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Abstract—This paper presents a defense approach
to safeguard a protected area against an attack by
a swarm of adversarial agents in three-dimensional
(3D) space. We extend our 2D ‘StringNet Herding’
approach, in which a closed formation of string-
barriers is established around the adversarial swarm
to confine their motion and herd them to a safe
area, to 3D spaces by introducing 3D-StringNet. 3D-
StringNet is a closed 3D formation of triangular net-
like barriers. We provide a systematic approach to
generate three types of 3D formations that are used
in the 3D herding process and modifications to the
finite-time convergent control laws developed in our
earlier work. Furthermore, for given initial positions
of the defenders, we provide conditions on the initial
positions of the attackers for which the defenders
are guaranteed to gather as a specified formation at
a position on the shortest path of the attackers to
the protected area before attackers reach there. The
approach is investigated in simulations.

I. Introduction
A swarm of multiple robots can in principle perform

certain tasks more effectively than one individual robot
[1]. However, the fast advancement of swarm technology
raises concerns with respect to safety. For instance,
autonomous robots in the proximity of protected area
(e.g., safety-critical infrastructure) may in some cases be
considered as a threat (e.g., aerial robots close to airports
or stadiums). In our prior work [2], [3], we developed
a method called ’StringNet Herding’ in which a group
of defending agents (defenders) herds the adversarial
swarm away from the protected area by enclosing it in a
closed formation of string-like barriers, called StringNet.
We assumed that the agents of the adversarial swarm
(attackers) are risk-averse and tend to move away from
the 2D StringNet formation formed by defending agents,
and that the motion of all the agents is constrained to
a plane of a fixed altitude. However, in practice, the
motion of an attacking aerial swarm does not have to be
restricted to a plane. Therefore, in this paper, we extend
the StringNet approach to 3D environments.

1) Related work: Earlier methods in the literature,
namely: n-wavefront herding [4], potential field approach
[5], potential cage approach [6], switched system ap-
proach [7] that are cited in [3] also provide extensions to
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3D environments or some hint to extend the presented
2D laws to 3D environments. However, the 3D extensions
are limiting due to: 1) dependence on knowing the model
of the attackers’ motion, 2) lack of modeling of the
attackers’ intent to reach or attack a certain protected
area, 3) simplified motion and environment models.

In [8], a group of aerial robots tows a capture net to
herd a maneuvering UAV in a 3D environment in finite
time. However, the capture net is an open surface in 3D
space, so the target UAV still has a chance to escape
during the herding process.

2) Overview: In this paper, we build on the 2D
StringNet herding approach [3] under the similar as-
sumption of risk-averse adversarial attackers, i.e., at-
tackers that adjust their course to avoid obstacles. We
propose an approach for 3D-StringNet herding, where
3D-StringNet is a formation of expandable, triangular
net-like barriers formed by a group of defenders (Fig. 1).
Similar to 2D-Stringnet herding, 3D-StringNet herding
also consists of four phases: 1) gathering, 2) seeking,
3) enclosing and 4) herding. We design three 3D for-
mations of the defenders namely planar, hemispherical
and spherical that are required to be achieved in the
phases discussed above in order to effectively enclose the
attackers and herd them to a safe area. The control laws
designed in [3] are extended to 3D spaces by considering
3D rigid body dynamics. The ‘3D-StringNet Herding’
thus addresses the aforementioned issues similar to its
2D equivalent. We also provide a convex optimization
formulation to find conditions on the initial positions of
the attackers for which the defenders are able to achieve
a specified formation at a point on the expected path
(shortest path to the protected area) of the attackers
before the attackers could reach that point.

In summary, the design of three 3D formations, appro-
priate modifications to the 2D herding control laws [3],
and the conditions on the initial positions of the attackers
for defenders’ guaranteed gathering are the main contri-
butions of this paper compared to our previous work.

3) Structure of the paper: Section II describes the
mathematical modeling. The 3D herding formations are
discussed in Section III, while the modifications to the
2D herding approach are provided in Section IV. Con-
ditions on the attackers’ initial positions for guaranteed
gathering are provided in Section V. Simulation results
and conclusions are reported in Section VI and VII.

II. Modeling and Problem Statement
Notation: Euclidean norm is denoted by ‖·‖. Absolute

value is denoted by |·|. Bρ(rc) = {r ∈ R3| ‖r− rc‖ ≤ ρ}
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denotes a ball of radius ρ > 0 centered at the point
rc ∈ R3. A saturation function Ωū : R2 → R2 is defined
as: Ωū(g) = min(‖g‖ , ū) g

‖g‖ . We use characters g, s,
e, h as subscripts or superscripts to denote gathering,
seeking, enclosing and herding phase, respectively. Char-
acters sb, sn used as subscripts denote string barrier and
StringNet, respectively. Characters op, cl used as super-
script denote open and closed, respectively. Similarly,
characters sp, hs, pl used as subscript or superscript
denote spherical, hemispherical and planar, respectively.

There are Na attackers denoted as Ai, i ∈ Ia =
{1, 2, ..., Na} and Nd defenders denoted as Dj , j ∈ Id =
{1, 2, ..., Nd}. The protected area P ⊂ R3 is defined as
P = {r ∈ R3 | ‖r− rp‖ ≤ ρp}, and the safe area S ⊂ R3

is defined as S = {r ∈ R3 | ‖r− rs‖ ≤ ρs}, where (rp, ρp)
and (rs, ρs) are the centers and radii of the corresponding
areas, respectively. The agents Ai and Dj are modeled as
spheres of radii ρa and ρd ≤ ρa, respectively and move
under double integrator dynamics with quadratic drag:

ṙai = vai, v̇ai = uai − CD ‖vai‖vai; (1a)
ṙdj = vdj , v̇dj = udj − CD ‖vdj‖vdj ; (1b)

‖uai‖ ≤ ūa, ‖udj‖ ≤ ūd; (1c)
where CD > 0 is the known, constant drag coefficient;
rai = [xai yai zai]T ∈ R3 and rdj = [xdj ydj , zdj ]T ∈
R3 are the position vectors of Ai and Dj , respectively;
vai = [vxai vyai vzai ]T ∈ R3, vdj = [vxdj vydj vzdj ]T ∈
R3 are the velocity vectors, respectively, and uai =
[uxai uyai uzai ]T ∈ R3, udj = [uxdj uydj uzdj ]T ∈ R3

are the accelerations (the control inputs), respectively.
This model poses an inherent speed bound on each agent
with limited acceleration control, i.e., vai = ‖vai‖ < v̄a =√

ūa
Cd

and vdj = ‖vdj‖ < v̄d =
√

ūd
Cd

. The defenders are
assumed to be faster than the attackers, i.e., ūa < ūd
(equivalently v̄a < v̄d). We also assume the following
about the information available to the agents.
Assumption 1: The defenders have access to the po-

sition rai and velocity vai of the attacker Ai that lies
inside a circular sensing zone Zd = {r ∈ R3| ‖r− rpa‖ ≤
%d} for all i ∈ Ia, where %d > 0 is the radius of the
defenders’ sensing zone. Every attacker Ai has a local
sensing zone Zai = {r ∈ R3 | ‖r− rai‖ ≤ %ai}, where
%ai > 0 is the radius of the attacker Ai’s sensing zone.
Attackers aim to reach the protected area P while the

defenders aim to herd the attackers to the safe area S
before the attackers reach the protected area. Attackers
are assumed to stay within a circular connectivity re-
gion of radius ρac around the attackers’ center of mass.
To demonstrate the proposed 3D herding approach, we
model the motion of the attackers using a leader-follower
control strategy [9] that uses potential functions, which
however is not known to the defenders. We consider the
following problems in this paper.
Problem 1: Design 3D formations of the defenders

with minimum number of defenders to enclose the at-
tackers and to herd them to S.
Problem 2: Given the initial positions of the defend-

ers rdj(0), for all j ∈ Id, provide conditions on the initial
positions rai(0), for all i ∈ Ia, of the attackers for which
the defenders are able to gather as a specified formation
centered at a point on the expected path of the attackers
before any attacker reaches the center of the formation.

III. 3D-StringNet and 3D Formations
In this section, we formally define 3D-StringNet and

provide a systematic approach to obtain formations of
the defenders to generate 3D-StringNets.
Definition 1 (3D-StringNet): The StringNet Gsn =

(Vsn, Esn,Fsn) is a graph consisting of: 1) the de-
fenders as the vertices, Vsn = {D1,D2, ...,DNd}; 2) a
set of edges, Esn = {(Dj ,Dj′) ∈ Vsn × Vsn|Dj

s←→
Dj′}, where s←→ denotes an impenetrable and ex-
tendable string-barrier between the defenders; 3) a
set of triangular, expandable, net-like barrier faces,
Fsn = {(Dj ,Dj′ ,Dj′′)|Dj ,Dj′ ,Dj′′ ∈ Vsn, (Dj ,Dj′) ∈
Esn, (Dj ,Dj′′) ∈ Esn, (Dj′ ,Dj′′) ∈ Esn}. The union of
the set of faces is a single component, orientable triangle
mesh with zero genus, i.e., no holes (Fig. 1).

A 3D-StringNet is called closed-3D-StringNet when
the union of the face set is a closed manifold and
we denote the underlying graph as Gclsn = (Vclsn,
Eclsn,Fclsn) otherwise it is called as open-3D-StringNet
and the graph is denoted as Gopsn = (Vopsn, Eopsn,Fopsn).

Fig. 1: 3D StringNet Formation

For example, these tri-
angular net-like barriers
can look similar to the
ones found in [10]. We
assume that the effect
of the triangular net-like
barriers on the dynam-
ics of the vehicles is neg-
ligible. In practice these
triangular net-like barri-
ers can only have finite
size. So, we consider the
following practical con-
straints on the edges and the faces in a 3D-StringNet.
Condition 1 (Practical Constraint on 3D-StringNet):

A 3D-StringNet Gsn should satisfy: ∀(Dj ,Dk) ∈
Esn, Rjk = ||rdj − rdk|| < R̄sb, where R̄sb is the
maximum length any edge in Esn can have.
Condition 1 implies that ∀(Dj ,Dk,Dl) ∈ Fsn, Asjkl ≤√

3
4 (R̄sb)2, where Asjkl represents the area of triangular
barrier face that is formed by defenders Dj , Dk, and
Dl. In the next two subsections, we design three 3D
formations for the 3D-StringNet that satisfy Condition 1
with the minimum number of defenders required to herd
a given a swarm of attackers.

A. Optimal 3D formation for 3D-StringNet Herding
We want to design a closed 3D-StringNet formation

that encloses the connectivity region of the attackers.
Since a triangular mesh generated by connecting uni-
formly distributed points on a sphere contains the largest
spatial volume with a given number of points, we choose
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Fig. 2: Spherical, hemispherical, and planar formation

the locations of the defenders by uniformly distributing
them on a sphere.

The uniform distribution of the defenders on a spher-
ical surface is generated as a solution to the problem of
finding the minimum electrostatic potential energy con-
figuration of N electrons constrained on the surface of the
unit sphere [11] (Thompson problem). Let pi = [θi, φi]T
denote the spherical coordinates of ith-electron on the
sphere of radius ρsn. Denote p = [p1,p2, ...,pNd ]T .
Then, the problem of finding an uniform distribution of
electrons is formulated as an unconstrained optimization:

p∗ = arg minp ΦC (2)

where ΦC , the electrostatic potential energy of Nd elec-
trons, is ΦC =

∑Nd
i=1
∑Nd
j 6=i

1
ρsn
√

2(1−Λ(φij ,θi,θj))
, where

Λ(φij , θi, θj) = C(∆φij)S(θi)S(θj) +C(θi)C(θj), S(θ) =
sin(θ), C(θ) = cos(θ), and ∆φij = φi − φj . We choose
the optimal locations of the electrons in the uniform
distribution from (2) as the desired locations ξs0

l =
ρsn[sin(θ∗l ) cos(φ∗l ), sin(θ∗l ) sin(φ∗l ), cos(θ∗l )]T ∈ R3, for
l ∈ Id, for the defenders to obtain a closed-3D-StringNet
Gclsn. Let F rel

sp (ρsn, Nd) denote the formation of Nd de-
fenders uniformly distributed on the sphere of radius ρsn
centered at the origin and characterized by ξsp0

l , for all
l ∈ Id (see for example F rel

sp (60, 20) shown in Fig. 2).
We choose ρsn such that even if all the triangular

net-like barriers have sides with length R̄sb, the vol-
ume enclosed by the formation F rel

sp (ρsn, Nd) contains a

sphere of radius ρac. This requires ρsn ≥
√
ρ2
ac + (R̄sb)2

3 .
Additionally, we require ρsn ≥ ρac + bd where bd is the
tracking error [3]. Due to practical limit of R̄sb on the
edge length, to obtain a formation with minimal number
of defenders, ρsn should be equal to its minimal value so
we choose ρsn = ρ

sn
= max{

√
ρ2
ac + (R̄sb)2

3 , ρac + bd}.
Given the radius of formation ρsn = ρ

sn
, we want

to find the minimum number of defenders on the for-
mation F rel

sp (ρsn, Nd) that satisfy the practical con-
straints on the maximum edge length on the under-
lying closed-3D-StringNet (Condition 1). This requires
maximum edge length Rmaxsb = max(j,k)∈Eclsn

∥∥ξs0
j − ξ

s0
k

∥∥
on F rel

sp (ρsn, Nd) be smaller than R̄sb. In Fig. 3, the
black curve shows the values of Rmaxsb for different values
of Nd by numerically evaluating uniform formations
F rel
sp (ρsn, Nd) for the given values of Nd. As observed,

finding an explicit function that maps Nd to Rmaxsb on

F rel
sp (ρsn, Nd) is extremely difficult, because the sym-

metry is relatively rare in three-dimensional spherical
formation. To remedy this, we compute the minimum Nd
by numerically enumerating the formations by using the
steps in Algorithm 1. Given the uncertain dependence

Algorithm 1: Minimum number of defenders Nd
1 Initialize Nd = Nd0
2 Find the distribution F rel

sp (ρsn, Nd) and Rmaxsb

3 if Rmaxsb does not satisfy Condition 1 then
4 Set Nd = Nd + 1 and repeat step 2 to 3
5 return Nd

of maximum edge length on Nd, one may be tempted
to use minimum choice of Nd0 = 4 as an initial guess.
However, this may require longer time to determine the
best Nd for larger ρsn. In Fig. 3, the red curve shows
the average edge length Ravsb on F rel

sp . We notice that
the average length of edges Ravsb can be well fitted by a
function fN (Nd):

fN (Nd) =

√
2(1−2 cos( πNd

3Nd−6 ))

(1−cos( πNd
3Nd−6 ))

, (3)

shown as the blue curve in Fig. 3. We have that the
maximum length Rmaxsb satisfies: fN (Nd) < Rrel = Rmaxsb

ρsn
.

So we can safely choose Nd0 = f−1
N ( R̄sbρsn

) as the initial
guess to the iterative scheme mentioned earlier to find
minimum Nd satisfying Condition 1. By doing so, we
start closer to the desired minimum value of Nd and the
computational time to find this Nd can be greatly re-
duced, as shown in Fig. 4, where ∆N represents number
iterations required to find minimum Nd.

Fig. 3: Relative edge lengths in the spherical formation

Fig. 4: Number of iterations comparison
In practice, computation time of finding the minimum

Nd can be further improved by storing data of Rrel =
Rmaxsb

ρsn
for different values of Nd and performing linear

search on it whenever required.
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B. Intermediate 3D-StringNet Formations
Following the similar idea as in our 2D herding ap-

proach [3], the defenders enclose the attackers via the
closed-3D-StringNet, which is realized through a se-
quence of intermediate 3D-StringNet formations. We de-
sign two open-3D-StringNet formations for this purpose:
1) open-3D-StringNet Gopsn with hemispherical formation
F rel
hs , and 2) open-3D-StringNet Gopsn with planar for-

mation F rel
pl . These formations are obtained by trans-

forming the uniform spherical formation F rel
sp by using

mappings that satisfy the Condition 1. These mappings
are discussed in the following subsections.

1) Mapping between hemispherical and spherical for-
mation: Let rspl = [ρsn, θspl , φ

sp
l ]T = [ρsn,p∗l ]T ∈

Ss , [0,∞) × [0, π] × [−π, π] denote the lth desired
position in F rel

sp in the spherical coordinates and rhsl =
[ρsn, θhsl , φhsl ]T ∈ Sh , [0,∞)×[0, π]×[−π2 ,

π
2 ] denote the

lth desired position in F rel
hs in the spherical coordinates.

We consider the mapping mhs
sp : Ssp → Shs given by:

rhsl = mhs
sp(rspl ) = [ρsn, θspl , 0.5φspl ]T . (4)

By mapping mhs
sp , the spherical formation is cut by the

half plane φ = ±π and then two sides of the cut rotate
towards the plane φ = ±π2 yielding a hemispherical shell
like formation (Fig. 2).

We claim that all the edges in Gopsn on the hemi-
spherical formation F rel

hs obtained through the map-
ping mhs

sp satisfy the Condition 1. To see why, con-
sider the length of the edge (rhsi , rhsj ) ∈ Eopsn:
Lhsij = ρsn

√
2− 2Λ(∆φhsij , θhsi , θhsj ). Similarly, the

length of the edge (rspi , r
sp
j ) ∈ Eclsn: Lspij =

ρsn
√

2− 2Λ(∆φspij , θ
sp
i , θ

sp
j ). The only difference between

Lspij and Lhsij is that ∆φhsij = 1
2∆φspij and it is easy

to see that Lhsij ≤ Lspij . These desired positions rhsl
are represented in Cartesian coordinates by ξhs0

l =
ρsn[sin(θhsl ) cos(φhsl ), sin(θhsl ) sin(φhsl ), cos(θhsl )]T ∈ R3,
for all l ∈ Id.

2) Mapping between planar and hemispherical forma-
tion: For a given constraint on the edge length, a planar
formation will create a larger blockage in the path of the
attackers as compared to the hemispherical one. There-
fore, an open-3D-StringNet Gopsn with planar formation
F rel
pl is chosen as the desired formation to be achieved

at the end of the gathering phase.
The planar formation F rel

pl is obtained from F rel
hs . To

ease out the mathematics, F rel
hs is first rotated about

the cartesian y-axis by 90◦ to obtain a rotated formation
F rel
hs′ (Fig. 2). Let rhs′l = [ρsn, θhs

′

l , φhs
′

l ]T ∈ Shs′ =
[0,∞)×[0, π2 ]×[0, 2π) be the position corresponding to rhl
after the aforementioned rotation. Let rpll = [ρpll , φ

pl
l ]T ∈

Cpl , [0,∞) × [0, 2π) be the lth desired position in the
planar formation F rel

pl . We consider a mapping mpl
hs′ :

Shs′ → Cpl given by
rpll = mpl

hs′(r
hs′

l ) = [kplρsn sin(θhs
′

j ), φhs
′

j ]T , (5)

where kpl is a constant scaling factor. The lengths of the

edges in Gopsn corresponding to the formations F rel
hs′ and

F rel
pl denoted as Lhs′ij and Lplij , respectively, are given by
Lhs

′

ij = ρsn

√
2− 2Λ(∆φhs′ij , θ

hs′
i , θhs

′
j ),

Lplij =
√

(ρpli )2 + (ρplj )2 − 2(ρpli )(ρplj )C(∆φij)

≤ kplρsn
√

2− 2Λ(∆φhs′ij , θ
hs′
i , θhs

′
j ) = kplL

hs′

ij .

(6)

We have the following result.
Lemma 1: If 0 < kpl ≤ R̄sb

Rmax
hs

, then Gopsn with planar
formation F rel

pl satisfies Condition 1, where Rmaxhs =
max(j,k)∈Eopsn

∥∥∥rhs′j − rhs′k

∥∥∥ is the length of the longest
edge on the hemispherical formation. Furthermore, we
have R̄sb

Rmax
hs

= R̄sb
Rmax
sb

Rmaxsb

Rmax
hs

> 1.
Lemma 1 implies that, by choosing kpl > 1, the mapping
mpl
hs′ is able to generate a circular planar formation

F rel
pl with radius ρsn,pl > ρsn that satisfies Condition 1.

These desired positions rpll are represented in Cartesian
coordinate system by ξpl0l = ρpll [cos(φpll ), sin(φpll ), 0]T ∈
R3, for all l ∈ Id. We call the local body-fixed z-axis as
the orientation vector of the formation F rel

pl .

IV. Modifications to 2D StringNet Herding

The defenders follow the same overall structure of
the 2D-StringNet herding [3], while utilizing the 3D-
StringNet formations generated in the previous section
and with appropriate modifications to the corresponding
parts from the 2D approach. Thus, the 3D StringNet
herding consists of four phases [3]: 1) Gathering and
forming a planar formation. 2) Seeking the attackers
while maintaining the planar formation. 3) Enclosing the
attackers by forming a spherical formation around them.
4) Herding the enclosed attackers to S. These phases are
discussed in the following subsections.

1) Gathering: In the gathering phase, the defenders
first converge to the planar formation F g

pl centered at
the gathering center rdfg on the expected path of the
attackers (shortest path to the protected area). Let us
define a mathematical object T R to define formations
obtained by translating and rotating a given formation
F . We obtain F g

pl by translating the formation F rel
pl

to rdfg and rotating by R(qac), where R(qac) is the
rotation matrix corresponding to the orientation rep-
resented by the quaternion qac, where qac denotes the
orientation when body z-axis points toward the attack-
ers’ center rac. We denote this transformation by F g

pl =
T R(rdfg ,qac)F rel

pl . In particular, the formation F g
pl,

with underlying graph Gopsn, is characterized by positions
ξga(j) = rdfg + R(qac)ξp0

a(j) for all j ∈ Id. The gathering
center rdfg of the gathering formation F g

pl is obtained
by solving a mixed integer quadratic program (MIQP)
iteratively [3]. The defender Dj converges to its assigned
desired (goal) position ξga(j) on F g

pl, where a : Id → Id is
the defender-goal assignment obtained from the MIQP
[3]. After the defenders arrive at their desired positions,
they establish nets with the neighboring defenders as per
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Fopsn . Then, the defending swarm enters the seeking phase
which is discussed next.

2) Seeking: In practice, the attackers may deviate
from their optimal trajectories computed during the
gathering phase, which requires defenders to come closer
to the attackers in order to enclose them. In the seek-
ing phase, we consider the desired formation F s

pl =
T R(rdfs ,qdfs)F rel

pl of the defenders as a virtual rigid
body with center of mass at rdfs , where qdfs is the
quaternion that represents the orientation of the for-
mation F s

pl. The virtual body’s translational motion
is governed by the same dynamics as in (1b) and the
rotational dynamics are governed by Euler equations and
quaternion kinematics [12]. To ensure that the desired
formation gets closer to the attackers and the orientation
of the formation faces the attackers, we apply the follow-
ing translational and rotational feedback accelerations to
the virtual rigid body [12]:

uts = Ωūts
(−k1(rdfs − rac)) , (7a)

urs = Ωūrs (−Dωdfs −Kqe) (7b)
where ūts and ūrs are saturation limits; k1, K and D
are gain matrix which are diagonal matrices with non-
negative scalars [12]; ωdfs is the angular velocity of
the rigid body resolved in body-fixed frame. qe =
Q(qdes)qdfs is the attitude error between the current
quaternion and qdes, which is the desired orientation
where the local z-axis points toward the center of at-
tackers rac. The initial quaternion is qdfs(0) = qac
and the initial angular velocity is ω = [0, 0, 0]T . The
defenders Dj track their assigned desired position ξsa(j)
on F s

pl using the 3D extension of the 2D finite-time
convergent controllers as in [3]. Seeking is completed
when ‖rdfs − rac‖ < ε1 and qe < ε2, where ε1 > 0 and
ε2 > 0 are user defined small thresholds.

3) Enclosing: After the defenders come close to the
attackers as an open-3D-StringNet with F s

pl at the
end of seeking, the enclosing phase is initiated. In the
enclosing phase, defenders aim to enclose the attack-
ers in the closed-3D-StringNet with formation F e

sp =
T R(rac,qdfe)F rel

sp , where qdfe is the quaternion at the
end of the seeking phase. Starting from the planar for-
mation Fsp , the defenders first achieve an open-StringNet
with hemispherical formation F e

hs = T R(rac,qdfe)F rel
hs ,

and then the closed-3D-StringNet with formation F e
sp.

The reason to choose an intermediate open-3D-StringNet
formation F e

hs is to avoid that the defenders unneces-
sarily come close to each other while converging to F e

sp

allowing the attackers to disperse. The control actions
for the defenders to track their desired positions on the
respective formations during this phase can be obtained
from [3]. The desired formation F e

hs is switched to F e
sp

when the defenders come within a distance of bd from
their desired positions on F e

hs. The closed-3D-StringNet
is achieved when all defenders converge to their desired
locations, i.e.,

∥∥∥rdj − ξea(j)

∥∥∥ < bd for all j ∈ Id, where bd
is the tracking error incurred due to the unknown but

bounded acceleration terms ξ̈a(j) [3].
4) Herding: Once the defenders form the closed-3D-

StringNet around the attackers, they move towards the
safe area while tracking a rigid spherical formation Fh

sp =
T R(rdfh ,qdfh)F rel

sp centered at a virtual agent rdfh ,
where qdfh is equal to qdfe at the start of the herding
phase. The virtual agent moves towards the safe area S
as discussed in [3] and the defenders use the finite-time,
bounded tracking controllers similar to that in [3] to
track their desired positions on Fh

sp. The herding phase
ends when every enclosed attacker is successfully herded
into the safe area.

V. Dominance Region for the Defenders

The success of the defenders depends on whether they
are able to achieve the open-3D-StringNet with planar
formation F g

pl in the expected path of the attackers,
well before the attackers reach the gathering center.
For given initial conditions of all the agents, the de-
fenders require to solve the problem of finding the best
gathering center rdfg and the corresponding defender-
goal assignment a using the iterative MIQP formulation
[3], which becomes computationally demanding as the
number of agents becomes larger. In this section, we
characterize the conditions on the initial positions of the
attackers for which the defenders are able to achieve
the formation F g

pl(rdfg ,qac) at a location rdfg on the
shortest path of the attackers to the protected area,
before the attackers can reach there. We call this set
of initial conditions of the attackers as the dominance
region for the given initial positions of the defenders.
Let Ta(ra, r, ρa) be the minimum time required by an
attacker at ra to reach within ρa distance from the point
r. Let Rd = [rd1, rd2, ..., rdNd ] denote the positions of
the defenders Dj for all j ∈ Id. Let Td(Rd,F

g
pl(r,q))

be the maximum time required by all the defenders to
achieve the gathering formation F g

pl(r,q)) centered at r.
The dominance region is then formally defined as:
Definition 2 (Defenders’ Dominance Region):

Dom(Rd, ρ̄ac,∆T gd ) = {r ∈ R3|∃υ ∈ ( ρp‖r‖ , 1 −
ρ̄ac
‖r‖ ) such

that Ta(r, rdfg , ρ̄ac) − Td(Rd,F
g
pl(rdfg ,qac)))) ≥ ∆T gd

where rdfg = υr}, where ∆T gd is a user-defined time to
account for the size of the attackers’ swarm and the time
required by the defenders to get connected by triangular
net-like barriers once arrived at the desired formation.
We provide the following formulation that is based

on approximation functions, and is computationally less
intensive, to find an estimate Domest of the dominance
region Dom that is completely contained inside Dom.

Consider Nd defenders and Na attackers located at
given positions as shown in Fig.5. Let the largest radius
of the attackers’ formation be ρ̄ac. Consider the protected
area located at the origin (rp = [0, 0, 0]T ). Let the
center of mass of the attackers have spherical coordinates
(Rac, φac, θac). Consider the gathering center rdfg at
(R,φac, θac). The distance of the defender Dj from the
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center of the gathering formation (Fig. 5) is:

%j =
√
R2 +R2

j − 2RRjΛ(φac − φdj , θac, θdj), (8)

where (Rj , φdj , θdj) are spherical coordinates of the de-
fender Dj ’s position for all j ∈ Id. We have that the
maximum value among %j , j ∈ Id, satisfies: %̄ = max

j∈Id
%j ≤

%̃δ = δ

√∑
j∈Id %

δ
j and lim

δ→∞
%̃δ = %̄ [13].

Fig. 5: Abstraction for estimate of dominance region
The maximum distance any defender would have to

travel in the best defender-goal assignment can be upper
bounded by %̄d = %̃δ + ρsn,p, where ρsn,p is the radius of
the planar gathering formation F g

pl. The maximum time
for any defender to reach the gathering location assigned
to it as per the best defender-goal assignment under time-
optimal control [14] can be upper bounded by:

T̄d(%̄d) = 1
λ0

(
tanh−1 ( vsw

v̄d

)
+ tan−1 ( vsw

v̄d

))
, (9)

where λ0 =
√
ūdCD, vsw =

√
(λ−1)ūd
(λ+1)CD , λ = e2CD %̄d .

Similarly, the minimum time that the attackers require
to reach the gathering location is when the attackers
move towards the protected with the maximum possible
speed. The difference between the time needed by the
attackers to reach the gathering center and the time
required by the defenders to reach there can be bounded
from below by: ∆T = Rac−ρ̄ac−R

v̄a
− T̄d(R). Defenders

want ∆T ≥ ∆T gd to be able to gather well before the
attackers reach the gathering center. We are interested
in the limiting condition ∆T = ∆T gd , for which we have:

Rac = f(R) = ρ̄ac +R+ v̄a(T̄d(R) + ∆T gd ). (10)

We want to find the smallest value Rac(> ρp) of Rac for
which ∆T = ∆T gd , i.e.,

Rac = minR>ρp f(R). (11)

Lemma 2: Given that no two defenders are co-
located, i.e., ‖rdj − rdj′‖ > 0 for all j 6= j′ ∈ Id, f(R)
as given in Eq. (10) is a locally convex function of R.

Proof: Refer to Lemma 2 in [15].
One can find Rac by solving the convex optimization (11)
with R = R∗, the minimizer of %̃δ(R), as an initial guess
to a gradient descent algorithm.

Given the direction from which the attackers are ap-
proaching the protected area, one can solve the problem
in (11) to assess, at least conservatively, whether the
defenders can gather in the attackers’ path before the
attackers, without solving the actual, computationally
heavy iterative MIQP formulation [3]. Figure 6 shows
the boundaries ∂Domest and ∂Dom of the estimate
Domest and the dominance region Dom, respectively.
Here ∂Domest is obtained by solving a simple quadratic
program (11) while ∂Dom is obtained by numerically
evaluating the iterative MIQP for each direction. The
regions outside of the closed boundaries ∂Domest and
∂Dom are, respectively, Domest and Dom, computed for
the case where the defenders are at given locations (blue
circles). On the other hand, the set inside the boundaries
∂Domest and ∂Dom are the complement sets Domc

est =
R3\Domest and Domc = R3\Dom, respectively. The
set Domc is essentially the dominance region of the
attackers, i.e., the attackers can reach the protected
area before the defenders can gather on their path if
the attackers start inside Domc. Note that the estimate
Domest is completely contained in the dominance region
Dom. The region Dom is larger on the side where the
density of the defenders is larger. This is intuitive because
many defenders have to travel less when the attackers
approach from this side and hence allow defenders to
gather on the expected path of the attackers in time even
if the attackers start more closer to the protected area
on this side. We have the following result.

Fig. 6: Dominance regions of the players (right: actual
dominance region, left: estimate of the dominance region)

Theorem 3: Consider a group of defenders D =
{D1,D2, ...DNdc} starting at given locations Rd =
[rd1, rd2, ..., rdNd ] and a swarm of Attackers A with max-
imum connectivity radius ρ̄ac. The defenders in D are
guaranteed to achieve a planar formation F g

pl, located at
a position on the shortest path from the center of mass
of the attackers in A to the protected area P, ∆T gd s
before the attackers reach that position, if the attackers
start inside Domest(Rd, ρ̄ac,∆T gd )

Proof: By construction, Domest(Rd, ρ̄ac,∆T gd ) ⊆
Dom(Rd, ρ̄ac,∆T gd ). The proof follows from the defini-
tion of the dominance region Dom(Rd, ρ̄ac,∆T gd ).

VI. Simulations
In this section, 20 defending agents are deployed in

a three-dimensional obstacle-free environment and they
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(a) Gathering phase: Planar StringNet

(b) Seeking and Enclosing Phase: Hemispherical and Spher-
ical StringNet

(c) Complete Herding

Fig. 7: Paths of the agents during 3D-StringNet Herding

aim to protect the area P by herding an adversarial
swarm of 6 attackers to S. Bρac(rac) represents the
connectivity region of attackers with radius ρac. Fig. 7a
shows that a circular planar formation is formed at the
desired position facing towards the adversarial swarm.
As observed in Fig. 7b, the planar formation gradually
transforms into the hemispherical StringNet while tuning
its attitude so that the hemispherical formation can be
formed in a good position. The hemispherical forma-
tion then turns into the closed-3D-StringNet formation
quickly and thus all of the attackers are contained, as
shown in Fig. 7b. In Fig. 7c, the closed-3D-StringNet
herds all the enclosed attackers directly towards the safe
area. All the enclosed attackers are taken inside the safe
area and the herding is completed. Video of the simula-
tion can be found at https://tinyurl.com/yyoonbd8

VII. Conclusions
We extended our 2D StringNet herding approach to 3D

environments by defining the concept of 3D-StringNet.
We designed three types of 3D-StringNet formations to
capture and herd the attackers with the minimum num-
ber of defenders. Appropriate modifications to the 2D
herding control laws are provided for it to be applicable
to 3D. The simulation shows the effectiveness of the pro-
posed 3D-StringNet herding approach. We also provide
a convex optimization formulation to quickly determine
if a group of defenders starting at given positions can
gather at a specified formation centered at a location on
the shortest path of the attackers to the protected area
before any attacker reaches the center of the formation.
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