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We apply the Lindblad quantum master equation to two examples of one-dimensional topological
systems, the Su-Schrieffer-Heeger (SSH) model and Kitaev chain, to study their particle and ther-
mal transport. The steady-state properties are obtained by decomposing fermions into Majorana
fermions and extracting their correlation functions. We focus on the particle and thermal currents
flowing through the bulk when the system is driven by two reservoirs coupled to the two ends. The
ratio of the currents of the SSH model from the topological and trivial regimes with the same band-
width demonstrates suppression of transport due to the edge states, which couple to the reservoirs
but do not participate in transport. A similar comparison cannot be performed for the Kitaev chain
because the topological and trivial regimes have different bandwidths, and the edge states are less
significant away from the transition. Therefore, the results contrast different topological properties
in quantum transport.

I. INTRODUCTION

Transport has been an important means for reveal-
ing signatures of topological materials. For example,
the integer quantum Hall conductance is proportional
to the Chern number [1], and its generalization provides
early experimental evidence of topological insulator [2].
Meanwhile, the Thouless pump has been realized in cold-
atom systems [3, 4] to demonstrate quantized transport
through modulation of topological systems, and Ref. [5]
summarizes recent progresses. There are reviews on topo-
logical transport in Dirac electronic systems [6] and
semimetals [7], showing the close connection between
topology and transport.
On the theoretical side, transport coefficients may be

extracted from linear response theory, Green’s function
methods, or other means [8–11]. The Lindblad quantum
master equation was designed to generate completely
positive evolution of a system influenced by its envi-
ronment [12, 13] and is suitable for studying transport
beyond the linear-response limit with a simplified de-
scription of the system-reservoir coupling. For example,
the dependence of electronic conductance of a 1D hop-
ping model on the system-reservoir coupling [14] and
effects from extended reservoirs have been discussed us-
ing normal fermions [15] and the Kitaev chain [16] in the
Lindblad formalism. Effects of coupling strength, impu-
rities, and disorder of fermionic systems in the Lindblad
formalism have been analyzed in Refs. [17–19]. When
applied to normal fermions with a quadratic Hamilto-
nian, the results from the Lindblad equation agree with
those from the Landauer formalism [20, 21]. The Lind-
blad equation has been applied to particle and thermal
transport in bosonic systems [22] and show geometry-
based local circulation [23, 24]. For bosonic systems
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with a quadratic Hamiltonian, the results from the Lind-
blad equation also agree with those from the quantum
Langevin equation [24].

Here we use the Lindblad equation to investigate par-
ticle and thermal transport of two paradigmatic 1D topo-
logical systems, the SSH model [25] and Kitaev chain [26].
The former is an example of a topological insulator while
the latter is a topological superconductor. The SSH
model has been realized by cold-atoms in optical super-
lattices [27–29], chlorine on Copper surface [30], graphene
nanoribbons [31, 32], and electric circuits [33]. Some
measurements of thermal transport of polymer-based ma-
terials may be related to the SSH model [34]. On the
other hand, the Kitaev chain may be realized by quantum
dots [35] or simulated on quantum computers [36–38].
There have been theoretical studies of the SSH model in
the presence of disorder or long-range interactions [39–41]
and similarly for the Kitaev chain [42].

For the study of thermal transport, we note that differ-
entiating the thermodynamic definitions of the thermal
current related to the work and heat [43, 44] helps re-
solve the concern on the thermodynamic consistency of
the local (position basis) form of the Lindblad equation
in the literature [45–48]. For example, there are multiple
ways of defining the thermal current in open quantum
systems [44, 49, 50]. Reference [49] presents two differ-
ent expressions of the thermal current of a linear chain,
one derived at the boundary and one derived in the bulk.
As explained in Ref. [44], the expression at the boundary
contains both heat and work while the one in the bulk
is directly from heat. Here we will focus on the thermal
current associated with heat in our discussion of thermal
transport.

Our results will show a topological suppression of par-
ticle and thermal transport of the SSH model due to the
localized edge states. In contrast, topological proper-
ties of the Kitaev chain do not have significant influence
of particle and thermal transport within the Lindblad
formalism. We will show the difference comes from the
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dependence of their topological properties on the band-
width and the form of their edge states. We mention that
particle transport of the SSH model has been studied
using the Green’s function method [51], showing edge-
state signatures in the local density of state. Meanwhile,
the Kitaev chain has been studied using the Green’s
function method [52], quantum Langevin equation plus
Green’s function [53], and Green’s function plus master
equation [54] to show maps of the conductance and by
linear response theory [55] to analyze thermoelectricity.
Studies of thermal transport through classical harmonic
systems described by classical Langevin equations have
shown suppression of the thermal conductance due to the
emergence of localized edge modes [56] and geometry-
based circulation [57]. Moreover, localized edges states
have been observed in heat diffusion through mechani-
cal systems [58]. Our exact results will clarify the cor-
respondence between specific topological properties and
transport phenomena via the two concrete examples.
The rest of the paper is organized as follows. Sec. II

outlines the Lindblad formalism and its application to the
study of quantum transport in the two exemplary topo-
logical systems. Sec. III shows the correlations functions
that lead to the particle and thermal currents. Sec. IV
presents the suppression of transport due to the edge
states in the SSH model. Transport in the Kitaev chain,
in contrast, is shown to be dominated by the bandwidth
and insensitive to topological effect. Sec. V concludes
our study. Some derivations are summarized in the Ap-
pendix.

II. LINDBLAD FORMALISM OF QUANTUM

TRANSPORT

To obtain the expressions of the particle and thermal
currents through a 1D quantum system of size N , we
assume that the two ends of the system are coupled to
two different fermionic baths with different temperatures.
Here we will consider a local version of the Lindblad mas-
ter equation with the dissipator operators only applied to
the sites at the two ends of the system. The equation of
motion of the density matrix of the system is given by

dρ

dt
= −i[H, ρ] +

∑

ν

(

LνρL
†
ν − 1

2
{L†

νLν , ρ}
)

= −i[H, ρ] +
[

γLNL

(

c†1ρc1 −
1

2
{c1c†1, ρ}

)

+

γL(1−NL)
(

c1ρc
†
1 −

1

2
{c†1c1, ρ}

)]

+

[

γRNR

(

c†NρcN − 1

2
{cNc†N , ρ}

)

+

γR(1−NR)
(

cNρc†N − 1

2
{c†NcN , ρ}

)]

. (1)

Here γL and γR are the system-reservoir coupling con-
stants. NL and NR are fermion numbers in the baths.
Here we assume a single-mode approximation of the

baths, so they only exchange particles with the system
at the chemical potential µ, leading to

Ns =
1

exp(−µ/Ts) + 1
, s = L, R. (2)

If we choose TL > TR, it will drive a thermal current
along the chain from left to right. The matching of the
energy levels in the reservoirs with µ is to avoid addi-
tional energy loss when the fermions are exchanged be-
tween the system and reservoirs, as it is known that en-
ergy mismatches at the system-reservoir interfaces can
lead to energy dissipation in the Landauer treatment of
ideal conductors [9]. Eq. (2) thus allows us to focus on
the effects from different temperatures of the reservoirs.
We caution that µ is non-vanishing in the single-mode
approximation, or there will be no transport because the
two reservoirs will have the same particle density regard-
less of their temperatures. One may go beyond the single-
mode approximation and have different values of µL,R of
the reservoirs and µ for the system to investigate addi-
tional energy dissipation, which is beyond the scope of
the present work. We remark that it is straightforward
to generalize the set up to have the reservoirs connected
to multiple sites of the system.
We will contrast the quantum transport of particles

and heat through two 1D topological systems using the
Lindblad quantum master equation. Our first example is
the SSH model with the Hamiltonian [25, 59]

H =

N/2
∑

m=1

[

w1(c
†
2m−1c2m + c†2mc2m−1) +

w2(c
†
2mc2m+1 + c†2m+1c2m)

]

−
N
∑

j=1

µc†jcj . (3)

Here cj and c†j are the fermion annihilation and creation
operators on site j, respectively, and N is the total num-
ber of sites. The topology of the SSH model is charac-
terized by the winding number with periodic boundary
condition or the localized edge states with open bound-
ary conditions [59], and w2/w1 > 1 (or < 1) corresponds
to the topological (or trivial) regime. Due to the coupling
to the reservoirs, an onsite potential playing the role of
the chemical potential µ is also introduced. The presence
of µ breaks the chiral symmetry of the SSH model, but
the winding number and edge states are not affected.
The second example is the Kitaev chain [26]. The SSH

model represents a topological insulator while the Ki-
taev chain is a p-wave topological superconductor. The
Hamiltonian of the Kitaev chain in real space is given by

H =
N
∑

j=1

[

− w(c†jcj+1 + c†j+1cj)− µc†jcj +

∆(c†jc
†
j+1 + cj+1cj)

]

. (4)

Here ∆ is the order parameter from nearest-neighbor
pairing. The topology of the Kitaev chain is character-
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ized by the Z2 index of the Majorana number with peri-
odic boundary condition and the emergence of localized
edge states with open boundary condition [26]. For our
studies of quantum transport, we assume open bound-
ary condition for the above two models. We remark that
the SSH model respects particle conservation in isolation
while the Kitaev chain does not. Ref. [16] discussed im-
plications of particle non-conserving effects of the Kitaev
chain with extended reservoirs.

A. Time evolution of correlation functions

For fermionic systems with quadratic Hamiltonians, it
is more challenging to directly solve the density matrix
from Eq. (1) than finding the time evolution of the cor-
relation functions and then obtaining the physical quan-
tities of interest from the correlation functions. To this
end, it is instructive to define the Majorana fermion op-
erators as

cj =
1

2
(a2j−1 + ia2j), c†j =

1

2
(a2j−1 − ia2j), (5)

which satisfy {ai, aj} = 2δi,j. Then we define the fol-
lowing correlation functions in terms of the Majorana
fermions as

Knm = Tr(ρΓ̂nm), Γ̂nm =
i

2
[an, am]. (6)

Here the commutator is anti-symmetric, so a factor i is
included to make the operator Γ̂nm Hermitian.
To find the time evolution of Kmn, we use the method

outlined in Ref. [60] to transform the Lindblad equation
(1) with a quadratic Hamiltonian and linear dissipator
operators to the equation of motion for the correlations.
H and Lµ are expressed in term of the Majorana fermions
as

H =
∑

jk

ihjk

2
ajak, Lµ =

∑

j

lµjaj , Lµ =
∑

j

l∗µjaj .(7)

Here hij denote the elements of a real anti-symmetric
matrix h satisfying hij = −hji. We find that the equation
of motion of the correlation matrix K is given by

∂

∂t
K = 2[h,K]− 2{X,K} − 4Y. (8)

Here X and Y are the real and imaginary parts of the
matrix M defined as

Mjk =
∑

µ

l∗µj lµk, M = X + iY. (9)

Here M is a Hermitian matrix. Then X and Y , as the
real and imaginary parts of M , must satisfy the relations
X = XT and Y = −Y T . The derivation of Eq. (8) is
shown in Appendix A.
Now we apply the general formalism to the Lindblad

equation (1). It can be shown that M is a block-diagonal
matrix given by

M = diag
{

M1,M2, · · · ,MN

}

. (10)

Here M1 =
γL

4
[σ0+(1−2NL)σ2] and MN = γR

4
[σ0+(1−

2NR)σ2], where σ0 is the 2 by 2 identity matrix, and σi

with i = 1, 2, 3 are the Pauli matrices. Only the first and
last 2 × 2 blocks along the diagonal are non-zero. Then
the real matrix X is given by

X = diag
{

X1, X2, · · · , XN

}

, (11)

where X1 = γL

4
σ0 and XN = γR

4
σ0. Similarly, Y is given

by

Y = diag
{

Y1, Y2, · · · , YN

}

, (12)

where Y1 = γL

4
(1 − 2NL)(−iσ2) and YN = γR

4
(1 −

2NR)(−iσ2). Again, only the first and last 2 × 2 blocks
along the diagonal are non-zero.
After setting up the Lindblad equation and the corre-

sponding equations for the correlations, we rewrite the
Hamiltonian in terms of the Majorana fermions. For the
SSH model,

H =
i

2

[

∑

j

(−µa2j−1a2j) +
∑

j∈odd

w1(a2ja2j+1 +

a2j−1a2j+2) +
∑

j∈even

w2(a2ja2j+1 + a2j−1a2j+2)
]

.

(13)

The nonzero elements of h are given as follows.

h2j−1,2j = −h2j,2j−1 = −µ

2
, (14)

h2j,2j+1 = −h2j+1,2j = −h2j−1,2j+2 = h2j+2,2j−1

= −w1

2
, j ∈ odd; (15)

h2j,2j+1 = −h2j+1,2j = −h2j−1,2j+2 = h2j+2,2j−1

= −w2

2
, j ∈ even. (16)

For the Kitaev chain,

H =
i

2

[

N−1
∑

j=1

(

− µa2j−1a2j + (∆ + w)a2ja2j+1 +

(∆− w)a2j−1a2j+2

)

− µa2N−1a2N

]

. (17)

The nonzero elements of h are given as follows.

h2j−1,2j = −h2j,2j−1 = −µ

2
, (18)

h2j,2j+1 = −h2j+1,2j =
∆+ w

2
, (19)

h2j−1,2j+2 = −h2j+2,2j−1 =
∆− w

2
. (20)

B. Steady state

For a non-zero Y , there will be at least one steady
state. In the cases studied here, we only found one steady
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state for each setup. The correlation functions in the
steady state Ks satisfy [h,Ks]−{X,Ks} = 2Y . It is con-
venient to rewrite the expression as (h−X)Ks−Ks(h+
X) = 2Y , which can be expressed by a system of linear
equations [61] as

[

(h−X)⊗ I − I ⊗ (h+X)T
]

(Ks)vec = 2(Y )vec.(21)

Here I is the identity matrix with the same dimension as
h, and Yvec is the matrix Y written as a vector. There-
fore, we are able to obtain the steady-state solution with-
out the distraction of the transient behavior.

III. CORRELATION FUNCTIONS AND

CURRENTS

The correlation functions of the original fermions can
be expressed in terms of the Majorana-fermion correla-
tion functions Kij as follows. For i 6= j,

〈c†i cj〉 =
1

4

[

(K2i−1,2j −K2i,2j−1)−

i(K2i−1,2j−1 +K2i,2j)
]

, (22)

〈cicj〉 =
1

4

[

(K2i−1,2j +K2i,2j−1)−

i(K2i−1,2j−1 −K2i,2j)
]

, (23)

and for i = j, we find that

〈c†i ci〉 =
1

2

[

1 +K2i−1,2i

]

. (24)

Moreover, 〈cici〉 = 0, which is consistent with the Fermi
statistics. From these correlation functions, we can com-
pute many observable quantities. An example is the den-
sity at each site given by

nj = 〈c†jcj〉. (25)

A. Particle and thermal currents of SSH model

In order to define the particle and thermal currents of
the SSH model, we write the Hamiltonian (3) as H =
∑N−1

j=1 Hi,j+1 with

Hj,j+1 = w̄j(c
†
jcj+1 + c†j+1cj)− µc†jcj . (26)

Here we define w̄j , given by

w̄j =

{

w1, j ∈ odd,
w2, j ∈ even.

Then the particle current operator from site j to site j+1
can be defined as

(Ĵp)j,j+1 =
dnj

dt

∣

∣

∣

R
≡ i[c†jcj , Hj,j+1]. (27)

Here |R means that the time change is only caused by
the Hamiltonian across the sites j and j + 1. With this
definition, the particle current operator is

(Ĵp)j,j+1 = iw̄j(c
†
jcj+1 − c†j+1cj). (28)

In order to define the thermal current, we consider the
Hamiltonian of the left part of system. To be precise,
the left part includes the lattice sites form i = 1 to i = j
with 1 < j < N . Thus,

HL =

j
∑

i=1

Hi,i+1. (29)

The thermal current operator between the j and j + 1
sites is then given by

(Ĵt)j,j+1 =
dHL

dt
= i[HL, H ] = i[Hj,j+1, Hj+1,j+2].(30)

A straightforward calculation of the above commutator
gives

(Ĵt)j,j+1 = i
[

w1w2(c
†
jcj+2 − c†j+2cj)−

w̄jµ(c
†
jcj+1 − c†j+1cj)

]

. (31)

The particle and thermal currents of the SSH model,
Jp,t = Tr(ρĴp,t) can be expressed in terms of the fermion
correlation functions. We have a remark about the parti-
cle and thermal currents in the bulk: The operator forms
of the currents seem to have no information regarding the
reservoirs or system-reservoir coupling. This is because
in the Lindblad formalism, the system density matrix al-
ready contains those information. The bulk-current op-
erators, on the other hand, are local operators within the
system. When taking the ensemble average, the expecta-
tion values Jp,t reflect the total properties of the systems,
reservoirs, and system-reservoir coupling. We also cau-
tion that the bulk-current expressions should not be used
at the system-reservoir interfaces (j = 1 or N) because
there may be additional contributions of thermodynamic
work in the expressions, as explained in Ref. [44].

B. Particle and thermal currents of Kitaev chain

The same definitions also apply to the Kitaev
chain with the Hamiltonian (4) expressed as H =
∑N−1

j=1 Hi,j+1, where

Hj,j+1 = −w(c†jcj+1 + c†j+1cj)− µc†jcj +

∆(c†jc
†
j+1 + cj+1cj). (32)

Then the particle current operator from site j to site j+1
is given by

(Ĵp)j,j+1 = −iw(c†jcj+1 − c†j+1cj) + i∆(c†jc
†
j+1 − cj+1cj).(33)

The first and second parts represent the contributions
from single-particles and pairs, respectively.



5

In order to find the thermal current operator of the
Kitaev chain, we have to calculate the following commu-
tator

(Ĵt)j,j+1 = i[Hj,j+1, Hj+1,j+2]. (34)

To simplify the notation, we take j = 1, and defineH12 =
A+ B + C, with A,B,C denoting the hopping, density,
and pairing terms. Similarly, we also write H23 = A′ +
B′ + C′. Then it follows [B,A′] = [B,B′] = [B,C′] = 0.
The non-zero commutators are given by

[A,A′] = w2(c†1c3 − c†3c1), [A,B′] = wµ(c†1c2 − c†2c1)

[A,C′] = −w∆(c†1c
†
3 − c3c1),

[C,A′] = −w∆(−c†1c
†
3 + c3c1),

[C,B′] = −µ∆(−c†1c
†
2 + c2c1),

[C,C′] = ∆2(−c†1c3 + c†3c1). (35)

Collecting the above results, we find

(Ĵt)j,j+1 = i
[

(w2 −∆2)(c†jcj+2 − c†j+2cj) +

wµ(c†jcj+1 − c†j+1cj) + µ∆(c†jc
†
j+1 − cj+1cj)

]

.

(36)

Similar to the SSH model, both particle and thermal cur-
rents of the Kitaev chain can also be computed from the
fermion correlation functions.

IV. RESULTS AND DISCUSSIONS

Here we present the numerical results of the thermal
and particle currents of the SSH model and Kitaev chain
and explore the influence from topology. We will mainly
focus on the properties in the steady state in the long-
time limit, which is more meaningful as the initial-state
information decays away. Here we focus on the setup
with two baths coupled to the first and last sites of the
system. The results presented here are taken with sym-
metric system-reservoir couplings: γL = γR = γ. We
have verified that using reasonable asymmetric system-
reservoir couplings only introduces quantitative changes.

A. SSH model

We first discuss the results of the SSH model with µ
set to be the unit, i.e., µ = 1. The system-reservoir cou-
pling constants are chosen to be symmetric and set to
γL = γR = 1. Tuning γL,R only leads to quantitative
changes. The temperatures of the baths are TL = 0.8
and TR = 0.1, and we have checked that choosing differ-
ent temperatures does not qualitatively change the con-
clusions. However, this does not exclude the possibilities
of interesting phenomena when NL,R are small in more
complicated settings. We first consider the topological
case with w1 = 1, w2 = 1.2 and set the total number of
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Figure 1. Steady-state density profiles of the SSH model.
The first and last sites are connected to two reservoirs with
TL = 0.8 and TR = 0.1. The left (right) panel is topological
(trivial) with w1 = 1 and w2 = 1.2 (w1 = 2 and w2 = 1.2),
respectively. Here µ = 1, γ = 1, and N = 30.

lattice sites to N = 30. Since the steady-state thermal
and particle currents in the system are all flat due to
particle and energy conservation, their plots do not re-
veal much information. In contrast, Figure 1 shows the
steady-state density profile from the solution of Eq. (21)
for selected topological and trivial cases. The oscilla-
tions with the densities on alternating site roughly equal
is a signature of the localized states in the SSH model
in the topological regime with the bulk states forming a
relatively flat background. In contrast, the oscillations
in the density profile in the trivial regime decay rapidly
with the system size.
To verify the steady-state results from Eq. (21), we also

integrate the Lindblad equation (1) numerically and con-
firm the long-time steady-state results agree with the ex-
act solution from the steady-state correlation functions.
We remark that while the SSH model is a topological in-
sulator with a band gap, the presence of the reservoirs
and system-reservoir coupling leads to particle exchanges
throughout the chain. This is different from the insula-
tor picture in the thermodynamic limit, where the lower
band is fully occupied and the reservoirs are only allow
to exchange particles within the lower band, which will
be prohibited by the Pauli exclusion principle.
The thermal current has the opposite sign of the par-

ticle current in this case. Actually, the thermal and par-
ticle currents of the SSH model are proportional to each
other. Since the SSH model only involves the nearest
neighbor hopping and the baths only couple to the fist
and last sites, one may expect the only nonzero corre-
lations occur between nearest-neighboring sites. This is
indeed the case for the SSH model because numerically

we find that Im〈c†jcj+2〉 = 0. Therefore,

Jt = −iw̄µ〈c†jcj+1 − c†j+1cj〉 = −µJp. (37)

Since we choose a positive value of µ, the thermal cur-
rent Jt is opposite to the particle current Jp. The relation
shows that the thermal and particle currents have oppo-
site signs if µ > 0 but the same sign if µ < 0. This is
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Figure 2. Steady-state currents in the middle of the SSH
model. (Upper left) Thermal current Jt as a function of
w̄ = w2 < 1 with w1 = 1 in the topologically trivial regime.
(Upper right) Thermal current Jt as a function of w̄ = w1 < 1
with w2 = 1 in the topological regime. (Bottom row) The
corresponding particle currents Jp. Here γL,R = 1, TL = 0.8,
TR = 0.1, and µ = 1.

because higher T and positive µ leads to a lower density
in the bath according to the Fermi statistics (2) that at-
tracts particles but sends out heat, causing the opposite
signs between the thermal and particle currents.

To understand how the band topology affects the ther-
mal and particle currents, we will focus on the exact so-
lution of the current through the system in the steady
state. In the upper left panel of Figure 2, we plot the
steady-state thermal current at the center of system as
a function of w2 with fixed w1 = 1. As w2 decreases
from 1 to zero, the inter-cell hopping is always smaller
than the intra-cell hopping, and the system stays in the
non-topological regime. One can see the thermal current
decreases with w2 as the bandwidth shrinks. The curve
is slightly curved upward. Similarly, in the upper right
panel of Figure 2, we fix w2 = 1 and decrease w1 from
1 to zero. In this case, the inter-cell hopping is always
larger than the intra-cell hopping, and the system stays
in the topological regime. The thermal current Jt also
decreases with w1 but slightly curved downward, imply-
ing that it decreases faster than the non-topological case.

To extract topological effects from the results, we will
use the notation w̄ = min(w1, w2) when max(w1, w2) =
1. We remark that by fixing one of the hopping coefficient
and decreasing the other one, the bandwidths decrease in
the same manner in the topological and non-topological
cases. The ratio between the thermal or particle cur-
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Figure 3. (Left) Ratio of the steady-state thermal currents of
the SSH model from the topological and trivial cases shown in
Fig. 2. The curve is a fit to a quadratic form with a constant
term. The ratio of the steady-state particle currents exhibits
the same behavior (see the context). (Right) The constant
term (or the minimum) from the fit of the ratio as a function
of γ.

rent with the same w̄ thus allows for a fair comparison
to extract the effect from the band topology because the
bandwidths are the same. In Figure 3, we plot the ratio
of the thermal currents in the middle of the system from
the topological and non-topological cases as a function of
w̄. Since the particle current is proportional to the ther-
mal current for the SSH model, the ratio for the particle
current is the same as that of the thermal current.
Although the currents in both topological and non-

topological cases approach zero as w̄ vanishes, the ratio
between the currents shows that the topological case sup-
presses the current more significantly as w̄ decreases. The
ratio in Figure 3 can be fitted to a quadratic function of
the form

J topo
t /Jnon-topo

t ≈ C1 + C2w̄
2. (38)

We found that the quadratic dependence is insensitive
to the value of γ. However, the term C1, which is the
minimum of the ratio as w̄ → 0 increases with γ, and
its dependence is shown in the right panel of Figure 3.
As explained below, the edge states are responsible for
the quadratic suppression of the ratio of the thermal cur-
rents as the hopping coefficients change. Meanwhile, the
system-reservoir coupling shifts the ratio by adding a γ-
dependent background to the quadratic term.
The quadratic dependence of the ratio of currents

from the topological and non-topological cases on w̄
may be understood by analyzing the edge states. With
open boundary condition, the topological case has a
pair of edge states, one localized on the left and the
other localized on the right, while the non-topological
case only has delocalized states. By diagonalizing the
SSH Hamiltonian, the left edge state has the amplitude
v0 = N (1, 0,−w̄, 0, (−w̄)2, · · · )T along a long chain. The
normalization condition |v0|2 = 1 givesN 2 = 1−w̄2. The
right edge state is arranged oppositely. If we consider the
unitary matrix U = (v0, vB1, vB2, · · · ) by collecting the
eigenstates of the Hamiltonian, including the localized
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Figure 4. Steady-state profiles of the local particle current Jp

(top row) and density (bottom row) of the Kitaev chain. The
left (right) column is topological (trivial) with w = 0.6 (w =
0.3). The first and last sites are connected to two reservoirs
with TL = 0.8 and TR = 0.1. Here µ = 1, ∆ = 0.1, γ = 1 and
N = 30.

edge states and the bulk states forming the bands, the
unitarity requires that each column and each row should
be normalized to 1. The first row, however, depicts the
weights of the states at the left end of the chain. There-
fore, the normalization along the first row shows that the
bulk states only has a total weight of 1−N 2 = w̄2 if an
edge state emerges on the left. However, the edge state
decays exponentially and does not participate in trans-
port. The edge state on the right end also contributes the
same suppression of weights. Thus, the effective trans-
port bandwidth of the topological case is reduced to a
fraction w̄2 relative to the non-topological case. Our nu-
merical results catch the correct power-law dependence
of the suppression from the edge states already at in-
termediate size of the chain. Finally, we remark that
the inclusion of the chemical potential in the SSH model
breaks the chiral symmetry, but it does not change the
winding number and the edge states.

B. Kitaev chain

Next, we investigate the particle and thermal currents
of the Kitaev chain. The topology of the SSH model is de-
termined by the ratio between w1 and w2. For the Kitaev
chain with finite ∆, the topology is determined by the ra-
tio between 2w and µ when |∆| > 0. The topological (or
trivial) region corresponds to w/µ > 1/2 (or w/µ < 1/2).
The profiles of the thermal current Jt is flat in both topo-
logical and trivial regimes, as expected from energy con-

servation. In contrast, the particle current and density
profiles distinguish the topological and trivial regimes.
Figure 4 displays the real-space profiles of the particle
current Jp and density of in the steady state of the Ki-
taev chain in the topological and trivial regimes. While
Jp remains flat in the trivial regime, there are observ-
able deviations from the bulk value near the reservoirs
in the topological regime. Similarly, the density shows
some small oscillations in the topological regime while
it is flat in the trivial regime. However, we found that
the density oscillations in the topological regime slowly
decrease as the system size increases, so the oscillations
are finite-size effects. Meanwhile, the deviations of Jp at
the two ends do not scale with the system size, so we will
focus on the flat bulk current in the middle of the system.
Moreover, we have verified that numerical integration of
the Lindblad equation (1) agrees with the steady-state
result from Eq. (21) in the long-time limit.
To see the dependence of transport on the bandwidth

controlled by w, we first set ∆ = 0 and find the steady-
state particle and thermal currents in the middle of the
system. The results are shown in Fig 5. While the mag-
nitude of the currents increases linearly with w initially,
the currents saturate in the large-w limit. The saturation
of the particle current may be understood by the quan-
tum of conductance in a ballistic channel [10, 62]. For
the Kitaev chain, we can find analytical expressions of
the steady-state correlation function Ks and the particle
current Jp in the large-w limit. Explicitly,

Jp →
( 1

γ1γ2
+

1

4w2

)−1NR −NL

γ1 + γ2
. (39)

A sketch of the derivation is given in Appendix B. We
note that the particle current only depends on the exter-
nal parameters in the infinite-w limit.
When ∆ is added to the Hamiltonian, the steady-state

thermal and particle currents in the middle of the sys-
tem qualitatively follow the ∆ = 0 results, as shown in
Fig. 5. There is no drastic changes around the critical
point w = (1/2)µ. As ∆ increases, the oscillatory behav-
ior when w becomes large and makes it challenging to
extract the functional dependence. We found the ampli-
tudes of the oscillations in the particle or thermal current
of the large-∆ cases decrease slowly as the system size
increases, indicating that those oscillations are finite-size
effects and the curve should be smooth in the thermody-
namic limit.
According to Eq. (36), the thermal current of the Ki-

taev model has three terms. In our study, the contribu-
tions from the next-nearest neighbor hopping term and
the pairing term are negligible compared to the nearest
neighbor hopping term. By comparing the thermal cur-
rent with the particle current of Eq. (33) and noting that
µ = 1, we found that Jt ≈ −Jp for the Kitaev chain.
Thus, we can focus on the Jp curve. Meanwhile, the
analysis in the large-w limit summarized in Appendix B
applies to the case with finite ∆ as well. Therefore, the
particle current will approach a constant as w → ∞.
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Figure 5. Steady-state thermal current Jt (left column) and
particle current Jp (right column) in the middle of the Kitaev
chain versus w with µ = 1 and ∆ = 0, 0.1, 0.3 (from top
to bottom). The topological (trivial) region corresponds to
w > 1/2 (w < 1/2). Here γ = 1, TL = 0.8, TR = 0.1, and
N = 30.

Our numerical results suggest the thermal current be-
haves qualitatively the same as the particle current when
∆ is finite.

Different from the results of the SSH model, the
steady-state currents of the Kitaev chain from the Lind-
blad formalism with the single-mode approximation of
the reservoirs do not reveal discernible influence from its
topological properties. There are two reasons behind the
difference. Firstly, the SSH allows a change of its topolog-
ical indicator without a change of its bandwidth by swap-
ping the alternating hopping coefficients. In contrast, the
topology of the Kitaev chain changes with the bandwidth
if the chemical potential is fixed. Therefore, the effects
from topological change is buried in the more dominant
effect from increasing bandwidth. The quantum-channel
limit of transport in the large-w regime further constrains
the influence from band topology. Secondly, the localiza-

tion of the edge states of the SSH model become more
prominent away from the critical point w2/w1 = 1 be-
cause the amplitude decays from the edge with powers of
w1/w2. In contrast, the localization of the edge states of
the Kitaev chain becomes less prominent away from the
critical point w = (1/2)µ because the amplitude decays

from the edge with powers of
√
w2 −∆2/(w+∆) [63]. We

remark that topological effects in transport through the
Kitaev chain may stand out in more complex treatments
beyond this study.
In the bottom row of Figure 5, we plot the steady-

state thermal current Jt and particle Jp at the center
of the chain as a function of w with µ = 1 and ∆ =
0.3. For larger pairing gap, the currents display stronger
oscillations in the real space. This makes the curves of Jt
and Jp more bumpy than the small-∆ cases, but they still
show the same qualitative behavior as previous discussed.
Therefore, the transport through the Kitaev model from
the Lindblad equation is dominated by the bandwidth
of the corresponding noninteracting system, leaving no
significant trace of topological effects.

C. Implications

We emphasize that taking the ratio of the particle or
thermal currents between the topological and trivial cases
of the SSH model leads to a fair comparison because the
topological criterion can be implemented without chang-
ing the bandwidth. Therefore, the ratio of the currents
is controlled by the edge states and system-reservoir cou-
pling. In contrast, the topological properties of the Ki-
taev chain vary with the bandwidth, hindering a fair com-
parison between transport in the topological and trivial
regimes. While Ref. [53] allows the chemical potentials
of the reservoirs to differ and scans the chemical poten-
tials to map the conductance, here we treat the chemical
potential as a constant to focus on how topological prop-
erties affect thermal or particle transport. Moreover, we
have verified that the results are insensitive to the system
size once the number of lattice sites becomes reasonably
large.
For the two systems studied here, we only include

the particle exchange operators in the Lindblad equa-
tion. While this is reasonable for the SSH model, pair-
ing effects are only included in the Hamiltonian of the
Kitaev chain as an effective model. The insignificance
of topological effects in transport through the Kitaev
chain is thus at the single-particle level. We also remark
that the derivation of the Lindblad equation implicitly
limits the system-reservoir coupling to the weakly in-
teracting regime [12, 13]. Therefore, the results with
γ larger than the system bandwidth may not be real-
istic when compared to experimental results, as strong-
interaction effects are expected to modify the approxima-
tion. One has to use the full quantum master equation
or other means [12, 13] to describe the quantum dynam-
ics with strong system-reservoir coupling. Our results



9

also show that identifying prominent topological signa-
tures in transport is already a challenging task in simple
setups before considering disorder or long-range interac-
tion that will further enrich the nonequilibrium physics
of topological systems.

V. CONCLUSION

We have shown that the exact solutions of the steady
states of the Lindblad equation allow a detailed anal-
ysis of the particle and thermal transport through two
paradigms in 1D topological systems, the SSH model and
Kitaev chain. The results contrast how topological effects
influence quantum dynamics: The ratio of the particle or
thermal currents from the topological and trivial regimes
of the SSH model with the same bandwidth reveals the
suppression from the edge states due to their localized
nature. Such an extraction of topological effects can-
not be achieved in the Kitaev chain, as the transport is
dominated by the different bandwidths in the topologi-
cal and trivial regimes. While rapid advance in quantum
materials, devices, and simulators may verify the results
and test the limits of the Lindblad formalism, the frame-
work and analysis may also be generalized to interacting
systems in the future for studying the interplay between
topology, interaction, and transport.
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Appendix A: Derivation of the time-evolution

equation in a matrix form

Here we derive the matrix form of the time-evolution
equation (8) from the Lindblad equation given by the first
line of Eq. (1). The Hamiltonian and jump operators Lµ

are shown in Eq. (7). We have defined the Majorana
fermion operators in Eq. (5). The correlation function is
defined in Eq. (6). Making use of the Lindblad equation,
we find that

∂tKnm = Tr
(

∂tρ Γ̂nm

)

= Tr
(

ρ[A+B]
)

. (A1)

Here A =
∑

µ

[

L†
µΓ̂nmLµ − 1

2
{L†

µLµ, Γ̂nm}
]

, and B =

−i[Γ̂nm, H ]. It is convenient to introduce the following

quantities

Mjk =
∑

µ

l∗µj lµk, Γ̂nm =
i

2

∑

jk

Gnm
jk cjck,

Gnm
jk = δnjδmk − δnkδmj . (A2)

Note that M∗
jk = Mkj , thus M is Hermitian. After some

algebra, we obtain

A =
i

4
MijG

nm
kl

(

2aiakalaj − aiajakal − akalaiaj

)

.(A3)

From the canonical commutation relations, we find that

aiakalaj − aiajakal = 2(aiakδjl − aialδjk), (A4)

aiakalaj − akalaiaj = 2(alajδik − akajδil). (A5)

Also making use of Gnm
kl = −Gnm

lk , we can rewrite A as

A = −i
(

MijG
nm
jk aiak +Gnm

ki Mijakaj

)

(A6)

= −iaj

(

{M,Gnm}
)

jk
ak.

After decomposing M into the real and imaginary parts
as

M = X + iY, X = XT , Y = −Y T , (A7)

we arrive at an expression for A as

A = −i
(

Xnj [cj , cm] + [cn, ck]Xkm − 4iYnm

)

. (A8)

Similarly, we can also rewrite B as

B = −i[Γ̂nm, H ] =
i

2
[cncm, hjkcjck]

= i
(

hnk[ck, cm]− [cn, ck]hkm

)

. (A9)

After plugging the above two equations for A and B into
Eq. (A1), we finally arrive at the matrix form of the time-
evolution equation (8) in the main text.

Appendix B: Analytic expressions of the Kitaev

chain in the large-w limit

Here we analytically solve the steady-state Lindblad
equation of the Kitaev chain with ∆ = 0. For small and
finite ∆, the result is also valid in the large-w limit. We
present the simplified case with γL = γR = 1 first. It is
more convenient to writeKs as aN×N matrix consisting
of 2 × 2 blocks. Inspired by the numerical results, we
assume Ks takes the following form

Ks =













A1 B
−B A B

. . .
. . .

. . .
−B A B

−B A2













, (B1)
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where the non-zero blocks are only along the diagonal,
super- and sub-diagonal lines. The blocks A, B and A1,2

are assumed to have the following forms

A = a(iσ2), A1 = (a+ c)(iσ2), A2 = (a− c)(iσ2),

B = bσ0, (B2)

where σ0 is the 2 by 2 identity matrix, σ2 is the sec-
ond Pauli matrix, and a, b, c are unknown numbers to be
determined.
With this form of Ks, it is straightforward to compute

the left hand side of the steady state equation as

(h−X)Ks −Ks(h+X) =











C1 D
−D 0

. . . 0 D
−D C2











(B3)

with C1,2 and D given by

C1 =

(

0 −a+c
2

+ bw
a+c
2

− bw 0

)

,

C2 =

(

0 −a−c
2

− bw
a−c
2

+ bw 0

)

,

D =
1

4

(

−b− 2cw 0
0 −b− 2cw

)

. (B4)

Note that these are the only non-zero blocks. All the
omitted blocks are zero. Moreover, those blocks do not
depend on µ even if h contains non-zero µ. Thus the
resulting Ks will be independent of µ. The right hand
side of the steady state equation is given by

2Y =













F1 0
0 0

. . .

0 0
0 F2













. (B5)

The only non-zero blocks are F1 = 1
2
(2NL − 1)(iσ2) and

F2 = 1
2
(2NR − 1)(iσ2). Equating the two sides, we find

that C1 = F1, C2 = F2 and D = 0. Those conditions
turn into the following algebraic equations: −b− cw = 0,
bw − a+c

2
= 1

2
(2NL − 1), and −bw − a−c

2
= 1

2
(2NR − 1).

The solution is

a = −(NL +NR − 1), (B6)

b = (1 +
1

4w2
)−1NL −NR

2w
(B7)

c = − b

2w
. (B8)

Then we find the expectation values of the hopping term
and particle current as

〈c†jcj+1〉 = − i

4

[

(Ks)2j−1,2j+1 + (Ks)2j,2j+2

]

= − i

2
b.

(B9)
When ∆ = 0 or when the system is in the w >> ∆
limit where the pairing term can be ignored, we find the

particle current (Jp)j,j+1 = 2wIm〈c†jcj+1〉 = −wb given
by

(Jp)j,j+1 = (1 +
1

4w2
)−1NR −NL

2
≈ NR −NL

2
.(B10)

For arbitrary values of γ1,2, the calculations are similar
but more tedious, we only show the expression of the
particle current in Eq. (39). Importantly, the analytic
expressions have been verified by the numerical results
in the large-w regime.

[1] Q. Niu and D. J. Thouless, J. Phys. A. Math. Gen. 17,
2453 (1984), ISSN 0305-4470.

[2] M. Konig, S. Wiedmann, C. Brüne, A. Roth, H. Buh-
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(2010).

[51] R. Pineda and W. J. Herrera, Edge states, transport and

topological properties of heterostructures in the ssh model

(2022), arXiv: 2205.02326.
[52] N. Leumer, M. Grifoni, B. Muralidharan, and M. Mar-

ganska, Phys. Rev. B 103, 165432 (2021).
[53] J. M. Bhat and A. Dhar, Phys. Rev. B 102, 224512

(2020).
[54] J. Jin and X. Q. Li, Master equation approach for

transport through majorana zero modes (2022), arXiv:
2206.08502.

[55] F. Zhang, J. Gu, and H. T. Quan, Microreversibility,

fluctuation relations, and response properties in 1d kitaev

chain (2022), arXiv:2207.11751.
[56] C. C. Chien, K. A. Velizhanin, Y. Dubi, B. R. Ilic, and

M. Zwolak, Phys. Rev. B 97, 125425 (2018).
[57] P. Dugar and C. C. Chien, Phys. Rev. E 99, 022131

(2019).
[58] M. Qi, D. Wang, P. C. Cao, X. F. Zhu, C. W. Qiu,

H. Chen, and Y. Li, Adv. Mater. 34, 2202241 (2022).
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