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ABSTRACT

Learned sparse document representations using a transformer-
based neural model have been found to be attractive in both rel-
evance effectiveness and time efficiency. This paper describes a
representation sparsification scheme based on hard and soft thresh-
olding with an inverted index approximation for faster SPLADE-
based document retrieval. It provides analytical and experimetal
results on the impact of this learnable hybrid thresholding scheme.
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1 INTRODUCTION

Recently learned sparse retrieval techniques [5-8, 10, 20, 23, 37]
have become attractive because such a representation can deliver a
strong relevance by leveraging transformer-based models to expand
document tokens with learned weights and can take an advantage
of traditional inverted index based retrieval techniques [24, 25]. Its
query processing is cheaper than a dense representation which
requires GPU support (e.g. [31, 32, 35]) even with efficiency opti-
mization through approximate nearest neighbor search [14, 34, 38].

This paper focuses on the SPLADE family of sparse represen-
tations [6-8] because it can deliver a high MRR@10 score for MS
MARCO passage ranking [4] and a strong zero-shot performance for
the BEIR datasets [33], which are well-recognized IR benchmarks.
The sparsification optimization in SPLADE has used L1 and FLOPS
regularization to minimize non-zero weights during model learning,
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and our objective is to exploit additional opportunities to further in-
crease the sparsity of inverted indices produced by SPLADE. Earlier
static inverted index pruning research [1-3] for a lexical model has
shown the usefulness of trimming a term posting list or a document
by a limit. Yang et al. [36] conduct top token masking by limiting
the top activated weight count uniformly per document and grad-
ually reduce this weight count limit to a targeted constant when
training SPLADE. Motivated by these studies [1-3, 36] and since
they have not addressed learnability of a pruning limit through
relevance-driven training, this paper exploits a learnable threshold-
ing architecture to filter out unimportant neural weights produced
by the SPLADE model through joint training.

The contribution of this paper is a learnable hybrid hard and
soft thresholding scheme with an inverted index approximation to
increase the sparsity of SPLADE-based document and query feature
vectors for faster retrieval. In addition to experimental validation
with MS MARCO and BEIR datasets, we provide an analysis on
the impact of hybrid thresholding with joint training on index
approximation errors and training update effectiveness.

2 BACKGROUND

For a query q and a document d, after expansion and encoding,
they can be represented by vector w(q) and w(d) with length |V,
where V is the vocabulary set. The rank score of q and d is com-
puted as R(g,d) = w(q) - w(d) = Zlfll w? X wlfi. For sparse vectors
with many zeros, retrieval can utilize a data structure called in-
verted index during online inference for fast score computation
[24, 25]. The SPLADE model uses the BERT token space to pre-
dict the feature vector w. In its latest SPLADE++ model, it first
calculates the importance of i-th input token in d for each j in V:
wij(@) = Transform(l;i)Tb:j +bj, where l;i is the BERT embedding
of i-th token in d, E] is the BERT input embedding for j-th token.
Transform() is a linear layer with GeLU activation and LayerNorm.
The weights in this linear layer, Ej, and b; are the SPLADE pa-
rameters updated during training and we call them set ©. Then
the j-th entry w; of document d (or a query) is max-pooled as
w;j(0) = max;e4{log(1 + ReLU(w;;(©)))}. Notice that w; > 0.

The loss function of SPLADE models [6-8] contains a per-query
ranking loss Lg and sparsity regularization. The ranking loss has
evolved from a log likelihood based function for maximizing posi-
tive document probability to margin MSE for knowledge distillation.
This paper uses the loss of SPLADE with a combination that deliv-
ers the best result in our training process. LR is the ranking loss
with margin MSE for knowledge distillation [12]. The document
token regularization Lp is computed on the training documents in
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each batch based on FLOPS regularization. The query token regu-
larization Ly is based on L1 norm. Let B be a set of training queries
with N documents involved in a batch. Lp = ¥ ey ﬁ 2qeB w;.l;
Lp = Zjev(y =N, wh?.

Related work. Other than SPLADE, sparse retrieval studies
include SNRM [37], DeepCT [5], DeepImpact [23], and uniCOIL [10,
20].  The sparsity of a neural network is studied in the deep
learning community. Soft thresholding in [16] adopts a learnable
threshold with function S(x,t) = ReLU(x — t) to make parameter
x zero under threshold ¢. A hard thresholding function H(x,t) =
x when x > t otherwise 0. Approximate hard thresholding [28]
uses a Gauss error function to approximate H(x, t) with smooth
gradients. Dynamic sparse training [21] finds a dynamic threshold
with marked layers. These works including the recent ones [9]
are targeted for sparsification of parameter edges in a deep neural
network. In our context, a token weight w; is an output node
in a network. The sparsification of output nodes is addressed in
activation map compression [11] using ReLU as soft thresholding
together with L1 regularization. The work of [15] further boosts
sparsity with the Hoyer regularization and a variant of ReLU. The
above techniques have not been investigated in the context of
sparse retrieval, and the impact of thresholding on relevance and
query processing time with inverted indices, requires new design
considerations and model structuring for document retrieval, even
the previous work can be leveraged.

3 HYBRID THRESHOLDING (HT)
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Figure 1: Hybrid thresholding with an index approximation

Design considerations. To zero out a token weight below a
learnable threshold, there are two options: soft thresholding [16],
and approximate hard thresholding [28]. For query token weights,
we find that soft thresholding does not affect relevance significantly.
For document token weights, our study finds that compared to soft
thresholding, hard thresholding can retain relevance better since it
does not change token weights when exceeding a threshold. Since
the subgradient for hard thresholding with respect to a threshold is
always 0, an approximation needs to be carried out for training. For
search index generation, an inverted index produced with the same
approximate hard thresholding as training keeps many unnecessary
non-zero document token weights, slowing down retrieval signifi-
cantly. Thus we directly apply hard thresholding with a threshold
learned from training, as shown in Figure 1. There is a gap between
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trained document token weights and actual weights used in our
inverted index generation and online inference, and we intend to
minimize this gap (called an index approximation error).

Thus our design takes a hybrid approach that applies soft thresh-
olding to query token weights during training and inference and
applies approximate hard thresholding to document token weights
during training while using hard thresholding for documents during
index generation. For approximate hard thresholding, we propose
to use a logistic sigmoid-based function instead of a Gauss error
function [28]. This sigmoid thresholding simplifies our analysis of
the impact of its hyperparameter choice to index approximation
errors, and to training stability.

3.1 Trainable and approximate thresholding

Training computes threshold parameters tp, and tg for documents
and queries, respectively. From the output of the SPLADE model,
every token weight of a query is replaced with S(w}], to), which is

ReLU(w;I — tp), and every document token weight is replaced with

H (w;.], tp) before their dot product is computed during training as

shown in Figure 1(a). Sigmoid thresholding H is defined as:
1
1+e X" W
Here K is a hyperparameter to control the slope steepness of step
approximation that jumps from 0 to 1 when exceeding a threshold.
The indexing process uses hard thresholding to replace all doc-
ument weights that are below threshold tp as 0 as depicted in
Figure 1(b). The above post processing introduces an index approx-

ﬁ(w}i, tp) = W?O'(K(W;i — tp)) where o(x) =

imation error E = |ﬁ(wf, tp) — H(w}i, tp)|. We derive its upper
bound as follows. Notice that w; > 0, and for any x > 0, 1+x < e~.
d d
w w
d d J J
E = wla(K(w$ — tp)) = < .
J J 1+ Ko=) = 2+ K(tp - wd)

When w]'@l > tp, we can derive that

w

£ ==Kt -100) = woKo ) < s

Let o~ denote U(K(w;j —tp)). 0 < 6~ < 1. In both of the above
cases, the error upper bound is minimized when K is large. This is
consistent with the fact that error E is monotonically decreasing
as K increases because g}? = —w;i o (1-0") |w;.1 — tp|< 0. When
|wj — tp| is big, the error is negligible and when |w? — tp| is small,
the error could become big with a small K value. But as shown later,
an excessively large K value could cause a big parameter update
during a training step, affecting joint training stability.

Let Dlen and Qlen be the non-zero token weight count of doc-
ument d and query q, respectively For our hybrid thresholding,

Dlen = %.; le‘.’ZtD’ Qlen = lwq>t Here 1x>y is an indicator

function as 1if x > y otherwise 0. When increasing tp and tg, Dlen
and Qlen decrease. Thus for a batch of training queries B, the origi-
nal SPLADE loss is extended as: L = (ﬁ SgeBLr)+AoLo+ApLp +

ArLr. The extra item added is Lt = log(1 + e~!P) + log(1 + e Q).

We retain the original Ly and Lp expressions because as w? or wd

J
decreases, more weights can quickly be zeroed out.
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3.2 Threshold and token weight updating

We study the change of tp, tp, w]”!, and w;.l after each training step
with a mini-batch gradient descent update. The analysis below uses
the first-order Taylor polynomial approximation and follows the
fact that sigmoid thresholding H and soft thresholding function
S are used independently for a query and a document in the loss
function. Symbol « is the learning rate. Let “d < ¢” mean d is a
positive or negative document of query q.

Atp = pnew _ Z,old _ i _ i aL_RE aLT
D D = Totp |B| g ot Tt
qEB oH D
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Notice that ;—fd =0~ +Kw?a_ (1—07). The above results indicate:

e A significant number of terms in Atp and Aw}i involve linear
coefficient K. This is verifiably true also for Awq Although alarge
K value can minimize the index approx1mat1on error |H ( ‘tp)—

H(w?, tp)|, it can cause an aggressive change of token Welghts
and thresholds at a training iteration, making training overshoot
and miss the global optimum. Thus K cannot be too large, and
our evaluation further studies this.

o If iL_F}I? > 0, Atp > 0, and the document threshold increases,
decreasing Dlen. Otherwise document token threshold may de-
crease after a parameter update step during training, and the

degree of decreasmg is reduced by a positive value £—— 1 - Based

on the sign of %R aS , we can draw a similar conclusmn on AtQ.

4 EVALUATION

Our evaluation uses MS MARCO passages [4] and BEIR datasets [33].
MS MARCO has 8.8M passages while BEIR has 13 different datasets
of varying sizes up-to 5.4M. As a common practice, we report the
relevance in terms of mean reciprocal rank MRR@10 for the MS
MARCO passage Dev query set with 6980 queries, and the nor-
malized discounted cumulative gain nDCG@10 [13] for its DL’19
and DL’20 sets, and also for BEIR. For retrieval with a SPLADE
inverted index, we report the mean response time (MRT) and 99th
percentile time (Pg9) in milliseconds. The query encoding time is not
included. For the SPLADE model, we warm up it following [7, 17],
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and train it with AQ = 0.01 and Ap = 0.008, and hybrid threshold-
ing. We use the PISA [26] search system to index documents and
search queries using SIMD-BP128 compression [18] and MaxScore
retrieval [24, 27]. Our evaluation runs as a single thread on a Linux
CPU-only server with Intel i5-8259U 2.3GHz and 32GB memory.
Similar retrieval latency results are observed on a 2.3GHz AMD
EPYC 7742 processor. The checkpoints and related code will be
released in https://github.com/Qiaoyf96/HT.

Table 1: Overall results on MS MARCO passages

Methods MRR MRT(Py9) MRT(Py9) | nDCG nDCG | Dlen
Dev k=10 k=1000 | DL'19 DL’20

SPLADE 0.3966  483(228)  127(408) | 0.7398 0.7340 | 351
/DT [28] 03922  102(457)  262(786) | 0.7392 0.7319 | 444
/Top305 [36] 03962  42.4(202)  114(369) | 0.7353 0.7288 | 277
/Top100 [36] 03908  21.8(106)  62.5(196) | 0.7192  0.7119 99
/DCP50% [2] 03958  30.0(145)  83.9(271) | 0.7385 0.7321 | 175
/DCP40% [2] 03933  25.9(124)  73.3(235) | 0.7335 0.7280 | 140
/DCP30% [2] 03912  21.6(101)  61.8(193) | 0.7287 0.7217 | 105
/Cut0.5 03924 21.9(104)  62.6(195) | 0.7296 0.7212 | 144
/Cut0.8 03885 15.6(70.4) 43.8(128) | 0.7207 07118 | 112
/HT,; 03955 22.8(108)  623(195) | 0.7322 0.7210 | 140
/HT3 03942  14.2(67.2)  40.6(123) | 0.7327 0.7228 | 106

/HT;-2GTI [30] | 03959 10.0(49.1) 27.6(92.2) | 0.7330 0.7210 | 140
J/HT3-2GTI[30] | 0.3942  6.9(33.9) 19.3(62.1) | 0.7320 0.7228 | 106

Overall results with MS MARCO. Table 1 is a comparison with
the baselines on MS MARCO passage Dev set, DL’19, and DL’20.
It lists the average Dlen value, and top-k retrieval time with depth
k =10 and 1000. Row 3 is for original SPLADE trained by ourselves
with an MRR number higher than 0.38 reported in [7, 17]. Rows 12
and 13 list the result of our hybrid thresholding marked as HT,,,.
and K = 25. With At = 1, SPLADE/HT; converges to a point where
to = 0.4and tp = 0.5, which is about 2x faster in retrieval. HT3 with
At = 3 converges at tp = 0.7 and tp = 0.8, resulting 3.1x speedup
than SPLADE while having a slightly lower MRR@10 0.3942. No
statistically significant degradation in relevance has been observed
at the 95% confidence level for both HT; and HT3. The inverted
index size reduces from 6.4GB for original SPLADE to 2.8GB and
2.2GB for HT; and HTj3 respectively. When applying two-level
guided traversal 2GTI [30] with its fast configuration, Rows 14 and
15 show a further latency reduction to 6.9ms or 19.3ms.

We discuss other baselines listed in this table. Row 4 named
DT uses the thresholding scheme from [28]. Its training does not
converge with its loss function, and its retrieval is much slower.
Rows 5 and 6 follow joint training of top-k masking [36] with the top
305 tokens as suggested in [36] and with the top 100 tokens. Rows
7, 8 and 9 marked with DCPx follow document centric pruning [2]
that keeps x of top tokens per document where x=50%, 40%, and 30%.
We did not list term centric pruning [1, 3] because [2] shows DCP
is slightly better in relevance under the same latency constraint.
Rows 10 and 11 with “/Cut0.5” and “/Cut0.8” apply a hard threshold
with 0.5 and 0.8 in the output of original SPLADE without joint
training. The index pruning options without learning from Rows
5 to 11 can either reduce the latency to the same level as HT, but
their relevance score is visibly lower; or have a relevance similar to
HT but with much slower latency. This illustrates the advantage of
learned hybrid thresholding with joint training.

Table 2 lists the zero-shot performance of HT when k = 1000 by
applying the SPLADE/HT model learned from MS MARCO to the
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Table 2: Zero-shot performance on BEIR datasets

SPLADE SPLADE/HT; SPLADE/HTj3
Dataset nDCG MRT | nDCG MRT | nDCG MRT
DBPedia 0.430 135 | 0.435 64.2 | 0.426 323
FiQA 0.354 6.5 | 0.345 4.0 | 0.336 3.2
NQ 0.547 81.8 | 0.545 459 | 0.539 28.6
HotpotQA 0.678 481 | 0.680 265 | 0.678 140
NFCorpus 0.351 0.5 | 0.352 0.3 | 0.346 0.2
T-COVID 0.719 16.0 | 0.730 10.1 | 0.695 7.5
Touche-2020 | 0.307 15.0 | 0.306 93 | 0.313 4.5
ArguAna 0.440 20.8 | 0.463 7.8 | 0.500 4.1
C-FEVER 0.234 1375 | 0.219 681 | 0.213 332
FEVER 0.781 1584 | 0.778 559 | 0.764 264
Quora 0.806 175 | 0.776 9.2 | 0.792 4.5
SCIDOCS 0.151 6.9 | 0.155 3.0 | 0.151 2.0
SciFact 0.676 5.7 | 0.681 2.4 | 0.672 1.4
Average 0.498 - | 0497 2.0x | 0.49%4 3.6x

BEIR datasets without any additional training. HT; has a similar
nDCG@10 score as SPLADE without HT, while having a 2x MRT
speedup on average. HT3 is even faster with 3.6x speedup, and its
nDCG@10 drops in some degree to 0.494.
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30
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Figure 2: Weight/threshold/sparsity changes during training

Figure 2 depicts the average values of w;?', tp, and Dlen on the

left and w;.], to, and Qlen on the right during MS MARCO training
under HT;. x-axis is the training epoch number. It shows that Dlen
and Qlen decrease while tp and tg increase as training makes a
progress and SPLADE/HT/ converges after about 20 epochs.
Design options. Table 3 lists performance under 4 thresholding
combinations from Row 3 to Row 7. S[x] means soft thresholding
function S() is applied to x for both training and indexing where x
can be documents (D) or queries (Q). 2] [x] means sigmoid thresh-
olding His applied in both training and indexing. HH[x] means H
is applied in training and H is applied in indexing. ¢[x] means no
thresholding is applied to x during training and indexing. When
thresholding is not applied to queries, HH[D] is 1.3x faster than
S[D] when k = 10 and k = 1000 while their relevance scores are sim-
ilar. Shifting of document weight distribution by soft thresholding
significantly affects retrieval time. Rows 6 and 7 fix HH[D] setting,
and show that soft thresholding is more effective in relevance than
hard thresholding for query tokens. Shifting of query weight dis-
tribution has less effect on latency while gaining more relevance
through model consistency between training and indexing.
Hyperparameter K in sigmoid thresholding H. Table 3 com-
pares I—AIH[D] with ﬁ[D] when varying K from Row 8 to Row 14.
In these cases, training always uses H while indexing uses H or
H. When K is small as 2.5, applying H to both training and in-
dexing yields good relevance, but retrieval is about 1.8x slower
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Table 3: Impact of design options. MS MARCO passages.

HT Config. MRR MRT(Ps) MRT(Ps) | Qlen Dlen
Ar =1 k=10 k = 1000

Soft vs. hard thresholding in 4 combinations. Fix K = 25.

#[01,S[D] 03941 31.7(157)  91.5(315) | 143 145
$[Q], HH[D] 03942  24.1(111)  70.7(219) | 135 142
S[0Q], HH[D] 0.3955 22.8(108) 62.3(195) | 113 140
HH[QL,HH[D] | 03904 24.9(106)  62.6(182) 9.0 142

Vary K. H[D] vs. HH[D). Fix S[Q].

HH[D],K =25 | 03947  228(110)  62.6(199) | 115 149
H[D], K =25 0.3963  41.4(198)  112(358) 115 421
HH[D],K =25 | 03955  22.8(108)  623(195) | 113 140
H[D],K =25 03961  28.7(136)  76.9(239) | 113 208
HH[D], K =250 | 0.3946 21.9(102) 60.5(189) | 112 135
H[D],K =250 | 03947  23.1(112)  63.9(203) | 112 159

Usefulness of Lo and Lp. Fix S[Q], HH[D], and K = 25.
wio Lo 03956  56.2(245)  166(502) 201 138
w/o Lo, Lp 0.3954 99.4(434) 254(772) 25.9 421

because much more non-zero weights are kept in the index. When
K becomes large as 250, training does not converge to the global
optimum due to large update sizes, resulting in an MRR score lower
than K=25 even with no index approximation. K = 25 has a reason-
able MRR while HH [D] is up-to 26% faster than H [D].

Retaining Lo and Lp. Last three rows of Table 3 shows that the
query length is higher when Lg is removed from the loss function,
and documents get longer when Lp is removed further. The result
means Ly and Lp are useful in sparsity control together with Lt.

5 CONCLUDING REMARKS

Our evaluation shows that learnable hybrid thresholding with index
approximation can effectively increase the sparsity of inverted in-
dices with 2-3x faster retrieval and competitive or slightly degraded
relevance (0.28% - 0.6% MRR@10 drop). Its trainability allows rele-
vance and sparsity guided threshold learning and it can outperform
index pruning without such an optimization. Our scheme retains a
non-uniform number of non-zero token weights per vector based
on a trainable weight and threshold difference for flexibility in rel-
evance optimization. Our analysis shows that hyperparameter K
in sigmoid thresholding needs to be chosen judiciously for a small
index approximation error without hurting training stability.

If a small relevance tradeoff is allowed, more retrieval time reduc-
tion is possible when applying other related orthogonal efficiency
optimization techniques [17, 19, 22, 24, 29, 30]. Applying hybrid
thresholding HT3 to a checkpoint of a recent efficiency-driven
SPLADE model [17] with 0.3799 MRR@10 on the MS MARCO pas-
sage Dev set, decreases the response time from 36.6ms to 21.7ms
(1.7x faster) when k=1000 while having 0.3868 MRR@10. This la-
tency can be further reduced to 14.2ms with the same MRR@10
number (0.3868) when 2GTI [30] is applied to the above index.

A future study is to investigate the use of the proposed hybrid
thresholding scheme for other learned sparse models [10, 20, 23].
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