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ABSTRACT
In this work we explore parallelizable alternatives to DTW for glob-
ally aligning two feature sequences. One of the main practical limi-
tations of DTW is its quadratic computation and memory cost. Pre-
vious works have sought to reduce the computational cost in various
ways, such as imposing bands in the cost matrix or using a multires-
olution approach. In this work, we utilize the fact that computation
is an abundant resource and focus instead on exploring alternatives
that approximate the inherently sequential DTW algorithm with one
that is parallelizable. We describe two variations of an algorithm
called Segmental DTW, in which the global cost matrix is broken
into smaller sub-matrices, subsequence DTW is performed on each
sub-matrix, and the results are used to solve a segment-level dynamic
programming problem that specifies a globally optimal alignment
path. We evaluate the proposed alignment algorithms on an audio-
audio alignment task using the Chopin Mazurka dataset, and we
show that they closely match the performance of regular DTW. We
further demonstrate that almost all of the computations in Segmental
DTW are parallelizable, and that one of the variants is unilaterally
better than the other for both empirical and theoretical reasons.

Index Terms— DTW, dynamic time warping, alignment, paral-
lelized, approximate

1. INTRODUCTION

This paper explores a parallelizable alternative to dynamic time
warping for globally aligning two feature sequences. Dynamic time
warping (DTW) is a standard method for determining the optimal
alignment between two sequences. One of its main limitations is
its quadratic computational and memory cost, which limits its use
to shorter sequences in many situations. Furthermore, because the
DTW algorithm is inherently sequential, it cannot be parallelized
for determining the global alignment between two sequences. Our
goal in this paper is to explore alternatives to DTW that (a) estimate
the global alignment between two sequences and (b) are amenable
to parallelization.

Many previous works have explored variants of DTW. Most
works generally fall into one of three groups. The first group are
works that explore ways to speed up exact subsequence DTW search.
Some of these approaches include using lower bounds [1][2], early
abandoning [3][4], and utilizing multiple cores [5] or specialized
hardware [6]. The second group are works that extend the behav-
ior of DTW in various ways. In the music information retrieval
literature, some examples include doing the time warping in an
online fashion [7][8], handling repeats and jumps [9][10], handling
subsequences or partial alignments [11][12], handling pitch drift
in a capella performances [13], and taking advantage of multiple
recordings [14]. The third group are works that mitigate the compu-
tation and/or memory cost of DTW by proposing approximations,
modifications, or alternative alignment algorithms. Some exam-
ples include imposing fixed constraints like the Sakoe-Chiba band

[15], using a multi-resolution alignment approach [16][17], and
calculating or estimating the alignment path with limited memory
[18][19].1 The approach proposed in this work also falls within this
third group, where the focus is on reducing time (expensive) rather
than computation (cheap).

This paper explores two variants of a previously proposed algo-
rithm called Segmental DTW [20]. Segmental DTW was originally
proposed to solve an entirely different problem: aligning an ordered
set of audio segments against a long reference recording. The fo-
cus of the original paper is on handling discontinuities coming from
the unknown gaps between the segments. In this paper, we explore
two different variants of Segmental DTW to solve a problem that
is arguably much more general: approximating DTW with a paral-
lelizable alternative. The high-level approach is to break the global
cost matrix into several sub-matrices, process the sub-matrices sepa-
rately, and then combine the results in a way that leads to a globally
optimal alignment path. This approach leads to an alignment algo-
rithm that can approximate DTW and is parallelizable.

This paper has two main contributions. First, we present two
global alignment algorithms that are parallelizable. One of the algo-
rithms (weakly-ordered Segmental DTW) offers only loose guaran-
tees on the monotonicity of the alignment paths. The other algorithm
(strictly-ordered Segmental DTW) offers strict guarantees on mono-
tonicity, in exchange for additional computation. Both algorithms
can be considered as alternatives to DTW that estimate the global
alignment between two sequences of features. Second, we charac-
terize the behavior of the proposed algorithms on an audio-audio
alignment task. We find that the alignment accuracy closely matches
that of regular DTW, and we show that nearly all of the computations
can be parallelized. We further show through empirical and theoret-
ical arguments that, contrary to intuition, the weakly-ordered variant
is a unilaterally better alternative to DTW than the strictly-ordered
variant.2

2. SYSTEM DESCRIPTION

In this section we describe two variants of Segmental DTW that
are parallelizable alternatives to DTW. For the sake of concrete-
ness, we describe systems that approximate DTW with transitions
{(1, 1), (1, 2), (2, 1)} and corresponding multiplicative weights
{2, 3, 3}. This scheme assumes a maximum time warping factor of
two, and it weights transitions based on their Manhattan distance.

1The very recent work by Tralie and Dempsey [18] computes an exact
DTW alignment with linear memory. They point out that many operations
in the algorithm are parallelizable, though their primary focus is on reducing
memory and no specific runtimes are reported in the paper. Furthermore,
the parallelizable operations require frequent communication between the
threads, so it is unclear how much the theoretical parallelizability translates
into actual reduced runtime. In contrast, our approach parallelizes computa-
tion in a way that requires very little communication between threads.

2Code can be found at https://github.com/tjtsai/
SegmentalDTW.



Fig. 1. Overview of the four main steps in Segmental DTW.

2.1. Weakly-ordered Segmental DTW

The first variant is called weakly-ordered Segmental DTW, which we
abbreviate as WSDTW. This algorithm consists of four main steps,
as shown in Figure 1.

The first step is to break the global cost matrix C into chunks Ci

and perform subsequence DTW on each chunk. Let the two feature
sequences be denoted as (x1, x2, . . . , xN ) and (y1, y2, . . . , yM ), so
that the cost matrix C is an N×M matrix. We break up the sequence
(x1, . . . , xN ) into K (approximately) equal size subsequences. We
then perform subsequence DTW using each subsequence as a query
and the entire sequence (y1, y2, . . . , yM ) as the reference. Subse-
quence DTW is a variant of DTW in which, given a short query
sequence, the best matching subsequence in a longer reference se-
quence is found. Unlike regular DTW, subsequence DTW allows
alignment paths to start and end anywhere in the reference sequence
without penalty. We perform the subsequence DTW with transitions
{(1, 1), (1, 2), (2, 1)} and weights {1, 1, 2}, where the (2, 1) transi-
tion corresponds to two steps along the query sequence and one step
along the reference sequence.3 At the end of this first step, we have
performed subsequence DTW on each sub-matrix Ci ∈ RN/K×M ,
i = 1, 2, . . . ,K to produce a cumulative cost matrix Di and back-
trace matrix Bi, where Di contains the optimal cumulative path
scores and where Bi specifies the optimal steps taken at each po-
sition within Ci. Note that the subsequence DTW operations in this
first step can be done in parallel.

The second step is to form a segment-level cost matrix Cseg . In
(regular) subsequence DTW, the optimal alignment path is found by
identifying the lowest cost element in the last row of Di, and then
using Bi to backtrack each step of the optimal path. In WSDTW,
however, our goal is to find an optimal global alignment path, not
just a sequence of locally optimal alignment paths. We construct
Cseg ∈ RK×M by concatenating the last row of all matrices Di, i =
1, 2, . . . ,K. In other words, Cseg contains the optimal subsequence
path scores ending at all possible locations. The Cseg matrix will
play the same role as the pairwise cost matrix, but it describes costs
at the segment level rather than at the frame level.

The third step is to find the optimal path through Cseg using dy-
namic programming. There are two types of allowable transitions.
The first transition is (0, 1) with weight 0, which corresponds to
skipping elements in the reference sequence with no penalty. In Fig-
ure 1, this corresponds to moving directly to the right. The second
transition is (1, N

2K
) with weight 1, which corresponds to match-

3Note that, if the three transitions were weighted equally, the algorithm
would be incentivized to only take (2, 1) steps, since it would accumulate
half as many cost elements as a path taking only (1, 1) steps. The reader is
referred to [21] for more details on subsequence DTW.

ing the shortest possible subsequence path across a chunk Ci and
transitioning to the next chunk Ci+1. This dynamic programming
formulation identifies the K elements in Cseg ∈ RK×M that have
the lowest cumulative cost while satisfying the following three con-
straints: (a) one element is taken from each row, (b) the elements are
monotonically increasing, and (c) the selected path elements must be
separated by at least N

2K
positions. The optimal path can be found

by performing dynamic programming on Cseg to generate a cumu-
lative cost matrix Dseg and corresponding backtrace matrix Bseg ,
and then backtracking each step of the optimal path. At the end of
this third step, we have identified the ending locations in each Ci,
i = 1, 2, . . . ,K of a series of subsequence paths that constitute a
globally optimal path.

The fourth step is to backtrack through each of the frame-level
cost matrices. Using the optimal ending locations in each Ci, i =
1, 2, . . . ,K, we use the information in Bi to backtrack each step of
the corresponding subsequence path. The concatenation of the sub-
sequence paths in Ci forms our final estimate of the global alignment
path. Note that the ending location of each individual subsequence
path is selected in a way that achieves a global optimal cost and en-
sures (weak) temporal consistency.

2.2. Strictly-ordered Segmental DTW

The second variant is called strictly-ordered Segmental DTW, which
we abbreviate as SSDTW. We will first provide a rationale for this
variant, and then describe its differences from WSDTW.

One potential weakness of WSDTW is that it allows alignment
paths that are not monotonically increasing. To see this, note that
WSDTW only imposes the constraint that consecutive elements in
the optimal path through Cseg be separated by a minimum distance
N
2K

. While this ensures that all possible DTW paths are considered
by WSDTW, it also introduces paths with backward discontinuities
since the best subsequence paths through a chunk Ci will almost cer-
tainly span a longer duration along the reference sequence than N

2K
.

To address this issue, the SSDTW variant imposes additional con-
straints to ensure that alignment paths are monotonically increasing.
SSDTW has two main differences from WSDTW.

The first difference is that SSDTW constructs a segment-level
transition matrix Tseg ∈ ZK×M in addition to Cseg . This transi-
tion matrix keeps track of where subsequence paths start and end.
Each element Tseg[i, j] specifies the starting location (along the ref-
erence sequence) of the best subsequence path in Ci ending at po-
sition j. Thus, constructing Tseg means backtracking from every
possible ending location and recording the starting location of each
subsequence path. The information in Tseg will allow us to impose
more specific constraints in the segment-level dynamic program-
ming stage than WSDTW.

The second difference is in the segment-level dynamic program-
ming stage. There are two valid types of transitions to a position
(i, j) in Cseg . The first transition is from (i, j−1), which is the same
skip as before. The second transition is from (i − 1, Tseg[i, j] − 1)
with weight 1. Note that these transitions still allow for disconti-
nuities in the forward direction (i.e. a skip) at the boundaries of the
chunks Ci, but they ensure that there are no backward discontinu-
ities. All other steps in SSDTW are the same as in WSDTW.

At a high-level, we can see that strictly-ordered Segmental DTW
contains a substantial amount of additional computation in exchange
for a guarantee of strict monotonicity in predicted alignment paths.



Piece Files mean std min max
Opus 17, No 4 64 259.7 32.5 194.4 409.6
Opus 24, No 2 64 137.5 13.9 109.6 180.0
Opus 30, No 2 34 85.0 9.2 68.0 99.0
Opus 63, No 3 88 129.0 13.4 96.2 162.9
Opus 68, No 3 51 101.1 19.4 71.8 164.8

Table 1. Overview of the Chopin Mazurka data used in the align-
ment experiments. All durations are in seconds.

3. EXPERIMENTAL SETUP

This section describes the setup of our empirical simulations. The
goal of these simulations is to characterize the behavior of the pro-
posed alignment algorithms.

We use the Chopin Mazurka dataset [22] as a representative
audio-audio alignment task. Table 1 summarizes the data. This
dataset has been used as the basis for several studies on alignment
and beat tracking [23][24][22], and provides reliable beat-level
annotations for multiple performances of five different Chopin
Mazurkas. For each mazurka, we consider all pairs of performances
and evaluate the accuracy of the predicted alignment.4 For all exper-
iments, we compute the pairwise cost matrix using a L2-normalized
constant-Q chromagram (23ms hop size) with cosine distance met-
ric. While specialized features have been proposed for various
alignment tasks (e.g. [25][26]), we stick with standard chroma fea-
tures since our focus is on the alignment algorithm and not the
feature representation. We set aside one mazurka for debugging and
development, and used the remaining four mazurkas as a test set.

We evaluate the alignment accuracy in the following manner.
For a given pair of recordings A and B, we compare the predicted
and ground truth timestamps in B corresponding to the ground truth
beat locations in A. We consider an estimated beat location to be
correct if the alignment error is less than a specified tolerance. By
sweeping across a range of tolerance values, we can characterize the
tradeoff between error rate and tolerance. The reported error rates on
the test set are averaged across 7630 queries (i.e. pairs of recordings)
and 1, 930, 922 individual beat predictions.

4. RESULTS

Figure 2 compares the alignment accuracy of DTW and the Segmen-
tal DTW variants. Each group of bars corresponds to a different tol-
erance value. Within each group of bars, the leftmost bar indicates
the error rate of regular DTW, and the remaining bars indicate the
error rate of weakly-ordered Segmental DTW for various values of
K. Recall that K specifies the number of chunks to break the global
cost matrix into, so it can be interpreted as the number of jobs to par-
allelize across. The error rate of strictly-ordered Segmental DTW is
indicated by black dots for the same set of K values. So, each his-
togram bar and the overlaid black dot indicate the performance of
the two segmental DTW variants for the same value of K.

There are three things to notice about Figure 2. First, both seg-
mental DTW variants match the performance of regular DTW for
small values of K. We observe this across the entire range of toler-
ance values. Second, the performance of both segmental DTW vari-

4We discarded a handful of queries (i.e. pairings of recordings) where the
average time warping factor is greater than 2. In these cases, regular DTW
(with the specified transitions) has no valid alignment paths, so we cannot
measure its performance.

Fig. 2. Comparison of DTW and both Segmental DTW variants on
an audio alignment task. All non-blue bars indicate the performance
of WSDTW for different values of K (amount of parallelization),
and the black dots indicate the performance of SSDTW for the same
values of K.

ants gets worse as K increases. This is to be expected, since large
values of K mean that the subsequences get shorter and shorter and
become less and less distinctive. It is useful to point out that the ef-
fect of K on alignment accuracy is data dependent. On the Mazurka
dataset, K = 32 means that the subsequences for some pieces are
less than three seconds long. Third, the performance of WSDTW de-
grades much more gracefully than SSDTW as K increases. Contrary
to our intuition, it seems that the allowance for occasional backward
jumps is an asset, not a liability.

Table 2 compares the runtime of all systems under controlled
conditions. We measure the wall clock time of DTW and the
two Segmental DTW variants on (random) square cost matrices of
increasing size. All the times reported in Table 2 are for single-
threaded optimized implementations in cython. Even though the
Segmental DTW algorithms can be parallelized, we profile single-
threaded implementations for two reasons. First, it allows for a di-
rect comparison to DTW, making it clear how much total additional
computation is required for the segment-level operations. Second, it
allows us to measure what fraction of the runtime is parallelizable
in an environment-independent manner. A parallelized implementa-
tion would incur additional runtime costs for setting up a parallelized
computation, and the amount of this runtime cost will depend on the
computing environment (e.g. distributed vs single server, hardware,
job scheduling system, etc). By measuring the runtime of individual
stages of the Segmental DTW algorithms, we can estimate a bound
on the amount of potential runtime savings through parallelization in
a way that is largely environment-independent. All experiments in
Table 2 were done on a single Intel Xeon 2.1GHz CPU with 128GB
of RAM, and each reported runtime is the average of 10 trials.

There are two things to notice about Table 2. First, WSDTW has
approximately the same average runtime as regular DTW, regard-
less of the value of K. This indicates that the additional computa-
tion introduced by WSDTW does not significantly increase the total
amount of computation. Second, SSDTW requires roughly twice as
much runtime as WSDTW. This is the cost of calculating Tseg to
ensure monotonicity in the alignment.

Figure 3 shows the breakdown of runtime by component as
the cost matrix size increases. The runtime is broken down into



System 1k 2k 5k 10k 20k 50k
DTW .017 .096 .55 2.1 8.5 56.8
WSDTW-2 .020 .088 .57 2.2 8.6 54.2
WSDTW-4 .019 .092 .62 2.3 8.6 54.1
WSDTW-8 .020 .091 .50 2.2 8.7 53.4
WSDTW-16 .019 .083 .49 2.3 8.8 53.6
WSDTW-32 .020 .10 .57 1.9 8.7 53.2
SSDTW-2 .026 .12 1.0 4.2 17.8 112.0
SSDTW-4 .025 .12 .86 4.3 18.9 121.0
SSDTW-8 .026 .13 .67 3.1 17.6 125.3
SSDTW-16 .026 .12 .67 3.2 12.7 125.5
SSDTW-32 .035 .14 .70 2.6 12.8 86.1

Table 2. Comparison of average runtimes on cost matrices of dif-
ferent sizes (e.g. 5k indicates a 5000 × 5000 cost matrix). Both
WSDTW and SSDTW are evaluated with different values of K, but
the algorithms are run on a single thread to compare the total amount
of required computation. All times are in seconds.

five components: cost matrix computation (“Cost”), frame-level
dynamic programming (“Frm DP”), frame-level backtracking (“Frm
Back”), segment-level dynamic programming (“Seg DP”), and
segment-level backtracking (“Seg Back”). We include the cost
matrix computation in our measurements since a parallelized im-
plementation of WSDTW or SSDTW would compute this in a
distributed manner. Note that the figure shows the percentage of
total runtime for each of the five components.

There is one key thing to notice in Figure 3: nearly all of the
computations in WSDTW and SSDTW are parallelizable. The only
components that are not parallelizable in Segmental DTW are the
segment-level dynamic programming and segment-level backtrack-
ing. For WSDTW, more than 99% of the runtime is parallelizable
for cost matrices of size 5000 × 5000 or greater. In contrast, the
only component in regular DTW that can be parallelized is the cost
matrix computation, which accounts for 10− 15% of total runtime.

5. DISCUSSION

In this section we share three key insights that elucidate the relation-
ship between DTW and the two Segmental DTW variants.

Insight #1: WSDTW considers all DTW alignment paths. More
precisely, the set of all alignment paths considered by WSDTW is
a superset of the alignment paths considered by regular DTW. We
can see this by noting that WSDTW allows for all valid DTW paths,
and it also allows for sudden discontinuities at the boundaries of the
subsequence chunks.

Insight #2: SSDTW does not consider all DTW alignment paths.
For a few problematic queries in the test set where there was severe
time warping (average warping factor close to 2), SSDTW did not
have any valid paths through the cost matrix, though there were valid
DTW paths. This behavior arises because the segment-level tran-
sitions through each subsequence chunk cannot simply take (say)
all (1,2) transitions; it is instead limited to the optimal subsequence
paths through the cost matrix, which may or may not include paths
containing all (1,2) transitions. This phenomenon establishes that
there are paths in DTW that are not considered by SSDTW.

Insight #3: DTW and the Segmental DTW variants can produce
completely unrelated paths on the same cost matrix. We compared
the predicted alignment paths of all three algorithms on randomly
initialized cost matrices, where the best path is pure noise. In these

Fig. 3. Breakdown of runtime by component. Note that bar lengths
indicate percentage of total runtime.

cases, DTW and the Segmental DTW variants generated completely
unrelated paths that had no discernible resemblance to one another.
Often, SSDTW and WSDTW produced alignment paths that had
many abrupt discontinuities, while DTW always produced a smooth
alignment path (by constraint).

These three insights paint the following picture. The set of SS-
DTW alignment paths is not guaranteed to contain the optimal DTW
path, so it is not a suitable approximation for DTW. Its use is not rec-
ommended. The set of WSDTW alignment paths is guaranteed to
contain the optimal DTW path. The size of the WSDTW set grows
as K increases, since it considers path discontinuities with increas-
ing frequency. How closely the optimal WSDTW path resembles the
optimal DTW path depends on (at least) two key factors. The first
factor is the value of K, where larger values of K will lead to a worse
approximation. The second factor is how distinctive subsequences in
the data are, which is a characteristic of the data itself. This can be
thought of as a kind of signal-to-noise ratio (SNR) which describes
how “deep” the ravine is for the optimal path through the cost ma-
trix. For high SNRs, the optimal WSDTW path closely resembles
the optimal DTW path. For low SNRs, the optimal WSDTW path
may not resemble the optimal DTW path at all.

6. CONCLUSION

We have examined two parallelizable alternatives to DTW for glob-
ally aligning two feature sequences: weakly-ordered Segmental
DTW and strictly-ordered Segmental DTW. Both alternatives break
the global cost matrix into several sub-matrices, process the sub-
matrices using subsequence DTW, and combine the results to find a
globally optimal alignment path. We find that WSDTW unilaterally
outperforms SSDTW, and it matches the accuracy of DTW over a
range of conditions. Furthermore, nearly all of the operations in
WSDTW are parallelizable. Future work includes combining WS-
DTW with other cost-reduction methods like the Sakoe-Chiba band,
characterizing the conditions under which WSDTW closely approx-
imates DTW, and evaluating its performance on other alignment
tasks.
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