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Abstract

We first compare the geometric frameworks behind the Uhlmann and Berry phases in a fiber-

bundle language and then evaluate the Uhlmann phases of bosonic and fermionic coherent

states. The Uhlmann phases of both coherent states are shown to carry geometric informa-

tion and decrease smoothly with temperature. Importantly, the Uhlmann phases approach

the corresponding Berry phases as temperature decreases. Together with previous examples

in the literature, we propose a correspondence between the Uhlmann and Berry phases in

the zero-temperature limit as a general property except some special cases and present a

conditional proof of the correspondence.
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1 Introduction

The Berry phase [1] reveals geometric information of quantum wavefunctions via their phases ac-

quired after an adiabatic cyclic process, and its concept has laid the foundation for understanding

many topological properties of materials [2–13]. The theory of Berry phase is built on pure quan-

tum states. For example, the ground state fits the description as the limit of a statistical ensemble

at zero temperature. At finite temperatures, the density matrix describes thermal properties of a

quantum system by associating a thermal distribution to all the states of the system. Therefore, it

is an important task to generalize the Berry phase to the realm of mixed quantum states.

There have been several approaches to address this problem [14–21], among which the

Uhlmann phase has attracted much attention recently since it has been shown to exhibit topo-

logical phase transitions at finite temperatures in several 1D, 2D, and spin- j systems [22–26]. A

key feature of those systems is the discontinuous jumps of the Uhlmann phase at the critical tem-

peratures, signifying the changes of the underlying Uhlmann holonomy as the system traverses

a loop in the parameter space. However, due to the complexity of the mathematical structure

and physical interpretation, the knowledge of the Uhlmann phase is far less than that of the Berry

phase in the literature. Moreover, only a handful of models allow analytical results of the Uhlmann

phase to be obtained [22–30]. The Berry phase is purely geometric in the sense that it does not

depend on any dynamical effect during the time evolution of the quantum system of interest [31].

Therefore, the theory of the Berry phase can be constructed in a purely mathematical manner. As

a generalization, the Uhlmann phase of density matrices was built in an almost parallel way from

a mathematical point of view and shares many geometric properties with the Berry phase. We will

first summarize both the Berry and Uhlmann phases using a fiber-bundle language to highlight

their geometric properties.

Next, we will present the analytic expressions of the Uhlmann phases of bosonic and fermionic

coherent states and show that their values approach the corresponding Berry phases as tempera-

ture approaches zero. Both types of coherent states are useful in the construction of path integrals

of quantum fields [32–37]. While any number of bosons are allowed in a single state, the Pauli

exclusion principle restricts the fermion number of a single state to be zero or one. Therefore,

complex numbers are used in the bosonic coherent states while Grassmann numbers are used in

the fermionic coherent states. The bosonic coherent states are also used in quantum optics to de-

scribe radiation from a classical source [38–41]. Moreover, the Berry phases of coherent states can

be found in the literature [42–45], and we summarize the results in Appendix A. Our exact results

of the Uhlmann phases of bosonic and fermionic coherent states suggest that they indeed carry

geometric information, as expected by the concept of holonomy and analogy to the Berry phase.

We will show that the Uhlmann phases of both cases decrease smoothly with temperature without

a finite-temperature transition, in contrast to some examples with finite-temperature transitions

in previous studies [22–30]. As temperature drops to zero, the Uhlmann phases of bosonic and

fermionic coherent state approach the corresponding Berry phases.
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Our results of the coherent states, along with earlier observations [22, 24, 26], suggest the

Uhlmann phase reduce to the corresponding Berry phase in the zero-temperature limit. The cor-

respondence is nontrivial because the Uhlmann phase requires full-rank density matrices, which

cannot be satisfied only by the ground state at zero temperature. Moreover, the fiber bundle for

density matrices in Uhlmann’s theory is a trivial one [46], but the fiber bundle for wavevfunc-

tions in the theory of Berry phase needs not be trivial. A similar question on why the Uhlmann

phase agrees with the Berry phase in certain systems as temperature approaches zero was asked

in Ref. [29] without an answer. In the last part of the paper, we present a detailed analysis of

the Uhlmann phase at low temperatures to search for direct relevance with the Berry phase. With

the clues from the previous examples, we present a conditional proof of the correspondence by

focusing on systems allowing analytic treatments of the path-ordering operations.

Before showing the results, we present a brief comparison between the Uhlmann phase and

another frequently mentioned geometrical phase for mixed quantum states proposed in Refs. [16,

47], which was originally introduced for unitary evolution but later extended to nonunitary evo-

lution [48]. This geometrical phase was inspired by a generalization of the Mach-Zehnder inter-

ferometry in optics and was named accordingly as the interferometric phase. It has a different

formalism with a more intuitive physical picture and has been measured in experiments [49]. In

general situations, the interferometric phase can be expressed as the argument of a weighted sum

of the Berry phase factors from each individual eigenstate. Thus, its relation to the Berry phase is

obvious. However, the concise topological meaning of the interferometric phase is less transparent

since it is not directly connected to the holonomy of the underlying bundle as the Uhlmann phase

does. The reason has been discussed in a previous comparison [50] between the two geometri-

cal phases. The interferometric phase relies solely on the evolution of the system state while the

Uhlmann phase is influenced by the changes of both the system and ancilla, which result in the

Uhlmann holonomy. Although Uhlmann’s approach can be cast into a formalism parallel to that of

the Berry phase as we will explain shortly, its exact connection to the Berry phase is still unclear.

The Uhlmann-Berry correspondence discussed below will offer an insight into this challenging

problem.

The rest of the paper is organized as follows. In Sec. 2, we first present concise frameworks

based on geometry for the Berry and Uhlmann phases, using a fiber-bundle language. In Sec.

3, we derive the analytic expressions of the Uhlmann phases of bosonic and fermionic coherent

states and analyze their temperature dependence. Additionally, the Uhlmann phase of a three-level

system is also presented. Importantly, the Uhlmann phases of both types of coherent states and the

three-level system are shown to approach the respective Berry phases as temperature approaches

zero. In Sec. 4, we propose the generality of the correspondence between the Uhlmann and

Berry phases in the zero-temperature limit and give a conditional proof. In Sec. 5, we discuss

experimental implications and propose a protocol for simulating and measuring the Uhlmann

phase of bosonic coherent states. Sec. 6 concludes out work. The Berry phases of bosonic and

fermionic coherent sates and the special cases with a 1D Hilbert space are summarized in the

Appendix.
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2 Overview of Berry and Uhlmann phases

2.1 Berry phase in the bundle language

We adopt the natural units with kB = 1 = ħh. The first part of the overview of the Berry phase

follows Ref. [1,31,46]. The Berry phase arises under a cyclic adiabatic evolution experienced by

a quantum state through external parameters. The Hamiltonian of the system is given by Ĥ(R),

where R= (R1,R2, · · · ,Rk)
T ∈ M is the collection of the external parameters. If the state |n(R(t))〉

evolves adiabatically along a closed curve C(t) := R(t) (0 ≤ t ≤ τ) in the parameter space M , at

the end of the evolution the final state obtains a geometric phase

θn = i

∫ τ

0

dt〈n (R(t)) | d
dt
|n (R(t))〉 (1)

with respect to the initial state.

The theory of Berry phase can be cast into another equivalent formalism by introducing the

parallel-transport of quantum states. If two pure states |ψ1,2〉 are in phase with each other, i.e.

arg〈ψ1|ψ2〉 = 0 or 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉> 0, they are also said to be parallel with each other. Thus,

the parallel-transport of a state |ψ(t)〉 is defined via

〈ψ(t)|ψ(t + dt)〉 = 〈ψ(t + dt)|ψ(t)〉 > 0, (2)

whose differential form is

〈ψ(t)| d
dt
|ψ(t)〉 = 0. (3)

The parallel condition lacks transitivity, so it does not define an equivalence relation. Therefore,

even if a system follows parallel transport, its quantum state, say |n(R(t))〉, may gradually acquire

an extra phase other than the dynamical phase. We assume |ψ(t)〉 = eiθn(t)|n(R(t))〉 and substitute

it into the condition (3) to get

i
dθn

dt
+ 〈n(R(t))| d

dt
|n(R(t))〉 = 0. (4)

Solving this differential equation, we directly obtain the Berry phase shown in Eq. (1). Using
d
dt = Ṙ · ∇R, it can be also expressed as

θn = arg〈ψ(0)|ψ(τ)〉= i

∮

C

dt〈n (R(t)) |∇R|n (R(t))〉 · dR, (5)

which carries geometric information of C(t) in the parameter space. Accordingly, the Berry phase

is a geometric phase that a quantum state obtains after being parallel-transported along a loop in

the parameter space. This means that the Berry phase factor eiθn is actually a holonomy in the

language of differential geometry. Based on these discussions, the theory of Berry phase can be

elegantly illustrated in a principle-bundle description. Some details can be found in Ref. [31], and

here we present an improved and simplified discussion.

During an adiabatic evolution, no energy-level crossing occurs. Thus, once a quantum sys-

tem initially starts from the nth level |n(R(0)〉, it will stay in the instantaneous state |n(R(t)〉.
Hence, we will use the abbreviation |R〉 ≡ |n(R)〉 hereafter. Define P = {|R〉|〈R|R〉 = 1}. Since
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|R〉 ∼ eiχ |R〉 where χ is an arbitrary phase, the genuine phase space of the system is H = P/ ∼.

We construct a fiber bundle P(H,U(1)), where P is the total space, H is the base manifold and

U(1) is the structure group. A projective operator π : P → H acts as π(eiχ |R〉) = |R〉,∀eiχ ∈U(1).

Conversely,

π−1(|R〉) = {g|R〉|g ∈ U(1)} (6)

is the fiber FR at the point |R〉, which is isomorphic to U(1). Thus, what we construct is a U(1)-

principle bundle. A section σ : H → P is a smooth map such that π ◦σ = 1H , which locally fixes

the phase of |R〉 as σ(|R〉) = eiθ (R)|R〉.
The loop C(t) induces a loop in H as γ(t) := |R(t)〉 (|R(0)〉 = |R(τ)〉). A curve γ̃(t) ∈ P is

called a lift of γ(t) if π ◦ γ̃ = γ. The formerly mentioned |ψ(t)〉 = eiθn(t)|n(R(t))〉 is actually a

lift of γ. Let X and X̃ be the tangent vectors to γ and γ̃, respectively, then they satisfy π∗X̃ = X .

Moreover, we introduce a connection 1-form at |ψ〉 as

ω|ψ〉 = 〈ψ|dP |ψ〉, (7)

where dP is the exterior derivative on P. Note X̃ can be locally expressed as X̃ = d
dt since γ̃ is

parameterized by t. Then Eq. (4) can be written in the more generic form

ω(X̃ ) = 0, (8)

which is equivalent to the parallel-transport condition (3). This indicates that X̃ is a horizontal

vector belonging to T P. Here T P is the tangent bundle of P. Accordingly, γ̃(t) is called the

horizontal lift of γ(t). The pullback of ω by σ is AB = σ
∗ω= 〈ψ|dH |ψ〉, where dH is the exterior

derivative on H. Since dH does not act on the fiber space, AB is also expressed as

AB = 〈R|e−iθndH

�

eiθn |R〉
�

= 〈R|dH |R〉, (9)

i.e. it is the well-known Berry connection on the base manifold H. Let g(t) = eiθn(t). ω can be

conversely constructed as

ω= π∗AB + g−1dP g. (10)

A connection defined by Eq. (10) is also called an Ehresmann connection [51]. Using this, the

condition (8) becomes

0= π∗AB(X̃ ) + g−1dP g(X̃ ) = AB(π∗X̃ ) + g−1 dg

dt
, (11)

which is equivalent to

∇X g = 0. (12)

Here ∇i =
∂
∂ Ri
+ ABi is the covariant derivative associated with the Berry connection. Hence, the

parallel-transport condition indicates that the phase factor, viewed as a vector in the fiber space,

is parallel transported along γ(t) ∈ H (or equivalently, C(t) ∈ M). Thus, g(τ) = e−
∮

C
AB is a

holonomy of the bundle, called the Berry holonomy. The Berry phase θB = arg g(τ) is a measure

of the loss of parallelity after the system is parallel-transported along a loop.

There are more features in the fiber bundle. According to Eq. (8), the Ehresmann connection

ω naturally separates T P into the horizontal and vertical subspaces as T P = HP ⊕ V P. It is also

5
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worthwhile to calculate ω(X̃ V ), where X̃ V ∈ V P is a vertical vector. Let u(t) =ω(X̃ V ). Since X̃ V

is vertical, it follows that π∗X̃
V = 0. Following a similar derivation as Eq. (11), we get

u(t) = π∗AB(X̃
V ) + g−1dP g(X̃ V ) = g−1 dg

dt
, (13)

which further implies

g(t) = e
∫ t

0
u(t ′)dt ′ g(0). (14)

Here e
∫ t

0
u(t ′)dt ′ is a phase transformation induced by a curve in the fibre space, and u ∈ u(1)

is its generator. Moreover, X̃ V is the tangent vector of the curve e
∫ t

0
u(t ′)dt ′ , and we follow the

terminology of Ref. [51] to write X̃ V = u#. Consequently, we have

ω(u#) = u (15)

if u# is a vertical vector. We emphasize that the generalizations of Eqs. (8) and (15) play important

roles in the theory of Uhlmann phase.

2.2 Uhlmann phase in the bundle language

A generalization of the Berry phase to mixed states is both natural and necessary, given the abun-

dance of phenomena in nature described by mixed states. However, mixed quantum states are

usually represented by density matrices, which are Hermitian operators and carry no explicit in-

formation about phase. Inspired by the structure ρ = |ψ〉〈ψ| for the density matrix of a pure state,

Uhlmann introduced [14] the decomposition ρ =WW † for a generic full-rank density matrix ρ,

where W is called the purification or amplitude of ρ. The decomposition is not unique because

W =
p
ρU with U ∈ U(N) also satisfies the decomposition. Here N is the dimension of the Hilbert

space, and U is called the phase factor of W . One may see the analogy of a pure-state wave-

function: ψ(x) =
p

|ψ(x)|2ei argψ(x). If ρ is diagonalized as ρ =
∑

nλn|n〉〈n|, the purification is

accordingly expressed as W =
∑

n

p

λn|n〉〈n|U . Importantly, there is a corresponding state-vector

representation |W 〉=
∑

n

p

λn|n〉⊗U T |n〉, called the purified state of ρ. The inner product of two

purified states is the Hilbert-Schmidt product between two purifications:

〈W1|W2〉= Tr(W †
1 W2). (16)

A key point in the construction of the theory of Uhlmann phase is to extend the parallel-

transport condition (3) to mixed states. A direct and naive generalization seems to be

〈W (t)| d
dt
|W (t)〉 = 0. (17)

However, this only leads to a single equation and cannot determine the N × N matrix W . On the

other hand, it can be found that the Fubini-Study length along a curve C(t), LFS =

∫ τ

C ,0

Æ

〈ψ̇|ψ̇〉dt,

is minimized if and only if Eq. (3) holds [52, 53]. A similar result holds for mixed states: The

Hilbert-Schmidt length LHS =

∫ τ

C ,0

Æ

Tr(Ẇ †Ẇ )dt is minimized if and only if [28,53]

ẆW † =W †Ẇ , (18)

6
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which implies Im〈W (t)| d
dt |W (t)〉 = 0. Eq. (17) can be deduced from this condition by noting that

〈W (t)|W (t)〉 = 1. The matrix equation (18) has N × N entries, giving N × N restrictions. Hence,

the condition is much stronger than Eq. (17).

The Uhlmann phase was introduced from a purely mathematical manner, and its physical

interpretation still needs more work. Following the geometric description of the Berry phase, we

first construct a U(N)-principle bundle P(H,U(N )) for mixed states, where H is the base manifold

including all N -dimensional full-rank density matrices, P is the total space spanned by W , and a

projection π : P → H is defined by

π(W ) =WW † = ρ. (19)

Here U(N ) is the structure group, which contains all unitary phase-factor transformations. Con-

versely, a smooth map σ : H → P satisfying π ◦ σ = 1P is called a section. There is a global

section σ(ρ) =
p
ρ defined on the entire H. Thus, this principle bundle is always trivial [46].

Nevertheless, many interesting and instructive results can still be inferred from the formalism, as

we will show below.

When the system traverses a closed curve C(t) := R(t) ∈ M (0 ≤ t ≤ τ), the density matrix

evolves along an induced loop γ(t) := ρ(t) ≡ ρ(R(t)) in H accordingly. Similar to the geometric

description of the Berry phase, we set to find a horizontal lift γ̃ of γ such that when the correspond-

ing purification varies along γ̃, the parallel-transport condition (18) is satisfied. This requirement

can be fulfilled if a connection ω defined on P meets the condition ω(X̃ ) = 0, where γ̃ is the

tangent vector of X̃ . To find ω, we return to the parallel-transport condition (18), which can be

rewritten as

W †dPẆ (X̃ )− dPW (X̃ )W † = 0. (20)

A trial form ofω is ω =W †dPẆ −dPWW †. However, this does not meet the proper definition for

a connection. It can be shown that ω defined this way does not transform like a gauge potential

under a gauge transformation W ′ → W V , where V ∈ U(N ). To resolve the problem, we make

use of Eq. (15) and note that a curve in the fiber space π−1(ρ) can always be expressed as

W (t) =
p
ρetu, where u ∈ u(N ) is an anti-Hermitian matrix. Let X̃ V be the tangent vector of this

curve, which is by definition a vertical vector. It is straightforward to find

dPW (X̃ V ) =Wu. (21)

Thus, by replacing the horizontal vector in the left-hand-side of Eq. (20) by X̃ V and using u† = −u,

we get

W †dPẆ (X̃ V )− dPW (X̃ V )W † =W †Wu− uW †W. (22)

Moreover, since u is the generator of the curve W (t) =
p
ρetu, whose tangent vector is X̃ V , we

can also write X̃ V = u# as before. A generalization of Eq. (15) is ω(X̃ V ) = u. Substituting this

into the right-hand-side of Eq. (22), we have

W †dPẆ (X̃ V )− dPW (X̃ V )W † =W †Wω(X̃ V )−ω(X̃ V )W †W. (23)

The identity holds even for a horizontal vector X̃ H due to Eq. (20) and ω(X̃ H) = 0. Thus, the

connection ω satisfies the following equation

W †dPW − dPWW † =W †Wω−ωW †W. (24)

7



SciPost Physics Core Submission

It can be verified that under a gauge transformation W ′→W V ,ω defined by Eq. (24) transforms

as ω′ = V †ωV + V †dP V and qualifies as a non-Abelian gauge potential. In Uhlmann’s original

paper [15], Eq. (24) is introduced as an ansartz to define a connection over the whole bundle.

Here we find that it can be directly obtained from the condition ω(u#) = u.

The pullback of ω by σ is the Uhlmann connection AU = σ
∗ω. Let U = etu, and we have

ω(X̃ V ) = u = U† dU
dt . Based on these results and ω(X̃ H) = 0, if ω is the Ehresmann connection, it

can be expressed as

ω= U†π∗AU U + U†dP U , (25)

which is the non-Abelian generalization of Eq. (10). Moreover, contracting both sides of Eq. (25)

with a horizontal vector X̃ leads to AU(X ) = −dU
dt U†, or equivalently,

∇X U =
dU

dt
+ AU(X )U = 0. (26)

Here X = π∗X̃ is the tangent vector to γ. Similarly, the equation shows that the phase factor U is

parallel-transported along the loop γ. Solving the equation, we get

U(τ) = Pe−
∮

C
AU U(0), (27)

where P is the path-ordering operator. Note Pe−
∮

C
AU is the Uhlmann holonomy, and the Uhlmann

phase is

θU = arg〈W (0)|W (τ)〉 = arg Tr
�

ρ(0)Pe−
∮

C
AU

�

. (28)

To derive an explicit expression of AU , we plug W =
p
ρU into Eq. (24) and obtain

U†[
p
ρ, dP

p
ρ]U + U†ρdP U + U†dP UU†ρU = U†ρUω+ωU†ρU , (29)

Next, we use Eq. (25) to get

ρπ∗AU +π
∗AUρ = −[dP

p
ρ,ρ]. (30)

When restricted on H, it reduces to

ρAU + AUρ = −[dH

p
ρ,ρ]. (31)

Evaluating the matrix elements of both sides in the eigenstates of ρ, we get

AU = −
N
∑

n,m=1

|n〉〈n|[d
p
ρ,
p
ρ]|m〉

λn +λm

〈m|, (32)

where we have omitted the subscript H for convenience. We note that only when N > 1, AU

may be nonzero since the representation of a commutator is trivial in a 1D Hilbert space (see

Appendix. B for details).

We further simplify the expression (32) of AU , which will be useful in our latter discussion on

the similarity with the Berry connection AB. Using
p
ρ =
∑

n

p

λn|n〉〈n|, we have

[
p
ρ, d
p
ρ] =
∑

n

λn (|n〉d〈n| − d|n〉〈n|) +
∑

nm

Æ

λnλm (|n〉〈n|d|m〉〈m| − |m〉(d〈m|)|n〉〈n|) . (33)

8
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By interchanging the indices n↔ m in the last term and using (d〈n|)|m〉= −〈n|d|m〉, it becomes

[
p
ρ, d
p
ρ] = −
∑

nm

�
Æ

λn −
Æ

λm

�2
|n〉〈n|d|m〉〈m|, (34)

and the Uhlmann connection becomes

AU = −
∑

n6=m

�p

λn −
p

λm

�2

λn +λm

|n〉〈n|d|m〉〈m|. (35)

3 Uhlmann phase of coherent states

Here we apply the framework to find the Uhlmann phases of bosonic and fermionic harmonic

oscillators. The corresponding Berry phases are summarized in Appendix A.

3.1 Bosonic coherent state

Here we evaluate the Uhlmann phase of bosonic coherent states, which may be constructed

from bosonic harmonic oscillators [35, 39]. The Hamiltonian of a single harmonic oscillator is

Ĥ = ħhω(a†a + 1
2 ), where a, a† are the annihilation and creation operators satisfying [a, a†] = 1.

The energy levels of system are characterized by Ĥ|n〉= ħhω(n+ 1
2)|n〉 with n= 0,1,2, · · · . Previ-

ously studied examples of the Uhlmann phase of low-dimensional systems [22,26,28] and spin- j

systems [24,25] are both in finite-dimensional Hilbert spaces. The bosonic harmonic oscillator will

give an infinite-dimensional example. The parallel transport of a canonical ensemble of harmonic

oscillators can be realized with the help of coherent states defined by operating the translation

operator on the ground state: |z〉 = D(z)|0〉 ≡ eza†−z̄a|0〉. Here D(z) satisfies

D(z)aD†(z) = a− z, D(z)a†D†(z) = a† − z̄. (36)

Moreover, |z〉 is the ground state of the translated Hamiltonian Ĥ(z) = D(z)ĤD†(z). The excited

states are obtained in a similar manner: |n, z〉 = D(z)|n〉, n≥ 1.

The parameter space is thus identified as the complex z plane, and a loop for generating the

holonomy may be chosen as C(t) := z(t) with z(0) = z(τ) (0 ≤ t ≤ τ). Our convention is that

the counterclockwise direction of C(t) follows the increase of t. The continuous transformation

D(z(t)) generates an induced loop γ(t) := ρ(z(t)) in the manifold of density matrices, where

ρ(z) =
1

Z
e−β Ĥ(z) = D(z)ρ(0)D†(z). (37)

Here ρ(0) = 1
Z e−β Ĥ . Since D(z) is unitary, the eigenvalues of ρ are invariant under the action of

D(z), given by λn =
1
Z e−βħhω(n+

1
2 ). Decomposing the density matrix, one obtains the purification

W (z(t)) =
p

ρ(z(t))U(z(t)). As long as the phase factor U(t) ≡ U(z(t)) satisfies the parallel-

transport equation (26) along γ(t) (or C(t) equivalently), the final state will acquire an Uhlmann

phase relative to the initial state.

9
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Using Eq. (35), the Uhlmann connection is given by

AU = −
∑

n6=m

(
p

λn −
p

λm)
2

λn +λn

|n, z〉〈n, z|d|m, z〉〈m, z|

= −
∑

n6=m

χnmD(z)|n〉〈n|D†(z)dD(z)|m〉〈m|D†(z), (38)

where χnm =
(e−

n
2
βħhω−e−

m
2
βħhω
)2

e−nβħhω+e−mβħhω . It can be shown that

D†(z)dD(z) =

�

a† +
1

2
z̄

�

dz −
�

a +
1

2
z

�

dz̄. (39)

Using the above equation and 〈n|a† =
p

n〈n− 1|, a|m〉=pm|m− 1〉, we get

AU =− D(z)
�

∞
∑

n=1

χn,n−1

p
n|n〉〈n− 1|dz −

∞
∑

n=0

χn,n+1

p
n+ 1|n〉〈n+ 1|dz̄

�

D†(z). (40)

Changing the index by n→ n+1 in the first line and using the propertyχn,n+1 = χn+1,n = 1−sech
βħhω

2 ,

the Uhlmann connection is finally expressed as

AU = −χD(z)

�

a†
∞
∑

n=0

|n〉〈n|dz −
∞
∑

n=0

|n〉〈n|adz̄

�

D†(z)

= −χ
�

(a† − z̄)dz − (a − z)dz̄
�

, (41)

where χ = 1− sech
βħhω

2 and Eq. (36) have been applied.

Let gC = Pe−
∮

C
AU be the Uhlmann holonomy as the system traverses C(t). In the Fock space

spanned by {|n〉}, both a and a† are matrices of infinite dimensions, making it challenging to find

an analytical expression of gC . However, this can be achieved by solving the differential equation

for D(z). Using Eq. (36), it can be shown that Eq. (39) leads to a differential equation for D(z(t)).

Explicitly,

dD(z(t))

dt
=

�

a†ż − a˙̄z − 1

2
(z̄ż − z˙̄z)

�

D(z(t)) (42)

as z varies along the loop C(t) = z(t). The solution to the above equation gives

D(z(t)) =Pe
∫ t

0{a†ż(t ′)−a˙̄z(t ′)− 1
2[z̄(t

′)ż(t ′)−z(t ′)˙̄z(t ′)]}dt ′D(z(0))

=e−
1
2

∫ t

0[z̄(t
′)ż(t ′)−z(t ′)˙̄z(t ′)]dt ′

Pe
∫ t

0 [a
†ż(t ′)−a˙̄z(t ′)]dt ′D(z(0)). (43)

Since z(τ) = z(0), D(z(τ)) = D(z(0)) and it follows that

Pe
∮

C(a
†dz−adz̄) = e

1
2

∮

C
(z̄dz−zdz̄) = e2iSC . (44)

Here SC is the area enclosed by C(t) along its counterclockwise direction. Letη = 1−χ = sech
βħhω

2 .

The Uhlmann holonomy can be simplified as

gC = Pe(1−η)
∮

C[(a
†−z̄)dz−(a−z)dz̄] = e−2i(1−η2)SC1∞, (45)

10
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where 1∞ is the identity matrix in the bosonic Fock space, which is infinite-dimensional. Inter-

estingly, although gC is generated by AU , which belongs to an infinite-dimensional Lie algebra, it

only forms a subgroup of U(1). Finally, the Uhlmann phase is given by

θU = arg Tr [ρ(z(0))gC] = −2(1−η2)SC , (46)

where Eq. (37) has been used.

In the zero-temperature limit, limβ→∞η = 0 and θU = −2SC , exactly agreeing with the Berry

phase shown in Eq. (85). In the infinite-temperature limit, limβ→0η = 1, so θU = 0 since ρ(z(t))

is always proportional to the identity operator in this case. While the physical meaning of the

Uhlmann phase, especially the parallel-transport condition for W , awaits deeper explanations, the

agreement of the Uhlmann phase with the Berry phase as T → 0 in the case of infinite-dimensional

bosonic coherent states offers more hints that their relation may be quite general.

3.2 Fermionic coherent states

Next, we verify if the Uhlmann phase approaches the Berry phase in fermionic coherent states,

which may be constructed from the fermionic harmonic oscillator [35, 37]. We note that the

Hamiltonian of a bosonic harmonic oscillator can be cast in the form Ĥ = ħhω{a†, a}. By consid-

ering the anticommutation relations of fermions versus the commutation relations of bosons, the

Hamiltonian of a fermionic harmonic oscillator is Ĥ = ħhω2 [b
†, b] = ħhω
�

b† b− 1
2

�

. Similar to its

bosonic counterpart, the fermionic coherent state is also built via a translation to the vacuum:

|ξ〉 = D(ξ)|0〉 ≡ eb†ξ−ξ̄b|0〉. (47)

Here ξ is a Grassmann number and anticommutes with any fermionic operator. The translation

operator D(z) satisfies

D(ξ)bD†(ξ) = b− ξ, D(ξ)b†D†(ξ) = b† − ξ̄. (48)

Similarly, parallel transport of a canonical ensemble of fermionic harmonic oscillators can be gen-

erated by a series of continuous translation by D(ξ(t)), where ξ(t) is a closed curve of Grassmann

numbers with ξ(0) = ξ(τ). The corresponding density matrix is

ρ(ξ(t)) =
1

Z
e−βD(ξ(t))ĤD†(ξ(t)) = D(ξ(t))ρ(0)D†(ξ(t)), (49)

where ρ(0) = e−β Ĥ

Z with the partition function Z = e
1
2βħhω + e−

1
2βħhω = 2 cosh

βħhω
2 .

Since the system has a two-dimensional Hilbert space, the denominator of Eq. (32) is always

λ0 +λ1 = 1. Consequently, the Uhlmann connection is simplified as

AU = −[d
Æ

ρ(ξ),
Æ

ρ(ξ)]. (50)

Let N̂ = b† b be the number operator satisfying N̂2 = N̂ . It can be shown that

ρ(ξ) =
1

1+ e−βħhω
− tanh

�

βħhω

2

�

(b† − ξ̄)(b− ξ), (51)

which further implies

d
Æ

ρ(ξ) =
e

1
4βħhω − e−

1
4βħhω

Æ

e
1
2βħhω + e−

1
2βħhω

�

dξ̄(b− ξ) + (b† − ξ̄)dξ
�

. (52)

11
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The Uhlmann connection then becomes

AU =

�

e
1
4βħhω − e−

1
4βħhω
�2

e
1
2βħhω + e−

1
2βħhω

�

dξ̄(b− ξ)(b† − ξ̄)(b− ξ)− (b† − ξ̄)(b− ξ)(b† − ξ̄)dξ
�

= −χ
�

b†dξ− dξ̄b+ dξ̄ξ− ξ̄dξ
�

. (53)

To evaluate the Uhlmann holonomy, we assume ξ(t) = ζz(t), where ζ is a constant Grassmann

number, and z(t) (0≤ t ≤ τ) forms a closed curve C in the z-plane. Thus, we have

gC = Pe−
∮

AU = e−4iχζ̄ζSCPeχ
∮

C(b
†ζdz−dz̄ζ̄b). (54)

Since the fermionic Fock space is only two-dimensional, the expression of gC of the fermionic

coherent state can be directly evaluated without using the method of the bosonic coherent state.

We expand the second term in the last line of Eq. (54) as

Peχ
∮

(b†ζdz−dz̄ζ̄b) = 1+χ2

∫ τ

0

dt1

∫ t1

0

dt2(b
†ζż1 − ˙̄z1ζ̄b)(b†ζż2 − ˙̄z2ζ̄b)

= 1+χ2

∫ τ

0

dt1

∫ t1

0

dt2ζ̄ζ
�

ż1
˙̄z2 b† b− ˙̄z1ż2 bb†

�

. (55)

where the first-order term vanishes due to
∮

dz =
∮

dz̄ = 0. z1 := z(t1) and z2 := z(t2) are intro-

duced in the second-order term, and higher order terms vanish due to ζ2 = ζ̄2 = 0 or b2 = b†2 = 0.

We evaluate the integral over t2 and find the coefficient of b† b becomes
∫ τ

0
dt1

∫ t1

0
dt2ż1

˙̄z2 =
∫ τ

0
dt1ż(t1)[z̄(t1)−z̄(0)] =

∫ τ

0
dt1ż(t1)z̄(t1),

where
∫ τ

0
dt1ż(t1)z̄(0) = [z(τ) − z(0)]z̄(0) = 0 has been applied. by the polar expression of z,

z(t) = r(t)eiθ (t), and substituting żz̄ = ṙ r + ir2θ̇ and ˙̄zz = ṙ r − ir2θ̇ into Eq. (55), the second

term becomes

χ2ζ̄ζ

∫ τ

0

dt1

�

żz̄ b† b− ˙̄zzbb†
�

=
χ2ζ̄ζ

2

∫ r(τ)

r(0)

dr2(b† b− bb†) + iχ2ζ̄ζr2

∫ 2π

0

dθ(b† b+ bb†) = 2iχ2ζ̄ζSC ,

(56)

where we have applied r(τ) = r(0) and SC =
1
2 r2
∮

C
dθ . Once gain, by using ζ̄2 = ζ2 = 0, the

Uhlmann holonomy is given by

gC =
�

1− 4iχζ̄ζSC

� �

1+ 2iχ2ζ̄ζSC

�

12 = e−2i(1−η2)ζ̄ζSC12, (57)

where 12 is the identity operator acting on the two-dimensional fermionic Fock space. With the

help of Eq. (49), the Uhlmann phase of fermionic coherent state is

θU = arg Tr [ρ(ξ(0))gC] = −2(1−η2)ζ̄ζSC . (58)

The expressions of both Uhlmann holonomy and Uhlmann phase are quite similar to their bosonic

counterparts except the factor ζ̄ζ, although they are obtained by different methods. Moreover,

θU = 0 as T →∞, and θU agrees with the Berry phase shown in Eq. (90) as T → 0.

Interestingly, the results of both bosonic and fermionic coherent states exhibit an exact corre-

spondence between the Uhlmann phase in the T → 0 limit and the Berry phase. Although a full

proof of the general case is challenging (see the next section), the results shown here and the pre-

vious results [22,24,26] all support the Uhlmann-Berry correspondence in the zero-temperature

limit.

12
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3.3 Additional example: Qutrit

After establishing the correspondence between the Uhlmann and Berry phases for both types of co-

herent states, here we conduct an extra check of the Uhlmann-Berry correspondence for a system

with a finite-dimensional Hilbert space by examining the qutrit, a three-level system. A gener-

alization of the Berry phase via the geometric phase for the generalized Bloch-sphere states of a

three-level system has been discussed in Ref. [54]. The density matrix of a generic three-level sys-

tem can be expanded by the identity matrix 13 and eight Gell-Mann matrices Λi (i = 1,2 · · · , 8),

containing 8 controllable real parameters ~n = (n1, n2, · · · , n8)
T . Explicitly, ρ = 1

3

�

13 +
p

3~n · ~Λ
�

,

where ni =
1
2 Tr(ρΛi). The set B8 = {~n ∈ R

8|~n · ~n ≤ 1, ~n∗ = ~n} can be thought of as an eight-

dimensional generalized Bloch sphere. When discussing the Uhlmann phase, a generic evolution

path is a loop in B
8, which has many possibilities. To present an exact correspondence between

the Uhlmann and Berry phases, we instead simplify the qutrit model to a spin- j paramagnet with

j = 1, whose Uhlmann phase has been studied in Refs. [24,25]. A loop in the parameter space of

the spin-1 model corresponds to a loop on the two-dimensional unit sphere S2. In the following,

we verify the Uhlmann phase of the spin-1 model also reduces to the Berry phase as temperature

approaches zero. We remark that the spin-1 system is topological [24] with a finite Hilbert space

while the coherent states discussed previously are not topological but with infinite-dimensional

Hilbert spaces.

Since the three components of the j = 1 angular momentum of a spin-1 paramagent can be

spanned by the Gell-Mann matrices via Ĵx =
1p
2
(Λ1 +Λ6), Ĵy =

1p
2

�

Λ2 +Λ7

�

, and Ĵz =
1
2

�

Λ3 +
p

3Λ8

�

,

the Hamiltonian of a spin-1 paramagnet in an external magnetic field can be expressed as Ĥ = µBB·Ĵ= µB
~d·~Λ,

where ~d = (
Bxp

2
,

Byp
2
,

Bz

2 , 0,0,
Bxp

2
,

Byp
2
,
p

3Bz

2 )
T , ħhĴ is the spin angular momentum of the particle, and

µB is the Bohr magneton. The density matrix of the spin- j paramagnet in canonical emsemble is

ρ = 1
Z e−β Ĥ . Therefore, the spin-1 model can be realized by a suitable choice of the parameter

(n1, · · · , n8)
T of the original qutrit model. The external magnetic field B can be parameterized

by the polar and azimuthal angles θ ,φ as B = B(sinθ cosφ, sinθ sinφ, cosθ)T. The Hamiltonian

can be diagonalized as Ĥ = V (θ ,φ)ω0JzV †(θ ,φ), where V (θ ,φ) = e−iφJze−iθ Jy eiφJz . Thus, the

eigenstates of Ĥ can be constructed as

|ψ j
m(θ ,φ)〉 = e−iφ(

Jz
ħh −m)e−

i
ħhθ Jy | jm〉, m = − j,− j + 1, · · · , j − 1, j. (59)

To simplify the notations, we adopt the natural unites such that kB = ħh = 1, and introduce

ω0 = µBB. A loop on S2 can be expressed as (θ(t),φ(t)), and V (θ(t),φ(t)) actually defines

an Uhlmann process if Uhlmann’s parallel-transport condition is satisfied. By using

[d
p
ρ,
p
ρ] =
{dV V †, e−βH}

Z
+

2e−
βH
2 VdV †e−

βH
2

Z
, (60)

it can be shown that the Uhlmann connection is

AU = −iχ(Jx sinφ − Jy cosφ)dθ − iχ
�

(Jx cosφ + Jy sinφ) cosθ − Jz sinθ
�

sinθdφ. (61)

More details can be found in Ref. [24]. The Uhlmann phase depends on the path-ordered integral

involving the matrix-valued AU . If the evolution path is chosen as a circle of longitude or the

equator (i.e., great circles), the exact expression of the path-ordered integral can be obtained.

Interestingly, the Uhlmann phases for the two types of paths share the same expression:

θU = arg

j
∑

m=− j

e−βω0m

Z(0)
d j

mm(2πΩχ), (62)

13
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where χ = 1 − sech(βω0/2), Ω is the winding number and d
j

mm′(Θ) = 〈 jm|e−iΘJy | jm′〉 is the

Wigner d-function. For j = 1, the explicit expression of the Uhlmann phase is

θU = arg
1

Z(0)

§

cosh(βω0)

�

1+ cos

�

2πΩsech
βω0

2

��

+ cos

�

2πΩsech
βω0

2

�ª

, (63)

where Z(0) = 1+2 cosh(βω0). As T → 0 or β →∞, sech
βω0

2 = 0, and θU = arg 1= 2π= 0 (mod 2π).

According to Eq. (59), the Berry phase of the m-th eigenstate along a loop C(t) is evaluated

as

θBm(C) = i

∫ τ

0

dt〈ψ j
m|

d

dt
|ψ j

m〉

=

∫ τ

0

dt〈 jm|
�

−Jx sinθφ̇ + (Jz cosθ −m)ϕ̇ + Jy θ̇
�

| jm〉

= −m

∮

C

(1− cosθ)dφ. (64)

For the ground state of j = 1 along the equator, we have m = −1 and θ = π
2 . The Berry phase is

then θB−1 = 2π = 0 (mod 2π), which coincides with the value of θU as T → 0. Therefore, the

simplification of a qutrit to a spin-1 paramagnet offers another exactly solvable example of the

correspondence between the Uhlmann and Berry phases.

4 Correspondence between Uhlmann phase and Berry phase

As shown in Sec. 2, the geometric frameworks of the Berry phase and Uhlmann phase are quite

similar. The theory of the Uhlmann phase is built by following almost analogous steps as those

of the Berry phase. They both start from the parallel-transport conditions, from which the corre-

sponding Ehresmann connection ω is introduced to satisfy

ω(X̃ ) = 0, if X̃ is a horizontal vector,

ω(u#) = u, if u# is a vertical vector. (65)

The Berry and Uhlmann connections are the pullbacks of the corresponding ω. This is why

Uhlmann phase is a suitable generalization of the Berry phase to finite temperatures, at least from

the point of view of geometry. The comparison leads to the question on whether the Uhlmann

phase always reduces to the Berry phase as T → 0.

In the following, a conditional proof will be constructed in a progressive manner. Firstly, we

point out a class of special case that should not be considered in the correspondence by noting

that the theory of the Uhlmann phase is built on the assumption that the density matrix must

be full rank, which excludes pure states if the dimension of the Hilbert space is larger than one.

Therefore, systems with a 1D Hilbert space should be treated as special cases because there is

no sensible meaning of thermal distribution, as the system has no other states to distribute the

weight. In Appendix B, we show the Uhlmann connection vanishes identically for systems with

a 1D Hilbert space, leading to a vanishing Uhlmann phase for those special cases. In contrast,

the Berry phase of a system with a 1D Hilbert space needs not vanish since a pure state may be

considered as a 1D Hilbert space during an adiabatic evolution.

14
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For the more general cases, it has been reported that the Uhlmann phase indeed approaches

the Berry phase as T → 0 for two-level and four-level systems [22,26]. We already demonstrated

that the spin-1 system supports the correspondence, and one may verify this is the case for generic

spin- j paramagnets in magnetic fields by following Refs. [24,25]. However, it has not been proven

if the correspondence between the Uhlmann and Berry phases is a general conclusion since at first

look, the expressions of the Berry phase and the Uhlmann phase are in general different. If the

question has a positive answer, it will provide a correspondence between the geometric phases of

pure and mixed states even though the underlying bundles are very different, in the sense that

the fiber bundle associated with the Berry phase may be nontrivial while that associated with the

Uhlmann bundle is always trivial [46]. Thus, the correspondence cannot be at the level of the

underlying bundles.

To understand the correspondence between the Berry and Uhlmann phases, we analyze the

Uhlmann connection (35) and search for any relation to the Berry connection. We assume the

quantum system is in a thermal-equilibrium state at temperature T with ρ = e−β Ĥ

Z , where Z

is the partition function. Since ρ =
∑

n

p

λn|n〉〈n| and Ĥ share the eigenvectors, we assume

Ĥ|n〉 = En|n〉. Furthermore, we will write |n〉 ≡ |En〉 in the following and only consider the case

without energy degeneracy for simplicity. Let E0 < E1 < · · · , then

lim
T→0

λn

λm

= lim
β→∞

e−β(En−Em) = 0, if n> m. (66)

Note that λn 6= λm in Eq. (35). Thus, we set λmin = min{λn,λm} and λmax = max{λn,λm}. This

implies

lim
T→0

�p

λn −
p

λm

�2

λn +λm

= lim
T→0

�

1−
r

λmin

λmax

�2

1+
λmin

λmax

= 1. (67)

The Uhlmann connection (35) in the zero-temperature limit then becomes

AU →−
∑

n6=m

|n〉〈n|d|m〉〈m|

= −
∑

nm

|n〉〈n|d|m〉〈m|+
∑

n

|n〉〈n|d|n〉〈n|

= −
∑

n

d|n〉〈n|+
∑

n

〈n|d|n〉|n〉〈n|. (68)

Interestingly, the second term of AU is the Berry connection for each energy level. When evaluating

θU by Eq. (28), every step must be treated carefully. We emphasize that the trace must be taken

after evaluating the path-ordered integral since the path-ordering and Taylor-expansion opera-

tions may not commute with each other. Moreover, the path-ordered integrals themselves are also

challenging. For example, when dealing with θU of bosonic coherent states in the previous section,

we have developed a technique to handle the difficulties. In some other situations [22,24,25], AU

may be proportional to a constant matrix when the system follows a special path in the parameter

space, thereby making the the path-ordering operator P manageable. However, those cases de-

pend on the details of the loop C(t) and even the specific coordinates chosen to evaluate AU , so

they are not easy to be generalized to generic systems. The challenge of evaluating the Uhlmann

15



SciPost Physics Core Submission

phase is somewhat similar to the difficulties in dealing with the time-ordering operation in quan-

tum field theory, where techniques like the Feynman diagrams have been developed to facilitate

a perturbative expansion [33,55].

Nevertheless, a conditional proof can be obtained to show that the Uhlmann phase indeed ap-

proaches the Berry phase in the zero-temperature limit. An examination the bosonic and fermionic

coherent states discussed previously reveals two important features: (1) The Uhlmann and Berry

phases are both generated by unitary processes, and (2) the Berry connection of each energy level

has the same expression, as indicated by Eqs. (83) and (88). Here the unitary Uhlmann process

means the density matrix follows Eq. (37) with z = z(t), and the eigen-energies En’s remain

unchanged during the process. Hence, we consider a class of unitary Uhlmann processes charac-

terized by those two features. When the parameter takes the value t, each energy level satisfies

|n(t)〉 = D(t)|n(0)〉 with an unitary operator D(t) satisfying the cyclic condition D(τ) = 1. The

Berry connection for each level is assumed the same:

AB = 〈n(t)|d|n(t)〉 = 〈n(0)|D†dD|n(0)〉. (69)

According to Eq. (68), in the T → 0 limit, the Uhlmann connection is

lim
T→0

AU = −
∑

n

d|n(t)〉〈n(t)| +
∑

n

〈n(t)|d|n(t)〉|n(t)〉〈n(t)| = AB − dDD
−1, (70)

where the completeness of the instantaneous energy eigenstates has been applied. Interestingly,

Eq. (70) indicates that the Uhlmann and Berry connections are off by a gauge transformation,

which actually renders no contribution after a contour integral along a closed loop. Explicitly,
∮

dDD
−1 =
∮

d lnD = 0. Hence, the Uhlmann phase in the zero-temperature limit is given by

lim
T→0
θU = arg Tr[ρ(0)Pe−

∮

AU ] = arg
¦

Tr[ρ(0)]e−
∮

AB

©

= θB, (71)

where Eq. (70) has been used, and the path-ordering is dropped in the second line since AB ∈ u(1).

Importantly, the two conditions of the previous proof may be relaxed or changed further.

Firstly, the condition that the Uhlmann process is unitary can be dropped. We recall the generic ex-

pression (68) and introduce the unitary transformationD(t) =
∑

n |n(t)〉〈n(0)| satisfying |n(t)〉 =D(t)|n(0)〉.
Although D

†
D =DD

† = 1, it does not necessarily imply the corresponding physical process is uni-

tary since the condition En(t) = En(0) may not be guaranteed during the process. Therefore, the

density matrix does not necessarily obey the transformation (37). Moreover, the condition that

the Berry connection of each level is the same can be replaced by introducing the Berry connection

matrix:

ÂB =
∑

n

ABn|n(t)〉〈n(t)| =
∑

n

〈n(t)|d|n(t)〉|n(t)〉〈n(t)|. (72)

In this more general case, it can be shown that AU = ÂB−dDD
−1. Once again, we have

∮

dDD
−1 = 0.

According to Eq. (66), the weight factor of the ground state is infinitely larger than that of any

excited state when T → 0, i.e., λ0 =
e−βE0

Z ≈ 1. Thus, the initial density matrix can be reasonably

approximated as

ρ(0)≈ |E0(0)〉〈E0(0)|, (73)

and the Uhlmann phase is then

lim
T→0
θU = arg〈E0(0)|Pe−

∮

AU |E0(0)〉 = arg〈E0(0)|Pe−
∮

ÂB |E0(0)〉. (74)
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Since ÂB ∈ u(N ), the path-ordering operation P is nontrivial in general. Therefore, we need to

add a condition here. When ÂB is a diagonal matrix in the space spanned by {|n(0)〉} or a constant

matrix as the system traverses a specific loop in the parameter space, the path-ordering operation

P is trivial, and the integrals can be carried out. In those situations, the Uhlmann phase becomes

lim
T→0
θU = arg〈E0(0)|e−

∮ ∑

n ABn|n(t)〉〈n(t)||E0(0)〉

= arg
�

|〈E0(0)|En(t)〉|2〈E0(0)|e−
∮ ∑

n ABn|n(0)〉〈n(0)||E0(0)〉
�

= θB0, (75)

where |En(t)〉 = |n(t)〉 has been used, and θB0 is the Berry phase of the ground state. The proof of

the correspondence between the Berry and Uhlmann phases is already quite general although we

still need the relaxed assumption of the form of ÂB. We expect the most general proof, which still

needs to exclude the special cases with a 1D Hilbert space, will be completed in future research

of the Uhlmann phase.

5 Experimental implications

Since bosonic coherent states play a fundamental role in quantum optics [39–41], we discuss

possible experimental realizations and measurements of the Uhlmann phase of bosonic coherent

states. We first outline the basic ideas for constructing a protocol and leave the detailed techniques

for future studies. There have been many ways to realize and manipulate coherent states by

various experimental strategies [56–60], which may be implemented to fill in the necessary steps

for the experimental demonstration of the Uhlmann phase of many-body systems, exemplified by

the bosonic coherent states.

There are two important issues that need to be addressed in the protocol. The first is to

suitably represent a mixed state, which can be characterized by the purification or purified state

of a density matrix. The purification W =
p
ρU is not necessarily a Hermitian matrix, and its

physical interpretation is still under debate. With the advancement of quantum computation, the

purified state |W 〉 has become realizable [24,61]. Therefore, the purified state is a more viable way

for physical realizations. Explicitly, one can construct an entangled state between the system of

interest and an ancilla encoding the environmental effects in the form |W 〉=
∑

n

p

λn|n〉s⊗U T |n〉a.

Here the subscripts s and a respectively represent the system and ancilla. The thermal distribution

determines the coefficients while the U(N ) factor acts on the ancilla.

The second issue is to design a proper physical process for simulating the parallel transport

of |W 〉 and generating the correct Uhlmann process. This is complicated by the fact that |W 〉 is

formally a state vector and cannot satisfy a matrix-valued equation that is fully equivalent to the

condition (18). A solution [24] is to follow the condition (17) to perform parallel transport of the

state. An explicit construction is as follows. An Uhlmann process can be generated by controlling

the parameter z, which forms a closed curve C(t) = z(t) (0 ≤ t ≤ τ) in the parameter space,

which in this case is the complex plane. Thus, the density matrix of a bosonic coherent-state

harmonic oscillator is given by

ρ(z(t)) =

∞
∑

n=0

λn|n, z(t)〉〈n, z(t)| =
∞
∑

n=0

λnD(z(t))|n〉〈n)|D†(z(t)), (76)
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where λn =
1
Z e−βħhω(n+

1
2 ) is independent of t since D(z(t)) is a unitary transformation. The corre-

sponding purified state is given by

|W (z(t))〉 =
∞
∑

n=0

Æ

λnD(z(t))|n〉s ⊗ D∗(z(t))|n〉a , (77)

where D∗ = (D†)T has been applied. However, we emphasize there is a subtlety about the trans-

pose [24,62], as the purified state needs to satisfy the Hilbert-Schmidt inner product (16). More-

over, Eq. (39) leads to an equivalent identity:

[dD(z)]D†(z) =

�

a† − 1

2
z̄

�

dz −
�

a− 1

2
z

�

dz̄. (78)

Using these two equations and

d

dt
|W (z(t))〉 =

∞
∑

n=0

Æ

λn(Ḋ ⊗ D∗+ D ⊗ Ḋ∗)|n〉s ⊗ |n〉a, (79)

the weakened parallel-transport condition (17) can be verified straightforwardly:

〈W (z(t)| d
dt
|W (z(t))〉 =

∞
∑

n=0

λn

�

s〈n|D†Ḋ|n〉s + a〈n|ḊD†|n〉a
�

= 0. (80)

Therefore, if the purified state follows the parallel-transport condition of Eq. (80), the evolu-

tion simulates an Uhlmann cycle as t goes from 0 to τ. The Uhlmann phase is then given by the

phase difference between the initial and final purified states:

θU = arg〈W (0)|W (τ)〉. (81)

The expression now involves (I) the transition amplitude between the initial and final purified

states and (II) phase extraction. For bosonic coherent states, the former may be realized by en-

tangling two coherent states with one acting as the system and the other as the ancilla and evolve

the system according to the parallel-transport condition. The latter may be performed by interfer-

ometric or tomographic means on the overlap between the initial and final purified states. Since a

bosonic coherent state is a many-body state involving infinite particles, both tasks are challenging

and await future experimental realizations.

6 Conclusion

Through the bundle language, we concisely show the analogous frameworks of the Berry phase

and Uhlmann phase via the concepts of parallel transport and holonomy. As concrete examples, we

present the analytic expressions of the Uhlmann phases of bosonic and fermionic coherent states

and reveal the geometric information carried by them. In addition to the smooth dependence

on temperature, the Uhlmann phases of both cases approach their corresponding Berry phases as

T → 0, providing another set of exactly solvable examples supporting the agreement between the

Uhlmann and Berry phases in the zero-temperature limit. Except special cases like those with a

1D Hilbert space, we propose that the correspondence between the Uhlmann and Berry phases

is a general property of quantum systems. The conditional proof of the correspondence lays the

foundation for a complete proof in the future and provides more insights into the relations between

pure and mixed states.
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A Berry phase of coherent states

A.1 Bosonic coherent state

We assume the state |n, z〉 = D(z)|n〉 of a bosonic harmonic oscillator evolves adiabatically along

the curve C(t) := z(t) with z(0) = z(τ) (0 ≤ t ≤ τ). The Berry phase generated during the

evolution is

θBn(C) = i

∫ τ

C ,0

dt〈n, z(t)| ∂
∂ t
|n, z(t)〉 = i

∮

C

dx · 〈n|D†(z)∇D(z)|n〉, (82)

where ∇= ~ex
∂
∂ x + ~ey

∂
∂ y is the gradient at the point z = x + i y. The Berry connection is given by

ABn = 〈n|D†(z)dD(z)|n〉 = 1

2
(z̄dz − zdz̄) . (83)

Further calculations show that

D†(z)
∂ D(z)

∂ x
= −iy + (a† − a), D†(z)

∂ D(z)

∂ y
= ix + i(a† + a). (84)

Therefore,

θBn(C) =

∮

C

(ydx − xdy) =
i

2

∮

C

(z̄dz − zdz̄) = −2SC . (85)

We emphasize that the contour integral is evaluated along the counterclockwise direction of C(t).

A.2 Fermionic coherent state

Similarly, the Berry connection of the fermionic coherent state |n,ξ〉= D(ξ)|n〉 is

ABn = 〈n,ξ|d|n,ξ〉 = 〈n|D†(ξ)dD(ξ)|n〉. (86)

Using

D†(ξ)dD(ξ) =

�

b† +
1

2
ξ̄

�

dξ+

�

b+
1

2
ξ

�

dξ̄, (87)

we get

ABn =
1

2

�

ξ̄dξ+ ξdξ̄
�

=
1

2

�

ξ̄dξ− dξ̄ξ
�

, (88)

which has a similar expression to its bosonic counterpart (83). Substituting ξ = ζz, where ζ is a

constant Grassmann number, into Eq. (88), it becomes

ABn =
1

2
ζ̄ζ (z̄dz − zdz̄) . (89)
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The Berry phase is

θBn = i

∮

C

ABn = −2ζ̄ζSC . (90)

The expression is also similar to the Berry phase of bosonic coherent states except the factor of

ζ̄ζ.

B Uhlmann connection in 1D Hilbert space

If we consider the density matrix of a 1D Hilbert space, ρ(t) = |ψ(t)〉〈ψ(t)|, it is straightforward

to show that

[d
p
ρ,
p
ρ] = d|ψ〉〈ψ|+ |ψ〉(d〈ψ|)|ψ〉〈ψ| − |ψ〉d〈ψ| − |ψ〉〈ψ|(d|ψ〉)〈ψ|. (91)

Thus, 〈ψ|[dpρ,
p
ρ]|ψ〉 = 0, which leads to AU = 0. This also implies that the Uhlmann con-

nection and Uhlmann phase of a pure state are always zero. In contrast, the corresponding Berry

connection after a cyclic adiabatic process, AB = 〈R|d|R〉, and the Berry phase θB = i
∮

AB is not

zero in general. Here |ψ(t)〉 = e−
∫ t

0
〈R(t ′)| d

dt′ |R(t
′)〉dt ′ |R(t)〉. Since a single pure state is equivalent to

a system in a 1D Hilbert space and may accumulate a nontrivial Berry phase, the Uhlmann phase

does not reduce to the Berry phase as T → 0 in this type of special cases.
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