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Abstract 

Different methods exist to measure or estimate actual crop evapotranspiration (ETa). However, some methods 

require a large number of data input or strict field conditions. Remote sensing based ETa algorithms based on 

extreme thermal pixels (hot and cold) have limitations when required extreme pixels are not present in the acquired 

thermal infra-red imagery. In addition, satellite overpass frequency and spatial pixel resolution may be a limitation 

for some agricultural fields and micro-climates. Surface energy balance methods that use surface radiometric 

temperatures often fail to perform well under drought, limited irrigation, salt affected soils, or under sparse 

vegetation conditions. One option is to measure or estimate the crop/surface sensible heat flux through the 

aerodynamic temperature approach, then calculate the available energy and solve the energy balance for latent heat 

flux. Thus, this study presents different published algorithms that characterize the crop or field surface 

aerodynamic temperature and then applies them to different conditions for evaluation. Determining spatial ETa 

continuously has the potential to improve the irrigation water management decision making. The aerodynamic 

temperature approach was initially developed with good results as a function of surface radiometric temperature, 

air temperature, crop leaf area index, and wind speed or surface aerodynamic resistance. However, the inclusion 

of the crop fractional percent cover and of a new resistance term (turbulent-mixing row resistance) greatly 

improved the estimation of the sensible heat and latent heat fluxes, when evaluated with heat flux data derived 

from eddy covariance energy balance towers. Results also indicate that the aerodynamic method has transferability 

potential to different regions, crops, and irrigation methods than the conditions encountered in the method 

development. 

Keywords: irrigation management, actual crop water use, remote sensing, evapotranspiration, energy balance  

1. Introduction 

Increasing world population and climate change demand a global sustainable food and fiber production under well 

managed irrigation practices. Thus, the need to become more efficient at managing water resources in agricultural 

settings and at different spatial scales. In this context, remote sensing (RS) systems along with actual crop water 

use or evapotranspiration (ETa, mm d-1) algorithms can be implemented to improve irrigation management 

decisions (Chávez et al., 2012, Gowda et al., 2008). One such ETa estimation method is based on the energy 

balance (EB) approach that provides instantaneous estimates of latent heat flux (LE, W m-2), at the time of satellite 

platform overpass, and which is converted to hourly and daily actual evapotranspiration using different time-steps 

scaling methods (Chavez et al., 2008). The simplified EB approach is defined by the equation “Rn = G + H + LE,” 

where Rn is net radiation, G is the soil heat flux, and H is sensible heat flux. All EB terms are expressed in W m-2 

units in this study. Appendix A lists the calcuations needed to estimate Rn and G for the typical EB approach used 

in this study. The estimation of LE is performed by solving the EB equation for LE after estimating Rn, G, and H. 

Rn and G are estimated with acceptable accuracy (~95% and 85%, respectively). There are several RS algorithms 

available (Gowda et al., 2008) to estimate these variables. However, most RS and EB based ETa algorithms differ 

in the way the sensible heat flux is estimated. In most of these models, H is estimated using the radiometric surface 

temperature (Ts), derived from satellites’ thermal bands or ground-based radiometry. Sensible heat fluxes are in 
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general over estimated when Ts is used in Equation 1 rather than the appropriate surface aerodynamic temperature 

(To). Equation 1 below describes the bulk surface resistance-based H calculation. The over estimation of H often 

occurs because Ts is typically larger than To.  

H = a∙Cpa∙(To – Ta)/rah                                (1) 

where, a is air density, (kg m-3), Cpa is specific heat of dry air 1005 (J kg-1 K-1), Ta is air temperature (K) at screen 

height (2-3 m). The surface aerodynamic temperature (To, K) is defined as the within and between canopy 

temperature that produces the necessary temperature gradient for the generation of sensible heat fluxes. For 

homogeneous canopies To can be said to originate at the height equal to the zero plane displacement (d, m) plus 

the roughness length for heat transfer (Zoh, m). In Equation 1, rah is the surface aerodynamic resistance, (sec m-1) 

to heat transfer from a height equal to “d+Zoh” to Zm. Where Zm is the wind speed measurement height, m.  

Wenbin et al. (2004) indicated that for homogeneous and isothermal surfaces the definition of aerodynamic and 

thermodynamic (canopy or surface radiometric) temperatures are equivalent, but over heterogeneous (and/or 

sparse, or stressed) surfaces there are important differences between To and Ts. This difference leads to errors in 

the estimation of H which in turn leads to errors in the calculation of LE and therefore in mapping ETa. In order to 

account for the differences between To and Ts, studies have been carried out to parameterize H. For instance, earlier 

studies by Kustas et al. (1989), and Kustas and Norman (1996) increased the surface aerodynamic resistance by 

adding an extra term that adjusts the surface roughness length for heat transfer. This term expresses the extra 

resistance that the heat flow encounters above the vegetation canopy in relation to the momentum flux. Chehbouni 

et al. (1996), introduced a  parameter as function of leaf area index (LAI, m2 m-2) in an exponential relationship, 

in the H equation, to adjust for the differences between To and Ts.  

Since those early studies, further research has been carried out to model and apply the surface aerodynamic 

temperature approach; in particular, using input data from different RS platforms. Therefore, this article 

summarizes different surface aerodynamic temperature modeling studies and applies selected To models to 

different crops, regions, and irrigation conditions to assess their transferability. 

2. Method 

This section introduces several surface aerodynamic temperature models that used different remote sensing 

platforms (sensors and spatial scales). Then, selected To models are applied to: a) a cotton field near Bushland, 

Texas; b) a maize field located near Rocky Ford, Colorado; and to c) a maize field in Fort Collins, Colorado. 

2.1 Maize and Soybean To Modeling—Rainfed Agriculture Case 

Mahrt and Vickers (2004), for grass, modeled To in terms of Ts, incoming shortwave solar radiation (Rs, W m-2), a 

vegetation index (or leaf area index, LAI), horizontal wind speed (U, m s-1) and soil water content. Similarly, 

Chávez et al. (2005) modelled To (°C) as a multi-linear regression function of Ts, Ta, LAI, and U, for dryland maize 

and soybean crops located near Ames, Iowa, USA. Equation 2 below shows the resulting multiple linear regression 

To model, where surface reflectance and temperature images were obtained using multispectral/thermal cameras 

mounted on an aircraft (1-3 m pixel spatial resolutions). These images were used to determine LAI and Ts, 

respectively. The validity of Equation 2 is for a range of LAI between 0.3 and 5.0 m2 m-2.  

To = 0.534∙Ts + 0.39∙Ta + 0.224∙LAI − 0.192∙U + 1.67                   (2) 

Equation 2 above resulted with the following mean bias error (MBE) and root mean square error (RMSE) of 0.2 

and 0.9 °C, respectively, when evaluated with To derived from inverting Equation 1 and using sensible heat fluxes 

measured with a network of Eddy Covariance (EC) EB systems. Further, when using To from Equation 2 in 

Equation 1 and solving the EB equation for the latent heat flux, LE was estimated with a relatively small error 

(MBE±RMSE) of -9.2±39.4 W m-2 or -2.7±11.7% (relative or normalized error), when evaluated with LE from 

EC EB towers. 

2.2 Cotton To Modelling—Dryland Agriculture Case 

In a study over rainfed cotton subjected to a highly advective environment, in the Texas High Plains, near Bushland, 

Texas, USA, Chávez et al. (2010) modelled To (°C) using “inverted” To from 15-minute measured ETa, Rn, and G 

data. These variables were measured at a precision monolithic weighing lysimeter field (210 m long × 200 m wide), 

and by solving the EB equation for H as a residual and by inverting Equation 1 and solving it for To. The form of 

the resulting To equation is shown below as Equation 3, with variables and corresponding units as previously 

defined. In Texas, the rainfed cotton was water stressed and LAI only varied from 0.2 to 1.3 m2 m-2. In this study, 

Ts was measured with a fixed Exergen infra-red thermometer, and crop height and LAI were estimated using 
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surface/vegetation reflectance data collected with an EXOTECH hand-held multispectral radiometer. Further 

details regarding the experiment setup can be found in Chávez et al. (2010). 

To = 0.5∙Ts + 0.5∙Ta + 0.15∙rah − 1.4                           (3) 

The evaluation of To from Equation 3 was performed with To data from an aerodynamic profile tower (APT) and 

an EC EB system. The evaluation yielded the following errors, MBE±RMSE of 0.16±1.02 °C or 0.13±3.77% and 

0.67±2.14 °C (2.24±6.53%), for the APT and EC reference systems, respectively. This small error in the estimation 

of To (Equation 3) contributed to a better estimation of dryland cotton ETa rates, with an error reduction from 23.6 

to 3% when To was used in Equation 1 instead of Ts.  

2.3 Merlot Vineyard To Modelling—Irrigated Agriculture Case 

Another study was carried out to calibrate and validate the surface aerodynamic temperature method for the 

estimation of the spatial variability of the sensible and latent heat fluxes over a drip-irrigated merlot vineyard 

located in the Maule Region, in Chile, South America. Figure 1 shows the merlot vineyard site that was 

instrumented with an EC EB system along with ancillary sensors. 

 

 
Figure 1. Merlot vineyard located in the Maule Region of Chile 

(35°25′ South and 71°32′ West, 125 m above mean sea level) 

Source: Carrasco-Benavides et al. (2017). 

 

The To calibration study was carried out by Carrasco-Benavides et al. (2017). For this study, measurements of EB 

components and meteorological data were collected during the 2006-2010 crop growing seasons. The experimental 

plot was composed of a 4.25 ha Merlot vineyard, which was equipped with an EC EB system and an automatic 

weather station. In this study, To was modelled in a similar fashion as indicated in Chávez et al. (2005), resulting 

in Equation 4 below. However, the RS data used were from satellite Landsat 7 optical/NIR and thermal images; 

which pixel spatial resolutions were 30 and 100 m for the multispectral and thermal images, respectively. The 

validity of Equation 4 is for a range of LAI and fractional vegetation cover values falling between 0.8-1.2 m2 m-2 

and 28-31%, respectively.  

To = 0.2∙Ts + 0.75∙Ta + 24.46∙LAI − 0.95∙U − 22.77                   (4) 

The evaluation of Equation 4 was performed with EC-derived (inverted) To values not used in the development of 

the vineyard To model. The evaluation indicated that Equation 4 estimated To with the following errors, 

MBE±RMSE of 0.56±0.66 °C or 2.3±2.7%. Further, the resulting sensible heat flux estimation error was 28.3±33.6 

W m-2 or 10.5±12.4%; while satellite data-based computations of LE were somewhat higher than those EC-based 

measured at the time of satellite overpass (53±63 W m-2 or 28.3±33.6%), presumably due to the biases embedded 

in the net radiation and soil heat flux computations, according to Carrasco-Benavides et al. (2017). However, the 

proposed RS-based EB method to estimate ETa based on To is very simple to implement, presenting similar 

accuracies on ETa mapping than those computed by complex satellite-based EB models. 

2.4 Maize To Modelling—Irrigated Agriculture Case 

A recent study, by Costa-Filho et al. (2021), modelled To over maize fields (fully and deficit sub-surface drip 

irrigated) near Greeley, Colorado, USA, using proximal RS data collected with handheld and fixed ground-based 
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radiometers, and with sensible heat fluxes measured with two sets of Large Aperture Scintillometers (LAS) that 

provided To values (from inverted measured H values). Rambikur and Chávez (2014) presented a LAS evaluation 

study in which it was shown that sensible heat fluxes derived from LAS systems were comparable to H values 

obtained with EC systems. In the Costa-Filho et al. (2021) study, To was modelled for different ranges of maize 

LAI values including the following variables: fractional vegetation cover (fc), Ts, Ta, and considering the wind 

direction (angle) interaction with the crop rows’ orientation (angle) through the so-called ‘turbulence mixing-row 

resistance’ (rp, s m-1). Wind direction has a significant effect on determining the wind profile within and above 

canopy relative to air flow direction and the crop row layout. As wind speed interacts with the crop row orientation 

(wind from different directions), there will be different angles of attack that will result in different aerodynamic 

resistances and wind penetration within the crop (i.e., variable zero-plane displacement height and roughness 

length); which results in different turbulent mixing of heat and vapor transport from the surface to the atmosphere 

above affecting H and LE fluxes. Below, Equations 5-8 present Costa-Filho et al. (2021) modelled To equations 

for maize grown in a high plain and semi-arid region. 

To = -8.742∙fc + 0.571∙Ta + 0.529∙Ts + 0.806∙rp + 3.295   for 0.85 ≤ LAI ≤ 1.50        (5) 

To = -9.168∙fc + 0.485∙Ta + 0.575∙Ts − 0.160∙rp + 6.491   for 1.5 < LAI ≤ 2.50         (6) 

To = 4.708∙fc + 0.350∙Ta + 0.580∙Ts + 0.086∙rp   for 2.50 < LAI ≤ 3.50            (7) 

To = -1.912∙fc + 0.443∙Ta + 0.509∙Ts + 0.115∙rp + 5.014   for 3.50 < LAI ≤ 5.00        (8) 

The Costa-Filho et al. (2021) To resulting modelling errors (MBE±RMSE) were -0.14±0.50 °C for the optimized 

models (Equations 5-8). Overall, results seemed to indicate that the optimized To model improved the estimation 

of maize H fluxes (error -6±19 W m-2, or -4.9±16.3%); which resulted in an improvement of the estimation of 

latent heat fluxes (error -6±35 W m-2, or -1.8±9.7%). It seems that incorporating the interactions between the crop 

row layout and wind direction, in the modelling of To, better describes the dynamic turbulent mixing for the 

generation of H. 

2.5 Application of To Models 

Selected To models were applied to crops and conditions different from those used in their development. The To 

application was performed to assess the transferability of the models to different settings. 

2.5.1 Applying the Chávez et al. (2005) Rainfed Maize To Model to Sprinkler Irrigated Cotton  

Field data were collected in 2008 at the United States Department of Agriculture (USDA) Agricultural Research 

Service (ARS) Conservation and Production Research Laboratory (CPRL), located near Bushland, Texas, USA. 

The geographic coordinates of the USDA ARS CPRL are 35°11′ North and 102°6′ West, with an elevation of 1,170 

m above mean sea level (amsl). The study area is subject to very dry air and strong winds (advection). Annual 

averages for air temperature, air water vapor pressure deficit, and horizontal wind speed are 14 °C, 0.3 kPa, and 

4.9 m s-1, respectively, according to Chávez et al. (2009). 

Cotton was grown in a 4.7 ha research field (southeast lysimeter field) 210 m wide (East–West) and 225 m long 

(North-South). The field contained a precision weighing lysimeter in the center (Figure 2). The lysimeter 

measurements are 3.9 m wide × 3.9 m long × 2.3 m deep and it was used to directly measure cotton ETa for the 

evaluation of the ETa estimated with the To approach. The lysimeter contained a monolithic Pullman clay loam 

soil core and it was sprinkler irrigated by a Linear Move sprinkler irrigation system. 
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Figure 2. Cotton field with instrumentation installed above the lysimiter box, at the USDA ARS CPRL, 

Bushland, Texas, USA 

 

For the application of Equation 2, Ts was obtained from infrared thermometers (model IRT/c, Exergen Corp., 

Watertown, Massachusetts, USA), which were mounted to view approximately at a 60° zenith angle and an 

azimuth toward the Southwest at 45° from due South. Ta was obtained from a temperature/relative humidity sensor 

(model HMP45C, manufactured by Vaisala, Inc.,) mounted in a Gill shield (model 41003-5 10-Plate Gill radiation 

shield manufactured by R.M. Young, Traverse City, Michigan, USA) at 2 m above the ground. Wind speed (U) 

was measured by an anemometer (model 03101-L R.M. Young wind sentry anemometer, manufactured by R.M. 

Young, Traverse City, Michigan, USA) at 2 m above the ground. And LAI was estimated as published in Chávez 

et al. (2010). The normalized difference vegetation index (NDVI) was calculated using surface reflectance data 

obtained with an EXOTECH handheld radiometer. 

2.5.2 Applying the Chávez et al. (2005) Rainfed Maize To Model to Furrow Irrigated Maize 

The study was conducted at the Colorado State University (CSU) Arkansas Valley Research Center (AVRC) near 

Rocky Ford, Colorado, USA. The geographic coordinates of the site are 38°2′ North and 103°41′ West, and the 

elevation is 1,274 m amsl. Maize was grown in the large lysimeter field (Figure 3) in 2013. The dimension of the 

large lysimeter field are 160 m by 250 m (4 ha). A large monolithic weighing lysimeter (3 m long × 3 m wide × 

2.4 m deep) was located in the middle of the field. As part of the instrumentation in the field, there was a net 

radiometer (Q7.1, REBS, Seattle, Washington, USA), two infra-red thermometers (IRT Apogee model SI-111, CSI, 

Logan, Utah, USA) to measure crop radiometric surface temperature, soil heat flux plates (REBS model HFT3, 

CSI, Logan, Utah, USA) buried in the ground in the lysimeter box, 10 cm deep, along with soil temperature and 

soil water content sensors, for the estimation of stored soil heat and G at the ground surface. The field was furrow 

irrigated using siphons and a head ditch. The average annual maximum temperature is 21.1 °C. The average annual 

minimum temperature is 2.4°C. The long-term average annual precipitation at the site is 301 mm with 

approximately two-thirds of the annual total occurring from May through September. The total average annual 

snowfall is 589 mm.  

Figure 3 shows a grid (light green dots) where ground-based multispectral/thermal radiometric data were collected 

over a span of 9 weeks (once a week). 
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Figure 3. Maize field at the CSU AVRC lysimeter (CL) field near Rocky Ford, Colorado, USA 

 

These radiometric data were used to obtain surface reflectance and temperature, respectively. A weather station 

was installed at the middle of the field, from where air temperature, relative humidity, and wind speed data, at 3 m 

above ground, were obtained. 

Maize Fontanelle 8A818RBC was planted on May 7th with a density of 81,382 plants/ha. Emergence took place 

on May 17th, while the harvest occurred on October 15th.  

The EB method based on To from Equation 2 was applied to the maize data collected at the lysimeter field. 

2.5.3 Applying the Costa-Filho et al. (2021) Drip Irrigated Maize To Model to Furrow Irrigated Maize  

The newer To model was applied to furrow irrigated maize grown at the Irrigation Innovation Consortium (IIC) 

Head Quarters (HQ). The IIC-HQ was located at the intersection of Prospect Road and Interstate-25 highway on 

the outskirts of Fort Collins, Colorado, USA. The site elevation is 1,525 m amsl, Lat. 40.557270 North and Long. 

-105.004932 West. The research field used was approximately 6.9 ha (348 m long × 200 m wide) located at the 

south-west (SW) corner of the site (Figure 4). Maize (Syngenta G02K39-3120) was planted on May 13, 2020, with 

a density of 81,500 plants/ha. Soil texture is Otero sandy loam. The climate is cold and temperate according to the 

Köppen-Geiger climate classification. The irrigation system was furrows, supplied of water by siphons (every 

other furrow) from a head ditch. An EC tower (CSI, Logan, Utah, USA) was installed at the northwest corner of 

the field in order to evaluate the To-based ETa estimates. A net radiometer, soil heat flux plates, and IRTs were 

installed in the upper one-third of the field to assess available energy and the EC EB closure. 

PlanetScope high spatial resolution surface reflectance images, from microsatellites PanetDove (PD), were used 

(Planet Team, 2017). PD constellation of microsatellites provide a daily overpass coverage. Only cloud free images 

were used. PD is a CubeSat 3U form factor (10 cm × 10 cm × 30 cm) microsatellite constellation operated by 

Planet, Inc. The PD constellation consists of about 130+ satellites, with the capability to image the entire Earth’s 

land surface on a daily basis. The PD satellites have four spectral bands; Blue (B, 455-515 nm), Green (G, 500-

590 nm), Red (R, 590-670 nm), and Near Infra-Red (NIR, 780-860 nm). These have a nominal Ground Sampling 

Distance (GSD) of 3 m at nadir and positional accuracy of < 10 m RMSE (Planet Team, 2019). These images are 

atmospherically corrected to ‘Below of the Atmosphere’ (BOA) or surface reflectance, which provides more 

consistency across time and location localized atmospheric conditions while minimizing uncertainty in the spectral 

response (Planet Team, 2020). Nineteen (19) PlanetScope images were used (July-September, 2020) to obtain 

surface reflectance, vegetation indices, and other derived variables. However, PD microsatellites do not carry a 

thermal camera to characterize the maize canopy surface temperature. For this reason, Ts data from fixed (ground-

based) IRTs installed in the field were used. Further details can be found in Chávez (2021).  

 

 

 



jas.ccsenet.org Journal of Agricultural Science Vol. 15, No. 4; 2023 

7 

  

Figure 4. Irrigation Innovation Consortium research site near Fort Collins, Colorado, USA 

 

3. Results 

3.1 Sprinkler Irrigated Cotton Case 

During the Cotton growth period, lysimeter measured ETa varied from approximately 1.6 to 12 mm d-1 (Figure 5). 

This high-end cotton evapotranspiration rate was due to the highly advective conditions of the site. The evaluation 

of ETa estimates, derived from the EB and To from Equation 2, was performed with lysimeter-based ETa daily 

rates (Figure 5).  

 

 

Figure 5. Cotton 2008 campaign daily ETa measured (full line) and estimated (dashed line) from the USDA ARS 

CPRL, Bushland, Texas, USA 

 

The evaluation indicated that the cotton ETa estimation errors (MBE±RMSE) were 0.67±1.07 mm d-1 or 9.8±15.7% 

of normalized error (using mean measured ET values). This result is considered good given the full irrigation 

conditions and the environment (highly advective semi-arid region) in Texas that were very different from the 

conditions (humid, rainfed agriculture) encountered in Iowa where Equation 2 was developed.  

3.2 Furrow Irrigated Maize Case—Rocky Ford, Colorado, USA 

Resulting estimated maize ETa values were evaluated with ETa data from the large weighing lysimeter. Results 

indicate that the ETa estimation errors (MBE±RMSE) were 0.28±0.52 mm d-1 or 3.9±7.5%. This result shows a 

small estimation errors, which is exceptional considering that the To model from Equation 2 was develop using 

data from a rainfed maize grown in a semi-humid climate, much different from the somewhat advective conditions 

encountered at the AVRC in Rocky Ford, Colorado. Figure 6 below illustrates the linear regression curve fitted to 
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the ETa data (x-axis lysimeter measured and y-axis estimated), depicting some over estimation of ETa in the range 

of 5.5-6.5 mm d-1, for furrow irrigated maize. 

 

 

Figure 6. Maize ETa (measured vs. estimated) evaluation. Data collected at the CSU AVRC research facility near 

Rocky Ford, Colorado, USA 

 

3.3 Furrow Irrigated Maize—Fort Collins, Colorado, USA 

Figure 7 below shows a true color (RGB) picture (left) of the maize grown at the IIC-HQ. The picture was taken 

with an unmanned aerial system (UAS), while the map shown on the ‘right’ hand side of Figure (7) depicts 

PlanetDove microsatellite-based NDVI values from the maize field during August 4th, 2020. NDVI is the 

“Normalized Difference Vegetation Index” equal to [NIR – R]/[NIR + R]; where NIR and R are surface reflectance 

values in the Near Infra-red and Red bands, respectively. For the most part, the maize biomass was homogeneous 

throughout the entire field as per the NDVI distributed values shown in Figure (7). 

 

    

Figure 7. IIC-HQ west field depicting a maize field true color map (left), and an NDVI map (right) derived from 

a PlanetScope multispectral image acquired on 4 August 2020 

 

Figure 8 below shows the linear regression between EC-based ETa and estimated ETa (through Equations 5-8 and 

the EB method); where some scatter is apparent at low and high ETa rates (1-2 and 4.2-5.4 mm d-1, respectively), 

while there is little scatter (better agreement) for medium ETa rate values (~3.5-3.8 mm d-1). Further, the ETa 

evaluation yielded estimation errors of 0.12±0.78 mm d-1 or 3.2±20.7%. This result shows rather a larger than 
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expected ETa overestimation for the surface irrigated maize case. One plausible reason may be the mismatch of 

footprints between the PlanetScope multispectral image pixel size (3 m) and the IRT readings footprint (~1m), the 

furrow irrigation sets (number of furrows per set and number of irrigation sets per day), and calibration of the 

Planet multispectral images.  

 

 

Figure 8. Linear regression plot between EC-based ETa and To-based estimated maize ETa for a research field 

near Fort Collins, Colorado, USA 

 

4. Discussion 

Actual crop evapotranspiration estimated for the fully irrigated cotton (in Texas) field resulted with relative errors 

of 9.8±15.7%. This error is considered acceptable given the fact that most daily ETa models present an accuracy 

of about 15-20% of RMSE and that the aerodynamic temperature approach used in the estimation of ETa was 

developed under different surface and environmental conditions. Equation 2 was developed to estimate To for 

rainfed maize subject to a semi-humid climate with relative errors of -2.7±11.7%. Further, the maize fields 

displayed periods of water stressed during the field data collection in Iowa, while the cotton field in Texas was not 

water stressed. Moreover, the irrigated cotton was subject to very advective conditions that added energy 

(horizontally) to the local vertical exchange of energy fluxes increasing the cotton ETa rate higher than the values 

encountered in Iowa for the maize crop. Therefore, using Equation 2 to estimate To for cotton seems feasible 

although a local calibration of the To model may improve EB-based ETa estimates. For this application case, the 

remote sensing data used as input in the simplified energy balance originated from a fixed stationary infra-red 

thermometer and a roaming handheld multispectral radiometer EXOTECH.  

In the case of the fully (furrow) irrigated maize field from Rocky Ford, Colorado, ETa was estimated with relative 

errors of 3.9±7.5%. This is considered an excellent result when compared to rainfed maize ETa estimate errors of 

-2.7±11.7%, and considering the fact that the maize field in southeastern Colorado was also subject to advective 

conditions that promoted larger ETa rates than in Iowa. This result may be evidence of the regional transferability, 

of the To model presented in Equation 2, from a semi-humid to a semi-arid region. In the case of the irrigated 

maize in southeastern Colorado, remote sensing data were also collected using a fixed IRT and a roaming 

multispectral radiometer (MSR5, CropScan, Rochester, Minnesota, USA); while Equation 2 was developed using 

RS data from an airborne system. 

Finally, for the fully (furrow) irrigated maize grown near Fort Collins, Colorado, errors in the estimation of ETa, 

using updated To models (Equations 5-8), were larger than errors obtained for rainfed maize in central Iowa and 

in southeastern Colorado for fully irrigated maize; and larger than ETa errors obtained for drip irrigated (fully and 

deficit) maize near Greeley, Colorado. In this case, multispectral remote sensing inputs (surface reflectance in the 

R and NIR bands) were from a microsatellite and not from handheld radiometers. Both the footprints and 

radiometry of these sensors/platforms (i.e., handheld and spaceborne) are different and seem to affect the accuracy 

of ETa estimates. For instance, when the size of the microsatellite imagery pixel size does not much that of the IRT 

footprint, and there is local heterogeneity on crop stands (different crop height, fractional cover, LAI), then the 
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estimation of ETa may not be that accurate. Further, the radiometric calibration of the PlanetScope reflectance 

images may not have been accurate and consistent. On this topic, regarding the quality of the Planet microsatellite 

images, Frazier and Hemingway (2021) stated the following “...the variation in radiometric and geometric quality 

compared to traditional platforms (i.e., Landsat, MODIS, etc.) means the images are not always ‘analysis ready’ 

upon download.,,” Meaning that further calibration is needed due to the lack of consistent good 

radiometric/geometric calibration. Earlier Latte and Lejeune (2020) highlighted the need of PlanetScope imagery 

normalization (calibration) to Sentinel-2 high quality imagery radiometric level due to frequent inconsistencies of 

PlanetScope microsatellites’ radiometric quality. In fact, Planet Inc., started offering harmonized or normalized (to 

Sentinel2) images in March of 2022. 

Thus, this study assessed the accuracy in the estimation of daily actual crop evapotranspiration rates through the 

use of the surface aerodynamic temperature approach in the energy balance method. Several aerodynamic 

temperature models have been calibrated for specific crops and environmental conditions. Those calibrated To 

models have resulted in accurate ETa estimates for the locations where the models were developed for. 

Nevertheless, there seems that the surface aerodynamic temperature approach may be transferable to different 

climatic regions and crop types resulting in acceptable ETa estimates. However, local calibration may be required 

to improve ETa estimation results. Further, the aerodynamic temperature model is more accurate when applied 

using remote sensing input data collected with similar sensors/instruments as those used in the development of the 

To model. In the application cases presented in this study, the aerodynamic temperature model applied using 

multispectral and thermal data from proximal remote sensing devices (handheld and fixed sensors) produced more 

accurate ETa rates than when using input data from microsatellites that may have experienced inconsistent imagery 

pixel radiometric calibration. This result highlights the need to evaluate the quality of satellite images using 

properly calibrated ground-based radiometers, and if needed develop local calibrations for each satellite 

overpass/scene. Still, the combination of daily microsatellite multispectral images and ground-based thermal data 

is promising for daily mapping of ETa.  

Even though the use of To models is promising, for the easier mapping of ETa, further studies are needed to turn 

the approach operational and applicable at larger spatial (regional) scales on a daily basis. For instance, determining 

the effects of RS input data of different pixel sizes and radiometry (e.g., Landsat 8 and 9, Sentinel2, MODIS, 

PlanetDove harmonized) on ETa is needed, as well as incorporating the different crop structures and their 

interaction with wind directional angle of attack, for a wide range of crop types and plating densities and spacing. 
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Net Radiation and Soil Heat Flux Modeling 

Net radiation (W/m2) is modeled based on Equation A1 below.  

Rn = (1 − α)∙Rs + εa σ Ta
4 − εs σ Ts

4                         (A1) 

where, α is surface albedo, Rs is incoming shortwave radiation (W/m2), εa is atmospheric thermal emissivity, εs is 

surface thermal emissivity, Ta is air temperature (K) and Ts is radiometric surface temperatures (K), while σ is the 

Stefan-Boltzmann constant (5.67 × 10-8 W/m2/K4). 

Surface albedo is estimated using the Brest and Goward (1987) approach. 

α = 0.512∙RED + 0.418∙NIR                               (A2) 

where, RED and NIR are surface reflectance values in the Red and Near Infra−Red bands of the electromagnetic 

spectrum.  

Air or atmospheric emissivity is calculated using the Brutsaert (1975) approach.  

εa = 1.24∙(ea/Ta)1/7                                   (A3) 

where, ea is the actual vapor pressure (mb) and Ta is air temperature in K.  

Surface thermal emissivity is calculated using Brunsell and Gillies (2002).  

εs = 0.98∙fc + 0.92∙(1 − fc)                                (A4) 

where, fc is the fractional vegetation cover.  

Soil heat flux (W/m2) is estimated using Bastiaanssen et al. (1998) approach.  

G/Rn = (Ts/α)∙(0.0038 α + 0.0074 α2)∙(1 − 0.98 NDVI4)                  (A5) 

where, NDVI is the Normilized Difference Vegetation Index. 
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