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Abstract. Recent work of the authors and their collaborators has uncovered fundamental
connections between the Dirichlet-to-Neumann map, the spectral flow of a certain family of
self-adjoint operators, and the nodal deficiency of a Laplacian eigenfunction (or an analogous
deficiency associated to a non-bipartite equipartition). Using a refined construction of the
Dirichlet-to-Neumann map, we strengthen all of these results, in particular getting improved
bounds on the nodal deficiency of degenerate eigenfunctions. Our framework is very general,
allowing for non-bipartite partitions, non-simple eigenvalues, and non-smooth nodal sets. Con-
sequently, the results can be used in the general study of spectral minimal partitions, not just
nodal partitions of generic Laplacian eigenfunctions.

1. Introduction

Let ⌦ ⇢ R2 be an open, bounded set, with piecewise C
2 boundary, and suppose '⇤ is an

eigenfunction of the Dirichlet Laplacian �� on ⌦, with eigenvalue �⇤. We denote by � the nodal
set of '⇤,

� = {x 2 ⌦ : '⇤(x) = 0},

and by k('⇤) the number of nodal domains of '⇤, i.e. the number of connected components of
the set {x 2 ⌦ : '⇤(x) 6= 0}. We also let `('⇤) = min{m : �m = �⇤} denote the minimal label of
the eigenvalue �⇤, where �1 < �2  �3  · · · are the ordered Dirichlet eigenvalues of ⌦, repeated
according to their multiplicity. The Courant nodal domain theorem states that k('⇤)  `('⇤),
or equivalently, that the nodal deficiency �('⇤) := `('⇤)� k('⇤) is nonnegative.

Letting DN(�,�⇤) denote the two-sided Dirichlet-to-Neumann map on �, which will be defined
below, we now state a special case of our main result.

Theorem 1.1. The eigenfunction '⇤ has nodal deficiency

�('⇤) = MorDN(�,�⇤), (1.1)

and the corresponding eigenvalue �⇤ has multiplicity

dimker(�+ �⇤) = dimkerDN(�,�⇤) + 1. (1.2)

The symbol Mor denotes the Morse index, i.e. the number of negative eigenvalues of the
operator DN(�,�⇤), which is self-adjoint and lower semi-bounded. A similar formula for the
nodal deficiency appeared in [12]; see also [8]. The version of the Dirichlet-to-Neumann map
appearing in the above theorem is more involved than the one used in [8, 12], but consequently
gives us a stronger result, as we now explain.

We denote the nodal domains of '⇤ by D1, . . . , Dk. When defining the Dirichlet-to-Neumann
map, one must take into account that �⇤ is a Dirichlet eigenvalue on each Di. Introducing the
notation �i = @Di \ ⌦, we define the closed subspace

S =

⇢
g 2 L

2(�) :

Z

�i

gi
@'⇤,i
@⌫i

= 0, i = 1, . . . , k

�
(1.3)
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of L2(�), where gi denotes the restriction of g to �i, '⇤,i is the restriction of '⇤ to Di, and ⌫i is
the outward unit normal to Di. For su�ciently smooth g 2 S, each boundary value problem

8
><

>:

��ui = �⇤ui in Di,

ui = gi on @Di \ ⌦,

ui = 0 on @Di \ @⌦,
(1.4)

has a solution u
g

i
. Defining a function �Nu

g on � by

�Nu
g
��
�i\�j

=
@u

g

i

@⌫i
+
@u

g

j

@⌫j
(1.5)

for all i 6= j, we let
DN(�,�⇤)g = ⇧S

�
�Nu

g
�
, (1.6)

where ⇧S denotes the L
2(�)-orthogonal projection onto the subspace S.

The solution to the problem (1.4) is non-unique, but the choice of particular solution u
g

i

is irrelevant for the definition on account of the projection in (1.6). In Theorem 3.1 we use
this freedom to give an equivalent formulation of the Dirichlet-to-Neumann map that does not
involve ⇧S .

The earlier works [8, 12] avoided the di�culty of defining the Dirichlet-to-Neumann map at a
Dirichlet eigenvalue by evaluating the quantities in Theorem 1.1 at �⇤ + ", with a small positive
". The resulting expression for the nodal deficiency was

�('⇤) = MorDN(�,�⇤ + ") + 1� dimker(�+ �⇤). (1.7)

Unlike (1.1), which immediately implies �('⇤) � 0, the equality (1.7) only yields the same
conclusion if we know that �⇤ is simple, or have additional information about the spectrum of
DN(�,�⇤+"). Therefore, we obtain a more useful result by computing the Dirichlet-to-Neumann
map at �⇤ instead of �⇤ + ".

An even stronger motivation for eliminating the "-perturbation is that the unperturbed
operator DN(�,�⇤) appears naturally as the Hessian of the energy functional on the space of
generic equipartitions [7]. The minima of this functional are spectral minimal partitions, as
defined in [17], which are often non-bipartite (unlike the decompositions of ⌦ into nodal domains
of an eigenfunction '⇤, mentioned above). One of the simplest examples of a non-bipartite
partition is the so-called Mercedes star partition, which is an (unproven but natural) candidate
for the minimal 3-partition of the disk; see [11] and references therein. The main result of this
paper, Theorem 1.7, is a generalization of Theorem 1.1 to partitions that are not necessarily
bipartite, but have certain criticality properties that make them prime candidates for being
minimal.

We first recall1 that a k-partition of ⌦ is a family D = {Di}ki=1 of mutually disjoint, open,
connected subsets of ⌦, with ⌦ = D1 [ · · · [Dk. We say that the subdomains Di and Dj are
neighbors if Int(Di [Dj) 6= Di [ Dj . We also recall that D is bipartite if we can color the
partition with two colors in such a way that any two neighbors have di↵erent colors. Defining
the boundary set of the partition to be

� :=
[

i

(@Di \ ⌦), (1.8)

we next impose a suitable regularity assumption on D.

Definition 1.2. A partition D is said to be weakly regular if its boundary set � satisfies:

(i) Except for finitely many critical points {x`} ⇢ � \ ⌦, � is locally di↵eomorphic to a
regular curve. In a neighborhood of each x`, � is a union of ⌫` � 3 smooth half-curves
with one end at x`.

(ii) � \ @⌦ consists of a finite set of boundary points {zm}. In a neighborhood of each zm, �
is a union of ⇢m distinct smooth half-curves with one end at zm.

1Here we are following the convention of [18]; in [11, 17] such a D is called a strong partition.
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(iii) The half-curves meeting at each x` and zm are pairwise transversal to one another, and
to @⌦.

The subdomains are only allowed to have corners at points where at least three subdomains
meet, or on @⌦. However, the definition still allows for partitions where a subdomain Di is a
neighbor of itself, as shown in Figure 1.1. To rule out such examples, we say that a partition D
is two-sided2 if Int(Di) = Di for each i. For the rest of the paper we will only consider two-sided,
weakly regular partitions. This is a reasonable hypothesis, as it is satisfied by nodal partitions,
and more generally by spectral minimal partitions [10, 17].

𝐷1 𝐷2

Figure 1.1. A partition of a disk that is not two-sided, since D1 neighbors itself.

For a two-sided, weakly regular partition each Di is a Lipschitz domain, so we can define trace
operators and solve boundary value problems in a standard way. Without the transversality
condition (iii) the Di may have cusps, and the analysis becomes much more di�cult; see, for
instance [5]. If the partition is not two-sided, then some Di lies on both sides of its boundary. In
this case it is possible to define separate trace operators on each side of the common boundary;
we do not to this here, but refer to [15, Section 1.7] for an example of this construction.

To extend the notion of a “nodal partition” to partitions that are not necessarily bipartite,
it is convenient to introduce a generalization of the Laplacian. The construction involves a
choice of signed weight functions, which will also be used to define a generalized two-sided
Dirichlet-to-Neumann map on the partition boundary set.

Definition 1.3. Given a two-sided, weakly regular partition D = {Di}, let
�i := @Di \ ⌦. (1.9)

We say that functions �i : �i ! {±1} are valid weights if they are constructed as follows. Given
an orientation of each @Di, and an orientation of each smooth component of �, we define �i on
each smooth component of �i to be +1 if the orientation of @Di agrees with the orientation of
the corresponding smooth component of �, and equal to �1 otherwise.

In Figure 1.2 we illustrate the construction of a valid set of weights, and also give an example
of a non-valid choice of weights. Note that �i is constant on each smooth segment of �i; the
value at the corner points is irrelevant. According to Definition 1.3, there are two ways �i can
change sign on �i: 1) it can change sign at a corner; or 2) it can take di↵erent signs on di↵erent
connected components. It is easily shown that a partition is bipartite if and only if the weights
�i ⌘ 1 are valid, cf. [7, Lemma 9], and so non-constant weights are essential for the study of
non-bipartite partitions.

Remark 1.4. An equivalent construction of valid weights can be given in terms of a co-orientation
of each @Di and each smooth component of �. Along each @Di we choose a vector field Vi that
is equal to either ⌫i or �⌫i. Choosing a vector field V that is a smooth unit normal to each
smooth component of �, we set �i = V · Vi. A special case of this construction appeared in [7],
where Vi was chosen to be the outward unit normal ⌫i, in which case �i = ��j whenever Di

2In [11] such partitions are said to be nice. We prefer the term two-sided, as it conveys the fact that each
smooth component of � is contained in the boundary of two distinct subdomains.



4 G. BERKOLAIKO, G. COX, B. HELFFER, AND M.P. SUNDQVIST

(a)

+ +
− −

(b) (c)

+ +
− −+ + + ++++ + + + + +

++++
+

− − −
−−

−−−−−−

−−−−−−
−−−−−
+++++

− − − − − −
− − − − − −

(d)

+ +
− −

(e)

− − −−
−

− − −
−−

−−−−−−

++++++
+++++
+++++

+ + + + + +
− − − − − − + + + + ++− − − − − −

(f)

Figure 1.2. A partition (a), with a choice of orientation for the boundary @Di

of each subdomain (b), and an orientation of each smooth part of the boundary
set � (c). In (d) we show the corresponding valid weights �i, and in (e) we show
the resulting cut, as described in Appendix A. In (f) we display a non-valid choice
of weights, i.e. functions �i : �i ! {±1} that are not induced by any choice of
orientations.

and Dj are neighbors. The extra flexibility in the present construction will be useful below, in
our discussion of �-nodality.

Valid weights have a natural geometric interpretation in terms of the cutting construction
in [18, Section 4], where one removes a portion �⇤ of the nodal set from the domain ⌦ in such a
way that the resulting partition of ⌦ \ �⇤ is bipartite; see Appendix A for details.

We now introduce a weighted version of the Laplacian, ���, corresponding to the bilinear
form defined on the domain dom(t�) consisting of u 2 L

2(⌦) such that
8
><

>:

ui := u
��
Di

2 H
1(Di), (1.10)

ui = 0 on @Di \ @⌦, (1.11)

�iui = �juj on �i \ �j for all i, j = 1, . . . , k, (1.12)

and given by

t
�(u, v) =

kX

i=1

Z

Di

rui ·rvi. (1.13)

The Laplacians �� for di↵erent valid weights will be shown in Proposition 2.6 to be unitarily
equivalent. As a consequence, if the partition is bipartite, then �� is unitarily equivalent to
the Dirichlet Laplacian on ⌦. Furthermore, the nodal sets of the eigenfunctions of �� are
independent of �, justifying the following definition.

Definition 1.5. A two-sided, weakly regular partition D is said to be �-nodal if it is the nodal
partition for some eigenfunction of ��. The defect of a �-nodal k-partition is defined to be

�(D) = `(D)� k, (1.14)

where `(D) denotes the minimal label of �⇤ in the spectrum of ���.
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In Section 2.3 we will show that a partition is �-nodal if and only if it satisfies the strong pair
compatibility condition [18].

Definition 1.6. A two-sided, weakly regular partition D is said to satisfy the strong pair

compatibility condition (SPCC) if there exists a choice of positive ground states {ui}ki=1 for the
Dirichlet Laplacians on Di such that, for any pair of neighbors Di and Dj , the function uij

defined by
uij

��
Di

= ui, uij

��
Dj

= �uj , (1.15)

is an eigenfunction of the Dirichlet Laplacian on Int(Di [Dj).

We stress that the choice of the ground states in the definition (which is merely a choice of
normalization on each Di) is global— it can not change from one pair of neighbors to another.
This distinguishes SPCC from the weak pair compatibility condition

3 (WPCC) also appearing in
the literature; see Appendix A. It is immediate that nodal partitions satisfy the SPCC. We also
mention that for a smooth partition, where the set {x`} ⇢ � \⌦ of singular points is empty, the
SPCC is equivalent to being a critical point of the energy functional on the set of equipartitions;
see [9].

Finally, we will define a �-weighted version of the two-sided Dirichlet-to-Neumann map,
denoted DN(�,�⇤,�). The full definition, given in Section 3, is rather delicate because �⇤ is a
Dirichlet eigenvalue and � has corners. We just mention here that, similar to the Laplacian ��,
the Dirichlet-to-Neumann maps defined with di↵erent valid {�i} are unitarily equivalent; the
precise nature of the equivalence is clarified in Theorem 3.1. If each �i is constant, DN(�,�⇤,�)
reduces to the operator DN(�,�⇤) already described in (1.6).

The main result of this paper is the following.

Theorem 1.7. A two-sided, weakly regular partition D satisfies the SPCC if and only if it is

�-nodal, in which case it has defect

�(D) = MorDN(�,�⇤,�), (1.16)

and the corresponding eigenvalue �⇤ of ���
has multiplicity

dimker(�� + �⇤) = dimkerDN(�,�⇤,�) + 1. (1.17)

The quantities in (1.16) and (1.17) are independent of �. In particular, di↵erent valid weights

{�i} may be used in defining the Laplacian ���
and the Dirichlet-to-Neumann map DN(�,�⇤,�).

Remark 1.8. Theorem 1.7 contains Theorem 1.1 as a special case, and hence is an improvement
over the results of [8, 12], as described above. Similarly, for non-bipartite partitions, it refines [18,
Theorem 4.1].

Remark 1.9. In higher dimensions the nodal sets of eigenfunctions can be more complicated,
and the analysis of corner domains is significantly more involved (see, for instance [13]), so we
restrict our attention to the planar case. The conclusion of Theorem 1.7 immediately extends to
higher dimensions if the nodal set [�i is a smoothly embedded hypersurface.

Outline. In Section 2 we give some preliminary analysis, describing Sobolev spaces on the
boundary set �, weighted Dirichlet and Neumann traces, and the weighted Laplacian ��. We
also show that a partition is �-nodal if and only if it satisfies the SPCC, and prove some delicate
regularity results. In Section 3 we define the weighted, two-sided Dirichlet-to-Neumann operator
DN(�,�⇤,�) and establish its fundamental properties. In Section 4 we prove Theorem 1.7 by
studying the spectral flow of an analytic family of self-adjoint operators. In Section 5 we illustrate
our results by applying them to partitions of the circle.

In Appendix A we discuss the strong and weak pair compatibility conditions, and the
connection between our � weights and the cutting construction of [18]. Finally, in Appendix B
we describe an alternate, more explicit construction of the canonical solution to a boundary
value problem that arises in our construction of the Dirichlet-to-Neumann map.

3In earlier papers, for instance [16], WPCC is simply referred to as the pair compatibility condition (PCC).
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2. Preliminary analysis

In this section we provide some background for our construction of the Dirichlet-to-Neumann
map, in particular defining Sobolev spaces on the boundary set �, weighted Dirichlet and
Neumann traces, and the weighted Laplacian. We also establish that SPCC is equivalent to
�-nodality.

2.1. Sobolev spaces on the boundary set. Recall that �i = @Di \ ⌦. Since |�i| ⌘ 1 on �i,
we have

g 2 L
2(�) () gi := g

��
�i

2 L
2(�i) for each i

() �igi 2 L
2(�i) for each i.

The situation for H
1/2 is more complicated. If � has intersections then it is not a Lipschitz

manifold, and the space H
1/2(�) cannot be defined in the usual way; cf. [19]. Moreover, on each

subdomain the conditions gi 2 H
1/2(�i) and �igi 2 H

1/2(�i) need not be equivalent, due to the
possible discontinuities of �i at the corner points. We thus define the space

H
1/2
� (�) :=

�
g 2 L

2(�) : Ei(�igi) 2 H
1/2(@Di), i = 1, . . . , k

 
, (2.1)

where Ei : L2(�i) ! L
2(@Di) is the extension by zero to the rest of @Di, i.e.

Ei(�igi) :=

(
�igi on �i,

0 on @Di \ �i.

The condition Ei(�igi) 2 H
1/2(@Di) is more restrictive than �igi 2 H

1/2(�i) if @Di \ @⌦ 6= ?.
For instance, if �igi is a nonzero constant on �i, its extension by zero will not be an element of
H

1/2(@Di). A necessary and su�cient condition for Ei(�igi) 2 H
1/2(@Di) will be recalled below,

in Lemma 2.12. We define the norm

kgk2
H

1/2
� (�)

:=
kX

i=1

kEi(�igi)k2H1/2(@Di)
, (2.2)

and let H�1/2
� (�) denote the dual space to H

1/2
� (�).

We next define a weighted Dirichlet trace (i.e. restriction to the nodal set) operator. A natural
domain for this operator is the set dom(t�) that was defined above in (1.10)–(1.12), equipped
with the norm kuk2dom(t�) =

P
i
kuik2H1(Di)

.

Lemma 2.1. The trace map

�
�

D
: dom(t�) �! H

1/2
� (�) (2.3)

defined by (��
D
u)
��
�i

= �iui

��
�i

is bounded, and has a bounded right inverse.

Proof. For each Di there is a bounded trace operator H
1(Di) ! H

1/2(@Di). We thus let
(��

D
u)
��
�i

= �iui

��
�i

for each i; the condition �iui = �juj guarantees that ��
D
u is a well-defined

function for any u 2 dom(t�). Moreover, for each i we have �i(��Du)|�i = ui

��
�i
, and hence

Ei
�
�i(�

�

D
u)
��
�i

�
= ui

��
@Di
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because ui = 0 on @Di\@⌦. Since ui
��
@Di

2 H
1/2(@Di), it follows from (2.1) that ��

D
u 2 H

1/2
� (�),

with

����
D
u
��2
H

1/2
� (�)

=
kX

i=1

��ui|@Di

��2
H1/2(@Di)

 C

kX

i=1

kuik2H1(Di)
,

as was to be shown.
To construct a right inverse, we first recall that for each i the trace map H

1(Di) ! H
1/2(@Di)

has a bounded right inverse, ⌥i : H1/2(@Di) ! H
1(Di). Let g 2 H

1/2
� (�), so that Ei(�igi) 2

H
1/2(@Di), and define ui = ⌥i

�
Ei(�igi)

�
2 H

1(Di). The corresponding function u 2 L
2(⌦),

defined by u
��
Di

= ui for each i, is contained in dom(t�), since

�iui

��
�i\�j

= �i(�igi) = gi = gj = �juj

��
�i\�j

for all i, j. Moreover, we have

kuk2dom(t�) =
X

i

kuik2H1(Di)
 C

X

i

��Ei(�igi)
��2
H1/2(@Di)

= Ckgk2
H

1/2
� (�)

,

and so ⌥g = u defines a bounded right inverse ⌥ : H1/2
� (�) ! dom(t�). ⇤

We next define a weighted, two-sided version of the normal derivative that will appear naturally
in our construction of the Dirichlet-to-Neumann map.

Lemma 2.2. If u 2 L
2(⌦), with ui 2 H

1(Di) and �ui 2 L
2(Di) for each i, then there exists a

unique �
�

N
u 2 H

�1/2
� (�) such that

⌦
�
�

N
u, �

�

D
v
↵
⇤ =

kX

i=1

Z

Di

�
rui ·rvi + (�ui)vi

�
(2.4)

for all v 2 dom(t�), where h·, ·i⇤ denotes the dual pairing between H
1/2
� (�) and H

�1/2
� (�).

Note that the definition of ��
N
u does not require any consistency conditions on the boundary

values of u along �. That is, we do not require u 2 dom(t�).

Proof. The construction is almost identical to that of [19, Lemma 4.3]. Letting ⌥ : H1/2
� (�) !

dom(t�) denote a bounded right inverse to ��
D
, as in Lemma 2.1, we define ��

N
u 2 H

�1/2
� (�) by

its action on arbitrary g 2 H
1/2
� (�), namely

⌦
�
�

N
u, g

↵
⇤ :=

kX

i=1

Z

Di

�
rui ·r(⌥g)i + (�ui)(⌥g)i

�
.

It is easily verified that this has all the required properties. ⇤

Remark 2.3. If, in addition to the hypotheses of Lemma 2.2, ui
��
@Di

2 H
1(@Di) for each i, then

[19, Theorem 4.24] implies @⌫iui 2 L
2(@Di), and so Green’s formula can be written as

Z

Di

�
rui ·rvi + (�ui)vi

�
=

Z

@Di

@ui

@⌫i
vi =

Z

�i

✓
�i

@ui

@⌫i

◆
(�ivi).

That is, the dual pairing of @⌫iui 2 H
�1/2(@Di) and vi

��
@Di

2 H
1/2(@Di) is given by their L2(@Di)

inner product. Summing over i and comparing with (2.4), we find that

�
�

N
u
��
�i\�j

= �i

@ui

@⌫i
+ �j

@uj

@⌫j
2 L

2(�i \ �j) (2.5)

for any neighbors Di and Dj .
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2.2. The sign-weighted Laplacian. In this section we describe the self-adjoint operator ��

and its dependence on �.

Definition 2.4. We say that two sets of valid weights {�i} and {�̃i} are edge equivalent if for
each i 6= j we have �̃i�̃j = �i�j on �i \ �j , and domain equivalent if for each i we have either
�̃i ⌘ �i or �̃i ⌘ ��i.

In Figure 2.1, the weights in (a) and (b) are edge equivalent.

− − −−
−

+ + +
++

++++++

++++++
+++++
−−−−−

− − − − − −
− − − − − − − − − −−−− − − − − −

(a)

− − −−
−

+ + +
++

−−−−−−

−−−−−−
−−−−−
+++++

− − − − − −
− − − − − − − − − −−−− − − − − −

(b)

Figure 2.1. The weights in (a) and (b) are edge equivalent but not domain
equivalent.

Remark 2.5. In terms of Definition 1.3, edge equivalence corresponds to only changing the
orientations of the smooth components of �, while domain equivalence corresponds to only
changing the orientations of the @Di. It is thus clear that for any valid sets of weights � and �̃
there is a valid weight �̂ such that � is edge equivalent to �̂ and �̂ is domain equivalent to �̃.

Recall that ��� corresponds to the bilinear form t
� defined in (1.13), with dom(t�) given

by (1.10)–(1.12). The following proposition summarizes its basic properties.

Proposition 2.6. If D is a two-sided, weakly regular partition and {�i} are valid weights, then

��
is a self-adjoint operator on L

2(⌦), with domain

dom(��) =
�
u 2 dom(t�) : �ui 2 L

2(Di) for each i and �
�

N
u = 0

 
. (2.6)

For any other set of valid weights {�̃i} we have:

(1) If � and �̃ are edge equivalent, then �� = ��̃
;

(2) If � and �̃ are domain equivalent, then ��
is unitarily equivalent to ��̃

.

Consequently, ��
and ��̃

are unitarily equivalent for any choices of valid weights, and so the

property of being �-nodal is independent of the choice of a valid �.

Proof. It is easily seen that t� is a closed, semi-bounded bilinear form, with dense domain in
L
2(⌦). It thus generates a semi-bounded self-adjoint operator, which we denote ���, with

domain

dom(��) =
�
u 2 dom(t�) : there exists f 2 L

2(⌦) such that

t
�(u, v) = hf, vi

L2(⌦) for all v 2 dom(t�)
 
.

(2.7)

For any such u we have ���
u = f .

To prove (2.6), we first assume that u 2 dom(��), as described in (2.7). If vi 2 H
1
0 (Di)

for some i, then its extension by zero to the rest of ⌦ is contained in dom(t�). Denoting this
extension by v, we get from (1.13) and (2.7) that

Z

Di

fvi = t
�(u, v) =

Z

Di

rui ·rvi.

Since vi was an arbitrary function in H
1
0 (Di), this means �ui = fi 2 L

2(Di) in a distributional
sense. This holds for each i, so it follows from Lemma 2.2 that ��

N
u is defined, and satisfies

⌦
�
�

N
u, �

�

D
v
↵
⇤ = t

�(u, v)� hf, vi
L2(⌦) = 0
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for all v 2 dom(t�). Since ��
D
is surjective, this implies ��

N
u = 0.

On the other hand, suppose u 2 dom(t�) satisfies �ui 2 L
2(Di) for each i and �

�

N
u = 0.

Lemma 2.2 then implies

t
�(u, v) = �

kX

i=1

Z

Di

(�ui)vi = hf, vi
L2(⌦)

for all v 2 dom(t�), where f 2 L
2(⌦) is defined by fi = ��ui for each i. Using (2.7), this gives

u 2 dom(��) and completes the proof.
Finally, we describe the dependence of the operator �� on the weights {�i}. The first claim

follows immediately from the definitions. If �̃i�̃j = �i�j on �i\�j , then �iui = �juj is equivalent
to �̃iui = �̃juj , hence dom(t�̃) = dom(t�) and the result follows.

For the second claim, consider the unitary map U : L2(⌦) ! L
2(⌦) defined by

(Uv)
��
Di

=

(
v if �̃i ⌘ �i,

�v if �̃i ⌘ ��i.

This sends dom(t�) to dom(t�̃), with t
�̃(Uv, Uw) = t

�(v, w) for all v, w 2 dom(t�), which implies
�� = U

�1��̃
U and completes the proof.

These two equivalences combined with Remark 2.5 shows that �� is unitarily equivalent to
any other ��̃ with a valid �̃. The unitary map U does not a↵ect the nodal set, therefore a
partition D is �-nodal either for all valid choices of � or for none. ⇤
2.3. Pair compatibility and �-nodal partitions. Next, we discuss the connection between
the strong pair compatibility condition and the �-nodal condition.

Proposition 2.7. A two-sided, weakly regular partition D is �-nodal if and only if it satisfies

the SPCC.

Proof. First suppose D is �-nodal, so it is the nodal set of some eigenfunction '⇤ of ��. Since
'⇤,i

��
@Di

= 0 is contained in H
1(@Di), we can use Remark 2.3 and Proposition 2.6 to get

0 = �
�

N
'⇤
��
�i\�j

= �i

@'⇤,i
@⌫i

+ �j

@'⇤,j
@⌫j

(2.8)

for any neighbors Di and Dj .
We now let ⌘i = sgn'⇤,i. For each Di the function ui := ⌘i'⇤,i is a positive ground state, and

the transmission condition (2.8) becomes

⌘i�i

@ui

@⌫i
+ ⌘j�j

@uj

@⌫j
= 0. (2.9)

Since @⌫iui and @⌫juj are both negative, we conclude that ⌘i�i = �⌘j�j , yielding @⌫iui = @⌫juj

on �i \ �j . It follows that uij , as defined in (1.15), is a Dirichlet eigenfunction on Int(Di [Dj),
hence D satisfies the SPCC.

Conversely, suppose D satisfies the SPCC. This means there exist positive ground states ui
for the Dirichlet Laplacian on Di such uij is a Dirichlet eigenfunction on Int(Di [Dj) whenever
Di and Dj are neighbors. This implies @⌫iui = @⌫juj on �i \ �j .

Now define valid weights by choosing the same orientation for all Di. This implies that
�i = ��j on �i \ �j (the orientation of the segments of � is irrelevant). It follows that the
function u defined by u

��
Di

= ui satisfies the transmission condition (2.8) and hence is an
eigenfunction of ��. ⇤
Remark 2.8. The � weights chosen in the final step of the proof coincide with those used in [7];
see Remark 1.4. In Appendix A we will see that this � corresponds to the so-called “maximal
cut” of the boundary set.

It is well known that nodal partitions and spectral minimal partitions have the equal angle

property : at a singular point, the half-curves meet with equal angle [17]. This is also true of
�-nodal partitions.
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Corollary 2.9. If D = {Di} is �-nodal, then it satisfies the equal angle property.

Proof. Since D satisfies the SPCC, the result follows from applying [17, Theorem 2.6] to each
pair of neighboring domains. ⇤

It is an immediate consequence of the equal angle property that each Di has convex corners,
a fact we will use in Proposition 2.10 to conclude H

2 regularity of Dirichlet eigenfunctions.

2.4. Regularity properties of the Dirichlet kernel. Let ��
1 be the Laplacian in ⌦ with

Dirichlet boundary conditions imposed on @⌦ [ �. More precisely, it is the Laplacian with the
domain

dom(��

1) =
�
u 2 dom(t�) : �ui 2 L

2(Di) for each i and ��
D
u = 0

 

=
�
u 2 L

2(⌦) : ui 2 H
1
0 (Di) and �ui 2 L

2(Di) for each i
 
.

The reason for the subscript 1 will become apparent in Section 4. For now, we would like to
understand the properties of the eigenspace of ���

1 corresponding to the eigenvalue �⇤. The
main result of this section is the following.

Proposition 2.10. Let D be a �-nodal k-partition and '⇤ be the eigenfunction of ��
with

boundary set �. The subspace

� := ker (��

1 + �⇤) (2.10)

has the following properties:

(1) dim� = k;

(2) ker ��
N

��
�
= span{'⇤};

(3) for any ' 2 �, '
��
Di

2 H
2(Di) \H

1
0 (Di);

(4) �
�

N
(�) ⇢ H

1/2
� (�).

Proof. It follows immediately that for each i the restriction '⇤,i 2 H
1
0 (Di) of '⇤ satisfies the

eigenvalue equation �'⇤,i + �⇤'i = 0 in a distributional sense. Moreover, it does not change
sign and is therefore the ground state of the Dirichlet Laplacian on Di.

Extending each '⇤,i by zero outside its domain, we obtain k linearly independent eigenfunctions
g'⇤,i of ���

1 corresponding to the eigenvalue �⇤. Conversely, for any ' 2 �, its restriction
'i is a �⇤-eigenfunction of the Dirichlet Laplacian on Di (if non-zero), and therefore must be
proportional to the ground state. We conclude that dim� = k.

From Proposition 2.6 we get ��
N
'⇤ = 0. Let  2 � be another function such that ��

N
 = 0.

Since the restriction of  to (say) subdomain D1 is a multiple of its ground state, there is a linear
combination of '⇤ and  which identically vanishes on D1. By a straightforward extension of the
unique continuation principle to ��, this linear combination is zero everywhere and therefore  
is a multiple of '⇤.

Next, Corollary 2.9 implies that each Di has piecewise smooth boundary with convex corners,
so it follows from [15, Remark 3.2.4.6] that 'i 2 H

2(Di) for any ' 2 �.
Finally, let

Ei : L
2(�i) ! L

2(�) (2.11)

denote extension by zero. We have

�
�

N
g'⇤,i = Ei

✓
�i

@'⇤,i
@⌫i

◆
, (2.12)

and therefore the claim �
�

N
(�) ⇢ H

1/2
� (�) follows from the next proposition applied to '⇤,i. ⇤

Proposition 2.11. If u 2 H
2(Di) \ H

1
0 (Di), then @⌫iu 2 H

1/2(�i), �i@⌫iu 2 H
1/2(�i) and

Ei(�i@⌫iu) 2 H
1/2
� (�).

The assumption that u vanishes on the boundary is essential. If Di has corners, then the unit
normal ⌫i is discontinuous there, and for a general function in H

2(Di), or even C
1(Di), there is

no guarantee that @⌫iu 2 H
1/2(@Di). A simple example is u(x, y) = x on the unit square; its

normal derivative is piecewise constant, but is not contained in H
1/2.
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Localizing around a single corner and performing a suitable change of variables, it suf-
fices to prove the result for the model domain D = R+ ⇥ R+, which has boundary @D =
(R+ ⇥ {0}) [ ({0}⇥ R+). We first recall some preliminary results on boundary Sobolev spaces.

Lemma 2.12. [15, Theorem 1.5.2.3] Given f1, g1 2 H
1/2(R+), the composite function

h =

(
f1, on R+ ⇥ {0}
g1, on {0}⇥ R+

is in H
1/2

�
@D) if and only if Z 1

0
|f1(t)� g1(t)|2

dt

t
< 1. (2.13)

In particular, the conclusion h 2 H
1/2(@D) holds for any f1 and g1 satisfying the stronger

condition Z 1

0
|f1(t)|2

dt

t
+

Z 1

0
|g1(t)|2

dt

t
< 1. (2.14)

We also need to know the image of the trace map on each smooth component of the boundary.

Lemma 2.13. [15, Theorem 1.5.2.4] The trace map

H
2(R+ ⇥ R+) ! H

3/2(R+)⇥H
1/2(R+)⇥H

3/2(R+)⇥H
1/2(R+)

u(x, y) 7!
✓
u(x, 0),

@u

@y
(x, 0), u(0, y),

@u

@x
(0, y)

◆
(2.15)

is continuous, with image consisting of all (f0, f1, g0, g1) that satisfy the compatibility conditions

f0(0) = g0(0) (2.16)

and Z 1

0

|f 0
0(t)� g1(t)|2

t
dt+

Z 1

0

|f1(t)� g
0
0(t)|2

t
dt < 1. (2.17)

While the above two lemmas are both if and only if statements, we do not require their full
strength in the following proof. It is enough to know that (2.14) is a su�cient condition for h
to be in H

1/2(@D), and (2.17) is a necessary condition for (f0, f1, g0, g1) to be in the image of
the trace map defined in (2.15).

Proof of Proposition 2.11. As mentioned above, it su�ces to prove the result for the model
domain D = R+ ⇥ R+. If u 2 H

2(D) \H
1
0 (D), then its corresponding traces

�
f0(x), f1(x), g0(y), g1(y)

�
=

✓
u(x, 0),

@u

@y
(x, 0), u(0, y),

@u

@x
(0, y)

◆

satisfy f0(x) = 0 and g0(y) = 0 for all x, y > 0, so Lemma 2.13 implies
Z 1

0

����
@u

@x
(0, t)

����
2
dt

t
+

Z 1

0

����
@u

@y
(t, 0)

����
2
dt

t
< 1.

It then follows from Lemma 2.12 that the function

h =

(
@u

@y
(x, 0), on R+ ⇥ {0}

@u

@x
(0, y), on {0}⇥ R+

is in H
1/2(@D). Since h = �@⌫u, this proves the first part of the proposition.

Since the weight � is constant (either +1 or �1) on each axis, we obtain
Z 1

0

�����
@u

@x
(0, t)

����
2
dt

t
=

Z 1

0

����
@u

@x
(0, t)

����
2
dt

t
< 1, (2.18)

and similarly for the integral involving @u/@y, which implies �@⌫u 2 H
1/2(@D).

This completes our analysis on the model domain D, where we have shown that �i@⌫iu 2
H

1/2(�i). Finally, we consider the extension Ei(�i@⌫iu) to the rest of �. Fixing another domain
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Dj , we must show that �jEi(�i@⌫iu) 2 H
1/2(�j). On each smooth segment of �j , this function

is given by �j�i@⌫iu (if �i intersects �j nontrivially) and 0 otherwise. Either way, it follows
from (2.18) that the finiteness condition (2.14) holds, and so �jEi(�i@⌫iu) 2 H

1/2(�j), as was
to be shown. ⇤

3. Defining the weighted Dirichlet-to-Neumann operator

In this section we construct the weighted, two-sided Dirichlet-to-Neumann operator DN(�,�⇤,�)
for a �-nodal partition with eigenvalue �⇤. In Section 3.1 we give a definition using the standard
theory of self-adjoint operators and coercive bilinear forms; the details of this construction are
then provided in Sections 3.2 and 3.3.

As mentioned in the introduction, the construction is rather involved because �⇤ is a Dirichlet
eigenvalue on each Di. In this case one can also view the Dirichlet-to-Neumann map as a
multi-valued operator (or linear relation); this approach is described in [2, 4, 6]. Another
di�culty is that � has corners. While the Dirichlet-to-Neumann map can be defined on domains
with minimal boundary regularity (see [1]), our results require delicate regularity properties, as
in Proposition 2.10, that are not available in that case.

3.1. Definition via bilinear forms. We define DN(�,�⇤,�) as the self-adjoint operator corre-
sponding to a bilinear form on the closed subspace

S� :=

⇢
g 2 L

2(�) :

Z

�i

�igi
@'⇤,i
@⌫i

= 0, i = 1, . . . , k

�
(3.1)

of L2(�), where '⇤,i denotes the restriction of '⇤ to Di, and we recall that �i = @Di \ ⌦.

Let g 2 H
1/2
� (�) \ S�. For each i, the problem

8
><

>:

��ui = �⇤ui in Di,

ui = �igi on �i,

ui = 0 on @Di \ �i,

(3.2)

has a unique solution u
g

i
2 H

1(Di) that satisfies the orthogonality condition
Z

Di

u
g

i
'⇤,i = 0. (3.3)

Using these solutions, we define the symmetric bilinear form

a(g, h) :=
X

i

Z

Di

�
ru

g

i
·ru

h

i � �⇤u
g

i
u
h

i

�
, dom(a) = H

1/2
� (�) \ S�. (3.4)

It follows from Lemma 2.2 that the two-sided normal derivative ��
N
u
g 2 H

�1/2
� (�) is defined.

The main result of this section is the following.

Theorem 3.1. Let D = {Di} be a �-nodal partition.

(1) The bilinear form a defined in (3.4) generates a self-adjoint operator DN(�,�⇤,�), which
has domain

dom
�
DN(�,�⇤,�)

�
=
�
g 2 H

1/2
� (�) \ S� : �

�

N
u
g 2 L

2(�)
 
, (3.5)

and is given by

DN(�,�⇤,�)g = ⇧�(�
�

N
u
g), (3.6)

where ⇧� is the L
2(�)-orthogonal projection onto S�.

(2) For each g 2 dom(DN(�,�⇤,�)), there exists a function ũ 2 dom(t�) such that �
�

N
ũ 2 S�

and ũi solves (3.2) for each i, hence

DN(�,�⇤,�)g = �
�

N
ũ. (3.7)

If we additionally require
R
⌦ ũ'⇤ = 0, then ũ is unique.

(3) For any other set of valid weights {�̃i}, we have:

(a) If � and �̃ are edge equivalent, then DN(�,�⇤,�) is unitarily equivalent to DN(�,�⇤, �̃);
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(b) If � and �̃ are domain equivalent, then DN(�,�⇤,�) = DN(�,�⇤, �̃).
Consequently, DN(�,�⇤,�) and DN(�,�⇤, �̃) are unitarily equivalent for any two valid

sets of weights � and �̃.

Remark 3.2. If u 2 dom(t�) and ui solves (3.2) for each i, it must be of the form u = u
g + ' for

some ' 2 �, by Proposition 2.10. Since ��
N
' 2 S

?
� , we have ⇧�(��Nu

g) = ⇧�(��Nu), meaning u
g

can be replaced by any other solution to (3.2). The distinguished solution u
g

i
has nice analytic

properties, which we will use in Lemma 3.6 to prove that a is semi-bounded and closed. On the
other hand, ��

N
u
g may not be in the subspace S�, so we need to apply the orthogonal projection

⇧� in (3.6). By choosing di↵erent solutions to (3.2) we can eliminate this projection, as in (3.7).

3.2. The subspace S�. We start by discussing some useful properties of the subspace S�

defined in (3.1). Recall that � is the kernel of the Dirichlet Laplacian ��
1, as described in

Proposition 2.10.

Lemma 3.3. The subspace S� ⇢ L
2(�) can be written as

S� =
n
g 2 L

2(�) :
⌦
�
�

N
', g

↵
L2(�)

= 0 for all ' 2 �
o
=
�
�
�

N
(�)

�?
. (3.8)

Therefore, it is a closed subspace of codimension k � 1.

Proof. Formula (3.8) is a direct consequence of the properties of the space � and equation (2.12),
since Z

�i

�igi
@'⇤,i
@⌫i

=

Z

�
g�

�

N
g'⇤,i.

From Proposition 2.10 we have

dim �
�

N
(�) = dim�� dimker

�
�
�

N

��
�

�
= k � 1.

Since S
?
� = �

�

N
(�), this completes the proof. ⇤

Lemma 3.4. The set H
1/2
� (�) \ S� is dense in S�.

Proof. We first claim that H1/2
� (�) is dense in L

2(�). Fix g 2 L
2(�) and let " > 0. Letting �̃

denote the smooth part of �, which is di↵eomorphic to a finite number of open intervals, we
can find a function g̃ on � such that kg � g̃kL2(�) < " and g̃ 2 C

1
0 (�̃). Since the weights �i are

constant on each component of �̃, it follows that �ig̃ 2 C
1
0 (�̃ \ �i), and hence �ig̃ 2 H

1/2(�i),

for each i. This implies g̃ 2 H
1/2
� (�) and thus proves the claim.

Now let g 2 S�, " > 0, and choose g̃ 2 H
1/2
� (�) as above. Lemma 3.3 implies (I�⇧�)g̃ 2 �

�

N
(�),

which in turn belongs to H
1/2
� (�) by Proposition 2.11. Therefore,

⇧�g̃ = g̃ � (I �⇧�)g̃ 2 H
1/2
� (�) \ S�. (3.9)

We now use the fact that ⇧�g = g to obtain

kg �⇧�g̃kS� = k⇧�(g � g̃)kS�  kg � g̃kL2(�) < ",

as was to be shown. ⇤
Finally, we describe the set of functionals in H

�1/2
� (�) = H

1/2
� (�)⇤ that vanish on H

1/2
� (�)\S�.

This will be used below, in the proof of Theorem 3.1, when we describe the domain of the
Dirichlet-to-Neumann map.

Lemma 3.5. If ⌧ 2 H
�1/2
� (�) and ⌧(g) = 0 for all g 2 H

1/2
� (�)\S�, then there exists a function

h 2 �
�

N
(�) = S

?
� such that ⌧(g) = hg, hi

L2(�) for all g 2 H
1/2
� (�).

Proof. From Lemma 3.4 we have the L
2(�)-orthogonal decomposition

H
1/2
� (�) =

⇣
H

1/2
� (�) \ S�

⌘
� �

�

N
(�),

therefore any functional that vanishes on H
1/2
� (�) \ S� is a functional on ��

N
(�) extended by

zero. Since ��
N
(�) is finite dimensional, a functional ⌧̂ : ��

N
(�) ! R is continuous with respect
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to any choice of norm. In particular, it is continuous with respect to the L
2(�) norm, so there

exists h 2 �
�

N
(�) such that ⌧̂(g) = hg, hi

L2(�) for all g 2 �
�

N
(�). ⇤

3.3. Proof of Theorem 3.1. From Lemma 3.4 we know that the symmetric bilinear form a

is densely defined. The next step is to show that it is semi-bounded and closed. This is an

immediate consequence of the completeness of H1/2
� (�) and the following inequalities; see, for

instance, [20, Section 11.2].

Lemma 3.6. There exist constants C, c > 0 and m 2 R such that

|a(g, h)|  Ckgk
H

1/2
� (�)

khk
H

1/2
� (�)

(3.10)

and

a(g, g) � ckgk2
H

1/2
� (�)

+mkgk2
L2(�) (3.11)

for all g, h 2 H
1/2
� (�) \ S�.

In the proof we let C, c denote positive constants, and m a real constant, whose meaning may
change from line to line.

Proof. For each i the unique solution u
g

i
to (3.2) and (3.3) satisfies a uniform estimate

kug
i
kH1(Di)  C

��Ei(�igi)
��
H1/2(@Di)

.

Recalling the definition of the H
1/2
� (�) norm in (2.2), it follows that

|a(g, h)|  Ckgk
H

1/2
� (�)

khk
H

1/2
� (�)

for all g, h 2 H
1/2
� (�) \ S�.

On the other hand, a standard compactness argument (see [3, Lemma 2.3]) shows that for
any " > 0 there exists a constant K(") > 0 such that

kuik2L2(Di)
 "kruik2L2(Di)

+K(")
��ui|�i

��2
L2(�i)

(3.12)

for all ui in the set
⇢
ui 2 H

1(Di) : �ui + �⇤ui = 0,

Z

Di

ui'⇤,i = 0, ui

��
@Di\@⌦

= 0

�
.

In particular, the estimate (3.12) holds for each u
g

i
. It then follows, exactly as in [3, Proposi-

tion 3.3], that
Z

Di

�
|ru

g

i
|2 � �⇤|ugi |

2
�
� 1

2
kug

i
k2
H1(Di)

+mkgik2L2(�i)

� c
��Ei(�igi)

��2
H1/2(@Di)

+mkgik2L2(�i)

for each i, with constants c > 0 and m 2 R, and hence

a(g, g) � ckgk2
H

1/2
� (�)

+mkgk2
L2(�)

for all g 2 H
1/2
� (�) \ S�. ⇤

We are now ready to prove the main result.

Proof of Theorem 3.1. From Lemmas 3.4 and 3.6 we know that the symmetric bilinear form a

is densely defined, lower semi-bounded and closed, so it generates a self-adjoint operator on S�,
which we denote by A for brevity. Its domain is given by

dom(A) =
�
g 2H1/2

� (�) \ S� : there exists f 2 S� such that

a(g, h) = hf, hi
L2(�) for all h 2 H

1/2
� (�) \ S�

 
,

(3.13)

and Ag = f for any such g.
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We now characterize the domain of A. First suppose g 2 dom(A), and let f = Ag 2 S�.
Using Lemma 2.2 and the definition of a in (3.4), we get

a(g, h) =
⌦
�
�

N
u
g
, h
↵
⇤ (3.14)

for all h 2 H
1/2
� (�) \ S�. On the other hand, (3.13) implies

a(g, h) = hf, hi
L2(�) =

Z

�
fh,

so we find that

�
�

N
u
g � f 2 H

�1/2
� (�)

vanishes on H
1/2
� (�) \ S�. From Lemma 3.5 we get ��

N
u
g � f 2 �

�

N
(�) = S

?
� , and hence

�
�

N
u
g 2 L

2(�). Since f 2 S�, it follows that f = ⇧�(��Nu
g).

Conversely, if g 2 H
1/2
� (�) \ S� and ��

N
u
g 2 L

2(�), we have
Z

�

�
⇧�(�

�

N
u
g)
�
h =

Z

�
(��

N
u
g)h = a(g, h)

for all h 2 H
1/2
� (�) \ S�. According to (3.13), this implies g 2 dom(A), with Ag = ⇧�(��Nu

g).

Next, we prove the existence of ũ. Since ⇧� is the orthogonal projection onto S� = �
�

N
(�)?,

we have

Ag = ⇧�(�
�

N
u
g) = �

�

N
u
g � �

�

N
'

for some ' 2 �. Setting ũ = u
g � ', we obtain Ag = �

�

N
ũ, as required. If û is another

function in dom(t�) such that Ag = �
�

N
û and ûi solves (3.2) for each i, then û � ũ 2 � and

also û � ũ 2 ker ��
N
. By Proposition 2.10, û � ũ is a multiple of '⇤, and so requiring ũ to be

orthogonal to '⇤ determines it uniquely.
Finally, we establish the dependence on the weights. If � and �̃ are edge equivalent, the

desired unitary transformation is multiplication by �̃i/�i on �i. The edge equivalence ensures
this is well-defined, since �̃i/�i = �̃j/�j on �i \ �j . The result when � and �̃ are domain
equivalent follows immediately from the definition. ⇤

4. The spectral flow: proof of Theorem 1.7

To prove our main theorem we study the spectral flow of a family of self-adjoint operators.
This idea was pioneered by Friedlander in [14], though our approach is closer to that of [3, 4]. To
characterize the negative eigenvalues of DN(�,�⇤,�) it is fruitful to study the family of operators
���

� , 0  � < 1, induced by the symmetric bilinear form

t
�

�(u, v) =
kX

i=1

Z

Di

rui ·rvi + �

Z

�
uv, dom(t��) = dom(t�), (4.1)

where dom(t�) was defined in (1.10)–(1.12). As in Proposition 2.6, it can be shown that each
��

� is self-adjoint, with domain

dom(��

�) =
�
u 2 dom(t�) : �ui 2 L

2(Di) for each i and ��
N
u+ ��

�

D
u = 0

 
. (4.2)

It can be easily seen that the eigenfunction '⇤ of �� that vanishes on the set � is an eigenfunction
of ��

� for all �. We can therefore consider the reduced operator b��
� , which is simply ��

� restricted
to span{'⇤}?. We recall (see Section 2.4) that ��

1 is the Laplacian on ⌦ with Dirichlet boundary
conditions imposed on @⌦ [ �.

Proposition 4.1. For each � 2 [0,1) the linear mapping

T : ker(��

� + �⇤) �! ker
�
DN(�,�⇤,�) + �

�
, Tu = �

�

D
u, (4.3)

is surjective, and its kernel is spanned by '⇤, hence

dimker(��

� + �⇤)� 1 = dimker
�
DN(�,�⇤,�) + �

�
.
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Equivalently, in terms of the reduced operator, the restriction of T to ker(b��
� + �⇤) is bijective

and

dimker(b��

� + �⇤) = dimker
�
DN(�,�⇤,�) + �

�
.

Proof. We first show that T is well-defined. Assume that u is an eigenfunction of ���
� with

eigenvalue �⇤. From (4.2) we see that u satisfies the transmission condition ��
N
u+ ��

�

D
u = 0 on

�. On each Di we can use Green’s second identity to conclude that

0 =

Z

�i

ui
@'⇤,i
@⌫i

=

Z

�i

�i(�iui)
@'⇤,i
@⌫i

.

This means that the Dirichlet trace ��
D
u 2 H

1/2
� (�) belongs to the subspace S� defined in (3.1).

Moreover, since ��
N
u = ����

D
u is contained in L

2(�), we see from (3.5) that ��
D
u belongs to the

domain of DN(�,�⇤,�), with

DN(�,�⇤,�)�
�

D
u = ⇧�(�

�

N
u) = ��⇧�(�

�

D
u) = ����

D
u. (4.4)

This means ��
D
u 2 ker

�
DN(�,�⇤,�) + �

�
, so T is well-defined.

We next show that T is surjective. Let g 2 ker
�
DN(�,�⇤,�) + �

�
be given. From the

second part of Theorem 3.1, we know that there exists ũi 2 H
1(Di) satisfying the equation

�ũi + �⇤ũi = 0 and the boundary conditions ��
D
ũ = g, such that

�
�

N
ũ = DN(�,�⇤,�)g = ��g. (4.5)

This is precisely the transmission condition ��
N
ũ+ ��

�

D
ũ = 0, so we conclude from (4.2) that

ũ 2 dom(��
�) and hence ũ 2 ker(��

� + �⇤). Since T ũ = �
�

D
ũ = g, this proves surjectivity.

It remains to prove that the kernel of T is spanned by '⇤. From Proposition 2.10 we know
that '⇤ 2 ker(��

� + �⇤) for all � and �
�

D
'⇤ = 0, hence '⇤ 2 kerT . Finally, suppose that u

is any function in kerT . This means u 2 ker(��
� + �⇤) and �

�

D
u = 0, hence ��

N
u = 0 by the

transmission condition, so it follows from Proposition 2.10 that u is proportional to '⇤. ⇤
Remark 4.2. In the above proof, in particular (4.4), we see that if u 2 ker(��

� + �⇤), so that ��
D
u

is an eigenfunction of DN(�,�⇤,�), then ��Nu 2 S�, and hence ⇧�(��Nu) = �
�

N
u. In other words,

it is the particular solution ũ whose existence is guaranteed by the second part of Theorem 3.1.

We are now ready to prove our main result.

Proof of Theorem 1.7. The equality (1.17) follows from Proposition 4.1 with � = 0. To
prove (1.16) we consider the spectral flow for the reduced operator family �b��

� defined above.
Since this is an analytic family of self-adjoint operators for 0  � < 1, we can arrange the
eigenvalues into analytic branches {�m(�)} such that:

(1) {�m(0)} are the ordered eigenvalues of �b��

0 , repeated according to multiplicity;
(2) each function � 7! �m(�) is non-decreasing;
(3) as � ! 1, the �m(�) converge to the eigenvalues of �b��

1.

The first statement is simply our convention for labelling the branches, the second follows from
the monotonicity of the quadratic form t

�
�(u, u) from (4.1), and the third can be proved using

the method of [3, Theorem 2.5].
At � = 0 the operator b��

0 has `� 1 eigenvalues below �⇤. On the other hand, at � = 1 the
first eigenvalue of ���

1 is �⇤, with multiplicity k (one for each nodal domain). This means the
first eigenvalue of the reduced operator �b��

1 is also �⇤, but with multiplicity k � 1.
Therefore, of the first ` � 1 eigenvalue curves, precisely k � 1 converge to �⇤, while the

remaining `� k converges to strictly larger values, and hence intersect �⇤ at some finite value of
�. In other words,

`� k = #{m : �m(�) = �⇤ for some � 2 (0,1)}.
From Proposition 4.1 we know that �⇤ is an eigenvalue of �b��

� if and only if �� is an eigenvalue
of DN(�,�⇤,�), with the same multiplicity, and hence

#{m : �m(�) = �⇤ for some � 2 (0,1)} = MorDN(�,�⇤,�)
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Figure 5.1. Two choices of valid � for an odd partition of a circle, as in Section 5.
The value of �i is indicated by a + or � next to the corresponding side of the
partition boundary. The choices two choices are edge-equivalent (Definition 2.4).
One way to see they are valid is to note that they define the same “valid cut” of
�, which is highlighted in red; see Definition A.4 and Proposition A.6.

is the number of negative eigenvalues of DN(�,�⇤,�), counted with multiplicity. ⇤

5. Equipartitions of the unit circle revisited

Here we analyze equipartitions of the circle, calculating explicitly the di↵erent terms in
Theorem 1.7. The same example was previously considered in [18], but with the Dirichlet-
to-Neumann map evaluated at �⇤ + ", as described in the introduction. Also, in [18] the

magnetic point of view was used, with the operator T = �
�

d

d✓
� i

2

�2
. We use here the equivalent

presentation with cuts, replacing T by ���.
Leting D = {Di}ki=1 be a k-equipartition of the circle, we will show that D is �-nodal,

corresponding to a �� eigenvalue of multiplicity two, with defect �(D) = 0. Comparing with
Theorem 1.7, we should thus have

MorDN(�,�⇤,�) = 0, dimkerDN(�,�⇤,�) = 1. (5.1)

Indeed, we find that DN(�,�⇤,�) is identically zero on the space S�, which is one dimensional,
confirming (5.1).

Remark 5.1. Recall that S� ⇢ L
2(�) has codimension k � 1. A k-partition of the circle has k

boundary points, so L
2(�) ⇠= Rk and hence S� is one dimensional. A k partition of an interval,

however, has only k � 1 boundary points, and so S� is zero dimensional. In this case the nullity
and Morse index of DN must be zero, so Theorem 1.7 says that the partition has zero deficiency
and corresponds to a simple eigenvalue, thus reproducing the Sturm oscillation theorem.

We view the circle as [0, 2⇡] with the endpoints identified. We choose as division points
✓i = 2⇡i/k for 0  i  k, naturally identifying ✓0 and ✓k. The partition thus consists of the
subintervals

Di =
�
✓i�1, ✓i

�
, 1  i  k,

and the boundary set is given by � = {✓i}k�1
i=0 . We next define the weight functions �i, which in

our case are functions on @Di = {✓i�1, ✓i} with values in {±1}.
If k is even we are in the bipartite case, and we can choose �i ⌘ 1 for each i, in which case

�� is the Laplacian. We therefore only consider odd k, and introduce a single cut at ✓ = 0, as
was done in [18]. As weight functions we take �i ⌘ 1 for 0  i  k � 1, and for i = k we take
�k(✓k�1) = 1 and �k(✓k) = �1, see Figure 5.1(a).
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For the operator ��� we recall from (1.12) the compatibility condition �iui = �juj on the
common boundaries of Di and Dj , which here says that functions u in the domain of ���

should be continuous at each ✓i except the cut, where u(0) = �u(2⇡). We recall also from (2.6)
the transmission conditions �i@⌫iui + �j@⌫juj = 0. The outward normal derivative @⌫i is �@✓ at
the left end-point and @✓ at the right end-point, so functions in the domain of ��� should be
di↵erentiable at each ✓i except the cut, where u

0(0) = �u
0(2⇡). In summary, we have

dom(��) = {u 2 H
2(0, 2⇡) : u(0) = �u(2⇡), u

0(0) = �u
0(2⇡)

 
. (5.2)

This operator is known as the anti-periodic Hill operator or the magnetic Laplace operator on a
circle with flux 1/2.

The spectrum of ��� consists of eigenvalues � = (j/2)2, where j is positive and odd. Each
eigenspace is two dimensional, spanned by sin(j✓/2) and cos(j✓/2). The partition D is �-
nodal since it is generated by the eigenfunction '⇤(✓) = sin(k✓/2). The minimal label of the
corresponding eigenvalue �⇤ = (k/2)2 is `(D) = k and thus �(D) = 0, as claimed above.

We now turn to the Dirichlet-to-Neumann operator, for which we use a di↵erent valid choice
of weights4, letting �̂i(✓i�1) = cos(k✓i�1/2) = (�1)i�1 and �̂i(✓i) = cos(k✓i/2) = (�1)i for all
1  i  k; see Figure 5.1(b). The condition for the boundary data g = (g0, g1, . . . , gk�1) 2 Rk to
be in the subspace S�̂ defined in (3.1) is gi�1 � gi = 0, yielding g = h(1, 1, . . . , 1)t, h 2 R. For
this choice of {�̂i}, the boundary value problem (3.2) becomes

� u
00
i = �⇤ui in Di, ui(✓i�1) = h cos(k✓i�1/2), ui(✓i) = h cos(k✓i/2), (5.3)

with the general solution

ui(✓) = h cos(k✓/2) + ci sin(k✓/2),

where ci is an arbitrary constant. According to Remark 3.2, we can calculate the Dirichlet-to-
Neumann map using any solution to the boundary value problem, so we choose ci = 0. It follows
immediately that

@ui

@⌫i
(✓i�1) =

@ui

@⌫i
(✓i) = 0

for each i, hence the two-sided normal derivative ��
N
u vanishes on �, and

DN(�,�⇤,�)h = ⇧�(�
�

N
u) = 0, (5.4)

as expected.

Appendix A. Weights, cuts and pair compatibility conditions

In this section we elaborate on some of our constructions and their connection to previous
literature. In Section A.1 we discuss the relationship between the strong pair compatibility
condition in Definition 1.6, and the weak pair compatibility that appeared in earlier works,
such as [16], where it was simply referred to as the pair compatibility condition. In Section A.2
we describe the cutting construction of [18], and explain how it is related to the valid weights
introduced in Definition 1.3.

A.1. Weak vs strong pair compatibility conditions. The strong pair compatibility condi-
tion (SPCC) was already described in Definition 1.6, which we repeat here for convenience.

Definition A.1. A two-sided, weakly regular partition D is said to satisfy the strong pair

compatibility condition (SPCC) if there exists a choice of positive ground states {ui}ki=1 for the
Dirichlet Laplacians on Di such that, for any pair of neighbors Di, Dj , the function uij defined
by

uij

��
Di

= ui, uij

��
Dj

= �uj , (A.1)

is an eigenfunction of the Dirichlet Laplacian on Int(Di [Dj).

4The two choices of weights are edge equivalent, therefore the Laplacian ��̂ is identical to ��.
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Figure A.1. Two valid cuts of the same partition are shown in (a) and (b),
with the thick line denoting �⇤ and the ± signs indicating the chosen orientations
of each Di. In (c) and (d) we show possible choices of {�i} for each of these cuts.

Nodal partitions obviously satisfy the SPCC. The same is true of spectral minimal partitions
(see [17]), and in Proposition 2.7 we showed that a partition satisfies the SPCC if and only if it
is �-nodal. A partition satisfying the SPCC is necessarily an equipartition, in the sense that the
ground state energy (the smallest eigenvalue of the Dirichlet Laplacian) on each Di is the same.
We denote this common value by �(D).

We next recall the weak pair compatibility condition.

Definition A.2. A two-sided, weakly regular equipartition D is said to satisfy the weak pair

compatibility condition (WPCC) if for each pair of neighbors Di, Dj , there exists an eigenfunction
of the Dirichlet Laplacian on Int(Di [Dj) with eigenvalue �(D) and nodal set @Di \ @Dj .

Remark A.3. By [17, Theorem 2.6] applied to each pair of neighbors, it follows that partitions
that satisfy the WPCC also have the equal angle property; cf. Corollary 2.9.

It is obvious that SPCC implies WPCC. When ⌦ is simply connected, a bipartite equipartition
satisfying WPCC is nodal, and hence satisfies SPCC, by [16, Theorem 1.3]. If ⌦ is not simply
connected, however, it is possible to find an equipartition (for a Schrödinger operator with C

1

potential) that satisfies WPCC but not SPCC, as shown in [16, Section 7].

A.2. Weights and cuts. Assuming throughout that D is a two-sided, weakly regular partition,
with nodal set �, we first decompose the smooth part of � into disjoint open curves, labeled
{Ca}, so that � = [aCa. Since D is two-sided, each Ca is contained in �i \ �j for some i 6= j.
Without loss of generality we can assume i < j, and we denote these labels by i(a) and j(a).

Definition A.4. A subset C ⇢ {Ca} is called a valid cut of the partition D if there exists a
choice of orientations on the subdomains {Di} such that Ca 2 C if and only if Di(a) and Dj(a)

have the same orientation.
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It is sometimes convenient to identity a subset C = {Ca1 , . . . , Cap} ⇢ {Ca} with the corre-
sponding closed subset

�⇤ := Ca1 [ · · · [ Cap (A.2)

of �. We mention that C ⇢ {Ca} is a valid cut if � \ �⇤ is a Z2-homological 1-cycle of ⌦ (viewed
as a cell complex) relative to the boundary @⌦. It is immediate that the empty set is a valid cut
of D if and only if D is bipartite.

The maximal cut C = {Ca}, for which �⇤ = �, is always valid— it corresponds to all
subdomains having the same orientation. However, usually one is interested in cuts that are as
small as possible. We thus say that a cut is minimal if ⌦ \ �⇤ is connected.

Proposition A.5. [18, Prop 4.2] There exists a minimal valid cut C ⇢ {Ca}.

Finally, we describe how valid cuts are related to the valid weights {�i} in Definition 1.3.
Given a set of valid weights {�i}, we obtain a valid cut C by declaring that Ca 2 C if and only if
�i(a) = ��j(a). That is, the cut set �⇤ is the union of all �i \ �j along which �i = ��j . More
precisely, we have the following.

Proposition A.6. Valid cuts are in one-to-one correspondence with edge-equivalence classes of

valid weights.

Proof. Given a valid cut, i.e. a choice of orientation for each Di, we get an induced orientation
on each @Di. Choosing an orientation on each smooth component of �, we obtain a valid set
of weights {�i} with the property that �i = ��j if and only if @Di \ @Dj is in the cut set �⇤.
Changing the orientation on any smooth part of � will give a di↵erent, but edge equivalent, set
of weights (recall Definition 2.4), so we get a map from valid cuts to edge-equivalence classes of
valid weights. Conversely, a set of valid weights gives an orientation on each Di, and hence a
valid cut. It is easily seen that edge-equivalent weights generate the same cut. ⇤

Remark A.7. The proof of Proposition A.6 suggests an equivalent way to define valid cuts and
weights: a cut �⇤ is valid if a generic closed path in ⌦ intersects � \ �⇤ an even number of times,
and a choice of weights {�i} is valid if the set {Ca : �i(a) = ��j(a)} defines a valid cut. This
alternative definition is not as constructive as Definition 1.3, but it has the advantage of not
depending on the manifold structure of ⌦, and is thus more convenient for considering partitions
on metric graphs.

Remark A.8. Another way of viewing the constructions in this paper is to introduce Aharonov–
Bohm operators, as in [18]. Given a set of weights � that generates a minimal valid cut, the
corresponding �� is equivalent to a certain Aharonov–Bohm operator, with Aharonov–Bohm
solenoids with flux ⇡ placed at the singular points x` of � for which ⌫` is odd (recall Definition 1.2).

Appendix B. Explicit construction of the canonical solution to (3.2)

In this section we give an alternate, more explicit proof of the second claim in Theorem 3.1,
regarding the existence of a “canonical solution” ũ 2 dom(t�) such that ��

N
ũ 2 S� and ũi

solves (3.2) for each i. To do this we write the condition ��
N
ũ 2 S� as a finite system of linear

equations and then, by analyzing the corresponding matrix, prove that a solution always exists.
Fix g 2 dom(A). For each i, the general solution of (3.2) is given by

ui = u
g

i
+ ci'⇤,i (B.1)

for some ci 2 R. Since g 2 dom(A), we know from (3.5) that the two-sided normal derivative
�
�

N
u is a function in L

2(�), and is given by �i@⌫iui +�j@⌫juj on �i \�j . This will be an element
of the subspace S� if and only if

Ii :=

Z

�i

�i(�
�

N
u)@⌫i'⇤,i = 0 (B.2)
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for each i. Since each point in the smooth part of �i is contained in precisely one other �j , we
can rewrite this integral as

Ii =
X

j 6=i

Z

�i\�j

�
@⌫iui + �ij@⌫juj

�
@⌫i'⇤,i

=
X

j 6=i

Z

�i\�j

�
@⌫iu

g

i
+ �ij@⌫ju

g

j

�
@⌫i'⇤,i +

X

j 6=i

Z

�i\�j

�
ci@⌫i'⇤,i + �ijcj@⌫j'⇤,j

�
@⌫i'⇤,i,

(B.3)

where we have denoted �ij = �i�j for convenience. Let us introduce the notations

↵i,i = 0, ↵i,j =

Z

�i\�j

|@⌫i'⇤,i|2, i 6= j.

It follows from (2.8) that |@⌫i'⇤,i| = |@⌫j'⇤,j | on �i \ �j , and so ↵i,j = ↵j,i for all i, j. We
similarly get Z

�i\�j

�ij(@⌫j'⇤,j)(@⌫i'⇤,i) = �↵i,j ,

We then define

di = �
X

j 6=i

Z

�i\�j

�
@⌫iu

g

i
+ �ij@⌫ju

g

j

�
@⌫i'⇤,i (B.4)

so the equation (B.3) becomes X

j 6=i

(ci � cj)↵i,j = di. (B.5)

We write the resulting system of equations in matrix form as
2

6664

P
j
↵1,j �↵1,2 . . . �↵1,k

�↵2,1
P

j
↵2,j . . . �↵2,k

...
...

. . .
...

�↵k,1 �↵k,2 . . .
P

j
↵k,j

3

7775

| {z }
=:A

2

6664

c1

c2
...
ck

3

7775
=

2

6664

d1

d2
...
dk

3

7775
, (B.6)

and observe that the vector (c1, c2, . . . , ck)t = (1, 1, . . . , 1)t lies in the kernel of the matrix A.
Without loss of generality, we can label the domains {Di} in the partition inductively so that

Di+1 is a neighbor of at least one of D1, . . . , Di, with D1 arbitrary. For the numbers ↵i,j , this
means that

↵1,2 > 0,

↵1,3 + ↵2,3 > 0,

↵1,4 + ↵2,4 + ↵3,4 > 0,

...

↵1,k + ↵2,k + · · ·+ ↵k�1,k > 0.

(B.7)

Lemma B.1. Let A be the symmetric k ⇥ k matrix in (B.6) and assume that the inequalities

in (B.7) hold. Then kerA is spanned by (1, 1, . . . , 1)t.

Proof. Consider the quadratic form q[c] = hAc, ci corresponding to the matrix A above, where
c = (c1, c2, . . . , ck)t. From (B.5) we find that the quadratic form q[c] can be written as

↵1,2(c1 � c2)
2

+↵1,3(c1 � c3)
2 + ↵2,3(c2 � c3)

2

+↵1,4(c1 � c4)
2 + ↵2,4(c2 � c4)

2 + ↵3,4(c3 � c4)
2

+ · · ·
+↵1,k(c1 � ck)

2 + ↵2,k(c2 � ck)
2 + · · ·+ ↵k�1,k(ck�1 � ck)

2
.
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Since ↵i,j � 0 for all i, j, we see that q (and hence A) is non-negative. It remains to identify the
kernel. Assume that q[c] = 0 for some c. Then, reading from the top line above, we conclude
that c2 = c1 since ↵1,2 > 0. Inserting c1 = c2, we conclude from the next row that c3 = c2 since
↵1,3 + ↵2,3 > 0. Continuing in this manner, we conclude that ck = ck�1 = · · · = c2 = c1. This
means that the kernel of A is spanned by the vector (1, 1, . . . , 1)t. ⇤

Finally, from (B.4) we observe that
P

di contains a term

�
Z

�i\�j

n�
@⌫iu

g

i
+ �ij@⌫ju

g

j

�
@⌫i'⇤,i +

�
@⌫ju

g

j
+ �ij@⌫iu

g

i

�
@⌫j'⇤,j

o

for each pair of neighboring domains, and by (2.8) each of the integrands vanishes. This meansP
di = 0, so the vector d = (d1, d2, . . . , dk)t is orthogonal to the kernel of A. Thus, the

system (B.6) will always be solvable, by the Fredholm alternative for symmetric matrices.
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