
AUDIO CROSS VERIFICATION USING DUAL ALIGNMENT LIKELIHOOD RATIO TEST

Heidi Lei†⋆ Arm Wonghirundacha‡⋆ Irmak Bukey‡⋆ TJ Tsai§

†Massachusetts Institute of Technology
‡Pomona College

§Harvey Mudd College

ABSTRACT

This paper explores a way to verify that audio has not been mali-

ciously tampered in a specific context: short viral videos taken from

news recordings. Rather than trying to detect artifacts of tampering

(internal inconsistency), we focus on positively verifying a query

against a trusted source such as a news recording (external consis-

tency). We propose a method for cross verifying a short audio query

against a reference recording from which it was taken. Our approach

is to define two hypotheses (non-tampered vs tampered), calculate

the most likely alignment between query and reference for each hy-

pothesis, and then perform a likelihood ratio test on the two align-

ments. We show that this method is fast to compute, much more

robust than using MFCC features with Euclidean distance, and has

the key benefit of explainability. Our cross verification approach pro-

vides an alternative perspective and complementary tool to existing

tampering detection methods.

Index TermsÐ Cross verification, audio authentication, tam-

pering detection, forensics

1. INTRODUCTION

One significant issue in our society today is the reliability of audio-

visual information. The availability of deep fake technology and au-

dio/video digital editing software has made it easy for non-experts to

generate or modify audiovisual content in a way that seems realistic.

These technologies have been used for nefarious purposes such as

nonconsensual pornography and political defamation [1], and their

use casts doubt on the authenticity of legitimate audiovisual data [2].

This paper focuses on a very specific subset of this general prob-

lem: verifying the authenticity of viral videos posted on social media

whose source content was directly recorded by major news agencies.

This includes speeches by political leaders or other high profile indi-

viduals, which tend to be on matters of national interest and thus are

especially important to consider. One could imagine a company like

Twitter providing a green check mark next to a viral video that says

ªVerified against NBCº (or some other major news agency), which

would provide the viewer confidence that what they are watching can

be trusted and has not been tampered in a malicious way. On a tech-

nical level, this problem has two inputs: a short query (e.g. a low-res

10 second video clip of a campaign speech that is posted on social

media) and a long reference recording from which the query is taken

or adapted (e.g. a high-res 30 minute recording of the entire cam-

paign speech as recorded by a major news agency). The goal is then

to compare the query and reference, and to determine if the query

matches the reference (verified matching) or if it has been tampered

⋆Equal contribution

(verified tampered). In this work, we focus exclusively on verifying

audio content. This is the audio cross verification problem.

There is a large body of previous work on detecting audio tam-

pering. Audio tampering involves modifying a genuine audio record-

ing through insertion, deletion, or replacement with foreign material.

Many audio forensics methods have been proposed to detect artifacts

of tampering, such as double compression [3][4], broken watermarks

[5][6], discontinuities in the embedded electrical network frequency

(ENF) [7][8], inconsistencies in the acoustic environment signature

[9][10], or singularities in the spectrogram [11][12][13]. See [14] for

a survey of previous work. The timeliness of this topic is shown by

the recent introduction of new datasets for speaker verification [15]

and Deepfake video detection [16] to study short duration temporal

forgeries. While many of the above methods work well in detecting

tampering, they can also be extremely vulnerable to anti-forensic

countermeasures, as recent studies have shown [17][18][19][20].

While similar in application, the audio cross verification prob-

lem has a different objective than audio tampering detection. Rather

than trying to detect artifacts of tampering (internal inconsistency),

it instead focuses on positively verifying a query against a trusted

source (external consistency).1 This change in paradigm has two

significant benefits and one significant drawback. The first benefit

is that the efficacy of a cross verification method does not depend

on how seamlessly a tampering operation is done (since it is not

looking for artifacts of tampering). In this way, it provides a perma-

nent and stable solution rather than one that depends on the state of

deepfake technology or anti-forensic countermeasures. The second

benefit is that cross verification methods can make a stronger claim

than audio tampering methods. An audio tampering method can at

best say, ªThere is no evidence of tampering (though it’s possible

that the tampering was done seamlessly or the whole recording is a

deepfake)º. A cross verification method can say, ªThis clip matches

a trusted source, so it can be trusted.º The drawback of cross verifi-

cation methods is that they can only be used when a trusted reference

is available, which limits the contexts in which they can be used.

An ideal audio cross verification method would have several de-

sirable characteristics. First, it should be extremely accurate in pre-

dicting whether a query is matching or tampered. Second, it should

be robust to real-world conditions. In particular, we would want the

method to be insensitive to harmless differences like audio encoding

formats, volume differences, and audio compression artifacts, while

at the same time being very sensitive to changes due to tampering

operations like insertion, deletion, and replacement. We would also

1Reference-based audio authentication is not new ± it has been explored in
the audio forensics community, primarily through extracting the ENF signal
from the query and comparing against an ENF database from the electric
grid. This technique can be used to ascertain the timestamp of recording and
assess if any tampering has been done (e.g. [21][22][23][24]). In this paper,
we adopt a similar approach but focus on directly verifying the audio content.



Fig. 1. Overview of the proposed Dual Alignment Likelihood Ratio

Test (DA-LRT) method for audio cross verification.

want the method to be robust to overfitting, since complex models

can be vulnerable to distribution shift. Third, an ideal method would

be fast in terms of runtime. Fourth, the method should be explain-

able. Since this tool would be public facing and have ramifications

in the public sphere, it is necessary for predictions to be justifiable.

We propose an approach called Dual Alignment Likelihood Ra-

tio Test (DA-LRT) that is designed around the desirable characteris-

tics above. DA-LRT consists of three stages. The first stage is pre-

selection, in which we use a binary feature representation to quickly

determine the rough offset where the query occurs in the reference.

The second stage is to perform two different alignments between

the query and the reference. One alignment is performed under the

hypothesis that there is no tampering, and the other alignment is per-

formed under the hypothesis that tampering is present in the form of

insertions, deletions, and replacements. The third stage is to identify

differences between the two alignments, and then to perform a sta-

tistical test to determine which hypothesis is more likely given the

observed features. We describe this in detail in the next section.

2. SYSTEM DESCRIPTION

The DA-LRT method has three main stages (see Figure 1), which are

described in detail in the next three subsections.2 Our goal is to com-

pare a short query recording to a reference recording (from which it

was taken), and to determine if the query matches the reference or if

it has been tampered.

2.1. Pre-Selection

The first stage is pre-selection, in which the goal is to find the orig-

inal source material that matches the query. File-level pre-selection

can be done using an audio fingerprinting method (e.g. Shazam [25],

Google [26]) or metadata search (e.g. speaker and date). To keep

our discussion focused, we will simply assume in this paper that a

matching reference recording has already been identified.3

Given a matching reference recording, we would also like to per-

form temporal pre-selection in order to identify the part of the refer-

ence recording that matches the query. Because stage 2 requires dy-

namic programming, this temporal pre-selection can significantly re-

duce total runtime if the reference is much longer than the query. We

use a simplified version of audio hashprints [27] to accomplish this

quickly and efficiently. This approach consists of three steps. First,

we compute standard mel frequency cepstral coefficients (MFCCs)

with 25 ms analysis frames and 10 ms hop size. We include delta

and delta-delta features, which results in a total of 39 features per

2Code at https://github.com/HMC-MIR/AudioCrossVerification.
3Note that, if the query is mostly tampered material or is a completely

synthetic deep fake, a match will not be found in the database. In our Twitter
application scenario, one could affix a label that says ªNo match found with
NBCº to provide useful information to the viewer.

frame. Second, we represent each frame with a 26-bit binary feature

representation by thresholding the delta and delta-delta features at

0. (The MFCC features are stored for later use in stages 2 and 3.)

Third, we identify the offset in the reference recording that results

in the lowest total Hamming distance between the corresponding bi-

nary feature sequences (assuming a 1-to-1 correspondence). This

can be computed efficiently by encoding each frame in memory as

a single 32-bit integer and performing bit operations. The optimal

offset specifies the approximate matching region of the reference

recording. Since the query may be tampered from insertion or dele-

tion, we include a short buffer before and after the matching region

to provide a conservative estimate. This specifies our pre-selected

reference material.

2.2. Dual Alignment

The second stage is to compute two different alignments between the

query and the pre-selected reference material. These two alignments

are estimated under two different hypotheses (tampered vs. non-

tampered). The procedure for the two alignments is described in

detail in the remainder of this subsection. We will refer to the query

features as q0, q1, . . . , qN−1 and the (pre-selected) reference features

as r0, r1, . . . , rM−1, where qi ∈ R
39 and ri ∈ R

39 are the MFCC

features for the ith audio frame.

The first alignment is estimated under the assumption that the

query is non-tampered. In this case, the alignment path is assumed

to be a diagonal line, and the only unknown is the offset at which

the matching region begins. We re-estimate4 the alignment path by

(1) computing a pairwise cost matrix C ∈ R
N×M between the query

and reference using the MFCC features and a Euclidean distance cost

metric, (2) calculating the sum of pairwise costs along each complete

diagonal path of the cost matrix, and (3) selecting the diagonal align-

ment path with the minimum total cost. The optimal path has (query,

reference) coordinates (0,∆), (1, ∆+ 1), . . . , (N − 1, ∆+N − 1).

The second alignment is estimated under the assumption that the

query is tampered. In this case, the shape of the alignment path is

not known in advance, since the query may have been tampered with

insertions, deletions, and replacements. We estimate this alignment

path using an adaptation of Hidden State Time Warping (HSTW)

[28], a previously proposed dynamic programming algorithm that

allows for state-based time warping. HSTW allows the alignment

path at any location in the cost matrix to be in one of two states,

where each state has its own unique time warping characteristics. In

our scenario, we define one state to be a ªmatchingº state in which

the only allowable transition is (1,1), and we define the other state

to be a ªtamperedº state in which the allowable transitions are (0,1)

and (1,0). For completeness, we describe the algorithm below.

Our adaptation of HSTW has four steps. First, we calculate

a pairwise cost matrix C ∈ R
N×M using MFCCs and Euclidean

distance. Second, we initialize the cumulative cost tensor D ∈

R
2×N×M and corresponding backtrace tensor B ∈ N

2×N×M . Note

that the two ªplanesº of the tensor correspond to the two different

states. We will refer to the tampered plane as Dt ∈ R
N×M and

the matching plane as Dm ∈ R
N×M . Since the query occurs at an

unknown offset in the reference, we initialize Dm[0, j] = C[0, j],
j = 0, 1, . . . ,M − 1 and Dt[0, j] = α+γ

2
, j = 0, 1, . . . ,M −

1, where α and γ are hyperparameters (described in more detail

below). This initialization allows the alignment path to begin at

any offset in the reference in either state without penalty. Third,

we compute the remaining values in D[i, j], i = 1, . . . , N − 1,

4We re-estimate the offset using MFCCs since they are more informative
than coarsely quantized binary hashprints in the pre-selection stage.



j = 0, . . . ,M − 1 using the following dynamic programming rules:

Dt[i, j] = min(Dt[i, j−1]+γ,Dt[i−1, j]+α,Dm[i−1, j−1]+
γ+α) and Dm[i, j] = min(Dm[i−1, j−1]+C[i, j], Dt[i, j]+β).
Here, α, γ, and β are hyperparameters specifying the insertion, dele-

tion, and plane transition penalties, respectively. As we compute

each element in D, we also update the corresponding element of B
to record the optimal transition type. Fourth, we identify the ele-

ment in the last row of Dt or Dm that has the lowest cumulative

cost, and then follow the backpointers in B to determine the optimal

alignment path.

2.3. Likelihood-Ratio Test

The third stage is to treat each alignment path as a hypothesis, and

then to determine which hypothesis has a higher likelihood based on

the observed features. This stage consists of four steps, which are

described below. For brevity, we will refer to the matching hypothe-

sis as H1 and the non-matching hypothesis as H2.

The first step is to identify differences between the alignment

paths under H1 and H2. Specifically, we partition the query frames

q0, q1, . . . , qN−1 into two groups: those whose alignments are the

same between H1 and H2 (partition A), and those whose alignments

are different (partition B). To account for analysis frame offsets, we

define ªdifferentº to mean that the alignments differ by 2 or more

frames. Query frames whose HSTW alignment lies entirely in the

tampering plane are placed in partition B. If the two alignment paths

are identical, we simply declare the query to be matching.

The second step is to model the observed differences between

query and reference features in matching regions (i.e. where the

query is non-tampered). We do not know in advance which frames

are matching, but we can interpret regions where the two alignment

paths agree as circumstantial evidence that such regions are match-

ing. Accordingly, we use the observed features for query frames

in partition A to model what a ªmatchº looks like. Let (n1, m1),

(n2, m2), . . . , (nL, mL) be the alignment path coordinates where

the two alignment paths are in agreement, qni ∈ R
39 and rmi ∈

R
39, i = 1, . . . , L denote the corresponding MFCC feature vec-

tors, and qni,f ∈ R and rmi,f ∈ R indicate the f th MFCC fea-

ture in qni and rmi , respectively. For each of the 39 features, we

calculate the mean and variance of the observed feature differences

in matching regions as µf = 1
L

∑L

i=1(qni,f − rmi,f ) and σ2
f =

1
L−1

∑L

i=1

(

(qni,f − rmi,f ) − µf

)2

. The end result is a set of

39 scalar Gaussian distributions N (µf , σ
2
f ), f = 1, . . . , 39 that

model the feature differences when the query and reference frames

are matching. We will use these to compute the likelihood of H1.

The third step is to model the differences between query and

reference features in non-matching regions (i.e. where the query is

tampered). In tampered regions, we assume that the query and ref-

erence features are independent. If we treat each feature as an in-

dependent random variable drawn from a scalar Gaussian distribu-

tion N (µf , σ
2
f ) (as estimated above), then the mean and variance

of feature differences in non-matching regions can be estimated as

µ̃f = 1
L

∑L

i=1(qni,f − rmi,f ) and σ̃2
f = 1

L−1

∑L

i=1

[

(qni,f −

µ
query
f )2+(rmi,f−µ

ref
f )2

]

, f = 1, . . . , 39. The end result is again

a set of 39 scalar Gaussian distributions N (µ̃f , σ̃
2
f ), f = 1, . . . , 39

that model the feature differences in non-matching regions. We will

use these to compute the likelihood of H2.

The fourth step is to perform a likelihood-ratio test on the two

hypotheses using the query frames in partition B as observations.

In other words, we would like to know which hypothesis is more

likely given the observed feature differences. To make the solution

tractable, we assume that features are independent across time and

across feature type. Clearly, these assumptions are faulty (e.g. the

features are highly correlated over time), but we apply these sim-

plifying assumptions to both hypotheses, so we don’t anticipate that

they will cause a systematic bias in one direction. We describe the

details of the likelihood-ratio test in the next two paragraphs.

Definitions. Let the query frame indices in partition B be given

by ñ1, ñ2, . . . , ñN−L. (There are L query frames in partition A,

so partition B will have N − L elements.) Let the alignment path

coordinates for these query frames under H1 be given by (ñ1, ∆ +
ñ1), (ñ2, ∆+ ñ2), . . . , (ñN−L, ∆+ ñN−L) and the alignment path

coordinates under H2 be given by (ñ1, m̃1), (ñ2, m̃2), . . . , (ñN−L,

m̃N−L). The feature differences are modeled by N (µf , σ
2
f ), f =

1, . . . , 39 under H1 and by N (µ̃f , σ̃
2
f ), f = 1, . . . , 39 under H2.

Likelihood Calculation. Given the independence assumptions,

the maximum likelihood criterion is given by:

N−L
∏

i=1

39
∏

f=1

1
√

2πσ2
f

e
−

1

2σ2
f

(

(qñi,f
−r∆+ñi,f

)−µf

)2

H1

≷
H2

N−L
∏

i=1

39
∏

f=1

1
√

2πσ̃2
f

e
−

1

2σ̃2
f

(

(qñi,f
−rm̃i,f

)−µ̃f

)2

(1)

Note that the two sides of equation 1 use different observations

(i.e. (qñi,f − r∆+ñi,f ) vs (qñi,f − rm̃i,f )), whereas a typical maxi-

mum likelihood formulation has a shared set of observations. Taking

the log of both sides, equation 1 simplifies to:

N−L
∑

i=1

39
∑

f=1

(

ln(
σ̃2
f

σ2
f

)− z
2
i,f + z̃

2
i,f

) H1

≷
H2

0 (2)

where zi,f ≜
(qñi,f

−r∆+ñi,f
)−µf

σf
and z̃i,f ≜

(qñi,f
−rm̃i,f

)−µ̃f

σ̃f

are the Z-scores of the observed feature differences under H1 and

H2, respectively. The left side of equation 2 is a log likelihood-

ratio test statistic, and we use this quantity as the final ªtampering

scoreº for the query. This allows us to characterize performance

more broadly with a receiver operation characteristic curve.

3. EXPERIMENTAL SETUP

We used the DAPS dataset [29] for our experiments. This dataset

contains high-quality audio recordings of 20 different speakers each

reading 5 scripts, where scripts are 2±4 minutes long. The dataset

also includes recordings in multiple acoustic conditions, which will

allow us to study the effect of acoustic environment in future work.

For this study, we focus only on the 100 high-quality, low-noise

recordings since these most closely match our intended application.

The queries are generated by processing the DAPS data in the

following way. First, each of the 100 high quality original record-

ings is compressed to a lower bitrate at R kbps. This step reflects

the fact that videos shared on social media are typically compressed.

Second, we randomly sample 10 different 10-second segments from

each compressed recording. Third, we tamper each 10-second seg-

ment in three different ways to simulate insertion, deletion, and re-

placement tampering operations. For insertions, we randomly select

an L second filler segment from within the same compressed record-

ing (but outside of the selected 10-second segment). This L second

filler is then inserted into the segment at a random location in the

segment. This arrangement means that the inserted foreign material



is perfectly matched in terms of speaker, speaking style, and acoustic

environment. For deletions, we randomly select an L second interval

from within the 10-second segment and delete it. For replacements,

we randomly select an L second interval from within the 10-second

segment, and then replace it with another L second filler randomly

selected from within the same compressed recording. In addition to

the tampered versions, we also include an untampered version.

Our benchmarks are constructed in the following manner. Given

the above method for generating queries, we have a total of 100 x 10

x 4 = 4000 queries for a given bitrate R and tampering duration L.

Each of these queries is associated with a reference recording, which

is the original DAPS recording from which the query was taken. Half

of the speakers are set aside for training, and the other half are set

aside for testing. We consider three different bitrates R = 256, 128,

and 64 kbps and five different tampering durations L = 4, 2, 1, 0.5,

0.25 seconds. In total, our evaluation includes 15 benchmarks, each

containing 2000 training queries and 2000 test queries.

Our evaluation metric is equal error rate (EER). EER is a useful

metric because it summarizes performance in a single number and

is invariant to priors. Note that we chose to evaluate classification

performance at the recording (rather than frame) level since this most

closely aligns with the user’s experience of our intended application.

4. RESULTS

Table 1 shows the results of our proposed method on the audio cross

verification task. The left half of Table 1 shows the performance

of the proposed system, and the right half shows the performance

of a baseline system (ªMFCC-Euclideanº) that uses the Euclidean

distance between MFCC features as a tampering score. The table

shows the EER of both systems across a range of different condi-

tions. (Note that numbers are expressed in percentages, so 0.20 cor-

responds to a 0.20% EER.) Each row shows the performance with

a fixed tampering duration L and query bitrate R, and each col-

umn shows the performance in detecting tampering of specific types

(i.e. the benchmark only includes one tampering type plus untam-

pered queries). The rightmost column (ªallº) in each panel shows

performance when all tampering types are present, and the bottom-

most row (ªallº) in each panel shows performance when all tamper-

ing durations are present.

There are three things to notice about the results in Table 1.

First, queries tampered with replacement have much higher error

rates than queries tampered with insertion or deletion. This is be-

cause insertion and deletion operations will cause any audio frames

after the tampering point to become unsynchronized with the refer-

ence, making it much easier to detect differences. In contrast, tam-

pering through replacement does not cause this global shift, so it can

only be detected by observing feature differences within the actual

tampered region. It should be noted that for short tampering op-

erations (e.g. L=0.25), our method of randomly selecting intervals

may result in replacing silence with silence, so these results may be

overly pessimistic. Second, the proposed method substantially re-

duces the duration of tampering that can be detected reliably. We

see that the MFCC-Euclidean baseline has low (but not perfect) er-

ror rates for tampering durations of 2 seconds or more, whereas the

proposed method has reliable performance for insertion and deletion

queries down to L=0.25 sec and for replacement queries down to 0.5-

1.0 sec. Third, query bitrate does not affect performance with long

tampering durations, but has a moderate effect with short tampering

durations. For example, the EER for replacement queries with L=0.5

sec is 3.1% for R=256 and R=128, but worsens to 4.0% for R=64.

Because 64 kbps is considered a very low bitrate, we can interpret

Tamp DA-LRT MFCC-Euclidean

Len ins del rep all ins del rep all

2
5

6
k

b
p

s

4.0s .00 .00 .00 .00 .00 0.4 .00 .13

2.0s .00 .00 .00 .00 .20 1.6 1.2 1.0

1.0s .00 .00 .00 .00 1.6 2.0 12.0 6.2

0.5s .20 .20 3.1 1.2 4.6 2.2 29 15

0.25s .20 .00 33 14 5.4 3.2 40 20

all .08 .04 9.5 3.4 2.7 2.0 20 9.2

1
2

8
k

b
p

s

4.0s .00 .00 .00 .00 .00 .40 .00 .13

2.0s .00 .00 .00 .00 .20 1.6 1.0 .93

1.0s .00 .00 .00 .00 1.4 1.8 12 5.9

0.5s .20 .40 3.1 1.3 4.6 2.0 30 15

0.25s .20 .00 34 15 5.4 3.0 40 20

all .08 .08 10 3.7 2.6 1.9 20 9.0

6
4

k
b

p
s

4.0s .00 .00 .00 .00 .00 .20 .00 .07

2.0s .00 .00 .00 .00 .20 1.0 0.4 .53

1.0s .00 .00 .20 .07 1.0 1.8 10 5.1

0.5s .20 .40 4.0 1.6 3.8 1.8 28 14

0.25s .20 .00 38 17 4.8 2.6 39 19

all .08 .08 12 4.3 2.2 1.5 19 8.8

Table 1. Comparing the performance of DA-LRT and MFCC-

Euclidean distance baseline on the audio cross verification task.

Numbers indicate equal error rate in percentages, so 0.20 corre-

sponds to 0.20% EER. Rows show performance for a fixed tam-

pering duration and query bitrate, and columns show performance

in detecting specific types of tampering (insertions, deletions, re-

placements). The rightmost column and bottommost row in each

panel show aggregate performance when multiple tampering types

and multiple tampering durations are present, respectively.

these results as a kind of worst case scenario.

It is useful to consider the strengths and weaknesses of our pro-

posed method. Recall the four characteristics that we identified in

an ideal solution to the cross verification problem: accurate, robust,

fast, and explainable. With regards to accuracy and robustness to

real-world conditions, our proposed method reliably detects inser-

tions and deletions, since these cause a global shift that results in

feature mismatches for all audio frames after the tampering point.

The biggest weakness of the system is in detecting short duration

(< 0.5 sec) replacements, which must be detected solely on local

feature mismatches. With regards to having a fast runtime, the sys-

tem is fast enough to be useful in an automated system. In our exper-

iments, it took an average of 433 ms to compute the MFCC features

on the query, 5.82 sec to compute the MFCC features on the refer-

ence, and 123 ms to perform the remaining computations for offset

estimation, alignments, and maximum likelihood test.5 With regards

to explainability, our method compares the likelihood of two inter-

pretable hypotheses (tampered vs non-tampered) and makes clear,

explicit assumptions about the nature of the alignment and likeli-

hood calculations.

5. ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 1948531.

5We used the python speech features library for MFCC feature computa-
tion, implemented the alignment in cython, and ran our experiments on a 2.4
GHz Intel Xeon CPU.



6. REFERENCES

[1] Mika Westerlund, ªThe emergence of deepfake technology: A

review,º Technology Innovation Management Review, vol. 9,

no. 11, 2019.

[2] Cristian Vaccari and Andrew Chadwick, ªDeepfakes and dis-

information: Exploring the impact of synthetic political video

on deception, uncertainty, and trust in news,º Social Media+

Society, vol. 6, no. 1, pp. 2056305120903408, 2020.

[3] Aykut BÈuker and Cemal HanilcËi, ªAngular margin softmax loss

and its variants for double compressed amr audio detection,º in

Proceedings of the 2021 ACM Workshop on Information Hid-

ing and Multimedia Security, 2021, pp. 45±50.

[4] Da Luo, Rui Yang, Bin Li, and Jiwu Huang, ªDetection of dou-

ble compressed amr audio using stacked autoencoder,º IEEE

Transactions on Information Forensics and Security, vol. 12,

no. 2, pp. 432±444, 2016.

[5] Valentin A Nita and Amelia Ciobanu, ªTic-tac, forgery time

has run-up! live acoustic watermarking for integrity check in

forensic applications,º in 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2018,

pp. 1977±1981.

[6] RA Dobre, RO Preda, and AE Marcu, ªTIC-TAC based live

acoustic watermarking with improved forgery detection per-

formances,º in IEEE 25th International Symposium for Design

and Technology in Electronic Packaging (SIITME), 2019, pp.

408±412.

[7] Yufei Wang, Yongjian Hu, Alan Wee-Chung Liew, and Chang-

Tsun Li, ªENF based video forgery detection algorithm,º In-

ternational Journal of Digital Crime and Forensics (IJDCF),

vol. 12, no. 1, pp. 131±156, 2020.

[8] Xiaodan Lin and Xiangui Kang, ªSupervised audio tampering

detection using an autoregressive model,º in 2017 IEEE inter-

national conference on acoustics, speech and signal processing

(ICASSP), 2017, pp. 2142±2146.

[9] Tejas Bhangale and Rashmika Patole, ªTampering detection in

digital audio recording based on statistical reverberation fea-

tures,º in Soft Computing and Signal Processing, pp. 583±591.

2019.

[10] Xuebo Meng, Chen Li, and Lihua Tian, ªDetecting audio splic-

ing forgery algorithm based on local noise level estimation,º in

2018 5th international conference on systems and informatics

(ICSAI), 2018, pp. 861±865.

[11] Kanghao Zhang, Shan Liang, Shuai Nie, Shulin He, Jiahui Pan,

Xueliang Zhang, Haoxin Ma, and Jiangyan Yi, ªA robust deep

audio splicing detection method via singularity detection fea-

ture,º in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2022, pp. 2919±2923.

[12] Akanksha Chuchra, Mandeep Kaur, and Savita Gupta, ªA deep

learning approach for splicing detection in digital audios,º in

Congress on Intelligent Systems, 2022, pp. 543±558.

[13] Chenyu Liu, Jia Li, Junxian Duan, Haifeng Shen, and Huaibo

Huang, ªLightCvT: Audio forgery detection via fusion of light

cnn and transformer,º in 2021 10th International Conference

on Computing and Pattern Recognition, 2021, pp. 99±105.

[14] Prabhu R Bevinamarad and MS Shirldonkar, ªAudio forgery

detection techniques: present and past review,º in 2020 4th

International Conference on Trends in Electronics and Infor-

matics (ICOEI), 2020, pp. 613±618.

[15] Lin Zhang, Xin Wang, Erica Cooper, Nicholas Evans, and

Junichi Yamagishi, ªThe partialspoof database and coun-

termeasures for the detection of short generated audio seg-

ments embedded in a speech utterance,º arXiv preprint

arXiv:2204.05177, 2022.

[16] Zhixi Cai, Kalin Stefanov, Abhinav Dhall, and Munawar

Hayat, ªDo you really mean that? content driven audio-visual

deepfake dataset and multimodal method for temporal forgery

localization,º arXiv preprint arXiv:2204.06228, 2022.

[17] Tianyun Liu, Diqun Yan, Nan Yan, and Gang Chen, ªAnti-

forensics of fake stereo audio using generative adversarial net-

work,º Multimedia Tools and Applications, vol. 81, no. 12, pp.

17155±17167, 2022.

[18] Biaoli Tao, Rangding Wang, Diqun Yan, and Chao Jin, ªAnti-

forensics of double compressed mp3 audio,º International

Journal of Digital Crime and Forensics (IJDCF), vol. 12, no.

3, pp. 45±57, 2020.

[19] Qi Yan, Rui Yang, and Jiwu Huang, ªDetection of speech

smoothing on very short clips,º IEEE Transactions on Infor-

mation Forensics and Security, vol. 14, no. 9, pp. 2441±2453,

2019.

[20] Xiaowen Li, Diqun Yan, Li Dong, and Rangding Wang, ªAnti-

forensics of audio source identification using generative ad-

versarial network,º IEEE Access, vol. 7, pp. 184332±184339,

2019.

[21] Guang Hua, ªError analysis of forensic enf matching,º in IEEE

International Workshop on Information Forensics and Security

(WIFS), 2018, pp. 1±7.

[22] Guang Hua, Ying Zhang, Jonathan Goh, and Vrizlynn LL

Thing, ªAudio authentication by exploring the absolute-error-

map of enf signals,º IEEE Transactions on Information Foren-

sics and Security, vol. 11, no. 5, pp. 1003±1016, 2016.

[23] Zhisheng Lv, Yongjian Hu, Chang-Tsun Li, and Bei-bei Liu,

ªAudio forensic authentication based on mocc between enf and

reference signals,º in IEEE China Summit and International

Conference on Signal and Information Processing, 2013, pp.

427±431.

[24] Catalin Grigoras, ªApplications of enf criterion in forensic au-

dio, video, computer and telecommunication analysis,º Foren-

sic science international, vol. 167, no. 2-3, pp. 136±145, 2007.

[25] Avery Wang, ªAn industrial strength audio search algorithm,º

in Proceedings of the International Society for Music Informa-

tion Retrieval Conference (ISMIR), 2003, pp. 7±13.

[26] Shumeet Baluja and Michele Covell, ªAudio fingerprinting:

Combining computer vision & data stream processing,º in

IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), 2007, vol. 2, pp. 213±216.

[27] TJ Tsai, Thomas PrÈatzlich, and Meinard MÈuller, ªKnown-artist

live song identification using audio hashprints,º IEEE Trans-

actions on Multimedia, vol. 19, no. 7, pp. 1569±1582, 2017.

[28] Claire Chang, Thaxter Shaw, Arya Goutam, Christina Lau,

Mengyi Shan, and TJ Tsai, ªParameter-free ordered partial

match alignment with hidden state time warping,º Applied Sci-

ences, vol. 12, no. 8, pp. 3783, 2022.

[29] Gautham J Mysore, ªCan we automatically transform speech

recorded on common consumer devices in real-world environ-

ments into professional production quality speech?Ða dataset,

insights, and challenges,º IEEE Signal Processing Letters, vol.

22, no. 8, pp. 1006±1010, 2014.


