Representation Sparsification with Hybrid Thresholding
for Fast SPLADE-based Document Retrieval

Yifan Qiao
Department of Computer Science, University of California
Santa Barbara, California, USA

Shanxiu He
Department of Computer Science, University of California
Santa Barbara, California, USA

ABSTRACT

Learned sparse document representations using a transformer-
based neural model have been found to be attractive in both rel-
evance effectiveness and time efficiency. This paper describes a
representation sparsification scheme based on hard and soft thresh-
olding with an inverted index approximation for faster SPLADE-
based document retrieval. It provides analytical and experimetal
results on the impact of this learnable hybrid thresholding scheme.

CCS CONCEPTS

« Information systems — Retrieval efficiency.

KEYWORDS

Learned sparse representations, top-k retrieval, index pruning.

ACM Reference Format:

Yifan Qiao, Yingrui Yang, Shanxiu He, and Tao Yang. 2023. Representation
Sparsification with Hybrid Thresholding for Fast SPLADE-based Document
Retrieval. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 23), July 23-27,
2023, Taipei, Taiwan. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3539618.3592051

1 INTRODUCTION

Recently learned sparse retrieval techniques [5-8, 10, 20, 23, 37]
have become attractive because such a representation can deliver a
strong relevance by leveraging transformer-based models to expand
document tokens with learned weights and can take an advantage
of traditional inverted index based retrieval techniques [24, 25]. Its
query processing is cheaper than a dense representation which
requires GPU support (e.g. [31, 32, 35]) even with efficiency opti-
mization through approximate nearest neighbor search [14, 34, 38].

This paper focuses on the SPLADE family of sparse represen-
tations [6-8] because it can deliver a high MRR@10 score for MS
MARCO passage ranking [4] and a strong zero-shot performance for
the BEIR datasets [33], which are well-recognized IR benchmarks.
The sparsification optimization in SPLADE has used L1 and FLOPS
regularization to minimize non-zero weights during model learning,

SIGIR °23, July 23-27, 2023, Taipei, Taiwan

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3592051

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Yingrui Yang
Department of Computer Science, University of California
Santa Barbara, California, USA

Tao Yang
Department of Computer Science, University of California
Santa Barbara, California, USA

and our objective is to exploit additional opportunities to further in-
crease the sparsity of inverted indices produced by SPLADE. Earlier
static inverted index pruning research [1-3] for a lexical model has
shown the usefulness of trimming a term posting list or a document
by a limit. Yang et al. [36] conduct top token masking by limiting
the top activated weight count uniformly per document and grad-
ually reduce this weight count limit to a targeted constant when
training SPLADE. Motivated by these studies [1-3, 36] and since
they have not addressed learnability of a pruning limit through
relevance-driven training, this paper exploits a learnable threshold-
ing architecture to filter out unimportant neural weights produced
by the SPLADE model through joint training.

The contribution of this paper is a learnable hybrid hard and
soft thresholding scheme with an inverted index approximation to
increase the sparsity of SPLADE-based document and query feature
vectors for faster retrieval. In addition to experimental validation
with MS MARCO and BEIR datasets, we provide an analysis on
the impact of hybrid thresholding with joint training on index
approximation errors and training update effectiveness.

2 BACKGROUND

For a query q and a document d, after expansion and encoding,
they can be represented by vector w(q) and w(d) with length |V,
where V is the vocabulary set. The rank score of q and d is com-
puted as R(g,d) = w(q) - w(d) = Zlfll w? X wlfi. For sparse vectors
with many zeros, retrieval can utilize a data structure called in-
verted index during online inference for fast score computation
[24, 25]. The SPLADE model uses the BERT token space to pre-
dict the feature vector w. In its latest SPLADE++ model, it first
calculates the importance of i-th input token in d for each j in V:
wij(@) = Transform(l;i)Tb:j +bj, where l;i is the BERT embedding
of i-th token in d, E] is the BERT input embedding for j-th token.
Transform() is a linear layer with GeLU activation and LayerNorm.
The weights in this linear layer, Ej, and b; are the SPLADE pa-
rameters updated during training and we call them set ©. Then
the j-th entry w; of document d (or a query) is max-pooled as
w;j(0) = max;e4{log(1 + ReLU(w;;(©)))}. Notice that w; > 0.

The loss function of SPLADE models [6-8] contains a per-query
ranking loss Lg and sparsity regularization. The ranking loss has
evolved from a log likelihood based function for maximizing posi-
tive document probability to margin MSE for knowledge distillation.
This paper uses the loss of SPLADE with a combination that deliv-
ers the best result in our training process. LR is the ranking loss
with margin MSE for knowledge distillation [12]. The document
token regularization Lp is computed on the training documents in

https://doi.org/10.1145/3539618.3592051
https://doi.org/10.1145/3539618.3592051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3539618.3592051

SIGIR °23, July 23-27, 2023, Taipei, Taiwan

each batch based on FLOPS regularization. The query token regu-
larization Ly is based on L1 norm. Let B be a set of training queries
with N documents involved in a batch. Lp = ¥ ey ﬁ 2qeB w;.l;
Lp = Zjev(y =N, wh?.

Related work. Other than SPLADE, sparse retrieval studies
include SNRM [37], DeepCT [5], DeepImpact [23], and uniCOIL [10,
20]. The sparsity of a neural network is studied in the deep
learning community. Soft thresholding in [16] adopts a learnable
threshold with function S(x,t) = ReLU(x — t) to make parameter
x zero under threshold ¢. A hard thresholding function H(x,t) =
x when x > t otherwise 0. Approximate hard thresholding [28]
uses a Gauss error function to approximate H(x, t) with smooth
gradients. Dynamic sparse training [21] finds a dynamic threshold
with marked layers. These works including the recent ones [9]
are targeted for sparsification of parameter edges in a deep neural
network. In our context, a token weight w; is an output node
in a network. The sparsification of output nodes is addressed in
activation map compression [11] using ReLU as soft thresholding
together with L1 regularization. The work of [15] further boosts
sparsity with the Hoyer regularization and a variant of ReLU. The
above techniques have not been investigated in the context of
sparse retrieval, and the impact of thresholding on relevance and
query processing time with inverted indices, requires new design
considerations and model structuring for document retrieval, even
the previous work can be leveraged.

3 HYBRID THRESHOLDING (HT)

wi
Query q J Soft thresholding
SPLADE | L SCatg)
P(:isoc()éneg Model J Sigmoid thresholding

H (-.tp)
Learned
thresholds

Model update Extended

Loss
(a) Training loop Function

Doc d SPLADE

W
Query q Jj Soft thresholding
SPLADE L/ sy

(b) Indexing and inference

Index

Online
query

Hard thresholdmg ” Inverted
H weights

Figure 1: Hybrid thresholding with an index approximation

Design considerations. To zero out a token weight below a
learnable threshold, there are two options: soft thresholding [16],
and approximate hard thresholding [28]. For query token weights,
we find that soft thresholding does not affect relevance significantly.
For document token weights, our study finds that compared to soft
thresholding, hard thresholding can retain relevance better since it
does not change token weights when exceeding a threshold. Since
the subgradient for hard thresholding with respect to a threshold is
always 0, an approximation needs to be carried out for training. For
search index generation, an inverted index produced with the same
approximate hard thresholding as training keeps many unnecessary
non-zero document token weights, slowing down retrieval signifi-
cantly. Thus we directly apply hard thresholding with a threshold
learned from training, as shown in Figure 1. There is a gap between

Yifan Qiao, Yingrui Yang, Shanxiu He, & Tao Yang

trained document token weights and actual weights used in our
inverted index generation and online inference, and we intend to
minimize this gap (called an index approximation error).

Thus our design takes a hybrid approach that applies soft thresh-
olding to query token weights during training and inference and
applies approximate hard thresholding to document token weights
during training while using hard thresholding for documents during
index generation. For approximate hard thresholding, we propose
to use a logistic sigmoid-based function instead of a Gauss error
function [28]. This sigmoid thresholding simplifies our analysis of
the impact of its hyperparameter choice to index approximation
errors, and to training stability.

3.1 Trainable and approximate thresholding

Training computes threshold parameters tp, and tg for documents
and queries, respectively. From the output of the SPLADE model,
every token weight of a query is replaced with S(w}], to), which is

ReLU(w;I — tp), and every document token weight is replaced with

H (w;.], tp) before their dot product is computed during training as

shown in Figure 1(a). Sigmoid thresholding H is defined as:
1
1+e X" W
Here K is a hyperparameter to control the slope steepness of step
approximation that jumps from 0 to 1 when exceeding a threshold.
The indexing process uses hard thresholding to replace all doc-
ument weights that are below threshold tp as 0 as depicted in
Figure 1(b). The above post processing introduces an index approx-

ﬁ(w}i, tp) = W?O'(K(W;i — tp)) where o(x) =

imation error E = |ﬁ(wf, tp) — H(w}i, tp)|. We derive its upper
bound as follows. Notice that w; > 0, and for any x > 0, 1+x < e~.
d d
w w
d d J J
E = wla(K(w$ — tp)) = < .
J J 1+ Ko=) = 2+ K(tp - wd)

When w]'@l > tp, we can derive that

w

£ ==Kt -100) = woKo) < s

Let o~ denote U(K(w;j —tp)). 0 < 6~ < 1. In both of the above
cases, the error upper bound is minimized when K is large. This is
consistent with the fact that error E is monotonically decreasing
as K increases because g}? = —w;i o (1-0") |w;.1 — tp|< 0. When
|wj — tp| is big, the error is negligible and when |w? — tp| is small,
the error could become big with a small K value. But as shown later,
an excessively large K value could cause a big parameter update
during a training step, affecting joint training stability.

Let Dlen and Qlen be the non-zero token weight count of doc-
ument d and query q, respectively For our hybrid thresholding,

Dlen = %.; le‘.’ZtD’ Qlen = lwq>t Here 1x>y is an indicator

function as 1if x > y otherwise 0. When increasing tp and tg, Dlen
and Qlen decrease. Thus for a batch of training queries B, the origi-
nal SPLADE loss is extended as: L = (ﬁ SgeBLr)+AoLo+ApLp +

ArLr. The extra item added is Lt = log(1 + e~!P) + log(1 + e Q).

We retain the original Ly and Lp expressions because as w? or wd

J
decreases, more weights can quickly be zeroed out.

Representation Sparsification with Hybrid Thresholding
for Fast SPLADE-based Document Retrieval

3.2 Threshold and token weight updating

We study the change of tp, tp, w]”!, and w;.l after each training step
with a mini-batch gradient descent update. The analysis below uses
the first-order Taylor polynomial approximation and follows the
fact that sigmoid thresholding H and soft thresholding function
S are used independently for a query and a document in the loss
function. Symbol « is the learning rate. Let “d < ¢” mean d is a
positive or negative document of query q.

Atp = pnew _ Z,old _ i _ i aL_RE aLT
D D = Totp |B| g ot Tt
qEB oH D
JLR e"tp
wl - o) o £ .
RCPLEPORIEEE R
oL 1 dLg 9S oL
AtQ _ tgew _ tgld =g = | — 9LR +/1T_T
ato |B| q<B oS 5tQ ato

(|B|Z(8LRZ W”Q) %)

qeB
f0e®
ow L H 0
3% (mqé(“(%z:wdﬁe)
lp 5ot

Notice that ;—fd =0~ +Kw?a_ (1—07). The above results indicate:

e A significant number of terms in Atp and Aw}i involve linear
coefficient K. This is verifiably true also for Awq Although alarge
K value can minimize the index approx1mat1on error |H (‘tp)—

H(w?, tp)|, it can cause an aggressive change of token Welghts
and thresholds at a training iteration, making training overshoot
and miss the global optimum. Thus K cannot be too large, and
our evaluation further studies this.

o If iL_F}I? > 0, Atp > 0, and the document threshold increases,
decreasing Dlen. Otherwise document token threshold may de-
crease after a parameter update step during training, and the

degree of decreasmg is reduced by a positive value £—— 1 - Based

on the sign of %R aS , we can draw a similar conclusmn on AtQ.

4 EVALUATION

Our evaluation uses MS MARCO passages [4] and BEIR datasets [33].
MS MARCO has 8.8M passages while BEIR has 13 different datasets
of varying sizes up-to 5.4M. As a common practice, we report the
relevance in terms of mean reciprocal rank MRR@10 for the MS
MARCO passage Dev query set with 6980 queries, and the nor-
malized discounted cumulative gain nDCG@10 [13] for its DL’19
and DL’20 sets, and also for BEIR. For retrieval with a SPLADE
inverted index, we report the mean response time (MRT) and 99th
percentile time (Pg9) in milliseconds. The query encoding time is not
included. For the SPLADE model, we warm up it following [7, 17],

SIGIR ’23, July 23-27, 2023, Taipei, Taiwan

and train it with AQ = 0.01 and Ap = 0.008, and hybrid threshold-
ing. We use the PISA [26] search system to index documents and
search queries using SIMD-BP128 compression [18] and MaxScore
retrieval [24, 27]. Our evaluation runs as a single thread on a Linux
CPU-only server with Intel i5-8259U 2.3GHz and 32GB memory.
Similar retrieval latency results are observed on a 2.3GHz AMD
EPYC 7742 processor. The checkpoints and related code will be
released in https://github.com/Qiaoyf96/HT.

Table 1: Overall results on MS MARCO passages

Methods MRR MRT(Py9) MRT(Py9) | nDCG nDCG | Dlen
Dev k=10 k=1000 | DL'19 DL’20

SPLADE 0.3966 483(228) 127(408) | 0.7398 0.7340 | 351
/DT [28] 03922 102(457) 262(786) | 0.7392 0.7319 | 444
/Top305 [36] 03962 42.4(202) 114(369) | 0.7353 0.7288 | 277
/Top100 [36] 03908 21.8(106) 62.5(196) | 0.7192 0.7119 99
/DCP50% [2] 03958 30.0(145) 83.9(271) | 0.7385 0.7321 | 175
/DCP40% [2] 03933 25.9(124) 73.3(235) | 0.7335 0.7280 | 140
/DCP30% [2] 03912 21.6(101) 61.8(193) | 0.7287 0.7217 | 105
/Cut0.5 03924 21.9(104) 62.6(195) | 0.7296 0.7212 | 144
/Cut0.8 03885 15.6(70.4) 43.8(128) | 0.7207 07118 | 112
/HT,; 03955 22.8(108) 623(195) | 0.7322 0.7210 | 140
/HT3 03942 14.2(67.2) 40.6(123) | 0.7327 0.7228 | 106

/HT;-2GTI [30] | 03959 10.0(49.1) 27.6(92.2) | 0.7330 0.7210 | 140
J/HT3-2GTI[30] | 0.3942 6.9(33.9) 19.3(62.1) | 0.7320 0.7228 | 106

Overall results with MS MARCO. Table 1 is a comparison with
the baselines on MS MARCO passage Dev set, DL’19, and DL’20.
It lists the average Dlen value, and top-k retrieval time with depth
k =10 and 1000. Row 3 is for original SPLADE trained by ourselves
with an MRR number higher than 0.38 reported in [7, 17]. Rows 12
and 13 list the result of our hybrid thresholding marked as HT,,,.
and K = 25. With At = 1, SPLADE/HT; converges to a point where
to = 0.4and tp = 0.5, which is about 2x faster in retrieval. HT3 with
At = 3 converges at tp = 0.7 and tp = 0.8, resulting 3.1x speedup
than SPLADE while having a slightly lower MRR@10 0.3942. No
statistically significant degradation in relevance has been observed
at the 95% confidence level for both HT; and HT3. The inverted
index size reduces from 6.4GB for original SPLADE to 2.8GB and
2.2GB for HT; and HTj3 respectively. When applying two-level
guided traversal 2GTI [30] with its fast configuration, Rows 14 and
15 show a further latency reduction to 6.9ms or 19.3ms.

We discuss other baselines listed in this table. Row 4 named
DT uses the thresholding scheme from [28]. Its training does not
converge with its loss function, and its retrieval is much slower.
Rows 5 and 6 follow joint training of top-k masking [36] with the top
305 tokens as suggested in [36] and with the top 100 tokens. Rows
7, 8 and 9 marked with DCPx follow document centric pruning [2]
that keeps x of top tokens per document where x=50%, 40%, and 30%.
We did not list term centric pruning [1, 3] because [2] shows DCP
is slightly better in relevance under the same latency constraint.
Rows 10 and 11 with “/Cut0.5” and “/Cut0.8” apply a hard threshold
with 0.5 and 0.8 in the output of original SPLADE without joint
training. The index pruning options without learning from Rows
5 to 11 can either reduce the latency to the same level as HT, but
their relevance score is visibly lower; or have a relevance similar to
HT but with much slower latency. This illustrates the advantage of
learned hybrid thresholding with joint training.

Table 2 lists the zero-shot performance of HT when k = 1000 by
applying the SPLADE/HT model learned from MS MARCO to the

SIGIR °23, July 23-27, 2023, Taipei, Taiwan

Table 2: Zero-shot performance on BEIR datasets

SPLADE SPLADE/HT; SPLADE/HTj3
Dataset nDCG MRT | nDCG MRT | nDCG MRT
DBPedia 0.430 135 | 0.435 64.2 | 0.426 323
FiQA 0.354 6.5 | 0.345 4.0 | 0.336 3.2
NQ 0.547 81.8 | 0.545 459 | 0.539 28.6
HotpotQA 0.678 481 | 0.680 265 | 0.678 140
NFCorpus 0.351 0.5 | 0.352 0.3 | 0.346 0.2
T-COVID 0.719 16.0 | 0.730 10.1 | 0.695 7.5
Touche-2020 | 0.307 15.0 | 0.306 93 | 0.313 4.5
ArguAna 0.440 20.8 | 0.463 7.8 | 0.500 4.1
C-FEVER 0.234 1375 | 0.219 681 | 0.213 332
FEVER 0.781 1584 | 0.778 559 | 0.764 264
Quora 0.806 175 | 0.776 9.2 | 0.792 4.5
SCIDOCS 0.151 6.9 | 0.155 3.0 | 0.151 2.0
SciFact 0.676 5.7 | 0.681 2.4 | 0.672 1.4
Average 0.498 - | 0497 2.0x | 0.49%4 3.6x

BEIR datasets without any additional training. HT; has a similar
nDCG@10 score as SPLADE without HT, while having a 2x MRT
speedup on average. HT3 is even faster with 3.6x speedup, and its
nDCG@10 drops in some degree to 0.494.

(a) Documents (b) Queries
30
1.25
wi
£ o100 7 oS
=]
2 Fo0.75 2
s > 9
g 3‘0.50 o 109
0.25 QLen
0.00 0
0 10 20 0 10 20
Epochs Epochs

Figure 2: Weight/threshold/sparsity changes during training

Figure 2 depicts the average values of w;?', tp, and Dlen on the

left and w;.], to, and Qlen on the right during MS MARCO training
under HT;. x-axis is the training epoch number. It shows that Dlen
and Qlen decrease while tp and tg increase as training makes a
progress and SPLADE/HT/ converges after about 20 epochs.
Design options. Table 3 lists performance under 4 thresholding
combinations from Row 3 to Row 7. S[x] means soft thresholding
function S() is applied to x for both training and indexing where x
can be documents (D) or queries (Q). 2] [x] means sigmoid thresh-
olding His applied in both training and indexing. HH[x] means H
is applied in training and H is applied in indexing. ¢[x] means no
thresholding is applied to x during training and indexing. When
thresholding is not applied to queries, HH[D] is 1.3x faster than
S[D] when k = 10 and k = 1000 while their relevance scores are sim-
ilar. Shifting of document weight distribution by soft thresholding
significantly affects retrieval time. Rows 6 and 7 fix HH[D] setting,
and show that soft thresholding is more effective in relevance than
hard thresholding for query tokens. Shifting of query weight dis-
tribution has less effect on latency while gaining more relevance
through model consistency between training and indexing.
Hyperparameter K in sigmoid thresholding H. Table 3 com-
pares I—AIH[D] with ﬁ[D] when varying K from Row 8 to Row 14.
In these cases, training always uses H while indexing uses H or
H. When K is small as 2.5, applying H to both training and in-
dexing yields good relevance, but retrieval is about 1.8x slower

Yifan Qiao, Yingrui Yang, Shanxiu He, & Tao Yang

Table 3: Impact of design options. MS MARCO passages.

HT Config. MRR MRT(Ps) MRT(Ps) | Qlen Dlen
Ar =1 k=10 k = 1000

Soft vs. hard thresholding in 4 combinations. Fix K = 25.

#[01,S[D] 03941 31.7(157) 91.5(315) | 143 145
$[Q], HH[D] 03942 24.1(111) 70.7(219) | 135 142
S[0Q], HH[D] 0.3955 22.8(108) 62.3(195) | 113 140
HH[QL,HH[D] | 03904 24.9(106) 62.6(182) 9.0 142

Vary K. H[D] vs. HH[D). Fix S[Q].

HH[D],K =25 | 03947 228(110) 62.6(199) | 115 149
H[D], K =25 0.3963 41.4(198) 112(358) 115 421
HH[D],K =25 | 03955 22.8(108) 623(195) | 113 140
H[D],K =25 03961 28.7(136) 76.9(239) | 113 208
HH[D], K =250 | 0.3946 21.9(102) 60.5(189) | 112 135
H[D],K =250 | 03947 23.1(112) 63.9(203) | 112 159

Usefulness of Lo and Lp. Fix S[Q], HH[D], and K = 25.
wio Lo 03956 56.2(245) 166(502) 201 138
w/o Lo, Lp 0.3954 99.4(434) 254(772) 25.9 421

because much more non-zero weights are kept in the index. When
K becomes large as 250, training does not converge to the global
optimum due to large update sizes, resulting in an MRR score lower
than K=25 even with no index approximation. K = 25 has a reason-
able MRR while HH [D] is up-to 26% faster than H [D].

Retaining Lo and Lp. Last three rows of Table 3 shows that the
query length is higher when Lg is removed from the loss function,
and documents get longer when Lp is removed further. The result
means Ly and Lp are useful in sparsity control together with Lt.

5 CONCLUDING REMARKS

Our evaluation shows that learnable hybrid thresholding with index
approximation can effectively increase the sparsity of inverted in-
dices with 2-3x faster retrieval and competitive or slightly degraded
relevance (0.28% - 0.6% MRR@10 drop). Its trainability allows rele-
vance and sparsity guided threshold learning and it can outperform
index pruning without such an optimization. Our scheme retains a
non-uniform number of non-zero token weights per vector based
on a trainable weight and threshold difference for flexibility in rel-
evance optimization. Our analysis shows that hyperparameter K
in sigmoid thresholding needs to be chosen judiciously for a small
index approximation error without hurting training stability.

If a small relevance tradeoff is allowed, more retrieval time reduc-
tion is possible when applying other related orthogonal efficiency
optimization techniques [17, 19, 22, 24, 29, 30]. Applying hybrid
thresholding HT3 to a checkpoint of a recent efficiency-driven
SPLADE model [17] with 0.3799 MRR@10 on the MS MARCO pas-
sage Dev set, decreases the response time from 36.6ms to 21.7ms
(1.7x faster) when k=1000 while having 0.3868 MRR@10. This la-
tency can be further reduced to 14.2ms with the same MRR@10
number (0.3868) when 2GTI [30] is applied to the above index.

A future study is to investigate the use of the proposed hybrid
thresholding scheme for other learned sparse models [10, 20, 23].

Acknowledgments. We thank Wentai Xie and anonymous ref-
erees for their valuable comments and/or help. This work is sup-
ported in part by NSF IIS-2225942 and has used computing resource
of NSF’s ACCESS program. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

Representation Sparsification with Hybrid Thresholding
for Fast SPLADE-based Document Retrieval SIGIR 23, July 23-27, 2023, Taipei, Taiwan

REFERENCES 1145/2808194.2809477

[1] RoiBlanco and Alvaro Barreiro. 2007. Boosting Static Pruning of Inverted Files. [20] Jimmy J. Lin and Xueguang Ma. 2021. A Few Brief Notes on Deeplmpact, COLL,

In Proc. of SIGIR (Amsterdam, The Netherlands) (SIGIR “07). Association for and a Conceptual Framework for Information Retrieval Techniques. ArXiv
Computing Machinery, New York, NY, USA, 777-778. https://doi.org/10.1145/ abs/2106.14807 (2021).
1277741.1277904 [21] Junjie LIU, Zhe XU, Runbin SHI, Ray C. C. Cheung, and Hayden K.H. So. 2020.

[2] Stefan Biittcher and Charles L. A. Clarke. 2006. A Document-Centric Approach Dyr'lamic Sparse Training: Find Efﬁcient Sparse Network F1.'om Scratch With
to Static Index Pruning in Text Retrieval Systems. In Proceedings of the 15th ACM '}ll"ramable Masked Layerfs. In Inte;rnatlgnal Conference on Learning Representations.

y . : ttps://openreview.net/forum?id=SJIbGJrtDB
In.terjnc_zttonal Confe erence on [nf ormation and Knowlgdge Mar%agement (Arlington, Joel Mackenzie, Matthias Petri, and Alistair Moffat. 2021. Anytime Ranking on
Virginia, USA) (CIKM ’06). Association for Computing Machinery, New York, NY, Document-Ordered Indexes. ACM Trans. Inf. Syst. 40, 1, Article 13 (sep 2021)
USA, 182-189. https://doi.org/10.1145/1183614.1183644 ’ o T ’

K 32 pages.
(3] David Carmel, Doron Cohen, Ronald Fagin, E itan Farchi, Mlchael Herscoylcl, Antonio Mallia, O. Khattab, Nicola Tonellotto, and Torsten Suel. 2021. Learning
Yoelle S. Maarek, and Aya Soffer. 2001. Static Index Pruning for Information Passage Impacts for Inverted Indexes. SIGIR (2021)
Retrieval Systems. In Proc. of SIGIR (New Orleans, Louisiana, USA) (SIGIR "01). ge mp) y

Antonio Malli 1 Mackenzie, Torsten Suel, and Nicola Tonellotto. 2022. Fast
org/10.1145/383952.383958 P . g

[4] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Fernando Campos, and International ACM SIGIR Conference on Research and Development in Information

Ellen M. Voorhees. 2020. Overview of the TREC 2020 Deep Learning Track. Retrze\{al (SIG.IR 2922)' 1901_19(.)5' . s
ArXiv abs/2102.07662 (2020 Antonio Mallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano
rAlv abs/e 102, 66 .(): L . Venturini. 2017. Faster BlockMax WAND with Variable-sized Blocks. In Proc.
[5] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting For First of the 40th International ACM SIGIR Conference on Research and Development in
Stage Passage Retrieval. Proceedings of the 43rd International ACM SIGIR Confer- Information Retrieval. 625-634 P
'i";lcii:fllflisjrur:zﬁ a(rjz dlg Z‘S’Zﬁ)f emg:e;gr;laiﬁ'fx? rP”ilv‘f/Z?:a}::liriie:chl (Sztoézr?ﬁ‘ane Clinchant Antonio Mallia, Mich'al Siedlac%ek, Joel Mackenzie, and Torsten Suel. 2019. PISA:

2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval. }P;erf(?rmgr}t indexes and search for academia. Proceedings of the Open-Source IR
; eplicability Challenge (2019).
ArXiv abs/2109.10086 (2021).

A i llia, Michal Siedl: k. Ta 1. 2019. An E i 1
[7] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. S trlllg)n:)of IMn Ze;abor: risssilss ::l(ZfDAj,? Q?lfrterfl’rstieessir(: 9Met1{110d)s(plerll—llr’tz?t2f
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural IR Y P y g . .

Models More Effective. Proceedings of the 45th International ACM SIGIR Conference 441“ European Conference on IR Research, ECIR 20419' 353-368. . .
X . . Jin-Woo Park and Jong-Seok Lee. 2020. Dynamic Thresholding for Learning
on Research and Development in Information Retrieval (2022).

. . . ; . Sparse Neural Networks. In ECAI 2020. I0S Press, 1403-1410.
Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE: [29] Y[i) fan Qiao, Yingrui Yang, Haixin Lin, Tianbo Xiong, Xiyue Wang, and Tao Yang
Sparse Lexical and Expansion Model for First Stage Ranking. Proceedings of ; g ’ i ? '

the 44th International ACM SIGIR Conference on Research and Development in ;022. Dual ‘Sklpp mg‘Guldance for Docum?nt Retrieval with Learned Sparse
N A epresentations. ArXiv abs/2204.11154 (April 2022).
Information Retrieval (2021).

Elias Frantar and Dan Alistarh. 2022. SPDY: Accurate Pruning with Speedup Yifan Qiao, Yingrui Yang, Haixin Lin, and Tao Yang. 2023. Optimizing Guided

. . . Traversal for Fast Learned Sparse Retrieval. In Proceedings of the ACM Web
Guarantees. In Proceedings of the 39th International Conference on Machine Learn- Conference 2023 (WWW '23). ACM, Austin, TX, USA.

ing (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, [31
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.).
PMLR, 6726-6743. https://proceedings.mlr.press/v162/frantar22a. html
[10] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match
in Information Retrieval with Contextualized Inverted List. NAACL (2021).
Georgios Georgiadis. 2019. Accelerating convolutional neural networks via acti-
vation map compression. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 7085-7095.
[12] Sebastian Hofstatter, Sophia Althammer, Michael Schrdder, Mete Sertkan, and
Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. ArXiv abs/2010.02666 (2020).
Kalervo Jarvelin and Jaana Kekéldinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422-446.
[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Trans. on Big Data 7, 3 (2019), 535-547.
Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr,
Michael Goin, William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. 2020.
Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural
Networks. In Proceedings of the 37th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé IIl and Aarti Singh
(Eds.). PMLR, 5533-5543. https://proceedings.mlr.press/v119/kurtz20a.html
[16] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. 2020. Soft threshold weight reparameter-
ization for learnable sparsity. In International Conference on Machine Learning.
PMLR, 5544-5555.

[22

[23

[24

[25

[26

=

[27

[28

>
&

[30

[9

=

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, QiaoQiao She, Hua Wu,
Haifeng Wang, and Ji-Rong Wen. 2021. RocketQAv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Online and Punta Cana, Dominican Republic,
2825-2835.

Keshav Santhanam, O. Khattab, Jon Saad-Falcon, Christopher Potts, and Matei A.
Zaharia. 2021. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. ArXiv abs/2112.01488 (16 Dec. 2021).

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2). https://openreview.
net/forum?id=wCu6T5xFje]

Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang, Defu Lian, Yeyun Gong, Qi
Chen, Fan Yang, Hao Sun, Yingxia Shao, Denvy Deng, Qi Zhang, and Xing Xie.
2022. Distill-VQ: Learning Retrieval Oriented Vector Quantization By Distilling
Knowledge from Dense Embeddings. Proc. of SIGIR (2022).

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor Neg-
ative Contrastive Learning for Dense Text Retrieval. In International Conference
on Learning Representations. https://openreview.net/forum?id=zeFrfgyZIn

[36] Jheng-Hong Yang, Xueguang Ma, and Jimmy Lin. 2021. Sparsifying Sparse
Representations for Passage Retrieval by Top-k Masking. CoRR abs/2112.09628
(2021). arXiv:2112.09628 https://arxiv.org/abs/2112.09628

[11

[32

@
&

[13

[34

[15

[35

[17] Carlos Lassance and Stéphane Clinchant. 2022. An efficiency study for SPLADE (371 aH;énJe dKZa al;nasm’zg/io;talf;;i)ne]hﬁt:ixr]:lV\Rlzl_lggﬂirnucifﬁiii?;gﬁ;?@iﬁjﬁﬁr’
models. In Proceedings of the 45th International ACM SIGIR Conference on Research ’ ps. - g . & &
and Development in Information Retrieval. 2220-2226 a Sparse Representation for Inverted Indexing. Proceedings of the 27th ACM

[18] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second International Conference on Information and Knowledge Management (2018).

[38

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. 2022. Learning Discrete Representations via Constrained Clustering for
Effective and Efficient Dense Retrieval. In Proc. of Fifteenth ACM International

Indexes. In Proceedings of the 2015 International Conference on The Theory of . f
Data M ‘DM °22). ACM. York, NY.
Information Retrieval (Northampton, Massachusetts, USA) (ICTIR ’15). Association Sggfelrg;ge_;);;g/eb Search and Data Mining (WS). ACM, New York, NY,

for Computing Machinery, New York, NY, USA, 301-304. https://doi.org/10.

through vectorization. Softw. Pract. Exp. 45, 1 (2015), 1-29.
[19] Jimmy Lin and Andrew Trotman. 2015. Anytime Ranking for Impact-Ordered

https://doi.org/10.1145/1277741.1277904
https://doi.org/10.1145/1277741.1277904
https://doi.org/10.1145/1183614.1183644
https://doi.org/10.1145/383952.383958
https://doi.org/10.1145/383952.383958
https://proceedings.mlr.press/v162/frantar22a.html
https://proceedings.mlr.press/v119/kurtz20a.html
https://doi.org/10.1145/2808194.2809477
https://doi.org/10.1145/2808194.2809477
https://openreview.net/forum?id=SJlbGJrtDB
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=zeFrfgyZln
https://arxiv.org/abs/2112.09628
https://arxiv.org/abs/2112.09628

	Abstract
	1 Introduction
	2 Background
	3 Hybrid Thresholding (HT)
	3.1 Trainable and approximate thresholding
	3.2 Threshold and token weight updating

	4 Evaluation
	5 Concluding Remarks
	References

