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Abstract

Knowledge distillation is commonly used in training a neural doc-
ument ranking model by employing a teacher to guide model refine-
ment. As a teacher may not be correct in all cases, over-calibration
between the student and teacher models can make training less
effective. This paper focuses on the KL divergence loss used for
knowledge distillation in document re-ranking, and re-visits balanc-
ing of knowledge distillation with explicit contrastive learning. The
proposed loss function takes a conservative approach in imitating
teacher’s behavior, and allows student to deviate from a teacher’s
model sometimes through training. This paper presents analytic
results with an evaluation on MS MARCO passages to validate the
usefulness of the proposed loss for the transformer-based ColBERT
re-ranking.
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1 Introduction

In practical applications, large-scale search systems for text doc-
uments typically utilize a multi-stage ranking process. In the first
stage, a fast and relatively simple ranking method is employed to
retrieve the top candidate documents that match a query from a
large search index. Subsequently, a more complex machine learn-
ing algorithm is used to thoroughly re-rank the top results in the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICTIR °23, July 23, 2023, Taipei, Taiwan

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0073-6/23/07.

https://doi.org/10.1145/3578337.3605120

Shanxiu He
Dept. of Computer Science
University of California
Santa Barbara, California, USA
shanxiuhe@cs.ucsb.edu

Yifan Qiao
Dept. of Computer Science
University of California
Santa Barbara, California, USA
yifanqiao@cs.ucsb.edu

Tao Yang
Dept. of Computer Science
University of California
Santa Barbara, California, USA
tyang@cs.ucsb.edu

second or later stage. For the retrieval stage, recent studies on re-
trievers that use inverted indices have utilized learned sparse neural
representations [7, 9, 11, 14, 28, 32]. Alternatively, dense retrieval
employs a dual encoder architecture to produce dense document
representations [12, 29, 39, 50, 52, 53]. In terms of re-ranking efforts,
although a cross-encoder neural architecture such as BERT [8] can
deliver strong relevance performance [39, 46, 54], various efforts
have been made to reduce the time complexity of transformer-based
ranking [3, 13, 17, 19, 30, 31, 35, 49]. For example, ColBERT [22, 41],
a dual encoder architecture with multi-vector document repre-
sentations, has been well-received for delivering good relevance
performance while maintaining reasonable efficiency. The retrieval
and re-ranking studies mentioned above have employed contrastive
learning to train neural models using positive and negative exam-
ples. To improve the relevance of a less complex but more efficient
model, knowledge distillation [16] has become increasingly impor-
tant to transfer knowledge from a powerful teacher model through
behavior imitation [13, 17, 29].

This paper is focused on the improvement of the KL divergence
loss used for knowledge distillation in improving the ColBERT
based model for document re-ranking. A key weakness of using KL
divergence is that since a selected teacher model may not perform
well in all cases, over-calibration between the student and teacher
models with a tight distribution matching may degrade effective-
ness. The previous work has used the sum of a log-likelihood based
contrastive loss and KL divergence as a weighted regularization
to reduce overfitting. Our evaluation with MS MARCO passages
finds that this approach does not bring visible benefits in balancing
the KL divergence loss in our context for document re-ranking and
it may actually degrade the overall relevance in the tested cases.
Our analysis shows a key reason is that this approach always ag-
gressively or exactly follows the KL divergence loss in computing
the gradient contribution of documents for given a training query,
independent of relative performance of the teacher’s and student’s
models.

This paper addresses the aforementioned drawback by propos-
ing an alternative contrastive loss function, integrated with the KL
divergence loss to balance knowledge distillation more effectively
with explicit contrastive learning. Through analysis, we demon-
strate that our proposed contrastive loss can adjust the learning
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behavior from a teacher model based on its relative performance
compared to a student’s model. Overall speaking, it takes a more
conservative and adaptive approach compared to the likelihood
loss, resulting in improved performance on the average.

Our evaluation with MS MARCO passage ranking shows that
a student ColBERT model refined with the proposed loss function
could achieve a visibly better relevance score and can outperform
several state-of-the-art baselines. This loss function performs rea-
sonably well on TREC deep-learning track test sets.

2 Related Work

Document Re-ranking. After the initial retrieval stage, re-
ranking of the top k documents can be achieved through transformer-
based neural methods including [6, 8, 27, 31]. For example, Rock-
etQAv2 [39], AR2 [54], and SimLM [46] employ expensive and
time-consuming cross-encoder re-rankers to achieve impressive
MRR@10 scores of up to 0.437 for MS MARCO passage ranking.
To reduce the time complexity of transformer-based re-ranking,
various efforts have been made including architecture simplifica-
tion [19, 35], early exiting [49], and model distillation [3, 13, 17].
Among these, ColBERT [22] has gained popularity due to its dual-
encoder architecture and multi-vector document representation,
which delivers state-of-the-art relevance on a number of infor-
mation retrieval benchmarks while maintaining reasonable com-
putational efficiency. Additional studies have been conducted to
improve the efficiency of ColBERT re-ranking through clustering
and quantization [41, 51]. Our work follows the ColBERT-based
multi-vector representation in evaluating the usefulness of the pro-
posed loss in re-ranking. Other studies that advocate multi-vector
representations compared to a single-vector representation include
ME-BERT [30], ALIGNER [37], and CITADEL [26]. These studies
have proposed optimization methods for multi-vector representa-
tions and they are orthogonal to our work.

The first-stage retrieval. The evaluation of our re-ranking
work uses a SPLADE sparse learned neural model [9, 11] for the
first-stage retrieval because it can deliver a strong relevance score
with good time and space efficiency during inference based on an
inverted index. Its inverted index implementation is fairly efficient
on a CPU server without GPU support and can be made even
faster with some recently developed optimization [23, 33, 38]. Other
learned sparse representations with neural term weights include
DeepCT [7], uniCOIL [14, 28] and DeepImpact [32].

Dense retrieval with a single-vector representation and a dual-
encoder architecture is an alternative solution for the first-stage
retrieval. Although a recent dense retriever (e.g. RocketQAv2 [39],
AR?2 [54], SimLM [46] and RetroMAE [48]) has achieved a high
MRR number, their test setting requires exhaustive exact search to
achieve such a number, which needs significantly more computing
resource such as GPU. When approximated nearest neighbor (ANN)
search [21] is adopted to reduce retrieval cost, the relevance number
can drop significantly, as shown in some recent studies [24, 47].
Thus re-ranking may also be applied to boost relevance after dense
retrieval with approximated nearest neighbor search.

Knowledge distillation and KL divergence. The concept
of knowledge distillation was originally introduced by Hinton et
al. [16] to enhance the performance of a simpler neural network
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with guidance from a teacher model in classification tasks. Sub-
sequently, additional improvements such as layer distillation [44]
and student-teacher collaboration [55] have been made. Knowledge
distillation has also been shown to be effective in neural document
ranking, with the KL-divergence loss becoming a popular choice in
recent studies, including TCT-ColBERT [29], ColBERTv2 [41], Rock-
etQAv2 [39], SimLM [46] and RetroMAE [48]. While the Margin-
MSE loss proposed by Hofstiétter et al. [17] is used in SPLADE-
based retrievers [9, 10], our findings suggest that incorporating KL-
divergence is still effective for ColBERT re-ranking. Recent studies
in dense retrieval [47, 54, 54] have also adopted KL-divergence in
their loss functions. Therefore, this paper uses KL-divergence to
distill knowledge from a teacher model for re-ranking.

3 Problem Definition and Notations

Symbol Definition

Q A query

d; A document

DY, D~ Positive/negative document subsets for Q

| The size of a set
) Parameters of a scoring model

S(Q,d;,®) The rank score of a document for a query
based on a model with parameters ©.

Di Teacher’s top one probability of document d;,
standing for P(d;|Q, D*, D™, 0)

qi Student’s top one probability of document d;

A Weight hyper-parameter for the contrastive loss

Jga Stand for g4 (4, pi, ;). Relative gradient
contribution ratio from document d; between
loss L4 and loss Lky.. aLan(il) =ga(A, pi, qi)aLg—;i(l)

LkL KL divergence loss

LxrL KL divergence loss added with
the negative log likelihood

LpkL Proposed loss to balance KL divergence

Table 1: Table of Symbols

Problem definition. Given query Q for searching a collection
of N text documents (i.e., D = {di}fi 1 ), we obtain the top relevant
documents from D through two search stages. Given top k docu-
ments fetched by the first stage retriever, the second stage of search
re-ranks top k results from the retrieval stage. While other ranking
formulas are possible, this paper mainly follows the CoIBERT’s Max-
Sim formula defined below. Each document d and given query Q use
a multi-vector representation M(d, ®) and M(Q, ®) respectively.
Here © is the vector of neural parameters involved. S(Q, d;, ©) is a
rank scoring function defined as:

$Q.d0) = > maxy emaeH(h) H(Ry). (1)
hieM(Q.0)
where h;, hj are BERT last layer’s embeddings and H(.) is one linear
layer with normalization on the output representation.

Training and loss function. For re-ranker training, contrastive
learning is widely used, and each query Q in a training dataset
comes with one or a few positive documents while negative docu-
ments are sampled or selected using various methods. Let Z);2 and
Z)é be a subset containing all positive and negative documents,
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respectively. For presentation simplicity, we omit the subscript ‘Q’
for a specific query in the remaining as D* and D~.

Then, relevance scoring is applied to each pair of the query vector
and each document vector for the retrieval or re-ranking purpose.
Thus, a probability distribution over the positive and documents
documents can be defined as

exp(5(Q.d;, ©))

I, exp(S(Q.d;,0))

Notice that in Cao et al. [2] the above formula is called the top one
probability. For the simplicity of presentation when no confusion
is caused, we will not list ® and Q explicitly in each symbol below
and the loss function is specified for each query Q based on pa-
rameters © under the training documents D* and D . Let p; or ¢;
denote P(d;|Q, D*, D™, ©) where p; and g; refer to the teacher’s
and student’s prediction, respectively.

To train a model with contrastive learning, the loss function used
frequently in the previous ranking studies includes the negative
log likelihood or its variation:

- > logg;.
djeD*
KL-divergence defined below has become a dominating choice for
knowledge distillation to be included in a loss function as seen in
the recent ranking studies [39, 41, 43, 46, 54].
pi
LKL = Pi In —
die Z)Zuzr qi
where p; and g; refer to the teacher and student top one probability
for instance d; in Dt or D, respectively.

It is a common practice that the above two list-wise losses are

added together and we call this weighted sum as Lgy:

LgrL = Z pi lnp—l: -1 Z logq,x
d;eD*UD~ gi d;eD*

P(di|Q, D, D™,0) =

4 Balanced KL Divergence with Contrastive
Learning
4.1 Case study

We present a study that motivates our effort in re-visiting the
balancing of knowledge distillation with a contrastive loss. We
use a cross-encoder ranking model called MiniLM-1-6-v2 [34] as a
teacher and train a ColBERT re-ranker as a student model through
KL divergence based distillation after an initial training warm-up
on MS MARCO passages. More details on ColBERT training can
be found in Section 6. We compare the MRR@10 number of the
student and this teacher for each query in the MS MARCO Dev test
set before training. The average MRR number is 0.387 for this Dev
test set with 6980 queries. Table 2 shows the number of queries that
the MRR of this student model is the same (tie), higher (winning),
or lower (losing) than that of the teacher in terms of MRR@10. This
table shows that the student model outperforms the teacher in 1172
queries among the 6980 queries in the Dev set before KL divergence
based distillation starts. Notice that the above test queries are not
used for training and MS MARCO provides a separate set of queries
for training.

Figure 1 shows how the MRR number of these 1172 test queries
changes compared to the warmup checkpoint after distillation using
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#Queries student wins | #Tie | #Queries student loses
1172 4288 1520

Table 2: Relative MRR@ 10 performance of the student Col-

BERT model and a teacher in MS MARCO passage Dev test

set before training

the MS MARCO training dataset guided by loss functions Lky,
L1 with 1=0.01, 0.02, and 0.05, and by a contrastive loss called
Lpg1 proposed below. We categorize the queries according to the
relative MRR@10 change before and after training under a KL
divergence loss with and without a contrastive loss. For instance,
the percentage marked "worse" means that, after distillation with
the corresponding loss, the MRR@10 of the student for such queries
becomes smaller than that of the warmup model. From Figure 1,
training with Lk, only improves the student model in 11.8% of
these 1172 queries and 50.8% of the queries have a degradation in
performance. Training with Lgy; under different A weights does
not bring benefits in balancing knowledge distillation with the
negative log-likelihood contrastive loss and it actually makes the
performance of students worse in general. The above result inspires
us to exploit a different contrastive loss for more effective balancing
of knowledge distillation. This figure also shows that the proposed
loss can yield a positive improvement. More comparisons on these
losses can be found in Table 7 of Section 6.

The above study shows that a student’s model can outperform a
teacher’s model in many cases during training and for these cases,
there is no need for the student’s model to mimic the teacher’s
behavior exactly since it may degrade performance. Thus our design
objective is to take a more conservative and adaptive approach in
following the KL divergence loss, based on the relative performance
of the teacher’s and student’s models.

4.2 Loss function proposed

With the above study in mind, we propose an alternative con-
trastive loss function called BKL for balancing KL divergence. This
listwise loss for a query combines the negative entropy component
of its positive documents and the L1-norm expression of its neg-
ative documents. The following formula uses log (log base 2) and
In (the log base e) because it is common to use function In for the
KL-divergence and function log for the entropy expression.

Lpkr = Z pi 1np—l:
d;eD*UD~ qi
1
+A Z q,—logq,—+m Z qi |-
d;eD* dieD~

The design consideration of the above loss is explained as follows.
e While the first component with KL divergence accomplishes
the goal of knowledge distillation, the second component
weighted by a hyperparameter A achieves contrastive learn-
ing directly. The second component has a goal of ranking
positive documents higher than the negative documents for
each query. As we discuss below, it achieves the lower bound
during training for loss minimization when all negative doc-
uments are scored as 0 and all positive documents are scored
equally.
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Figure 1: Outcome of training under KL divergence based distillation with and without a contrastive loss for the MS MARCO
Dev test query set. The bar distribution shows the percentage in this query subset with better, same or worse MRR@ 10 numbers
by the student model after distillation under the corresponding training loss. The y-axis on the right is the final student

MRR@10 average of the 1172 test query subset after training.

The analysis in Section 5 shows that a small A is preferred.
Our evaluation confirms that A should be chosen small and
A =0.01is a good choice for Lggy in the tested cases.

o It is known that the lower bound of KL-divergence loss is 0
and this is achieved when Vd;, p; = g;. Since the teacher can
make mistakes in some query cases, reaching such a lower
bound may not make the student model effective. Thus us-
ing the above proposed loss, it may not be possible that
the lower bounds of both first and second components are
reached simultaneously. Thus while the minimization of
KL-divergence loss makes the student’s scoring as close as
possible to the teacher’s scoring, the hyperparameter A pro-
vides a balanced use of KL divergence and a contrastive loss.

e Section 5 will provide an additional explanation why Lpgy is
a better choice than Lk in balancing KL divergence based
knowledge distillation. While Lk exactly or aggressively
follows loss Lkt in computing the magnitude and sign of
gradient contribution from each document, Lggy is more
conservative than Lgy; or may deviate from Lg based on
the relative performance of teacher and student’s models.

4.3 Lower bound analysis

The following analysis shows that this proposed contrastive loss
has a constant lower bound for each query which contains a fixed
set of positive and negative documents during training. Because this
loss function has a lower bound, loss minimization during gradient
decent training will have a limit for convergence.

ProrosITION 4.1. The lower bound of the BKL loss is —Alogs
wheres = |D*|.

We describe the proof as follows and explain the design of each
component in details.
o It is well known that the lower bound of the KL divergence
loss is 0. Thus

piln pi > 0.
d;eD*UD- i
This lower bound 0 is achieved when for all documents d; €
Dt U D™, pi =qi.

o Next we show that the regularization terms used are bounded
by constant —A logs.

Since function x log x is convex and following Jensen’s in-
equality on a convex function,
Zdjent4jlogqi  Xdent qi

> (Z ) log( )
s s

where s = |D*|. The above equality holds when the student’s
predictions g; for all positive documents are equal.

Letz = ZdiEZ)‘ qi- Then

1-2z
D, ajlogg; 2 (1-2)log(—)

Zdjeﬁ)* qj

dje D
Then . .
-z z
Z PilOgPi"'m Z gi 2 (1-2)log( S )+E-
d;eD* d;eD~

The partial derivative of (1 — z) log(l_TZ) + 1 is log 125
which is positive because z € [0, 1]. Its minimum value is
achieved when z = 0. Therefore,

WY pilogpir s S gz A((l—onog&%
d;eD* dieD~
=—-Alogs.
The lower bound for the second portion of the BKL loss is
achieved when all positive documents have the same scoring
in the student model. Namely, ¢; = g; for d;,dj € D*. To
achieve the lower bound, z = 0 as discussed above. Then for
all negative documents, d; € D™, d; = 0.

5 Relative Gradient Contributions

We explain the usefulness of this new contrastive loss that bal-
ances the role of KL-divergence by comparing their gradient con-
tributions from individual documents for parameter update during
gradient decent training.

5.1 Gradient contribution from a document
Let 6 be one of parameters © used in the computation network
that maps the input features to score S(Q, d;, ©) for each document
d; as defined in Expressions (1) in Section 2. Then given Loss Ly,
and A can be KL, KLL, or BKL,
Ly aLa(i)  dqi  9S(Q,d;, ©)
a0 4D D- dqi 95(Q,d;,®) a0
where Ly (i) is the relevant loss term contributed by document d;.
For loss Lir, Lxr (i) = pi In %
oLgr (i) _ pi

aqi qi
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Lgrr (i) is piln % —Alog g; for a positive document, and p; In ‘%
for a negative document.

aLKLL(i) B —% — % ifd; € Z)+;
aq;i —%j ifd; e D™

Lpkr (i) is p; ln% + Agilogg; for a positive document, and

piln % + AL for a negative document.
i

In2
olprr(i)
aq;
i 1 i .
{—% + A3 +logqi) = —f]ii +Alog(ex qi) ifd; € DF;
pi 1 e _
~q + Am if dl eD™.
To understand the relative gradient ratio between %, al‘a%,
and aLgé“ , we compare the pairwise ratio of the gradient contri-
bution from document d; in above additive formulas for aLIg—l;(i).

9Lk (i)
IZTH
From the above analysis, we can derive the following proposition:

and 3LBaK% (i) )
1

PROPOSITION 5.1.

dLgrr (i) dLgr (i)
— = A pi,qi
) oa; gkLL (A pis qi) o
an
9L (i) oLy (i)
JZBRLAY _ A pi, g;) =R
g 9BkL (A pi, qi) o
where
A : +
1+ 4 ifdi e DT
/L i,qi) = y 41
gxLL(4, pi, qi) {1 ifds € D-
and

omes Copnan) 1-Zgilog(exq) ifdie D%
BKL (A pi, qi) = A ) _
1_p§1ln2 ifdi e D™.
Constant e is the base of the natural logarithms.

5.2 Interpretation of relative contribution ratio

The above analysis reveals the relative gradient contribution
ratio between the corresponding terms of KLL and BKL with respect
to KL divergence for each document. We discuss the meaning of
the sign and magnitude of the gradient contribution ratio g4 for
loss Ly below. First as summarized in Table 3, we provide some
definition as we classify the update direction of gradient contributed
by document d; in loss L4 compared to loss Lk .

o If ga(A pi,qi) > 1, we call that Ly aggressively follows
Lk1. The gradient contribution for loss Ly is higher than
what would have been with the KL loss with respect to this
document.

o If g4 (A pi,qi) = 1, we call that loss L4 exactly follows Ly

o If0 < ga(A pi,qi) < 1, we call that loss L4 conservatively
follows Lxr.

o If g4 (A, pi,qi) = 0 or close to 0, the gradient contribution of
this document makes 0 or insignificant contribution to the
overall gradient. That means a student model does not want
to make much weight change based on this document.

o If g4 (A pi,qi) < 0, we call that loss L4 deviates from Lgy .
The gradient contribution for the weight update direction
based on loss Ly is opposite to that of the KL divergence for
this document.
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Condition Gradient contribution from doc. d;

ga(Api,qi) > 1 Loss L4 aggressively follows Lk,

ga(Apiqi) =1 Loss Ly exactly follows Lg

0<galdpigi) <1 Loss Ly conservatively follows Lt

ga(A, pi,qi) =0or~ 0 No or insig. contribution from d; in Ly

Table 3: Classification of gradient contribution behavior from
document d; in loss L4 compared to loss L during training

It is easy to see that for Loss Lx11, gxrr (A, pi,qi) = 1 for any
positive and negative document. Namely Lxy 1 always aggressively
or exactly follows Lk independent of relative performance of
the teacher and student models. In comparison, the proposed con-
trastive loss Lgg, is much more conservative or cautious than Lgy .
The direction of gradient contribution may not be in an agreement
with loss Ly .

We use the value ratio or size of teacher prediction p; and student
prediction g; for document d; to assess the potential benefits of
following the KL divergence loss Lk .

e For positive document d;, if p; > ¢;, there is a chance that
teacher’s model performs better. Student’s prediction may be
fine as long as the student model ranks document d; above
all negative documents. But if g; is too small, the chance that
qi is a bad prediction score becomes higher.

If p; < gqj, there is a chance that student’s model performs
better while we are not sure about teacher’s model.

o Similarly for negative document d;, if p; > g, there is a

chance that student’s model performs better. We are not sure
about teacher’s prediction.
If p; < qi, there is a chance that teacher’s model performs
better while we are not sure about student’s prediction and
it may be fine as long as the student’s model ranks document
d; below all positive documents.

5.3 Contribution behavior of BKL vs. CKL
Loss Lk has the following behaviors under different conditions
in characterizing the relative size or ratio of teacher’s and student’s
predictions. We summarize them and compare against Lgyy in
Table 4 where notation g4 stands for g4 (4, pi, qi) given Loss A.
e For positive document d; and when p; > g;, there is a chance
that the teacher model might perform better if g; is too small.
- if g; < e”!, there is a chance that this student might per-
form poorly. In this case, gpxr (A, pi,qi) = 1 and Lkt
exactly or aggressively follows Lk . Lk is not as aggres-
sive as Lk and their relative gradient contribution ratio
is:
grLL(hpog) =1 o oo
9BkL(A pi> qi) — 1
- Ifg; > e~ there is a chance that the prediction of this
student is acceptable. 1 > gpgr (4, pi,qi) = 1 — Alog(e).
Lpky closely follows Lk if A is chosen to be small.
e For positive document d; and when p; < g;, there is a chance
that the teacher performs worse.
-ifq; < e, ggxr (A piqi) = 1 and Lk exactly or
aggressively follows L. But Lpky is not as aggressive

as Liy 1, and their relative gradient contribution ratio is:
grLL(Apigi) =1 o 2
9BrL(Api,qi)—1 = e“In2.
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Conditions Behavior of Lgky

Behavior of Lk

Positive document d;

Student: too low

gBxL > 1. Exactly or aggressively follow Ly .

gkLL > 1.

Aggressively follow Lt

gi<e! But not as aggressive as Lxrr: Zﬁ;j > e?In2

Teacher: better 1—Alog(e) < gpkr < 1. Closely follow Lky.

pi=qi, qi>e!

Student: better gBkL < 1. Conservatively follow Ly,

Ppi<qi, qi>e ' | gpgr <0if p; << g;. Deviate from Lgy if teacher is really bad

Negative document d;

Student: better

0 < gk < 1. Conservatively follow Lkt

gkLL =1
Exactly follow Lgp

Pi 2 gi
Teacher: better 0 <gpgr < 1if % > ﬁ Conservatively follow Lxp
pi < qi gBkL < 0if % < ﬁ ‘%g—;i(i) & aL%LLi(i) are very small with limited impact

Table 4: A comparison of relative gradient contributions by document d; in Lgy; and Lggy compared to Lgy, p; is teacher

prediction, g; is student prediction. A is chosen to be small.

- Ifg; > 71, gpgr (A pirqi) < 1. Lpkr conservatively fol-
lows L, at most. When p; becomes very small (p; << g;)
and the teacher performs badly in this case since the
prediction for a positive document cannot be too small,
9BKkL(A pi,qi) < 0 and Lk, deviates from L. Thus for
this subcase, Lpgy is expected to outperform Lgy; .

e For negative document d;, and when p; > g;, the student
might perform better as we want g; as small as possible.

0 < gpxr(A pi,qi) < 1. Lpkr conservatively follows Ly

As gkrr (A pi,qi) = 1, Lk is expected to outperform Lgy.

e For negative document d;, and when p; < ¢;, there is a
chance that the teacher performs better. If % > &, 0 <
gBrL (A pi,qi) < 1, and Lk still conservatively follows

Lkr- If% < 5. 98kr (A pinqi) < 0.

When A is chosen to be small, the chance of having a negative

gk L value becomes small in this case. For example, if 1 =

g

0.01, ﬁ ~ 0.015 and then only when i 69, gBKL is

negative. In this case, both aLgLi(l) and aLBaKLL_(l) are close
to 0. The chance of making a negative impact with such a
small gradient can be limited.
In summary, there is still a chance to have a negative gggr
value, which forces us to choose a small A value. That is the
subcase that Lgg does not balance KL divergence very well
and there is still room for an improvement in the future.
Overall speaking, the proposed loss Lpg], is more conservative
than Lgy; in following Lkt to compute the gradient contribution
size and sign. It can differentiate the relative performance of teacher
and student’s predictions for a given document. That helps to make
the update size of parameters relatively smaller in training adap-
tively. When the performance of teacher is really poor compared to
a student for a positive negative document, the direction of gradient
contribution in Lk can be opposite to that of loss Lgy, which
helps the student to make a better parameter correction during
iterative gradient descent update.

6 Evaluation Results

6.1 Datasets and settings

Datasets and metrics. We use the MS MARCO datasets for
passage ranking [1, 5]. There are 502,940 training queries, with
about 1.1 judgment label per query. The development (Dev) query
set is used for test evaluation, and additional test sets include the
TREC deep learning (DL) 2019 and 2020 tracks with 97 queries in
total and many judgment labels per query. Following the official
leader-board standard, for the Dev set of MS MARCO, we report
mean reciprocal rank (MRR@10) for relevance instead of using
normalized discounted cumulative gain (NDCG) [20] because such
a set has about one judgment label per query, which is too sparse
to use NDCG. For TREC DL test sets which have many judgment
labels per query, we report the commonly used NDCG@10 score. If
available, we also list the recall ratio at 1000 which is the percentage
of relevant-labeled results appeared in the final top-1000 results.

In all tables below that report our evaluation results in relevance,
we perform paired t-tests at the 95% confidence level. In Tables 6,
we mark the results with ‘™ if a baseline result is in statistically sig-
nificant degradation from our proposed method SPLADE+ColBERT-
BKL. In Table 7, ‘** is marked for numbers with statistically signifi-
cant degradation from BKL loss in the last row. We do not perform
t-tests on DL’19 and DL’20 test sets as the number of queries in
these sets is small.

Training. We follow the settings in ColBERTv2 [41] to train the
ColBERT model. Each token embedding has a dimension of 128
as its default size. We adopt MiniLM-1-6-v2 [34] which has been
used by ColBERTv2 as its teacher. We use co-Condenser [4] as
the pretrained starting checkpoint and adopt sentenceBERT [15]
released hard negatives as the negatives used in training.

In terms of training machine resources and parameters, we use a
single GPU with 24G memory (A10G) to train ColBERT to converge
for up to 20 epochs with a batch size of 32. The resource usage
is reasonable compared to what has been used in the previous
work [18, 39, 41]. We warm up the model and then switch up the
KL, KLL or BKL losses. Learning rates 2e-5 and 1e-5 are used in the
warm-up step and the refinement step, respectively.
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Dataset # Query # Passages Mean # Judgments

Length per query

MS MARCO passage Dev test set 6980 8.8M 67.5 1.1
TREC DL 19 test set 43 - - 21

TREC DL 20 test set 54 - - 18

Table 5: Dataset statistics of MS MARCO passages

Model Specs. Dev TREC DL19 TREC DL20
MRR@10 Recall@1K NDCG@10 NDCG@10 Distill
Sparse retrieval with inverted indices
BM25* [40] 0.172F 0.853" 0.425 0.453 X
docT5query™* [36] 0.277 0.947 0.590 0.597 X
SPLADE [10] 0.388" 0.982 0.714 0.717 v
Multi-vector retrieval
ColBERTv2* [41]  0.397 0.984 - - v
CITADEL* [26] 0.399 0.981 0.703 0.702 v
ALIGNER* [37]  0.403 - - - X
SLIM*** [25]  0.403 0.968 0.714 0.702 v
Dual-encoder re-ranker with sparse retrieval
Deeplmpact+ColBERT* [32] 0.362 - 0.722 0.691 X
uniCOIL+ColBERTv2/CQ* [51]  0.387 0.958 0.746 0.726 v
SPLADE+ColBERT/BKL 0.407 0.982 0.716 0.736 v

Table 6: Relevance scores of different one-stage and two-stage algorithms for MS MARCO passage ranking.

Dev TRECDL19 TREC DL20

Loss A MRR@10 NDCG@10 NDCG@10
Lxr - 0.403" 0.732 0.714
Lxir  0.05 0.3717 0.629 0.616
Lirr  0.02 0.384" 0.684 0.651
Ly 0.01 0.3947 0.720 0.677
LgkL 0.05 0.3987 0.709 0.727
LpkL 0.02 0.406 0.722 0.734
LpkL  0.01 0.407 0.716 0.736

Table 7: Model relevance after refinement with different
losses under the same training condition. © is marked for
methods where there is a statistically significant perfor-
mance degradation compared to the BKL loss with 1 = 0.01
at 5%.

6.2 Relevance of different baselines and options

Different methods for re-ranking tasks. Table 6 lists the
overall performance of several state-of-the-art baselines from the
previous work in multiple categories for MS MARCO passage rank-
ing for searching the Dev test set, and the test sets from TREC’19 and
TREC’20 deep learning tracks. We compare them with two-stage
search using SPLADE retriever and ColBERT re-ranker trained
with BKL. The retriever model follows the training of SPLADE
model [10, 23]. If the relevance results of a baseline are copied
from its corresponding paper, we tag the reported numbers in the
corresponding first entrie with ‘«’. Entry ‘-’ means the result is
not available from the corresponding paper. While the results of
BKL for DL’19 and DL’20 are reasonable, we mainly compare and
discuss MRR@10 numbers of different methods in using the Dev

test set of MS MARCO as the DL’19 and DL’20 test sets are too
small to achieve appropriate statistical power for t-test.

Table 6 lists a few sparse retrievers as a reference, including
BM25 or learned neural representations as their implementation
uses invert indices for fast inference without GPU. The SPLADE is
retrieval model [10] we use throughout the paper. This table lists the
results of several retrieval studies with multi-vector representations
including ALIGNER [37], CITADEL [26], and SLIM**[25]. We also
list two two-stage search efforts with a learned sparse retriever and
ColBERT reranker: DeepImpact [32] and CQ [51]. We can see that
CoIBERT ranker trained with BKL after SPLADE sparse retrieval
achieves 0.407 MRR@10, higher than others listed in this table.

The impact of different loss functions on training. Table 7
lists relevance after model training with BKL or other distillation
loss options under the same training condition: fixed negative sam-
ples, the same starting warm-up checkpoint, and the same machine.
Before training with these losses, the starting point of the ColBERT
model has 0.387 MRR@10, which is slightly lower compared to the
retrieval performance, indicating that the warmup reranking check-
point does not add a benefit on top of the SPLADE retrieval model
used. “Lgy” is the KL-divergence loss without any contrastive loss
added. “Liy1” is the negative log likelihood loss added to the KL-
divergence loss and A is chosen as 0.01, 0.02, or 0.05. “Lpgy” is
the proposed loss added to the KL-divergence loss with the same
weight parameter choices: 0.01, 0.02, or 0.05.

From Table 7 we can observe that the ColBERT model trained
with loss Lggy with A = 0.01 can reach an MRR@10 number higher
than the other loss options or settings on the MS MARCO Dev set,
and most of these relative gains are statistically significant at the
95% confidence level. A large A such as A = 0.05 or higher does not
yield a better performance, which is consistent with our analysis in
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Section 5. The result for DL’19 and DL’20 using Lggy with A = 0.01
or 0.02 is nearly on par with Lx on average. As mentioned earlier,
we view the Dev set performance improvement relatively more
important than the DL’19 and DL’20 sets because of the test set size
difference.

One can observe that a small increase of A with KLL loss causes
a large performance degradation. When A is 0.05, the performance
drops to 0.371 MRR@10. The sensitivity of KLL performance to
the size of A can be explained based on the relative contribution
ratio formula ggrp = 1+ il for positive documents discussed in
Section 5. When p; value is small for some positive documents
scored by the teacher’s model, the gradient contribution by Lxy1
follows the KL divergence loss too aggressively. In this case, there
is a good chance that the teacher makes a mistake in scoring. With
all three A choices, L does not bring visible benefits in balancing
the KL divergence loss in our context and it actually degrades the
overall relevance effectiveness compared to Lxy .

7 Concluding Remarks

The contribution of this paper is an alternative contrastive loss
for balanced knowledge distillation based on KL-divergence and
an evaluation for a ColBERT re-ranker. Our analysis provides an
analytical justification to explain that overall speaking, it is more

Yingrui Yang, Shanxiu He, Yifan Qiao, Wentai Xie, and Tao Yang

adaptive to the relative performance of teacher’s and student’s doc-
ument scoring during model imitation and exhibits a conservative
and generally-better learning behavior for the most part compared
to the log likelihood based balancing for KL divergence.

Our evaluation is focused on ColBERT re-ranking which can be
important for large-scale search with multi-stage search. The BKL
refinement on ColBERT re-ranking increases MRR@10 from 0.387
to 0.407 for the MS MARCO passage Dev test set, and outperforms
other loss function options. Although the MRR number improve-
ment from some other methods compared is modest, achieving
such an increase for this public ranking task is known to be very
hard. This illustrates the usefulness of BKL in making a re-ranker
more competitive in relevance.

Our future work is to further improve the proposed method
in balancing KL divergence as discussed in Sections 5 and 6. The
other future work is to study its zero-shot ranking performance
and investigate its use in training other search models.
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