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Abstract

Inspired by the infinite families of finite and affine root systems, we define a
“stretching” operation on general crystallographic root systems which, on the level
of Coxeter diagrams, replaces a vertex with a path of unlabeled edges. We embed a
root system into its stretched versions using a similar operation on individual roots.
For a fixed root, we describe the long-term behavior of two associated structures
as we lengthen the stretched path: the downset in the root poset and Reading’s
arrangement of shards. We show that both eventually admit a uniform descrip-
tion, and deduce enumerative consequences: the size of the downset is eventually a
polynomial, and the number of shards grows exponentially.

Mathematics Subject Classifications: 17B22

1 Introduction

In many questions about root systems, Coxeter groups, and related objects, the type A
family is foundational, and often more easily resolved than the general case. In particular,
type A is foundational to the classification of finite and affine root systems: the type A
Coxeter diagrams are simply paths, and almost! every infinite family is described by
Coxeter diagrams obtained by inserting paths into a fixed diagram.

In this paper, we generalize this kind of family to arbitrary Coxeter diagrams, using
a stretching operation:
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Definition 1. Let GG be a Coxeter diagram, x a vertex of GG, and L, U R, a partition of
the neighbors of x into two subsets. We call x an elastic vertex, L, and R, its left and
right neighbors respectively, and the tuple (z, L,, R,) elastic data.

Then the n-stretched diagram str, (G) is obtained by:

e replacing the vertex o with vertices xg, ..., xp;

e replacing the edges between x and L, with correspondingly labeled edges between
ro and L,;

e replacing the edges between z and R, with correspondingly labeled edges between
T, and R,;

e and inserting unlabeled edges between x; and x;,; for 0 <i < n.
We call the subdiagram induced by xy, ..., z, the stretched path.

Then if ® is a crystallographic root system associated to GG, for given elastic data there
is an n-stretched root system str,(®) associated to str,(G) (Definition 15).
In looking at a family of stretches of a diagram, two natural questions arise:

e What attributes of the family stabilize for sufficiently large n?

e Can we isolate aspects of the family’s behavior that resemble the good behavior of
the A, family?

This level of generality appears to have received little attention. Hepworth [5] showed
homological stability for Coxeter groups in stretched families with R, = @. Additionally,
Chen and Krause [4] and Hochenegger, Kalck, and Ploog [6] studied relationships (called,
respectively, “expansion” and “A,-insertion”) between module categories of path alge-
bras which correspond to stretching the underlying quiver. Here, we examine the above
questions in the context of combinatorial properties of roots.

1.1 The root poset

One way of relating the different stretches of a root system is to embed the shorter stretches
into the longer ones. To facilitate this, we write each root as a linear combination of simple
roots. Since simple roots correspond to vertices of the diagram, we consider roots to be
integer-valued functions on the vertices.

Definition 2. Let a be a integer-valued function on the vertices of a diagram G with
elastic data (x, L,, R;). Then str,(«) is the function on str,(G) with value a(z) at all
the z;, and with the same values as a elsewhere.

Proposition 3 (Proposition 16). Let « be a root of ®. Then str,(«) is a root of str,(P).
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We thus focus on how data associated to a root grows and stabilizes as we stretch
the root. We first consider the root poset, which is an order on the positive roots of ®
analogous to the weak order on a Coxeter group W. In particular, just as reduced words
of W correspond to saturated chains based at the identity in the weak order, saturated
chains based at simple roots in the root poset correspond to reduced expressions:
minimal-length expressions for roots in terms of simple reflections applied to a simple
root.

Definition 4 ([3], Definition 4.6.3 and Lemma 4.6.4). Let ® be a root system and let W
be the associated Coxeter group. For positive roots 8,7 € ®, we say that g < 7 in the
root poset? if there exist simple reflections s;,, ..., s; € W with associated simple roots

Qi , ..., q; such that

Y = i, 5, (B)
and for all 1 < j <k,

is a positive multiple of ay;.

The root poset is graded by depth, the length of any reduced expression for a root,
analogously to how the weak order is graded by length. Our first result shows that depth
grows in a predictable way:

Theorem 5 (Corollary 19). For a positive root «, there exists an integer t such that
depth(str, (a)) = tn + depth(a).

1.2 Downsets

In section 3, we consider the downset generated by a positive root «a, the set of roots
below « in the root poset, which we denote by | a. Through the above interpretation
of saturated chains, this encapsulates all reduced expressions for a. For a fixed o, we
construct a finite structure which, for sufficiently large n, determines | str,(«). This gives
a sense in which the root poset stabilizes.

Specifically, for a root system ® with diagram G, we define special subsets, called
stretching classes (Definition 22), of the set | | str,(®)* of positive roots for all stre-
tches of ®. A stretching class consists of functions on the vertices of str, (G) with:

e specified values off the stretched path and at some vertices on the ends of the
stretched path, and

e specified values occurring on the remaining vertices of the stretched path in a spec-
ified order, but each repeating any nonzero number of times.

Our main result is:

ZNote that there is a more commonly used definition of the root poset [1, Definition 5.1.1], which is a
refinement of this poset, and which we do not consider here.
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Theorem 6 (Theorem 24). Let a be a positive root of ®. Then there exists a finite set of
stretching classes for G such that, for sufficiently large n, | str,(«) consists of the roots
in str, (®) which lie in those stretching classes.

As a corollary, we deduce:

Theorem 7 (Theorem 29). There is a polynomial p(n) such that | | str,(a)| = p(n) for
sufficiently large n.

This generalizes the fact that the number of roots in the A, system is a quadratic
polynomial in n.

1.3 Shards

Given a root system @, the associated Coxeter group W acts by reflections on a vector
space V*. For each root «, there is a reflection s, € W which fixes a hyperplane a* C V*.
The arrangement of reflecting hyperplanes slices V* into regions. There is a natural choice
of base region, bounded by the reflecting hyperplanes of the simple roots. This region is
a fundamental domain for the action of W, and by labeling it with the identity we get
a bijection between W and the set of regions. This hyperplane arrangement is closely
connected with the right weak order on W: two regions are adjacent along a hyperplane
if and only if one of the associated elements of W covers the other in weak order.

Studying lattice quotients of the weak order, Reading introduced a decomposition
of the reflecting hyperplanes into convex subsets called shards. Shards govern lattice
quotients in the following sense: a quotient of the weak order partitions the elements
of W into equivalence classes, each of which can be viewed as a collection of regions.
The equivalence classes of any quotient are obtained by removing some set of shards and
merging regions appropriately. They have since also been found to have representation-
theoretic significance: given a simply laced Dynkin diagram, the shards of its Coxeter
arrangement correspond to the bricks of the associated preprojective algebra [10]. We
briefly define shards here, and refer the reader to [7] and [8] for further details.

Given a hyperplane arrangement A with a distinguished base region D, along with
two hyperplanes Hy, Hy € A, we define the rank 2 subarrangement generated by H;
and H, to consist of all hyperplanes of A which contain H; N Hy. One region of this
subarrangement will contain D, and we call the two hyperplanes bounding this region the
basic hyperplanes.

We then say that H; cuts H, if, in the rank 2 subarrangement they generate, H;
is basic but Hj is not. In any such pair, we call H; N Hy a fracture of Hy. Then the
fractures of a hyperplane will slice it into pieces which we call shards. Figure 1 illustrates
the shards of the A3 hyperplane arrangement.

Here, we fix a root o and consider the fractures of o' as an arrangement within a*.
This is a situation in which the type A case is simple: letting o be the highest root of
A, with value 1 at every vertex, the arrangement of fractures is linearly isomorphic to
the arrangement of coordinate hyperplanes in R®~!. In particular, the number of shards
in ot is 2771
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Figure 1. The shards of the A3 hyperplane arrangement. This depiction shows the stere-
ographic projection of their intersection with a sphere.

Inspired by this, we give a uniform description of the arrangement of fractures for any
root system as we stretch a root «. In the three results that follow, the constant ¢ is the
depth growth rate from Theorem 5.

Theorem 8 (Theorem 38). Let v be a root of &. Then there exists a vector space V',
linear forms fi,..., fs and g1,..., g, on V', and an integer e such that, for sufficiently

large n, the arrangement of fractures in str,(c)* is linearly isomorphic to the arrangement
in V' x R"™° defined by the hyperplanes

fi=0

1<
g;i — 2, =10 '

1< s
1<t 1<k<n—e

Example The model for this result is the root >  «; of A,, which is a stretch of the
unique positive root of A;. Its hyperplane’s fractures are precisely its intersections with

k 1L
(ZO{I) , 1<k<n—-1
i=1

These equations are linearly independent modulo 37 | «;, so after a change of basis they
are simply coordinates z,..., z,_1. In the language of the theorem, we have no f;’s and
g1 =0.

For a more substantial example, consider the root of D,, (now using Coxeter diagram
notation):

2= —=2—1

1

The fractures of the associated hyperplane are its intersections with the hyperplanes
of
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After a similar change of basis, this arrangement takes the form

yi+y2+ys=0

Yo tys =0

y1+ys=0

y3 =0
yitytys+2z=0 1<k<n—4
—ys+2,=0 1<k<n—4

as predicted by the theorem.
Once we have this form for our arrangement, we get a uniform description of its
characteristic polynomial (as defined in [2]).

Theorem 9 (Theorem 40). Let x,,(q) be the characteristic polynomial of the arrangement
of fractures of str, (). Then there ezist polynomials po(q), . .., pi(q) and an integer e such
that

Xn(a) =Y prl@) (g — k)"

for sufficiently large n.

Evaluating the characteristic polynomial at —1 gives the number of regions of an
arrangement up to sign, so in particular, we get a uniform description of the number of

shards:

Corollary 10 (Corollary 42). Let d be the number of vertices of G. Then for sufficiently
large n, the number of shards of str,(a)* is

¢
(D)"Y (=D k1)
k=1
In particular, it is O((t + 1)™).

In future research, we hope to explore how this perspective informs the aforementioned
connection to representations of preprojective algebras.
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2 Setup

2.1 Root systems and Coxeter groups

Here we introduce the terminology and notation of root systems and Coxeter groups which
we will use. For details, see Chapter 4 of [3].
A Coxeter group W is a group defined by generators and relations as

<Sl, ey Sp | (SiSj)mij = 1>

for m;; € NU {oo} such that m;; = mj;, m;; = 1, and m;; > 2 for i # j. (If m;; = oo, we
omit that relation.)
We store the data of a Coxeter group in its Coxeter diagram G, which is a graph
with a vertex for each generator and an edge between vertices 7 and j if m;; > 3, labeled
A Cartan matrix for a Coxeter group is an n X n matrix A such that A;; < 0 for
1 # j, and

Ay =2
Aij =0 m;; = 2
™
AijAji = 4COS2 3 < mi; < 00
mg;
AijAj 24 m;j; = 00

In this paper, we further assume that the A;; are integers, in which case the Cartan matrix
is called crystallographic. In particular, this requires m;; € {1,2,3,4,6, co}.

Let V' be a real vector space with a basis {1, ..., a,} corresponding to the generators
s;. Then we define a bilinear pairing (—, —) : V' x V' — R by (a4, a;) = A;;. We let the
generators act on V' by

si(B) = B — (i, B)au.

and this turns out to define a faithful representation of W. This action preserves the
pairing: (wf3, wy) = (8, 7).

We call the «; simple roots, and define the root system ® to be the union of their
W-orbits. Just as the simple roots are associated to the simple reflections, to any root
a = wo; we associate the element s, := ws;w™!, which acts by

ws;w™H(B) = B — (a, B)a.

Since each root is a unique linear combination of the simple roots, which correspond to
the vertices of the Coxeter diagram, we view roots as integer-valued functions on the
vertices, and refer to their “coefficients” and “values” interchangeably. The coefficients
of a root are either all positive or all negative, which partitions ® into a set of positive
roots &' and negative roots ®~. The negative of a root is a root, so we usually only
need to consider positive roots.
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We will want an explicit formula for applying reflections to functions on the diagram.
Let x be a vertex in the Coxeter diagram with edges to vertices y1, ..., yr. Let a be a root.

Then s, («) will differ from « only in its value at x, which will be (Z i —Axyja(yj)) —a(x).
In what follows, we will use the notation given in this section by default:

e W is a Coxeter group, with generators s;;
e (5 is its Coxeter diagram,;
e A is a Cartan matrix for W,

e d is the associated root system, with simple roots «;.

2.2 Reduced expressions and the root poset

We will be interested in ways of obtaining a positive root by applying simple reflections
to a simple root.

Definition 11. An expression of the form
= 8y, Sy Sy, (Qyg)
is a reduced expression for « if m is minimal among all such expressions for «.

This is analogous to the notion of a reduced word for an element of W. We also define
the analogue of length:

Definition 12. The depth of a positive root « is the length of a reduced expression for
«, including the simple root it starts with.

We capture all the expressions for roots in a poset, analogous to the weak order on
W

Definition 13 ([3, Definition 4.6.3]). Let o, 8 € ®*. We say that o < 8 in the root
poset if there exist simple reflections sq, ..., s, such that:

(1) B = sksk—1-"+s1()
(2) depth(s;s;—1---s1()) = depth(a) + i for all 1 <7 < k.

The root poset is graded by depth, and reduced expressions correspond to saturated
chains based at simple roots.
We can also describe the root poset by its cover relations:

Lemma 14 ([3, Lemma 4.6.4]). Let oy be a simple root, s; the associated reflection, and
B an arbitrary positive root. Then B < s;(8) if s;(8) — B is a positive multiple of o, and
these are all the cover relations.

Figure 2 shows the root poset of As. It gives 4 different reduced expressions for the
root with value 1 at each vertex:

8382(041) = 8381(042) = 8183(042) = 8182(043)
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Figure 2: The root poset of As. Each cover is labeled with the simple reflection that
induces it.

2.3 Stretching

Recall from Definition 1 the definition of elastic data (z, L,, R,) for a Coxeter diagram
G and the resulting stretched diagrams str,, (G). We construct a Cartan matrix and root
system for str,, (G) by making the simple roots associated to the vertices on the stretched
path pair symmetrically.

Definition 15. Let A be a Cartan matrix for the Coxeter diagram G. Then the n-
stretched Cartan matrix, str,(A), has rows and columns indexed by the vertices of
str,(G), with

ve U2 E{xo0,. .. 20}
(y=z9and z € L,) or (y =z, and z € R,)

stra(A),. = 4 e (e=moandy € Ly) or (2 =z and y € Ra)

o

y:Z:xi
-1 y=x;,2 =21

0 otherwise

\

If ® is the root system associated to A, then the n-stretched root system, str,(®), is
the root system associated to str,(A).

In what follows, x, L., and R, will refer to elastic data by default.
Now for any integer-valued function « on the vertices of GG, we recall from Definition 2
the definition of str, ().

Proposition 16. Let a € ®. Then str,(a) € str,(P).

Proof. Tt will suffice to assume « is positive. We proceed by induction on depth(«). First
consider the base case that « is simple: either str, (a) is also simple, or it has value 1 on
the stretched path and 0 elsewhere, and this is straightforward to obtain by reflections of
a simple root.

Now consider any positive root a. If it is possible to reflect at a vertex other than x
and decrease the value there, obtaining a root o, then we can perform the same operation
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to str,(a) and get str,(a’). By the induction hypothesis, str,(a’) is a root, so str,(a) is
too.
Otherwise, we can reflect at © and decrease the value there to get o/ := s,(«). Then

St () = SugSuy ** SunSwn_q ** * Say Suo (StTR(Q))
= Sz, Sxy_1 """ SaxoSay anqsafn(Strn(a))'

By the induction hypothesis, str,(a/) is a root, so str,(«) is too. O

As an aside, we note that a reverse version of Proposition 16 also holds: roots with
repeated coefficients can be squished to give roots of a smaller diagram.

Proposition 17. Let a be any integer-valued function on the vertices of G such that
stry(a) is a root of str1(®). Then « is a root of P.

Proof. We assume without loss of generality that stri(a) is positive. Let a := str(«),
and define roots {a, | y € G} in str(P) by

o, 1t

Opy + 0y Y=1T

Then « is a nonnegative linear combination of these.

We proceed by induction on depth(a). The base case is when o = @&, which is trivial.
Now suppose @ is different from these. We have (a,a) = 2 > 0, so at least one of the
pairings (a,, @) is positive.

If (ay,a) > 0 for some y # z, then s,(a) — a = —(ay, a)q, is a negative multiple of
ay, and so s,(a@) < & in the root poset. We still have s,(a)(zo) = sy(@)(x1), and so by
the induction hypothesis there exists a root o/ € ® such that str;(a’) = s,(a). But then
sy(a’) = a, so a is a root.

On the other hand, if (a,, &) > 0, then S, Sz, Sz, (@) = a— (0, @)a, has two coefficients
which are smaller than those of a, so in applying s.,S., Sz, We must have gone down in
the root poset at least twice, implying depth(s,, sz, sz, (@)) < depth(a). As above, by the
induction hypothesis there is some o € ® such that stry(a’) = S84, S (@), and direct
computation shows that s, (o) = «, implying « is also a root. O]

2.4 Stretching and reduced expressions

Iterating the process in Proposition 16 gives an expression for str,(«) in terms of simple
reflections applied to a simple root, but it may not be a reduced expression, because two
roots in a cover relation may no longer be comparable once stretched. We examine when
this happens, and obtain a result on the depth of stretched roots in the process.

Consider a positive root « such that s,(a) < a. Let b be the coefficient at z. Let
Y1, - - -, Yr be the left neighbors of z, with coefficients ay, ..., ax, and let z1, ..., 2z, be the
right neighbors, with coefficients ¢y, ..., cp. Let S, := >, —A,y.a; and Sp := Zj — Ay
Then to assume s,(a) < a means S, + Sg — b < b. In particular, one of S and Sg,
without loss of generality S, is less than b. Then the situation splits into three cases
depending on Skg:
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(1) Sg=0b.
(2) Sgr<b.
(3) Sg >b.
This trichotomy classifies the different outcomes of stretching the roots in a cover relation:

Lemma 18. (1) In Case 1 above, str,(s;(a)) < str,(«), and

depth(str, («)) = depth(str,(s.(«))) + (n + 1).

(2) In Case 2, str,(s.(a)) < strp(«), and

depth(str, («)) = depth(str,(s;(@))) + (2n + 1).

(3) In Case 3, str,(s;(a)) and str,(«) are incomparable, and
depth(str,(a)) = depth(str,(s,(a))) + 1.
Proof. We know from the proof of Proposition 16 that

Str,, (82 (V) = SugSzy =+ * Sy, Sy * Sy Suo (STR (X))

We thus check, in each case of the trichotomy, whether each of these simple reflections
steps up or down in the root poset, and use the fact that the poset is graded by depth.
Let b := S, + Sg — b be the value at x in s,(a). Then Figure 3 shows the result of
applying each reflection in turn.

(1) If Sg = b, then &Y = Sp. In particular, after we apply s,, halfway through the
chain, we have already reached str,(s,(«)) after n + 1 steps. Since S; < b, at
each of those steps we go down in the root poset, so str,(s,(a)) < str,(a) and
depth(str,(s.(«))) = depth(str,(a)) — (n + 1).

(2) If Sgp < b, then ¥ < S;, < b. Thus at each of the 2n 4 1 steps in Figure 3, a
coefficient strictly decreases. Thus str,(s,(a)) < str,(«) and depth(str,(s.(«))) =
depth(str,(a)) — (2n + 1).

(3) If Sgp > b, then b’ > S, < b. Thus the first n 4 1 steps in Figure 3 move down in
the root poset, while the remaining n move back up. Thus depth(str,(s.(«))) =
depth(str,(«)) —1. In particular, if str, (s, (a)) were comparable to str, (a), it would
be covered by str,(a), but since they differ in more than one coefficient this is not
possible. O

This gives us our first numerical result on stretching a root:

Corollary 19. For any positive root «, there exists an integert such that depth(str, («)) =
tn + depth(a).
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Figure 3: The sequence of roots appearing at each step of the expression str,(s,(a)) =

SwoSaey " SwySey_1 *** Suy Sxo (St (@)).

Proof. By induction on depth(a). For any simple root based away from vertex z, the
stretched depth is 1, while for the simple root «a, it is n + 1.

Then suppose we have a cover s,(a) <« in the root poset, such that depth(str,(s.(«)))
= t'n + depth(s,(a)). If z # x, then str,(s,(«)) < str,(«) is still a cover, and so

depth(str,(a)) = t'n + depth(s.(a)) + 1 = t'n + depth(«).
If z =z, then Lemma 18 implies
depth(str,(«)) = t'n + depth(s,(a)) + en+ 1 = (¢ + ¢)n + depth(«),
where ¢ =0, 1, or 2. O
Definition 20. The depth growth rate of « is this integer ¢.

We end this section by looking in more detail at examples of stretching the roots in a
cover relation.
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3444 4442
1 1 /N /N
1 >, 3344 3442 4422
PN /SN /N /N
1 1 3334 3342 3422 4222
I I I I
1 1 3331 3312 3122 1222
~, N/ N /N S
1 =1 3311 3112 1122
1 1 NN/

3111 1112

Figure 4: A cover exhibiting case (2) and the interval between the 3-stretched roots.
Roots on the right are represented by their values on the stretched path.

2666
/N

59566 4666
N

/ \
5556 3566 4466
NN /N

5

J 3 5555| 3556 3466 4446
/

4

N\l
N\

N N/
3 3555 3356 3446 |4444

N/ N /N
3355 3346 3444
N

/o
N\

3 N/
3335 3344

N/

3334

Figure 5: A cover exhibiting case (3) and the analogue of the interval shown in Figure 4.

In case (1), since str,(a) and str,(s,(«)) are comparable, we can consider the interval
between them. In this case it is just the chain forming the top half of Figure 3: each
reflection in that chain is the only one we can make while decreasing a coefficient on the
stretched path.

In case (2), on the other hand, there are other ways of getting from str, () down to
str, (sz()). Figure 4 shows a cover relation exhibiting case (2), together with the interval
between their 3-stretched versions. This reveals a bit of type A behavior: the interval
consists of two copies of the A,, root poset, one inverted.

In case (3), although str,(a) and str,(s,(a)) are incomparable, we can situate them
in a sideways version of the interval in Figure 4, accounting for the fact that reflections
which go down in the root poset in case (2) may go up in case (3). This is illustrated in
Figure 5.

In all cases, we see the effect of stretching on depth stated in Lemma 18.

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(3) (2021), #P3.38 13



3 Downsets in stretched root posets

For a positive root «, the downset generated by « is
la:={ped"|f<a}

This section will prove the following result:

Theorem 21. Let a be a positive root. Then there is a polynomial p(n) such that | |
strp ()| = p(n) for sufficiently large n.

We show this by constructing a single finite structure which gives | str,(«) for all
sufficiently large n.

To motivate the kind of stability we will use, consider the finite-type case of D,,. In
this case, the root poset has a unique maximal root, obtained by stretching the maximal
root for Dy:

1
2= —2—1

1/

Thus the entire set of positive roots for D,, is of the form | str, _4(«).
The roots of D,, for all n fit a finite list of patterns. For example, any function of the
form

1
\27...72717”.7171

1
is a root. We can compactly describe the roots of this form with the notation

~

1 * *
e

using an asterisk on a coefficient to mean that it can repeat any nonzero number of times.
(We distinguish the rightmost vertex because it is not part of the stretched path.) Then
we can write down a list of expressions like this which describe the roots of every D,
shown in Figure 6.

In general, however, describing downsets is not quite as simple as allowing values to
repeat freely on the stretched path. For example, the downset of the top root in Figure 7
contains roots of the form on the left but not those of the form on the right, as suggested
by Figure 5.

Thus, to describe downsets as in Figure 6, we need our patterns to allow for some
values at the ends of the stretched path to not repeat.

Definition 22. Let 3 be a integer-valued function on the vertices of some stretch of G,
together with a marking of some consecutive vertices on the stretched path by asterisks,
subject to the constraint that no adjacent asterisked values are the same.
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1 0/1 _
T —1 o 0/1 0/1 /
0/1 0 0
~1r=0"—0 o0 —1*-0/1 o0 —1
0/1 0 / 0
0 1 0
0 —1"—0"—0 ~0—0 ~0—0
0 0 1

Figure 6: The roots of D,, are precisely the functions which fit these patterns.

i>5— —5/3
17 . 3
in downset \\\ not in downset
1 3 1 T 3
~ — ~ —
123~ —3—14 1 =3 —3—4—14
1 — ~~ 3 1 — ~~ 3

Figure 7: The downset of the top root contains roots of the form on the left, but not
those of the form on the right.

Then the stretching class determined by 3 consists of all functions in L], Rstn(G)
which assume the non-asterisked values at the prescribed places, and which assume the
asterisked values along the stretched path in the prescribed order, each repeated any
nonzero number of times.

We note that Propositions 16 and 17 imply that if one element of a stretching class is
a root, they all are, so we can also think of stretching classes as subsets of | | str,(®).

As we denote individual roots by Greek letters, we denote stretching classes by barred
Greek letters, such as 3. We denote the set of functions in 5 defined on a specific stretch
str,(G) by B[n]. We emphasize that, despite our name and notation, stretching classes
are not, equivalence classes, since they can intersect nontrivially.

Example Start with D, and let 5 be the stretching class

~

Sy

Then j[3] consists of 3 roots for strs(Dy) = Ds:
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class left neighbor class right neighbors

internal vertex J

5 ]
3 1

1
‘ right endpoint

left endpoint

Figure 8: An example of the terminology we use with stretching classes.

1
1>2—1—1—1—1
].\
=22 —1—1—1
1
=22 —2—1—1

In what follows we will consider how reflecting a root affects the stretching classes it
belongs to. To do this, we need to distinguish whether this reflection is happening on or
off the path of repeatable values marked by asterisks, or at the path’s ends.

We will freely talk about the vertices and coefficients of a stretching class, by which
we mean the vertices and coefficients in the defining notation. In this language, we define
the left endpoint of a stretching class to be the leftmost vertex with an asterisk, and
define the right endpoint to be the rightmost such vertex. The internal vertices will
be the other vertices with asterisks. The class left neighbors will be the neighbors to
the left of the left endpoint, and we define the class right neighbors similarly. (Note
that these may be different from L, and R,, since in general not every vertex on the
stretched path will have an asterisk.) We illustrate these terms in Figure 8.

We may also talk about reflecting at a vertex of a stretching class, which amounts
to applying the reflection to the defining notation as if it were an ordinary function on
str,(G), ignoring the asterisks.

Finally, let z, be the left endpoint and let v, ...,y be the class left neighbors. Then
the weighted left sum of 3 is Y, —A,,,, 3(v:). Note that if 2, = xg, this is the quantity
Sy, from section 2.4, and otherwise it is B(z¢_;). We likewise define the weighted right
sum.

Now fix a positive root a. We iteratively construct a directed graph P whose vertices
represent stretching classes which, for sufficiently large n, describe | str, («). First, define
a stretching class a* by placing an asterisk on the value of a at z, so that a* consists
of the stretches of . We make o* a vertex of P. Then in each step of constructing P,

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(3) (2021), #P3.38 16



L L
(1) 13 =4 1 =3 4
1 3 1 3
(2) 6—20"423° } 12" —— 620" 9" | 12"
6 6 6 6
1 11 1
™~ — ™~
(3) 3T 3T
3 3 3 3
2 6 2 6
2 11*\%211*
n 2 5 2 5
2 52 5
226 — 226 s 5

Figure 9: The four operations we can perform on stretching classes corresponding to
reflections on their roots.

for each of its vertices 3, we add arrows 3 — 7, where 7 can be obtained from 3 by the
following operations:

(1) Reflect at a vertex without an asterisk, such that its coefficient decreases.
(2) Reflect at an internal vertex, such that its coefficient decreases.

(3) If the weighted left (right) sum is less than the coefficient of the left (right) endpoint,
insert that sum with an asterisk as the new left (right) endpoint.

(4) If there is more than one vertex with an asterisk, reflect at the left /right endpoint
such that the coefficient there decreases. If the new coefficient on the left/right
endpoint is greater than or equal to the asterisked coefficient next to it, remove the
asterisk from the left/right endpoint.

Figure 9 shows examples of these operations.
In each case, we don’t add the arrow if the operation results in a negative coefficient.
This allows for the construction of P to eventually stop, and we now show this happens.

Lemma 23. P is finite and acyclic.

Proof. We track the following tuple of numbers associated to a stretching class in lexico-
graphic order, from most to least significant:

e The sum of the weighted left and right sums.

e The sum of the coefficients at the left and right endpoints.
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e The sum of all the coefficients.
We check that the operations used to define P can only decrease this tuple.

(1,2) Operations 1 and 2 don’t lengthen the diagram, and they decrease one of the coeffi-
cients. Then either the first quantity decreases, or the first two stay the same while
the third decreases.

(3) This operation leaves the class left/right neighbors untouched, but decreases the
coefficient at either the left or right endpoint, so it keeps the first quantity the same
while decreasing the second.

(4) If the reflected coefficient on the left endpoint is greater than or equal to the aster-
isked coefficient next to it, then it must also be less than the weighted left sum, or
else the reflection would not have decreased it. By removing the left endpoint’s as-
terisk, we make it the sole class left neighbor, and so we have decreased the weighted
left sum.

On the other hand, if we don’t remove the left endpoint’s asterisk, then the sum of
the weighted left and right sums stays the same while the sum of the left and right
endpoints’ coefficients decreases.

Thus P has no oriented cycles and (since we require every vertex to have all non-
negative coefficients) no infinite paths. Since each vertex has only finitely many arrows
emanating from it, we also know P is finite. O]

Now we show the main result of this section.

Theorem 24. Let the graph P be constructed from a root o as above. Let ng be the
smallest value such that every stretching class in P with a single asterisk has an element
defined on str,,(G). Then forn > ny+ 1,

tstra(@) = | Bln)
Bep
We present each direction of containment as a separate lemma.

Lemma 25. Let o, P,ng be as above, and n > ng+ 1. Then

bstra(a) < | Bln)

BeP

Proof. Certainly str,(«) is in the latter set for any n. We then show that, for any cover
relation 0 < in the root poset, if v € Uzcp B[n], then so is 6. Let 7 be a stretching class
in P which contains v. We claim that 6 belongs either to a stretching class obtained by
applying to 7 one of the operations used to define P, or to 7 itself.

We proceed by cases. Say that a coefficient of 7 is repeatable if it is represented by
an asterisked vertex in 7, and say that a repeatable coefficient is alone if it is the only
coefficient of v represented by that vertex (so that both of its neighbors are different).
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(0)

If § is obtained from 7 by reflecting at a repeatable coefficient which is not alone, and
it is not the furthest left or furthest right repeatable coefficient, then the reflection
there changes the quantities of repeated coefficients but not which ones appear:

7a7b7b7
I
7a7a7b7

Thus ¢ is also in 7.

If 0 is obtained from v by reflecting at a non-repeatable coefficient, then § belongs
to a stretching class obtained by applying operation 1 above.

If we reflect at an alone coefficient other than the furthest left or furthest right re-
peatable coefficient, then § lies in the stretching class obtained by applying operation
2 above.

If we reflect at the furthest left or furthest right repeatable coefficient and it is not
alone, then ¢ lies in the stretching class obtained by applying operation 3.

If we reflect at the furthest left or furthest right repeatable coefficent and it is alone,
then because n > ng + 1, ¥ must have more than one coefficient with an asterisk.
Then ¢ lies in the stretching class obtained by applying operation 4. O]

Lemma 26. Let o, P be as above. Then

U B[n] Clstr,(a)

Bep

In particular, this second containment is true for all n.

Proof. We know that str,(«) is the sole member of a*[n], and it is in |str,(«). Then we
will show that, for each arrow 5 — & of P and § € &[n], there is some v € ¥ such that
0 < 7. We check this for each of the four operations:

(1)

(2)

If § is obtained from 7 by a reflection at a non-asterisked vertex, then any root in §
is obtained from one in 7 with the same amount of each asterisked coefficient, just
by performing that reflection.

Suppose § is obtained from % by a reflection at an internal vertex where § has
coefficient b, and let § € d[n]. If b is alone in &, then reflecting there will bring us
up to a root in 7. Otherwise, we know that some neighbor of b* in § must have a
coefficient &/ > b, or else b could not be smaller than the value of 7 at its vertex. By
repeatedly reflecting at the instances of b which neighbor instances of ¢/, we decrease
the number of repetitions of b while moving up in the root poset:
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Thus we reduce to the case that b is alone.

(3) Suppose that § is obtained from 7 by inserting the weighted (without loss of gen-
erality) left sum, which we call b, as the new left endpoint, and let § € §[n]. As in
case (2), if b is alone on the left end of the stretched path, reflecting there moves
back up to an element of 7, while if b is not alone, the next coefficient to the right
on the path will be larger, and we can move up to a case where b is alone.

(4) Suppose that § is obtained from 7 by reflecting at the (without loss of generality)
left endpoint, resulting in the value b. Let a be the weighted left sum, and let ¢ be
the asterisked coefficient immediately to the right of b.

If ¢ < b, then b has no asterisk, so any § € S[n] has only one instance of b preceding
c. Reflecting there returns us to a root in 7. If ¢ > b, b may appear multiple times
in §; however, since ¢ > b, we can apply the same reasoning as in cases (2) and (3)
to move up to an element of d[n] with only one instance of b, whereupon we fall
back to the previous reasoning. ]

Thus we can capture | str,(«) for sufficiently large n. We now derive the consequence
that | | str,(a)| is a polynomial in n.

First, we must deal with redundancy between our stretching classes, since they may
nontrivally overlap. Fortunately, those overlaps are also stretching classes.

Lemma 27. The intersection of two stretching classes is either empty, a single root, or
a stretching class.

Proof. 1f the classes assume different values off the stretched path, then their intersection
is empty. Thus it suffices to consider only the requirements the classes impose on the
stretched path and assume they agree elsewhere. It will clarify matters to introduce a
slightly different notation.

For a symbol a and positive integer m, let a®™ denote the set of words consisting of
at least m copies of a and let a™ denote the singleton set containing the word consisting
of exactly m copies of a. Then for multiple symbols aq, ..., a, and integers mq, ..., my,
we denote by

(Z)m1  (Z)ma (Z)mx
al a2 o .. ak

the set of all words obtained by concatenating words from these sets.
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In particular, by collapsing together repeated values, we see that the sequences of
values which a stretching class allows to appear on the stretched path are described by
an expression of the form

mi my  Z2Mer1  >1 =21  >mg  Ms+1 mg
G O T&r—f—l ar+2 TG 10 Sa‘s—‘rl e ak
in which no consecutive q;’s are the same.
For the sets defined by two such expressions to intersect nontrivially, their a; values
must be the same. In this case, we can find their intersection by computing it for each a;
individually. We have

m !/

) a™ m=m
a"Nam = .
g m#m

m < !/
- , a m<m
a”™mNa™ = .
%) m>m
> >m/ > !
™ N e = a/max{m,m}

Using these rules, one can check that intersecting two sets of the above form produces the
empty set, a singleton (if no ¢®™ terms remain), or another set of that form. O

The final step is to compute the size of a single stretching class, which is a straight-
forward counting problem.

Lemma 28. Suppose f3 is a stretching class defined on str,,(G) with  asterisked vertices.

Then 1
—_ n—m -
Bl = (")

Example We return to the example following Definition 22, which featured a stretching
class ( defined on stry(D,) with 2 asterisked vertices:

1
1>2i...i271i...i171

An element of this class on a particular str,(D,) is determined by the placement of the
transition from 2’s to 1’s, and there are n = ("_;ff_l) ways of doing this.
Combining Theorem 24 with the last two lemmas and the inclusion-exclusion principle

allows us to conclude:

Theorem 29. Let o, P,ng be as above. Let { be the largest value such that there is a
stretching class in P with { asterisked vertices. Then there is a polynomial p(n) of degree
¢ — 1 such that | | str,(a)| = p(n) forn > ng+ 1.
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4 Characteristic polynomials of shard arrangements

Recall that V' is the vector space containing the roots of ®. Let VV* be the dual space, and
let (f, ) := f(«) be the natural pairing V*xV — R. Then we consider the contragradient
action of the Coxeter group W on V*, defined by (w(f),a) = (f,w™*(a)). For each root
@, s, acts by a reflection over the hyperplane at := {f € V* | (f,a) = 0}.

It is in the context of these hyperplanes that we consider rank 2 subarrangements,
the relation of cutting, the fractures obtained by intersecting each hyperplane with the
ones cutting it, and the shards separated by these fractures, as described in Section 1.3.
Our distinguished base region D will be the subset of V* which pairs positively with every
simple root, and thus with every positive root.

We will use an alternative description of fractures using reduced expressions, due to
David Speyer and Hugh Thomas. First, we define a rank 2 subsystem of ® to be the
set of roots lying in a fixed 2-dimensional subspace which they span. These roots are dual
to the hyperplanes of a rank 2 subarrangement, and we define the fundamental roots
of the subsystem to be the positive roots corresponding to the basic hyperplanes.

Lemma 30. Let R be a rank 2 subsystem. Let o, (3 be its fundamental roots. Then
every positive root in R 1s a nonnegative linear combination of o and (3, and this property
characterizes the fundamental roots.

In other words, if we call the roots of R positive or negative according to whether they
are positive or negative in @, then the fundamental roots are the simple roots of R. As
such, we use “positive” below to mean “positive in ®”.

Proof. Let R* be the associated rank 2 subarrangement. Let Dp be the region of R+
containing D. It consists of points which pair positively with every positive root in R.

In particular, because a and 8+ border Dp, if a point in V* pairs positively with a
and (3, it also pairs positively with every other positive root in R. If some other positive
root 7 is a combination of a and § with a negative coefficient, we can find a point which
pairs positively with « and g but not with ~, a contradiction.

Conversely, suppose every positive root in R is a nonnegative linear combination of «
and #. Then Dg consists of points which pair positively with a and 3, so it is bordered
by at and S+. O

Lemma 31. Let R be a rank 2 subsystem not containing the simple root c;. Suppose
and (B are the fundamental roots of R. Then s;a and s;8 are the fundamental roots of

SZ'R.

Proof. Applying s; sends the set of positive roots other than «; to itself. In particular,
if every positive root in R is a nonnegative linear combination of v and [, then every
positive root in s; R is a nonnegative linear combination of s;a and s;(. O

From this lemma, we get the following recursive description of fractures (which also
appears as Observation 4.7 in [9]).
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Proposition 32. Let 3,5 be positive roots with B = s;5', such that 5 — ' is a positive
multiple of o;. Then the fractures of B+ consist of a;- N B+ and all subspaces of the form
s;(F") as F' ranges over the fractures of (3')*.

Proof. First, we show that ;- cuts 8+. Because f3 is a linear combination of 8’ and «,
they all lie in a rank 2 subsystem. aj" is a basic hyperplane, because it directly borders
D. On the other hand, 8+ is not: if it were, 8’ would be a positive linear combination of
«; and 3, which is not true. Thus «; intersects S+ in a fracture.

Now let R be any rank 2 subsystem containing 3 other than the one just considered.
By Lemma 31, s; sends the fundamental roots of R to those of s;R. In particular, R

induces a fracture a* N B+ if and only if s; R induces a fracture (s;a)* N (8')*. O
Proposition 33. Suppose the root o has a reduced expression Sy,sy, | - Sy, (qy,). Then
the fractures of a- are its intersections with

L
Oé?/e

Sye (Oéyefl )J_

SyeSye_1 (O‘yefz )L

SyeSye_1 """ Sya (Oéyl)J_

Proof. By induction on depth. A simple root is fundamental in every rank 2 subsystem, so
its hyperplane has no fractures. Now let o/ =s,, | - - - sy, (o, ), and suppose the fractures
of (o/)* are its intersections with

Ye—1

Syl—l (ay2—2>

Syo_1Sye_s(Qyy_3)

1

1
Sye—15ye—2 """ Sy2 (Oéyl)l

By Proposition 32, the list of fractures of o is obtained by applying s,, to these and
appending a;, N o, as required. O

Example Using the notation of Figure 2, consider the root 111 of A3. Using the reduced
expression s;s3(ay), the above proposition implies that the fractures of (111)* are its
intersections with the hyperplanes of

) = 100
81(063) = 001

Note that, although these account for all the cuts in (111)+, they are not all the hyper-
planes which cut (111)1. For example, (110)* also cuts it, but it lies in the same rank
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2 subarrangement as (001)* and (111)*. A different choice of reduced expression would
produce different hyperplanes but the same set of cuts.

In order to systematically describe the fractures of a root as we stretch it, it will be
useful to systematically write reduced expressions for the stretches. Recall from section
2.4 that the obstruction to this is case (3) of the trichotomy outlined there. In this case,
we cannot obtain a reduced expression just by replacing each reflection at the elastic
vertex.

However, in the long run of stretching, we can avoid this obstruction. We may want
to stretch some amount before choosing a reduced expression, so we first specify a way of
adjusting our base diagram from G to one of its stretches.

Definition 34. Let G be a Coxeter diagram with elastic data (x, L., R,) and let z; be
a vertex on the stretched path of str,,(G). Then the elastic data induced by x; for
stry, (G) is

(l’o,Lx,{.’El}) ifi=0

(xia {xi—l}; {171‘_:,_1}) Hfo<i< No
(‘TTLOJ {xnofl}a Rm) lf Z - no

Lemma 35. Let o be a positive root. Then there exists some ng, a vertex x; on the
stretched path of str,,(G), and a reduced expression for str,,(«) that avoids cases (2) and
(8) of the above trichotomy with respect to the elastic data induced by x;.

We will refer to such a reduced expression as a type (1) expression with respect to
the induced elastic data.

Proof. We proceed by induction on the coefficient at x. In the base case that a(x) = 0,
we can avoid all cases of the trichotomy, because we never have to reflect at x. Now
consider a root a with a(x) > 0 and begin constructing a chain down from it in the root
poset. Suppose that, having reached the root o', we reflect at x for the first time.

Suppose first that o satisfies case (1) of the trichotomy. Using the induction hypoth-
esis, we obtain some stretch str,,(s,(a’)) and a type (1) expression for this root with
respect to some x;. We now use the following lemma:

Lemma 36. If there exists a chain from o down to B in the root poset which avoids
cases (2) and (3) of the trichotomy with respect to x, then there is likewise such a chain
from str,(«) down to str,(B) which avoids cases (2) and (3) with respect to any x; on the
stretched path.

Proof. Given such a chain, we can obtain a chain from str, («) down to str, (/) by replacing
every reflection at x with the first half of the chain constructed in the proof of Lemma
18. Then each reflection at z; in this chain also falls under case (1). O

In this case, we have a chain from « down to s,(a’) which avoids cases (2) and (3).
Applying the lemma, we get a similar chain from str,,(«) down to str,,(s.(a’)), which
we can append to the type (1) expression for str,,(s,(c’)) to get a type (1) expression for

strp, ().
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Now suppose instead that o satisfies case (2) or (3). Assume without loss of generality
that Sp < a(z). Then stri(«’) satisfies case (1) with respect to vertex zp. By the
induction hypothesis, there is some ng and a type (1) expression for str,,(s.,(stri(’)))
with respect to some xg;. Then by the above lemma we can turn the chain from str;(«)
down to s, (stri(a’)) into a chain from str,,1(«) down to str,, (s, (str1(c’))), which we
can append to the type (1) expression for str,, (s,,(stri(a’))) to get a type (1) expression
for stry,,+1(a). O

Once we have a type (1) expression for str,, () with respect to the elastic data induced
by z;, we can get a reduced expression for any str,,.,(a) = str,(str,,(«)) by replacing
each instance of s, with an appropriate choice of S, Sz, = Suy, OF gy, S,y """ Saygs 8S
in part (1) of Lemma 18. In particular, this construction implies:

Proposition 37. The number of reflections at the elastic vertex in a type (1) expression
for « is the depth growth rate of a.

Thus we can write down reduced expressions for stretched roots in a systematic way,
and we will describe their fractures in a systematic way.

To clarify which aspects of these arrangements stabilize, we take a cue from type A,
and write the roots of str,(®) in a different basis, still indexed by the vertices of G. We

define
B = Qy y & {xo,..., 1}
Y Z;‘:O Oéxj Yy=x;

or, inversely,

Qy = :
/Bl‘i _/Bl’i_l Y =T > 1

In doing this, we aim to recapture the interpretation of the type A Coxeter groups
as symmetric groups, with simple reflections corresponding to transpositions. To gauge

whether this works, we check how the simple reflections s,, act in the S-basis. We have

{ﬂy y & {r,. .., xn}

/By + 6:00 y E LZ‘
_ﬁxo Yy = o

Sx = 4.1
0</By) /By_ﬁl'o 92%722 1 ( )
By otherwise.
For 1 < j <n—1, we have
Be;  Y=Tj
ij (5?;) - B%j_1 y - .T] (42)

By otherwise
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Finally, we have

ﬁy + ﬂ:}:n - ﬁxn_l ) € Rz

Ba:n Y = Tn-1
Se, (By) = B (4.3)
Bﬂ:nfl y = Tnp
By otherwise
Thus, away from the ends of the path, the s,, act by transpositions on our S-basis.
With this property in mind, we examine the fractures of str,(a)* in the S-basis.
Theorem 38. Let a be a positive root with a type (1) expression. Then there exist:
e a nonnegative integer r;
o two lists of formal linear combinations fi,..., fs and g1, ..., g: (where t is the depth

growth rate of a) of the following terms:

By fory a vertex of G other than z,

/Bx()’ﬁfl?‘ A ’er7
/81771774/6-'137177*4»17 ctt ,/an;

such that for n > 2r, the fractures associated to str,(«) are precisely the intersections of
str, ()t with the arrangement

{(fi)  11<i<s}U{(gi—Bo))" |1<i<tr+1<j<n—r—1}

In what follows, we say that a linear form is unsupported at a variable 3, if its
coefficient of 3, is 0. Thus, we want our forms f; and g; to be unsupported at 3, for
r<jg<mn-—r.

Proof. We proceed by induction on the length of our type (1) expression. For simple
roots, the proposition is vacuously true. Bearing in mind our above discussion of how to
obtain a reduced expression for str,(«), it remains to show that the proposed uniform
description of the fractures is preserved when we apply s, for y ¢ {x¢,...,z,}, as well as
when we apply S;,8z, - Sz, OF Sz, 5z, 1 Sa-

In the first case, applying a reflection s, for y off the stretched path does not change the
coefficients of o, , ..., v, ,, because the vertices x4, . .., x,_1 do not neighbor any vertices
off the stretched path. Thus it also does not change the coefficients of 3,,,...,8,,_, in
the -basis. Thus, though we may have to adjust r, applying s, to a list of fractures with
the claimed uniform description gives another list with such a description. To this we add
Oz;‘, which is unsupported at all the 3,,, and thus also fits into the uniform description.

In particular, this doesn’t increment the number ¢ of collections of fractures of the
form (g; — 8;)*, which is consistent with the number of reflections at z in the original
expression (and thus, by Proposition 37, the depth growth rate) staying the same.

Thus it remains to show that applying the sequence s, ---s,, or s,, - Sz, also pre-
serves the uniform description of the fractures, using equations 4.1-4.3 from above.
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First, if we apply s4, - - - 55, to a fracture which is unsupported at 8, .,,..., 8%, .1,
then it is straightforward to verify that the result is unsupported at 3, .,,..., Bz, _, -

Similarly, if we apply sy, - - - S,, to a fracture of the form (g; — 3,,)*, where g; is unsup-
ported at By, .\, ..., Bs,_ .., We get one of the form (g — ﬁmﬂl)l, where ¢ is unsupported
at By, 0+ Be,_,- Again, after adjusting r, this matches the form required of the second
class of fractures in our uniform description (with a couple now falling into the first class
of fractures because of the change in r).

Thus applying s, - - - S5, to the existing fractures gives a collection of fractures of the
claimed form. To this collection we add

0, = B,
Sz (O‘m)J— = ;_1
Sxos.’ﬂl e Sl'nfl (amn)J_ - !j_n

which certainly have the (g; — 3;)* form.
We can show in the same way that applying s,, S., , -5z, to the existing fractures
gives a collection of fractures of the claimed form, and to this collection we add

ain - (/690” - anq)L
Sy, (Oéxn—l)J_ = (5@:” - ﬁxn_2>J—

SanSzp_1 """ Sz (Oéll)J_ = (ﬁrn - 5960)1_

SanStp_1 " Sxy (O‘IO)J_ = ;_n

which, except for the last one (which we can account for by adjusting r), have the (g;—3;)*
form.

In either case, note that this increments the number ¢ of collections of fractures of the
form (g; — 3;)*, which is consistent with the number of reflections at x in the original
expression being incremented. O]

Combining this result with Lemma 35, we draw a conclusion for arbitrary roots:

Corollary 39. Let a be any positive root. Then for sufficiently large n, the fractures of
str, (@)t admit a uniform description as in Theorem 38.

For an illustration of this result, we refer the reader to the example in the introduction
following Theorem 8.

Now we use this description of the arrangements of fractures to describe their charac-
teristic polynomials (as defined in [2]).
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Theorem 40. Suppose the positive root o has depth growth rate t. Let x,(q) be the char-
acteristic polynomial of the fracture arrangement of str, (). Then there exist polynomials
p1(q), ..., pi(q) and an integer e such that

Xn(a) =Y pr(@)(qg — k)"

Proof. We use the following result of Athanasiadis:

Lemma 41 ([2, Theorem 2.2]). Let A be any subspace arrangement defined over the
integers and let x(q) be its characteristic polynomial. Then for q a sufficiently large
prime, x(q) is the number of points in the complement of A over F,.

Thus, to show x,(¢) has the claimed form, it will suffice to show that the point counts
over F, eventually do.
Choosing a point in the complement of the hyperplanes in Theorem 38 amounts to:

e choosing all the coordinates except 8, .,,..., Bz, ,_, such that the f; are nonzero;

e plugging these coordinates into the g; and choosing ;. ,, ..., Bs,_,_, independently,
subject to the condition that they are different from all the g;, which excludes at
most ¢ values.

To count these points, consider the subarrangement formed by the f;. We stratify its
complement according to the number of distinct values assumed by the g;. Each stratum
is built up from the hyperplanes (f;)* and (g;, — g;,)* through complementation, union,
and intersection, and so we can repeatedly use Lemma 41 to conclude that the number
of points in the kth stratum over F, is given by a polynomial py(q) for large primes q.
Combining this with the choice of the remaining variables gives the claimed form for

Xn(Q)- L]

Corollary 42. Let d be the number of vertices of G. Then for sufficiently large n, the
number of shards of str,(a)* is

(D" (=D (k+ 1)
k=1

In particular, it is O((t + 1)).

Proof. This follows from the fact that the number of regions of a hyperplane arrangement
in R~ with characteristic polynomial x(q) is (—1)4"~1y(=1) [2, Theorem 1.1]. [
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