
Optimizing Guided Traversal for Fast Learned Sparse Retrieval
Yifan Qiao, Yingrui Yang, Haixin Lin, Tao Yang
Department of Computer Science, University of California

Santa Barbara, California, USA
{yifanqiao,yingruiyang,haixinlin,tyang}@cs.ucsb.edu

ABSTRACT
Recent studies show that BM25-driven dynamic index skipping can
greatly accelerate MaxScore-based document retrieval based on the
learned sparse representation derived by DeepImpact. This paper
investigates the e�ectiveness of such a traversal guidance strategy
during top : retrieval when using other models such as SPLADE
and uniCOIL, and �nds that unconstrained BM25-driven skipping
could have a visible relevance degradation when the BM25 model
is not well aligned with a learned weight model or when retrieval
depth : is small. This paper generalizes the previous work and op-
timizes the BM25 guided index traversal with a two-level pruning
control scheme andmodel alignment for fast retrieval using a sparse
representation. Although there can be a cost of increased latency,
the proposed scheme is much faster than the original MaxScore
method without BM25 guidance while retaining the relevance e�ec-
tiveness. This paper analyzes the competitiveness of this two-level
pruning scheme, and evaluates its tradeo� in ranking relevance
and time e�ciency when searching several test datasets.

ACM Reference Format:
Yifan Qiao, Yingrui Yang, Haixin Lin, Tao Yang. 2023. Optimizing Guided
Traversal for Fast Learned Sparse Retrieval. In Proceedings of the ACM Web
Conference 2023 (WWW ’23), May 1–5, 2023, Austin, TX, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583497

1 INTRODUCTION
Document retrieval for searching a large dataset often uses a sparse
representation of document feature vectors implemented as an
inverted index which associating each search term with a list of
documents containing such a term. Recently learned sparse repre-
sentations have been developed to compute term weights using a
neural model such as transformer based retriever [1, 9, 12, 14, 24, 30]
and deliver strong relevance results, together with document expan-
sion (e.g. [5]). A downside is that top : document retrieval latency
using a learned sparse representation is much large than using the
BM25 model as discussed in [29, 30]. In the traditional BM25-based
document retrieval with additive ranking, a dynamic index pruning
strategy based on top : threshold is very e�ective by computing
the rank score upper bound on the �y for each visited document
during index traversal in order to skip low-scoring documents that
are unable to appear in the �nal top : list. Well known traversal

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583497

algorithms with such dynamic pruning strategies include MaxS-
core [41] and WAND [2], and their block-based versions Block-Max
WAND (BMW) [11] and Block-Max MaxScore (BMM) [4, 10].

Mallia et al. [31] propose to use BM25 to guide traversal, called
GT, for fast learned sparse retrieval because the distribution of
learned weights results in less pruning opportunities and they con-
ducted an evaluation with retrieval model DeepImpact [30]. One
variation they propose is to compute the �nal rank scoring as a
linear combination of the learned weights and BM25 weights, de-
noted as GTI. GT is a special case of GTI and this paper treats GTI
as the main baseline. Since the BM25 weight for a document term
pair may not exist in a learned sparse index, zero �lling is used
in Mallia et al. [31] to align the BM25 and learned weight models.
During our evaluation using GT for SPLADE v2 and its revision
SPLADE++ [12, 13], we �nd that as retrieval depth : decreases,
BM25 driven skipping becomes too aggressive in dropping doc-
uments desired by top : ranking based on learned term weights,
which can cause a signi�cant relevance degradation. In addition,
there is still some room to further improve index alignment of GTI
for more accurate BM25 driven pruning.

To address the above issues, we improve our earlier pruning
study on dual guidancewith combined BM25 and learnedweights [36].
Our work generalizes GTI by constraining the pruning in�uence of
BM25 and providing an alternative smoothing method to align the
BM25 index with learned weights. In Section 4, we propose a two-
level parameterized guidance scheme with index alignment, called
2GTI, to manage pruning decisions during MaxScore based traver-
sal. We analyze some formal properties of 2GTI on its relevance
behaviors and con�guration conditions when 2GTI outperforms a
two-stage top : search algorithm for a query in relevance.

Section 5 and Appendix A present an evaluation of 2GTI with
SPLADE++ [12–14] and uniCOIL [15, 24] in addition to DeepIm-
pact [30] when using MaxScore on the MS MARCO datasets. This
evaluation shows that when retrieval depth : is small, or when the
BM25 index is not well aligned with the underlying learned sparse
representation, 2GTI can outperform GTI and retain relevance more
e�ectively. In some cases, there is a tradeo� that 2GTI based re-
trieval may be slower than that of GTI while 2GTI is still much
faster than the original MaxScore method without BM25 guidance.
2GTI is also e�ective for the BEIR datasets in terms of the zero-shot
relevance and retrieval latency. In Appendix B, we have extended
the use of 2GTI for a BMW-based algorithm such as VBMW [32].
We demonstrate that 2GTI with VBMW can be useful for a class of
short queries and when : is small.

2 BACKGROUND AND RELATEDWORK
The top-: document retrieval problem identi�es top ranked results
in matching a query. A document representation uses a feature vec-
tor to capture the semantics of a document. If these vectors contain

ar
X

iv
:2

30
5.

01
20

3v
1

 [c
s.I

R
]

2
M

ay
 2

02
3

https://doi.org/10.1145/3543507.3583497
https://doi.org/10.1145/3543507.3583497

much more zeros than non-zero entries, then such a representation
is considered sparse. For a large dataset, document retrieval often
uses a simple additive formula as the �rst stage of search and it
computes the rank score of each document 3 as:

’
C 2&

FC ·F (C,3), (1)

where & is the set of all search terms,F (C,3) is a weight contribu-
tion of term C in document 3 , andFC is a document-independent or
query-speci�c term weight. Assume thatF (C,3) can be statically
or dynamically scaled, this paper views FC = 1 for simplicity of
presentation. An example of such formula is BM25 [18] which is
widely used. For a sparse representation, a retrieval algorithm often
uses an inverted index with a set of terms, and a document posting
list of each term. A posting record in this list contains document
ID and its weight for the corresponding term.

Threshold-based skipping. During the traversal of posting
lists in document retrieval, the previous studies have advocated
dynamic pruning strategies to skip low-scoring documents, which
cannot appear on the �nal top-: list [2, 37]. To skip the scoring of
a document, a pruning strategy computes the upper bound rank
score of a candidate document 3 , referred to as ⌫>D=3 (3).

If ⌫>D=3 (3)  \ where \ is the rank score threshold in the top
�nal : list, this document can be skipped. For example, WAND [2]
uses the maximum term weights of documents of each posting
list to determine the rank score upper bound of a pivot document
while BMW [11] and its variants (e.g. [32]) optimize WAND use
block-based maximum weights to compute the score upper bounds.
MaxScore [41] uses term partitioning and the top-: threshold to
skip unnecessary index visitation and scoring computation. Pre-
vious work has also pursued a “rank-unsafe” skipping strategy
by deliberately over-estimating the current top-: threshold by a
factor [2, 7, 27, 39].

Learned sparse representations. Earlier sparse representa-
tion studies are conducted in [43], DeepCT [9], and SparTerm [1].
Recent work on this subject includes SPLADE [12–14], which learns
token importance for document expansion with sparsity control.
DeepImpact [30] learns neural term weights on documents ex-
panded by DocT5Query [5]. Similarly, uniCOIL [24] extends the
work of COIL [15] for contextualized term weights. Document re-
trieval with term weights learned from a transformer has been
found slow in [29, 31]. Mallia et al. [31] state that the MaxScore re-
trieval algorithm does not e�ciently exploit the DeepImpact scores.
Mackenzie et al. [29] view that the learned sparse term weights are
“wacky” as they a�ect document skipping during retrieval thus they
advocate ranking approximation with score-at-a-time traversal.

Our scheme uses a hybrid combination of BM25 and learned
term weights, motivated by the previous work in composing lexical
and neural ranking [16, 22, 25, 26, 42]. GTI adopts that for �nal
ranking. A key di�erence in our work is that hybrid scoring is used
for two-level pruning control and its formula can be di�erent from
�nal ranking. The multi-level hybrid scoring di�erence provides an
opportunity for additional pruning and its quality control. Thus the
outcome of 2GTI is not a simple linear ranking combination of BM25
and learned weights and two-level guided pruning yields a non-
linear ensemble e�ect to improve time e�ciency while retaining

relevance. Our evaluation will include a relevance and e�ciency
comparison with MaxScore using a simple linear combination.

This paper mainly focuses on MaxScore because it has been
shown more e�ective for relatively longer queries [34]. We also
consider VBMW [32] because it is generally acknowledged to rep-
resent the state of the art [29] for many cases, especially when : is
small and the query length is short [34].

3 DESIGN CONSIDERATIONS

Figure 1: Recall@k and MRR@10 when : varies.

Figure 1 shows the performance of the original MaxScore re-
trieval algorithm without BM25 guidance, GTI, and the proposed
2GTI scheme in terms of MRR@10 and recall@k when varying
top : in searching MS MARCO passages on Dev query set. Here
: is the targeted number of top documents to retrieve and it is
also called retrieval depth sometime in the literature. Section 5 has
more detailed dataset and index information. For both SPLADE++
and uniCOIL, we build the BM25 model following [31] to expand
passages �rst using DocT5Query, and then use the BERT’s Word
Piece tokenizer to tokenize the text, and align the token choices of
BM25 with these learned models. From Figure 1, there are signi�-
cant recall and MRR drops with GTI when : varies from 1,000 to
10. There are two reasons contributing to the relevance drops.
(1) When the number of top documents : is relatively small, the rel-

evance drops signi�cantly. As : is small, dynamically-updated
top : score threshold becomes closer to the maximum rank
score of the best document. Fewer documents fall into top :
positions and more documents below the updated top : score
threshold would be removed earlier. Then the accuracy of skip-
ping becomes more sensitive. The discrepancy of BM25 scoring
and learned weight scoring can cause good candidates to be
removed inappropriately by BM25 guided pruning, which can
lead to a signi�cant relevance drop for small : .

(2) The relevance drop for SPLADE++ with BM25 guided prun-
ing is noticeably much more signi�cant than uniCOIL. That
can be related to the fact that SPLADE++ expands tokens of
each document tokens di�erently and much more aggressively

2

than uniCOIL. As a result, 98.6% of term document pairs in
SPLADE++ index does not exist in the BM25 index even after
docT5Query document expansion while this number is 1.4% for
uniCOIL. Thus, BM25 guidance can become less accurate and
improperly skip more good documents.
With the above consideration, our objective is to control the

in�uence of BM25weights in a constrainedmanner for safeguarding
relevance prudently, and to develop better weight alignment when
the BM25 index is not well aligned with the learned sparse index. In
Figure 1, the recall@k number of 2GTI marked with blue squares is
similar to that of the original method without BM25 guidance. Their
MRR@10 numbers overlapped with each other, forming a nearly-
�at lines, which indicates their MRR@10 numbers are similar even
: decreases. The following two sections present our solutions in
addressing the above two issues respectively.

4 TWO-LEVEL GUIDED TRAVERSAL
4.1 Two-level guidance for MaxScore
We assume the posting list of each term is sorted in an increasing
order of document IDs in the list. The MaxScore algorithm [41]
can be viewed to conduct a sequence of traversal steps and at each
traversal step, it conducts term partitioning and then examines if
scoring of a selected document should be skipped. We di�erentiate
pruning-oriented actions in two levels as follows.
• Global level.MaxScore uses themaximum scores (upper bounds)
of each term and the current known top : threshold to partition
terms into two lists at each index traversal step: the essential
list and non-essential list. The documents that do not contain
essential terms are impossible to appear in top : results and thus
can be eliminated. In the next step of index traversal, it will start
with the minimum unvisited document ID only from the posting
lists of essential terms. Thus index visitation is driven by moving
such a minimum document ID pointer from the essential list.
We consider this level of pruning as global because it guides
skipping of multiple documents and explores inter-document re-
lationship implied by maximum term weights. Figure 2(a) depicts
an example of global pruning �ow in MaxScore with 4 terms and
each posting list maintains a pointer to the current document
being visited at a traversal step. The term partitioning identi�es
two essential terms C3 and C4. The minimum document ID among
the current document pointers in these essential terms is 33, and
any document ID smaller than 33 is skipped from further consid-
eration during this traversal step. The current visitation pointer
of the posting list of non-essential lists also moves to the smallest
document ID equal to or bigger than 33.

• Local level. Once a document is selected for possible full eval-
uation, the ranking score upper bound of this document can
be estimated and gradually tightened using maximum weight
contribution or the actual weight of each query term for this docu-
ment. This incrementally re�ned score upper bound is compared
against the dynamically updated top : threshold, which provides
another opportunity to fully or partially skip the evaluation of
this document. We di�erentiate this level of skipping decision as
local because this pruning is localized towards a speci�c docu-
ment selected. Figure 2(b) illustrates an example of local pruning
in MaxScore. 33 is the document selected after term partitioning

and the maximum or actual weights contributed from all posting
lists for document 33 are utilized for the local pruning decision.
Instead of directly using BM25 to guide pruning at the global

and local levels, we propose to use a linear combination of BM25
weights and learned weights to guide skipping at each level as
follows, which allows a parameterizable control of their in�uence.
• We incrementally maintain three accumulated scores for each
document ⌧;>10; (3), !>20; (3), and '0=:(2>A4 (3). ⌧;>10; (3) is
for global pruning,!>20; (3) is for local pruning, and'0=:(2>A4 (3)
is for �nal ranking.

⌧;>10; (3) = U'0=:(2>A4⌫ (3) + (1 � U)'0=:(2>A4! (3)
!>20; (3) = V'0=:(2>A4⌫ (3) + (1 � V)'0=:(2>A4! (3)

'0=:(2>A4 (3) = W'0=:(2>A4⌫ (3) + (1 � W)'0=:(2>A4! (3)
where 0  U, V,W  1, '0=:(2>A4⌫ (3) follows Expression 1 using
BM25 weights, and '0=:(2>A4! (3) follows Expression 1 using
learned weights. The RankScore formula follows the GTI setting
in [31], and 2GTI with U = V = 1 behaves like GTI. 2GTI with
U = V = W is the same as MaxScore retrieval and it uses learned
neural weights only when W = 0.

• With the above three scores for each evaluated document, we
maintain three separate queues: &⌧; , &!> , &': for documents
with the : largest scores in terms of ⌧;>10; (3), !>20; (3), and
'0=:(2>A4 (3) respectively. The lowest-scoring document in each
queue is removed separately without inter-queue coordination.
These queues are maintained for di�erent purposes: the �rst two
queues regulate global and local pruning while the last queue
is to produce the �nal top : results. When a document based
on local pruning is eliminated for further consideration, this
document is not added to global and local queues &⌧; and &!> .
But this document may have some partial score accumulated
for its '0=:(2>A4 (3), and it is still added to &': in case this
document with the partial score may qualify in the top : results
based on the latest '0=:(2>A4 (3) value.
These three queues yield three dynamic top-: thresholds \⌧; ,
\!> , and \': . They can be used for a pruning decision to avoid
any further scoring e�ort to obtain or re�ne '0=:(2>A4 (3).
Revised MaxScore pruning control �ow: Figure 2(c) illus-

trates the extra control �ow added for the revised MaxScore algo-
rithm. Let # be the number of query terms. We de�ne:
• Given # posting lists corresponding to # query terms, each 8-
th posting list contains a sequence of posting records and each
record contains document ID 3 , its BM25 weight F⌫ (8,3) and
learned weightF! (8,3). Posting records are sorted in an increas-
ing order of their document IDs.

• An array f! of # where f! [8] is the maximum contribution of
the learned weight to any document for 8-th term.

• An array f⌫ of # where f⌫ [8] is the maximum contribution of
the BM25 weight to any document for 8-th term.

• # search terms are presorted so that Uf⌫ [8] + (1 � U)f! [8] 
Uf⌫ [8 + 1] + (1 � U)f! [8 + 1] where 1  8  # � 1.
Global pruning with term partitioning. For each query term

1  8  # , we �nd the largest integer ?8E>C from 1 to # so thatÕ?8E>C�1
9=1 (Uf⌫ [9] + (1�U)f! [9])  \⌧; . All terms from ?8E>C to #

are considered as essential. If a document 3 does not contain any
3

t1
t2

t3
t4

d3

d5

d1

d3

d7

Current doc position
at the posting list of
each term. Partition terms and

select minimum doc
position from
essential terms.

Global Pruning in MaxScore

t1
t2

t3
t4

d3

d5

d3

Local Pruning in MaxScore

Check if further scoring of
selected doc can be
skipped.

Non-essential terms

Essential terms

pivot

Partial bound

Partial score

(a) (b)

MaxScore
Retriever

Bound of Local(d) ≤ 𝜃Lo

Scored
doc d

QGl

QRk
Query

Local(d)

Local
pruning QLo

Inverted index with
BM25 & learned weights

Bound of Global(d) ≤ 𝜃Gl

Global(d)

RankScore(d)

Global
pruning

𝜃Gl

𝜃Rk

𝜃Lo

Two-level guided traversal for MaxScore

(c)

Figure 2: (a) and (b): Example of two-level pruning in MaxScore. (c) Two-level guided traversal for MaxScore.

essential term, the upper bound of⌧;>10; (3)  Õ?8E>C�1
9=1 Uf⌫ [9] +

(1 � U)f! [9]  \⌧; . This document cannot appear in the �nal top
: list based on the global score. Then this document is skipped
without appearing in any of the three queues.

Once the essential term list above the ?8E>C position is deter-
mined, let the next minimum document ID among the current posi-
tion pointers in the posting lists of all essential terms be document
3 . We also call it the ?8E>C document.

Local pruning. Next we check if the detailed scoring of the
selected pivot document 3 can be avoided fully or partially. Fol-
lowing an implementation in [40], we describe this procedure with
a modi�cation to use hybrid scoring as follows and it repeats the
following three steps with the initial value of term position G as
the ?8E>C position and G decreases by 1 at each loop iteration.
• Let %0AC80;(2>A4!>20; (3) be the sum of all term weights of doc-
ument 3 in the posting lists from position G to # after linear
combination. Namely %0AC80;(2>A4!>20; (3) =

Õ#�1
8=G VF⌫ (8,3) +

(1 � V)F! (8,3) when 8-th posting list contains 3 , and otherwise
this value is 0.
As G decreases, the term weight of pivot document 3 is extracted
from the posting list of G-th term if available.

• Let %0AC80;⌫>D=3!>20; (3) be the bound for partial local score of
document 3 in the posting lists of the �rst to G-th query terms.

%0AC80;⌫>D=3!>20; (3) =
G’
9=1

Vf⌫ [9] + (1 � V)f! [9] .

• At any time during the above calculation, if

%0AC80;⌫>D=3!>20; (3) + %0AC80;(2>A4!>20; (3)  \!> ,

further rank scoring for ?8E>C document 3 is skipped and this
document will not appear in any of the three queues. Figure 2(b)
depicts that the partial bound and partial score of !>20; (33) for
pivot document 33 are computed to assist a pruning decision.
Complexity. 2GTI’s complexity is the same as MaxScore and

GTI. The in-memory space cost includes the space to host the
inverted index involved for this query and the three queues. The
time complexity is proportional to the total number of posting
records involved for a query multiplied by log: for queue updating.

A posting list may be divided and compressed in a block-wise
manner and Block MaxScore can use 2GT similarly while a previous
study [34] shows Block-Max MaxScore is actually slower than

MaxScore under several compression schemes. We will discuss the
use of 2GT in block-based BMW in Appendix B.

4.2 Relevance properties of 2GTI
2GTI ensembles BM25 and learned weights for pruning in addition
to rank score composition, producing a top : ranked list which can
be di�erent than additive ranking with learned weights or their
linear combination of BM25 weights. Thus 2GTI is not rank-safe
compared to any of such baselines. Two-level pruning is driven by
di�erent combination coe�cients U , V , and W con�gured in 2GTI
and their value gap provides an opportunity for additional pruning
while 2GTI tries to retain relevance e�ectiveness. Is there a rele-
vance guarantee 2GTI can o�er in case such pruning skips relevant
documents erroneously sometimes? To address this question an-
alytically, this subsection presents three properties regarding the
relevance outcome and competitiveness of the 2GTI based retrieval.

Our analysis will use the following terms. Given query & , let 'G
be a ranked list of all documents of the given dataset sorted in a
descend order of their rank scores based on a linear combination of
their BM25 weights and learned weights with coe�cient G , namelyÕ
C 2& G ⇤ F⌫ (C,3) + (1 � G)F! (C,3) for document 3 . Speci�cally,

there are three ranked lists:'U ,'V , and'W . 2GTI maintains 3 queues
&⌧; , &!> , and &': with 3 dynamically updated top : thresholds,
\⌧; , \!> , \': . Let ⇥⌧; , ⇥!> , ⇥': be the �nal top : threshold of
these 3 queues at the end of 2GTI. Namely it is the rank score of
:-th document in the corresponding queue. The following fact is
true:

\⌧;  ⇥⌧; , \!>  ⇥!> , and \':  ⇥': .

P���������� 1. Assume the subset of top : documents in each of
'U ,'V , and 'W is unique after arbitrarily swapping rank positions of
documents with the same score. Then any document that appears in
top-: positions of 'U , 'V , and 'W is in the top-: outcome of 2GTI.

P����. For any document3 that appears in the top: positions of
all three ranked lists, ⌧;>10; (3) � ⇥⌧; � \⌧; , !>20; (3) � ⇥!> �
\!> and '0=:(2>A4 (3) � ⇥': � \': .

If document 3 is eliminated by global pruning during 2GTI re-
trieval, ⌧;>10; (3) = ⇥⌧; = \⌧; and the 'U -based rank score of
both document 3 and (: + 1)-th document in ranked list 'U has to
be ⇥⌧; . Then the subset of top : documents in 'U is not unique
after arbitrarily swapping rank positions of documents with the
same score, which is a contradiction.

4

With the same reason, we can argue that document 3 cannot be
eliminated by local pruning or rejected by \': when being added
to &': during 2GTI retrieval. Then this document has to appear in
the �nal outcome of 2GTI. ⇤

The following two propositions analyze when 2GTI performs
better in relevance than a two-stage search algorithm called '2U,W
which fetches top : results from list 'U , and then re-ranks using
the scoring formula of 'W .

P���������� 2. Assume the subset of top : documents in each
of 'U ,'V , and 'W is unique after arbitrarily swapping rank positions
of documents with the same score. If 2GTI is con�gured with U = V
or V = W , the average 'W -based rank score of the top : documents
produced by 2GTI is no less than that of two-stage algorithm '2U,W .

P����. We let '2[:] denote the top : document subset in the
outcome of '2U,W . To prove this proposition, we compare the av-
erage 'W -based rank score of documents in '2[:] and that in &':
at the end of 2GTI. Notice that for any document 3 satisfying
3 2 '2[:], it is in the top : results of ranked list 'U and this top :
subset is deterministic based on the assumption of this proposition.
Then 3 cannot be eliminated by global pruning in 2GTI.

Given any document 3 satisfying 3 2 '2[:] and 3 8 &': at the
end of 2GTI, it is either eliminated by local pruning with threshold
⇥!> or by top : thresholding of Queue &': with threshold \': . In
the later case, '0=:(2>A4 (3)  \':  ⇥': . When 3 is eliminated
by local pruning, global pruning has to use a di�erent formula
because 3 is not eliminated by global pruning, and then 2GTI has
to be con�gured with V = W instead of U = V . In that case local
pruning is identical to elimination with top : threshold of &': .
Then '0=:(2>A4 (3)  \':  ⇥': .

Since the size of both'2[:] and&': is: , |'2[:]�'2[:]\&': | =
|&': � '2[:] \&': |. We can derive:’

32'2[:]
'0=:(2>A4 (3)

=
’

32'2[:]\&':

'0=:(2>A4 (3) +
’

32'2[:],38&':

'0=:(2>A4 (3)


’

32'2[:]\&':

'0=:(2>A4 (3) +
’

32'2[:],38&':

⇥':

=
’

32'2[:]\&':

'0=:(2>A4 (3) +
’

38'2[:],3 2&':

⇥':


’

32'2[:]\&':

'0=:(2>A4 (3) +
’

38'2[:],3 2&':

'0=:(2>A4 (3)

=
’

32&':

'0=:(2>A4 (3) .

Thus
1
:

’
32'2[:]

'0=:(2>A4 (3)  1
:

’
32&':

'0=:(2>A4 (3).

⇤

De�nition 1. For a dataset in which documents are only labeled
relevant or irrelevant for any test query, we call ranked list 'G out-
matches '~ if whenever '~ orders a pair of relevant and irrelevant
documents correctly for a query, 'G also orders them correctly.

P���������� 3. Assume documents in a dataset are only labeled
as relevant or irrelevant for a test query. Given a query, when 'W
outmatches 'V , which outmatches 'U , 2GTI retrieves equal or more
relevant documents in top-: positions than two-stage algorithm '2U,W .

P����. When 2GTI completes its retrieval for a query, we count
the number of relevant documents in top : positions of list 'U ,
queue &!> , and queue &': as 2U , 2V , and 2W , respectively. To show
2U  2V , we initialize them as 0 �rst and run the following loop
to compute 2U and 2V iteratively. The loop index variable 8 varies
from : , : � 1, until 1, and at each iteration we look at document
G at Position 8 of 'U , and document ~ at Position 8 of &!> . Let !G
and !~ be their binary label by which value 1 means relevant and 0
means irrelevant.

• If !G = !~ , we add !G to both 2U and 2V . Continue this loop.
• Now !G < !~ . If !G = 0, !~ = 1, we add 1 to 2V , and continue
the loop. If !G = 1, !~ = 0, there are two cases:
– If G is within top 8 positions of current &!> , we add 1 to
both 2U and 2V . Swap the positions of documents G and ~
in &!> . Continue the loop.

– If G is not within top 8 positions of &!> , since G is in the
top : of 'U , it cannot be globally pruned and it will be
evaluated by 2GTI for a possibility of entering &!> . If G
is ranked before ~ in list 'U , and since 'V outmatches 'U ,
G has to be ranked before ~ in both 'V and &!> . That is
a contradiction. If G is ranked after ~ in 'U , we swap the
positions of G and ~ in 'U . Continue the loop.

The above process repeats and moves to a higher position until
8 = 1. When 8 = 1, with top-1 document G in 'U and top-1 ~ in &!> ,
the only possible cases are !G = !~ or !G = 0 and !~ = 1. Therefore,
at the end of the above process, 2V � 2U .

Similarly, we can verify that 2W � 2V since 'W outmatches 'V .
Therefore 2W � 2V � 2U . The number of relevant documents up to
position : retrieved for 2GTI is 2W while the number of relevant
documents up to position : retrieved for '2U,W is 2U . Thus this
proposition is true. ⇤

The above analysis indicates that the top documents agreed
by three rankings 'U , 'V , and 'W are always kept on the top by
2GTI, and a properly con�gured 2GTI algorithm could outperform
a two-stage retrieval and re-ranking algorithm in relevance, espe-
cially when ranking 'W outmatches 'V and 'V outmatches 'U for
a query. Since two-stage search with neural re-ranking conducted
after BM25 retrieval is well adopted in the literature, this analysis
provides useful insight into the “worst-case” relevance competi-
tiveness of 2GTI with two-level pruning. GTI can be considered
as a special case of 2GTI with U = V = 1 when the same index
is used, and the above three propositions are true for GTI. 2GTI
provides more �exibility in pruning with quality control than GTI
and Section 5 further evaluates their relevance di�erence.

4.3 Alignment of tokens and weights
The BM25 model is usually built on word-level tokenization on
the original or expanded document sets and the popular expan-
sion method uses DocT5Query with the same tokenization method.
When a learned representation uses a di�erent tokenization method

5

such as BERT’s WordPiece based on subwords from BERT vocabu-
lary, we need to align it with BM25 for a consistent term reference.
For example, when using BM25 to guide the traversal of SPLADE
index, the WordPiece tokenizer is used for a document expanded
with DocT5Query before BM25 weighting is applied to each token.
Once tokens are aligned, from the index point of view, the same
token has two di�erent posting lists based on BM25 weights and
based on SPLADE. To merge them when postings do not align one-
to-one, the missing weight is set to zero as proposed in [31]. We call
this zero-�lling alignment. As alternatives, we propose two more
methods to �ll missing weights with better weight smoothness.
• One-�lling alignment. We assign 1 as term frequency for a
missing token in the BM25 model while this token appears in
the learned token list of a document. The justi�cation is that a
zero weight is to be too abrupt when such a term is considered
to be useful for a document based on a learned neural model.
Having term frequency one means that this token is present in
the document, even with the lowest value.

• Scaled alignment. This alternative replaces the missing weights
in the BM25 model based on a scaled learned score by using
the ratio of mean values of non-zero weights in both models.
For document ID 3 that contains term C , let its BM25 weight be
F⌫ (C,3) and its learned weight be F! (C,3). Let F⇤

⌫ (C,3) be an
adjusted BM25 weight. Set %⌫ contains all posting records with
nonzero BM25 weights. Set %! contains posting records with
non-zero learned weights. ThenF⇤

⌫ (C,3) is de�ned as:

F⇤
⌫ (C,3) =

8>>><
>>>:

F⌫ (C,3), F⌫ (C,3) < 0,Õ
(C 0,30)2%⌫ F⌫ (C 0,3 0)/|%⌫ |Õ
(C 0,30)2%! F! (C 0,3 0)/|%! |

F! (C,3), F⌫ (C,3) = 0.

5 EVALUATIONS

Table 1: Model characteristics with MS MARCO Dev set

Index Avg. Q Length #Postings Size Merged
MS MARCO passages
BM25-T5 4.5 (4.5) 644M 1.2G -
DeepImpact 4.2 (4.2) 644M 2.6G 2.6G
BM25-T5-B 6.6 (6.6) 699M 1.2G -
UniCOIL 6.6 (686.3) 592M 1.5G 1.7G
SPLADE++ 23.3 (867.6) 2.62B 5.6G 8.3G
MS MARCO documents
BM25-T5-B 6.8 (7.0) 3.39B 5.4G -
UniCOIL 6.6 (685.0) 3.04B 7.0G 8.3G

Datasets and settings. Our evaluation uses the MS MARCO docu-
ment and passage collections [3, 8], and 13 publicly available BEIR
datasets [38]. The results for the BEIR datasets are described in Ap-
pendix A. For MSMARCO, the contents in the document collections
are segmented during indexing and re-grouped after retrieval using
“max-passage” strategy following [23]. There are 8.8M passages
with an average length of 55 words, and 3.2M documents with an
average length of 1131 words before segmentation. The Dev query
set for passage and document ranking has 6980 and 5193 queries
respectively with about one judgment label per query. Each of the

passage/document ranking task of TREC Deep Learning (DL) 2019
and 2020 tracks provides 43 and 54 queries respectively with many
judgment labels per query.

In producing an inverted index, all words use lower case letters.
Following GT, we packed the learned score and the term frequency
in the same integer. For DeepImpact, we adopt GT’s index1 directly.
The BM25-T5’s index is dumped from the DeepImpact index. Both
BM25-T5 and DeepImpact are using natural words tokenization.

SPLADE and uniCOIL use the BERT’s Word Piece tokenizer. In
order to align with them, the BM25-T5-B index reported in the
following tables uses the same tokenizer as well. The impact scores
of uniCOIL is obtained from Pyserini [23] 2. For SPLADE, in order
to achieve the best performance, we retrained the model following
the setup in SPLADE++ [13]. We start from the pretrained model
coCondenser [6] and distill using the sentenceBERT hard nega-
tives 3 from a cross-encoder teacher [35] with MarginMSE loss.
For FLOP regularization, we use 0.01 and 0.008 for query and docu-
ments respectively.We construct the inverted indexes, convert them
to the PISA format, and compress them using SIMD-BP128 [21]
following [31, 34].

Table 1 shows the dataset and index characteristics of the di�er-
ent weighting models on the MS MARCO Dev dataset. Following
[29], we assume that a query can be pre-processed with a "pseudo-
document" trick that assigns custom weights to query terms in
uniCOIL and SPLADE. Therefore, there may be token repetition in
each query to re�ect token weighting. Column 1 is the mean query
length in tokens without or with counting duplicates. Column 3
is the inverted index size while the last column is the size after
merging BM25 and learned weights in the index.

The C++ implementation of 2GTI with the modi�ed MaxScore
and VBMWalgorithms are embedded in PISA [33], and the code will
be released in https://github.com/Qiaoyf96/2GTI. Our evaluation
using this implementation runs as a single thread on a Linux server
with Intel i5-8259U 2.3GHz and 32GB memory. Weights are chosen
by sampling queries from the MS MARCO training dataset.

Metrics. For MS MARCO Dev set, we report the relevance in
terms ofmean reciprocal rank (MRR@10 on passages andMRR@100
on documents), following the o�cial leader-board standard.We also
report the recall@k ratio which is the percentage of relevant-labeled
results appeared in the �nal top-: results. For TREC DL test sets,
we report normalized discounted cumulative gain (nDCG@10) [17].
The above reporting follows the common practice of the previous
work (e.g. [12, 15, 16, 30]).

Before timing queries, all compressed posting lists and metadata
for tested queries are pre-loaded into memory, following the same
assumption in [19, 32]. Retrieval mean response times (MRT) are
reported in milliseconds. The 99th percentile time (%99) is reported
within parentheses in the tables below, corresponding to the time
occurring in the 99th percentile denoted as tail latency in [28].

Statistical signi�cance. For the reported numbers onMSMARCO
passage and document Dev sets in the rest of this section, we have
performed a pairwise t-test on relevance di�erence between 2GTI
and a GTI baseline, and between 2GTI and the original learned
sparse retrieval without BM25 guidance. No statistically signi�cant
1https://github.com/DI4IR/dual-score
2https://github.com/castorini/pyserini/blob/master/docs/experiments-unicoil.md
3https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives

6

https://github.com/Qiaoyf96/2GTI

Table 2: A Comparison of 2GTI, GTI and the original method with no BM25 guidance for MaxScore

: = 10 : = 1000
MS MARCO Dev DL’19 DL’20 MS MARCO Dev DL’19 DL’20

Method MRR (Recall) MRT (%99) nDCG (Recall) MRT nDCG (Recall) MRT MRR (Recall) MRT (%99) nDCG (Recall) MRT nDCG (Recall) MRT

SPLADE++, Passages. U = 1. For 2GTI-Accurate: V = 0; for 2GTI-Fast: V = 0.3 (: = 10), 0.9 (: = 1000). For GTI and 2GTI: W = 0.05.
BM25-T5-B 0.2611 (0.5179) 1.7 (8.7) 0.5931 (0.1556) 0.8 0.5981 (0.2034) 1.0 0.2611 (0.9361) 9.2 (28.4) 0.5931 (0.7608) 6.4 0.5981 (0.7641) 7.4
SPLADE++-Org 0.3937 (0.6801) 121 (483) 0.7304 (0.1776) 135 0.7290 (0.2437) 138 0.3937 (0.9832) 278 (819) 0.7304 (0.8286) 317 0.7290 (0.8287) 307
-GT 0.2720 (0.5246) 121 (438) 0.6379 (0.1677) 130 0.6106 (0.2192) 139 0.2973 (0.9648) 336 (1048) 0.6636 (0.8030) 330 0.6605 (0.8072) 344
-GTI 0.2687 (0.5209) 118 (440) 0.6352 (0.1669) 131 0.6083 (0.2190) 139 0.2961 (0.9648) 332 (1059) 0.6595 (0.8025) 318 0.6587 (0.8066) 333
-2GTI-Accurate 0.3939† (0.6812) 31.1 (171) 0.7401 (0.1846) 31.9 0.7278 (0.2480) 36.8 0.3946† (0.9799) 109 (478) 0.7394 (0.8209) 123 0.7297 (0.8339) 132
-2GTI-Fast 0.3934† (0.6792) 22.7 (116) 0.7380 (0.1837) 23.5 0.7278 (0.2480) 26.2 0.3937† (0.9662) 43.1 (144) 0.7394 (0.8218) 42.1 0.7306 (0.8205) 45.0

UniCOIL, Passages. U = 1. For 2GTI-Accurate: V = 0; for 2GTI-Fast: V = 0.3 (: = 10), 1 (: = 1000). For GTI and 2GTI: W = 0.1.
BM25-T5-B 0.2611 (0.5179) 1.7 (8.7) 0.5931 (0.1556) 0.8 0.5981 (0.2034) 1.0 0.2611 (0.9361) 9.2 (28.4) 0.5931 (0.7608) 6.4 0.5981 (0.7641) 7.4
UniCOIL-Org 0.3516 (0.6168) 10.5 (102) 0.7027 (0.1761) 10.4 0.6746 (0.2346) 14.2 0.3516 (0.9582) 35.3 (197) 0.7027 (0.7822) 38.6 0.6746 (0.7758) 42.8
-GT 0.3347 (0.5639) 2.1 (11.2) 0.6990 (0.1770) 1.7 0.6769 (0.2444) 2.4 0.3514 (0.9458) 10.6 (33.9) 0.7028 (0.7857) 10.3 0.6746 (0.7741) 10.8
-GTI 0.3384 (0.5678) 2.1 (11.2) 0.6959 (0.1733) 1.6 0.6739 (0.2422) 2.4 0.3552 (0.9468) 10.6 (33.2) 0.7130 (0.7917) 10.3 0.6899 (0.7857) 10.8
-2GTI-Accurate 0.3550† (0.6205) 3.3 (19.2) 0.7135 (0.1769) 2.4 0.6891 (0.2451) 3.4 0.3554 (0.9566) 16.9 (68.4) 0.7130 (0.7904) 15.5 0.6899 (0.7823) 16.5
-2GTI-Fast 0.3548† (0.6193) 2.6 (14.3) 0.7135 (0.1769) 1.9 0.6891 (0.2451) 2.8 0.3552 (0.9468) 10.6 (33.2) 0.7129 (0.7917) 10.3 0.6899 (0.7857) 10.8

UniCOIL, Documents. U = 1. For 2GTI-Accurate: V = 0; for 2GTI-Fast: V = 0.5 (: = 10), 1 (: = 1000). For GTI and 2GTI: W = 0.1.
BM25-T5-B 0.2716 (0.4749) 2.7 (13.9) 0.4246 (0.0741) 3.6 0.4463 (0.1693) 3.1 0.2950 (0.9197) 12.4 (50.0) 0.5594 (0.5690) 15.0 0.5742 (0.7148) 15.7
UniCOIL-Org 0.3313 (0.5638) 26.0 (252) 0.5477 (0.0880) 28.1 0.4996 (0.1920) 27.3 0.3530 (0.9426) 71.0 (447) 0.6415 (0.5864) 79.2 0.6059 (0.7502) 86.0
-GT 0.3280 (0.5455) 6.8 (36.2) 0.5199 (0.0779) 6.2 0.4903 (0.1871) 7.1 0.3530 (0.9361) 20.9 (73.8) 0.6445 (0.5842) 21.6 0.6059 (0.7444) 22.7
-GTI 0.3334 (0.5531) 6.9 (36.6) 0.5223 (0.0781) 6.1 0.4905 (0.1857) 7.2 0.3639 (0.9368) 20.6 (72.9) 0.6581 (0.5920) 21.7 0.6156 (0.7445) 22.6
-2GTI-Accurate 0.3423† (0.5710) 10.2 (56.4) 0.5486 (0.0852) 8.9 0.4998 (0.1886) 10.5 0.3644 (0.9422) 33.2 (149) 0.6581 (0.5932) 32.8 0.6156 (0.7477) 37.4
-2GTI-Fast 0.3418† (0.5663) 7.4 (40.4) 0.5453 (0.0847) 6.5 0.4997 (0.1845) 8.2 0.3639 (0.9368) 20.6 (73.0) 0.6581 (0.5920) 21.7 0.6156 (0.7445) 22.5

DeepImpact, Passages. U = 1. For 2GTI-Accurate: V = 0; for 2GTI-Fast: V = 0.5 (: = 10), 1 (: = 1000). For GTI and 2GTI: W = 0.5.
BM25-T5 0.2723 (0.5319) 0.7 (4.7) 0.6283 (0.1611) 0.3 0.6321 (0.2218) 0.5 0.2723 (0.9348) 4.9 (21.3) 0.6283 (0.7704) 4.6 0.6321 (0.7598) 5.6
DeepImpact-Org 0.3276 (0.5844) 9.4 (73.3) 0.6964 (0.1698) 4.9 0.6524 (0.2035) 7.8 0.3276 (0.9474) 23.8 (97.0) 0.6964 (0.7623) 25.5 0.6524 (0.7534) 38.9
-GT 0.3276 (0.5805) 0.7 (4.7) 0.6997 (0.1698) 0.3 0.6682 (0.2194) 0.5 0.3276 (0.9454) 5.1 (21.1) 0.6964 (0.7745) 4.9 0.6527 (0.7574) 5.8
-GTI 0.3375 (0.5866) 0.7 (4.7) 0.6953(0.1690) 0.3 0.6846 (0.2372) 0.5 0.3413 (0.9455) 5.2 (21.7) 0.7072 (0.7871) 4.7 0.6854 (0.7745) 5.7
-2GTI-Accurate 0.3405† (0.5987) 1.1 (8.1) 0.7065 (0.1703) 0.7 0.6850 (0.2361) 1.2 0.3414 (0.9469) 7.4 (33.0) 0.7072 (0.7875) 7.8 0.6854 (0.7778) 9.1
-2GTI-Fast 0.3395† (0.5934) 0.7 (5.1) 0.7045 (0.1693) 0.4 0.6882 (0.2371) 0.6 0.3413 (0.9455) 5.2 (21.7) 0.7072 (0.7871) 4.7 0.6854 (0.7745) 5.7

degradation has been observed at the 95% con�dence level. We have
also performed a pairwise t-test comparing the reported relevance
numbers of 2GTI and GTI and mark ‘†’ in the evaluation tables if
there is a statistically signi�cant improvement by 2GTI over GTI at
the 95% con�dence level. We do not perform a t-test on DL’19 and
DL’20 query sets as the number of queries in these sets is small.

Overall results with MS MACRO. Table 2 lists a comparison
of 2GTI with the baseline using three sparse representations for
retrieval on MS MARCO and TREC DL datasets. 2GTI uses scaled
�lling alignment as default while GTI uses zero �lling as speci�ed
in [31]. The W value is chosen the same for GTI and 2GTI for each
representation, which is the best for most of cases. The “accurate”
con�guration denotes the one that reaches the highest relevance
score. The “fast” con�guration denotes the one that reaches a rele-
vance score within 1% of the accurate con�guration while being
much more faster.

2GTI vs. GTI in SPLADE++. Table 2 shows 2GTI with default
scaled �lling signi�cantly outperforms GTI with default zero �lling
for SPLADE++, where BM25 index is not well aligned. “SPLADE++-
Org” denotes the original MaxScore retrieval performance using
SPLADE++ model trained by ourselves and its MRR@10 number is
higher than what has been reported in [13]. When : = 1, 000, GT is
slightly better than GTI, and with the fast con�guration, MRR@10
of 2GTI is 32.4% higher than that of GT while 2GTI is 7.8x faster
than GT for the Dev set. The signi�cant increase in nDCG@10 and
decrease in the MRT are also observed in DL’19 and DL’20. When

: = 10, there is also a large relevance increase and time reduction
from GTI or GT to 2GTI for all three test sets. For example, the
relevance is 46.4% or 44.6% higher and the mean latency is 5.2x or
5.3x faster for the Dev set.

Compared to the original MaxScore method, 2GTI has about
the same relevance score for both : = 10 and : = 1, 000 while
having much smaller latency. For example, 6.5x reduction (278ms vs.
43.1ms) for the Dev passage set when : = 1, 000 and 5.3x reduction
when : = 10 (121ms vs 22.7ms) with the 2GTI-fast con�guration.

2GTI vs. GTI in DeepImpact and uniCOIL. As shown in Ta-
ble 2, GTI (or GT) performs very well for : = 1, 000 in both Deep-
Impact and uniCOIL in speeding up retrieval while maintaining a
relevance similar as the original retrieval. The two-level di�eren-
tiation for dynamic index pruning does not improve relevance or
shorten retrieval time. This can be explained as BM25-T5 index is
well aligned with the DeepImpact index and with the uniCOIL in-
dex. Also because of this reason, �lling to address index alignment
is not needed with no improvement in these two cases.

When : decreases from 1,000 to 10, as shown in Figure 1 dis-
cussed in Section 3, the recall ratio starts to drop, and relevance e�ec-
tiveness degrades. When : = 10 as shown in Table 2, DeepImpact-
2GTI-fast can increase MRR@10 from 0.3375 by GTI to 0.3395 for
the Dev set and deliver slightly higher MRR@10 or nDCG@10
scores than GTI in DL’19 and DL’19 sets. For uniCOIL, 2GTI-fast
increases MRR@10 from 0.3384 by GTI to 0.3548 for the Dev set
and increases nDCG@10 from 0.6959 to 0.7135 for DL’19. There is

7

also a modest relevance increase for DL’20 passages with : = 10
and a similar trend is observed for the document retrieval task. The
price paid for 2GTI is its retrieval latency increase while its latency
is still much smaller than the original retrieval time.

Design optionswithweight alignment and threshold over-
estimation. Table 3 examines the impact of weight alignment and
a design alternative based on threshold over-estimation for MS
MARCO passage Dev set using SPLADE++ when : = 10. In the top
portion of this table, threshold over-estimation by a factor of � (1.1,
1.3, and 1.5) is used in the original retrieval algorithmwithout BM25
guidance, and these factor choices are similar as ones in [7, 27, 39].
That essentially sets U = 0, V = 0, and W = 0 while multiplying \⌧;
and \!> by the above factor in 2GTI. The result shows that even
threshold over-estimation can reduce the retrieval time, relevance
reduction is signi�cant, meaning that the aggressive threshold used
causes incorrect dropping of some desired documents.

The second portion of Table 3 examines the impact of di�erent
weight �lling methods described in Section 4.3 for alignment when
they are applied to GTI and 2GTI, respectively. In both cases, scaled
�lling marked as “/s” is most e�ective while one-�lling marked
as “/1” outperforms zero-�lling marked as “/0” also. The MRT of
2GTI/s becomes 10.5x smaller than 2GTI/0while there is no negative
impact to its MRR@10. The MRT of GTI/s is about 13.0x smaller
than GTI/0 while there is a large MRR@10 number increase.

Table 3: Impact of design options on MS MARCO passages

SPLADE++. : = 10 MRR@10 Recall@10 MRT %99

Threshold over-estimation
Original 0.3937 0.6801 121 483
- � = 1.1 0.3690 0.5707 107 457
- � = 1.3 0.3210 0.4393 95.0 420
- � = 1.5 0.2825 0.3670 88.2 393
Weight alignment for GTI (U = 1, V = 1,W = 0.05)
GTI/0 0.2687 0.5209 118 440
GTI/1 0.3036 0.5544 26.7 114
GTI/s 0.3468 0.5774 9.1 36.1
Weight alignment for 2GTI-Accurate (U = 1, V = 0,W = 0.05)
2GTI/0 0.3933 0.6799 328 1262
2GTI/1 0.3933 0.6818 89.3 393
2GTI/s 0.3939 0.6812 31.1 171

A validation on 2GTI’s properties. To corroborate the com-
petitiveness analysis in Section 4.2, Table 4 gives MRR@10 scores
and retrieval times in milliseconds of the algorithms with di�erent
con�gurations on the Dev set of MS MARCO passages with : = 10
and SPLADE++ weights. The result shows that the listed con�gura-
tions of 2GTI have a higher MRR@10 number than 2-stage search
'2U,W , and 2GTI with U = V = 1 that behaves as GTI. MRR@10
of ranking with a simple linear combination of BM25 and learned
weights is only slightly higher than 2GTI, but it is much slower.

Sensitivity on weight distribution. We have distorted the
SPLADE++ weight distribution in several ways to examine the
sensitivity of 2GTI and found that 2GTI is still e�ective. For exam-
ple, we apply a square root function to the neural weight of every
token in MS MARCO passages, the relevance score of both original
retrieval and 2GTI drops to 0.356 MRR@10 due to weight distortion,
while 2GTI is 5.0x faster than the original MaxScore when : = 10.

Table 4: A validation on 2GTI’s properties. : = 10

MRR@10 Recall@10 MRT %99
'2U ,W (BM25 retri. SPLADE++ rerank) 0.3461 0.5179 - -
GTI/s (U = V = 1, W = 0.05) 0.3468 0.5774 9.1 36.1
2GTI/s (U = 1, V = W = 0.05) 0.3939 0.6812 29.8 165
2GTI/s-Accurate (U=1, V=0, W=0.05) 0.3939 0.6812 31.1 171
2GTI/s-Fast (U = 1, V = 0.3,W = 0.05) 0.3934 0.6792 22.7 116
Linear comb. (U = V = W = 0.05) 0.3946 0.6805 120 477

Table 5: Use of 2GTI with a new SPLADE model [20]. : = 10

BT-SPLADE-L MRR@10 Recall@10 MRT %99
Original MaxScore 0.3799 0.6626 17.4 59.4
2GTI/s (U=1, V=0.3, W=0.05) 0.3772 0.6584 8.0 27.5
GTI/s (U = V = 1, W = 0.05) 0.3284 0.5520 6.6 24.9

E�cient SPLADE model. Table 5 shows the application of
2GTI in a recently published e�cient SPLADE model [20] which
has made several improvements in retrieval speed. We have used
the released checkpoint of this e�cient model called BT-SPLADE-L,
which has a weaker MRR@10 score, but signi�cantly faster than our
trained SPLADE baseline reported in Table 2. When used with this
new SPLADE model, 2GTI/s-Fast version results in a 2.2x retrieval
time speedup over MaxScore. Its MRR@10 is higher than GTI/s and
has less than 1% degradation compared to the original MaxScore.

6 CONCLUDING REMARKS
The contribution of this paper is a two-level parameterized guidance
scheme with index alignment to optimize retrieval traversal with
a learned sparse representation. Our formal analysis shows that a
properly con�gured 2GTI algorithm including GTI can outperform
a two-stage retrieval and re-ranking algorithm in relevance.

Our evaluation shows that the proposed 2GTI scheme can make
the BM25 pruning guidance more accurate to retain the relevance.
For MaxScore with SPLADE++ on MS MARCO passages, 2GTI
can lift relevance by up-to 32.4% and is 7.8x faster than GTI when
: = 1, 000, and by up-to 46.4% more accurate and 5.2x faster when
: = 10. In all evaluated cases, 2GTI is much faster than the original
retrieval without BM25 guidance. For example, up-to 6.5x faster
than MaxScore on SPLADE++ when : = 10. We have also observed
similar performance patterns on BEIR datasets when comparing
2GTI with GTI and the original MaxScore using SPLADE++ learned
weights. Compared to other options such as threshold underes-
timation to reduce the in�uence of BM25 weights, the two-level
control is more accurate in maintaining the strong relevance with
a much lower time cost. While our study is mainly centered with
MaxScore-based retrieval, 2GTI can be used for VBMW and our
evaluation shows that VBMW-2GTI can be a preferred choice for a
class of short queries without stop words when : is small.

Acknowledgments. We thankWentai Xie, XiyueWang, Tianbo
Xiong, and anonymous referees for their valuable comments and/or
help. This work is supported in part by NSF IIS-2225942 and has
used the computing resource of the XSEDE and ACCESS programs
supported by NSF. Any opinions, �ndings, conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily re�ect the views of the NSF.

8

A ADDITIONAL EVALUATION RESULTS

Figure 3: Controlling in�uence of BM25 on pruning

Impact of U and V adjustment on 2GTI. Figure 3 examines
the impact of adjusting parameters U and V on global and local
pruning for the MS MARCO Dev passage test set when : = 10 in
controlling the in�uence of BM25 weights for SPLADE++ (left) and
uniCOIL (right). The G axis corresponds to the latency increase
while ~ axis corresponds to the MRR@10 or nDCG@10 increase.
The results for MS MARCO DL’19, and DL’20 are similar.

The red curve connected with dots �xes V = 1 and varies U from
1 at the left end to 0 at the right end. As U decreases from 1 to 0, the
latency increases because BM25 in�uences diminish at the global
pruning level and fewer documents are skipped. The relevance for
this curve is relatively �at in general and lower than that of the
blue curve, representing the global level BM25 guidance reduces
time signi�cantly, while having less impact on the relevance.

The blue curve connected with squares �xes U = 1 at the global
level and varies V from 1 at the left bottom end to 0 at the right top
end. Decreasing V value is positive in general for relevance towards
some point as BM25 in�uence decreases gradually at the local level
and after such a point, the relevance gain becomes much smaller
or negative. For example, after V in the blue curve in SPLADE++
becomes 0.3 for the Dev set, its additional decrease does not lift
MRR@10 visibly anymore while the latency continues to increase,
which indicates the relevance bene�t has reached the peak at that
point. Our experience with the tested datasets is that the parameter
setting for 2GTI can reach a relevance peak typically when U is
close to 1 and V varies between 0.3 and 1.

Note that even the above result advocates that U is close to 1, U
and V still have di�erent values to be more e�ective for the tested
data, re�ecting the usefulness of two-level pruning control.

Threshold under-estimation. In Figure 3, the brown curve
connected with triangles �xes U = V = 1 and under-estimates the
skipping threshold by a factor of � at the local and global levels.
That behaves like GTI coupled with scaled weight �lling as a special
case of 2GTI. � varies from 1 at the left bottom end to 0.7 at the right
top end of this brown curve. As � decreases, the skipping threshold
becomes very loose and there is less chance that desired documents
are skipped. Then retrieval relevance can improve while retrieval
time can increase substantially. Comparing with the blue curve
that adjusts V , retrieval takes a much longer time in the brown
curve to reach the peak relevance, as shown in this �gure, and
the brown curve is generally placed on the right side of the blue

curve. For example on the Dev set with uniCOIL, the brown curve
with threshold under-estimation reaches the best relevance at mean
latency 3.7ms while the blue curve with V adjustment reaches the
same peak at mean latency 2.3ms, which is 1.6x faster.

Zero-shot performance on the BEIR datasets.We evaluate
the zero-shot ranking e�ectiveness and response time of 2GTI
using the 13 search and semantic relatedness datasets from the
BEIR collection. Our training of SPLADE++ model is only based
on MS MARCO data without using any BEIR data. Table 6 lists the
nDCG@10 scores of original MaxScore on SPLADE++, 2GTI/s-Fast
(U=1, V=0.3, W=0.05) and GTI (U=V=1, W=0.05). The retrieval depth is
: = 10 and : = 1000. This table also reports mean response time of
retrieval in milliseconds. The SPLADE++ model trained by ourself
has an average nDCG@10 score 0.500 close to 0.507 reported in the
SPLADE++ paper [13]. The original MaxScore’s nDCG@10 score
does not change when : = 10 and : = 1000.

.
Table 6: Zero-shot relevance in NDCG@10 and retrieval la-
tency in milliseconds on BEIR datasets with SPLADE++

Original MaxScore 2GTI/s-Fast GTI/s
Dataset nDCG MRT nDCG MRT nDCG MRT
:=10
DBPedia 0.447 99.0 0.449 34.5 0.306 10.6
FiQA 0.355 5.1 0.354 3.4 0.256 0.8
NQ 0.551 72.9 0.551 28.6 0.524 7.3
HotpotQA 0.681 453 0.681 191 0.549 46.8
NFCorpus 0.351 0.3 0.347 0.2 0.327 0.1
T-COVID 0.705 15.9 0.707 9.9 0.569 2.6
Touche-2020 0.291 8.7 0.291 3.2 0.237 1.3
ArguAna 0.446 8.8 0.448 4.0 0.454 4.0
C-FEVER 0.234 635 0.231 355 0.196 241
FEVER 0.781 1028 0.771 655 0.590 160
Quora 0.817 21.5 0.817 6.7 0.763 1.7
SCIDOCS 0.155 3.7 0.155 2.1 0.140 1.2
SciFact 0.682 3.2 0.680 2.9 0.680 1.7
Average 0.500 - 0.499 2.0x 0.430 6.1x
:=1000
Average 0.500 - 0.501 2.5x 0.496 2.7x

When : = 10, 2GTI has almost identical nDCG@10 scores as
the original MaxScore while 2GTI is on average 2.0x faster than
MaxScore for these BEIR datasets.WhenGTI runs on the same index
data, its average nDCG@10 score is 0.43 MRR@10 and it is faster
than 2GTI with an average 6.1x speedup over the original MaxScore
for these datasets. Two-level pruning in 2GTI can preserve relevance
better than GTI and this is consistent with what we have observed
for searching MS MARCO passages.

When : = 1000, the guided traversal algorithms have a better
chance to retain relevance. 2GTI has a slightly higher average rele-
vance of 0.501 MRR@10 than that with : = 10 and it is about 2.5x
faster on average than the original MaxScore. For GTI running on
the same index with the same alignment, the average MRR@10 is
0.496 whil average speedup 2.7x over MaxScore. Its relevance score
is close to that of 2GTI as BM25-driven pruning under a large :
value can still keep a good recall ratio.

9

B TWO-LEVEL GUIDANCE FOR BMW
Two-level guidance can be adopted to control index traversal of a
BMW based algorithm such as VBMW as well because we can also
view that such an algorithm conducts a sequence of index traversal
steps, and can di�erentiate its index pruning of each traversal step at
the global inter-document and local intra-document levels. We use
the same symbol notations as in the previous subsection, assuming
the posting lists are sorted by an increasing order of their document
IDs. We still keep a position pointer in each posting list of search
terms to track the current document ID 3C8 being handled for each
term C8 , incrementally accumulate three scores⌧;>10; (3), !>20; (3),
and '0=:(2>A4 (3) for each document 3 visited, and maintain three
separate score-sorted queues &⌧; , &!> , and &': .

t1
t2

t3

t4

d3

d5

d1

d3

Find a pivot term and its its pivot doc ID

Figure 4: Global pruning in BMW

• Pruning at the global inter-document levelwith pivot iden-
ti�cation. BMW [11] keeps a sorted search term list in each
traversal step so that 3C8  3C8+1 with 1  8  # � 1. The
pivot position that partitions these current document pointers is
the smallest integer called ?8E>C such that

Õ?8E>C
8=1 Uf⌫ [8] + (1 �

U)f! [8] > \⌧; . This inequality means that any document ID 3
where 3C0  3 < 3C?8E>C does not qualify for being in the �nal
top : list based on score ⌧;>10; (3). Then with the above pivot
detection, for 1  8 < ?8E>C , the current visitation pointer of
the 8-th posting list moves to the closest block that contains a
document ID equal to or bigger than 3C?8E>C .
Figure 4 illustrates an example of global pruning in BMW with
4 terms and each posting list maintains a pointer to the current
document being visited at a traversal step. Documents in each
posting list are covered by a curved rectangle, representing these
lists are stored and compressed in a block-wise manner. In the
�gure, the pivot identi�cation at one traversal step locates docu-
ment 33, and document IDs smaller than 33 are skipped for any
further consideration in this traversal step.

• Local pruning. Let 3 be the corresponding pivot document in
pivot term C?8E>C . In Figure 4, pivot term C?8E>C = C3 and 3 = 33.
A traversal procedure is executed to check if detailed scoring of
document 3 can be avoided fully or partially and this procedure
can be similar as the one in the revised MaxScore algorithm
described earlier. As each posting list is packaged in a block
manner in BMW, let �⌫ [G] and �! [G] be the BM25 and learned
block maximum weights of the block in the G-th posting list
that contains 3 , respectively, and they are 0 if no such a block
exists in this list. The upper bound of !>20; (3) can be tightened
using the block-wise maximum weight instead of the list-wise
maximumweight contributed by each term as:

Õ#
8=1 V�⌫ [8]+(1�

Table 7: Guided VBMW and MaxScore with uniCOIL on MS
MARCO passages

Dataset Method : = 10 : = 20 : = 100

Dev
MaxScore-2GTI 0.355† , 2.6 (14.3) 0.355† , 3.4 (18.4) 0.355, 5.5 (26.0)
VBMW-2GTI 0.353† , 4.3 (30.6) 0.354† , 5.2 (35.6) 0.355, 8.6 (51.6)
VBMW-GTI 0.339, 2.4 (14.2) 0.347, 3.0 (17.2) 0.353, 5.4 (27.1)

DL’19
MaxScore-2GTI 0.714, 1.9 (12.9) 0.713, 2.3 (14.2) 0.713, 4.3 (18.6)
VBMW-2GTI 0.708, 2.0 (20.0) 0.708, 3.7 (23.2) 0.710, 6.6 (33.1)
VBMW-GTI 0.694, 1.7 (9.0) 0.700, 2.2 (11.7) 0.710, 4.3 (17.9)

DL’20
MaxScore-2GTI 0.689, 2.8 (12.1) 0.689, 3.3 (13.0) 0.689, 5.3 (22.2)
VBMW-2GTI 0.683, 3.9 (18.4) 0.686, 4.9 (22.6) 0.686, 8.4 (46.8)
VBMW-GTI 0.676, 2.3 (10.5) 0.680, 2.9 (13.7) 0.685, 5.3 (24.8)

Table 8: Performance under di�erent query classes with : =
10, uniCOIL, and MS MARCO passage Dev set

QLength  3 4-5 6-7 � 8
Q w/ SW 113 1720 2175 2030
MaxScore-2GTI 0.286, 1.6 (12.2) 0.376, 1.7 (8.9) 0.347, 2.4 (11.5) 0.315, 4.3 (20.9)
VBMW-2GTI 0.289, 2.1 (15.2) 0.373, 2.2 (12.5) 0.346, 3.4 (16.1) 0.313, 8.5 (50.8)
VBMW-GTI 0.257, 1.1 (6.1) 0.346, 1.4 (6.8) 0.334, 2.6 (12.2) 0.307, 7.4 (43.9)
Q w/o SW 327 445 130 40
MaxScore-2GTI 0.397, 1.3 (9.0) 0.430, 1.9 (9.4) 0.439, 3.7 (12.1) 0.558, 5.4 (15.9)
VBMW-2GTI 0.399, 0.9 (4.0) 0.430, 1.6 (6.3) 0.438, 3.6 (12.7) 0.565, 5.6 (23.3)
VBMW-GTI 0.385, 0.7 (3.4) 0.420, 1.3 (5.1) 0.433, 2.6 (9.9) 0.560, 4.1 (12.9)

V)�! [8] . When decompressing the needed block of a posting list,
the block-max contribution from the corresponding term in the
above expression can be replaced by the actual BM25 and learned
weights for document 3 . Then the upper bound of !>20; (3) is
further tightened, which can be directly compared with \!> after
every downward adjustment.
Evaluations on e�ectiveness of 2GTI onVBMW. We choose

uniCOIL to study the usefulness of VBMW-2GTI in searching the
MS MARCO Dev set. SPLADE++ is not chosen because the test
queries are long on average and MaxScore is faster than VBMW
for such queries. Table 7 reports the performance for VBMW-2GTI,
VBMW-GTI, andMaxScore-2GTI for passage retrieval with uniCOIL
when varying : . Each entry has a report format of G,~ (I) where G is
MRR@10 for Dev or NDCG@10 for DL’19 and DL’20. ~ is the MRT
in ms, and I is the %99 latency in ms. 2GTI uses the fast setting with
U = 1, V = 0.3. For both 2GTI and GTI, W = 0.1. The result shows
2GTI provides a positive boost in relevance for VBMW compared
to GTI when : is 10 and 20. For : = 100, the relevance di�erence
is negligible. MaxScore-2GTI is still faster than VBMW-2GTI on
average for all tested queries while their relevance di�erence is
small. we examine below if VBMW-2GTI can be useful for a subset
of queries.

Table 8 reports the relevance and time of these three algorithms
in the passage Dev set for queries subdivided based on their lengths
and if a query contains a stop word or not. That is for uniCOIL
with : = 10, U = 1, V = 0.3, and W = 0.1. Each entry has the same
report format as in Table 7. The result shows that VBMW-2GTI is
much faster than MaxScore-2GTI for short queries (:  5) that do
not contain stop words and VBMW-2GTI has an edge in relevance
over VBMW-GTI while being very close to MaxScore-2GTI for this
class of queries. The above result suggests that a fusion method
can do well by switching the algorithm choice based on query
characteristics and VBMW-2GTI can be used for a class of queries.

10

REFERENCES
[1] Yang Bai, Xiaoguang Li, Gang Wang, Chao liang Zhang, Lifeng Shang, Jun Xu,

Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020. SparTerm: Learning Term-
based Sparse Representation for Fast Text Retrieval. ArXiv abs/2010.00768 (2020).

[2] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya So�er, and Jason Zien.
2003. E�cient Query Evaluation Using a Two-level Retrieval Process. In Proc. of
the 12th ACM International Conference on Information and KnowledgeManagement.
426–434.

[3] Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, Li Deng, and Bhaskar Mitra. 2016. MS
MARCO: A Human Generated MAchine Reading COmprehension Dataset. ArXiv
abs/1611.09268 (2016).

[4] Kaushik Chakrabarti, Surajit Chaudhuri, and Venkatesh Ganti. 2011. Interval-
based pruning for top-k processing over compressed lists. 2011 IEEE 27th Inter-
national Conference on Data Engineering (2011), 709–720.

[5] David R. Cheriton. 2019. From doc2query to docTTTTTquery.
[6] coCondenser. 2021. https://huggingface.co/Luyu/co-condenser-marco. (2021).
[7] Matt Crane, J. Shane Culpepper, Jimmy Lin, Joel Mackenzie, and Andrew Trot-

man. 2017. A Comparison of Document-at-a-Time and Score-at-a-Time Query
Evaluation. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining (Cambridge, United Kingdom) (WSDM ’17). ACM, New
York, NY, USA, 201–210.

[8] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Fernando Campos, and
Ellen M. Voorhees. 2020. Overview of the TREC 2020 Deep Learning Track.
ArXiv abs/2102.07662 (2020).

[9] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting For First
Stage Passage Retrieval. Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (2020).

[10] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. 2013. Op-
timizing top-k document retrieval strategies for block-max indexes. InWSDM
’13.

[11] Shuai Ding and Torsten Suel. 2011. Faster Top-k Document Retrieval Using
Block-Max Indexes. In Proc. of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 993–1002.

[12] Thibault Formal, C. Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval.
ArXiv abs/2109.10086 (2021).

[13] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural IR
Models More E�ective. Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval (2022).

[14] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (2021).

[15] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match
in Information Retrieval with Contextualized Inverted List. NAACL (2021).

[16] Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme, and
Jamie Callan. 2021. Complementing Lexical Retrieval with Semantic Residual
Embedding. ECIR and arxiv:2004.13969 [cs.IR]

[17] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[18] Karen Spärck Jones, SteveWalker, and Stephen E. Robertson. 2000. A probabilistic
model of information retrieval: development and comparative experiments. In
Information Processing and Management. 779–840.

[19] Omar Khattab, Mohammad Hammoud, and Tamer Elsayed. 2020. Finding the best
of both worlds: Faster and more robust top-k document retrieval. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1031–1040.

[20] Carlos Lassance and Stéphane Clinchant. 2022. An e�ciency study for SPLADE
models. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2220–2226.

[21] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second
through vectorization. Softw. Pract. Exp. 45, 1 (2015), 1–29.

[22] Hang Li, Shuai Wang, Shengyao Zhuang, Ahmed Mourad, Xueguang Ma, Jimmy
Lin, and G. Zuccon. 2022. To Interpolate or not to Interpolate: PRF, Dense and
Sparse Retrievers. SIGIR (2022).

[23] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Informa-
tion Retrieval Research with Sparse and Dense Representations. In Proceedings of
the 44th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2021). 2356–2362.

[24] Jimmy J. Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL,
and a Conceptual Framework for Information Retrieval Techniques. ArXiv
abs/2106.14807 (2021).

[25] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy J. Lin. 2021. In-Batch Negatives
for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval.
In REPL4NLP.

[26] Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy Lin. 2021. A Replication
Study of Dense Passage Retriever. arXiv:2104.05740 [cs.CL]

[27] Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 2012. E�ect of Dynamic
Pruning Safety on Learning to Rank E�ectiveness. In Proceedings of the 35th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (Portland, Oregon, USA) (SIGIR ’12). Association for Computing
Machinery, New York, NY, USA, 1051–1052.

[28] Joel Mackenzie, J. Shane Culpepper, Roi Blanco, Matt Crane, Charles L. A. Clarke,
and Jimmy Lin. 2018. Query Driven Algorithm Selection in Early Stage Retrieval.
In Proc. of the 11th ACM International Conference on Web Search and Data Mining.
396–404.

[29] Joel Mackenzie, Andrew Trotman, and Jimmy Lin. 2021. Wacky Weights in
Learned Sparse Representations and the Revenge of Score-at-a-Time Query
Evaluation. arXiv:2110.11540 [cs.IR]

[30] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021. Learn-
ing passage impacts for inverted indexes. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1723–1727.

[31] Antonio Mallia, Joel Mackenzie, Torsten Suel, and Nicola Tonellotto. 2022. Faster
Learned Sparse Retrieval with Guided Traversal. In Proceedings of the 45th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2022). 1901–1905.

[32] AntonioMallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano
Venturini. 2017. Faster BlockMax WAND with Variable-sized Blocks. In Proc.
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 625–634.

[33] Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant indexes and search for academia. Proceedings of the Open-Source IR
Replicability Challenge (2019).

[34] Antonio Mallia, Michal Siedlaczek, and Torsten Suel. 2019. An Experimental
Study of Index Compression and DAAT Query Processing Methods. In Proc. of
41st European Conference on IR Research, ECIR’ 2019. 353–368.

[35] MiniLM-L-6-v2. 2022. https://huggingface.co/cross-encoder/ms-marco-MiniLM-
L-6-v2. (2022).

[36] Yifan Qiao, Yingrui Yang, Haixin Lin, Tianbo Xiong, Xiyue Wang, and Tao Yang.
2022. Dual Skipping Guidance for Document Retrieval with Learned Sparse
Representations. ArXiv abs/2204.11154 (April 2022).

[37] Trevor Strohman and W. Bruce Croft. 2007. E�cient document retrieval in main
memory. In Proc. of the 30th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 175–182.

[38] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-�fth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2). https://openreview.
net/forum?id=wCu6T5xFjeJ

[39] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. 2013. E�cient and E�ec-
tive Retrieval Using Selective Pruning. In Proc. of the Sixth ACM International
Conference on Web Search and Data Mining (WSDM ’13). ACM, 63–72.

[40] Nicola Tonellotto, Craig Macdonald, Iadh Ounis, et al. 2018. E�cient query
processing for scalable web search. Foundations and Trends® in Information
Retrieval 12, 4-5 (2018), 319–500.

[41] Howard Turtle and James Flood. 1995. Query Evaluation: Strategies and Opti-
mizations. Information Processing & Management 31, 6 (1995), 831–850.

[42] Yingrui Yang, YifanQiao, Jinjin Shao, Xifeng Yan, and Tao Yang. 2022. Lightweight
Composite Re-Ranking for E�cient Keyword Search with BERT. WSDM (2022).

[43] Hamed Zamani, Mostafa Dehghani, William Bruce Croft, Erik G. Learned-Miller,
and J. Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning
a Sparse Representation for Inverted Indexing. Proceedings of the 27th ACM
International Conference on Information and Knowledge Management (2018).

11

https://arxiv.org/abs/2104.05740
https://arxiv.org/abs/2110.11540
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design Considerations
	4 Two-level Guided Traversal
	4.1 Two-level guidance for MaxScore
	4.2 Relevance properties of 2GTI
	4.3 Alignment of tokens and weights

	5 Evaluations
	6 Concluding Remarks
	A Additional Evaluation Results
	B Two-level guidance for BMW
	References

