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ABSTRACT

Effective human-human and human-autonomy teamwork is criti-
cal but often challenging to perfect. The challenge is particularly
relevant in time-critical domains, such as healthcare and disaster
response, where the time pressures can make coordination increas-
ingly difficult to achieve and the consequences of imperfect coor-
dination can be severe. To improve teamwork in these and other
domains, we present TIC: an automated intervention approach for
improving coordination between team members. Using BTIL, a
multi-agent imitation learning algorithm, our approach first learns
a generative model of team behavior from past task execution data.
Next, it utilizes the learned generative model and team’s task ob-
jective (shared reward) to algorithmically generate execution-time
interventions. We evaluate our approach in synthetic multi-agent
teaming scenarios, where team members make decentralized de-
cisions without full observability of the environment. The experi-
ments demonstrate that the automated interventions can success-
fully improve team performance and shed light on the design of
autonomous agents for improving teamwork.
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1 INTRODUCTION

The success of human enterprise depends on effective teamwork. In
domains as diverse as manufacturing, disaster response, and health-
care rarely a single agent conducts a task alone; instead, to benefit
from complementary expertise of multiple and diverse agents, pro-
cesses are almost always multi-agent and collaborative. In certain
situations the teaming context is well defined, while in others the
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teamwork might be loosely-coupled [2, 10, 23, 31]. Further, real-
world teams may be composed of humans alone or, with ongoing
advances in artificial intelligence, include robots and autonomous
agents. Irrespective of the teaming context or composition, team-
work is often challenging to perfect. Imperfect coordination among
team members can result in unsatisfactory performance or failures
in collaborative tasks [21, 50]. The effect of these imperfections
can be particularly severe in time- and life-critical domains, such
as disaster response and healthcare, where the time pressures can
make coordination increasingly difficult to achieve.

Recognizing the ubiquity and adverse consequences of imper-
fect coordination, there is a long and growing body of research
on studying and improving teamwork in multiple disciplines. For
instance researchers in team science, by adopting a human factors
perspective, have developed theory and methods for team training
and assessments [4, 6, 25, 29, 35, 36, 48]. Concurrently, artificial
intelligence community has developed models and algorithms for
perfecting multi-agent systems [10, 28, 31, 44]. While methods and
techniques differ across research communities, not least due to the
nuances of different teaming contexts, certain shared insights for
improving teamwork exist. For instance, team members must main-
tain situational awareness of the task context and mental models of
their team members and, by leveraging this situational awareness,
adapt their plans to achieve and maintain coordination.

In practice, however, realizing this insight is challenging for team
members without appropriate interventions. In many collaborative
contexts, agents need to act under partial observability of the task
context as well as that of belief, desires, and intentions of their
team members [31]. This partial observability makes it challenging
for team members to maintain situation awareness and correctly
adapt to maintain shared plans. For this reason, in some domains
such as team sports, a team employs a coach who has a better
sight of the task environment and can intervene to maintain team
coordination [3, 46]. In most other domains, however, resource
constraintsmake it difficult to find an expert who can oversee a team
and intervene during each task execution. Instead, teams adopt team
science-inspired methods to improve coordination. For instance,
successful teams participate in training and debriefing sessions
[29, 36, 48]. They may also conduct self-diagnostic surveys to assess
their teamwork [4, 6, 25]. However, these methods are either ex
ante or post hoc and cannot provide task-time interventions.

To complement these methods, in this work, we consider the
problem of algorithmically generating task-time interventions to im-
prove teamwork. As reviewed in Sec. 2, there is growing interest
in developing artificial agents to improve human decision-making.

An extended version of this paper, which includes supplementary material mentioned
in the text, is available at http://tiny.cc/tic-supplement
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(a) Flood domain (b) Team member’s perspective

Figure 1: A domain inspired by disaster response, where a

team has to rescue people in a decentralized and partially

observable environment.

However, to our knowledge, this work is the first to explore feasibil-
ity of algorithmically generated task-time interventions to improve
teamwork. To solve this problem, we provide the algorithm Task-
time Interventions for Improving Collaboration (TIC) that builds
upon recent advances in multi-agent imitation learning [39] and,
given a Markovian model of the collaborative task [31] and demon-
strations, generates automated task-time interventions.

1.1 Running Example

To illustrate our problem effectively, we consider a scenario inspired
by disaster response [18]. Fig. 1a depicts the scenario, where a team
of two members – a police officer and a firefighter – is requested
to rescue people collaboratively after a flood. As further shown in
Fig. 1b (unshaded area), the team members have to operate under
partial observability; in particular, each team member can observe
their teammate only in their immediate vicinity or at landmarks.
There are four locations (marked with a yellow sign) where peo-
ple are stranded: a city hall, a campsite, and two broken bridges,
each with a different number of people. While people at city hall
and campsite can be rescued just by one agent, repairing a bridge
requires both the police officer and firefighter to work together.
As people in the mall can be rescued by repairing just one of the
bridges, the team does not have to repair all the bridges.

Each agent can take one of the following actions: move to one of
the directions if they are on the road, stay put, or rescue people if
they are at a disaster location (yellow sign). Due to the time-critical
nature of the task, in this running example, the team does not have
time for prior joint planning and needs to coordinate on-the-fly.
To complete the task effectively (i.e., rescue the most number of
people within the time limit), the team members need to coordinate
the sites to visit and select cooperative action to realize the shared
objective. As such, the behavior of a coordinated team must depend
both on the task context (e.g., location of landmarks, state of the
bridge) and team member’s mental states (e.g., belief about which
sub-activity to pursue next, intent regarding next landmark to visit).

1.2 Overview of the Proposed Approach

As coordination is both critical and challenging in this and other
time-critical collaborative tasks, TIC adopts a data-driven approach

to generate immediate interventions to improve team coordination
during the task execution. TIC involves modules to

C1. model each member’s behavior and mental states,
C2. detect when teamwork is poorly coordinated, and
C3. intervene as appropriate to improve the teamwork.

To realize capability C1, TIC requires a behavioral model of each
team member that depends on both the task context and team mem-
bers’ mental states (e.g., belief, sub-goals, or intent). For instance, in
our running example, C1 corresponds to prediction of team mem-
ber’s intended sub-goals (e.g., which bridge to repair next) and
goal-dependent policies. Planning or rule-based approaches have
been used in the past to model team behavior; however, these tech-
niques either do not account for team member’s mental states or, in
realistic settings, require significant manual effort to encode behav-
ior for each context [1]. Recently, imitation learning has garnered
popularity in learning predictive models of agent behavior from
data [22, 32, 34], with growing interest in multi-agent imitation
learning [20, 42, 49]. Informed by successes of these works, we uti-
lize Bayesian Team Imitation Learning (BTIL), a recent multi-agent
imitation learning technique to realize C1 [38]. Our choice of the
imitation learning algorithm is informed by BTIL’s ability to learn
behavioral models of teamwork that (a) explicitly depend on team
members’ mental states, and (b) model team behavior under both
perfect and imperfect coordination settings.

During execution of collaborative tasks, poor coordination can
result from a variety of factors: misalignment in team member’s
mental states, imperfect task execution by a particular team mem-
ber, among others. For instance, in our running example, the team
members may each select a different bridge to repair resulting in
imperfect coordination, lost time, and poor task outcomes. In this
work, we focus on imperfect coordination resulting from teammem-
ber’s mental states, which has been identified as a significant factor
influencing teamwork [5, 35]. As team member’s mental states are
not readily observable, solutions are needed to infer them from
observed data. Thus, to realize capability C2 in TIC, we propose
a Bayesian approach that estimates at task time alignment or lack
thereof in team member’s mental states. The proposed Bayesian
approach, described in Sec. 4.3, utilizes the team behavioral model
learned using C1 and the observed context (state) of the collabora-
tive task as inputs for mental state inference.

Interventions, when appropriate, can improve teamwork. For
instance, in our running example, interventions that help rectify
misalignment in team member’s mental states (e.g., which bridge to
repair next) can improve task outcomes. At the same time, however,
too many interventions can distract teams from their tasks and
lead to unintended side effects (e.g., switching costs in human
teams) [14]. Thus, approaches that can effectively trade-off cost
and benefit of interventions are needed. In Sec. 4.5, we propose
and study multiple intervention strategies to realize C3 in TIC.
The proposed strategies determine when to intervene based on the
team’s objective, team behavioral model learned via C1, and the
estimate derived using C2. We emphasize development of strategies
that generate context-specific interventions and require minimal
manual input to estimate the utility of intervention.

We evaluate TIC with four synthetic teaming scenarios, each
inspired by real-world applications and existing research [18, 39].



The experiments demonstrate that the proposed approach TIC can
generate automated interventions to improve team performance
and can effectively trade-off the cost and benefit of interventions.
These results help establish the feasibility of automated task-time
interventions. Further, the empirical analysis comparing different
intervention strategies (C3) of TIC provide guidance for the design
of future AI systems to improve human teamwork.

2 RELATED WORK

Our work is informed by a rich body of research on teamwork,
both in humanities and artificial intelligence [4, 6, 10, 25, 28, 29, 31,
35, 36, 44, 48]. In this brief review, we discuss approaches for team
assessment (relevant to C2) and intervention (relevant to C3).

Methods for Team Assessment. Researchers in team science have
established robust practices for assessing human-only teams [8, 19,
35]; however, these assessment approaches are post-hoc and do
not involve automation. As AI agents increasingly become part of
human teams, recent studies in human-robot interaction suggest
several metrics for the teamwork of various types of teams beyond
human teams [12, 24, 30]. However, to our knowledge, no meth-
ods exist to compute these metrics at task time using automated
techniques. Other works present team plan or team intention recog-
nition methods to predict team behavior [27, 37, 51], but do not
explicitly draw the connection between team intention and team
effectiveness. Seo et al. [38] leverage the concept of shared mental
models to recognize ineffective teamwork based on the recogni-
tion of each member’s mental state. However, they assume perfect
knowledge of team behavior and do not explore the problem of
when to intervene to achieve effective teamwork.

Enhancing Teamwork using AI. Across domains, there is growing
interest in developing artificial agents to improve teamwork [2, 7,
15, 17, 18, 38, 46]; however, to our knowledge, our work is the first
to explore automated task-time interventions in tightly-coupled
and time-critical tasks. For instance, Amir et al. [2] present a model
of information sharing between the loosely-coupled team, which
helps decide when to share information between partners based
on the concept of degree of interest. Kim and Shah [18] provide
an approach to enhance teamwork be developing an intelligent
agent to improve human team planning. Their approach detects
the degree of shared understanding by analyzing the dialogues in a
meeting before conducting the task. Tausczik and Pennebaker [45]
provide real-time language feedback based on the communication
patterns of a team. In practice, our approach to generating task-time
interventions could serve as a useful complement to these existing
approaches for generating planning-time interventions.

3 PROBLEM FORMULATION

To address the problem of generating automated task-time interven-
tions for improving teamwork, we first formalize it using existing
models of teamwork [31]. Further, we focus on collaborative tasks
with a well-defined notion of shared objective. While our formal-
ism is agnostic to team composition, it is particularly relevant for
teams with no hierarchy and at least one human member, i.e., equal
partners human teams or human-robot teams.

3.1 Model of Collaborative Task

We focus on teams that perform finite-horizon tasks with well-
designed objectives in partially observable environments. To for-
mulate team behavior while taking into account the relevant uncer-
tainties, we model the task as a decentralized partially observable
Markov decision process (Dec-POMDP). Dec-POMDP represents
a task by a tuple (𝑛, 𝑆,𝐴,Ω,𝑇𝑠 ,𝑂, 𝑅,𝛾, ℎ), where 𝑛 is the number
of team members, 𝑆 is the set of task states, 𝐴 is the set of joint
actions 𝑎 of team members, Ω is the set of joint observations of
team members, 𝑇𝑠 : 𝑆 ×𝐴 × 𝑆 → [0, 1] denotes the state transition
probabilities,𝑂 : Ω×𝐴×𝑆 → [0, 1] denotes the observation proba-
bilities, 𝑅 : 𝑆 ×𝐴 → R denotes the shared reward, 𝛾 is the discount
factor, and ℎ is the task horizon. The joint action 𝑎 � (𝑎1, · · · , 𝑎𝑛)
can be factorized as 𝐴 � ×𝑖𝐴𝑖 , where 𝐴𝑖 denotes the set of the 𝑖-th
member’s actions 𝑎𝑖 ∈ 𝐴𝑖 . For more details on Dec-POMDP, we
refer the reader to the text by Oliehoek and Amato [31].

3.2 Model of Team Behavior

In theory, given the task model, a team can act optimally by com-
puting a decentralized policy using Dec-POMDP solvers and then
executing it in lockstep. However, such optimal behavior is unre-
alistic to expect in practice. First, computing optimal policies for
Dec-POMDP models remains computationally prohibitive for many
practical problems, due to which multi-robot teams often employ
heuristic policies. Further, even when an optimal policy can be com-
puted, it is unrealistic to expect teammembers (particularly humans
as well as imperfect robots) to follow such a policy in lockstep and
without any execution errors. In practice, behavior of human team
members is often bounded rational and depends on mental states,
such as personal preferences or physiological states [9, 11, 41]. To
reflect the dependence of team member’s behavior on the mental
states, we explicitly model task-relevant mental states as 𝑥𝑖 ∈ 𝑋𝑖
and assume them to be unobservable for all team members 𝑗 ≠ 𝑖 .

Borrowing from the Agent Markov Model [47], we represent the
behavior of the 𝑖-th member to depend on the tuple (𝑋𝑖 , 𝑏𝑥𝑖 ,𝑇𝑥𝑖 , 𝜋𝑖 ),
where 𝑋𝑖 is the set of their mental states, 𝑏𝑥𝑖 is the probability dis-
tribution of the mental state at time 0, 𝑇𝑥𝑖 denotes the transition
dynamics of the mental state, and 𝜋𝑖 denotes the member’s pol-
icy. Concretely, 𝑇𝑥𝑖 denotes the probability of 𝑖-th team member’s
mental state at the next step, conditioned on the task history and
their current mental state. Similarly, 𝜋𝑖 denotes their probability of
selecting action 𝑎𝑖 ∈ 𝐴𝑖 conditioned on the task history and their
current mental state. While in general the tuple (𝑋𝑖 , 𝑏𝑥𝑖 ,𝑇𝑥𝑖 , 𝜋𝑖 ) will
be unknown for each team member, for tractability, we assume that
the set of mental states 𝑋𝑖 for each member is known and finite.
Similar to joint actions, we denote 𝑥 � (𝑥1, · · · , 𝑥𝑛), and 𝑋 � ×𝑖𝑋𝑖 .

3.3 Problem Statement

Having identified the models of task and team behavior, we next for-
malize the problem of interest. The space of potential interventions
to improve teamwork is large. A coach may intervene a team to
convey optimal actions, mental states, plans, among other variables
of interest [46]. In this work, we limit the intervention content to
recommended value of mental states (𝑥) which improve team coor-
dination. We leave the exploration of other types of intervention to
future work and, instead, focus on the problem of deciding whether



or not to intervene to improve team performance. We use 𝑧 to de-
note the binary decision of intervening in team’s task execution.
The variable 𝑐 denotes the cost per intervention and serves as a
simple model for adverse consequences of intervention [14, 26].
Formally, the problem assumes as input

• the task model (𝑛, 𝑆,𝐴,Ω,𝑇𝑠 ,𝑂, 𝑅,𝛾, ℎ),
• the set of team member’s mental states (𝑋 ), and
• task execution data (𝑠0:𝑡 , 𝑎0:𝑡−1) up to time 𝑡 .

Given these inputs, the problem corresponds to deciding 𝑧𝑡 (i.e.,
whether or not to intervene at time 𝑡 ) so as tomaximize the objective
𝐽 =

∑ℎ
𝑡=0 (𝑟𝑡 − 𝑐𝑡𝑧𝑡 ). Note that the problem assumes that, similar to

a sports coach, the intervention system has full observability of the
task state (𝑠) but not that of team members’ mental states (𝑥). The
objective reflects the trade-off of maximizing team’s cumulative
reward, while minimizing the cumulative cost of interventions.

4 SOLUTION

A trivial solution to this problem is to always intervene; however,
this solution is likely to be sub-optimal due to the cost of inter-
vention. Hence, we propose an approach that seeks to generate
effective interventions by reasoning about team members’ behavior
and mental states. In particular, to derive the solution for the formu-
lated problem, we break down the problem into three sub-problems

P1. Model:Given the task model (𝑛, 𝑆,𝐴,Ω,𝑇𝑠 ,𝑂, 𝑅,𝛾, ℎ), the set
of team member’s mental states (𝑋 ), and partially annotated
sequences of team’s past𝑚 task executions (𝑠0:ℎ, 𝑎0:ℎ, 𝑥𝑡 ⊂ℎ),
learn a model of each team member’s behavior (𝑏𝑥𝑖 ,𝑇𝑥𝑖 , 𝜋𝑖 )∀𝑖 .

P2. Detect: Given the inputs of P1, a learned model of each team
member’s behavior (𝑏𝑥𝑖 ,𝑇𝑥𝑖 , 𝜋𝑖 )∀𝑖 , and observable data of
on-going task execution (𝑠0:𝑡 , 𝑎0:𝑡−1), estimate at task-time
each team member’s mental state (𝑥𝑡 ).

P3. Intervene: Given the inputs of P2 and an estimate of each
teammember’s mental state (𝑥𝑡 ), decide at task-time whether
to intervene (𝑧𝑡 ) so as to maximize the objective 𝐽 .

Our approach includes three key modules, one corresponding to
each sub-problem described above. Fig. 2 depicts a schematic of
our approach. As motivated in Sec. 1.2, first, we use multi-agent
imitation learning techniques to solve P1. Next, use the outcome
of P1 and a Bayesian inference technique to solve P2. And, lastly,
propose and study a set of intervention strategies to solve P3.

4.1 Multi-Agent Imitation Learning

To address P1, we observe that the sub-problem of modeling team
behavior can be posed as one of imitation learning. Mathematically,
the classical imitation learning setting seeks to learn a single-agent
policy (𝜋), a function that returns the probability of selecting an
action (𝑎) given a task context (𝑠), from a dataset of task executions:
(𝑠, 𝑎)-pairs. Recently, there is growing interest in addressing the
multi-agent version of this problem setting, where the goal is to
learn decentralized policy (𝜋𝑖∀𝑖) of a multi-agent system from
demonstrations [20, 42, 49]. Most multi-agent imitation learning
techniques, however, do not explicitly model agent’s mental states
(𝑋 ) or learn its temporal dynamics (𝑇𝑥 ).

As motivated in Sec. 1.2, multi-agent behavior in teaming context
depends not only on the task context (𝑠) but also on a variety of

Multi-Agent
Imitation Learning Mental State Inference

Intervention StrategyBehavior Model
(𝑏𝑥𝑖 ,𝑇𝑥𝑖 , 𝜋𝑖 )∀𝑖

Semi-Supervised
Team Demonstrations

(𝑠0:ℎ, 𝑎0:ℎ, 𝑥𝑡 ⊂ℎ)

Task Model
(𝑛, 𝑆,𝐴,Ω,

𝑇𝑠 ,𝑂, 𝑅,𝛾, ℎ)

Current Task
History

(𝑠0:𝑡 , 𝑎0:𝑡−1)

Intervene or not, 𝑧𝑡

Task Execution PhaseTraining Phase

Figure 2: TIC schematic: During the training phase, TIC

learns a behavioral model of the team from past execution

data. Upon training, when a team performs a task, TIC de-

tects poor coordination and intervenes to improve teamwork.

latent decision factors (𝑥), such as preference, sub-goals, or belief.
A few recent papers explicitly include latent factors as independent
variables in the behavior model to better account for complex agent
behavior [16, 39, 40, 47]. Among these, only the approach Bayesian
Team Imitation Learning (BTIL) enables learning of team members’
decentralized policies and mental state dynamics from suboptimal
demonstrations [39].

Briefly, BTIL assumes a Markovian model for the dynamics of
teammembers’ mental states𝑇𝑥𝑖 (𝑥 ′𝑖 |𝑠, 𝑥𝑖 , 𝑎, 𝑠

′) and policy𝜋𝑖 (𝑎𝑖 |𝑠, 𝑥𝑖 ),
and that each agent can fully observe the environment. Under these
assumptions, BTIL computes the maximum a posteriori (MAP) esti-
mate of𝑇𝑥 and 𝜋 from past task-execution data. Since the posterior
of𝑇𝑥 and 𝜋 cannot be computed analytically due to latent variables,
BTIL utilizes mean-field variational inference (MFVI) [13]. With
MFVI, BTIL approximates the posterior 𝑝 (𝑇𝑥 , 𝜋 |data) by maximiz-
ing the evidence lower bound(ELBO). For more details of BTIL, we
refer the reader to [39].

4.2 Learning Models of Team Behavior

The problem setting of BTIL corresponds closely to that of P1. Both
settings focus on decentralized team policies, consider mental states
and their dynamics, and do not assume perfect coordination in the
demonstrations of team behavior. However, certain key differences
also exist. Most importantly, BTIL considers the setting where team
members have full observability of the task state, while our problem
setting considers partially observable tasks. As such, the behavior
in BTIL is modeled using state-dependent policies and not using
the general case of history-dependent policies. Learning history-
dependent policies of single agents, let alone teams, is a challenging
open problem [1].

However, as we seek to model team behavior from the interven-
tion system’s point of view, we can leverage its full observability
of the task state during the modeling process. In particular, we ap-
proximate history-dependent policies of team members with state-
and belief- (latent state) dependent policy, i.e., 𝜋𝑖 ≈ 𝜋𝑖 (𝑎𝑖 |𝑠, 𝑥𝑖 )
and 𝑇𝑥𝑖 ≈ 𝑇𝑥𝑖 (𝑥 ′𝑖 |𝑥𝑖 , 𝑎, 𝑠

′). This modeling choice while being an
approximation enables us to arrive at a suboptimal but tractable so-
lution to the general problem of modeling team behavior. Given this



modeling choice, the setting of P1 reduces to that of BTIL and allow-
ing application of BTIL to learn approximations of (𝑏𝑥𝑖 ,𝑇𝑥𝑖 , 𝜋𝑖 )∀𝑖
given inputs to P1. Application of BTIL also enables sample- and
label-efficient learning, a desirable attribute in practice.

Our implementation of BTIL adopts a modified forward and
backward message passing algorithm, which is summarized in the
Appendix, by observing that message passing for each agent can
be decoupled. This modification reduces the time complexity of the
algorithm from 𝑂 (ℎ |𝑋 |2𝑛) to 𝑂 (𝑛ℎ |𝑋 |2), where 𝑛 denotes the size
of team, ℎ is the task horizon, and |𝑋 | denotes the cardinality of
set of mental states. We conclude this section by reiterating that
application of BTIL in TIC results from an approximate but, as
evidenced in our experiments, useful modeling choice. Learning
history-dependent behavior under partial observability remains an
exciting open area of future work. As our approach for generating
intervention is modular, its future iterations can adopt advances
in partially observable imitation learning to better learn the team
model and further improve the quality of interventions.

4.3 Inferring Team Mental States

Leveraging the model learned in P1, we develop a Bayesian infer-
ence algorithm to estimate the latent states (𝑥) of the team. To
develop this algorithm, we observe that P2 corresponds to a non-
linearmulti-agent filtering problemwhen there are no interventions.
Thus, for the case of no interventions, we can formulate the fol-
lowing forward messages to iteratively compute the distribution of
mental states at each time step 𝑝 (𝑥𝑡

𝑖
|𝑠0:𝑡 , 𝑎0:𝑡−1):

𝐹 (𝑡, 𝑥𝑖 = 𝑗) ∝ 𝑝 (𝑥𝑡𝑖 = 𝑗, 𝑠0:𝑡 , 𝑎0:𝑡−1) (1)

=
∑︁
𝑘

𝐹 (𝑡 − 1, 𝑘)𝑇𝑥𝑖 (𝑥𝑡𝑖 |𝑥
𝑡−1
𝑖 , 𝑎𝑡−1, 𝑠𝑡 )𝜋𝑖 (𝑎𝑡−1𝑖 |𝑠𝑡−1, 𝑥𝑡−1𝑖 )

𝐹 (0, 𝑗) = 𝑏𝑥𝑖 (𝑥0𝑖 = 𝑗 |𝑠0).

However, when a team receives intervention, the mental state
dynamics (𝑇𝑥𝑖 ) will be affected due to the intervention and thus
require modifications to the inference algorithm. Recall that the
problem setting focuses on intervention that convey a set of rec-
ommended mental states (𝑥) to the team. In practice, it is up to
each team member’s whether to accept the intervention system’s
recommendation or not; in this work, to simplify our analysis, we
assume that each team member accepts the recommendation with
probability 𝑝𝑎 . Under this assumption, we next update the inference
algorithm for the case when an intervention is provided at time 𝑡𝑖𝑛𝑡 ,
i.e., 𝑧𝑡𝑖𝑛𝑡 = 1. Even in the case of intervention, the algorithm follows
an identical structure to Eq. 1. However, the iterative computation
of forward messages is updated as follows when 𝑧𝑡𝑖𝑛𝑡 = 1,

𝐹 ′′(𝑡, 𝑥𝑖 = 𝑗) ∝ 𝑝 (𝑥𝑡𝑖 = 𝑗, 𝑠𝑡𝑖𝑛𝑡+1:𝑡 , 𝑎𝑡𝑖𝑛𝑡 :𝑡−1 |𝑠0:𝑡𝑖𝑛𝑡 , 𝑎0:𝑡𝑖𝑛𝑡−1) (2)

=
∑︁
𝑘

𝐹 ′(𝑡 − 1, 𝑘)𝑇𝑥𝑖 (𝑥𝑡𝑖 |𝑥
𝑡−1
𝑖 , 𝑎𝑡−1, 𝑠𝑡 )𝜋𝑖 (𝑎𝑡−1𝑖 |𝑠𝑡−1, 𝑥𝑡−1𝑖 ),

𝐹 ′(𝑡, 𝑥𝑖 ) =
{
𝐹 ′′(𝑡, 𝑥𝑖 ), if 𝑡 > 𝑡𝑖𝑛𝑡

(1 − 𝑝𝑎)𝑝 (𝑥𝑡𝑖 |𝑠
0:𝑡 , 𝑎0:𝑡−1) + 𝑝𝑎1(𝑥𝑡𝑖 = 𝑥𝑖𝑛𝑡,𝑖 ), 𝑡 = 𝑡𝑖𝑛𝑡

where 𝑥𝑖𝑛𝑡,𝑖 is the mental state recommendation generated by solv-
ing sub-problem P3. Having computed the distribution of 𝑥 using

Eqs. 1-2, a point estimate can be obtained by computing the mode
of the distribution: 𝑥𝑖 = argmax𝑥𝑖 𝑝 (𝑥𝑖 |𝑠0:𝑡 , 𝑎0:𝑡−1)∀𝑖 .

4.4 Detecting Compatible Mental States

Having estimated the team member’s latent mental states, before
intervening, a natural question to ask is whether the team is already
coordinated. To formalize this question, we consider the problem of
learning the mental state compatibility function 𝑔(𝑥 |𝑠) : 𝑋 ×𝑆 → R
that takes task context (𝑠) and team members’ mental states (𝑥)
as input and returns the degree of compatibility. Observe that the
compatibility function is context-dependent, as the same shared
preferences may be compatible in some context and incompatible
in others. Further, we consider degree of compatibility as opposed
to a binary notion, as some mental state combinations might be
better than others for the team’s performance on the task.

In general, deriving 𝑔(·) is challenging. Multiple configuration of
mental states, which in essence translate to preferences over joint
policies or shared plans, can represent perfect coordination. Fur-
ther, the answer to the question depends on the task specifications
(shared reward) and team members’ behavior. A resource-intensive
approach to arrive 𝑔(·) is to involve a domain expert who can pro-
vide specification of the compatible combinations of mental states.
However, this approach is impractical due to the context-dependent
and team-dependent nature of compatibility; the number of states
are prohibitively large in practice to allow for manual specification.

Hence, in preparation for our solution for P3, we present a simple
metric to approximate 𝑔(·). Given the task model and Markovian
model of team behavior learned in Sec. 4.2, we define 𝑉𝜋 (𝑠, 𝑥) as

𝑉𝜋 (𝑠, 𝑥) = 𝐸𝜋,𝑇𝑥

[ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 |𝑠𝑡 = 𝑠, 𝑥𝑡 = 𝑥

]
(3)

where 𝑅 is the task reward. Observe that 𝑉 corresponds to the
expected cumulative discounted reward (or the V value) of the
centralized and fully observable version of the Dec-POMDP task
model conditioned on the learned team policy 𝜋 . Several methods
exist for computing𝑉 values for the fully observable setting, which
scale to large problems and are straightforward to implement [33,
43]. The𝑉 value depends on the task model, team behavior, current
task context and team mental states. Further, it is straightforward
to compute and reflects the impact of team mental states (𝑥) on the
team’s objective (expected discounted cumulative reward). As 𝑉𝜋
fulfills all the feature required of a useful compatibility metric, we
use it to estimate𝑔(𝑥 |𝑠) ≈ 𝑉𝜋 (𝑠, 𝑥). Similarly, we can also derive the
most compatible combination of team members’ mental states (i.e.,
shared preferences which help achieve the perfect coordination) as
𝑥𝑖𝑛𝑡 = argmax𝑥 𝑉𝜋 (𝑠, 𝑥).

4.5 Generating Effective Interventions

With an approach to compute compatibility of team members’ men-
tal states, we discuss the final component of TIC: strategies to re-
solve the cost and benefit trade-off of intervention. While we seek
optimal intervention strategies, computationally solving P3 and
deriving them is intractable. Hence, we propose a suite of heuristic
strategies to compute 𝑧𝑡 given the problem inputs. The proposed
heuristics can be categorized as deterministic or stochastic, based
on their utilization of inference derived in Sec. 4.3.



4.5.1 Deterministic Strategies. The first set of strategies rely on
a point estimate of the mental state 𝑥 and are denoted using in-
tervention functions 𝑓 (𝑥 |𝑠) : 𝑋 × 𝑆 → {0, 1}, which assume the
current task context (𝑠) and estimatedmental state (𝑥) as inputs.We
present two deterministic strategies: rule-based and value-based.

Rule-based. When domain knowledge is available, we can rely on
manual specifications of compatible mental states. For this strategy,
we assume a domain expert provides a set of compatible mental
states denoted by 𝐶𝑠 . Given this input, the strategy simply cor-
responds to verifying if the current estimate of mental state is
compatible and intervening if it is not:

𝑓𝑟𝑢𝑙𝑒 (𝑥 |𝑠) = 1 (𝑥 ∉ 𝐶𝑠 ) (4)

If the decision is to intervene, the strategy recommends one of the
compatible mental states from 𝐶𝑠 to the team.

Value-based. In cases where domain knowledge is absent, we
rely on the estimate of 𝑔(𝑥 |𝑠) ≈ 𝑉𝜋 (𝑥, 𝑠) to compute 𝑧. First, we
quantify the benefit of providing an intervention:

regret(𝑥 |𝑠) = max
𝑥 ′

𝑔(𝑥 ′ |𝑠) − 𝑔(𝑥 |𝑠) (5)

benefit(𝑥 |𝑠) = regret(𝑥 |𝑠) − 𝑐. (6)

Given an estimate of 𝑥 , the strategy decides to intervene when
benefit of the intervention exceeds a threshold 𝛿 :

𝑓𝛿 (𝑥 |𝑠) = 1 (benefit(𝑥 |𝑠) > 𝛿) (7)

𝛿 is a domain-dependent hyperparameter, which can help tune the
average number of interventions generated by the strategy. If the
decision to intervention is positive, the team is recommended the
most compatible mental state: 𝑥𝑖𝑛𝑡 = argmax𝑥 𝑔(𝑥 |𝑠).

4.5.2 Stochastic Strategies. Instead of relying on the point estimate
of 𝑥 , the second set of strategies utilize its inferred distribution 𝑝 (𝑥).
We denote these strategies using intervention function Φ(𝑝 |𝑠) :
Δ × 𝑆 → {0, 1}, where Δ denotes the probability simplex. We
present two heuristics to convert any deterministic strategy 𝑓 (e.g.,
rule- or value-based) to its probabilistic counterpart Φ𝑓 .

Confidence-based. Denote 𝑥 = argmax𝑥 𝑝 (𝑥). To avoid spuri-
ous interventions, the first heuristic, avoids intervening when the
confidence in the estimate is lower than a threshold 𝜃 :

Φ𝑓 ,𝜃 (𝑝 |𝑠) = 𝑓 (𝑥 |𝑠) · 1 (𝑝 (𝑥) > 𝜃 ) (8)

Expectation-based. The second strategy computes a soft decision,
by computing the expected value of the deterministic strategy:

Φ𝑓 ,𝐸 (𝑝 |𝑠) = 1
(
𝐸𝑝 [𝑓 (𝑥 |𝑠)] > 0.5

)
(9)

An intervention is made if the soft decision is greater than half.

5 EXPERIMENTS

We evaluate our algorithm in four synthetic scenarios – Movers,
Cleanup, Flood, and Blackout– each inspired by real-world appli-
cations and with large state space [18, 39]. All domains involve
partial observability, require collaboration, and include multiple
sub-tasks. Team members’ mental state (𝑥) correspond to their
preference over which sub-task to complete next. To complete the
task efficiently, the team needs to coordinates its next sub-tasks.

(a) Configuration of Movers (b) Movers: Alice’s perspective

(c) Cleanup: John’s perspective (d) Blackout: Police’s perspective

Figure 3:Movers, Cleanup and Blackout domains. Agents can

observe only part of the environment (unshaded region).

5.1 Domains

Movers. This domain is similar to Movers domain in [39] but adds
the challenge of partial observability. As shown in Fig. 3a, both
agents, Alice and Rob, start their task with a truck in between and
have to move the boxes scattered across the space to the truck. As
depicted in Fig. 3b, however, they can only observe their neighbor-
ing (unshaded) region. The boxes are heavy, requiring two agents
to lift them together. The truck is only accessible while carrying
a box, so it is difficult for agents to know where their teammates
are at the beginning. An agent can move in one of four cardinal
directions, stay put, or attempt to pick up or drop off a box. Each
team member can select its next sub-task (𝑥) as one of the three
pick-up locations or the drop-off location.

Cleanup. This domain is similar to Cleanup domain in [39] but
has a different configuration and enforces partial observability to
each agent. A team of two agents, John and Rob, is tasked with
moving all the trash bags to the truck. Unlike Movers, trash bags
can only be picked up by one agent. The set of an agent’s actions
is the same as Movers. While performing the task, an agent may
choose one of five mental states: the pickup and drop-off locations.

Flood. This domain implements the running example in Sec. 1.1.
It is an alternate version of Emergency Response domain of Kim
and Shah [18] with the added condition of partial observability. The
number of people rescued via “rescue” action is different for each
disaster site: one at the city hall, two at the campsite, and four in
the mall. The goal is to rescue as many people as possible within
thirty steps. Each team member can select its next sub-task (𝑥) as
one of the four disaster sites.



Blackout. This domain is similar to Flood domain but has a dif-
ferent map. In this domain, a team of three members – a police
officer, a firefighter, and an EMT(Emergency Medical Technician)
– is tasked with rescuing people in the Blackout emergency. Simi-
lar to Flood, each member can only observe their teammates who
are at the same location or at landmarks. While the person at the
campsite can be rescued by one member, to rescue people in the
mall and the city hall, at least two members should work together.
Also, the number of people rescued at each site is different: one at
the campsite, two in the city hall, and two in the mall. The team is
tasked to recuse as many people as possible within 15 steps.

5.2 Data Generation

To evaluate our approach, we created artificial agents and generated
a synthetic dataset by simulating teamwork among these agents.
For each domain, we implemented a transition of the world 𝑇𝑠 and
designed each agent’s ground truth policy 𝜋𝑖 and their mental state
transition 𝑇𝑥𝑖 . Each member’s ground truth policy is computed via
value iteration by assigning appropriate rewards according to each
mental state. The mental state transition is hand-crafted. Due to par-
tial observability, agents make decisions based on their own point
estimates of the state 𝑠 , which may differ from actual task states. In
situations where teammates are not observable, their actions also
have no effect on updating an agent’s mental state. Task execution
data are generated by randomly sampling the initial mental state
𝑥𝑖 at each member, and iteratively sampling each member’s action
𝑎𝑖 ∼ 𝜋𝑖 (·|𝑠, 𝑥𝑖 ), the next state 𝑠 ′ ∼ 𝑇𝑠 (·|𝑠, 𝑎), and the next mental
state of each member 𝑥 ′

𝑖
∼ 𝑇𝑥𝑖 (·|𝑥𝑖 , 𝑎, 𝑠 ′) until the completion of the

task. For each domain, we generate 500 demonstrations for training
BTIL and 100 for evaluating our inference algorithm.

5.3 Evaluation and Metrics

Inference Algorithm. In practice, collecting data of team’s task
execution (𝑠0:ℎ, 𝑎0:ℎ) and annotating team member’s mental states
𝑥0:ℎ is resource intensive. To empirically assess the sample- and
label-complexity of our inference algorithm, we evaluate its per-
formance using different numbers of training data with different
supervision of mental states: 150 demonstrations with 100% super-
vision, 500 demonstrations with 30% supervision (i.e., 150 labeled
demonstrations), and 500 demonstrations with 100% supervision.
For each episode, we compute the accuracy of inference as follows:
1
𝑛ℎ

∑𝑛
𝑖=1

∑ℎ
𝑡=0 1(𝑥𝑡𝑖 = 𝑥𝑡

𝑖
). Inference accuracy evaluates the effec-

tiveness of our forward prediction algorithm, which utilizes the
learned behavioral models, to solve P2.

Overall Approach. Due to its modular nature, TIC can utilize any
of the intervention strategies proposed in Sec. 4.5. We benchmark
multiple versions of TIC, each with different intervention strategy,
against two baselines: no intervention (i.e., decentralized execution
without any intervention) and centralized policy (i.e., an optimal
team policy which assumes team receives interventions at each
step without any consideration of intervention costs). In these ex-
periments, we conduct 100 episodic trials for each combination
of domain and intervention strategy and report three metrics: cu-
mulative task rewards, the number of interventions, and problem
objective 𝐽 . TIC computes the decision to intervene 𝑧𝑡 using ob-
servable data of the team’s task execution (𝑠0:𝑡 , 𝑎0:𝑡−1) and learned

Figure 4: Accuracy of inferring mental states (the dashed

black line represents the accuracy of a random guess).

model of team behavior. To show that TIC can work with less
supervision, we use models of team behavior learned using semi-
supervised data (i.e., 500 data with 30% supervision). If TIC decides
to intervene, then the team members update their mental state 𝑥
with the one recommended by the approach (i.e., 𝑝𝑎 = 1).

For Movers and Cleanup domains, where the reward function
reflects time to complete the task, we set cost of intervening as 𝑐 = 1.
For the emergency response domains, where the reward function
corresponds to number of people successfully rescued, defining
intervention cost is an ill-defined question; for these domains, we
set 𝑐 = 0 and study the trade-off between task reward and number
of interventions. We also conduct ablation studies to compare the
effect of intervention strategy and hyperparameters. Rule-based
strategy is applicable only to those domains where compatibility is
easy to define manually. Hence, we apply the rule-based strategy
only toMovers but evaluate the value-based strategy on all domains.
We evaluate the proposed deterministic strategies and their two sto-
chastic versions, by varying the hyperparameters: benefit threshold
𝛿 and the certainty threshold 𝜃 .

5.4 Results

Accuracy of Task-time Inference of Mental States. As shown in
Fig. 4, our inference algorithm predicts team members’ mental
states with over 80% accuracy in Movers and Flood, and around 60%
accuracy in Cleanup and Blackout. In all domains, the algorithm
significantly outperforms the probability of random guessing and
the performance increases with more data and supervision. We
posit the lower accuracy in Cleanup and Blackout results due to
relative lack of training data. Cleanup has a much larger state space
(∼135k) than other domains (Movers: ∼40k, Flood: ∼16k, and Black-
out: ∼74k), resulting in less training data relative to the size of the
problem. Blackout has a much smaller average episode length (≈ 95
for Movers, ≈ 15 for Blackout), resulting in less training data per
demonstration. These results suggest that the proposed approach
is capable of learning team behavioral models and inferring mental
states with a reasonable accuracy and that, with sufficient training
data, the effects of modeling assumptions are not severe.

Utility of Automated Task-time Interventions. The baselines no
intervention and centralized policy can be viewed as two ends of



Figure 5: Team’s cumulative task reward (top) and the prob-

lem objective 𝐽 (bottom) in Movers and Cleanup domains.

Figure 6: Task reward (top) and the number of interventions

(bottom) in Flood and Blackout domains.

the spectrum of the solution space. Unsurprisingly, the centralized
policy results in the highest task reward. However, as depicted in
Fig. 5 (bottom) and reflected in the problem objective 𝐽 , this high
performance comes at a much higher total cost of interventions. In
practice, it is typically infeasible to always intervene either due to
environment constraints or intervention overheads. On the other
end of the spectrum, teams that receive no intervention do not
incur its costs but also perform poorly. In comparison and as de-
picted in Figs. 5–6, TIC (with a suitable choice of hyperparameter 𝛿)
successfully helps improve team’s task performance for all domains
with relatively small number of timely but impactful interventions.
Encouragingly, TIC is able to generate these interventions despite
using noisy inference of team members’ mental states.

Figure 7: Objective 𝐽 (with 𝑐 = 1) in the Movers domain.

Effect of Estimating Compatibility. We observe in Fig. 7 that the
proposed value-based approach to estimating team compatibility
𝑔(·) can achieve the same or better performance as the rule-based
approach. This suggests that the value 𝑉𝜋 defined in Eq. 3 is a
good proxy for compatibility 𝑔(𝑥 |𝑠) and enables an objective task-
time assessment of teamwork in domains where hand-crafting the
compatibility metric may be resource intensive.

Effect of Intervention Strategy and Hyperparameters. Our ablation
experiments comparing different versions of TIC show that even
though TIC can improve teamwork, determining the most optimal
intervention strategy is difficult due to its dependence on a large
number of factors such as task reward, team behavior, inference un-
certainties, and intervention costs. Through Figs. 5-7, we also assess
the effect of intervention strategy and its hyperparameters (𝛿, 𝜃 ) on
the overall problem objective (𝐽 ). We observe that there is no clear
winner among proposed intervention strategies and, even with
fixed interruption cost, the relationship of objective 𝐽 with both
hyperparameters and number of interventions is non-linear. For-
tunately, our computational approach also offers a mechanism for
selecting the appropriate intervention strategy through simulation.
In practical applications of this and similar approaches, we suggest
first collecting data of past execution data of real world team’s
behavior, using this data to learn team model and simulate team
behavior (similar to our experiment protocol), and then through
simulation conduct a hyperparameter analysis to empirically select
the most suitable intervention strategy and its hyperparameters.

6 CONCLUSION

We present TIC, an algorithm for generating automated task-time
interventions to improve teamwork. Using past and current task ex-
ecution data, TIC detects poor coordination during teamwork and
uses heuristics to trade-off costs and benefits of interventions. We
conduct simulation experiments where multi-agent teams perform
sequential tasks in partially observable environments and receive
interventions generated using TIC. The results show that automated
interventions can successfully improve team performance and pro-
vide proof-of-concept for development of automated intervention
systems to improve human-human and human-AI teamwork.
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