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Abstract

We present and analyze a hybridizable discontinuous Galerkin (HDG) finite element method
for the coupled Stokes—Biot problem. Of particular interest is that the discrete velocities and
displacement are H(div)-conforming and satisfy the compressibility equations pointwise on the
elements. Furthermore, in the incompressible limit, the discretization is strongly conservative.
We prove well-posedness of the discretization and, after combining the HDG method with back-
ward Euler time stepping, present a priori error estimates that demonstrate that the method is free
of volumetric locking. Numerical examples further demonstrate optimal rates of convergence in
the L?-norm for all unknowns and that the discretization is locking-free.
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1. Introduction

Many applications in environmental and biomedical engineering require the modeling of
the interaction between a free fluid and a deformable porous media that is saturated by fluid.
Such problems can be modeled by the coupled Stokes—Biot problem, a model first proposed by
Showalter [1], in which the Stokes equations are coupled to Biot’s consolidation model [2, 3, 4].
At the interface the two flows are coupled by enforcing mass conservation, continuity of the
normal stress, a balance of forces across the interface, and the Beavers—Joseph—Saffman interface
condition [5, 6]. Existence and uniqueness of weak solutions to this problem were proven in [7].

Various finite element methods have been proposed for the Stokes—Biot problem. To bet-
ter describe these methods we use #* and p* to denote the fluid velocity and pressure in the
Stokes region and u”, z, and p” to denote the displacement, Darcy velocity, and pore pressure
in the Biot region. Badia et al. [8] introduced the first finite element method for this problem
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considering Lagrange finite elements for (u°, p*) and Lagrange and H(div) mixed methods for
b, z, pP). Residual-based stabilization techniques were used in both subdomains to stabilize
this conforming finite element method. A Lagrange multiplier method to weakly impose mass
conservation across the interface was studied in Ambartsumyan et al. [9]. They used conforming
stable methods for the Stokes unknowns (%, p*) [10, 11, 12, 13], a Lagrange finite element for
u” and stable mixed finite elements for (z, pP) [10, 14, 15]. To avoid poroelastic locking when
using a conforming stable finite element method of the Stokes—Biot problem Cesmelioglu and
Chidyagwai [16] studied the use of a heuristic stabilization technique. A numerical study with
similar methods was done in [17] for a Stokes—Biot model with fluid entrance resistance. A finite
element method based on the total pressure formulation of the Biot model [18, 19] was studied by
Ruiz-Baier et al. [20]. Eliminating the Darcy velocity z, they consider stable Stokes elements for
(u*, p*) and (u”, p*), where p” is the total pressure, and a piecewise continuous and polynomial
space for p”. They furthermore show the existence of a unique weak solution to this formulation
of the Stokes—Biot problem. Finally, let us mention that a stress tensor based approach using a
weakly symmetric mixed method for poroelasticity [21] and a conforming stable mixed method
for Stokes was studied in [22, 23], and that partitioned time discretization methods, focusing on
efficient time stepping and stability of partitioned schemes, are studied in [24, 25, 26].

In this paper we propose a hybridizable discontinuous Galerkin (HDG) method for the cou-
pled Stokes—Biot problem. The HDG method uses hybridization to improve the computational
efficiency of traditional discontinuous Galerkin (DG) methods [27]: degrees-of-freedom (dofs)
local to an element are eliminated resulting in a global problem for dofs associated only with
mesh facet unknowns. The HDG method we propose here combines the HDG method of [28, 29]
for the Stokes equations and the HDG method studied in [30] for the Biot model. (See also
[31] for a similar HDG method and [32] for an alternative approach for the coupled Stokes—
Darcy problem.) Our HDG method is constructed such that the discrete fluid velocities and
displacement are H(div)-conforming. In addition, unlike existing finite element methods for
the Stokes—Biot problem in the literature, the (semi-)discrete solution satisfies the compress-
ibility equations and the mass equation in the poroelastic domain pointwise on each element of
the mesh (where the latter holds provided the source/sink term lies in the pore pressure space).
These properties imply that the discretization is strongly conservative [33] in the incompressible
limit. In addition to these exact approximation properties, we present an a priori error analysis
for the time-dependent coupled Stokes—Biot problem that avoids using Gronwall’s inequality. A
consequence of the latter is that the space-time error estimates do not grow exponentially in time.

The remainder of this paper is organized as follows. In sections 2 and 3 we present the cou-
pled Stokes—Biot model and its HDG discretization. We proceed by proving consistency and
well-posedness of the HDG method in section 4 and present an a priori error analysis of the dis-
cretization in section 5. Numerical experiments in section 6 verify our analysis and conclusions
are drawn in section 7.

2. The coupled Stokes—Biot equations

Let Q c R? be a polygonal (if d = 2) or polyhedral (if = 3) domain that is partitioned
into two non-overlapping domains Q° and Q”. The Stokes equations on Q° describe flow of an
incompressible fluid while a deformable porous structure on Q” is modelled by a quasi-static
poroelasticity model. We will assume that the interface between the two subdomains, IV =

Q' NI is polygonal. We denote by n and n/ the unit outward normal to, respectively, Q and
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QJ (j = s5,b). On the interface n = n* = —n®. Furthermore, let us denote by J = (0, T'] the time
interval of interest.

In the poroelastic part of the domain we consider two different partitions of the boundary
I = 9Q N 6Q°. The first partition is I” = TS, UT% with I, N T2 = @ and T| > 0, while the
second partition is given by I’ = '’ UT%, where I';, N2, = 0, 2| > 0, and |['}| > 0. In the fluid
domain we partition the boundary I'* = 0Q N dQ* as I'* = ', VTR, with I'5, N TS, = 0, 5] > 0,
and [} > 0.

We denote body forces by f* : Q' xJ — R? and f* : Q% x J — R and the source/sink term
by g : Q” x J — R. Furthermore, we denote by u* > 0 the (constant) dynamic viscosity of the
fluid, the Biot—Willis constant and the specific storage coefficient are denoted by, respectively,
0 < a < 1and ¢y > 0, the positive permeability constant is denoted by «, and the Lamé constants
are denoted by u” and A. Note that Young’s modulus of elasticity E and Poisson’s ratio v are
related to the Lamé constant by E = (31 + 2u®)u’ /(A + ) and v = 1/(2(A + ).

Using the total pressure formulation of Biot’s consolidation model [18, 19], we can then state
the coupled Stokes—Biot problem as: Find the fluid velocity u* : Q° x J — R, the fluid pressure
P’ Q° x J — R, the solid displacement u” : QF x J — R?, the pore pressure p” : Q° x J — R,
the total pressure p” : Q x J — R, and the Darcy velocity z : Q” x J — R¢ such that

-V.ol=f inQ/xJ, j=s,b, (1a)
-V-u'=0 in Q° x J, (1b)
Vil + 27 (ap? - pP) =0 inQ’ x J, (lc)
codpP + ad N ad,pP -0, p") +V -z=g" inQf x J, (1d)
Klz+Vpl =0 in Q¥ x J, (le)
and such that
u'-n= (6tub + z) ‘n onl; xJ, (2a)
o'n=o"n onT; xJ, (2b)
—(c’n)-n=p° onTy x J, (2¢)
=205 () = y(u* /&) 2w - dul) onTy x J. (2d)

Here o/ := 2uie(u/) — p/1 (j = s5,b), e(u) := (Vu+ (Vu)") /2, (W) := w— (w - n)n, and eq. (2d)
is the Beavers—Joseph—Saffman condition [5, 6] in which y > 0 is an experimentally determined
dimensionless constant. To close the system we impose the boundary conditions

w =0 onl) xJ, j=s,b, (3a)
oin=0 only, xJ, j=s,b, (3b)
pP=0 on 1"?3 X J, (3¢)
z-n=0 onT% xJ, (3d)

and initial conditions p”(x,0) = p} (x) in Q° and u(x, 0) = u})(x) in Q°.
For notational convenience it will be useful to define functions u and p on the whole domain
Q which are such that ulo; = w/ and p|g; = p/ for j = s, b.
In the a priori error analysis in section 5 we will assume that there exists a v, such that
0 < v, <v <0.5on Q? implying that C,u” < A with C, = 2v,/(1 = 2v,).
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3. Discretizing the Stokes—Biot problem

3.1. Notation

Let 7/ denote a shape-regular triangulation of Q/, j = s, b. We will assume that 7 and 77
match at the interface and define 7~ := 7° U7 . For any element K € 7", hx denotes its diameter
and h := maxges hg defines the meshsize of the triangulation. We denote the set of all facets
by F, the set of all facets in Q/ by F/, j = s, b, the set of all facets in Q/ by ¥ . and the set

int®
of all facets that lie on I}, F{v, I'?, and I’} by 77, T,é, F7, and 77, respectively. Finally, we set
) = UperiF, j = 5,b.
Various approximation spaces are required to define the HDG discretization of the Stokes—
Biot problem egs. (1) to (3). These approximation spaces are discontinuous Galerkin (DG) spaces
defined on Q and Q/ (j = s, b):

V)=l e[L? QN vy e [PUK), VK € T/, j=s.b, (4a)
Q; = {an € X)) 1 g € Pa(K). VK €TV}, j=s.b, (4b)
Vi i={un € [LAQ))" 1 vy € [PUEON, VK € T, (4c)

={qn € LXQ): qu € Pir(K), YK €T} (4d)

Note that for functions u;, € Vj, and p, € Qp we have, respectively, that uy|q; = uil € V}{ and
Dhloi = p;l € Qé for j = s,b. The HDG discretization also requires the following facet DG
spaces that are defined on I“f) (j=s,b):

V= { e LT N e [PUF)Y Y F e T, % =0o0n ). (5a)
0y :={an e LT : gne PPV FeFl}, j=sb, (5b)
Qh ={gn € Qh 2 g =0on FP}. (5¢)

For notational purposes, we group cell and facet unknowns as follows:
vi =, 75, 00) € Vi i= Vy X Vi X V7,
@ = (@@, @) € Q) = O X 0} X 0,
a; = a;.q;) € Q) = 0y x O,
Wns qp> Whs lIZ) €X,:=VyxQ0,x V;? X QZO’
and for j = s, b,
vi= (i) eV]=VvIxV, (q,,3) € Q) =0l x 0.
Next, let us define
vii={veH" @) : vy = 0} nHAQ), j=s.b,
Q' =H'Q), j=s0b
Z:={ve[H' @) : v-nlp, =0},
0" =g H'@) : qlry = 0} N H(@),
4



let V/ and Q’ be the trace spaces of, respectively, V/ and Q’ restricted to Fé (j = s,b), and let
0" be the trace space of Q% restricted to l"g. Where no confusion can occur we will write u/

restricted to l"é as u/ instead of u/ ;> and similarly for the other unknowns.
0

Following the notation also used for the discrete spaces, we write V/ := V/ x V/ and @’ :=
Q’ x @/ for j = s, b. Furthermore, QbO := 0" x 0" Extended function spaces are defined as:

Vi(hy := V] + V7, Q'(h) =0l + ¢, j=sd,
Q") =0 + 0", Z(h) =V’ + Z,

We will use standard innerproduct notation: for scalar functions p and ¢ on an element K,
P9k = fK pq dx; for vector functions p and ¢, (p, ¢)x = fK p - g dx; and for matrix functions
pandgq, (p,9)k = fK p : gdx. Let D be the (d — 1)-dimensional boundary dK or facet F ¢ 0K
of an element K. We then write {(p,q)p = fD p © gds, where © is multiplication if p and g
are scalar functions, the dot-product if p and g are vector functions, and the dyadic product if
p and g are matrix functions. We furthermore define (p, @)/ := X keri(P, @)k and {p, @Ys7i =

Zikeri (P> @)ox for j = s,b and (p,q)a = Yger (P, @k and (p, g)or = Dker (P> q)ok, While on
the interface I'; we define (p, ¢)r, := X per, (P, g)r. At this point it will be useful to also define
Il = @0 lallyx = <@ 05 lally = <@ %% lally, = <@ andllaly, = @. )7
qK'_ q’q[( ’ (’I@K'_ q’an’ qF'_ q’qF ’ qu T q’qu , an qQ/ T q’QQj or
j=s,b.

The following bilinear forms are used in the following sections to define the HDG method
(where j = s, b):

a) !, v)) =), 6oy + > QW @ = i), (v = ))ax
KeTJ
— Qulen’, (v = ) g — QuleWn’, (u — @)y,
D@’ V) 1= =@,V Vg + 47 v = ) Y,
cn((p, 1), q) =" @p = ), Qe
(@, 1), (7, 9) =y’ [0 P @ = Y, 7 = ")),

bi(@", (7, 7)) =(g", (7 = ") - n)r,,

where a£(~, -} is defined on V/(h)x V/(h), by (-,-) is defined on Q°(h)xV3(h), bZ(-, -) is defined both
on Q”(h) x Vb (h) and Q”°(h) x (Z(h) x{0}), cx((-, -), ) is defined both on (Q*°(h) x @°(h)) x 0"’ (h)
and (Q”(h) x Q"(h)) x @ (h), al ("), (-, -)) is defined on ((V* + V) x (V* + VP)) x ((V* + V$) x
(VP + V), and b (-, (-, -)) is defined on (O + Q%) x ((V* + V) X (V* + V)). Furthermore, we
write

ap(u,v) := a,(W’,v*) + aZ(ub, vh), bu(q,v) := by (q°,v’) + bZ(qb, vh).

Let us end this section by noting that the penalty parameters 3/ in the definition of ai; need to be
chosen sufficiently large for a}Jl to be coercive, see [31, Lemma 2].

3.2. The HDG method

Let flo = f/ for j = 5,b. We propose the following semi-discrete HDG method for the
coupled Stokes and Biot problem eqs. (1) to (3): Find (u(1), p,(2), zh(t),pZ(t)) € X, fort e J,
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such that

anun, vy) + ay (@}, 0,01}, (75, 99) + bu(py, vi) + by(B), (75, V0)) =(f, vi)a, (6a)
bi(qy-un) + (P}, p1). 4) =0, (6b)

(codupy . a))ew + cn(( Pl Bip}). q) = by (gl (zn, 0)) — bh(G, . (@, 8,y)) =(8”, ¢, (6¢)
(K" zn W) + D), (Wy, 0)) =0, (6d)

for all (vy, g;,, Wi, q},) € Xp.

Let us partition the time interval J using the time levels 0 = < t! < ... < ¥ = T where,
forn=0,...,N, " = nAt with At > 0 the time step. Functions g and g/ (w1th j = s, b) evaluated
at time level # are denoted by, respectively, g’ and g/!. We furthermore denote the first order
discrete time derivative as d,g" := (g" — g"")/Atforn = 1,..., N. (It will be clear from context
whether n denotes a time-level or a normal vector.) Applying Backward Euler time-stepping to
eq. (6) we obtain the fully-discrete method: Find (u}*', pi*', %!, p; "+1) € X, such that

a@™ vy) + ap (@ )"t (7, 70) (7a)
+ by vn) + bh<p" L EL ) = (" e,

bagpu) + (Pl ph ). g = (7b)

(codi P! v + cn((dip)™™  dypl ”“) aq)) - bj(g). (2, 0)) (Tc)
= by, @ iy = (8" v

' wiar + B (Wi, 0) = 0, (7d)

for all (vy, g, wh, qZ) € Xj.

Lemma 1. The following properties of the solution to eq. (7) hold:

[[u'"+l -1 =0 VYx € F, VF € ?'J” v 77/ (8a)
M;lrwl n :ﬁ;;’"“ n Vx € F, VF € 7:j U ¥, (8b)
[ -] =0 Vx € F, VF e 72, UFL, (8c)
u];m—l n =(! +dtu2"+1) . YxeF, YF € Fp, (8d)
V.t =0 Vx €K, VK €T, (8e)
V. ubn+l e (appnﬂ pzn“) YxeK, VK € 77, (8f)

V.t =1 g — cod, i (82)
—ad (ad,pp"" - dipbth Vx €K, VK € 77,

where Hlé is the L*-projection operator onto QZ and where [-] is the usual jump operator.
Proor. Setting g5 = 0 in eq. (7b), we find for all q-,i € Q]i with j = s, b that
0= @ @™ =" nlys

KeTi
= > @ e+ Y @@ =

FeF) UF) Fe(FRUFD)
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Equations (8a) and (8b) follow noting that (u_-;;”“ ‘)| € Py(F) and @™ - n)|r € Py(F). Setting
now ¢, = 0 in eq. (7c), we find for all g € Q% that

_ 1 b - —s,n+l —b,n+1
0= @3 nax + <@, @"" - dia;"") - my,

KeT?
= 1 b P 1 b P —s,n+1 1 —b,n+1
= > @l e+ Y@t nh e g @ - @+ ") - my,
FeFt FeF}

where the second equality is because n = —n”.

Equation (8c) follows since (zz+l -n)lr € Py(F), eq. (8d) is an immediate consequence of
eq. (8b) and since (@' — (z*! + d,i,"*")) - n)|p € Py(F), while eq. (8e) follows after setting
qZ = 0 and g; = 0 in eq. (7b) and noting that V - uj € P;_((K). Setting q; = 0, qz = 0, and
g =-V- uZ’”” + A7 (apl el pZ’"”) in eq. (7b) results in eq. (8f). Finally, eq. (8g) follows by
setting g7 = 0 and ¢, = codip)"*" + @A™ (ad,p}™ = dip}"!) + V- 2 — T ineq. (Tc). O

Lemma 1 demonstrates that ufl’”“, uZ’"”, and zZ” are H(div)-conforming and that the com-
pressibility equations egs. (1b) and (1c) are satisfied pointwise on the elements by the numerical

solution. For the semi-discrete method eq. (6), eq. (8g) can be replaced by
co0iph + ™ (@d,pt —9,p)) +V -z, =Tlpg”  Yxe K,YK e T) Vi€ J,

which states that mass is conserved pointwise on the elements if g” € QZ . In the incompressible
limit, i.e., 4 — oo and ¢y — 0, the HDG method is strongly conservative [33].

4. Consistency, stability, existence and uniqueness

This section is devoted to proving consistency and stability of the semi-discrete HDG method
eg. (6) and existence and uniqueness of a solution to the fully-discrete HDG method eq. (7). We
start with consistency.

Lemma 2 (Consistency). Let (u, p, z, p”) be a solution to the coupled Stokes—Biot problem egs. (1)
0 (3). Letu := (u,ulrs.ulps), p i= (p. plrs.ulps). and p? := (p?. pPIp»). Then (u, p.z. p?) satisifes
the semi-discrete problem eq. (6).

Proor. Integrating by parts and using the smoothness of 1/ and single-valuedness of f)i (j=s,b),

anw,vi) = > (= QU - 8@, v + Qulewn, 7))
j=s,b

+ Que@n', By, + 2l ey’ v
Similarly,
bu(p,vi) =(Vp,vida = (p*, ¥, - n)r, =P’ v, - e, = (p* V) - nhry, = (P77 )
Hence by egs. (1a) and (3b),

5§ =5

an(,vy) + bp(p,vi) =Qu e )n', v, + Qu’ew’n’, v,

—(p%, 75 - nr, =P T mr + (FvDa + (P VD)o
7
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By egs. (2a) to (2d), on I

2,uje(uj)nj =’ 2,uje(uj)nj)nj + (Z/Jje(uj)nj)t

= p*inj _ ppnj _ é«j),wS/K)l/Z(us _ atub)f, (10)
where ¢* = 1 and ¢” = —1. Combining eq. (9) with eq. (10) and using that n = n® = —n?,
an(@, vi) + b(p.vi) = = Y@ /0!’ = 8, (7} = 7)),
— (P @ =) nr, + (fovna,
which, after rearranging, results in
an(@, vy) + bu(p,vi) + @@, 8", (3, V) + by(p”, (73, 7)) = (frvwa. (1
Next, by egs. (1b) and (1c),
bi(gy ) + cn(P”. P"). q) = ~(qn, V - wa + (g, ' (@p? = p"))ey = 0. (12)
Integration by parts and using eq. (1e),
(& zowi)ar + Bp(p", (Wi, 0)) = (' 2+ VpP wi)gw = 0. (13)

Finally, using eq. (3d), qz =0on F?,, n® = —n, eq. (1d) and eq. (2a),
by(q;- (z.0) = ~(g}, V - v + (@5, z- n")r,
= (g}, codip” + A" @8, p” = 0,p") — v — (@, (u® = Ou”) - M),
which, after some rearranging can be written as
(codip” qp)er + en(@ip”, 0ip"), aqp) — bj(ap, (2,0)) = b(@), ', 0u”)) = (&, g (14)
The result follows after comparing eqs. (11) to (14) to eq. (6). [l

Before demonstrating stability of the semi-discrete problem eq. (6) and well-posedness of
the fully-discrete problem eq. (7) we first introduce some preliminary notation and results. We
start by defining the following norms on V/(h) and @’ (h):

. . 2 _ . i 2 . . .
12, = > (el + A IV = 915 Vvl € Vih), j=s.b,
KeT i
I = I+ " VB v/ € V(h), Jj=s.b,
KeT
_i 2 i .
gl := gl + > hxclld ok Vg € Q/(h), j=s.b.
KeTi

For functions v, € V), and g, € Q,, it will be useful to also define

2. 2 by2 - —brip2
Wally; == W5, + Wil + 1, = P,

2. s12 b2
g, ll; = Nl + III%hIII,,,,,-



In what follows, C > 0 will denote a constant that is independent of 4 and A¢. A consequence
of [31, Lemmas 2 and 3] are the following inequalities:

ay(,v) < Clllully v, Yu,v € V/(h), (152)
ajv).v)) > CElIviIIz; ¥l e VI, (15b)

Due to the equivalence between |||l ; and ||-[l,,; on V;;, llzll,/ ; in eq. (15a) can be replaced with

lleell, ; if  belongs to V;; (and similarly if v belongs to V,i ). Note that, as typical of interior penalty
methods, that eq. (15b) only holds for a large enough /.
By the Cauchy—Schwarz and Korn’s inequalities, we have the following boundedness result
for b
h

Lo . , o172 a2
BIP ) < Il 19Vl + (D i 155¢) (D A I = 915
KeTi KeTi

. 2 \1/2 ) _ a0 1/2
<C(Ipllg + D" A lpl) (el + Y it v = #ll,e) (16
KeTi KeT i

< Cllp/l, 7l VP € Q) Vv € Vih).

Next, we discuss various inf-sup conditions on b;, and bi that are fundamental in our proofs.
First, for j = s,b
bi(qp>vi)
inf h

il s ¢, (17)
04050} gy Pl 11l

where V,’l = {vh € Vf; DVl = 0} is a subspace of VZ. The proof of eq. (17) is given in ap-

pendix Appendix A. Let Vh = {vh eV, v -n= \')Z -non F,}. Then we also have

b k]
inf  sup (G- vi) >C, (18)
00,50, o o Tl Il

which was proven in Appendix B. In [30, Appendix A] we proved

nf by(qp, (wn, 0)) .

> (19)
02470’ O#wyeV? [Iwhllqe |||4h|||q,b

We now proceed with proving stability of the semi-discrete HDG scheme eq. (6).

Theorem 1 (Stability). Let f> € WHI(J; L*(Q)), f* € L>(J; L*(Q)), and g¥ € L*(J; L>(Q"))
and suppose that W, py,, Zn, pZ) € C(J; Xy) is a solution to eq. (6). Then

X(1) < X(0) + C[ousrl”||ff<s)||Lz<o,z;Lz<Q\-)> + K PN Oz urry (20)
# G (10,7l sz 05 + max 17 lev)
' 2 12 1/2 /21,0
([ veras)” < cx@+ ) P lmomany + £ P e
0

+ )10 (9l 022y ds + max ||fb<s)||m)],
0<s<t
9



where

2 - 2
X(0)* 1= a0, u; (1) + co POl + A" llapf (1) = pr®llgy » @2)
Y(0)* i= aj(uy (@), (1)) + y(u' 1) PNty (0) = Bty D)IIE, + 6 Izl

and C > 0 is a constant independent of t > 0.
Proor. After differentiating in time the Biot part of eq. (6b), we let v, =u;, vZ = H,uz s qn = —Dn»
g, = p,,and w; = z; in eq. (6) and add the resulting equations. This yields

ld br.b _.b V4 2 -1 P b2 S8 s K 121758 =bn\t( 12

5 gl ) + colpfllon” + Mg, = piG, | + [ ) + (e 10 PN, — D, I,

+ kel | = (£ upas + (fF, 0uif)ey + (8", Py (23)

Observe that by the discrete Korn’s inequality, coercivity of ai, Jj = s,beq. (15b), and the inf-sup
condition eq. (19), the following inequalities hold:

lusllos < Cllugll,., < Cu®Y ' Pajy, ul)'’* < Cu®y 'Y (),
b b b\=1/2 bs..b .. b \1/2 b\—1/2
luillew < Cllebll,, < CY " Pabl, ul)'’? < C(u’) ™2 X(r),

zn, wi)op
Pyl <Pl <C sup —————

< Cx Yizallow < Ck2Y(0).
O#wyEV? (Wl

Integrating eq. (23) from O to ¢, ¢ > 0, and using the above inequalites and eq. (22) in combination
with the Cauchy—Schwarz inequality, we obtain:

1 f
E(X(z)2 - X(0)%) + fo Y(s)*ds
<C)y f 1P ()l Y(s)ds + Cx2 f 18" ()llw ¥(s) ds (24)
0 0

+Cuy fo 10, £ ()llew X(s) ds + [l D)llgw X () + L (O)llow X(0)),

where to obtain the third term on the right hand side of eq. (24) we applied integration by parts
before applying the Cauchy—Schwarz inequality. Let us first prove eqs. (20) and (21) under the
assumption
max X(s) = X(r) > 0. 25)
0<s<t

This assumption and Young’s inequality allow us to rewrite eq. (24) as
!
X(0)* + f Y(s)*ds
0
!
< X(0) + Ca(ty” + C(u")™( f 18, £”($)llgw s + £ D)llew + IF7 O)llew )X (1) (26)
0

12
where a(f) 1= ((;15)‘1 fot LA, ds + k7! fot lg” (I3, ds) " Here we remark that the constant
in Young’s inequality is independent of ¢.
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If a(r) > X(¥), inequality eq. (20) is obvious. Assume therefore that a(r) < X(¢). Recalling
that X(0) < X(#) by eq. (25), and dividing both sides of eq. (26) by X(¢) > 0, we obtain

X(1) < X(0) + Calt) + Cu)™*( fo 18 £ ($)llew ds + IF7 Dl + IF°O)llew ), 27)

implying eq. (20). Equation (21) follows from egs. (20) and (26).
If assumption eq. (25) is not true, there exists 0 < 7 < 7 such that

max X(s) =X > 0. (28)

Integrating eq. (23) from 0 to 7, using the same steps as above that were used to find eq. (20), but
restricting ourselves to the time interval (0, 7), and using eq. (28) instead of eq. (25), we find

X < X0) + ) PN ONzoizay + € 2187520520

G {101z 0 + max Gl 29)
0<s<t

Then, eq. (20) holds because X() < X(7) by assumption eq. (28) and 7 < ¢. Finally, to prove
eq. (21), note that eq. (24) holds for any #, so a crude inequality by Young’s inequality and the
assumption eq. (28) give

fo t Y(s5)* ds < X(0)* + C((u)! fo [ I IR ds + k7! fo t lI8"($)II3 ds)
+ @) fo 10,77l s + max ||f*(s)llor )X
< X(0) + C((u)! fo t IF5(s)llgy ds + " fo l llg”(s)lIgy ds)
+ ([ 10 0l ds + a0l + 337

Equation (21) now follows by combining this result with eq. (29) and using that 7 < 7. (I

Well-posedness of the fully discrete method is now given by the following lemma.

Lemma 3 (Existence and uniqueness). There exists a unique solution to the fully-discrete HDG
method eq. (7).

Proor. Setting the right hand sides of eq. (7) to zero, (u;, pp,zps pZ ™y = (0,0,0,0), and adding
the resulting equations, we obtain

1 1 Lgbnel b 1
an(uy™ vy + ap (" "), @ V) + bupp T vn)

4 At
+ by (75, 70) + bh<qh7 FAD A (A A W D!

+ = (copt™ ! g + Hen((PP, phmh, agh) - B(gl, (2, 0))

bh( 2 ( ”’+1, Alt'b"ﬂ))+(/<_1 ‘s SWi)qe + b (I’pmrl (Wi, 0)) =0

(30)

11



which holds for all (vh, qn Whs qh) € Xj,. Choosing now v; = u;l"” Vo= At Z"H, q = p;l”“,

bh.n+1 n+l p n+1

qh Atph ,wp=2;"", and qh , we find
1 1 1 1 1 1 1 :
ah(usn+ sn+ )+ ah(ubn+ u bn+ )+7(ll /K)I/ZH(MSIH— Atﬁz,n#— )tn
+1 +1 b 1 -1 1
@ 1P, + A g™t = i, + kI 1y = O.

Coercivity of a}; eq. (15b) and positivity of y, u*, k, 4, @, and At and nonnegativity of ¢y imply
that uZ“ and z"“ are zero. Substituting now z”” = 0 and settingv, = 0, g, = 0, and qZ =0in
eq. (30), we obtain b2 (p!” 1wy, 0)) = 0 for all wy, € V2. Tt follows from eq. (19) thatp’”’+1 =0.
Next, substituting u”*1 = 0, choosing v; = vh 0 on F,, and choosing w;, = 0, g, = 0, qh =0
in eq. (30), we obtain b (p;"*"' ;) = 0 forall v € V,, and bb(pt™*! vy = 0 for all v/ € Vh. It
follows now from eq. (17) that p’ "= 0forj=s,b. O

5. A priori error analysis

We now prove convergence results for the HDG method. Throughout this section the super-
script j will refer to s and b. For this we first introduce suitable interpolation/projection operators.
For vector valued functions we define ITy : [H'(Q?)]? — Vb to be the Brezzi—-Douglas—Marini

(BDM) interpolation operator [10, Section III.3] and Heu] (Heu] :,H’j ) [H Q)] —» V{; to
be the elliptic interpolation operator defined as

j 11, i .
ay (M u,vy) = ay (@, vn), vy €V,

For scalar functions we denote by IT/,, ﬁ’é, and lzllé0 the L?-projection operators onto, respec-

tively, i, , and Q”O We next introduce the following notation for the errors:

w—ul = @~ T ) — () — 115 ) =el e, (31a)

iy = = Wy = TG = @) = T ) “d - o)

z—zp = (2= TIlyz) = (zp — y2) =el - e, (31c)

P =pp = () = T,p7) — (p) — T, p’) =el, — e, (31d)

Pl = B = Pl TG0 = (5, — Tp) —el, -2, (3le)

P’ = py = (p" =Typ") = (p) = Tp") =e, -, (31f)

P’ly = By = (p"lry = T p") = () = T30 p") =el, -2, (3lg)

We also define e and e such that eulgf = e ;and e IQ, = e ;. Similarly, e and e are defined

h

o o
such that e)|q/ = e ande |Q! e

We then write

= (el 2o 2ly), €= (2l 2l), e =(e),2),2,), € =(cheh. ).

12



It will furthermore be convenient to introduce the following notation:

1 I - 1 B 1 I =l
€, = (eujs eui) epf = (epjs epf) Cpr = (epp’ epp)

h h  Sh h
eu/ = (euj’ j)? = (epja /)7 epl’ (epﬁ7 pl’)

The following interpolation estimates hold:

e, x < Chg" ik, m=0,1,2, max{m, 1} <€<k+1, (32a)
alel el )t <CNwh M Wlq, 1<t<k+1, j=sb, (32b)

where eq. (32a) is the usual BDM interpolation estimate [34, Lemma 7] and eq. (32b) follows
from standard a priori error estimate theory for second order elliptic equations.
To initialize eq. (7), we set

w4y =TM), 0 = TPub ), pp = TppP(0). (33)
The initial total pressure is set by pb’0 =ap’ Vv b0
h h *

Theorem 2 (Error equation). Let (u}, p), 7, ph "), for n = 1,...,N, be the solution to eq. (7)
with initial conditions eq. (33). Let (u, p, z, p”) be a solution to the coupled Stokes—Biot problem
eqs. (1) to (3) on time interval J = (0,T] and let w = (u,ulry, ulpy), p = (p, plry, plys), and
pr = (p?, p”ll-g). Then, with the exact solution evaluated at t = **! (and the superscript n + 1
suppressed for notational convenience),

a(el, vi) + aj (@@L, d;2",), (5}, 7)) + by(eh, vy) + by @)y, (7}, 7)) (34a)
= a ((0,0,u” — dub), ¥}, 7)) + ah((ew,d,eub) @, 7)),

(ke wi)aw + by (el (Wi, 0)) = (el wi)a, (34b)
(codi€p, qw + cnl(diehy, di€)), aqp) = bi(gy, (€2, 0)) = by, (&), diy) (34c)
= (co@p” = dip"), g + ci(Bip” = dip”, 0,p" = dip”), aq)) - i@, (0, u” — dul”)),
by (qp. die’,) + ci((diely, d,ej;b), q)) = bi(q). de’), (34d)
bi(q;.el) = bi(q;,e.). (34e)

Proor. By eq. (7) and lemma 2,

an(uy, — w,vp) + ap (@, — u*, diiy — ), (75, 7%)) (352)
+ bu(py, — P vi) + by (P — P, ¥,.9)) =0

bi(qp-un —w) + cn((p}, = p*.ph = P qp) = (35b)
(codip}, = cod:p”, q;)aw + cn((dip), = Oip?, drph - 0,0"). aq}) (35¢)

- bj(q}). (zn — 2.0)) = bj(@,. (), — w’, dity — ")) = 0
(k™' (@n = 2. wi)ar + by(p}, — P, Wy, 0) = 0. (35d)

We split eq. (35b) into its Stokes and Biot parts as:

by (q;. di(uy —u”)) + c,(d,pl) — dip” . dip}, — dip®). q) = 0, (36a)
b)(q,,u; —u’) =0, (36b)
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where we applied d, to the first equation. Noting that d,u’ — du® = ou’ — dtf[f,"’bub -4z,
o —d,p® = o,p° —d,Hprb —d,e;b, and 0,p” —d,pP = 0,p” —d,Hprp —d,e;,,, combining eq. (35)
and eq. (36), and using the error splitting according to eq. (31) yields

an(el, vi) + aj(@h, d;2",), (5}, V) + by(eh, vy) + by @y, (75, 97)) (37a)
= ay(el,v) + bu(eh,vi) + af (2L, O’ — d,TT5"u?), (7). 70)) + by(@h,. (7}, 7)),

(el wa)w + bj(es, (Wi, 0)) = (" el wa)gw + bj(ehs, (wa, 0)), (37b)

(codely, gl + Ch((dfe,,p,dre - aqh) - bi(g), (¢!, 0)) - bj(qh. (@}, d,2",)) (37¢)

= (co@:p” = diT1)p"), gew + en((@ip” = dTp”, &,p" = dillyp}), ag))
— by}, (e}, 0) = bj(@), (@, " = T Pul),
by diey) + cr(dieyy, die),), 41) = b (ay, diely) + cr((dieyy, diel), 47, (37d)
by(q;.€l) = bi(g). eh). (37¢)
Then, by definition of the chosen interpolation/projection operators, the terms ay(e’, v;,), by (e’ o Vi),
b (ep,,,(vh 1_)2)) bb(ep,,,(wh,O)) bb(qh,(epo)) Ch((dtepﬁvdte b) C] ) (('OdtepP’ 6],1)9” Ch((dtepnvdte h) a’q;,)
and b;(g,, (¢}, dse!,)) vanish. The result follows. O

The following lemma will be used in the proof of the a priori error estimates of theorem 3.

Lemma 4. Let EZ/,, 7, and 7" be defined as in theorem 2. There exists a constant C > 0 such that:
Sh -1
l€pllp, < Ck™ Iz = zullay - (38)

Proor. We start by defining

laall}, = > WNaulz+ >, bt lladi,  Yan e Q)

KeT? FEFP\(FIUFY)

Since |F’1’,| > 0, llgull, ;, is a norm on QZ. From the trace inequality of broken functions [35,
Theorem 4.4] and discrete Poincaré inequality [36] we have that for all g;, € QZ ,

lgallr, < € (Igallzioey + gl 1) < Cllgl - (39)

Let us now consider eq. (34b). We find that for all w;, € V,'l’

0 = (' (z = z1), W) — b(€)y, (Wy, 0)) o)
= ('@ =2, Wy + (€, V- Wi = @ Wi - 1) g

where the second equality holds because e”},, =0on Fb (since p? =0, [)Z =0, and lzleO p’ =0on
%).
P
Step 1. Choose w; € V7 N H(div; Q") such that wy, - n = éﬁp on F € 7 and such that the
remaining moments for the degrees of freedom of a BDM element vanish. By a standard scaling
argument we observe that

walle + (> helbw-ni) " < CHU2 il
FeF?
14



Substituting the above defined wy, in eq. (40), integrating by parts and using the Cauchy—Schwarz
inequality and eq. (39):

~h 12 -1 hosh -1 h —h
Il = (' (2 = 20, wade + (el Epodr, < C (k7 iz = zalloy + llehll, )R ll, . (4D)

Step 2. By (the proof of) [37, Lemma 2.1], there exists a w2 € VZ N H(div; Q%) such that

Wy - norye = hp b ] r)r Vre Py(F), YFeF\(F1UFp),
Wy r = =(Veh,, r Vre [Po(T), VT €T,
w)-n=0onF VF e F1UFE.

Additionaly, wh satisfies

0 i 0
(V- whehdar = lleblly, . Wl < Clielll,, -
Substituting w2 in eq. (40), we obtain:

lelill;, =~ (@ = z), Wiy < Ck"llz = zull el , 42)
The result follows after combining eq. (41) and eq. (42). (I
The following theorem provides an a priori error estimate.

Theorem 3 (A priori error estimate). Let (i, p,z, p¥) be the solution to the coupled Stokes—
Biot problem egs. (1) to (3) on the time interval J = (0,T] such that u* € C°(J; H*(Q?)),
O € IX(J; HNQP), b € AU H'(Q), p* € COUSLAQY), pr,p € W (I3 LA@QP)),
and z € C°(J; HY(QP)). Let (uy, p), zh,pZ "Y€ Xy, forn =1,..., N, be the solution to eq. (T) with
initial conditions eq. (33). The following hold:

by1/2p 12 h “1/2 1, b h 12 2 \172
W) Pl W + g el + A7 eyt = e+ () Aere Iz, (43a)

+ K—l/Z(Ati ”e?,i”éb) 2 /K)1/4 Atz @ - aelyy || )1 < CiAt + Gl
— T
mbr”ﬂue;’,fﬂuqib < Gt +Goll l (430)
(/‘S)I/Z(Ati|||ef,’f|||§,x)l/z < C At + Gyl (43c)
where the constc;nts are defined as
Ci :C[max(cl/z, 1/2(1) ||<9nl9p||L1(J;L2(Qb>) +a7'? ||3npb||Ll(J;L2(Q”))
+max(y 2 /1), kI N0l 212 ]s

Ca =c[ max ()2, (1 + v 10" )10 ey + € P Rlleo ey

S s 1/2 S
+max ()27 (i + yGe 0" 2) T flu ||co<,;Hm<Qx»].
15



u

s — h b _ h P _ ,h — L,h;
Proor. Choose v; = e, d,eub, q,=-¢€,. 4, = =€ 4y = € Wh = €z Ineq. (34) to find

(we again suppress the superscrlpt n+1):

aj(en, en) + ah(euh,ah b))+ ay((@l, diel,), @, diel,))

h h
+ (K eZ,e )Qb + (cod,ep,,, pp)Qb + ch((dte d,e ), e,y — ep,,)

pﬁ9
= aj((0, 0" - du"), @), d,2",)) + aj (@), d,2l,), @, die",)) + (ke el
+ (o@p” = dip”), €pp)as + en(@ip” — dip”, 8ip” — dip”), aeyy)

— b (@, (0, 00" — du”)) = bi (e}, €1,) = bij(ely,, diey,).

Using the algebraic inequality a(a — b) > (a> — b*)/2 and multiplying the resulting equation by

At, we obtain:
Ata (el eh) +y( [0) P AL — i@ I + 7 Arllel,

+ L (ab(el ehy) — abiel o) + 2 (eI, — e, )
+ 5 (laeh, — eI, — llael — 17 )

<Atay (0,9, — du), @, die")) + Atal(@). die,), @k, di2!,)
+ AI(K_] ! ?)Qh + coAHd,p” — d,p?, e;‘,p)gb
+ Atey((0,p” — dip”, 0,p" = dip"), a'eﬁp)
— Ath(@),, (0, 0,u” — dui”)) — Atb; (el el) — Atb), (e s die’,)

_ .+l n+1
S AL (o

Defining
2._ 1 ]‘ll o AN, hi
Ai T ah(eub ’ ub) + ”epp”Qb + ||0’€,,p epb”Qb
2. e, 25l
B? 1= LAta) (el ehd) + S Ar el g, + ML Ar @l A2,

and by eq. (33), we can write eq. (44) as
8
AL 42BL <AL+ Y I Ag=0.

We will now bound each of the terms I/':H’ k=1,...,8.
First, by the Cauchy—Schwarz and Young’s inequalities, we find that for any 6 > 0

I < Aryed 110 1@t = dd®) I, N1@) = il )l

s/K)1/2 2 / )1/2 ~ _ 2
Ary(”— @ — duY I, + aM(” e, — @),
/KWZ
< AP ol — dl IR, + 082, .

16
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Similarly,

Yt 1 2
< At—26 @), - e, Vlly, + 6B,
-1
K 2
< Atz—é llellicy + 6B%,,,

while application of the Cauchy—Schwarz inequality results in

I < coAt10,p” — dip”llgw 1€l I, < (2c0)' At 110,p” — dip”llgw At

"l

For Ig’“ we find, using the Cauchy—Schwarz and triangle inequalities and C,u” < A, that

Ig+l S At/l_l ||(I(ﬁ;pp - d[pp) - (atpb - dtpb)”Qh ”anP”Qb

< A (l@,p? = dipPligy + 100" = diplloy ) (llaeys = €l + Nl )
< A (1le@,p” = dipMigw +10,0” = dipllew ) (7 ey, = €, + (Co’) N ,) -
To bound this further, let v§ = 0 and v? € Vl’; in eq. (34a) to find that bZ(eZb, Vo) = —ah(e!,,vh).

By egs. (15a), (15b) and (17),

bZ(eZ”’Vh) by h bN1/2 bk b \1/2
—— < Cu "leub |||v,b <CW) ah(eub’eub) . (46)

el llyp < € sup
pe Wl

=b
0£v,€V,

In other words, (u?)~1/2 IIeZhIIQb < CaZ(eZb,ezb)l/z < CA,41 so that

127 < CAT 2 (18:p” = dipligw + 10:p" = dip"llow ) Anen.-
To bound Ig” we use lemma 4 and Cauchy—Schwarz, triangle, and Young’s inequalities:

1 -h b b -1 b b

Ig7 =AKe,,, (0w’ — du”) - n)r, < Ck™ Atllz = zillgy ldiu” — 0, |Ir,
-1 h b b -1 1 b b

<Cx Atllell g ldiu” = 0’ Iy, + Cik™ At le |l g lldiue” — Ot |1,

Ck™! b b2 Ck! 12 Cxk! b b2
——At|ldu’ = 0 |[, + TAtIIeZIIQ,, + TAtIId,u = 0’|l -

2
<oB;,, + %5

To bound I;’” and Ig” we first bound |||ef,1, ll;- Observe from egs. (15a) and (34a), and the Cauchy—
Schwarz inequality that for all v;, € V, since bi(é’;p, ., 7) =0,

bi(eyvi) = — a(el, vi) — aj(@h. d;e",), (7}, V7))
+a;((0,0u” — dul’), (35, 9))) + a)((2Ls, d,2’,), (7}, 7))
<C (el vl s + 2 el M7 )
+ @’ [0 11@5 ~ di&y Il vally

+ v 1) (1@ = dad®Y i, + 1@l = i@l Yl ) Dl
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By egs. (15b) and (18) we then find that

lejlly <Clellelll,s + 1Nl + ¥ /0 1@ = diely Yy,
+y@' /0" (1@’ = dudY I, + 1@l — die, Y1l )|
<C{@AnT 2 [@)' 45260 110" Bus + ()P A
+ v /0" (1@’ = dud?Y i, + 11l — diel, Yl ) -
Therefore, using eq. (16),

1 <catlelll, el
<CAH{A)T @' + ¥ 2 1104 Buer + (1) A | el
+ CAt{y 110" (1@ = du) Iy, + @ = 2l )l )} ekl

=171 + 1.
Young’s inequality is used to bound /7;:

I

<OBL,, + CAt (' + (' [0)') lelll? , + CAt?) > Ayl -
Similarly, we find that
It <CAdlel, Ny plidie,y .

<CAH{(AN™2 [ + Y 2@ 102 Bt + (1) A fldiel,
+ CAtfy' 1) (10 = du Y, + 1@l — di2ly )l )} el .

=gy + Iy,

and
Isy < 6BY, + CAt (1 + v /60" el I, + CAHG) P A lidiel -

Adding up the various bounds for IZ‘”, k=1,...,8 we find

8

+1 2
Z ]’]z < 66Bn+1 + En+1An+l + Dn+1’
k=1

where
— 172 pii pii -1/2 pii pii
E,-—cm[co 18,07 = dypPilley + A~ 2|, p" - dypP ey

-1/2 b,i b,i b1/ 2,10 by\1/2 1i
+ 72 00," = dip™ Nl + WD) Pl + W) el |,

ub

18
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and

: P2 _Li _Livt 2

D; = cm[mf/x)”z @™ = d™ Yy, + (1101226 i@ — drg I,

- i? - i i K s Li
+ k7 el + & lldu = Il + (1 + v 10" eI

K i i —Li —Li Li

+ v’ 10 (1@ = dad )i, + 1@ = d@lyYIl ) el o

+ (@ 10" (10 = dud Y, + 1@ = di@lyY Il ) Idielilh

#4010 ) D2, |

Combining eqs. (45) and (48) (with § = 1/6) and summing over the time levels, we obtain

A§+Zn:B? < iE,-A,-+Zn:D,-.
i=1 i=1 i=1

By [30, Lemma 4.1],

A,1+(ZB?)1/2 < C(le Ei+(ZDi)l/2). (49)

We will now bound the two sums on the right hand side separately. For this we require the
following inequalities (that can be proven by Taylor series expansions) [38, Lemma 3.2], [30,

4.52)]:

n

D Mg = da I}, < CADP 0 2z, (50a)
i:ln
D" Aoy - dlley < ANOIL a2, y=p"p"  (50b)
i=1 .
AIZ ||dtub’i||f+1,9f < Cllatub”L‘(j;H“‘(Q}’))’ (50¢)
izl
Ar D Nda 11,y gp < CIOPI gy oy (50d)
i=1 .
At Y N2, < CHP 01 gy oy (50¢)
i=1

19



and the inequalities (that can be proven using egs. (15b), (32b), (50c) and (50d))

n n
At Y ldielillp < CA?) 2 Y db(diel, diel)' 2
i=1 i=1
n
t b,i 14 b
< CAL Y W N eyr o < CHNO Nl e vy »

i=1
n

n
Liy2 by—1 b Li Li
At Y lidieliI2, < CA?Y ™ > aldiely, diel)
i=1 i=1

n
in2 2
S CAI h2€ ||d,ub’l||[+1’gh S Ch2[ ||arub||L2(‘];H[+l(le)) ’
i=1
n n
Li s\—1/2 s i LiN1/2
At Y llelllls < CAY " ) ajceli el
i=1 i=1

n
t 0 4
< CAt Z h ||us l”[Jrl’QA < CTh ||MS||C0(J;H[+1(QJ)) .

i=1
Similarly, we have by eqs. (32a) and (32b),
At > Ny < CTR 2l gy -
i=1

n
L2 201,512
Atz ||eusl||r1 S CTh ”MY”CO(‘];HHI(Q,\)) .
i=1

1

We now find:

n
12 _12 172 b
ZEi SCAI[CO/ 10 P? Nl ez + A P@lOup? s ooy + A 10up ”L‘(J;LZ(Qb))}
P

+ Cht

(ﬂb)l/zT ||us||C°(J;Hf+‘(Q“)) + (llb)l/2 ||3zub||L2(1;Hf+l(Qb)) },

and, after applying Young’s inequality to D;,

n 1/2
1/2¢,,5 1 174 b -1/2 b
( § Di) SCAt[)’ / W’ /x) / (10,1 2.2y + K / 110;u ||L2(J;L2(r,))]
i=1

_ ) ) 1/2 )
+ CH |k PV ellcoepry + (1 + 70 10V 2) TV o aen

. , 1/2
+ (,UA + Y(IJS/K)]/Z) ”atub“Lz(J;H”*l(Qb)) },
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From eq. (49) we then find:

n
1/2
2
(2, 8)
i=1
1/2 1/2 -1/2 b
< CAt|:maX((, / /l / CV)“at[pp”Ll(J;LZ(Qb)) +A4 / ||["),tp ||L](J;L2(Qb))
1/2 1/4 -1/2 b
+max(y"2(u* /1), k) 10u ||L2(J;L2(F1))]
14 by\1/2 1/2\1/2 b -1/201/2
+Ch |:max ((ll ) / ,(/JS +’y(‘LlS/K) / ) / )||(9tu ||L2(];H”](Qb)) + K / T / ”Z”CO(J;H[(Qb))
1/2
by\1/2 1/2 1/2
+ max ((]J )1/ T, (lLlS +'y(lls/K) / ) T / )”MS”CO(J;HHI(Q,\)) :|

Equation (43a) now follows by definition of A; and B; and the coercivity of a; and aZ eq. (15b)
while eq. (43b) follows from eq. (46) and noting that ah(e s h;")l/ 2 <A, Finally, eq. (43c)
follows usmg similar steps as used to find eq. (43b): let vh 0andv; € th in eq. (34a) to find
that b;(e V) = ah(euv,vh) By egs. (15a), (15b) and (17),

bi(el! vy
. h s
Cilleyllys < sup ——t—

Y PR/X] 1/2 h,iN1/2
b S Cop’ e, < C3u®)' Pas (el e,
0#"/,6"7; Vi V.8

The result follows noting that (u*)~ IAz)le" '|||q . < C32 O

The main result of this section, an a priori error estimate for the solution to the HDG method
that is robust in the limits 4 — oo and ¢y — 0, is now a consequence of theorem 3.

Corollary 1. Let (u, p, z, p”) be the solution to the coupled Stokes—Biot problem egs. (1) to (3) on
time interval J = (0, T). In addition to the regularity assumptions used in theorem 3 we further
assume that p°® € CO%J; HY(Q)). Let (uZ,pZ,zZ,pZ’") € Xy, forn =1,...,N, be the solution to
eq. (7) with initial conditions eq. (33). Define w/ = (w/,yyi(u')). Then

) P =" + e 0P = gy + A7 PP = i) = (™ = Py (S1a)

n
: . 1/2 . -2 \1/2
s\1/2 s, s,in2 -1/2
+<u‘>/(Ar§ ™ = w12+ P (A DI - 2l )
i=1 i=1

Y2 0 (A Y N - ) = i = T, ) < G G
W Plp" = Py < CiAt + (Co + CUY 2 1PP Ncoapeccmy)h (51b)

5,0 1/ = ~
)™ Aerp ~pI2,) " <2C A+ Gl (510)
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where Cy and C, are the constants defined in theorem 3 and

Cy =Cy + C| (") P lleo g oy + max((u) 2,y 2 )T V2wl cogpess ey

27,8 1/4 b 1/2 1-1/2
+ Y2 ) 0P 2 g vy + max(ey, A PP lleogameary

—172y b —1/201/2
+2772p leo:me@ry + K 2ty Izllcocr:me ey |

— _ _ 1/2
Cr =(4C3 + Cu") ' TP o spary) -

Proor. Equation (51a) is a direct consequence of the triangle inequality, eq. (43a), and the fol-
lowing estimates:

1, o,,b

"|euhn|"v,b < Ch Wl cogg:mtr1 by
1, t

||€p;»1||gb < CHNPPlleor:mtry)s

I ¢ b
e,y — €3l < Ch(alip”lcogzmeary + IP°Neoaery),

- . 1/2

(ar Y elI2,) < CT 2 e ooy
i=1
n Y

(8 D 1eH12 ) < CT 2 ellnirmcany
i=1

n 12
Li 5 oLij2 e 7172, b
(Af § lle,: — dteu,er,) <Ch (T Pl llcog e ey + 1105 ||L2(J;Hf+1(Qh)))-
i=1

Next, note that ) B
el < ChONpHllqr. = s.b. (52)

Equation (51b) follows by a triangle inequality, eq. (43b), and eq. (52). Finally, to show eq. (51c)
we note that, by a triangle inequality, eq. (52), and Young’s inequality

S\— C S,1 .0 [ - ~ S\~ C sip2
@) A Y P = Py < 2{(Crae + Coh')? + Cuy W AL Y IIp* ||ms]

i=1 i=1

< 2|(C1At + Gk + C(u) ' Th* IIPSIIQ(,;He(Qs»}

< 22CTAF + 2C5 + Cu*) ' T lIp°liza, J;H{(QJ)))W},

so that the result follows. O

Remark 1. We briefly sketch the proof of stability and obtaining an error estimate for the di-
vergence of the Darcy velocity. Starting with the semi-discrete problem, we have, equivalent to
eq. (8g).

V.2 =T)g" — codip) —ad™ (@dip} - dip))  VxeK, YKeT.
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Therefore, stability of V-z;, requires control of 9, pZ and ad, I’Z -0, pZ . To achieve this, differentiate
all equations in eq. (6) with respect to time and choose as test functions v; = du;, vZ = atzuZ,
4, = —0:py, q, = 0,p), and wy, = 9,z Similar to eq. (23) we find:

| &

|ab@ah. ) + colldp IR, + A7 ledipl, - 0,p) I3 |
+ | a @} d3) + vt 110 10,5~ 0,17,
+ k702l | = @uf*, Buey)as + @uf’, U)oy + (Dig”, Py

Following the same steps as in the proof of theorem 1 then results in control of sup,,.[colld; pZ (t)||§)b +

A Yed, pi -0 pZIIQb]. The same idea, albeit more tedious, can be used for the fully discrete case

Z’"H and od, pZ’"H — dyp?™". Lastly, we point out that when deriving

an error estimate for V - z;, the quantities that we want to control are ||0; prtl d,pZ’"” llor and

@A™ 2||(@d, pP*t - 9, pb ) — (aa’tpf}:"“r1 - d,pZ’"“)IIQb. Control of these terms can be obtained

using the error equations. Since f*, f”, g” , and their derivatives vanish from the error equations,
no additional regularity assumptions are needed for the source terms.

| —
QU

t

to obtain control of d,p

6. Numerical examples

We present some numerical examples using the fully discrete HDG method eq. (7) to find
approximate solutions to the coupled Stokes and Biot problem egs. (1) to (3). All examples have
been implemented using Netgen/NGSolve [39, 40].

6.1. Stationary test case
In this first test case we consider the following stationary problem:

-V.gl=fI inQ/, j=s,b, (53a)
-V-u'=0 in Q°, (53b)
~V-ub + 17 ap” - pP) =0 in Q°, (53¢)
cotp’ +atd N ap? - pP)+V-z=g" in QP, (53d)
Klz+VpP =0 in Q, (53¢)

with boundary conditions
w = Ui onT), j=sb, (54a)
oln=587 onlY, j=sb, (54b)
pP = PP onT?b, (54¢)
zn=2 onT%, (54d)

and interface conditions

u'-n= (Tub + z) -n+ M* only, (55a)
c*n=oc"n+M* onTy, (55b)
—(o*n)-n=p’+ MP onIy, (55¢)
=20 (e(Hn) =y’ /) (u® - du’Y + M¢ onT;. (554d)
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— —s —b —s
We consider the unit square domain Q = (0, 1)? partitioned as: Q = Q U Q with Q
—b
[0,1] x [1/2,1] and Q = [0,1] x [0,1/2]. We set T}, = {xeI¥: x; =00rx =1} I}, =
{xel": x; =1}, 5 =T) ={xeI”: x; =00rx, =0}, and [}, =T = {x €I’ : x; = 1}. The
source terms f*, fb , and gb , the boundary data U?, UP, S5, 8% PP, and Z, and the interface data
M", M*, MP, and M° are chosen such that the exact solution is given by:

S = [ Xy COS(rx1X2) + 1 , p’ = sin(3x;) cos(4xy),

—mxy cos(mxixp) + 2x1

b [COS(4X1)COS(3)C2) ’ o = sin(3x,x2),

w= sin(5x1) cos(2x,)

Note that p® = =AV - u” + ap” and z = —kVp?.

We choose the following parameters: p* = 1072, u> = 1073, @ = 0.2, 1 = 10%, k = 1072,
co = 1072,y = 0.3, 7 = 1072, We choose the interior penalty parameters as §* = 8° = 8k, where
k is the polynomial degree.

We present the errors in the L?-norm and rates of convergence for all unknowns in table 1 for
polynomial degrees k = 1, k = 2, and kK = 3. We observe optimal rates of convergence for all
unknowns.

6.2. Time-dependent test case

We now consider the time-dependent problem eq. (1) with boundary and interface conditions
given by, respectively,

w = U’ onl"gx], j=s,b,
ocln=S87 onFl’;,xJ, j=s,b,
b
p’=PP onIp x J,
z-n=2 on Fl} X J,
and
us-nz(a,ub+z>-n+M” onIy xJ,
oc'n=ocn+ M onIy xJ,
—(c’n)-n=p’+M" onTy xJ,
=20 (e®n)' =y’ /) - ol + M€ onT; x J.

We consider the same domain and partitioning of the boundary as in section 6.1. The source
terms f*, fb , and gb , the boundary data U°*, U’, S5, 8P PP, and Z, and the interface data M,
M?, M?, and M° are chosen such that the exact solution is given by:

S = [ xcos(riaxy =)+ 1 p* = sin(3x;) cos(d(x; — 1),

—mxp cos(m(xyxp — 1)) + 2x4

» _ |sin(107z) cos(4(x; — 1)) cos(3x7) b 3
w= [sin(lOnt) sin(5x;) cos(2(xz — ) |’ p" =sin3(nx, 1),
Note that p® = =AV - u” + ap” and z = —kVp?.
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Cells  |u;—wll,, Rate [[V-ujl,, Rate |lzy—zllpy Rate [V-(zs—2llw Rate
k=1

152 1.9¢-02 - 2.4e-15 - 7.1e-04 - 2.3¢-03 -

608  4.5e-03 21 64e-15 - 27e-04 14 1.3e-03 0.8
2432 L1e03 20 1214 - 83e-05 17 6.5e-04 1.0
9728 28e-04 20  25¢-14 - 19e-05 22 3.3¢-04 1.0
38912 69e-05 2.0  4.8e-14 - 3.6e-06 24 1.6e-04 1.0
k=2

152 1.6e-03 - 1.3e-14 - 4.4e-05 - 1.0e-04 -

608 20e-04 3.0  3de-14 - 59e-06 2.9 3.3e-05 1.6
2432 25e05 30 6914 - 7.8¢-07 2.9 8.3¢-06 2.0
9728 3.1e06 30  1de13 - 83e-08 32 2.1e-06 2.0
38912 39e-07 3.0  28e-13 - 7709 34 5.2e-07 2.0
k=3

152 7.6e-05 - 1.8¢-13 - 6.6e-06 - 5.1e-06 -

608  4.2e-06 42 37e-13 - 29e-07 45 1.2-06 2.0
2432 26e07 40  7.8e-13 - 1.7¢-08 4.1 1.6e-07 3.0
9728 1.6e-08 40  l.6e12 - 89e-10 43 2.0e-08 3.0
38912 1.0e09 40  3.le-12 - 4le-11 44 2.4e-09 3.0

Cells |} —u’ll, Rate [p;—p’[l,, Rate |ipt—pPll,, Rate |[lpf —p’l,,  Rate

k=1

152 2.3e-01 - 4.3e-02 - 2.1e+01 - 2.8e-02 -
608 4.4e-02 2.4 2.3e-02 0.9 1.2e+01 0.9 1.5e-02 0.9
2432 1.1e-02 2.0 1.1e-02 1.0 5.9e+00 1.0 7.7e-03 1.0
9728 2.7e-03 2.0 5.7e-03 1.0 2.9e+00 1.0 3.9e-03 1.0
38912 6.8e-04 2.0 2.8e-03 1.0 1.5e+00 1.0 1.9e-03 1.0
k=2

152 6.8e-03 - 4.0e-03 - 1.4e+00 - 1.2e-03 -
608 2.7e-04 4.7 1.1e-03 1.9 5.8e-01 1.3 3.9e-04 1.6
2432 2.9e-05 32 2.6e-04 2.0 1.4e-01 2.0 9.7e-05 2.0
9728 3.3e-06 3.1 6.6e-05 2.0 3.6e-02 2.0 2.4e-05 2.0
38912 3.9e-07 3.1 1.6e-05 2.0 9.0e-03 2.0 6.0e-06 2.0
k=3

152 2.3e-04 - 2.0e-04 - 7.1e-02 - 3.7e-05 -
608 6.6e-06 5.2 3.1e-05 2.6 1.6e-02 22 8.1e-06 2.2
2432 3.8e-07 4.1 3.9e-06 3.0 2.0e-03 3.0 1.0e-06 3.0
9728 2.3e-08 4.0 4.9e-07 3.0 2.5e-04 3.0 1.3e-07 3.0
38912 1.6e-09 3.9 6.1e-08 3.0 3.1e-05 3.0 1.6e-08 3.0

Table 1: Errors and rates of convergence for different polynomial degrees k for the test case described in section 6.1.
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Cells  u; —w'll,,  Rate  [[V-u]],, lon —zlly~ Rate V- (z3—2)llr  Rate
k=1

152 2.5e-02 - 2.7e-15 4.3e-03 - 4.0e-02 -

570 4.3e-03 25 3.4e-15 7.7e-04 2.5 6.8e-03 25
2346 9.2e-04 2.2 6.1e-15 1.0e-04 29 1.1e-03 2.7
9520 2.1e-04 22 1.2e-14 1.4e-05 2.9 3.2e-04 1.7
37540 5.0e-05 2.0 2.2e-14 2.5e-06 2.5 1.5e-04 1.1
k=2

152 1.7e-03 - 1.3e-14 4.3e-03 - 3.9e-02 -

570 1.4e-04 3.6 2.8e-14 7.7e-04 2.5 6.7e-03 25
2346 1.2e-05 35 5.7e-14 1.0e-04 29 8.8e-04 2.9
9520 1.4e-06 3.1 1.1e-13 1.3e-05 2.9 1.2e-04 29
37540 1.7e-07 3.1 2.2e-13 1.7e-06 3.0 1.5e-05 3.0

Cells |} —u"ll,, Rate Hp',i - pSHQA Rate [Ip) - p”ll,, Rate lp;, — Pl Rate
k=1

152 2.8e-03 - 4.3e-02 - 6.6e+00 - 6.0e-02 -
570 7.2e-04 2.0 2.2e-02 1.0 3.4e+00 1.0 1.7e-02 1.8
2346 1.7e-04 2.1 1.1e-02 1.0 1.7e+00 1.0 7.4e-03 1.2
9520 4.1e-05 2.1 5.3e-03 1.0 8.2e-01 1.0 3.6e-03 1.0
37540 1.1e-05 2.0 2.7e-03 1.0 4.1e-01 1.0 1.8e-03 1.0
k=2
152 1.9e-04 - 4.0e-03 - 4.4e-01 - 5.4e-02 -
570 2.5e-05 3.0 9.2e-04 2.1 1.0e-01 2.1 9.7e-03 2.5
2346 2.8e-06 3.1 2.1e-04 2.1 2.6e-02 2.0 1.3e-03 29
9520 3.4e-07 3.0 5.2e-05 2.1 6.2e-03 2.0 1.7e-04 2.9
37540 4.4e-08 3.0 1.3e-05 2.0 1.6e-03 2.0 2.2e-05 29

Table 2: Errors and rates of convergence for polynomial degrees k = 1 and k = 2 for the test case described in section 6.2.

We choose the following parameters: p* = 1072, u> = 1073, @ = 0.2, 1 = 10%, k = 1072,
co = 1072, and y = 0.3. We choose the interior penalty parameters as 8° = ” = 8k?, where
k is the polynomial degree. To avoid needing to take very small time steps, we implement the
two-step Backward Differentiation Formulae (BDF2) time-stepping method. We choose the time
step At = lloh” 2 and consider the time interval J = [0, 0.01].

We present the errors in the L?-norm and rates of convergence for all unknowns in table 2 for
polynomial degrees k = 1 and k = 2. We observe optimal rates of convergence for all unknowns.

6.3. Coupling of surface/subsurface flow

In this final example we consider an example proposed in [23, Section 8.2]. For this we
consider the domain Q = (0,2) x (=1, 1) with Q° = (0,2) x (0,1) and Q° = (0,2) x (~1,0)
and the time interval J = (0,7) with T = 3. The body forces, source/sink terms, and initial
conditions are set as f* = 0, fb =0, gb =0, po = 0, and uy = 0. We consider three parameter
sets: (1) (x, co, /1,//’) =(1,1,1,1); 2) (x, co, /l,yb) = (107*,1074,10°, 1); and (3) («, co,/l,ub) =
(1074,107%,10°, 10%). The remaining parameters are chosenas u* = 1, = 1, and y = 1.

Let I}, = 60Q° N 0Q, Ffv = F’I’:, ={xedQ’ : x, = -1}, and F’l’) = F’} =90l \ (I; UF};,). We
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(a) Velocity. (b) Stresses. (c) Stresses.

v
(=

(d) Displacement. (e) Pore pressure.

Figure 1: Test case from section 6.3 with parameter set 1, («, co, 4, uh) =(1,1,1,1). Top left: u* and z + d,ul (arrows)
and u3 and 25 + B,ug (color). Top middle: —(c7},, U;z)T and —(0"1’2, 0"2’2)T (arrows) and —{, and —0"1’2 (color). Top right:
—(o-i2,0';2)T and —(o-ll’z,ogz)T (arrows) and —¢73, and —0'12’2 (color). Bottom left: u? (arrows) and |u”| (color). Bottom
right: p”.

impose the following boundary conditions:

T
u = [—20x2(x2 ~ D@2 - xl),O] , onTs,
ub=0, z-n=0, onl“lbzl“l},
p’ =0, oPn =0, onTl? = 1"1,’,.

We compute the solution on an unstructured simplicial mesh consisting of 9508 elements,
using k = 2, and a time step of Ar = 0.06.

We plot the solution obtained with the three different parameter sets in figs. 1 to 3. The
results compare well to those obtained by the locking-free method of [23]; the solution does not
exhibit locking or oscillations despite Poisson ratio v = 0.4999995 (for parameter set 2) and
despite modeling a very stiff poroelastic medium (parameter set 3). Furthermore, we observe
from figs. la, 2a and 3a that the second component of the velocity is continuous across the
interface, i.e., mass is conserved at the interface. From figs. 1b, 2b and 3b and from figs. lc, 2¢
and 3¢ we observe that o7}, = —(r’l’z and —03, = —0"52 implying conservation of momentum on
the interface.

7. Conclusions

We introduced an HDG method for the coupled Stokes—Biot problem that is provably robust
in the incompressible limit, 4 — oo and ¢y — 0. Consistency was shown for the semi-discrete
case while well-posedness and a priori error estimates were determined after combining the
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°
°
=

SIS

(b) Stresses. (c) Stresses.

'-
| ‘

(d) Displacement. (e) Pore pressure.

Figure 2: Test case from section 6.3 with parameter set 2, (, o, 4, ub) = (10‘4, 1074, 106, 1). Top left: u* and z + B,u”
(arrows) and uj and z2 + 6,ug (color). Top middle: —(c7,, o-iz)T and —(0'?2, 0"2’2)T (arrows) and -0}, and —o"l’2 (color).
Top right: —(c},, o-%'Z)T and —(0'11’2, 0"2’2)7 (arrows) and ~073, and —0'22 (color). Bottom left: u” (arrows) and |u?| (color).
Bottom right: p?.

°
°
=

Bl S |

(a) Velocity. (c) Stresses.

(d) Displacement. (e) Pore pressure.

Figure 3: Test case from section 6.3 with parameter set 3, («, cp, 4, u” )= (107%,1074,10°, 10). Top left: u® and z + ol
(arrows) and 3 and z3 + 6,145 (color). Top middle: —(c,, 0'52)7 and —((r’l’z, a'gz)T (arrows) and —o7}, and —0'?2 (color).
Top right: —(c7},, o-%z)T and —(0'}172, agz)T (arrows) and —o3, and —0'12’2 (color). Bottom left: u” (arrows) and |u?| (color).
Bottom right: p”.
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HDG method with backward Euler time-stepping. Furthermore, we showed that the discrete
velocities and displacement are H(div)-conforming and that the compressibility equations are
satisfied pointwise by the numerical solution on the elements. Mass is conserved pointwise on
the elements for the semi-discrete problem (up to the error of the L?-projection of the source/sink
term into the discrete pore pressure space). Finally, numerical examples demonstrate optimal
rates of convergence for all unknowns in the Z?-norm and that the numerical method is locking-
free.
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Appendix A. Proof of the inf-sup condition eq. (17)

The inf-sup condition was proven for the case of homogeneous Dirichlet boundary conditions
on the whole boundary of the domain in [28, Lemma 4.4] and [41, Lemma 1] for the HDG
method and [42, Lemma 8] for a variation of the HDG method. Here we generalize these proofs
to the case where homogeneous Dirichlet boundary conditions are only posed on part of the
domain boundary. The proof proceeds in three steps.

Step 1. Let IT;, : [H'(Q/)] - V; be the BDM interpolation operator [10, Section II1.3] and

define the norm IIV{IIII,h’j as

i 2 i 2 io 2
J . J -1 J
I, = el + > HE IV -

FeFi

where hf is the radius of the face F. Note that

Iom, D2, = > (leGmlik + A lvw = (il )

KeTi

On boundary facets {v,} = v, and so

DR = Dl = D (A 105 = bl + Bl = )

KeT i FeF!

int

171 —12 17-1 — 2

= >0 (AR VG =il + S vy = vyl
Fef,,

1 -1 -1 -2

= Z Lk + i vy =i lly
FeF!

int

<C > vl

FeF!

int

where, assuming shape regularity of the mesh, the inequality is by equivalence of Ay, hg+, and
hg- where F is a facet shared by K* and K~. Throughout this proof C > 0 is a generic constant
independent of /. This shows that [|(v4, {vaDll,.; < C v I, .- Then, for all v € [HY Q)]

IO, v, (T vDll,; < CITAL,, - < CIME o » (A1)
where the second inequality was shown in the proof of [34, Proposition 10]. We next define
[Hip Q)] :={v e [H'(QN]* : v=00onT,UT}},

‘:/{1 = {vh € ‘72 D vy € H(div; Q%), 7/ -n=v] -non 39/}‘
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Given |I* j;,| > 0, it was shown in [43, Lemma B.1] that there exists a constant C > 0 such that for
all g, € Q111 there is a v, € [H}Dy j(Qj)]d that satisfies

-V Vg = qh C ”vq;,”l’gj S”qh”Qj . (A2)
By egs. (A.1) and (A.2) we note that
IO v AT v, Dl < € gyl < Cllally -
Note also that (H{,vq,‘, {H{,vqh}) € ‘:/;1 . We therefore find that

bl((q),0),v4) N bl ((q), 0), (T vy, , (T, vy, 1)

sup > . - >C IIq;;H ;-
oener Wil I v, (T, v, DI, “
Step 2. Noting that (v, 0) € T/;l there exists a C such that
b ((0,31), v1) b((0, 1), (vh, 0)) _
sup —————— > sup " >Cl0,gll,; Vane O, (A3)
omey! il vemev) N0 Ol

where the second inequality was shown in the proof of [41, Lemma 3]. (Although [41, Lemma
3] assumed quasi-conformity, the result can be extended to shape-regular meshes.)
Step 3. Define b ((g;,0), ) = b, ((g;,0),v;) and b3((0,Gn), v) = by ((0, Gn), v1). Noting that

Vi={m eV 5 by©.a0m) =0Ya € 0]},

the result follows after applying [44, Theorem 3.1].

Appendix B. Proof of the inf-sup condition eq. (18)

The proof is similar to that given in appendix Appendix A. It is given here for completeness.
The proof again proceeds in three steps.

Step 1. Let Iy : [H' ()] — V, be the BDM interpolation operator [10, Section II1.3] and
define the norm [|v,ll; ; as

2 . 2 -1 2
Wl 2= el + > Bzt Ivall
FeF

where hp is the radius of the face F. As in appendix Appendix A we have that for all v €
[H'(Q)1,

Ty, {Tlyv} {TlyvPhll, < C Iyl < Clvllq (B.1)
where, in this proof, C > 0 is a generic constant independent of 4. Let I'p = I'j, U Fl[’) and
Iy =T UTY and define

[HL(©Q) := {v e[H'@)" : v=00nTp},

Vii={v €Vy : vy € H(div:Q), 7 -n =7 -n=v,-nondQUI,}.
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Given [['y| > O there exists a constant C > 0 such that for all g, € O, there is a v, € [H })(Q)]d

that satisfies (see [43, Lemma B.1])

“Vevg,=an Clivgll o <lanllq -

By egs. (B.1) and (B.2),
1Ty vy, . (yvg, ). (yvg, DL, < Clivg, Il o < Cllaa]l, -

Since (Tyvg,, {(Tyvg, 1, {Tlyvy, }) € V), we obtain

bh((f]h, 0)’ Vh) > bh((qh’ 0)’ (HVV!Zh’ {HVV%}’ {va%}))

> > Cllgallg, -
v, Ty vg, . {TTyvg, }, (Tyvg, DI, e

0¢V;,Ei~7/,
Step 2. Noting that (v,0,0) € Vh, there exists a C such that

bh((os C_]h)’ Vh) > su bh((o’ C_]h)» (Vh, Ov 0))
0w, Ivally “osmey,  Nl(va, 0,00,

> CllO,all,  Van € O

where the second inequality was shown in the proof of [41, Lemma 3].

(B.2)

(B.3)

Step 3. Define b1((gn,0),vi) = bp((gn, 0),v1) and b2((0, Gn), vi) = by((0, Gp), vir). Noting that

‘:/h = {vh th : Vi € H(div; &), vi-n = v{;-non oQuUly, j= s,b}.
= {Vh e Vi by((0,3),vi) = 0 VG € Qh},

the result follows after applying [44, Theorem 3.1].
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