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Abstract

We first compare the geometric frameworks behind the Uhlmann and Berry phases in a fiber-
bundle language and then evaluate the Uhlmann phases of bosonic and fermionic coherent
states. The Uhlmann phases of both coherent states are shown to carry geometric informa-
tion and decrease smoothly with temperature. Importantly, the Uhlmann phases approach
the corresponding Berry phases as temperature decreases. Together with previous examples
in the literature, we propose a correspondence between the Uhlmann and Berry phases in
the zero-temperature limit as a general property except some special cases and present a
conditional proof of the correspondence.
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1 Introduction

The Berry phase [1] reveals geometric information of quantum wavefunctions via their phases ac-
quired after an adiabatic cyclic process, and its concept has laid the foundation for understanding
many topological properties of materials [2-13]. The theory of Berry phase is built on pure quan-
tum states. For example, the ground state fits the description as the limit of a statistical ensemble
at zero temperature. At finite temperatures, the density matrix describes thermal properties of a
quantum system by associating a thermal distribution to all the states of the system. Therefore, it
is an important task to generalize the Berry phase to the realm of mixed quantum states.

There have been several approaches to address this problem [14-21], among which the
Uhlmann phase has attracted much attention recently since it has been shown to exhibit topo-
logical phase transitions at finite temperatures in several 1D, 2D, and spin-j systems [22-26]. A
key feature of those systems is the discontinuous jumps of the Uhlmann phase at the critical tem-
peratures, signifying the changes of the underlying Uhlmann holonomy as the system traverses
a loop in the parameter space. However, due to the complexity of the mathematical structure
and physical interpretation, the knowledge of the Uhlmann phase is far less than that of the Berry
phase in the literature. Moreover, only a handful of models allow analytical results of the Uhlmann
phase to be obtained [22-30]. The Berry phase is purely geometric in the sense that it does not
depend on any dynamical effect during the time evolution of the quantum system of interest [31].
Therefore, the theory of the Berry phase can be constructed in a purely mathematical manner. As
a generalization, the Uhlmann phase of density matrices was built in an almost parallel way from
a mathematical point of view and shares many geometric properties with the Berry phase. We will
first summarize both the Berry and Uhlmann phases using a fiber-bundle language to highlight
their geometric properties.

Next, we will present the analytic expressions of the Uhlmann phases of bosonic and fermionic
coherent states and show that their values approach the corresponding Berry phases as tempera-
ture approaches zero. Both types of coherent states are useful in the construction of path integrals
of quantum fields [32-37]. While any number of bosons are allowed in a single state, the Pauli
exclusion principle restricts the fermion number of a single state to be zero or one. Therefore,
complex numbers are used in the bosonic coherent states while Grassmann numbers are used in
the fermionic coherent states. The bosonic coherent states are also used in quantum optics to de-
scribe radiation from a classical source [38-41]. Moreover, the Berry phases of coherent states can
be found in the literature [42-45], and we summarize the results in Appendix A. Our exact results
of the Uhlmann phases of bosonic and fermionic coherent states suggest that they indeed carry
geometric information, as expected by the concept of holonomy and analogy to the Berry phase.
We will show that the Uhlmann phases of both cases decrease smoothly with temperature without
a finite-temperature transition, in contrast to some examples with finite-temperature transitions
in previous studies [22-30]. As temperature drops to zero, the Uhlmann phases of bosonic and
fermionic coherent state approach the corresponding Berry phases.
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Our results of the coherent states, along with earlier observations [22, 24, 26], suggest the
Uhlmann phase reduce to the corresponding Berry phase in the zero-temperature limit. The cor-
respondence is nontrivial because the Uhlmann phase requires full-rank density matrices, which
cannot be satisfied only by the ground state at zero temperature. Moreover, the fiber bundle for
density matrices in Uhlmann’s theory is a trivial one [46], but the fiber bundle for wavevfunc-
tions in the theory of Berry phase needs not be trivial. A similar question on why the Uhlmann
phase agrees with the Berry phase in certain systems as temperature approaches zero was asked
in Ref. [29] without an answer. In the last part of the paper, we present a detailed analysis of
the Uhlmann phase at low temperatures to search for direct relevance with the Berry phase. With
the clues from the previous examples, we present a conditional proof of the correspondence by
focusing on systems allowing analytic treatments of the path-ordering operations.

Before showing the results, we present a brief comparison between the Uhlmann phase and
another frequently mentioned geometrical phase for mixed quantum states proposed in Refs. [16,
47], which was originally introduced for unitary evolution but later extended to nonunitary evo-
lution [48]. This geometrical phase was inspired by a generalization of the Mach-Zehnder inter-
ferometry in optics and was named accordingly as the interferometric phase. It has a different
formalism with a more intuitive physical picture and has been measured in experiments [49]. In
general situations, the interferometric phase can be expressed as the argument of a weighted sum
of the Berry phase factors from each individual eigenstate. Thus, its relation to the Berry phase is
obvious. However, the concise topological meaning of the interferometric phase is less transparent
since it is not directly connected to the holonomy of the underlying bundle as the Uhlmann phase
does. The reason has been discussed in a previous comparison [50] between the two geometri-
cal phases. The interferometric phase relies solely on the evolution of the system state while the
Uhlmann phase is influenced by the changes of both the system and ancilla, which result in the
Uhlmann holonomy. Although Uhlmann’s approach can be cast into a formalism parallel to that of
the Berry phase as we will explain shortly, its exact connection to the Berry phase is still unclear.
The Uhlmann-Berry correspondence discussed below will offer an insight into this challenging
problem.

The rest of the paper is organized as follows. In Sec. 2, we first present concise frameworks
based on geometry for the Berry and Uhlmann phases, using a fiber-bundle language. In Sec.
3, we derive the analytic expressions of the Uhlmann phases of bosonic and fermionic coherent
states and analyze their temperature dependence. Additionally, the Uhlmann phase of a three-level
system is also presented. Importantly, the Uhlmann phases of both types of coherent states and the
three-level system are shown to approach the respective Berry phases as temperature approaches
zero. In Sec. 4, we propose the generality of the correspondence between the Uhlmann and
Berry phases in the zero-temperature limit and give a conditional proof. In Sec. 5, we discuss
experimental implications and propose a protocol for simulating and measuring the Uhlmann
phase of bosonic coherent states. Sec. 6 concludes out work. The Berry phases of bosonic and
fermionic coherent sates and the special cases with a 1D Hilbert space are summarized in the
Appendix.
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2 Overview of Berry and Uhlmann phases

2.1 Berry phase in the bundle language

We adopt the natural units with kg = 1 = k. The first part of the overview of the Berry phase
follows Ref. [1,31,46]. The Berry phase arises under a cyclic adiabatic evolution experienced by
a quantum state through external parameters. The Hamiltonian of the system is given by H(R),
where R = (Ry,R,, -+ ,Rx)T € M is the collection of the external parameters. If the state |[n(R(t)))
evolves adiabatically along a closed curve C(t) :=R(t) (0 <t < 1) in the parameter space M, at
the end of the evolution the final state obtains a geometric phase

6, =i J dt{n(R(E) [ (RO) M
0

with respect to the initial state.

The theory of Berry phase can be cast into another equivalent formalism by introducing the
parallel-transport of quantum states. If two pure states [ ) are in phase with each other, i.e.
arg(y|y,) = 0or (Y]y) = (YP4|yp;) > 0, they are also said to be parallel with each other. Thus,
the parallel-transport of a state |¢(t)) is defined via

(P(Olp(t +do)) = (Yt +do)|y(t)) >0, (2)

whose differential form is

(O] (D) =0, ®

The parallel condition lacks transitivity, so it does not define an equivalence relation. Therefore,
even if a system follows parallel transport, its quantum state, say |n(R(t))), may gradually acquire
an extra phase other than the dynamical phase. We assume |1(t)) = e'®(9|n(R(t))) and substitute
it into the condition (3) to get

1S+ (RO RO)) =0, @

Solving this differential equation, we directly obtain the Berry phase shown in Eq. (1). Using

% =R Vy, it can be also expressed as

6, = arg(y (0)lyp(7)) = if dt(n (R(t))[VrIn (R(1))) - dR, (5)

C

which carries geometric information of C(t) in the parameter space. Accordingly, the Berry phase
is a geometric phase that a quantum state obtains after being parallel-transported along a loop in
the parameter space. This means that the Berry phase factor el is actually a holonomy in the
language of differential geometry. Based on these discussions, the theory of Berry phase can be
elegantly illustrated in a principle-bundle description. Some details can be found in Ref. [31], and
here we present an improved and simplified discussion.

During an adiabatic evolution, no energy-level crossing occurs. Thus, once a quantum sys-
tem initially starts from the nth level |[n(R(0)), it will stay in the instantaneous state |n(R(t)).
Hence, we will use the abbreviation |R) = |n(R)) hereafter. Define P = {|R)|(R|R) = 1}. Since

4
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IR) ~ e?|R) where y is an arbitrary phase, the genuine phase space of the system is H = P/ ~.
We construct a fiber bundle P(H,U(1)), where P is the total space, H is the base manifold and
U(1) is the structure group. A projective operator 7 : P — H acts as m(e*|R)) = |R), Vel eU(1).
Conversely,

n'(|R)) = {gR)|g € U} (6)

is the fiber Fy at the point |R), which is isomorphic to U(1). Thus, what we construct is a U(1)-
principle bundle. A section o : H — P is a smooth map such that 7t o o = 1y, which locally fixes
the phase of |R) as o(|R)) = e!?®|R).

The loop C(t) induces a loop in H as y(t) := |R(t)) (JR(0)) = |[R(7))). A curve y(t) € P is
called a lift of y(t) if wo§ = y. The formerly mentioned |y (t)) = el (O|n(R(t))) is actually a
lift of y. Let X and X be the tangent vectors to y and 7, respectively, then they satisfy 7, X = X.
Moreover, we introduce a connection 1-form at |v)) as

wpy) = (Yldplep), (7)

where dp is the exterior derivative on P. Note X can be locally expressed as X = % since ¥ is

parameterized by t. Then Eq. (4) can be written in the more generic form
wX) =0, (8

which is equivalent to the parallel-transport condition (3). This indicates that X is a horizontal
vector belonging to TP. Here TP is the tangent bundle of P. Accordingly, 7(t) is called the
horizontal lift of y(t). The pullback of w by o is Az = 0*w = (¢ |dy|y), where dj is the exterior
derivative on H. Since d;; does not act on the fiber space, Ag is also expressed as

Ag = (Rle7%dy (e%|R)) = (R|dyR), 9)

i.e. it is the well-known Berry connection on the base manifold H. Let g(t) = %), « can be
conversely constructed as

w= Az + g ldpg. (10)

A connection defined by Eq. (10) is also called an Ehresmann connection [51]. Using this, the
condition (8) becomes

_,dg

0=mAX) + g ' dpg(X) =Ap(n,X) + g 0

(1D
which is equivalent to
Vxg=0. (12)

Here V; = aiRi + Ap; is the covariant derivative associated with the Berry connection. Hence, the
parallel-transport condition indicates that the phase factor, viewed as a vector in the fiber space,
is parallel transported along y(t) € H (or equivalently, C(t) € M). Thus, g(7) = e fos is a
holonomy of the bundle, called the Berry holonomy. The Berry phase 6 = arg g(7) is a measure
of the loss of parallelity after the system is parallel-transported along a loop.

There are more features in the fiber bundle. According to Eq. (8), the Ehresmann connection
w naturally separates TP into the horizontal and vertical subspaces as TP = HP @ VP. It is also
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worthwhile to calculate w(X"), where XV € VP is a vertical vector. Let u(t) = w(X"). Since X"
is vertical, it follows that 77,X" = 0. Following a similar derivation as Eq. (11), we get

- - d
u(t) = TAg(XY) + g ldpg(XY) = g—ld—f, 13)

which further implies
g(t) = efot ”(f/)df/g(o). (14)

t NA
Here elo (!4t jg 5 phase transformation induced by a curve in the fibre space, and u € u(1)

u(t")dt’

~ . t
is its generator. Moreover, X" is the tangent vector of the curve elo , and we follow the

terminology of Ref. [51] to write XV = u”. Consequently, we have
wW®)=u (15)

if u” is a vertical vector. We emphasize that the generalizations of Eqs. (8) and (15) play important
roles in the theory of Uhlmann phase.

2.2 Uhlmann phase in the bundle language

A generalization of the Berry phase to mixed states is both natural and necessary, given the abun-
dance of phenomena in nature described by mixed states. However, mixed quantum states are
usually represented by density matrices, which are Hermitian operators and carry no explicit in-
formation about phase. Inspired by the structure p = |¢) (1| for the density matrix of a pure state,
Uhlmann introduced [14] the decomposition p = WW for a generic full-rank density matrix p,
where W is called the purification or amplitude of p. The decomposition is not unique because
W = /pU with U € U(N) also satisfies the decomposition. Here N is the dimension of the Hilbert
space, and U is called the phase factor of W. One may see the analogy of a pure-state wave-
function: Y (x) = /|y (x)[2e!@8¥X_ If p is diagonalized as p = > Aqln)(n|, the purification is
accordingly expressed as W =Y. v/A,|n)(n|U. Importantly, there is a corresponding state-vector
representation |[W) = >, VA,In)®UT|n), called the purified state of p. The inner product of two
purified states is the Hilbert-Schmidt product between two purifications:

(W1 |W,) = Tr(Wf-W2). (16)

A key point in the construction of the theory of Uhlmann phase is to extend the parallel-
transport condition (3) to mixed states. A direct and naive generalization seems to be

WOl WD) =o. a7)

However, this only leads to a single equation and cannot determine the N x N matrix W. On the
T
other hand, it can be found that the Fubini-Study length along a curve C(t), Lpg = J V(P )dt,
C,0
is minimized if and only if Eq. (3) holds [52,53]. A similar result holds for mixed states: The
T

Hilbert-Schmidt length Lyg = J / Tr(WTW)dt is minimized if and only if [28,53]
.0

ww'=ww, (18)
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which implies Im(W (t)| % |[W(t)) =0.Eq. (17) can be deduced from this condition by noting that
(W(t)|W(t)) = 1. The matrix equation (18) has N x N entries, giving N x N restrictions. Hence,
the condition is much stronger than Eq. (17).

The Uhlmann phase was introduced from a purely mathematical manner, and its physical
interpretation still needs more work. Following the geometric description of the Berry phase, we
first construct a U(N)-principle bundle P(H, U(N)) for mixed states, where H is the base manifold
including all N-dimensional full-rank density matrices, P is the total space spanned by W, and a
projection 7t : P — H is defined by

nW)=ww'=p. (19)

Here U(N) is the structure group, which contains all unitary phase-factor transformations. Con-
versely, a smooth map o : H — P satisfying mo o = 1, is called a section. There is a global
section o(p) = ,/p defined on the entire H. Thus, this principle bundle is always trivial [46].
Nevertheless, many interesting and instructive results can still be inferred from the formalism, as
we will show below.

When the system traverses a closed curve C(t) :=R(t) € M (0 < t < 1), the density matrix
evolves along an induced loop v(t) := p(t) = p(R(t)) in H accordingly. Similar to the geometric
description of the Berry phase, we set to find a horizontal lift ¥ of y such that when the correspond-
ing purification varies along ¥, the parallel-transport condition (18) is satisfied. This requirement
can be fulfilled if a connection « defined on P meets the condition w(X) = 0, where 7 is the
tangent vector of X. To find w, we return to the parallel-transport condition (18), which can be
rewritten as

WidpW(X)—dpwX)WT =0. (20)

A trial form of w is w = WTdpW —dpWW . However, this does not meet the proper definition for
a connection. It can be shown that w defined this way does not transform like a gauge potential
under a gauge transformation W/ — WV, where V € U(N). To resolve the problem, we make
use of Eq. (15) and note that a curve in the fiber space 7w !(p) can always be expressed as
W(t) = J/pe', where u € u(N) is an anti-Hermitian matrix. Let X" be the tangent vector of this
curve, which is by definition a vertical vector. It is straightforward to find

dpW(X") =wu. (21)

Thus, by replacing the horizontal vector in the left-hand-side of Eq. (20) by XV and using u’ = —u,
we get

WidpWEX)—dpWEXIW' = Wiwu—uw'w. (22)

Moreover, since u is the generator of the curve W(t) = /pe‘", whose tangent vector is X", we
can also write XV = u” as before. A generalization of Eq. (15) is w(X") = u. Substituting this
into the right-hand-side of Eq. (22), we have

WidWEX)—dpWE W =WWewXY)— X )Wwiw. (23)

The identity holds even for a horizontal vector X due to Eq. (20) and w(X) = 0. Thus, the
connection w satisfies the following equation

WidpW —dpWW = WiWw—oWw. 24)
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It can be verified that under a gauge transformation W — WV, w defined by Eq. (24) transforms
as w’ = V'wV 4+ V'dpV and qualifies as a non-Abelian gauge potential. In Uhlmann’s original
paper [15], Eq. (24) is introduced as an ansartz to define a connection over the whole bundle.
Here we find that it can be directly obtained from the condition w(u*) = u.

The pullback of w by o is the Uhlmann connection A; = o*w. Let U = e, and we have
wXV)Y=u=U T%—Lg. Based on these results and w(X") = 0, if w is the Ehresmann connection, it
can be expressed as

w=U"T*AyU +U'dpU, (25)
which is the non-Abelian generalization of Eq. (10). Moreover, contracting both sides of Eq. (25)
with a horizontal vector X leads to Ay(X) = —%—Lt] UT, or equivalently,
dUu
VU= T +Ay(X)U =0. (26)

Here X = m,X is the tangent vector to y. Similarly, the equation shows that the phase factor U is
parallel-transported along the loop y. Solving the equation, we get

U(t) = Pe 94 y(0), (27)

where P is the path-ordering operator. Note Pe™ $c4v i3 the Uhlmann holonomy, and the Uhlmann
phase is

0y = arg(W(0)|W (7)) = argTr [p(O)Pe_chU] . (28)
To derive an explicit expression of A, we plug W = ,/pU into Eq. (24) and obtain
U'ly/p,dp/plU+UTpdpU +UTdpUUTpU =UTpUw + wU'pU, (29)
Next, we use Eq. (25) to get

P Ay + T Ayp = —[dp+/p, P ] (30)

When restricted on H, it reduces to

pAy +Ayp =—[duyv/p,pl (B

Evaluating the matrix elements of both sides in the eigenstates of p, we get

(ml, (32)

ng== 3 oy VR /PIm)
v=—

] An+ Ay
where we have omitted the subscript H for convenience. We note that only when N > 1, Ay
may be nonzero since the representation of a commutator is trivial in a 1D Hilbert space (see
Appendix. B for details).

We further simplify the expression (32) of Ay, which will be useful in our latter discussion on
the similarity with the Berry connection Ag. Using /p = >, v/ A,|n)(n|, we have

[vP.dvp]=>_ A, (In)d(nl —din}(n)) + > v/A, 2y (In)(nldlm) (m| — [m)(d{m)n){n]). (33)
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By interchanging the indices n «— m in the last term and using (d(n|)|m) = —(n|d|m), it becomes
2
[P, dvpl == (/A= v/2n) In){nldim)(ml, (34)
nm

and the Uhlmann connection becomes

o5 W=V

At A In)(nldIm)(ml. (35)

n#m

3 Uhlmann phase of coherent states

Here we apply the framework to find the Uhlmann phases of bosonic and fermionic harmonic
oscillators. The corresponding Berry phases are summarized in Appendix A.

3.1 Bosonic coherent state

Here we evaluate the Uhlmann phase of bosonic coherent states, which may be constructed
from bosonic harmonic oscillators [35,39]. The Hamiltonian of a single harmonic oscillator is
A =hw(d’a+ %), where a, a' are the annihilation and creation operators satisfying [a,a’] = 1.
The energy levels of system are characterized by H|n) = Aew(n + %)ln) withn=0,1,2,---. Previ-
ously studied examples of the Uhlmann phase of low-dimensional systems [22,26,28] and spin-j
systems [24,25] are both in finite-dimensional Hilbert spaces. The bosonic harmonic oscillator will
give an infinite-dimensional example. The parallel transport of a canonical ensemble of harmonic
oscillators can be realized with the help of coherent states defined by operating the translation
operator on the ground state: |z) = D(2)|0) = eza*_i“lO). Here D(z) satisfies

D(z)aD'(z)=a—z, D()a'D'(z)=da"—2z. (36)

Moreover, |z) is the ground state of the translated Hamiltonian H(z) = D(z)HD(z). The excited
states are obtained in a similar manner: |n,z) = D(z)|n), n > 1.

The parameter space is thus identified as the complex z plane, and a loop for generating the
holonomy may be chosen as C(t) := z(t) with 2(0) = z(7) (0 < t < 7). Our convention is that
the counterclockwise direction of C(t) follows the increase of t. The continuous transformation
D(z(t)) generates an induced loop v(t) := p(z(t)) in the manifold of density matrices, where

p() = %e—ﬁmz) = D(2)p(0)D"(2). (37)

Here p(0) = %e‘fm . Since D(g) is unitary, the eigenvalues of p are invariant under the action of
D(z), given by A, = %e_ﬁh“’(’“’%). Decomposing the density matrix, one obtains the purification
W(z(t)) = v/ p(2(t))U(z(t)). As long as the phase factor U(t) = U(z(t)) satisfies the parallel-
transport equation (26) along y(t) (or C(t) equivalently), the final state will acquire an Uhlmann
phase relative to the initial state.
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Using Eq. (35), the Uhlmann connection is given by

An— vV Am)?
P v

,2)(n, z|d|m, z) (m, 2|

m An+ A,
== %amD(@)In){(nD(2)dD(z)|m)(m|D (2), (38)
n#m

_ (efgﬁﬁw_ef%ﬁﬁw)z

where ¥, = . It can be shown that

e—nphw 4 e—mphw
. . 1 _
D'(z)dD(z) = (aT + Ez) dz — (a + 52) dz. (39)
Using the above equation and (n|a” = yn{n—1|, ajm) = v/m|m—1), we get

AU = —D(Z)(Z Xn,n—1 \/Hln)(n - 1|dz _Z Xnny1 V1 + 1|Tl) (Tl + 1|d§)DT(z)- (40)
n=1 n=0

Changing the index by n — n+1 in the first line and using the property x, n+1 = Xn+1.0n = l—sechﬁhTw,
the Uhlmann connection is finally expressed as
oo oo
Ay =—xD(2) (GT Z In)(n|dz — Z In)(nladi) D'(2)
n=0 n=0
=—y [(a*—i)dz—(a—z)di], (41)

where y =1— sechﬁhTw and Eq. (36) have been applied.

Let go = Pe™ 94 be the Uhlmann holonomy as the system traverses C(t). In the Fock space
spanned by {|n)}, both a and a' are matrices of infinite dimensions, making it challenging to find
an analytical expression of g.. However, this can be achieved by solving the differential equation
for D(z). Using Eq. (36), it can be shown that Eq. (39) leads to a differential equation for D(z(t)).
Explicitly,

dD(z(t))
dt

[a'*‘z' —ai— (3 —zg)] D((t) 42)
as z varies along the loop C(t) = z(t). The solution to the above equation gives
D(2(t)) =Pe [, {a2(t")—az(e" )3 [2(¢)2(t )—=()2() ] e’ D(2(0))
—e 2 Jo [HOHO)—2(i(N]de pe [ [a"3(t)-a2()]de’ p (0. (43)
Since z(7) = 2(0), D(z(7)) = D(2(0)) and it follows that

Pefc(a1'dz—adi) — e% fc(idz—zdi) — emsc_ (44)

Here S is the area enclosed by C(t) along its counterclockwise direction. Letn = 1—y = sechﬁhTw.
The Uhlmann holonomy can be simplified as

gc = Pl $o[(a"—2)dz—(a—2)dz] _ e—2i(1—"2)sc]100, (45)

10
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where 1, is the identity matrix in the bosonic Fock space, which is infinite-dimensional. Inter-
estingly, although g is generated by A, which belongs to an infinite-dimensional Lie algebra, it
only forms a subgroup of U(1). Finally, the Uhlmann phase is given by

0y = arg Tr[p(2(0))gc] = —2(1—n*)S¢, (46)

where Eq. (37) has been used.

In the zero-temperature limit, limg_,, 7 = 0 and 6y = —2S, exactly agreeing with the Berry
phase shown in Eq. (85). In the infinite-temperature limit, limg_,, 1 = 1, so 6, = 0 since p(z(t))
is always proportional to the identity operator in this case. While the physical meaning of the
Uhlmann phase, especially the parallel-transport condition for W, awaits deeper explanations, the
agreement of the Uhlmann phase with the Berry phase as T — 0 in the case of infinite-dimensional
bosonic coherent states offers more hints that their relation may be quite general.

3.2 Fermionic coherent states

Next, we verify if the Uhlmann phase approaches the Berry phase in fermionic coherent states,
which may be constructed from the fermionic harmonic oscillator [35,37]. We note that the
Hamiltonian of a bosonic harmonic oscillator can be cast in the form H = Aw{a', a}. By consid-
ering the anticommutation relations of fermions versus the commutation relations of bosons, the
Hamiltonian of a fermionic harmonic oscillator is H = %“’[b'i‘, b] = hw (bTb — %) Similar to its
bosonic counterpart, the fermionic coherent state is also built via a translation to the vacuum:

£) = D(&)|0) = e*"¢~%2)0). 47)

Here £ is a Grassmann number and anticommutes with any fermionic operator. The translation
operator D(z) satisfies

DD (E)=b—&, DEDDI(E)=b"-E. (48)

Similarly, parallel transport of a canonical ensemble of fermionic harmonic oscillators can be gen-
erated by a series of continuous translation by D(&(t)), where &(t) is a closed curve of Grassmann
numbers with £(0) = £(7). The corresponding density matrix is

mam=§€mwmmmw=0@mmmmWam, (49)

where p(0) = e_ZﬁH with the partition function Z = e2Phe 4 e=3Phw — 9 cosh ﬂhTw
Since the system has a two-dimensional Hilbert space, the denominator of Eq. (32) is always

Ag + A1 = 1. Consequently, the Uhlmann connection is simplified as

Ay =—[dv/ p(&), v p(E)]. (50)

Let N = b'b be the number operator satisfying N2 = N. It can be shown that

_ 1 Phew -
p(&)—m—tanh(T)(bT—g)(b—g), (5D
which further implies
e%/&hw _ e—%/&hw _ o
dvp(&) = [dE(b—&) + (T —&)de]. (52)

Verbho 4 e—zpho

11
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The Uhlmann connection then becomes

(e%ﬂhw _ e—;{ﬁhw)z

Ay = e =0 Db - )= (6 = b - E)de]

=—y (b'dE —dEb +dEE —EdE). (53)

To evaluate the Uhlmann holonomy, we assume &(t) = {z(t), where ( is a constant Grassmann
number, and 2z(t) (0 < t < 7) forms a closed curve C in the z-plane. Thus, we have

gc = Pe—$4u = =41 llScper $(b'(dz—dilb) (54)

Since the fermionic Fock space is only two-dimensional, the expression of g. of the fermionic
coherent state can be directly evaluated without using the method of the bosonic coherent state.
We expand the second term in the last line of Eq. (54) as

N . T tl . o N s
Pe%f(b'idz—dzib)zuxzf dt1J dto(bT22, — 5 Eb) (b2, — 2,0 b)
0 0

T tq
=1+xzf dt1J dt, 8¢ (£12,b"b — 2,2,bD7). (55)
0 0

where the first-order term vanishes due to f dz = f dz = 0. z; :=2(t;) and 2, := 2z(t,) are intro-
duced in the second-order term, and higher order terms vanish due to {? = {2 = 0 or b%> = b'2 = 0.
We evaluate the integral over t, and find the coefficient of b*b becomes fOT dt; fotl dtyz12, = fOT dt,2(t1)[2(t1)—2(0)]
where foT dt,2(t,)z(0) = [2(7) —2(0)]2(0) = 0 has been applied. by the polar expression of z,
z(t) = r(t)e?®, and substituting 22 = ir +ir?0 and 2z = ir —ir?0 into Eq. (55), the second
term becomes
27

dr2(b"b—bb") +iy2¢r? J do(b'b + bb") = 2iy2Z¢S,,

0

’ 25, r(T)
xZECJ de, (22bTb —3zbb') = x7¢¢

0 r(0)

(56)

where we have applied r(7) = r(0) and S = %rz 956 d6f. Once gain, by using {? = {? = 0, the
Uhlmann holonomy is given by

go = (1—4ixZ¢8c) (1 + 24 22¢Sc) 1, = e 20=1)C5ey (57)

where 1, is the identity operator acting on the two-dimensional fermionic Fock space. With the
help of Eq. (49), the Uhlmann phase of fermionic coherent state is

6y = arg Tr[p(£(0))gc] = —2(1 —n*)¢Sc. (58)

The expressions of both Uhlmann holonomy and Uhlmann phase are quite similar to their bosonic
counterparts except the factor {¢, although they are obtained by different methods. Moreover,
0y =0as T — oo, and 6}, agrees with the Berry phase shown in Eq. (90) as T — 0.

Interestingly, the results of both bosonic and fermionic coherent states exhibit an exact corre-
spondence between the Uhlmann phase in the T — 0 limit and the Berry phase. Although a full
proof of the general case is challenging (see the next section), the results shown here and the pre-
vious results [22,24,26] all support the Uhlmann-Berry correspondence in the zero-temperature
limit.

12
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3.3 Additional example: Qutrit

After establishing the correspondence between the Uhlmann and Berry phases for both types of co-
herent states, here we conduct an extra check of the Uhlmann-Berry correspondence for a system
with a finite-dimensional Hilbert space by examining the qutrit, a three-level system. A gener-
alization of the Berry phase via the geometric phase for the generalized Bloch-sphere states of a
three-level system has been discussed in Ref. [54]. The density matrix of a generic three-level sys-
tem can be expanded by the identity matrix 15 and eight Gell-Mann matrices A; (i =1,2---,8),
containing 8 controllable real parameters ii = (ny,n,,--,ng)’. Explicitly, p = % (13 + /31 - /_i),
where n; = %Tr(pAi). The set B® = {ii € R8|ii -/ < 1,i* = 7} can be thought of as an eight-
dimensional generalized Bloch sphere. When discussing the Uhlmann phase, a generic evolution
path is a loop in B8, which has many possibilities. To present an exact correspondence between
the Uhlmann and Berry phases, we instead simplify the qutrit model to a spin-j paramagnet with
j =1, whose Uhlmann phase has been studied in Refs. [24,25]. A loop in the parameter space of
the spin-1 model corresponds to a loop on the two-dimensional unit sphere S2. In the following,
we verify the Uhlmann phase of the spin-1 model also reduces to the Berry phase as temperature
approaches zero. We remark that the spin-1 system is topological [24] with a finite Hilbert space
while the coherent states discussed previously are not topological but with infinite-dimensional
Hilbert spaces.

Since the three components of the j = 1 angular momentum of a spin-1 paramagent can be

spanned by the Gell-Mann matrices via J, = % (A + Ag), fy = % (Az + A7), and J, = % (A3 + \/§A8),
the Hamiltonian of a spin 1 paramagnet in an external magnetic field can be expressed as H = ugB-J = ,uBc_i A,

Bx By 1/§Bz

where d = (2 2, ZZ ,0,0, , 1lJ is the spin angular momentum of the particle, and

Ug is the Bohr magneton Tﬁ; den51ty matrix of the spin-j paramagnet in canonical emsemble is

p = —e —BH Therefore, the spin-1 model can be realized by a suitable choice of the parameter
(nq,---,ng)" of the original qutrit model. The external magnetic field B can be parameterized
by the polar and azimuthal angles 6, ¢ as B = B(sin 0 cos ¢, sin 8 sin ¢, cos )*. The Hamiltonian
can be diagonalized as H = V (6, ¢)wyJ,VT(8, $), where V (0, ¢p) = e 1#/ze719yei¢z Thus, the
eigenstates of H can be constructed as

|11b£n(9: ¢)> =e—i¢(%—M)e—%9Jy|jm>, m:_]a_.]_'_]-: )J_]-)J (59)

To simplify the notations, we adopt the natural unites such that k; = i = 1, and introduce
wo = ugB. A loop on S? can be expressed as (8(t),¢(t)), and V(0(t), p(t)) actually defines
an Uhlmann process if Uhlmann’s parallel-transport condition is satisfied. By using

(Avv',e P} 2eFyavie s
tdyp,vpl= et 2 TV

it can be shown that the Uhlmann connection is

Ay =—iy(Jysing —J, cos¢p)df —iy [(Jx cos¢ +J, sing)cos O —J, sin@]sin 0deo. (61)

) (60)

More details can be found in Ref. [24]. The Uhlmann phase depends on the path-ordered integral
involving the matrix-valued A;;. If the evolution path is chosen as a circle of longitude or the
equator (i.e., great circles), the exact expression of the path-ordered integral can be obtained.
Interestingly, the Uhlmann phases for the two types of paths share the same expression:

ﬁwom .
= arg Z Z(0) a) (2nQy), (62)

m=—j

13
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where y = 1 —sech(fwy/2), Q is the winding number and dilm/(@) = (jm|e7®’|jm’) is the
Wigner d-function. For j = 1, the explicit expression of the Uhlmann phase is

O, = arg Z(lO) {cosh([} wq) [1 + cos (ZTrQsechﬂ;OO )] + cos (ZHQsechﬂ;OO )} , (63)

where Z(0) = 1+2cosh(fwg). AsT - Oor 5 — 00, sech% =0,and 6y = argl =2m =0 (mod 27).
According to Eq. (59), the Berry phase of the m-th eigenstate along a loop C(t) is evaluated
as

N P
QBm(C)=1L de(yr, |5 1)
=J dt(jml[—stinecﬁ +(ch059—m)¢+Jy9]|jm)
0
= —mjg (1 —cosB)deo. (64)
c

For the ground state of j = 1 along the equator, we have m = —1 and 6 = 7. The Berry phase is
then 6;_; = 271 = 0 (mod 2m), which coincides with the value of 6;; as T — 0. Therefore, the
simplification of a qutrit to a spin-1 paramagnet offers another exactly solvable example of the
correspondence between the Uhlmann and Berry phases.

4 Correspondence between Uhlmann phase and Berry phase

As shown in Sec. 2, the geometric frameworks of the Berry phase and Uhlmann phase are quite
similar. The theory of the Uhlmann phase is built by following almost analogous steps as those
of the Berry phase. They both start from the parallel-transport conditions, from which the corre-
sponding Ehresmann connection w is introduced to satisfy

w(X)=0, ifX is a horizontal vector,

ww?)=u, ifu” is a vertical vector. (65)

The Berry and Uhlmann connections are the pullbacks of the corresponding w. This is why
Uhlmann phase is a suitable generalization of the Berry phase to finite temperatures, at least from
the point of view of geometry. The comparison leads to the question on whether the Uhlmann
phase always reduces to the Berry phase as T — 0.

In the following, a conditional proof will be constructed in a progressive manner. Firstly, we
point out a class of special case that should not be considered in the correspondence by noting
that the theory of the Uhlmann phase is built on the assumption that the density matrix must
be full rank, which excludes pure states if the dimension of the Hilbert space is larger than one.
Therefore, systems with a 1D Hilbert space should be treated as special cases because there is
no sensible meaning of thermal distribution, as the system has no other states to distribute the
weight. In Appendix B, we show the Uhlmann connection vanishes identically for systems with
a 1D Hilbert space, leading to a vanishing Uhlmann phase for those special cases. In contrast,
the Berry phase of a system with a 1D Hilbert space needs not vanish since a pure state may be
considered as a 1D Hilbert space during an adiabatic evolution.

14
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For the more general cases, it has been reported that the Uhlmann phase indeed approaches
the Berry phase as T — 0 for two-level and four-level systems [22,26]. We already demonstrated
that the spin-1 system supports the correspondence, and one may verify this is the case for generic
spin-j paramagnets in magnetic fields by following Refs. [24,25]. However, it has not been proven
if the correspondence between the Uhlmann and Berry phases is a general conclusion since at first
look, the expressions of the Berry phase and the Uhlmann phase are in general different. If the
question has a positive answer, it will provide a correspondence between the geometric phases of
pure and mixed states even though the underlying bundles are very different, in the sense that
the fiber bundle associated with the Berry phase may be nontrivial while that associated with the
Uhlmann bundle is always trivial [46]. Thus, the correspondence cannot be at the level of the
underlying bundles.

To understand the correspondence between the Berry and Uhlmann phases, we analyze the
Uhlmann connection (35) and search for any relation to the Berry connection. We assume the

.. e . —pH
quantum system is in a thermal-equilibrium state at temperature T with p = “—, where Z

is the partition function. Since p = Y, +/A,In)(n| and H share the eigenvectors, we assume
H|n) = E,|n). Furthermore, we will write |n) = |E,) in the following and only consider the case
without energy degeneracy for simplicity. Let Ey < E; < ---, then

A
lim =% = lim e PEEn) =0 ifn>m. (66)
T—0 m p—o0

Note that A, # A,,, in Eq. (35). Thus, we set A;;, = min{A,, A,,} and A,,, = max{A,,A,,}. This

implies
2
2 (1 _ Amin )
(WA= V) , Anax
lim =lim———
T=0 A, + Ay T-0 14 Zmn

max

=1. (67)

The Uhlmann connection (35) in the zero-temperature limit then becomes

Ay == |n){nld|m)(m]
n#m

== n){nldim){m| + > [n){nld|n) (n]
=—>dln)(n|+ > (nld|n)|n){nl. (68)

Interestingly, the second term of A is the Berry connection for each energy level. When evaluating
Oy by Eq. (28), every step must be treated carefully. We emphasize that the trace must be taken
after evaluating the path-ordered integral since the path-ordering and Taylor-expansion opera-
tions may not commute with each other. Moreover, the path-ordered integrals themselves are also
challenging. For example, when dealing with 8;; of bosonic coherent states in the previous section,
we have developed a technique to handle the difficulties. In some other situations [22,24,25], Ay
may be proportional to a constant matrix when the system follows a special path in the parameter
space, thereby making the the path-ordering operator P manageable. However, those cases de-
pend on the details of the loop C(t) and even the specific coordinates chosen to evaluate Ay, so
they are not easy to be generalized to generic systems. The challenge of evaluating the Uhlmann
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phase is somewhat similar to the difficulties in dealing with the time-ordering operation in quan-
tum field theory, where techniques like the Feynman diagrams have been developed to facilitate
a perturbative expansion [33,55].

Nevertheless, a conditional proof can be obtained to show that the Uhlmann phase indeed ap-
proaches the Berry phase in the zero-temperature limit. An examination the bosonic and fermionic
coherent states discussed previously reveals two important features: (1) The Uhlmann and Berry
phases are both generated by unitary processes, and (2) the Berry connection of each energy level
has the same expression, as indicated by Eqs. (83) and (88). Here the unitary Uhlmann process
means the density matrix follows Eq. (37) with z = z(t), and the eigen-energies E,’s remain
unchanged during the process. Hence, we consider a class of unitary Uhlmann processes charac-
terized by those two features. When the parameter takes the value t, each energy level satisfies
[n(t)) = D(t)|n(0)) with an unitary operator D(t) satisfying the cyclic condition D(t) = 1. The
Berry connection for each level is assumed the same:

Ag = (n(0)ldIn(¢)) = (n(0)|D'dDIn(0)). (69)

According to Eq. (68), in the T — 0 limit, the Uhlmann connection is
. _ _ -1
lim Ay = —Zn: din())(n(0)] + Zn:(n(t)ldln(t))In(t)>(n(t)| =Ap—dDD™, (70)

where the completeness of the instantaneous energy eigenstates has been applied. Interestingly,
Eq. (70) indicates that the Uhlmann and Berry connections are off by a gauge transformation,
which actually renders no contribution after a contour integral along a closed loop. Explicitly,
56 dDD ! = f dlnD = 0. Hence, the Uhlmann phase in the zero-temperature limit is given by

%in}) Oy = argTr[p(O)Pe_fAU] =arg {Tr[p(O)]e_fAB} =65, (71)

where Eq. (70) has been used, and the path-ordering is dropped in the second line since Az € u(1).
Importantly, the two conditions of the previous proof may be relaxed or changed further.

Firstly, the condition that the Uhlmann process is unitary can be dropped. We recall the generic ex-

pression (68) and introduce the unitary transformation D(t) = . |n(t))(n(0)| satisfying |n(t)) = D(t)|n(0)).

Although D"D = DD = 1, it does not necessarily imply the corresponding physical process is uni-

tary since the condition E, (t) = E,(0) may not be guaranteed during the process. Therefore, the

density matrix does not necessarily obey the transformation (37). Moreover, the condition that

the Berry connection of each level is the same can be replaced by introducing the Berry connection

matrix:

Ay =" Agan(@)n(®)] = D {n(®)ldIn()In(0) (n(o)]- (72)

In this more general case, it can be shown that A;; = A;—dDD~!. Once again, we have ff dDD ! =0.
According to Eq. (66), the weight factor of the ground state is infinitely larger than that of any

excited state when T — 0, i.e., Ao = engO ~ 1. Thus, the initial density matrix can be reasonably
approximated as
p(0) ~ |Eg(0)){Eo(0)1, (73)
and the Uhlmann phase is then
lim 6y = arg(Eq(0)[Pe™ 4| Eq(0)) = arg(Eq(0)|Pe™ 4 Eg(0). (74)
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Since Az € u(N), the path-ordering operation P is nontrivial in general. Therefore, we need to
add a condition here. When Ay, is a diagonal matrix in the space spanned by {|n(0))} or a constant
matrix as the system traverses a specific loop in the parameter space, the path-ordering operation
P is trivial, and the integrals can be carried out. In those situations, the Uhlmann phase becomes

lim 6y = arg(Eo(0)]e~$ Zn o MO0l £y 0))

= arg [ |(Eo(0) |, (6))[*(Eo(0)]eF ZnAmlnONn(Ol |, 0)) |
= Opo, (75)

where |E, (t)) = |n(t)) has been used, and 85, is the Berry phase of the ground state. The proof of
the correspondence between the Berry and Uhlmann phases is already quite general although we
still need the relaxed assumption of the form of Ag. We expect the most general proof, which still
needs to exclude the special cases with a 1D Hilbert space, will be completed in future research
of the Uhlmann phase.

5 Experimental implications

Since bosonic coherent states play a fundamental role in quantum optics [39-41], we discuss
possible experimental realizations and measurements of the Uhlmann phase of bosonic coherent
states. We first outline the basic ideas for constructing a protocol and leave the detailed techniques
for future studies. There have been many ways to realize and manipulate coherent states by
various experimental strategies [ 56—-60], which may be implemented to fill in the necessary steps
for the experimental demonstration of the Uhlmann phase of many-body systems, exemplified by
the bosonic coherent states.

There are two important issues that need to be addressed in the protocol. The first is to
suitably represent a mixed state, which can be characterized by the purification or purified state
of a density matrix. The purification W = ,/pU is not necessarily a Hermitian matrix, and its
physical interpretation is still under debate. With the advancement of quantum computation, the
purified state |W) has become realizable [24,61]. Therefore, the purified state is a more viable way
for physical realizations. Explicitly, one can construct an entangled state between the system of
interest and an ancilla encoding the environmental effects in the form |[W) =3 VA, n)eUT |n),.
Here the subscripts s and a respectively represent the system and ancilla. The thermal distribution
determines the coefficients while the U(N) factor acts on the ancilla.

The second issue is to design a proper physical process for simulating the parallel transport
of |W) and generating the correct Uhlmann process. This is complicated by the fact that |W) is
formally a state vector and cannot satisfy a matrix-valued equation that is fully equivalent to the
condition (18). A solution [24] is to follow the condition (17) to perform parallel transport of the
state. An explicit construction is as follows. An Uhlmann process can be generated by controlling
the parameter 2z, which forms a closed curve C(t) = z(t) (0 < t < 1) in the parameter space,
which in this case is the complex plane. Thus, the density matrix of a bosonic coherent-state
harmonic oscillator is given by

pEO) =D Aalnzs(O)n,2(0)] = D 2D ) WID (1)), (76)

n=0 n=0
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where A, = %e_ﬁh‘*’(’”%) is independent of t since D(z(t)) is a unitary transformation. The corre-
sponding purified state is given by

W) = D /A D((t))In), ® D*(2(£))In)q, (77)

n=0

where D* = (D")T has been applied. However, we emphasize there is a subtlety about the trans-
pose [24,62], as the purified state needs to satisfy the Hilbert-Schmidt inner product (16). More-
over, Eq. (39) leads to an equivalent identity:

[dD(2)]DT(z) = (aT — %i) dz — (a — %z) dz. (78)

Using these two equations and

d = L .
- W) =HZ:(:)\/A—H(D®D +D®D)n), ®|n)y, (79)

the weakened parallel-transport condition (17) can be verified straightforwardly:
d oo
(WOl W (=(0) =>4 ((nID*DIn); + o (nDDT|n),) = 0. (80)
n=0

Therefore, if the purified state follows the parallel-transport condition of Eq. (80), the evolu-
tion simulates an Uhlmann cycle as t goes from O to 7. The Uhlmann phase is then given by the
phase difference between the initial and final purified states:

Oy = arg(W(0)|W (7). (81)

The expression now involves (I) the transition amplitude between the initial and final purified
states and (II) phase extraction. For bosonic coherent states, the former may be realized by en-
tangling two coherent states with one acting as the system and the other as the ancilla and evolve
the system according to the parallel-transport condition. The latter may be performed by interfer-
ometric or tomographic means on the overlap between the initial and final purified states. Since a
bosonic coherent state is a many-body state involving infinite particles, both tasks are challenging
and await future experimental realizations.

6 Conclusion

Through the bundle language, we concisely show the analogous frameworks of the Berry phase
and Uhlmann phase via the concepts of parallel transport and holonomy. As concrete examples, we
present the analytic expressions of the Uhlmann phases of bosonic and fermionic coherent states
and reveal the geometric information carried by them. In addition to the smooth dependence
on temperature, the Uhlmann phases of both cases approach their corresponding Berry phases as
T — 0, providing another set of exactly solvable examples supporting the agreement between the
Uhlmann and Berry phases in the zero-temperature limit. Except special cases like those with a
1D Hilbert space, we propose that the correspondence between the Uhlmann and Berry phases
is a general property of quantum systems. The conditional proof of the correspondence lays the
foundation for a complete proof in the future and provides more insights into the relations between
pure and mixed states.
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A Berry phase of coherent states

A.1 Bosonic coherent state

We assume the state |n,z) = D(z)|n) of a bosonic harmonic oscillator evolves adiabatically along
the curve C(t) := z(t) with 2(0) = z(7) (0 < t < 7). The Berry phase generated during the
evolution is

05,(C) = if dt(n,z(t)I%ln,z(t)) = if dx- (n|D'(2)VD(2)|n), (82)

Cc,0 Cc

where V =&, aa—x + é’y% is the gradient at the point z = x +iy. The Berry connection is given by

Ag, = (n|D7(2)dD(2)|n) = % (2dz —zdz). (83)
Further calculations show that
D'i‘(z)% =—iy +(a"—a), D'(2) 9Db(z) =ix +i(a" + a). (84)
dx Jy
Therefore,
05,(C) = f (ydx —xdy) = %jg (2dz —2dz) = —2S,. (85)
C C

We emphasize that the contour integral is evaluated along the counterclockwise direction of C(t).

A.2 Fermionic coherent state

Similarly, the Berry connection of the fermionic coherent state |n, &) = D(&)|n) is

Agn = (n,&|d|n, &) = (n|D(E)AD(E)|n). (86)
Using
D' (£)dD(E) = (bu %§)d§+ (b+ %g) dE, 87)
we get
1. 1 ]
Apn = 3 (Edé +£42) = - (Baz —de), 5

which has a similar expression to its bosonic counterpart (83). Substituting & = {z, where { is a
constant Grassmann number, into Eq. (88), it becomes

App = %fg(édz—zdé). (89)
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The Berry phase is

QBn = 1% ABn = _ZgCSC (90)
C

The expression is also similar to the Berry phase of bosonic coherent states except the factor of

qe

B Uhlmann connection in 1D Hilbert space

If we consider the density matrix of a 1D Hilbert space, p(t) = [y (t))(y(t)|, it is straightforward
to show that

[dvp, vP1=dl) (| + ) (d{PDIY) (P = [y)d(| = [9) (I(dp)) (1. (9D

Thus, (Y|[dy/p, v/PllY) = 0, which leads to Ay = 0. This also implies that the Uhlmann con-
nection and Uhlmann phase of a pure state are always zero. In contrast, the corresponding Berry
connection after a cyclic adiabatic process, Az = (R|d|R), and the Berry phase 05 =i 9§ Ag is not

: — o Jo REIZIR(E))dE - : - -
zero in general. Here | (t)) = e Jo de |R(t)). Since a single pure state is equivalent to
a system in a 1D Hilbert space and may accumulate a nontrivial Berry phase, the Uhlmann phase
does not reduce to the Berry phase as T — 0 in this type of special cases.

References

[1] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A 392, 45
(1984), doi:10.1098/rspa.1984.0023.

[2] D. J. Thouless, M. Kohmoto, M. P Nightingale and M. den Nijs, Quantized hall con-
ductance in a two-dimensional periodic potential, = Phys. Rev. Lett. 49, 405 (1982),
doi:10.1103/PhysRevLett.49.405.

[3] E D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-
matter realization of the 'parity anomaly", Phys. Rev. Lett. 61, 2015 (1988),
doi:10.1103/PhysRevLett.61.2015.

[4] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045
(2010), doi:10.1103/RevModPhys.82.3045.

[5] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83,
1057 (2011), doi:10.1103/RevModPhys.83.1057.

[6] J. E. Moore, The birth of topological insulators, Nature 464, 194 (2010),
doi:10.1038/nature08916.

[7] J. E. Moore and L. Balents, Topological invariants of time-reversal-invariant band structures,
Phys. Rev. B 75, 121306(R) (2007), doi:10.1103/PhysRevB.75.121306.

[8] L. Fu, C. L. Kane and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett.
98, 106803 (2007), doi:10.1103/PhysRevLett.98.106803.

20


https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/nature08916
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevLett.98.106803

SciPost Physics Core Submission

[9] B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors,
Princeton University Press, Princeton, NJ (2013).

[10] C.K.Chiu, J.C.Y. Teo, A. P Schnyder and S. Ryu, Classification of topological quantum matter
with symmetries, Rev. Mod. Phys. 88, 035005 (2016), doi:10.1103/RevModPhys.88.035005.

[11] C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801
(2005), doi:10.1103 /PhysRevLett.95.226801.

[12] C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin hall effect, Phys. Rev.
Lett. 95, 146802 (2005), doi:10.1103/PhysRevLett.95.146802.

[13] B. A.Bernevig and S.-C. Zhang, Quantum spin hall effect, Phys. Rev. Lett. 96, 106802 (2006),
doi:10.1103/PhysRevLett.96.106802.

[14] A. Uhlmann, Parallel transport and “quantum holonomy” along density operators, Rep. Math.
Phys. 24, 229 (1986), doi:10.1016/0034-4877(86)90055-8.

[15] A. Uhlmann, A gauge field governing parallel transport along mixed states, Lett. Math. Phys.
21, 229 (1991), doi:10.1007/BF00420373.

[16] E. Sjoqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. L. Oi and V. Vedral,
Geometric phases for mixed states in interferometry, Phys. Rev. Lett. 85, 2845 (2000),
doi:10.1103/PhysRevLett.85.2845.

[17] R. Bhandari, Singularities of the mixed state phase, Phys. Rev. Lett. 89, 268901 (2002),
doi:10.1103/PhysRevLett.89.268901.

[18] J. S. Anandan, E. Sjoqvist, A. K. Pati, A. Ekert, M. Ericsson, D. K. L. Oi and V. Vedral, Anandan
et al. reply:, Phys. Rev. Lett. 89, 268902 (2002), doi:10.1103/PhysRevLett.89.268902.

[19] P B. Slater, Mixed state holonomies, Lett. Math. Phys. 60, 123 (2002),
doi:10.1023/A:1016199310947.

[20] K. Singh, D. M. Tong, K. Basu, J. L. Chen and J. E Du, Geometric phases for nondegenerate and
degenerate mixed states, Phys. Rev. A 67, 032106 (2003), doi:10.1103 /PhysRevA.67.032106.

[21] C. E. Bardyn, L. Wawer, A. Altland, M. Fleischhauer and S. Diehl, Probing the topology of
density matrices, Phys. Rev. X 8, 011035 (2018), doi:10.1103/PhysRevX.8.011035.

[22] O. Viyuela, A. Rivas and M. A. Martin-Delgado, = Uhlmann phase as a topological
measure for one-dimensional fermion systems, Phys. Rev. Lett. 112, 130401 (2014),
doi:10.1103/PhysRevLett.112.130401.

[23] O. Viyuela, A. Rivas and M. A. Martin-Delgado, Two-dimensional density-matrix topologi-
cal fermionic phases: Topological uhlmann numbers, Phys. Rev. Lett. 113, 076408 (2014),
doi:10.1103/PhysRevLett.113.076408.

[24] X.-Y. Hou, H. Guo and C. C. Chien, Finite-temperature topological phase transitions of spin-
Jj systems in uhlmann processes: General formalism and experimental protocols, Phys. Rev. A
104, 023303 (2021), doi:10.1103/PhysRevA.104.023303.

21


https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1007/BF00420373
https://doi.org/10.1103/PhysRevLett.85.2845
https://doi.org/10.1103/PhysRevLett.89.268901
https://doi.org/10.1103/PhysRevLett.89.268902
https://doi.org/10.1023/A:1016199310947
https://doi.org/10.1103/PhysRevA.67.032106
https://doi.org/10.1103/PhysRevX.8.011035
https://doi.org/10.1103/PhysRevLett.112.130401
https://doi.org/10.1103/PhysRevLett.113.076408
https://doi.org/10.1103/PhysRevA.104.023303

SciPost Physics Core Submission

[25] D. Morachis Galindo, E Rojas and J. A. Maytorena, Topological uhlmann phase tran-
sitions for a spin-j particle in a magnetic field, Phys. Rev. A 103, 042221 (2021),
doi:10.1103/PhysRevA.103.042221.

[26] Y. Zhang, A. Pi, Y. He and C.-C. Chien, Comparison of finite-temperature topolog-
ical indicators based on uhlmann connection, Phys. Rev. B 104, 165417 (2021),
doi:10.1103/PhysRevB.104.165417.

[27] Z. Huang and D. P Arovas, Topological indices for open and thermal systems via uhlmann’s
phase, Phys. Rev. Lett. 113, 076407 (2014), doi:10.1103/PhysRevlLett.113.076407.

[28] O. Viyuela, A. Rivas and M. A. Martin-Delgado, Symmetry-protected topological phases at
finite temperature, 2D Mat. 2, 034006 (2015), doi:10.1088/2053-1583/2/3/034006.

[29] M. Asorey, P Facchi and G. Marmo, Topological order, mixed states and open systems, Open
Sys. and Inf. Dyn. 26, 1950012 (2019), do0i:10.1142/S1230161219500124.

[30] X.-Y. Hou, Q.-C. Gao, H. Guo, Y. He, T. Liu and C. C. Chien, Ubiquity of zeros of the loschmidt
amplitude for mixed states in different physical processes and its implication, Phys. Rev. B 102,
104305 (2020), doi:10.1103/PhysRevB.102.104305.

[31] H. Guo, X.-Y. Hou, Y. He and C. C. Chien, Dynamic process and uhlmann process: Incom-
patibility and dynamic phaseof mixed quantum states, Phys. Rev. B 101, 104310 (2020),
doi:10.1103/PhysRevB.101.104310.

[32] J. R. Klauder, The action option and a feynman quantization of spinor fields in terms of ordinary
c-numbers, Ann. Phys. 11, 123 (1960), doi:10.1016/0003-4916(60)90131-7.

[33] C.Itzykson and Z. Jean-Bernard, Quantum Field Theory, McGraw-Hill Inc., New York (1980).

[34] J. W. Negele and H. Orland, Quantum many-particle systems, Westview Press, Boulder, CO
(1988).

[35] M. S. Swanson, Path integrals and quantum processes, Academic Press Inc., Boston, MA
(1992).

[36] K. Fujikawa and H. Suzuki, Path integrals and quantum anomalies, Oxford University Press,
Oxford, UK (2004).

[37] H. Kleinert, Particles and quantum fields, World Scientific Publishing, Singapore (2016).

[38] R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766
(1963), doi:10.1103 /PhysRev.131.2766.

[39] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge,
UK (1997).

[40] R. Loudon, The quantum theory of light, Oxford University Press, Oxford, UK, 3 edn. (2000).

[41] J.-P Gazeau, Coherent states in quantum optics: An oriented overview, In S. Kuru, J. Negro and
L. M. Nieto, eds., Integrability, Supersymmetry and Coherent States: A Volume in Honour of
Professor Véronique Hussin, pp. 69-101. Springer International Publishing, Berlin, Germany,
ISBN 978-3-030-20087-9, d0i:10.1007/978-3-030-20087-9_3 (2019).

22


https://doi.org/10.1103/PhysRevA.103.042221
https://doi.org/10.1103/PhysRevB.104.165417
https://doi.org/10.1103/PhysRevLett.113.076407
https://doi.org/10.1088/2053-1583/2/3/034006
https://doi.org/10.1142/S1230161219500124
https://doi.org/10.1103/PhysRevB.102.104305
https://doi.org/10.1103/PhysRevB.101.104310
https://doi.org/10.1016/0003-4916(60)90131-7
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1007/978-3-030-20087-9_3

SciPost Physics Core Submission

[42] S. Chaturvedi, M. S. Sriram and V. Srinivasan, Berry’s phase for coherent states, Phys. A:
Math. Gen. 20, L1071 (1987), doi:10.1088/0305-4470/20/16/007.

[43] G. Giavarini and E. Onofri, Generalized coherent states and berry’s phase, J. Math. Phys. 30,
659 (1989), do0i:10.1063/1.528434.

[44] Y.-D. Zhang and L. Ma, Berry’s phase for coherent states, Nuovo Cimento B 105, 1343 (1990),
doi:10.1007/BF02742688.

[45] D.-B. Yang, Y. Chen, E-L. Zhang and J.-L. Chen, Geometric phases for nonlinear co-
herent and squeezed states, J. Phys. B: At. Mol. Opt. Phys. 44, 075502 (2011),
doi:10.1088/0953-4075/44/7/075502.

[46] J. C. Budich and S. Diehl, Topology of density matrices, Phys. Rev. B 91, 165140 (2015),
doi:10.1103/PhysRevB.91.165140.

[47] M. Ericsson, A. K. Pati, E. Sjoqvist, J. Brannlund and D. K. L. Oi, Mixed state geometric
phases, entangled systems, and local unitary transformations, Phys. Rev. Lett. 91, 090405
(2003), doi:10.1103/PhysRevLett.91.090405.

[48] A. T. Rezakhani and P Zanardi, General setting for a geometric phase of mixed
states under an arbitrary nonunitary evolution, Phys. Rev. A 73, 012107 (2006),
doi:10.1103/PhysRevA.73.012107.

[49] M. Ericsson, D. Achilles, J. T. Barreiro, D. Branning, N. A. Peters and P G. Kwiat, Measurement
of geometric phase for mixed states using single photon interferometry, Phys. Rev. Lett. 94,
050401 (2005), doi:10.1103/PhysRevLett.94.050401.

[50] O. Andersson, I. Bengtsson, M. Ericsson and E. Sjoqvist, Geometric phases for mixed states of
the kitaev chain, Phil. Trans. R. Soc. A 374, 20150231 (2016), doi:10.1098/rsta.2015.0231.

[51] M. Nakahara, Geometry, Topology and Physics, Institute of Physics Publishing, Bristol, UK
(2003).

[52] A. Uhlmann, On berry phases along mixtures of states, Ann. Phys. (Berlin) 501, 63 (1989),
doi:10.1002/andp.19895010108.

[53] A. Uhlmann, The metric of bures and the geometric phase, In R. Gielerak, J. Lukier-
ski and Z. Popowicz, eds., Groups and Related Topics: Proceedings of the First Max Born
Symposium, pp. 267-274. Springer Netherlands, Dordrecht, ISBN 978-94-011-2801-8,
doi:10.1007/978-94-011-2801-8 23 (1992).

[54] Y. Jiang, Y. H. Ji, H. Xu, L.-y. Hu, Z. S. Wang, Z. Q. Chen and L. P Guo, Geomet-
ric phase of mixed states for three-level open systems, Phys. Rev. A 82, 062108 (2010),
doi:10.1103/PhysRevA.82.062108.

[55] M. Srednicki, Quantum Field Theory, Cambridge University Press, Cambridge, UK (2007).

[56] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat and P Grangier, Generating optical
schroodinger kittens for quantum information processing,  Science 312, 83 (2006),
doi:10.1126/science.1122858.

23


https://doi.org/10.1088/0305-4470/20/16/007
https://doi.org/10.1063/1.528434
https://doi.org/10.1007/BF02742688
https://doi.org/10.1088/0953-4075/44/7/075502
https://doi.org/10.1103/PhysRevB.91.165140
https://doi.org/10.1103/PhysRevLett.91.090405
https://doi.org/10.1103/PhysRevA.73.012107
https://doi.org/10.1103/PhysRevLett.94.050401
https://doi.org/10.1098/rsta.2015.0231
https://doi.org/10.1002/andp.19895010108
https://doi.org/10.1007/978-94-011-2801-8_23
https://doi.org/10.1103/PhysRevA.82.062108
https://doi.org/10.1126/science.1122858

SciPost Physics Core Submission

[57]

[58]

[59]

[60]

[61]

[62]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and P Grangier, Generation of optical ’schroodinger
cats’ from photon number states, Nature 448, 784 (2007), doi:10.1038/nature06054.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W.
Nam, R. P Mirin and E. Knill, Generation of optical coherent-state superpositions by number-
resolved photon subtraction from the squeezed vacuum, Phys. Rev. A 82, 031802(R) (2010),
doi:10.1103/PhysRevA.82.031802.

M. Yukawa, K. Miyata, T. Mizuta, H. Yonezawa, P Marek, R. Filip and A. Furusawa, Generat-
ing superposition of up-to three photons for continuous variable quantum information process-
ing, Opt. Express 21, 5529 (2013), doi:10.1364/0E.21.005529.

J. Etesse, M. Bouillard, B. Kanseri and R. Tualle-Brouri, Experimental generation of squeezed
cat states with an operation allowing iterative growth, Phys. Rev. Lett. 114, 193602 (2015),
doi:10.1103/PhysRevLett.114.193602.

O. Viyuela, A. Rivas, S. Gasparinetti, A. Wallraff, S. Filipp and M. A. Martin-Delgado, Ob-
servation of topological uhlmann phases with superconducting qubits, npj Quant. Inf. 4, 10
(2018), do0i:10.1038/s41534-017-0056-9.

X.-Y. Hou, Z.-W. Huang, Z. Zhou, X. Wang, H. Guo and C.-C. Chien, Generalizations of berry
phase and differentiation of purified state and thermal vacuum of mixed states, Phys. Lett. A
457, 128553 (2023), doi:10.1016/j.physleta.2022.128553.

24


https://doi.org/10.1038/nature06054
https://doi.org/10.1103/PhysRevA.82.031802
https://doi.org/10.1364/OE.21.005529
https://doi.org/10.1103/PhysRevLett.114.193602
https://doi.org/10.1038/s41534-017-0056-9
https://doi.org/10.1016/j.physleta.2022.128553

	1 Introduction
	2 Overview of Berry and Uhlmann phases
	2.1 Berry phase in the bundle language
	2.2 Uhlmann phase in the bundle language

	3 Uhlmann phase of coherent states
	3.1 Bosonic coherent state
	3.2 Fermionic coherent states
	3.3 Additional example: Qutrit

	4 Correspondence between Uhlmann phase and Berry phase
	5 Experimental implications
	6 Conclusion
	A Berry phase of coherent states
	A.1 Bosonic coherent state
	A.2 Fermionic coherent state

	B Uhlmann connection in 1D Hilbert space
	References

