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We establish the theoretical framework for adjoint-based phase reduction analysis for
incompressible periodic flows. Through this adjoint-based method, we obtain spatiotempo-
ral phase sensitivity fields through a single pair of forward and backward direct numerical
simulations, as opposed to the impulse-based method that requires a very large number
of simulations. Phase-based analysis involves perturbation analysis about a periodically
varying base state and hence is tailored for the analysis of periodic flows. We formulate
the phase description of periodic flows with respect to the potential and vortical pertur-
bations in the flow field. The current phase-reduction analysis can also be implemented
consistently in the immersed boundary projection method, which facilitates the analysis
over arbitrarily shaped bodies. We demonstrate the strength of the phase-based analysis
for periodic flows over circular cylinder and symmetric airfoils at high incidence angles.
The critical regions for phase modification in the cylinder flow are investigated, and the
locations of flow separation are shown to be the most sensitive regions. Further, the results
reveal the influence of the angle of attack and airfoil thickness on the phase-sensitivity
distribution of flows over various airfoils. The phase for such flows is defined based on
the lift coefficient, and hence it is influenced by the vortical structures responsible for lift
production. The present framework sheds light on the connection between phase sensitivity
and vortex formation dynamics.
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I. INTRODUCTION

In an effort to understand the dynamical richness and complexity of fluid flows, analysis of flow
unsteadiness has been a major focus of fluid mechanics research. The predominant focus of tackling
unsteady fluid flows has been understanding the instability mechanisms woven in the overall flow
features, producing a wealth of knowledge on various flow instabilities and transition processes.
A flow instability is characterized by a growth of perturbation over a base state. Local and global
stability analyses of a range of flows have been performed about some time-invariant base states
[1,2]. With the assumption of small perturbations about these states, the linearized Navier-Stokes
equations can be cast in the form of eigenvalue problems, and the flow instability is determined
by their spectral characteristics. Such theoretical and numerical techniques developed over the past
few decades have enabled us to find instability mechanisms to identify the emergence of linear
instabilities such as Kelvin-Helmholtz instability, transition to turbulence, and the development of
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FIG. 1. Phase θ (t ) defined over the lift coefficient (CL ) and the corresponding time derivative (ĊL ) plane
for flow over a NACA0020 airfoil at α = 55◦ and Re = 100.

optimal control techniques based on the growth of perturbations [1–5]. Such endeavors have more
recently been reinforced with data-driven techniques [6–10].

For the aforementioned studies, the base states have generally been time-invariant. However,
there is a large class of fluid flow problems for that has a high level of unsteadiness in the base flow.
For instance, unsteady wake dynamics of flow over bodies, such as flows over a circular cylinder
or airfoils, are characterized by periodic vortex shedding. Such flows are characterized by time-
periodic base flow upon which secondary unsteadiness can grow or decay. For such a periodic
base flow, Floquet analysis [11] serves essentially as the sole work horse to analyze the behavior
of perturbations. In these analyses, the key concern of the methods has been on the growth in the
amplitude of the perturbations and the control strategies aimed at reduction in the amplitude of these
oscillations. In contrast, there have been limited discussions on the effect of timing on the evolution
of these perturbations.

For periodic systems, the temporal dynamics can be associated with a phase defined based on
the limit-cycle oscillations. Such phase-based analysis techniques for dynamics about time-periodic
systems can play a role in revealing the sensitivity of the periodically varying base flow to a certain
type of added perturbations. Essentially, we are then concerned with the evolution of phase, a single
scalar variable of the system instead of high-dimensional dynamics, which significantly simplifies
the complexity associated with unsteady flow analysis. For instance, the temporal evolution of
periodic vortex shedding of laminar flow over a symmetric NACA0020 airfoil at an angle of attack
(α) of 55◦ and Re = 100 can be represent as phase evolution using the limit-cycle oscillations of
the lift coefficient (CL ), as shown in Fig. 1. We anticipate that this kind of phase-based analysis will
become increasingly important as our interests in the analysis, modeling, estimation, and control of
unsteady aerodynamics continue to grow.

Phase reduction analysis has been successfully applied to the analysis of dynamics and synchro-
nization phenomena among the limit-cycle oscillators for various biological, chemical, and neural
systems [12–21]. Through phase reduction, the time evolution of a system is described by a phase
equation, which not only facilitates theoretical analysis but also allows for fundamental understand-
ing [12–14,22–28]. Extracting the phase dynamics can reveal the synchronization characteristics,
and designing optimal control can modify the phase dynamics to lock in and synchronize to external
frequency. In addition, phase reduction analysis is also sensor-friendly as it only requires temporal
measurements capturing the phase of the limit-cycle oscillation. Hence phase-based analysis is
remarkably useful for analysis and control of periodic fluid flows, however such applications have
been very recent [29–40].

The phase dynamics of a system obtained from phase-reduction analysis is characterized by
the phase sensitivity function, which quantifies the phase response of the system to perturbations.
Spatial phase sensitivity functions extracted from periodic fluid flows identify critical regions in
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the flow field that can cause significant modification in phase dynamics when perturbed. Hence
these sensitivity fields can be used to design optimal forcing for control of phase dynamics
and thereby the flow field characteristics. There are mainly two methods to obtain the phase
sensitivity function [12–21]: one is the direct method using impulsive perturbation applied to
the system, and the other is the adjoint method using the adjoint equations derived from the
governing equations of the system. The direct method has been used to characterize and control
the periodic vortex shedding around cylinders [33–37] and airfoil [36]. The lock-on characteristics
of vortex shedding for a circular cylinder to various periodic perturbations, such as periodic
external forcing [33,34], periodic vibrations of cylinder [35], and fluid-structure interactions [37],
are demonstrated via phase reduction using the direct method. Subsequently, Nair et al. [36]
developed a transient control technique based on the phase sensitivity function obtained via the
direct method to modify the phase of vortex shedding behavior of flows past a circular cylinder
and an airfoil. Thus, phase sensitivity fields reveal essential physics responsible for optimal control
design for periodic fluid flows. However, the direct method when used to obtain the phase sensitivity
function involves us to obtain phase response by perturbing the flow with impulse perturbations at
several locations in the flow field, and at different phases of the time period. Therefore, obtaining
spatial phase sensitivity fields with respect to various kinds of perturbations is computationally
expensive.

Alternatively, the phase sensitivity function can also be obtained by an adjoint-based method.
The applications of adjoint-based methods to design optimal perturbations for fluid flow control
have been studied [41–44]. We use the adjoint method as a tool to obtain the phase sensitivity
function for periodic flows in a computationally efficient manner. This involves solving the adjoint
equation derived from the governing equation. Thereby, the adjoint-based method results in spa-
tial phase sensitivity fields corresponding to perturbations with respect to various state variables
through a single pair of the forward computation of governing equations resulting in limit-cycle
oscillations and the backward computation of adjoint equation for the corresponding time period.
The phase sensitivity function derived from the adjoint method has seen a few applications in
periodic flows but limited to Hele-Shaw convection [29–31], Rayleigh-Bernard convection [32],
and thermoacoustic oscillations [40]. However, most of these applications are based on the adjoint
formulation of reduced-order governing equations of incompressible flows. There is a need for a
rigorous generalizable theoretic and computational framework for the adjoint-based formulation for
the complete incompressible Navier-Stokes equations.

In this work, we provide a rigorous theoretic framework for adjoint-based phase reduction
for incompressible periodic flows. The evolution of the phase sensitivity function is derived,
which can be solved with any well-established numerical scheme. Further, the properties of the
phase sensitivity function and the relationship of the phase sensitivity field corresponding to
perturbations with respect to velocity potential, velocity, and vorticity are presented. In particular,
we demonstrate the adjoint-based phase sensitivity for vortex shedding behind canonical bodies.
We show that the adjoint framework can be applied consistently using the immersed boundary
projection method [45] which can simulate flows over stationary or moving bodies with arbitrary
shapes. We demonstrate this analysis for a von Karman vortex street over a circular cylinder and
symmetric airfoils at high angles of attack. This formulation enables us to identify the critical
regions in the flow field that facilitate the modification of vortex formation process. We then
discuss the open loop control strategies that result in lift enhancement by modifying the vortex
formation dynamics. This work paves way to control the flow physics in a computationally efficient
manner.

The present paper is organized as follows. The theoretical framework to develop the adjoint-
based phase description of periodic fluid flows using incompressible Navier-Stokes equation is
described in Sec. II. The demonstration of this adjoint-based framework to analyze the phase
sensitivity fields of flows over a circular cylinder and symmetric airfoils at high angles of incidence
simulated using the immersed boundary projection approach is presented in Sec. III. In Sec. IV, we
provide concluding remarks on the present work and possible extensions.
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II. PHASE DESCRIPTION OF PERIODIC FLOWS

Let us present the theoretical framework for the adjoint-based phase description of periodic flows.
This section presents the limit-cycle solutions and the derivation of phase sensitivity functions with
respect to velocity-based, vector potential-based, and vorticity-based perturbations. We comment
on the properties of the phase sensitivity functions and the relation among the different phase
sensitivity fields. While the focus of this paper is placed on incompressible flows, the approach
herein can be applied to compressible flows without any difficulty. To develop the framework for
adjoint-based phase description for periodic flows, we first consider the limit-cycle solution to the
incompressible Navier-Stokes equations, and we linearize the dynamics for a periodic perturbation
about the considered limit-cycle solution.

A. Adjoint analysis of periodic incompressible flows

The nondimensional incompressible Navier-Stokes equations can be expressed as

M̂
∂

∂t
q(x, t ) = F [q], (1)

where

q(x, t ) =
(

u
p

)
, M̂ =





1
1

1
0



, F [q] =
{
−u · ∇u − ∇p + Re−1∇2u,

∇ · u.

Here, u and p are the velocity and pressure fields, and Re is the Reynolds number. In general, a
stable limit-cycle solution of Eq. (1), which represents a periodic flow q̃, can be described as

q(x, t ) = q̃(x, θ (t )), θ̇ (t ) = ωn, (2)

where θ and ωn are the phase and frequency of the periodic flow, respectively. The phase θ describes
the periodic behavior of the system. The evolution of phase along the limit cycle for a periodic flow
can be defined based on state-space formed with temporal measurements that characterize the flow
physics. For instance, the CL-ĊL plane can be used to capture the periodic vortex shedding over
NACA0020 airfoil at α = 55◦ and Re = 100 as shown in Fig. 1. [While θ is defined along the limit
cycle, we can define %(q) as the phases of the state variables q in the vicinity of the limit cycle.
Since ωn is the natural frequency of the system, %̇(q) = ∇%(q) · q̇ = ωn and we can analyze the
perturbation dynamics in the neighborhood of the limit cycle using the evolution of %(q) [33].]
Substituting q̃ into Eq. (1), we find that q̃(x, θ ) satisfies the following equation:

ωnM̂
∂

∂θ
q̃(x, θ ) = F [q̃]. (3)

We now introduce a small perturbation q′(x, θ , t ) to q̃(x, θ ) as

q(x, t ) = q̃(x, θ ) + q′(x, θ , t ). (4)

Equation (1) is then linearized with respect to q′(x, θ , t ) as follows:

M̂
∂

∂t
q′(x, θ , t ) = L̂(x, θ )q′(x, θ , t ), (5)

where the linear operator L̂(x, θ ) and the perturbation q′(x, θ ) are

L̂(x, θ )q′(x, θ ) =
[
Ĵ (x, θ ) − ωnM̂

∂

∂θ

]
q′(x, θ ), (6)
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and the components of Ĵ (x, θ )q′(x, θ ) are

Ĵ q′ =
{
−u′ · ∇ũ − ũ · ∇u′ − ∇p′ + Re−1∇2u′,

∇ · u′.
(7)

In Eq. (6), we omitted the t-dependence of q′(x, θ , t ) and denoted it as q′(x, θ ), because we consider
only the eigenvalue problem of the linear operator L̂(x, θ ), and therefore the t-dependence of q′ does
not appear hereafter. We note that not only the limit-cycle solution q̃(x, θ ) but also the perturbation
q′(x, θ ) satisfies the 2π -periodicity with respect to θ :

q̃(x, θ + 2π ) = q̃(x, θ ), q′(x, θ + 2π ) = q′(x, θ ). (8)

We now introduce the adjoint variables required to derive the phase equation and phase sensitivity
function. We define the adjoint of the perturbation as q′∗(x, θ ). Similar to q′, q′∗ also satisfies 2π -
periodicity with respect to θ as q′∗(x, θ + 2π ) = q′∗(x, θ ). The inner product of the adjoint with
itself is defined in two ways. First, we define the inner product of two functions over space as

〈q′∗(x, θ ), q′(x, θ )〉 ≡
∫

D
[u′∗(x, θ ) · u′(x, θ ) + p′∗(x, θ )p′(x, θ )] dx. (9)

Second, using Eq. (9), we also define the inner product of two functions as

[[q′∗(x, θ ), q′(x, θ )]] ≡ 1
2π

∫ 2π

0
〈q′∗(x, θ ), q′(x, θ )〉 dθ . (10)

Using Eq. (10), we introduce the adjoint operator of L̂(x, θ ) as

[[q′∗(x, θ ), L̂(x, θ )q′(x, θ )]] = [[L̂∗(x, θ )q′∗(x, θ ), q′(x, θ )]] + S[q′∗(x, θ ), q′(x, θ )]. (11)

Here, the bilinear concomitant is denoted by S[q′∗(x, θ ), q′(x, θ )]. Using partial integration, the
adjoint operator L̂∗(x, θ ) can be expressed as

L̂∗(x, θ )q′∗(x, θ ) =
[
Ĵ ∗(x, θ ) + ωnM̂

∂

∂θ

]
q′∗(x, θ ). (12)

Here, the components of Ĵ ∗(x, θ )q′∗(x, θ ) are

Ĵ ∗q′∗ =
{−u′∗

x ∇ũx − u′∗
y ∇ũy − u′∗

z ∇ũz + ũ · ∇u′∗ − ∇p′∗ + Re−1∇2u′∗,

∇ · u′∗,
(13)

and the bilinear concomitant S[q′∗(x, θ ), q′(x, θ )] is given by

S = − 1
2π

∫ 2π

0

∫

∂D
n · [(u′∗ · u′)ũ + Re−1(u′

x∇u′∗
x + u′

y∇u′∗
y + u′

z∇u′∗
z − u′∗

x∇u′
x

− u′∗
y∇u′

y − u′∗
z ∇u′

z ) + p′u′∗ − p′∗u′] dS dθ − 1
2π

∫

D
[ωn(u′∗ · u′)]2π

θ=0 dx, (14)

with S = 0 for the adjoint boundary conditions. Further details on the boundary conditions are given
in Sec. III A.

B. Zero eigenfunctions and their normalization condition

The phase-dependent linear operator L̂(x, θ ) can be considered as the Floquet operator around
a limit-cycle solution. The eigenvalues of the Floquet operator determine the linear stability of
the limit-cycle solution. When the limit-cycle solution is linearly stable, one of the eigenvalues
is zero and the others have negative real parts. The zero eigenvalue and its eigenfunctions are
associated with the phase degree of freedom; the nonzero eigenvalues and their eigenfunctions
are associated with the amplitude degrees of freedom. Hence, we need to consider the Floquet
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and adjoint eigenfunctions associated with the zero eigenvalue of L̂(x, θ ) and L̂∗(x, θ ) and seek
their normalization condition to derive the phase sensitivity fields for periodic fluid flows. The zero
eigenfunctions, Q̃(x, θ ) and Q̃∗

(x, θ ), satisfy the following conditions:

L̂(x, θ )Q̃(x, θ ) = 0, L̂∗(x, θ )Q̃∗(x, θ ) = 0. (15)

The components of the Floquet zero eigenfunction Q̃(x, θ ) can be defined as (Ũ , P̃)T. The com-
ponents of the adjoint zero eigenfunction Q̃∗(x, θ ) can also be defined as (Ũ∗

, P̃∗). The Floquet
zero eigenfunction Q̃(x, θ ) can be chosen as the tangential vector of the limit-cycle orbit by
differentiating Eq. (3) with respect to θ ,

Q̃(x, θ ) = ∂

∂θ
q̃(x, θ ). (16)

Using Eq. (10), the adjoint zero eigenfunction Q̃∗(x, θ ) can be normalized as

[[Q̃∗(x, θ ), M̂Q̃(x, θ )]] = 1
2π

∫ 2π

0
〈Q̃∗(x, θ ), M̂Q̃(x, θ )〉 dθ = 1. (17)

Note that the diagonal matrix M̂ has been inserted in Eq. (17) because of the form of Eq. (1). We
also note that the following condition is satisfied:

ωn
∂

∂θ
〈Q̃∗(x, θ ), M̂Q̃(x, θ )〉 =

〈
Q̃∗(x, θ ), ωnM̂

∂

∂θ
Q̃(x, θ )

〉
+

〈
ωnM̂T ∂

∂θ
Q̃∗(x, θ ), Q̃(x, θ )

〉

= 〈Q̃∗(x, θ ), Ĵ (x, θ )Q̃(x, θ )〉 − 〈Ĵ ∗(x, θ )Q̃∗(x, θ ), Q̃(x, θ )〉 = 0.
(18)

Therefore, the following normalization condition is satisfied for every θ :

〈Q̃∗(x, θ ), M̂Q̃(x, θ )〉 = 1. (19)

This normalization condition is essential to project the dynamics onto the limit-cycle solution, as
will be seen in Sec. II C. For this, we need to compute the adjoint zero eigenfunction Q̃ numerically.
According to Eq. (15), the adjoint zero eigenfunction Q̃∗(x, θ ) satisfies

−ωnM̂T ∂

∂θ
Q̃∗(x, θ ) = Ĵ ∗(x, θ )Q̃∗(x, θ ). (20)

By substituting θ = −ωns, the above equation can be transformed as

M̂T ∂

∂s
Q̃∗(x,−ωns) = Ĵ ∗(x,−ωns)Q̃∗(x,−ωns). (21)

Therefore, the adjoint equation can be written in the following form:

∂

∂s
Ũ∗(x,−ωns) = −Ũ ∗

x · ∇ũx − Ũ ∗
y · ∇ũy − Ũ ∗

z · ∇ũz + ũ · ∇Ũ∗ − ∇P̃∗ + Re−1∇2Ũ∗
, (22)

0 = ∇ · Ũ∗
. (23)

According to Eq. (19), the normalization condition is provided by
∫

D
Ũ∗(x, θ ) · Ũ (x, θ ) dx = 1. (24)

Based on Eq. (16), the Floquet zero eigenfunction is given by

Ũ (x, θ ) = ∂

∂θ
ũ(x, θ ). (25)

From a viewpoint of numerical analysis, Eq. (1) is similar to a set of Eqs. (22) and (23). The dif-
ferences exist only in the explicit forms of the boundary conditions and advection term. Therefore,
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any well-established numerical schemes for the Navier-Stokes equations can also be utilized for its
adjoint system.

C. Phase equation and phase sensitivity function of periodic flows

The phase sensitivity fields encode the sensitivity of periodic flows with respect to perturbations.
Hence, we now consider periodic flows with a weak perturbation εK(x, t ) added to Eq. (1). We
introduce a variable E(x, t ) = (K, 0)T. Thus, we can express the Navier-Stokes equations with
perturbation in the following form:

M̂
∂

∂t
q(x, t ) = F [q] + εE(x, t ). (26)

We assume that the perturbed solution is in the vicinity of the limit-cycle solution q̃(x, θ ). Using the
adjoint zero eigenfunction Q̃∗

(x, θ ), we project the dynamics of the perturbed equation (26) onto
the unperturbed limit-cycle solution to yield

θ̇ (t ) =
〈
Q̃∗(x, θ ), M̂

∂

∂t
q(x, t )

〉
) 〈Q̃∗(x, θ ), F [q̃] + εE(x, t )〉

= ωn + ε 〈Q̃∗(x, θ ), E(x, t )〉 = ωn + ε

∫

D
Ũ∗(x, θ ) · K(x, t ) dx, (27)

where we approximated q(x, t ) by the unperturbed limit-cycle solution q̃(x, θ ), and we also used
Eqs. (3), (16), and (19). The phase equation describing periodic flows under weak perturbation is
then approximately obtained after the higher-order terms are neglected as

θ̇ (t ) = ωn + ε

∫

D
Z(x, θ ) · K(x, t ) dx. (28)

As we define the phase sensitivity function Z(x, θ ) with respect to the velocity fields, we realize that

Z(x, θ ) = Ũ∗(x, θ ), (29)

from comparing Eqs. (27) and (28). Thus, the phase sensitivity function with respect to the velocity
fields is the adjoint zero eigenfunction of the velocity field, and it can be obtained by numerically
solving Eqs. (22) and (23). Using this adjoint-based framework, we can evaluate the spatial phase
sensitivity fields using a single pair of forward and adjoint simulations. This is unlike the traditional
direct method, where the sensitivity field is obtained by solving the Navier-Stokes equations with
added impulse perturbation in the specific velocity component at each grid point and at each phase.
Hence, for a two-dimensional system, we need 2 × Ngrid × Nphases simulations to obtain Z(x, θ ).
Here Ngrid is the number of grid points, and Nphases is the number of phases about which phase
sensitivity has to be computed.

Let us now examine the properties of the phase sensitivity function. According to Eq. (23), the
phase sensitivity function is divergence-free, which can be expressed as ∇ · Z(x, θ ) = 0. Here, we
consider scalar-potential-based perturbations to the fluid velocity field as K(x, t ) = −∇((x, t ),
where the scalar potential is denoted by ( and the perturbation is designed such that ( → 0
at the far-field. In this case, the phase response becomes zero, which implies that application of
scalar-potential-based perturbations to the fluid velocity field does not affect the phase, i.e.,

∫

D
Z(x, θ ) · K(x, t ) dx = −

∫

D
Z(x, θ ) · [∇((x, t )] dx =

∫

D
[∇ · Z(x, θ )]((x, t ) dx = 0. (30)

Next, let us consider the curl of the phase sensitivity function ∇ × Z(x, θ ). Here, we consider
vector-potential-based perturbations to the fluid velocity field as K(x, t ) = ∇ × A(x, t ), where the
vector potential is denoted by A with A → 0 at the far-field. In this case, the phase response can be
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rewritten in the following form:
∫

D
Z(x, θ ) · K(x, t ) dx =

∫

D
Z(x, θ ) · [∇ × A(x, t )] dx =

∫

D
[∇ × Z(x, θ )] · A(x, t ) dx. (31)

This implies that the curl of the phase sensitivity function quantifies the phase response to the vector
potential A. However, since the interpretation of phase sensitivity with respect to the perturbation
in terms of the vector potential is challenging, let us relate ∇ × Z with the phase sensitivity for
the vorticity, Zω. Here, consider a weak vortical perturbation εKω added to the vorticity transport
equation as

∂

∂t
ω(x, t ) = −u · ∇ω + ω · ∇u + Re−1∇2ω + εKω(x, t ). (32)

Since we seek the periodic solution of the Navier-Stokes equation, both velocity and the vorticity
are periodic in time. This allows us to write

θ̇ (t ) = ωn + ε

∫

D
Z(x, θ ) · K(x, t ) dx = ωn + ε

∫

D
Zω(x, θ ) · Kω(x, t ) dx

= ωn + ε

∫

D
[∇ × Zω(x, θ )] · K(x, t ) dx. (33)

Hence, Z and Zω are related as Z = ∇ × Zω. It follows that ∇ × ∇ × Zω = ∇ × Z. Hence, we
obtain a Poisson relation between the curl of phase sensitivity and phase sensitivity in terms of
vorticity as

∇2Zω = −∇ × Z, (34)

and ∇ · Zω = 0 is applied without loss of generality. Thus, a positive (negative) value of ∇ × Z
would imply a positive (negative) source for the Poisson equation of Zω, hence it results in a local
increment (drop) of Zω.

Establishing the phase sensitivity function enables us to consider the forced synchronization
of periodic flows. Considering the perturbation to be separable, i.e., K(x, t ) = a(x)b(t ), the phase
equation can be written as θ̇ (t ) = ωn + εζ (θ )b(t ). The effective phase sensitivity function is given
by

ζ (θ ) =
∫

D
Z(x, θ ) · a(x) dx. (35)

When the perturbation takes a form of periodic forcing, i.e., b(t ) = bp(ω f t ) with ω f ∼ ωn, the
phase equation can be written as θ̇ (t ) = ωn + εζ (θ )bp(ω f t ). In this case, we can introduce a slow
phase variable as θ (t ) = ω f t + ψ (t ). We can then rewrite the phase equation as ψ̇ (t ) = ωn − ω f +
εζ (ω f t + ψ )bp(ω f t ). Because the frequency mismatch, ωn − ω f , and the intensity of the periodic
forcing, ε, are small, the dynamics of the phase variable ψ becomes slow. We can thus apply the
averaging over the period to obtain the following phase equation:

ψ̇ (t ) = ωn − ω f + ε+p(ψ ), (36)

where the phase coupling function is defined as

+p(ψ ) ≡ 1
2π

∫ 2π

0
ζ (λ + ψ )bp(λ) dλ. (37)

The phase coupling and effective phase sensitivity functions could be used for analyzing the
forced synchronization characteristics, lock-in behavior of periodic flows to external forcing. As
an application, the forced synchronization of vortex shedding for a circular cylinder to periodic
external forcing has been studied in Refs. [33,34].

104401-8



ADJOINT-BASED PHASE REDUCTION ANALYSIS OF …

D. Adjoint formulation for the immersed boundary projection method

We provided the phase-based description of periodic flows using the adjoint formulation of
the Navier-Stokes equations. Any well-established numerical scheme can be used to perform the
phase-based analysis for periodic flows through the present formulation. One such scheme, namely
the immersed boundary projection method, can be used to analyze the flows over bluff bodies of
arbitrary shapes.

Here, let us demonstrate the implementation of the adjoint method to the immersed boundary
method to solve the Navier-Stokes equations. In this method, a body B is generated using the
introduction of boundary forces along the surface. The no-slip boundary condition is enforced using
the discrete δ functions. The incompressible Navier-Stokes equations in an immersed boundary
projection method can be expressed as

∂

∂t
u(x, t ) = −u · ∇u − ∇p + Re−1∇2u +

∫

∂B
f (ξ, t )δ(ξ − x) dξ, (38)

0 = ∇ · u, (39)

0 =
∫

D
u(x, t )δ(x − ξ) dx. (40)

The spatial variables are defined as x ∈ D and ξ ∈ ∂B. Here, we assume the immersed surface ∂B is
stationary without loss of generality. The variable q(x, t ) can be modified to include the boundary
forces f as q(x, t ) = (u, p, f )T. Hence, the set of Eqs. (38), (39), and (40) can be written as

M̂
∂

∂t
q(x, t ) = F [q], (41)

where M̂ = diag(1, 1, 1, 0, 0, 0, 0), and the right-hand-side term F [q] now includes the boundary
forces and the no-slip boundary condition along the immersed surface. The components in the linear
operator in Eqs. (6) and (7) can be modified to include the additional terms as

Ĵ q′ =






−u′ · ∇ũ − ũ · ∇u′ − ∇p′ + Re−1∇2u′ +
∫
∂B f ′(ξ, θ )δ(ξ − x) dξ,

∇ · u′,
∫

D u′(x, θ )δ(x − ξ) dx.

(42)

The inner product defined in Eq. (9) can also be modified to include the boundary forces as

〈q′∗(x, θ ), q′(x, θ )〉 =
∫

D
[u′∗(x, θ ) · u′(x, θ ) + p′∗(x, θ )p′(x, θ )] dx +

∫

∂B
[ f ′∗(ξ, θ ) · f ′(ξ, θ )] dξ.

(43)

The components in the linearized adjoint operator in Eqs. (12) and (13) are also modified as

Ĵ ∗q∗
1=






−u′∗
x ∇ũx − u′∗

y ∇ũy − u′∗
z ∇ũz + ũ · ∇u′∗ − ∇p′∗ + Re−1∇2u′∗ +

∫
∂B f ′∗(ξ, θ )δ(ξ − x) dξ,

∇ · u′∗,∫
D u′∗(x, θ )δ(x − ξ) dx.

(44)

Moreover, the adjoint equations, Eqs. (22) and (23), become
∂

∂s
Ũ∗(x,−ωns) = −Ũ ∗

x ∇ũx − Ũ ∗
y ∇ũy − Ũ ∗

z ∇ũz + ũ · ∇Ũ∗ − ∇P̃∗ + Re−1∇2Ũ∗

+
∫

∂B
F̃∗(ξ,−ωns)δ(ξ − x) dξ, (45)

0 = ∇ · Ũ∗
, (46)

0 =
∫

D
Ũ∗(x,−ωns)δ(x − ξ) dx. (47)
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The inclusion of the boundary forces and the enforcement of a no-slip boundary condition on the
surface does not modify the original adjoint formulation, and the definitions of the phase sensitivity
functions remain the same. In this study, we demonstrate the capability of adjoint formulation of
the immersed boundary projection scheme by performing phase sensitivity analysis over a circular
cylinder and symmetric airfoils of different thicknesses at high angles of attack.

III. RESULTS

In this section, the adjoint-based phase-reduction analysis is applied to time-periodic flows.
The present approach is first validated with a two-dimensional time-periodic laminar flow over a
circular cylinder. The present results from this cylinder wake analysis are compared to those from
a prior impulse response-based phase-reduction analysis [34]. Next, we utilize the adjoint-based
phase-reduction analysis to reveal the phase dynamic properties for time-periodic separated flows
over canonical airfoils over a range of angles of attack. With the immersed boundary formulation
being incorporated into the present approach, the phase response properties of flows over bodies of
arbitrary surface geometries can be uncovered efficiently.

A. Boundary conditions for the flow fields and the adjoint equations

For the present work, two-dimensional periodic flows over a circular cylinder and symmetric
airfoils simulated by the immersed boundary formulation [45–47] are considered. For these sim-
ulations, the inflow and far-field boundary conditions are prescribed as u = u∞ = (u∞, v∞)T =
(1, 0)T. Along the outlet, we prescribe the convective outflow condition as (∂t + u∞ ∂x )u(x, t ) = 0.

The components of q̃(x, θ ) satisfy the same conditions as u, whereas the components of
q′(x, θ ) satisfy the Dirichlet-zero boundary conditions of u′(x, θ )|∂D = 0 except for the outlet,
which prescribes ∂xu′(x, θ ) = 0, p′(x, θ ) = 0. The components of q′∗(x, θ ) satisfy the Dirichlet-
zero boundary conditions of u′∗(x, θ )|∂D = 0 except for the outlet, which prescribes [Re−1 ∂x +
ũ(x, θ )]u′∗(x, θ ) = 0, p′∗(x, θ ) = 0.

B. Circular cylinder wake

First, we examine the phase dynamic characteristics of the two-dimensional incompressible
laminar periodic flows over a circular cylinder at a diameter-based Reynolds number of Re = 100.
This flow is selected to validate the present approach against an impulse response-based approach
[34], which requires a significant amount of computational effort. To initialize the analysis, we
seek the time-periodic wake (limit cycle) through direct numerical simulation. This is achieved
by performing the forward simulation that solves the incompressible Navier-Stokes equations,
Eqs. (38), (39), and (40). In this example, we obtain the time-periodic von Karman vortex street
that forms behind the circular cylinder. At this Reynolds number, the laminar wake is unsteady with
vortices shedding in an alternating manner from the top and bottom of the cylinder. The simulation
here is performed with the immersed boundary projection method [45,47]. The velocity and pressure
fields are discretized on a staggered Cartesian grid, and the circular cylinder is generated in the flow
field through the introduction of boundary forces along the cylinder surface, which is represented
by a set of Lagrangian points. The computational technique is formally second-order in space and
time with first-order spatial accuracy near the cylinder surface, where discrete δ functions are used
to enable the enforcement of the no-slip boundary condition.

The computational domain is chosen to be D = {(x, y) ∈ [−16, 16] × [−30, 30]} with the cir-
cular cylinder centered at the origin. Because the current study requires both forward and adjoint
simulations to be performed, the spatial domain is discretized with fine grids both upstream and
downstream of the circular cylinder. All spatial variables are nondimensionalized with the cylinder
diameter d , and the timescales are normalized by the convective time of d/u∞, where u∞ is the
free stream velocity. The smallest grid size is set to .x = 0.03, and the time step is chosen to be
.t = 0.01 such that it satisfies the CFL condition of u∞.t/.xmin < 0.33.
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FIG. 2. Streamwise velocity u, transverse velocity v, and vorticity ω fields at phases of θ = [0, π/2, π ,

3π/2] for flow over a circular cylinder at Re = 100.

The time-periodic von Karman vortex shedding wake is obtained from the forward simulation.
The velocity and vorticity fields are shown in Fig. 2, which agrees well with those reported in past
studies [45,48,49]. Here, the flow fields are shown for phases of θ = [0, π/2, π , 3π/2]; the phase
of θ = 0 corresponds to CL = 0 and ĊL = max ĊL. Note that the flow fields offset by a phase of π
are symmetric about the y = 0 axis. The vortices that shed periodically impose unsteady forces
onto the cylinder, which results in sinusoidal lift and drag forces over time. The lift and drag
coefficients (CL,CD) ≡ (FL, FD)/( 1

2ρ∞u2
∞d ) along with the Strouhal number St ≡ f d/u∞ are in

agreement with those from previous studies, as summarized in Table I.
With the baseline time-periodic wake obtained, the adjoint simulation is performed to determine

the phase sensitivity function over the spatial domain. The spatial profiles of the phase sensitivity
function in terms of Zu, Zv , and ∇ × Z at θ = [0, π/2, π , 3π/2] are presented in Fig. 3. As the
adjoint simulation performs time integration backwards in time, we observe that the phase sensitivity
functions Zu, Zv , and ∇ × Z advect in the opposite direction from the flow field shown in Fig. 2.
In contrast to the forward simulation, the phase sensitivity functions Zu, Zv , and ∇ × Z exhibit
large-amplitude fluctuations in the aft side of the cylinder and in the boundary-layer region near the
separation points (the phase-dependent separation points are highlighted as yellow dots in Fig. 3).
This suggests that the phase can be influenced efficiently in the wake region and along the boundary
layer near the separation point. Recall that the profiles of Zu and Zv are related to ∇ × Z through
the curl operator.

TABLE I. Comparison of forces (CL , CD) and Strouhal number (St) for flow over a circular cylinder at
Re = 100.

CL CD St

Present ±0.338 1.366 ± 0.009 0.165
Taira and Nakao [33] ±0.328 1.35 ± 0.009 0.165
Liu, Zheng, and Sung [50] ±0.339 1.35 ± 0.012 0.165
Linnick and Fasel [51] ±0.337 1.34 ± 0.009 0.165
Canuto and Taira [49] ±0.329 1.34 ± 0.009 0.167

104401-11



KAWAMURA, GODAVARTHI, AND TAIRA

FIG. 3. Phase sensitivity function in terms of velocity (Zu, Zv) and vector potential (∇ × Z) at phases
θ = [0, π/2, π , 3π/2] for flow over a circular cylinder at Re = 100. The phase-dependent flow separation
points on the cylinder are highlighted in yellow.

Due to the 2π periodicity of the flow field, for a two-dimensional flow, the flow-field variables
satisfy

ũ(x, y, θ + π ) = ũ(x,−y, θ ), (48)

ṽ(x, y, θ + π ) = −ṽ(x,−y, θ ), (49)

ωz(x, y, θ + π ) = −ωz(x,−y, θ ). (50)

The phase sensitivity fields follow as

Zu(x, y, θ + π ) = Zu(x,−y, θ ), (51)

Zv (x, y, θ + π ) = −Zv (x,−y, θ ), (52)

∇ × Z(x, y, θ + π ) = −∇ × Z(x,−y, θ ). (53)

Since the base flow is symmetric about the x-axis with a phase shift of π , the phase sensitivity
functions Zu, Zv , and ∇ × Z exhibit the same properties. The phase sensitivity functions are in
excellent agreement with those reported by Khodkar and Taira [34] with enhanced spatial resolution
and fidelity. We note that the phase sensitivity function in Khodkar and Taira [34] is defined with
a sign difference. Because the present approach simulated Zu and Zv through the adjoint code, the
necessary computational resource is significantly reduced compared to the impulse-based approach
[34]. For the domain of interest considered for the visualization of the phase sensitivity function as
shown in Fig. 3, we considered 13 534 grid points and four phases in the u and v directions. Thus,
through a naive direct impulse-based method, replication of our results for Zu and Zv fields requires
108 272 simulations. In contrast, the adjoint-based approach requires only a single pair of forward
and backward simulations.

What is strikingly different about the phase sensitivity functions from the base flow is that the
profiles show finer layerlike structures appearing in the aft region of the cylinder (right side). We
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FIG. 4. Phase sensitivity function ∇ × Z (line contour) superimposed on the vorticity fields (ω; filled
contour) at phases θ = [0, π/2, π , 3π/2] for flow over a circular cylinder at Re = 100. The phase-dependent
flow separation points on the cylinder are highlighted in yellow.

note that since ∇ × Z acts as a source for Zω through the Poisson equation, a positive value
of ∇ × Z would correspond to a local increment in Zω and a negative value of ∇ × Z would
correspond to a local drop in Zω. It also follows that the phase sensitivity fields ∇ × Z and Zω
encode similar behavior, although the ∇ × Z field would result in compact structures. Now, let us
superpose the phase sensitivity function ∇ × Z on the vorticity field ω in Fig. 4 to take a detailed
look. As we examine the vorticity and ∇ × Z fields at θ = 0, π/2, we notice that positive layers
of ∇ × Z are adjacent to the top and bottom surfaces of the cylinder, near the separation points
(highlighted as yellow dots in Fig. 4). This indicates through the Poisson equation that the injection
of positive vorticity leads to phase advancement in these regions. At these particular phases, the top
positive surface layer of ∇ × Z highlights the regions sensitive to phase advancement, translating
to accelerated vortex shedding. The bottom positive surface layer of ∇ × Z identifies the region
also promoting phase advancement but through the promotion of the formation of the bottom
vortex. Through Eqs. (50) and (53), we observe that an opposite actuation would result in phase
advancement for θ = π , 3π/2. Also noteworthy here is that there is a negative layer of ∇ × Z
directly outside of the positive layer. This suggests that the radial location to which vorticity is
added is important in changing the phase of the shedding process.

Let us also consider the phase-averaged vorticity and phase sensitivity fields in Fig. 5. We can
observe that the averaged phase sensitivity field ∇ × Z has highly sensitive regions where the
boundary layer develops over the cylinder and in the wake region near x/d ≈ 2. To assess whether
these regions align with the vorticity field, we take the correlation (Hadamard product) of ω and

FIG. 5. The phase-averaged vorticity (ω), the phase sensitivity function in terms of vector potential
(∇ × Z), the Hadamard product (ω ◦ ∇ × Z), and the Hadamard product of the absolute values (|ω| ◦ |∇ × Z|)
for flow over a circular cylinder at Re = 100. The phase-averaged regions with high correlation between the
vorticity and the phase sensitivity are highlighted.
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FIG. 6. The lift and drag coefficients as function of phase for NACA0012 airfoil at α = 35◦ for Re = 100.

∇ × Z, and their absolute values are shown in Fig. 5 (two rightmost figures). Both Hadamard
products ωav ◦ ∇ × Zav and |ωav| ◦ |∇ × Zav| highlight the same regions with high correlation
magnitudes. We note that this product ω ◦ ∇ × Z looks qualitatively similar to the global-sensitivity
fields, as reported in Refs. [52,53]. The phase-averaged phase sensitivity field highlights the regions
that are largely sensitive for perturbations. A high correlation between ∇ × Z and ω is observed near
the flow separation locations (highlighted using blue boxes) and the regions with high shear in the
flow field (highlighted using blue boxes) shown in Fig. 5 (right). This indicates that phase sensitivity
analysis has the potential to identify sensitive regions that are relevant to the flow physics.

C. High-incidence airfoil wake

In this section, let us investigate the phase dynamic characteristics of incompressible laminar
periodic flows over symmetric NACA airfoils of different thicknesses at post-stall angles of attack
at a chord-based Reynolds number of Re = 100. In particular, we examine the influence of the
angle of attack and thickness on the phase sensitivity fields obtained from the adjoint-based phase
reduction approach.

The time-periodic wakes of airfoils at post-stall angles of attack are obtained through direct nu-
merical simulations. The computational setup is similar to the cylinder wake simulation. The laminar
flow over various airfoils is computed using the immersed boundary projection method [45–47],
where these airfoils of different thicknesses and angles of attack are generated in the Cartesian flow
field through the introduction of boundary forces along their surface. The computational domain
is chosen to be D = {(x, y) ∈ [−16, 16] × [−30, 30]} with the quarter-chord of the airfoil placed
at the origin. All spatial variables are nondimensionalized with the airfoil chord length c, and the
timescales are normalized by the convective time of c/u∞, where u∞ is the free stream velocity.
The smallest grid size is set to .x = 0.02, and the time step is chosen to be .t = 0.005 such that
it satisfies the CFL condition of u∞.t/.xmin < 0.4. The flow around symmetric NACA airfoils
with thicknesses ranging from 6% to 20% at various angles of attack from 35◦ to 60◦ is considered.
At these angles of attack, we observe unsteady time-periodic vortex shedding over the airfoils. This
is reflected as the limit-cycle oscillations of the lift and drag coefficients. The phase (θ ) is defined
based on the CL-ĊL plane, where θ = 0 corresponds to CL = avCL and θ = π/2 corresponds to
CL = max CL. The variation of lift and drag coefficients with respect to the phase for a NACA0012
airfoil at α = 35◦ is shown in Fig. 6. The velocity and vorticity fields over a NACA0012 airfoil at
α = 35◦ and 55◦ for phases of θ = 0, π/2, π , 3π/2 are shown in Fig. 7. We observe large coherent
structures in the separated regions over the airfoil from the higher velocity (u, v) and vorticity (ω)
fields at α = 55◦ than those observed at α = 35◦.
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FIG. 7. The velocity and vorticity fields at phases θ = [0, π/2, π , 3π/2] for flows over NACA0012
airfoil at angles of attack 35◦ and 55◦ for Re = 100.

Once the time-periodic wake is obtained from the forward simulation, the adjoint simulation is
performed to obtain the high-fidelity phase sensitivity fields. The spatial profiles of phase sensitivity
functions in terms of Zu, Zv , ∇ × Z for NACA0012 airfoil at α = 35◦ for representative phases
θ = 0, π/2, π , 3π/2 are presented in the top three rows of Fig. 8. The spatial patterns in the phase
sensitivity fields are qualitatively similar for airfoils of different thicknesses and angles of attack.
Similar to the case of a cylinder, we observe streaklike patterns around the airfoil in the ∇ × Z fields
with alternating positive and negative distributions. However, unlike the phase sensitivity fields of a
cylinder, large magnitudes of phase sensitivity appear at the leading and trailing edges of the airfoil.
This behavior of large concentrated magnitudes at the leading and trailing edges of the airfoils is
seen in all the phase sensitivity fields Zu, Zv , ∇ × Z. A high magnitude of phase sensitivity indicates
that a small perturbation is sufficient to cause significant phase modification near the edges of the
wing. This feature is consistent with leading and trailing edge regions being very influential on the
wake as sources of vorticity. Since the leading and trailing edges of the airfoil are distinct features
with high curvature, the phase sensitivity function assumes maxima near these regions. Similar to the
case of a cylinder, regions near separation are highlighted in ∇ × Z fields for airfoils. Considering
∇ × Z for NACA0012 at α = 35◦ shown in Fig. 8 (third row), the streaklike patterns with large
magnitudes of ∇ × Z follow the pressure side of the airfoil until leading edge separation occurs (the
leading edge flow separation points are highlighted in yellow).
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FIG. 8. Phase sensitivity functions in terms of velocity (Zu, Zv) and vector potential (∇ × Z) at various
phases for flows over NACA0012 airfoil at α = 35◦, 45◦, and 55◦. Also shown are ∇ × Z fields for NACA0006
and NACA0020 airfoils at α = 35◦ for Re = 100. The phase-dependent flow separation points at the leading
edge of the airfoils are highlighted in yellow.

Furthermore, we examine the influence of the angle of attack and thickness on the phase
sensitivity fields. To study the effect of the angle of attack, we compare the phase sensitivity function
in terms of the vector potential (∇ × Z) of flows over NACA0012 at α = 35◦, 45◦, and 55◦, as
shown in the third, fourth, and fifth rows of Fig. 8. As the angle of attack increases, the magnitude
of ∇ × Z decrease drastically, especially when the angle of attack is changed from α = 35◦ to 45◦.
At the higher angles of attack, regions with high magnitudes of phase sensitivity are concentrated
more compactly at the leading and trailing edge of the airfoils and even in the high shear regions
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FIG. 9. Isocontours of the phase sensitivity function in terms of vector potential (∇ × Z) superposed on
vorticity fields (ω) at various phases for flow over NACA0012 airfoil at α = 35◦ for Re = 100.

of airfoil wake unlike α = 35◦. A similar trend is observed in the phase sensitivity fields in terms
of the velocity (not shown for brevity). This behavior is a result of earlier separation and higher
unsteadiness with large vortical structures in the airfoil wake at high angles of attack. This means
that a stronger perturbation and control effort is required to cause a modification to the flow as the
angle of attack is increased.

Next, we analyze the influence of thickness on the phase sensitivity fields. To this end, we
compare the ∇ × Z fields of NACA0006, NACA0012, and NACA0020 at α = 35◦ as shown in
the third and the bottom two rows of Fig. 8. The influence of thickness on the phase sensitivity
fields is not as drastic as the effect of the angle of attack, as seen from ∇ × Z fields. However, we
observe some important changes in the spatial phase sensitivity profiles due to the thickness. As the
thickness is increased, the magnitude of phase sensitivity increases around the airfoil. Additionally,
we observe larger concentrated regions of high magnitudes of phase sensitivity, especially around
the leading edge of a thicker airfoil. This behavior is also consistent with the flow separation process
as the leading edge separation points move downstream as the thickness of the airfoil is increased
(the leading edge flow separation points are highlighted in yellow). This is a consequence of lower
curvature around the leading edge of thick airfoils, making it feasible to perturb the flow more easily
when compared to a thin airfoil with high curvature. We note that the same behavior is also observed
in Zu and Zv fields, although not shown here for the sake of brevity.

In addition to examining the influence of the angle of attack and thickness, as the phase is defined
based on the lift coefficient, phase modification through vortex shedding dynamics can be utilized
for enhancement of lift [36]. Let us examine the contours of ∇ × Z superposed on ω for NACA0012
airfoil at α = 35◦ for θ = 0, π/2, π , 3π/2 shown in Fig. 9. We also consider the variation in
lift coefficient with phase (shown in Fig. 6) to correlate phase advancement and delay with lift
enhancement or reduction. We observe positive ∇ × Z very close to the leading edge and negative
∇ × Z near the trailing edge of the airfoil at θ = 0. This indicates that an injection of positive
vorticity at the leading edge or an injection of negative vorticity at the trailing edge results in phase
advancement. This might result in transient enhancement of lift. For the phases θ = π/2, 3π/2,
which correspond to the extrema of CL, we observe the same sign of ∇ × Z at both the leading and
trailing edges: positive for π/2 and negative for 3π/2. At the phase of θ = π , which corresponds
to avCL, we observe a negative ∇ × Z near the leading edge and a positive ∇ × Z at the trailing
edge. This is in contrast to the behavior observed at θ = 0 as phase advancement now might result
in a transient reduction in CL, and a phase delay might result in transient lift enhancement. The
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FIG. 10. The phase-averaged fields of vorticity (ω), the phase sensitivity function in terms of vector
potential (∇ × Z), the Hadamard product (ω ◦ ∇ × Z), and the Hadamard product of the absolute values
(|ω| ◦ |∇ × Z|) for flow over a NACA0012 airfoil at angle of attack 35◦ for Re = 100. The phase-averaged
regions with high correlation between the vorticity and the phase sensitivity are highlighted.

injection of positive vorticity at the leading edge can lead to phase advancement at θ = 0 and phase
delay at θ = π , both of which, through the modification of vortex formation dynamics, can result in
enhancement of lift. Such transient control based on the phase sensitivity function was also shown
to increase CL [36]. Since vorticity injection into the flow is more challenging, we consider the
associated Zu and Zv fields, which indicate that suction in the u direction near the leading edge might
result in transient lift enhancement from the mean value (θ = 0, π ). Hence, with the application of
adjoint-based high fidelity phase sensitivity fields, we can correlate phase advancement or delay
with the modification of the vortex shedding pattern over the airfoils, which further results in lift
enhancement or reduction. The associated Zu and Zv fields can be used to select the location and
direction for the flow control actuator to modify the vortex shedding behavior.

To further study the phase dynamic property, we show the phase-averaged vorticity and phase
sensitivity fields in Fig. 10. We can observe that the averaged phase sensitivity field ∇ × Z has
highly sensitive regions near the trailing edge of the airfoil. Similar to a cylinder, in order to assess
whether these regions align with the vorticity field, we take the correlation (Hadamard product) of ω
and ∇ × Z, and their absolute values are shown in Fig. 10 (right). Both the products ωav ◦ ∇ × Zav
and |ωav| ◦ |∇ × Zav| highlight the same regions with high correlation, near the regions of separation
over the airfoil (as highlighted using blue boxes) and the wake region with high shear (as highlighted
using blue arrows) in Fig. 10 (right). This suggests that the vortex shedding can be influenced best
near the leading and trailing edges of the airfoil as well as along the wake regions with high shear.

IV. CONCLUDING REMARKS

We have formulated an adjoint-based phase-reduction analysis for periodic flows governed by
the incompressible Navier-Stokes equations. We have derived the evolution equation for the phase
sensitivity function that could be efficiently solved with any well-established numerical scheme
through a single pair of forward and adjoint simulations, in contrast to the direct method, which
requires numerous simulations. The properties of the spatial phase sensitivity function and their
relations with the perturbations in the velocity potential, velocity, and vorticity fields are established.
This enabled us to interpret the phase sensitivity fields for phase advancement or delay in terms of
the velocity and vortical perturbations that are introduced to the flow field. We have implemented
this approach to perform phase sensitivity analysis for wakes of circular cylinder and symmetric
airfoils of various thicknesses at post-stall angles of attack.

We have shown that this adjoint-based phase reduction method can be incorporated consistently
into the immersed boundary projection method, which can simulate flows over bodies of arbitrary
shapes. Using the immerse boundary projection method, we simulated two-dimensional laminar in-
compressible flow over a circular cylinder at Re = 100 and validated the phase sensitivity functions
obtained using the present framework with those obtained by the direct method [34]. The phase for
the cylinder flow is defined using the limit-cycle oscillations of the lift coefficient, i.e., the CL-ĊL
plane. The separation points on the cylinder are highlighted as the sensitive regions to perturbations
consistent with the flow physics.
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Subsequently, we investigated the phase dynamic characteristics for wakes of symmetric NACA
airfoils. Chord-based thicknesses of 6%, 12%, and 20% at angles of attack of α = 35◦, 45◦, 55◦

were considered at Re = 100 to study the effect of angle of attack and thickness on phase sensitivity
fields. These flows are characterized by their periodic vortex shedding behavior, and the phase has
been defined in the CL-ĊL plane. For all these cases, the leading and trailing edges of the airfoils
have been highlighted as the sensitive regions for phase modification as these regions are the main
sources of vorticity generation. The analysis revealed that an airfoil at a lower angle of attack is
more sensitive to perturbations that cause phase advancement or delay than that at a higher angle of
attack with the presence of large vortical structures in its wake. Furthermore, we observe that a thick
airfoil has high magnitudes of phase sensitivity function, making it more sensitive to perturbations
than a thin airfoil with a higher curvature.

Since the phase is defined based on the lift coefficient, which is closely tied to vortex dynamics,
phase modification is achieved through the acceleration or deceleration of the shedding process. The
phase advancement or delay leads to the lift enhancement or reduction caused by the modification
of vortex formation dynamics over these bodies. Such open-loop lift-enhancement strategies are
proposed based on the phase sensitivity function with respect to vorticity. For phases corresponding
to mean lift coefficient, positive and negative vorticity injection at the leading and trailing edges
of the airfoil might lead to the enhancement of lift through phase advancement or delay at the
particular phases. The phase sensitivity fields obtained through the adjoint-based formulation with
reduced computational effort pave the way for the development of reduced order closed-loop control
strategies for lift enhancement and drag reduction applications in periodic fluid flows and those with
strong tonal dynamics.
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