(n,m,d1,ds)) =1 and pu,(G'(n,m,dy,ds)) = %. Let F be
the power set of G(n,m,d;,d2). Taking into account the fact that both w, and p/ are uniform

measures, we obtain that

drv (pn, p,) = sup 1n(A) =y, (A)| = |1 = i, (G'(n,m, dy, d2))|
c

2 do
:P(Ggg/ (n,m,dl,dg)) < <nd1> <4ed2> ’

dy n
where the last inequality is from Lemma 6.8. U
Equipped with Lemma 6.9, we obtain several corollaries for random regular hypergraphs in the

following subsections.
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6.1. Cycle counts. Recall the definition of cycles in a hypergraph given in Definition 6.5. Let Cj
be the number of cycles of length k in a (dy, da)-regular hypergraph. The following result holds.

Corollary 6.10. Let H be a (dy,ds)-random regular hypergraph with cycle counts (Cy,k > 2).
(di — 1)*(dz — 1)

Let (Zy, k > 2) be independent Poisson random variables with EZ), = 5%

nm>1,r>3, and3<dy <d; <%,

32
co/T(dy — 1)37/2(dy — 1)37/2 ndy\ 2 [ dedy\ 2
drv((Ca,...,Cy), (Za, ..., Z0)) < 6V7(ch )nd1(2 ) +(d;> <n2> .

Proof. Let Cj be the number of cycles with length 2k in a uniform random (d1, da)-biregular
bipartite graph. From Lemma 6.9,

. For any

=~ ~ ’ nd1 2 4€d2 dz
(6.5) drv((Co;..., Cr), (Co, ..., Cr)) < drv(fin, py,) < e - :
Then the conclusion follows from Theorem 2.10 and the triangle inequality. O

6.2. Global laws. The limiting spectral distributions for the adjacency matrix of a random regular
hypergraph can be summarized in the following corollary.

Corollary 6.11. Let H be a random (dy,ds)-regular hypergraph.
(1) If dy,ds are fized, the empirical spectral distribution of % converges in probability
1— 2—
to a measure p with density function given by

(6.6) fa) = e Lo,
: T © d2—1)2 | (d2—Dxy o4
where ¢ = (dy — 1)(dy — 1).

(2) For dy,da — oo with % — a >1and di <
A—(d2—2)
(d1—1)(d2—1)

function given by
« 1 x2

(67) ) VeV T T
(8) If di — oo,dy = o(n®) for any e > 0 and % — 00, the ESD of

the semicircle law in probability.

35, the empirical spectral distribution of

converges in probability to a measure supported on [—2,2] with a density

S S— converges to
V (di—1)(d2—1)

Proof of Corollary 6.11. Claim (1) is proved in Theorem 6.4 of [32] based on a result for determin-
istic regular hypergraphs in Theorem 5 of [34].

Claim (2) is a combination of several results. When d; = o(n'/?), it is proved in Theorem
6.6 of [32] based on the global law for random biregular bipartite graphs in [29] and [63]. When
dy = w(log*n), the optimal local law for RBBGs was recently proved in [65], which also implies
the global law for RBBGs. When d; < g5 and % — «, from Lemma 6.8,

P (G S Q’ (n,m, dl,dg)) — 1.
Therefore by the same proof of Theorem 6.6 in [32], the ESD of % for random regular
1— 2~
hypergraphs converges in probability.

Under the assumptions d; — oo,d; = o(nf) for any € > 0 and % — 00, from Lemma 6.8, we

have again P (G € G’ (n,m,d;,d2)) — 1. Then Claim (3) follows from Theorem 5.3 and Lemma

6.9. t
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Remark 6.12. The ESD in Corollary 6.11 (2) is a shifted and scaled Mar¢enko-Pastur law. Taking
a — 00, g(x) converges to the density function of the semicircle law. The transition from Marcenko-
Pastur law to the semicircle law was also proved for sample covariance matrices in [7] when the
aspect ratio goes to infinity.

Remark 6.13. A semicircle law for the adjacency matrix of de-uniform Erddés-Rényi random hy-
pergraphs with growing expected degrees was proved in Theorem 5 of [46] when dj is a constant.
Part (3) of Corollary 6.11 proves a corresponding semicircle law for random do-uniform dj-regular
hypergraphs where ds can be a parameter depending on n.

6.3. Spectral gaps. The spectral gap for random regular hypergraphs with fixed dy, do was studied
in [32]. Here we include the results for the case when dj, ds are growing with n.

Corollary 6.14. Let H be a random (dy,dg)-regular hypergraph with di > dy. Let \y > --- > A,
be the eigenvalues of A. Let A = maxa<i<n | il

(1) Suppose dy > dy > 3 is fixred. There exists a sequence €, — 0 such that
P(IA = (dg —2)| > 2¢/(d1 — 1)(da — 1) +&,) = 0

as n — oo.
(2) Suppose 3 < dy < %n2/3, dy > dg > cdy for some ¢ € (0,1). Then for some constant K > 0
depending on ¢, for alln > 1,

1

P ()\ > K+\/(di — 1)(da — 1)) ~0 () .

n

(3) Suppose 3 < dy < Cy for a constant Cy, and dy = o(n'/?). There exists a constant C
depending on Cy such that

P ()\ > C\/(di — 1)(ds — 1)) =0 (d%> .

n2

Proof. Claim (1) is proved in Theorem 4.3 in [32]. Claim (2) and (3) follow from part (2) and (3)
in Theorem 3.1 with Lemma 6.8. O

Remark 6.15. Results in [66] that Claim (2) and (3) are based on have stronger probability esti-
mates. However, Lemma 6.8 we used here yields a weaker failure probability.

6.4. Eigenvalue fluctuations. The following eigenvalue fluctuation results for random regular
hypergraphs can be derived from Lemma 6.4, Lemma 6.9, and the eigenvalue fluctuations results
for random biregular bipartite graphs in Section 4.

Corollary 6.16. For fized dy > dy > 3, let H be a random (dy,dg)-regular hypergraph with adja-
cency matriz A. Let Ay > -+ > X\, be the eigenvalues of m. Suppose f is a function
1— 2—

satisfying the same conditions in Theorem 4.4. Then Yf(n) =Y.y f(N) —nag converges in dis-

tribution as n — oo to the infinitely divisible random variable

CNBW!™)
kg (d1—1) dz—l)]k/2 b

where CNBW,(:O) is defined in (2.37).
(n)

Proof. Let ?f(n) be the corresponding random variable of Yf for the uniform random biregular

bipartite graphs considered in Theorem 4.4. From the total variation distance bound in Lemma
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6.9, we have

drv (Y™, 7™y < g ) o () (ded\ 1
v ( Footy ) < drv (s fiy) < i - =o(1).

Therefore fff(n) and Yf(n) converge in distribution to the same law. ([l

Corollary 6.17. Let H be a random (dy,ds)-regular hypergraph with dide — 0o as n — oo and

didy = n°M . Let \y > -+ >\, be the eigenvalues of m. Let f be a function satisfying
1— 2—

(4.20) and (4.22). Suppose one of the two assumptions holds:
(1) there exists a constant ¢ > 1 such that 1 < % <c,
(2) 3 <ds < c; for a constant ¢y > 3.

Then the random variable .
v =3 ) —mY
i=1

. . . . . . 00 2
converges in law to a Gaussian random variable with mean zero and variance of = Y .-, 2kay.
Moreover, for any fized t, consider the entire functions gi,...,g: satisfying (4.20) and (4.22).

The corresponding random vector (Yg(ln ), e Yg(tn)) converges in distribution to a centered Gaussian
random vector (Zg,, ..., Zg,) with covariance

o0
COV(Zgi7 Zgj) =2 Z kak(gi)ak(gj)
k=2
for 1 <i,j < t, where ar(g;),ar(gj) are the k-th coefficients in the expansion (4.19) for g;,g;,
respectively.

Proof. Recall Lemma 6.9 and our assumption didy = n°M) . Under Case (1), we have dy — oo and

2 ds
A (o i) < <7211> <46’d2> — O(n?)(n(~1+eM)E) — o(1),
2 n

Under Case (2), we have

ndy \2 [ 4dedy\ % 4eci \°
dTv(umu%K(d;) ( 2) = O(n*d7) <nl> = o(1).

n

Then with Lemma 6.9, in both cases Yf(n) converges in distribution to the same limiting random
variable defined in Theorem 4.7. The proof of the covariance part follows in the same way. 0
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