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Abstract

In modeling the population dynamics of biological species and the transmission dynamics
of infectious diseases, age-structure and nonlocal diffusion are two important components
since individuals need to be mature enough to move and they disperse and interact each other
nonlocally. In this paper we study the principal spectral theory of age-structured models
with nonlocal diffusion within a population of multigroups. First, we provide a criterion on
the existence of the principal eigenvalue by using the theory of positive resolvent operators
with their perturbations. Then we define the generalized principal eigenvalue and use it to
investigate the influence of diffusion rate on the principal eigenvalue. Next we establish
the strong maximum principle for age-structured nonlocal diffusion operators. Finally, as
an example we apply our established theory to an age-structured cooperative system with
nonlocal diffusion.

Mathematics Subject Classification 35K57 - 47A10 - 92D25

Contents

—_

Introduction . . . . . . . e
2 NOAtONS . . . v v v e e e e

2.1 Evolution Family Without Diffusion . . . . . . .. ... ... ... . .. . ... ... ...

2.2 Evolution Family With Diffusion . . . . . .. ... .. . .
3 Preliminaries . . . . . . . o e e e e e
3.1 Characterization of s(B1 +C) . . . . . . o e
3.2 Characterization of s(A) . . . . . . . . e

Communicated by P. H. Rabinowitz.

Research was partially supported by National Science Foundation (DMS-1853622).

B<d Shigui Ruan
ruan @math.miami.edu

Hao Kang
haokang @tju.edu.cn

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
2 Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

Published online: 13 July 2023 9\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-023-02527-1&domain=pdf
http://orcid.org/0000-0002-6348-8205

197  Page 2 of 60 H.Kang, S. Ruan

3.3 ASpecial Case: s(A) > s(B1 +C) . o o oo i
34 AKeyProposition . . . . . . ..
3.5 Compact Perturbation . . . . . . . . .. L
4 Principal Spectral Theory . . . . . . . . ..
4.1 Principal Eigenvalue . . . . . . . . . . .
42 Criteria . . . ...
4.3 Relation Between M and A . . . . . . . ..
5 Limiting Properties . . . . . . . . . ..
5.1 Without Kernel Scaling . . . . . . . . . . . e
5.2 With Kernel Scaling . . . . . . . . . .
6 Strong Maximum Principle . . . . . . . .. e
T Applications . . . ... e e e
7.1 Comparison Principle . . . . . . . . . . . e
7.2 Existence and Uniqueness of Positive Equilibrium . . . . . ... ... ... ... ... ... ...
7.3 Stability . . ..o e
7.4 Global Dynamics in Terms of Diffusion Rate and Diffusion Range . . . . . ... ... ... ...
8 DISCUSSIONS . . . . . . o
A AppendiX . . ..o
A.1 Transmission and Death Rates Independentof x . . . . . .. ... . ... ... ... .. ...
A.2 Resolvent Positive Operators . . . . . . . . . .. .. e e
A.3 Perron-Frobenius Theory . . . . . . .. ... ..
References . . . . . . . . . . . e

1 Introduction

For scalar linear and nonlinear age-structured equations with nonlocal diffusion, recently
we [14, 24-26] developed some basic theories including the semigroup of linear operators,
asymptotic behavior, spectral theory, asynchronous exponential growth, strong maximum
principle, global dynamics, etc. In this paper, we continue to study the existence of the prin-
cipal eigenvalue, asymptotic behavior of the generalized principal eigenvalue with respect
to the diffusion rate, and global dynamics of multigroup age-structured models with non-
local diffusion and cooperative type nonlinearity. More precisely, we are interested in the
eigenvalue problem corresponding to the following multigroup age-structured models with
nonlocal diffusion:

daui (@, ) = 3 [ Jo Iy (6 = Yui(a, y)dy — uia, x)]
—pia, ui(a,x), ac0,at),xeQ, (L.
u; (0, x) = Z;w:1 jou+ Bij(a, x)uj(a,x)da, x €,

where u;(a,x), i = 1,..., M, denotes the density of individuals that belong to the ith
group at age a and location x € Q and M denotes the number of groups in a population;
at < oo represents the maximum age and @ C RY is a bounded domain with smooth
boundary, D; > 0, i = 1,..., M, are the diffusion rates, y; > 0,i = 1,..., M, represent
the diffusion ranges, and m; € [0,2),i =1, ..., M, are the cost parameters with J,, (x) =
V%J (%) i = 1,...,M, for x € RN. The diffusion kernel J satisfies the following

i

assumption.

Assumption 1.1 The kernel J € C(R") is nonnegative and supported in B(0, r) for some
r > 0, and satisfies J(0) > 0 and fRN J(x)dx = 1, where B(0,r) C RY is the open ball
centered at 0 with radius r.
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We point out that the nonlocal diffusion operator in (1.1) corresponds to zero Dirichlet
boundary condition. Next we provide the following assumptions on the transmission rates
Bij and the death rates u; foralli, j =1,..., M:

Assumption1.2 e B;; € C(RN, L°(0,a™));
o i € CRN, LY. [0,a™));

+ ~ . .
e minj<j<y f(f M (a)da = oo and 1 := mlnlsisM{lnf[o,gﬂxﬁ ni(a, x)} > 0, where

Ei(a) = miﬂ:u/l'(a»x)v ﬁi(a) ‘= max I"Li(a’ x)7
xeQ xef

B..(a) := min B;;(a, x), B;;(a) :=max B (a, x).
L xeQ xef
e Moreover, assume that for any (a, x) € (0, a™) x €, the matrix

.....

The last assumption ensures that the spectral radii are the principal eigenvalues of these
matrices. Throughout the paper, we will denote spectral radius of a matrix or a linear operator
T by r(T).

The motivation for studying the principal spectral theory is to investigate the global dynam-
ics of the following nonlinear cooperative age-structured models with nonlocal diffusion:

ui(t,a,x)+ dau;(t,a,x) =D; [fﬂ J(x = yui(t,a, y)dy —u;(t, a,x)] -
—pila, ui(t,a,x), t>0,ae(0,a"),xeQ,

ui(t,0,x) = fi (Z_,M:1 foa+ ﬁij(a,X)uj(t,a,X)du), t1>0,xeQ,

u;i (0,a,x) = ujo(a, x), (a,x) € (0,a™) x Q,

(1.2)

where u;(t,a,x) fori = 1,..., M denotes the density of population at time ¢, age @ and
position x, J is a dispersal kernel and f is a cooperative type nonlinearity describing the
cooperative rate of the population. Such equations appear naturally in describing some eco-
logical problems when in addition to the dispersion of the individuals in the environment,
the birth and death of these individuals are also modeled, see Fife [19], Garcia-Melian and
Rossi [21], Hutson et al. [22], Medlock and Kot [36], and Murray [37]. It could be used to
characterize the spatio-temporal dynamics of biological species and transmission dynamics
of infectious diseases in which the age structure of the population is a very important factor
and the dispersal is in long distance. We mention again that the nonlocal diffusion operator
in (1.2) corresponds to zero Dirichlet boundary condition, which indicates that the region
outside their habitat, RV \ @, is hostile that the population cannot survive there, see Hutson
et al. [22]. Next we provide the assumptions on f in the following.

Assumption 1.3 We assume that f = (f}, ..., fu) satisfies the following conditions,
(i) fi € C'(Ry);

(i) f/(y) > Oforally € [0, 00);

(iii) f;(0) =0 and 5O §g decreasing with respect to y € [0, 00);

y

(iv) There exists L > 0 such that f;(y) < L forall y € R,.

In Assumption 1.3, (i) assumes the good regularity of f; (ii) guarantees the cooperativity
of system (1.2); (iii) implies that the nonlinearity is sub-homogeneous; (iv) guarantees that
solutions of (1.2) will remain uniformly bounded for all times. In applications, f(y) can
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correspond to some classical nonlinearity, for example each f;, 1 <i < M can be chosen as
follows, fi(y) = ﬁ’Ay, y > 0, with A > 0 being a constantor f;(y) =1 —e™,y > 0.

Before proceeding, we briefly recall the principal spectral theory in cooperative reaction
diffusion and nonlocal diffusion systems including autonomous and time-periodic systems.
For reaction diffusion, Dancer [13] investigated the principal eigenvalue of a linear cooper-
ating elliptic system with small diffusion. Later Lam and Lou [29] analyzed the asymptotic
behavior of the principal eigenvalue for cooperative elliptic systems. Recently Bai and He [2]
generalized the results in [29] to cooperative periodic-parabolic systems. The above results
mainly focused on the asymptotic behavior of the principal eigenvalue with a small diffusion.
Most recently Zhang and Zhao [52] studied the case of a large diffusion and also obtained
the asymptotic behavior of the basic reproduction ratio in reaction-diffusion systems. For
nonlocal diffusion, Bao and Shen [3] first provided a criteria for the existence of princi-
pal eigenvalues of linear time periodic cooperative systems. Liang et al. [31] studied the
principal eigenvalue for periodic nonlocal dispersal systems with time delay. In the reac-
tion diffusion case, most researchers established the existence of principal eigenvalues by
employing Krein-Rutman theorem due to the compactness of solution maps for second order
elliptic operators and further investigated the asymptotic behavior with respect to diffusion
coefficient by using variational structure for the autonomous case and sup-inf characteriza-
tion method for the time-periodic case. While in the nonlocal diffusion case, due to the lack
of compactness of solution maps one needs to use different methods such as generalized
Krein-Rutman theorem [16, 38], see Coville [10, 12] and the references cited therein, or
perturbation of positive operators [8], see Rawal and Shen [40], Shen and Xie [42] and the
references cited therein, to obtain the existence of generalized principal eigenvalues. Further,
combining these two methods, Shen and Vo [43] and Su et al. [44] discussed the asymptotic
behavior of generalized principal eigenvalues in the time-periodic case by employing the
idea from Berestycki et al. [5]. There are also many other studies on the analysis of (general-
ized) principal eigenvalues for nonlocal diffusion equations in different situations including
cooperative systems, see Liang and Zhou [32], Li et al. [30] and the references cited therein.

To the best of our knowledge, there is little literature on the principal eigenvalue in
age-structured cooperative models with nonlocal diffusion. Ducrot et al. [15] obtained the
principal eigenvalue in investigating the existence of traveling wave solutions of multigroup
age-structured epidemic models; however, they considered the Laplace diffusion and spa-
tial variable independent coefficients. The purpose of this paper is to first investigate the
existence of the principal eigenvalue of multigroup age-structured models with nonlocal dif-
fusion and then study the asymptotic behavior of the principal eigenvalue in both small and
large diffusions. We will extend the idea in our previous paper [14] for the scalar case to
cooperative systems. More concretely, we will choose an extended function space to include
the integral boundary condition, see the definition of 4 in (2.11), which is different from
the previous studies. The reason behind is that there is a d, term and an integral boundary
condition in the equation (1.1), which prevent us to use directly the results of autonomous
and time-periodic cases in nonlocal diffusion operators. Next, we will introduce the theory
of resolvent positive operators with their perturbations by Arendt [1] and Thieme [46, 47]
to investigate the existence of principal eigenvalue, which is similar to Biirger’s idea [8] for
perturbations of positive operators and generalized Krein-Rutman theorem [16, 38]. Last,
we follow the idea of Berestycki et al. [6] to define the generalized principal eigenvalue and
use it to study the asymptotic behavior with respect to diffusion. We would like to mention
that only the Dirichlet boundary condition is considered here, but the theory can be applied
to Neumann case as well, see [25], where we studied a scalar age-structured model with
nonlocal diffusion of Neumann type.
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The paper is organized as follows. In Sect.2, we introduce our working operators and
function spaces. In Sect. 3, we first analyze the spectral bound s(5; + C) of B; + C, which
corresponds to age-structured models without nonlocal diffusion, and compare it with the
spectral bound s(A) of A defined in (2.11), which corresponds to age-structured models
with nonlocal diffusion, and then obtain a non-strict size relation between s(B; + C) and
s(A). In Sect.4, we find an easily verifiable and sufficient condition for s(.A) being the
principal eigenvalue. In Sect.5, we study the effects of diffusion rate and diffusion range
on the generalized principal eigenvalue of A and discuss the continuous dependence of the
principal eigenvalue on the transmission and death rates g and . In Sect. 6, we give the strong
maximum principle which is of fundamental importance and independent interest. In Sect. 7,
we apply our established theory to the age-structured cooperative system with nonlocal
diffusion (1.2) and analyze the existence, uniqueness and stability via the magnitude of
spectral bound of the linearized operator. Moreover, we investigate the asymptotic properties
of the nontrivial equilibrium of (1.2) with respect to the diffusion rate and diffusion range.
In “Appendix”, we first establish the spectral theory when u(a, x) = pu(a) and B(a, x) =
B(a) for problem (1.1) and then recall the theory of resolvent positive operators with their
perturbations and Perron—Frobenius theory.

Finally, we want to mention that the assumptions that J has a compact support and €2 is
bounded can be relaxed. For the principal spectral theory, we only need €2 to be bounded
without requiring that J has a compact support. Moreover, the boundedness of Q2 seems
necessary due to the lack of Harnack’s inequality for such parabolic problems, see Shen and
Vo [43]. However, in order to study the limiting properties of principal eigenvalues, J is
needed to be compactly supported for Taylor expansion later. In addition, the condition that
Q2 is bounded can even be removed if one only defines the generalized principal eigenvalue,
see Berestycki [5]. Here to give a unified presentation of the results, we assumed both of
them.

Besides, we consider here a general form of boundary condition on a; i.e. the second
equation in (1.1). In fact, the matrix 8 could be diagonal representing the birth rates of each
group i. Otherwise, f8;; can represent the transmission rate from group j to group i, see
Ducrot [15] for a multigroup age-structured epidemic model.

2 Notations

In this section, we will introduce our notations and some preparatory results. We denote by
X and X respectively the Banach space X = C() and its positive cone or the Banach
space X = L' (Q) and its positive cone. Here recall that & C R” is a given bounded domain.
Recall that for both cases X is a normal and generating cone. In addition, we denote by /
the identity operator.

Then we define the following function spaces

X =XMx L'((0,a%), X™), X = {Oxm} x L'((0,a™), X,

endowed with the product norms and the positive cones:

X = XY x LL(0,a"), XM) = X¥ x {ue L'((0,a™), X™) s u(a,) € X}, ae.in (0,a™)},
X0+ =Xxtn Xp.

We define the norm in XM as follows, ||u lxm = maxi<;<m llu; || x. We also define the linear
positive and bounded operator K € £(X) by
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(Ko1) = [ J¢=3)p0dy. Vo e X. @
Q
Note that one has by Assumption 1.1

SUpeq fo J(x —dx  if X = L1(Q) -

1Koy = . — =
<0 LupxegfQ Jx—ydy ifX=CQ)

/ J(@dz=1. (22)
RN

In addition, we define the linear positive and bounded operator K € £(X™) by
[Kel(-)

=diag{/QJ(-—y)wl(y)dy,--.,/gl(-—y)coM(y)dy}, Vo = (¢1,...,om) € XM.

(2.3)
2.1 Evolution Family Without Diffusion
We consider the following problem posedin X for0 <t <a <atandi=1,..., M:
davi(a) = —pia, Jvi(a), T <a <a*, 2.4)
vi(t) =n; € X.
This problem generates an evolution family on X*, denoted by IT = diag{ITy, ..., [Ty}
that is explicitly given for0 < 7 <a <at andn = (1,...,ny) € XM by
i(z, a)ni = mi(z, a, )i
(2.5)

a
with ; (7, a, x) 1= exp <—/ i (s, x)ds) for0<t<a<atandx € Q.
T
Observe that one has

a ~
Tz, @)l pxmy < max  exp (—/ ﬁi(s)ds) <e e <1 vo<t<a<at.
T

.....

(2.6)

We also define the following family of bounded linear operators {W; },~ i C £ (X, Xp) for
(n,8) € X' by

W)\(nv g) = (OXM7 h)

a
with h(a) = e *T1(0, a)n + / e M (s, a)g(s)ds. 2.7)
0

We will show that this provides a family of positive pseudoresolvents. To this aim, one can
make some computations to obtain

a
W, Wi.(n, ) =/ e VI (s, a)e *TI(0, s)nds
0
a N
+/ e*"(“*“)l'l(s,a)/ e M TOM(z, 5)g(v)dTds
0 0

a a s
:/ e*”“e*(’\*”)sdsl'[(o,a)n—i-/ / TV O (1, a)g(T)dTdss.
0 0o Jo
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Hence for v # A, we have

W, Wi(n, g) = (74" — e ") (0, a)n + (e_(*_”)" - e‘”"”f)
vV—A v—A
a
/ TV (T, a)g(v)dT
0

1
= ——Wi=Wy) (8.
vV—A
Moreover, one see (for example Magal and Ruan [33, Lemma 3.8.3]) that for all > > —Ji,
Wi(n, ) = Ox only occurs if n = Oxm, g = Op1((0 o+), xM)

and

lim AW, (Oym, g) = Oym, g), Y(Oym, g) € Xp.

L—00

Moreover, for any A > —[i, one has

1
AL

IWillzcx, 2 <

Thus by Pazy [39, Section 1.9] there exists a unique closed Hille-Yosida operator B; in X
such that

(A =B~ ' =W, forall A > —[i.
Recalling (2.1) we also define the bounded linear operator 3, € L£(Xy) given by

Ba(Oxm, g) = (Oxm, DKg()), Y(0, g) € X, with D := diag{Dy, ..., Dy}.

2.2 Evolution Family With Diffusion

Consider now the following evolution equation for n; € X and 0 < 7 < a < a™ and
i=1,...,M:

{aau,«a) = Di(K — Du;(a) — pi(a, Juia), T <a <at, 08)

ui(t) =n; € X.
Define the evolution family
{U(r, a)}0§r§a<a+ = dlag {ul (T, LZ), ceey Z/[M(Ta a)}0515a<a+ 5

where U; is associated with (2.8). Using the constant of variation formula ¢; becomes for all
0 <t <a < av the solution of the equation

a

Ui(t,a) = e P (z, a) + D; / e D@D, ) K U (z, Ddl. (2.9)
T

Note that the right hand side of (2.8) is linear and bounded with respect to u, thus the existence

and uniqueness of {{/; (T, a)}g<r<q<4+ can be obtained from the general semigroup theory

(see [39]). Next let us prove that {{/; (7, a)}o<r<q<q+ i exponentially bounded for each

i=1,...,M.
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To this aim fix ¢ = (¢1, ..., ¢u) € XM, 7 € [0, at) and set u;(a) = U;(t, a)¢;. Then
one has

~ a ~
lui (@ x < e PAPED gy + Di|K |l £cx) / em Pt @=D 1y ()| xdl.

T

Next Gronwall’s inequality yields
s (@)l x ePHDET) < gy PRI L0 @)
which implies due to (2.2) that
Ied; (7, @)l o xy < e P

As a consequence {U/(T, a)}o<r<q<q+ 1S positive and exponentially bounded in XM and
satisfies

U@, a+Dlpxmy <e ™, Vi>20,0<a<at -1 (2.10)
Now we define the family of bounded linear operators {Ry }x~_j C L(X, Xp) as follows:
Ry(n, 8) = (Oxm, h)

a
with h(a) = e U0, a)n —l—f e MY (s, a)g(s)ds.
0

Moreover, for any A > —[i, one has

1
A+

Then by the same procedure as the case without diffusion, we can prove that this provides
a family of positive pseudoresolvents. Thus again by Pazy [39, Section 1.9] there exists a
unique closed Hille—Yosida operator 5 in X’ such that

RN 2o, ) <

W =B ' =R, forall A > —L.
Next we define the part of B in Xp, denoted by Bp. That is,
Box = Bx, Vx € D(Bp), with D(By) := {x € D(B) : Bx € Xp}.

Note that By is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators on Xy, denoted by {773, (t)};>0. Moreover, it satisfies the following estimate

[0 ()| £y < €5 V2= 0.

Observe now that we have B} + By, — DI = B. From now on for the sake of convenience,
we denote By := By — DI.
On the other hand, we define C € L(Xp, X) by

at
C(OxM, I’l) = (/ /3((1, ~)h(a)da, OLI((O,(I+),XM)> . (OxM, ]’l) € XO,
0
and A:dom(A) C X - X by

@2.11)

dom(A) = dom(B) C Xy,
A=B+C.
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This shows that A is not densely defined in X In addition, we will later use the matrix norm
defined as follows:

18] 2 0.0ty = 12}1’;, Z 181l 1< 0.0

Remark 2.1 In addition, for each fixed x € €, following the above procedures, one can obtain
the age-structured operator, denoted by 3] + C* defined on RM x L1((0, a™), RM).

Now define the map F : Xy — X by
F(Oxm, y) = (f (f(;#/g(“! 'W(a)da)’ OLl((O,a"'),XM))v f=diag{fi,.... fu}.

Then by identifying U (¢) = (0 M, u(t)), one can write down problem (1.2) as the following
abstract Cauchy problem:

with Uy = (O, ug) . (2.12)

U = BU + F(U),
U(0) = Uy,

As mentioned before, we will study the principal spectral theory of the linearized problem
corresponding to (2.12), that is the principal spectral theory of A = B+ f/(0)C. For the sake
of convenience, we first ignore the term f’(0) before investigating the global dynamics of
(1.2), see Sect.7. Here f'(0) = diag{f{(0), ..., f;,(0)}.

Finally, let us introduce briefly our idea in establishing the existence of principal eigen-
value. Observe that if « € p(B1 + C), then the existence of nontrivial solutions of

Au = By + B1 +C)u = au
in Xp is equivalent to the existence of nontrivial solutions of
By(al — By —C) v =

in X', where [ is the identity operator. Next on one hand, we will prove that A is a positive and
compact perturbation of By + C (see “Appendix” for precise definitions). On the the hand,
we will provide an easily verifiable and general sufficient condition for s(A) > s(B; + C).
Finally we can apply the theory of resolvent positive operators with their perturbations to
study the existence of principal eigenvalue of our problem (1.1).

Before ending with this section, we would like to emphasize that when we use notations
<, <, =, >, and >, they could indicate the order in X orin X M and in R or RM depending
on the context. For the sake of convenience, we will also omit subscripts of the zero elements
in the function spaces.

3 Preliminaries

In this section we present some necessary propositions and lemmas 1) to figure out the
existence of the spectral bounds of B1 + C and .4 which correspond to the evolution families
without diffusion {II(, @)}p<r <4<+ and with diffusion {{/(t, a)}p<r<q<4+ Tespectively;
2) to show that A is a positive and compact perturbation of By + C. For convenience, we
consider the kernel J without scaling, but the theory is valid for the kernels with scaling. We
emphasize that the following results hold for both X = C (€) and X = L1(Q) if we do not
indicate what X is exactly.
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First we provide the following additional assumption throughout this section.

Assumption 3.1 Define

a+
Hy = f B(a)e“tPITI(0, a)da,
, £
where
T(y, @) = diagle” 1O o= fy Andsy G.1)

Assume that there exists ag € R such that r (Hy,) > 1.

3.1 Characterization of s(31 + C)

Now recalling that the functions
{m(z,a, x)}0515a<a+,xe§ = diag{m (7, a, x), ..., my(7,a, x)}0§r5a<a+,xe§

are defined in (2.5), we define for & € R a continuous function G4 : @ — L(RM), where
L(RM) denotes all M x M matrices in R

(l+
Go(x) =f Ba, x)e”“tPr(0, a, x)da, Vx € Q. (3.2)
0

We also consider for & € R a multiplication operator G, € L(X™) given by
[Gag](x) = Ga(x)g(x). g € X" (3.3)
Then the following proposition holds.
Proposition 3.2 Let Assumption 3.1 hold. Then there exists ™ € (g, 00) satisfying the

equation

a+
max r (Gg#=(x)) = maxr (/ ﬂ(a,x)e—(a**+p)a”(0’ a, x)da) =1. 3.4
0

xeQ xeQ2

Moreover, By + C is a resolvent positive operator with s(B) + C) = o™ and
at
r (Gaw) =1 ( / Bla, e~ @ FPHr(Q, a)da) =1 (3.5)
0
Proof Observe that the operator o/ — B — C is invertible if and only if the operator 7 —
C(al — By)~!is invertible. In that case, we have
(@ =B —C) "' = (@l =B) "' [I -l —B)']".

We now compute the inverse of I — C(al — B1)~'. To this aim choose o € p(531) and
consider

®.@) =[I -Clal —B) '] (k. 9).
First we define

0, ) = (@I —B) ', ¢).
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It follows that

at
@:wand?:x—f B(a, Yo (a)da.
0
Next recall from (2.7) that one has

a
$(a) = e “TPII0, a)k + / e “IPEI(s, a)p(s)ds.
0

It follows that

a+
K —/ B(s, e @TPITI(0, s)kds
0

+

a N
= / B(s, x) f e~ @TDID (1, 5)@(t)drds + &,
0 0

which is equivalent to

a+ S
(I — Gk = / B(s, ) / e~ @D (1, 5)@(7)dTds + &, (3.6)
0 0

where G, is defined in (3.3). Thus if 1 € p(Gy), then

k= (I —Gy) ! [/a B(s, -)/s e~ @D (7, )@ (v)dTds +f} , (3.7)
0 0

which implies that

e, 9) =[I—c@l-B)"']" ®

— ((1 —Go) ! [/a B(s, -)/Se_(a+D)(S_T)H(T, $)@(r)dtds +?} ,a).
0 0

(3.8)
It follows that o« € p(By + C) and thus (¢l — By — C)_1 exists. Now we have shown that
a€pBi+C)NR < 1€ pGa),

thus the problem is inverted into finding such « satisfying 1 € p(Gy).
By assumptions on § and pu, we have

a+
Gug > [ B(aye”“tPNTI(0, a)dag = Hyg, g € XM, (3.9)
8

Then one has from (3.9) that G, > H, in the sense of positive operators (actually H, is

a matrix function of «). Since B(a) is irreducible or primitive, H, is also irreducible or
primitive. Thus Perron-Frobenius theorem (see Proposition A.10 in “Appendix™) applies
and provides that the spectral radius r(H,) is the principal eigenvalue of H,. Moreover,
observing that 7 (H, ) is continuous and decreasing with respect to « and satisfies

lim r(Hy) =0, r(Hyy) > 1,
a—>00

then there is a unique «* € («, 0o) such that

(l+
r(Hys) =r ( / B(a)e™ @ DT (0, a)da) =1
. £
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Now by the theory of positive operators (see [35]), we have immediately that r(Gy+) >
r(Hy+) = 1. Again observing that r(G,) is also a strictly decreasing continuous function
with respect to « (or see the proof in Proposition 3.3), it follows that there exists a unique
o™ e R satisfying r(Gg++) = 1. Note that for any & € R, when o > o™ we have r(G,) <
F(Ga) = 1, (I — Go) ™! exists. It follows that o € p(B; +C) when o > o**, which implies
that p(B; + C) contains a ray («™*, oo). Further, («l — B] — o)~ lis obviously a positive
operator by (3.8) for all « > o™*. Thus B; + C is a resolvent positive operator.

Moreover, «™* is larger than any other real spectral value in o (B; + C). It follows that
o™ = sp(B1 +C), where sp (A) := sup{r € R; A € 0(A)}. Now we have known that B; +C
is a resolvent positive operator. But since X is a Banach space with a normal and generating
cone Xt and s(B; + C) > o™ > —oo due to «™* € o(B; + C), we can conclude from
Theorem A.5 that s(By + C) = sg(B1 +C) = o™*.

Next note that G, is actually a positive multiplication operator in X . We can obtain the
spectral radius r(Gy) of Gy (see [31, Proposition 2.7]) via

xeQ xeQ

a+
r(Gy) = maxr(Gy(x)) = maxr </ Bla, x)e”@tPNr(0, a, x)da) .
0
Thus o™* satisfies (3.4). O

3.2 Characterization of s(.A)

Next we will prove that A is resolvent positive and provide a precise characterization of its
spectral bound s(A). Recall that {{/(7, a)}o<r<q<4+ 1s defined in (2.9) and let us define for
) € R the operator M; € L(XM) by

a+
M = / B(a, e U0, a)p da, V¢ € XM. (3.10)
0
Then the following proposition holds.

Proposition 3.3 There exists Lo € R such that

at
r(My,) =r (/ B(a, )e U (0, a) da) =1 (3.11)
0

Moreover, the operator A is resolvent positive and its spectral bound satisfies s(A) = Ag.

Proof Consider the resolvent equation

0,¢) = — A7, 9), V(& 9) € X, 1 epA),

following the same procedure in Proposition 3.2, we can obtain
[ = 7@ o), )
at s
= (0, eUO, a)I = M)~ / Bls, ) / e TU(T, 5)p()dTds + ¢
0 0

+ /a e MTIY(T, a)gp(T)dT). (3.12)
0
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It follows that & € p(A) NR < 1 € p(Mjy). Now define an operator C;, : XY — XM for
A e Chby

a+
Cotp := / B(a)e T1(0, a)eP*Dpda, Vp € XY,
, £

where T1(0, a) is defined in (3.1) and {eD(’C_’ )"}azo denotes the strongly continuous semi-
group generated by the bounded operator D(XC — ). We can see from the assumptions on j
and p that M; > C, in the positive operator sense.

Now we claim that r (M,,) is decreasing and log-convex (and thus continuous) with respect
to the parameter A € R.

Claim 3.4 r(M,) is decreasing and log-convex with respect to % € R.

For now let us assume that the claim is true. On the other hand, from Theorem A.2-(iv) in
the “Appendix”, there exists a unique simple real value &y such that r(Cg,) = 1. Therefore,
by the theory of positive operators,

r(Mg) > r(Cg) = 1.

Moreover, xlirn r(M;) = 0. Since r(M,,) is continuous and decreasing with respect to A

by Claim 3.4, ?ﬁere exists areal Ao > &p such that r (M;,) = 1.

Next let us prove that A¢ is unique. To this aim, assume that there is A < A, such that
r(M,,) = r(M,,) = 1. Since A — r(M,) is decreasing and log convex, it follows that
r(Mj) = 1forall A > A.. This contradicts the fact that r(M;) — 0 as A — oo. Thus
there is a unique A9 € R such that »(M;,) = 1. This is equivalent to the uniqueness of .
Moreover, we have shown that the mapping A — r(M,) is strictly decreasing on the interval
(—00, 00).

In addition, since M, is positive, 1 = r(Mjy,) € o(M,,) # ¥, which implies that
Ao € o(A), thus o(A) # (. At last, the conclusion that s(4) = Ao follows by the same
argument in Proposition 3.2, we omit it. Moreover, A is resolvent positive since p (A) contains
aray (Ao, 00) and (Al — A~ lis positive for all A > A by (3.12). O

Now let us prove the above claim.

Proof of Claim 3.4 We use the generalized Kingman’s theorem from Kato [27] to show it.
First we claim that A — M, is completely monotonic. Then A — r(M,) is decreasing and
super-convex by Thieme [47, Theorem 2.5] and hence log-convex. By the definition from
Thieme [47], an infinitely often differentiable function f : (A, 00) — Z. is said to be
completely monotonic if

(=D"fM0) e Zy, Vi > A,neN,

where Z is a normal and generating cone of an ordered Banach space Z and (A, c0) is the
domain of f. A family {F} },~, of positive operators on Z is said to be completely monotonic
if f(A) = F,x is completely monotonic for every x € Z. For our case, M, is indeed
infinitely often differentiable with respect to A € R and

a+
(—1)'MMep = / Bla, )a"e U0, a)pda € XM, A eR,neN, ¢ € XY
0

Thus, our result follows. O
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Remark 3.5 From the above Proposition 3.3, we can obtain that s(A) > s(B; + C) since A
is resolvent positive. Theorem A.6 applies and provides that case (i) was ruled out. But we
cannot obtain the strict relation, i.e. s(A) > s(B; + C), because a** and X¢ are obtained by
taking the spectral radius of the operators equal to 1 (see Propositions 3.2 and 3.3) where a
limit process occurs in which the strict relation may not be preserved. However, if r(G,) and
r(M,,) are eigenvalues of G, and M, respectively, we could obtain the strict relation, see
Marek [35, Theorem 4.3] which is the Frobenius theory for positive operators.

3.3 A Special Case:s(A) > s(B7 +C)
Next, we give a special case where s(A) > s(B; + C) holds.

Proposition 3.6 Assume that p(a, x) = u(a), fla,x) = B(a) and D; = D foralli =
1,..., M, then one has s(A) > s(B; +C).

Proof Note that when p(a, x) = p(a) and B(a, x) = B(a), s(B1 +C) = a™ and s(A) = Ao
satisfies the following equations

a* a
r ( / Ba)e e~ Dag=Jo W)‘“da) =1 (3.13)
0
and
a+
r(M)\.O) —r (/ ﬂ(a)e—koae—fo #(S)dSeD(K:—I)ada) — 1’ (314)
0

respectively. It is known from Garcia-Melidn and Rossi [21, Theorem 2.1] that the operator
—L defined by

Lo:= /Q JC— o0y — ¢, ¢ e CE),

has a principal and simple eigenvalue 0 < 6y < 1 associated with a positive eigenfunction ¢p.
It follows that —DIC + D1 has a principal eigenvalue D6 associated with an eigenfunction
¢ = {¢o, ..., @o} in the sense that each component of eigenfunctions is positive and 6y is
isolated. Note that 6 is not simple any more. Further, from Theorem A.2 we have shown that
M- Do, has an eigenvalue associated to 1 with a positive eigenfunction @¢ € X M and

r(Myy-pgy) = 1, (3.15)

where k is the principal eigenvalue of the multigroup age-structured operator; i.e. kg satisfies
the following characteristic equation

a+ d
r ( / B(a)e e~ Jo M”’“da) =1. (3.16)
0

Now comparing (3.13) with (3.16) and (3.15) with (3.14), we have o™ = ko — D while
A0 = ko — DOy. It is obvious that Ao > o™, which implies that s(A4) > s(B; + C). O
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3.4 A Key Proposition

Next we give akey proposition on the solvability of the following equation, which is important
in studying the effects of diffusion rate on the principal eigenvalue later. Consider the problem

[8au,(a,x) = —(a + Dp)ui(a, x) — pila, x)u;i(a, x), (a,x) € 0,a") x Q’(3.17)

" _
u; (0, x) = Zyzl fo Bijla,x)uj(a, x)da, xeQ.
Proposition 3.7 Let Assumption 3.1 hold. Then there exists a continuous function x — a(x) :

Q — R such that for any x € Q, equation (3.17) with « = a(x) has a positive solution
a— u(a,x) = ui(a,x),....upa, x)) € WH,a™), RM) and

a+
r (/ ﬂ(a,x)e—<“(X>+D>“n(o,a,x)da> =1, Vx € Q. (3.18)
0

Moreover, a(x) < o™ for all x € Q, where a** is defined in (3.4).

Proof Solving (3.17) explicitly, we obtain a formal positive solution
ui(a, x) = e “TP0, a, x)u; (0, x)

provided u (0, x) = (u1(0, x), ..., upn (0, x)) > 0. Then plugging it into the integral initial
condition we get that

M at
Z/ Bij(a, x)e= @ TP 0, a, x)u; (0, x)da = u; (0, x).
j=170
Now define
a+
G(a, x) = Ga(x):/ Bla, x)e” @t PN 70, a, x)da.
0

Observe that G : R x @ — L(RM) is continuously differentiable with respect to « and
continuous with respect to x respectively due to the assumptions on 8 and 1, where LRM)
denotes all M x M matrices in R. Moreover, for any x € €2, one has by Assumption 3.1 that

alimmr (G(a,x)) =0, r(G(ap, x)) = r(Hyy) > 1. (3.19)

Thus for any x € ©, thanks to the monotonicity of G with respect to «, there always exists
a unique «/(x) such that (3.18) hold.
Next let us prove that « is continuous. Observe that

3G (a, x) at
37’ = / B(a, x)ae~“TPN1(0, a, x)da, Vx € Q. (3.20)
(04 0

Thus now for any x € Q, —%(a, x) is irreducible or primitive and nonnegative. Since the
spectral radius of an irreducible and nonnegative matrix is coming from a simple root of the
corresponding characteristic polynomial, we have by implicit function theorem (applying to
the characteristic polynomial) that for any x € €, (G(-, x)) is smooth in R. Moreover, for
any x € Q, G(-, x) is decreasing in the matrix sense, which implies by Perron—Frobenius
theorem (see Proposition A.10) that

r(G(a, x))
—_— <
Ja

0.
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The continuity of & comes again from implicit function theorem (applying to the spectral
radius). In addiction, one has that a(x) < a** by (3.4) since o™ = max g a(x) due to the
monotonicity of G, with respect to «. Thus the proposition is proved. O

3.5 Compact Perturbation

In this subsection, we will show that A is a compact and positive perturbation of 5; + C.

Proposition 3.8 For any real number a > o**, By(al — By — C)~! is a compact operator
in X.

Proof We only prove the result in the case X = C(2), since
L'((0, ™). [C@1Y) c L'(0.a™), L' @1").
Let us choose a sequence {(1,, ¥,)}nen C X satisfying

I@ns Yl = I1WallLi0.a+).xm) + IMallxm < 1, forany n € N.

By (3.8) we have for Rear > o™* that

Ba(al — By =€)~ (0, Yn) = (0, $u) = (0, DKg1n + DKg2n) ,

where

gin(a) = e “TPII0, a)(I — Go) ™!

at s
[ / B(s, ") / e CIPISTOM(T, $)y (T)dTds + ],
0 0
a
g (a) = / e”“TPTOI (T, a)y, (T)d . (3:21)
0

Note that gy, and g»,, are continuous with respect to a € [0, a™], so is ¢,. In the following

context, we denote Dyax := max|<i<y D; and Dpyip := minj<;<y D;.
First observe that when « > o™**, one has

at s
g W lyw = = (I = G) ™[ / B(s. ) / e CTPITOT (T, )y (v)dTds + 14 )
0 0 xM
a+
= Ca[fo ”'BHL([LOC(O,a"')]M)
s
i e~ @FDmin) SO\ T (2, 5) | £ oy 190 (D) | o dTds + [l ll v ]
a+
< CullFl im0l e
a+ ~
/ e @HPmin G0 g 4 |1y g |
T
||B”£([L°°(O )M
Cu | 11 ElEo
= Ly |: @+ Doun + 11 ”wn“Ll((O.(ﬁ).XM) + ”n””XM
- o [TPleqoam ] _ & (3:22)
- o + Dpin + /7: «
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where we used the fact that || (I —Go)! ||z:(XM) < Cq with C, > 0 being a constant, due to

o > o™, Here C, > 0 is another constant.
Next, one has

1 ) My < C / e_(a"'Dmin"’M)ada < 70(~7
lgtnllLi.at.xm) = Ca | @ + Dmin + [1
« o tDintDa—T) 1
ol my < (t Mdr/ e W Pmn @ gg < — |
llg2nllL ((0,at),XM) /0 1Y (D)l x g &+ Doin + 71
It follows from (2.2) that for any n € N,
Il 1 wy < A[5 +1] (3.23)
mlet.anxin = - [Ca '

Moreover, thanks to the presence of the continuous kernel J, one can obtain that the functions
{¢n}nen are equicontinuous with respect to x € Q. It follows by Arzela-Ascoli theorem that
{¢n(a, -)}nen is compact in XM = Cc(Q, RM) for any a € [0,a™].

Next let us show that g1, and g, are equi-integrable respect to a. Observe by (3.21) that
for any n € N and/ > 0, one has (note that e~@+tD)@=7) and 7 (7, a, -) are commuted since
they are diagonal matrices)

lgan(a +1) — gon(a)l

a+l
< / e~ DN EHT (0 g 4 1 Yy (T)dt
a
a
+/ [e_(a+p)(a+l_r)”(f, a+l,)—e @PE (7 q, ~)] Y (0)dT
0
a+l
< / e~ @FDHTD (1 g 1, )y, (D)
a
a
+/ P (1 a1, [1 - @Dy ()de
0
a
+ f em@PeNg(r q N[ —w(a,a+1, )] Y (r)dT
0

a
5/
a

a

+/ —(a+’D+ﬁ)(a—r)e—ﬁ1 [1 _ e—(oH—D)l] Yn(T)dT
0

+1 -
e~ (@+D+m)(a+l—1) Yo (v)dT
e

a ~ ~
+ / e~ P [ = 7]y (r)d,
0

It follows by setting k = o + Dyyin + & that
a+
/ lgan(a + 1) — gau(@) v da
0
at a+l
< /0 / e K= 1y ()| g dda
a

a+ a ~
+ / / eka=0) =il [1 — e*@”Dmaxﬂ] Y () | g dTda
0 0
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at pa _
+/ / eka=0) [1 - e_“l] [V ()| xw dtda
0 0
=1+ L +1;.

Via integration by parts, one has

~ d+ a+
L <e ™ [1 - e*“'*Dmax)’] / f e G |9, (0 dT
0 T
1 -0 . .
< % [l — ef("‘JrD'“‘”‘)l] 1l L1 0.a+). xM) =0, uniformly in n € N.

Similarly, one also obtain I3 — 0 as / — 0 uniformly inn € N.

Next let us deal with I;. To this aim, we split it into two cases: 0 <a <t <a+1[ <a™
and0<a<rt<at <a+l

Case 0 <a <71 <a+! <a". Via integration by parts, one has

a+ T
I} < / / e Mt =D gg |1, () || ym dT =9 0, uniformly inn € N.
0 t—I

Case0 <a < 7 <a' <a+I[. Viaintegration by parts, one has

a-+l a-+l
I 5/ / e K= 1y (1) |y dda
0 a
a+l pt -0
< / / e KaF= g |Ym ()|l xm dt —> 0, uniformly inn € N.
0 1

In summary, we have shown that f(;l " llg2n(a + 1) — gon(a)llym da — 0asl — O uniformly
in n € N. Similarly, one can show by (3.22) that fgﬁ lgin(a +1) — gin(a)llxm da —

0 as [ — O uniformly in n € N. It follows that féﬁ l¢pn(a +1) —pu(@)lxmda — 0
as I — 0 uniformly in n € N. Combining with (3.23), {a — ¢,(a)},en is compact in
L'((0,a™), X™). Thus for any a € [0, a™] there exists a limit ¢(a) € X¥ such that, up
to a subsequence, ¢, — ¢ in L'((0,a™), X™). Hence the operator By (el — By — o)~ lis
compact on X. O

Corollary 3.9 The operator B> is a compact perturbator of By + C and the operator A =
By + B2 4 C a compact perturbation of B1 + C.

Proof (al — By — C) 'Ba(al — By — )~ ' is compact for some o > s(B; + C) since
Bo(al — B =) is compact by Proposition 3.8. ]
4 Principal Spectral Theory

In this section, we state and prove the main results on the existence of principal eigenvalues.

We will assume the existence of s (81 +C) throughout this section. First we provide a sufficient
condition to make the spectral bound s(.A) become the principal eigenvalue.

4.1 Principal Eigenvalue

Theorem 4.1 Assume s(A) > s(B1 + C), then s(A) is the principal eigenvalue of A.

@ Springer



Principal spectral theory in multigroup age-structured models... Page 190f60 197

Proof Denote
Fr.=By(x —B —0)~", Rer>a*. 4.1)

Note that A = B; + C + B> is a compact perturbation of B; 4+ C by Corollary 3.9. We
will use Theorem A.9 to prove the conclusion. First, we know that A is resolvent positive
by Proposition 3.3. It follows that case (i) in Theorem A.6 will be ruled out. Secondly,
by the assumption s(A) > s(B; + C) we know that only case (iii) in Theorem A.6 will
happen, otherwise s(A) = s(B1 + C) which is a contradiction if case (ii) in Theorem A.6
would happen. Hence, there exists Ao > A1 > s(B1 + C) such that r(F;,) > 1 > r(Fy,).
Now the hypothesis in Theorem A.9 holds, then s(A) is an eigenvalue of A with a positive
eigenfunction, has finite algebraic multiplicity, and is a pole of the resolvent of .A. It follows
that s(A) is the principal eigenvalue of A. O

Combining the above theorem with Proposition 3.6, one can immediately obtain the fol-
lowing conclusion.

Corollary 4.2 Assume pu(a, x) = p(a) and B(a, x) = B(a) and in addition, D; = D for all
1 <i < M, then s(A) is the principal eigenvalue of A.

Next, we give a sufficient and necessary condition to reach s(A) > s(By + C).

Corollary 4.3 The inequality s(A) > s(By + C) holds if and only if there is A* > s(B1 + C)
such that r (Fy«) > 1, where F,_ is defined in (4.1).

Proof 1If there exists A* > s(B1 +C) such that r (Fy+) > 1, then case (iii) in Theorem A.6 will
happen which implies that s(A) > s(3; 4+ C), because we can always find ¢ large enough
such that r(Fy) < 1 regarding to (3.21). Conversely, if s(A4) > s(B; + C), by the same
argument in Theorem 4.1, we have the desired result. O

Note that Theorem 4.1 is valid for both X = L'() and X = C(Q), as long as
s(A) > s(By + C). Next we will show that s(A) is also algebraically simple under the addi-
tional assumption on 8. Once it is true, the eigenfunctions in X = L'(Q) and X = C(Q)
respectively associated with s(A) are the same, due to C(Q) C L! (2).

Assumption 4.4 There exists a; € [0, a™) such that B,;(@ > O0ae.a, at)foralll <i <
M.

Remark 4.5 Before proceeding, let us make some comments on Assumption 4.4. It is moti-
vated by Engel and Nagel [17, Theorem 4.4] to show that the semigroup generated by the
age-structured operator is irreducible. In our situation, we will prove a similar property,
which is called conditionally strictly positive (see Definition A.8 in “Appendix”), under this
assumption. In addition, if one would like to relate this assumption to cooperativity, this
assumption can be relaxed to él,m(l.)(a) > 0 ae.in [a;,a™) forsome 1 <i < M and all

m(i) € {1,2, ..., M} are different to each other.

Theorem 4.6 Let Assumption 4.4 hold and assume s(A) > s(B; + C), then s(A) is the
algebraically simple principal eigenvalue of A.

Proof We will show that all positive nonzero fixed points of F) are conditionally strictly
positive (see Definition A.8 in “Appendix”), and then employ Theorem A.9 again to conclude
the result.
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First observe that F; maps X into Xp, then we introduce the restriction of F to Xp and
the associated operator L;, A > o** in L'((0, a™), X™), see (3.21),

[L;¥](a, x) =D /Q T (x —y)e” M P, a, U — G3) ' gy 1(»)dy
4D / T —y) f DN 0y a ) (v ydydy, (42)
Q 0

where J = diag{/, ..., J}and g : L'((0,a™), XM) - XM is given by

at s
E10) = [ By [ PO, dyds.
We use L, both for the operator in LY((0,at), X™) and the operator in Xy = {0} x
L'((0,a™), X™). Observe that (a,x) — [L;y¥](a,x) is continuous. Thus L; is strictly
positive in the sense that for ¢ € L]‘_((O, at), XM) being a fixed point of L;, if there exists
some point (ag, xo) € [0,a%) x Q such that [L;¥](ao, x0) = Ogwu, then ¥ = Ogu in
[0,a™) x Q.
In fact, [Lyv](ag, xo) = Opm implies that

D /Q I (xo — y)e” *HPI07(0, ag, YT — G3) ' gy 1(y)dy = Ogm,

which follows by the positivity of [, 7 (xo — y)dy and (I — G)h =300 Gk > ot
along with exponential functions that

a+ s
/ B(s, y)/ V¥ (y, y)dyds = Ogu forall y € B(xo, r). (4.3)
0 0

Now denote
a+
H(s,y) = / B(o, y)do.
s
Then (4.3) can be transformed by using integration by parts into
at s
Oan = [ 5o [ vty
s gt at
=—H(s, y)/ v (v, »dy |, +/ H(s, Y)Y (s, y)ds
0 0
a+
= / H(s, y)¥ (s, y)ds, forall y € B(xg, r).
0

But by Assumption 4.4, one has H(s, y) > f;ﬁ B(o)do and thus all diagonal elements of
H(s, y) are positive for all (s, y) € [0,a™) x Q. This will give us ¥ = Ogw in [0, at) x
B(xg, r).

Next, by remembering that v is a fixed point of L, and considering the second term of
(4.2), we first ignore the exponential terms due to their positivity, then iterate L, for n—times
to obtain
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Opm = [Lay1(ao, x0) = [L¥]1(ag, x0)

/ / l—[ [J(xm . xm)/ —<A+D><am71—am>ﬂ(am,am_l’xm)dam]

Y (an, xn)dxn ceedxy.

Itfollows that (-, x) = Ogw in B(xo, nr)N2. Now when n is sufficiently large, B(xg, nr)NQ
will cover €, thus ¥ = Ogw in [0, @) x Q. Thus L; is strictly positive.

Now for any positive nonzero fixed point of L;, denoted by ¢ € L} (3 a®), XM), and
any ¥* € LE°((0, a™t), (XM)*) with L* Fy* # 0, where X* denotes the dual space of X, one
has

(W ¥™) = (Lah, ¥*) > 0

It follows that all positive nonzero fixed points of L, are conditionally strictly positive and
S0 is Fjy. ]

4.2 Criteria

Since the condition s(A) > s(B; + C) is hard to check, it is expected to find an easily
verifiable and general sufficient condition for A1 (A) being the principal eigenvalue of A for
the sake of applications. This leads us to our main theorem on the existence of principal
eigenvalue of A in this section.

Before proceeding, we first provide another assumption on 8 to make sure that the principal
eigenfunction ¢ can attain its positive maximum and minimum in [0, a2] x Q for some
ar € (0,a™).

Assumption 4.7 We assume that 8 = OL(RM) in [a, a™) x Q for some as € (0, a™).

We would like to mention that above assumption is somehow reasonable for applications.
It means that the birth rate or transmission rate of the population becomes zero when they
reach very large ages.

Now, let us rewrite the function space X as follows:

X =x"x L'(0,a"), xM) = x" x (L‘((o, a), X*) x L'((az, a™), XM>)
w1thafunct10nw e L'((0,a™), XxM) mappedmto (1//|(0 a2)> V(ay, a+)) e L'((0, ap), XM) x
L'((az, a™), X™). Define the operatoer XM % LY(0, @), XM ) by

B0, y) = (=y(0), —8,% + DIK — 1y (a) — j1(a, )$(a)) ,
dom(B) = {Oxm} x WH((0, ap), XM).

Note that B is a closed operator under Assumption 4.7 and w(a,x) = diag{u(a,
x), ..., uy(a, x)}. Moreover, define the operator C as follows:

CO,h) = (/ Bla, Yh(a)da, 0) . dom(C) = {Oxn} x L' ((0, az), X").
0
Define the operator.z = B+ C with dom(.Z) {Oxm} x w10, a), XM)

Next let us show o (.A) NR = o (A)NR. Todo so, it suffices to show p (.A) NR = p(A)NR.
Recalling the argument in Proposition 3.3, it says that

rep(ANR 1€ pMy).
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Similarly, Proposition 3.3 with a™ = a5 applies to A to get
rep(A)NR & 1 e p(My),
where ./’\;l} € L(XM) is defined by

Mg = /dz B(a, e U, a)p da, Vo € XM
0

But it is true that under Assumption 4.7, the operator M, = M . It follows that o (Z) NR =
o (A) NR, thus we can study the principal spectral theory of Ainstead of A in the following,
provided Assumption 4.7 holds. Further, in order to not introduce too many notations, we
still denote A and B under Assumption 4.7.

Remark 4.8 Under Assumption 4.7, Assumption 4.4, if needed, can be modified as that there
exists a; such that él,l, (a) > 0a.elay,az]forall 1 <i < M.Insummary, if Assumptions 4.4
and 4.7 are both satisfied, then there exists 0 < a; < a» < at suchthat 8((a2, a™), ) =0:1)
to guarantee some strictly positivity of the principal eigenfunction and g;; ([a1, a2], -) > Ofor
1 <i < M:2) to guarantee some irreducibility which implies that the principal eigenvalue
is simple. In addition, the above assumptions are also valid for a™ = co.

Now we provide the second criteria under Assumption 4.7.

Theorem 4.9 Let Assumption 4.7 hold. Assume that

1 -
X o # L@, 4.4)

a**
and that for each x € Q, By + C* possesses a positive eigenvector ¢ (x) corresponding to
a(x), then s(A) is the principal eigenvalue of A. Here a(x) is defined in Proposition 3.7 and
B{ + C* is defined in Remark 2.1.

Proof The idea of the proof below came from Liang et al. [31, Lemma 3.8] or see Bao
and Shen [3, Proposition 3.1]. For completeness and the reader’s convenience, we provide a
detailed and modified proof.

By assumption, for any x € @, ¢(-, x) := [¢(x)]() = [[p1(X)], ..., [pm(x)]] (-) as the
principal eigenfunction of By + C* is belonging to W10, a2), RM). We will prove that
the eigenfunction ¢ (-, x) is continuous for all x € Q.

To this aim, let us first write down the equation that ¢ satisfies,

da¢p(a,x) = —(D+ pula, x))¢(a, x) —a(x)p(a, x), a € (0,a),
¢(0.x) = [? Bla. x)¢(a. x)da.
Let us choose a sequence x, — xp as n — oo and consider the sequence ¢ (-, x,) with

normalization [|@ (-, xu)ll L1 ((0.ay)rM) = 1 for all x, € Q. Observing the first equation of
(4.5), one has

4.5)

1929 (-, Xl L1 ((0,40), RM) < C

where C > 0 is a constant varying according to the context and independent of n. It follows
that ¢ (-, x,) € WHI((0, az), RM) © L®((0,a2), RM) and [l (-, x) | oo (0.0 M) < C-
Again by the first equation of (4.5), one has

102 (-, X |l Lo ((0.00) RM) < C.-
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Thus we have [|¢ (-, xu) | y1.00((0.4,).RM) < C. By the compact Sobolev embedding, we can
find a limit, denoted by 5 (+), up to a subsequence such that

O, xp) > $(~) uniformly on [0, a;].

Since x — p(-, x) € C(Q, [L>(0, a2)M), one has p(a, x,) — p(a, xo) in [L®(0, ax)1M,
and thus u(a, x,)$ (a, x,) = w(a, x0)p(a) in [L>®(0, a2)]¥ . Applying the same argument
to B and passing to the limit on (4.5), one obtains

dap(@) = —(D + p(a, x0))p(a) — a(xo)p(a), a € (0,ar),

3 a - (4.6)
¢0) = Jo~ Bla, x0)¢p(a)da.

Observe that 5 is the principal eigenfunction of the operator B’f“ + C* corresponding to
a(xp). Moreover, = 1. Thanks to the simplicity of the principal eigenvalue,

o ¢”L1((0,a2),RM) e
we have ¢(a) = ¢(a, x9). Thus the eigenfunction ¢ (-, x) is continuous for all x € Q. We
normalize ¢ such that
max ¢i(a,x) = 1.
0<i<M,(a,x)€[0,a2]x Q2
According to Assumption 1.1 on the kernel J, there exist r > 0 and ¢o > 0 such that
J(x —y) > coforall x, y € Q with |[x — y| < r. Next let

c1 = min _¢i(a, x).
1<i<M,(a,x)€[0,a]x Q2

Due to Assumption 4.7, ¢; > 0 holds. Since (¢ — )~ ! ¢ L}Oc(ﬁ), we can choose ¢ > a™*,

some § > 0 and x; € 2 such that B(x,§) C B(x1,28) C €,

dx > 2(Dmincoc1) "

1
/B(xl,S) ¢ —ax)

and 36 < r, where B(x, r) is the ball cgltered at x with radius r and Dpjn = min|<;<p{D;}.
Let p(x) be a continuous function on €2 defined by

1, x e B(x1,9),

- A.7)
0, xeQ\B(x,28)

p(x) = [

with p(x) < 1 for all x € Q and [a(x)](a) = (Z(a,x) = p()[p(x)](a),VY(a,x) €
[0, a2] x . It then follows that for any (a, x) € [0, a2] x Q\B(x1,28)and 1 <i < M, we
have

dy ~

J(x —=y)———¢i(a,y) = 0.
Q ¢ —aly)

For any (a, x) € [0, a2] X B(x1,28) and 1 <i < M, we see that

/J@—)—jl—$m>
o Ve Za Y

d
z/ Ja——2 i@
B(x1,5) ¢ —oa(y)

> 2¢oc1(Dmincoct) ™' = 2D @i (a, x). (4.8)

min
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Note that

(] —B1 —0)~10,$)](x) = (1 — B =710, [p(x)])
= (¢ —a(x)710, [p()]) 4.9)

for all x € Q. It then follows that
Fe (0, ) = Bo(cI — By — )10, §) > 20, 6) > (0, ). (4.10)

Thus, there exists { > s(B1 +C) such that 7 (F;) > 1. Then by Corollary 4.3, it follows that
s(A) > s(By + C) which implies the desired result by Theorem 4.1. ]

Remark 4.10 Such a non-locally integrable condition (4.4) is comparable with the one in the
nonlocal diffusion problem, see Coville [10] and Shen and Vo [43].

4.3 Relation Between M and A

We next give a proposition to characterize the relation between the eigenvalues of M, to
those of A = B + C, also see Kang and Ruan [24] or Walker [49].

Proposition 4.11 Under Assumption 4.7, let A € C and m € N\ {0}. Then A € o,(A) with
geometric multiplicity m if and only if 1 € o,(M,) with geometric multiplicity m, where
0, (A) denotes the point spectrum of A.

Proof Let A € C. Suppose that . € o,(A) has geometric multiplicity m so that there are m
linearly independent elements

(0.¢1),.... (0, ¢m) € dom(A) with (A — A) (0, ¢;) = (0,0) for j =1,...,m.
Then by solving the above eigenvalue problem explicitly, we get
¢j(a) = e U0, a)$; (0) with ¢;(0) = M, (0).

Hence, ¢1(0), ..., ¢, (0) are necessarily linearly independent eigenvectors of M, corre-
sponding to the eigenvalue 1.

Now suppose that 1 € 0,(M;) has geometric multiplicity m so that there are linearly
independent v, ..., ¥, € XM with My =y for j = 1,...,m. Put (0,¢;) =
(0, e7*U(0, a)j) € dom(A) and note that for j = 1, ..., m, we have

a
0adj +rp; —DIL—I]p; + nu¢; =0, /0 Bla,)¢pja)da = Mypr; =¥ = ¢;(0),
which is equivalent to

A0, ¢;) =1(0,¢;) and (0, ¢;) € dom(A).

Thus A € 0, (A).Ifay, ..., a; are any scalars, the unique solvability of the Cauchy problem

0ud +1d — DIL — 116+ 1 = 0, $(0,) = 3 o

Jj=1

ensures that (0, ¢1), ..., (0, ¢,) are linearly independent. Hence, the result is desired. O

@ Springer



Principal spectral theory in multigroup age-structured models... Page 250f60 197

5 Limiting Properties

In this section we study the effects of diffusion rate and diffusion range characterized by y
on the spectral bound s (A) of A respectively. Remembering in the previous section, we have
shown that under Assumption 4.7, the eigenvalue problem to A on [0, a™) is equivalent to
the one on [0, a>] and further the principal eigenfunction associated with s(.A) is positive in
[0, az].

Thus in the following context, we will let Assumption 4.7 hold throughout the whole
section. Before proceeding, let us first clarify the strict positivity in X.If f > 0in X = C (),
it means that f(x) > Oforall x € Q,if f > 0in X = L'(), it means that f(x) > 0 a.e.
in Q. Following Berestyki et al. [5, 6], we introduce the following definition.

Definition 5.1 Define the generalized principal eigenvalue by

Ap(A) :=sup{r e R:
3¢ € WEI((0, ap), XM) s.t. ¢ > 0 and(—A + 1)(0, ) < (0, 0) in [0, as]},
A, (A) :=inf{r e R:
3¢ € WH((0, a2), XM) s.t. ¢ > 0 and(—A + 1)(0, ) > (0, 0) in [0, as]},

5.1

Note that the sets in Definition 5.1 are nonempty, see the proof of Theorem 5.3 in the
following. As mentioned before, such ideas are widely used to prove the existence and
asymptotic behavior of principal eigenvalues with respect to diffusion rate, see Coville [10],
Li et al. [30] and Su et al. [45] for nonlocal diffusion equations, Shen and Vo [43] and Su et
al. [44] for time periodic nonlocal diffusion equations. As Shen and Vo [43] highlighted for
the time periodic case, we remark that the parabolic-type operators .A containing 9, is not
self-adjoint, and thus we lack the usual L (2) variational formula for the principal eigenvalue
X1(A). The generalized principal eigenvalue of A ,(A), A;,(.A) defined in (5.1) remedy the
situation and play crucial roles in the following text.

5.1 Without Kernel Scaling

In this subsection first we study the diffusion without kernel scaling and have the following
result.

Proposition 5.2 Let Assumption 4.7 hold and assume that A1(A) is the eigenvalue of A
associated with (0, ¢1) with ¢1 > Opwm, then A1 (A) = Ap(A) = )»’P (A).

Proof First, we prove that 11 = X,. Since 11(A) is the eigenvalue of A associated with
0, ¢1) € dom(A), that is
A0, ¢1) — 21(0, ¢1) = (0,0) in [0, az]; (5.2)

and since ¢; > 01in [0, az], we have A1 < A ,. Suppose by contradiction that Ay < A,. From
the definition of A, there are A € (A1, 1) and (0, ¢) € dom(A) such that

—A0, ¢) + (0, ¢) < (0,0) in [0, az];
that is,

{am(a) —DIK —I1¢ + pu(a, )¢ + A <0, 53)

¢ — [3* Bla, V¢ (a)da < 0.
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Now solving the first inequality in (5.3), we obtain
¢ (@) < e U0, )¢ (0).

Plugging it into the second inequality in (5.3), we have

¢(0) < /02 Bla, e U, a)p (0)da. (5.4)
0

It follows that M; ¢ (0) > ¢(0), which implies that »(M;) > 1. But we know that A is
the eigenvalue of A, then by Proposition 4.11 we have r(M;,) = 1. Since A — r(M,) is
decreasing by Claim 3.4, one has A1 > A. This contradiction leads to A; = A .

Next, we prove A; = )»;,. Obviously, A} > )L’p. Assume that A; > )L’p. There are ) €
(A", A1) and (0, ) € dom(A) with ¢ > 0 in [0, a] such that —A(0, ¢) + A (0, ) > (0, 0).
By reversing the above inequalities, we have the desired conclusion via a similar argument
as above. m]

Now we give the main theorem in this section about the effects of diffusion rate on s (A). In
the next result, we write s 2 (A4) for s (A) to highlight the dependence on D = (Dy, ..., Dyr).

Theorem 5.3 Let Assumption 4.7 hold and assume that sP (A) is the principal eigenvalue of
A, then the function D — sP (A) is continuous on (0, 00)™ and satisfies

s(B(l)—i-C) as D — O;RSM, 5.5)
—00 as D — oopwm, '

sP) > {

where
B0, ) := (= f(0,), —8.f —uf), (0, f) € dom(A).

Proof Since sP(A) is a simple eigenvalue, the continuity of D — sP(A) follows from
the similar argument in Theorem 4.9, or see Kato [28, Section IV. 3.5] for the classical
perturbation theory.

For the limits, we first claim that for every € > 0, there exists D, > 0 such that

sP(A) <s(BY 4+C) +¢, VD € (0, D). (5.6)

Here D € (0, D) means D; € (0, D;c) for1 <i < M. Denote ¢ = s(B? + C). Consider
the equation (4.5) with D = 0, g, foreachi =1, ..., M, which is written as follows,
dapi(a, x) = —(a(x) + pila, x))pi(a,x),  (a,x) € (0,a) x 2, 5.7)
¢i(0.x) =Y, [i? Bija.x)pj(a. x)da, x€Q.

By Proposition 3.7, we know that for each x € Q, (5.7) has a positive solution ¢ €
W10, ap), RM), which is the principal eigenvector of G, (x) associated with 1. More-
over, by the argument in Theorem 4.9, ¢ (-, x) is also continuous in x € Q. Thus
¢ € WH((0, ap), [C()IM), (0, ¢) € dom(A) and ¢ > 0 in [0, az]. Further, it is easy
to check that foreachi =1,..., M,
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—[AQ©, ®))i + (@ + M0, )i

M a
o GUBEDS fo Bij(a, ) (a, x)da,
J=1

dai(a, x) — D; [/Q J(x = y)gi(a, y)dy — ¢i(a,x)] + pila, x)p + (0 + )i

Since min[o’az]xﬁ ¢; > 0 and max, . 1xq ¢; <ooforeachi =1,..., M, itis straightfor-
ward to check that for each € > 0, there exists D;c > 0 such that for each D; € (0, Djc),
there holds

datpi(a, x) — D; [/Q J(x = y)i(a, y)dy — ¢i(a, x)] + uila, x)pi + (@ +€)¢;
=—D; |:/;2 J(x — y)i(a, y)dy — d)i(a,x)] + (@ —alx)g; +€p;

> —D; [/;2 J(x = y)pi(a, y)dy — ¢i(a, X)] + €
>0, (5.8)

where we used ¢ > «/(x) from Proposition 3.7 where D; = 0. It then follows that —A(0, ¢)+
(W + €)(0, ¢) > (0, 0) which, by the definition of A},(A), implies that s (A) = k;,(A) <
s(B) +C) +e.

Note from Proposition 3.2 that s(B(l) + C) = a1 which satisfies

maxr (/az B(a,x)e ™ *“m(0, a, x)da) =1.
0

xeQ

While s(B; + C) = o™ by Proposition 3.2 which satisfies

a sk
max r (/ Ba, x)e” @ +D)“Tr(O,a,x)da> =1.
0

xeQ

Since (f;;) is irreducible or primitive, it implies that the spectral radius of the matrix
a2 *k
/ Bla,x)e” @ P70, a, x)da
0

is monotone with respect to the matrix, see Proposition A.10-(iv). It follows that @] — Dipax <
a**, where Dmax = maxj<;j<pm{D;}. Thus By Remark 3.5, we find that

sP(A) = s(B) +C) = s”(B) + €) — Dinax.
It follows that

liminf s2(A) > s(BY + 0). (5.9)
D—>O+M
R
Setting D — OE{;M, we find that

s(B) +0) < liminf s”(A) < limsups”(A) < s(B) +0) + ¢, Ve >0,

D—)ORM D_)O]EM

which leads to sP(A4) — s(B(l) +C)as D — OﬁM.

@ Springer



197  Page 28 of 60 H.Kang, S. Ruan

Finally, to show that s? (A) — —oc as D — oogu, we consider the operator K — I. It is
known again from Garcia-Melidn and Rossi [21, Theorem 2.1] that the principal eigenvalue
of —K + I exists and is positive. Let 8y > 0 be the principal eigenvalue of —K + I and
@o be an associated positive eigenfunction. Let (A', W!(a)) be the principal eigenpair of the
age-structured operator, that is, they satisfies the following equation

9V (@) = —(\' + (@) ¥ (a),
v0) = f3? Bla)¥! (a)da,

where A! satisfies
a) a
r </ B(a)e_}‘lae_fo ﬁ“)dsda) =1.
0
Note that W!(a) = (V] (a), ..., ¥}, (a)) is positive. Now let p = —Dpinfo + A and

W(a,x) = po()¥' (@) = (o) W] (@), ..., 00 (x)¥}, (@),

where Dpin = minj<;<p{D;}. It is obvious that (0, ¥) € dom(A) with ¥ > 0 in [0, a2]
and we see that foreachi =1,..., M,

—[AQ©, ¥)]; + Ap[(0, ¥)];

M a
- \IJ,-(O,x)—Zf Z,Bij(a,x)\l-’j(a,x)da,
j=170

0 Wi(a, x) — D; [/ J(x — y)¥i(a, y)dy — Vi (a, X)] + wila, x)¥; + )\D‘I"i)
Q

S (5.10)
where
AW} (a) 1
L = % ®o(x) — D; [/Q J(x = y)po(y)dy — (po(x)] v!(a)

+1i (@, X)W (@0 (x) + (= Dminbo + 2o ()W (@)
= (99! @ + 1, @W] @ + 218! @) ¢0(x) + Diflogo(x) ¥} @) — Dminbogo (1) ¥/ (@)
>0 (5.11)

and
M gy M g
L=> /0 Bij (@)W (@)dapy(x) — Y /0 Bij(a, )W (@go(x)da = 0. (5.12)
j=1 j=1

Thus, (Ap, (0, W)) is a test pair for A/, (A). It follows that sP) = 2, (A) < Ap. Setting
D — ocogu, we reach at sP (A) — —oo as D — oopu. O

Remark 5.4 From Proposition 3.2, we know that s (B? +C) equals the value «; which satisfies

max r (/az B(a, x)e *“m(0, a, x)da) =1.
0

xeQ
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Theorem 5.5 Let Assumption 4.7 hold and assume that p(a, x) = ' (@) + p(x), B(a, x) =
B(a) and uiz(x) = u(x),Di = D foralli = 1,..., M, suppose that J is symmetric, i.e.
J(x) = J(—x) and, in addition, the operator

v — D[/ J(-—y)v(y)—v:| —uv:C(Q) = C(Q)
Q

admits a principal eigenvalue, then D — sP (A) is strictly decreasing.

Proof We write A =7 + L, where
L0, v) = (0, D [/ J( = yyv(y)dy — v] — ,w) ,veC(Q)
Q
a
700, ¢) = <—¢><0) + /0 Ba)¢(a)da, —¢' — u‘¢>), ¢ € WH((0,a2), RM).

Let (A{) (L), (0, v1)) be the principal eigenpair of —L. Then by the same argument as in
Shen and Vo [43, Theorem C(2)], we have that D — )‘1D (L) is strictly increasing. Now let
(A1(T), (0, ¢1)) be the principal eigenpair of 7. It follows that s (A) = —AID(L) + A (7)
is the principal eigenvalue of A with the principal eigenfunction (0, vi¢1). As D — AID (L)
is strictly increasing, so D — s (A) is strictly decreasing. O

5.2 With Kernel Scaling

In this subsection we study the effects of diffusion rate and diffusion range on the principal
eigenvalue. Define K,  for 1 <i < M as follows:

K, f1() = /Q Iy = WOy, feX. (5.13)

Here the kernek J satisfies the scaling J, (x) = ﬁvl (%) for x € RY, where y =

i

(v1, ---,vm) > O represents the diffusion range. Now we introduce the nonlocal diffusion
operator %[Kyi,g — I], where m = (my, ..., my) € [[0,2)]1M is the cost parameter.

Compalred with the non-scaled case, the scaled kernel will provide us many more results,
in particular, when we study the global dynamics of (1.2), see Sect.7. For example, when
m € [(0,2)]™, both small and large diffusion ranges are favored provided s(B(l) +C) > 0.
In the meanwhile, such situations will bring us additional difficulties since more parameters
are involved and thus more delicate inequalities are needed to obtain the desired results, for
example, the decaying rates of generalized principal eigenfunctions in terms of y, see the
proof of Theorem 5.7 for more details. We mention that such analysis for a scalar nonlocal
equation was developed by Shen and Vo [43] and borrowed here for us to deal with our
equation coupled with age structure.

Write Ay @ = By m,q + C for A = B + C to highlight the dependence on y, m and Q2
and further denote B“ ma CP for B, C to represent the dependence on . and f respectively.
We mainly employ the 1dea from Shen and Vo [43, Theorem D] to prove the following results.

Proposition 5.6 Letm > 0,y > 0. We have the following statements.

@) sBy,ma+ CPY is non-decreasing with respect to g and s(l’ﬁ’g’m!Q +C) is non-increasing
with respect to |,
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(ii) Let the assumptions in Theorem 4.9 hold, where D; is changed into % forl1 <i <M,
then s(Ay @) is the principal eigenvalue of A, . Assume that A (Ay n.q) is the
eigenvalue of Ay, . q associated with ¢ € whl (0, az), [C()M) satisfying ¢ > 0 in
[0, az], then

)‘1("4%"1,9) = )Lp(Ay,m,Q) = )\/p(Ay,m,Q)§

(iii) Moreover, A, (Bﬁqug—l—(?) is Lipschitz continuous with respect to ji in C (2, [LS(O, a) ™).
More precisely,

p (Bl g +0) = p (B o +0 < |1 = 1] g
POy m.Q pBy m.Q SR = Rlle@ e 0.a1M)

for any ', u? € C(Q, [LL(0, a)]™);

(v) If Q1 C g, then )Jp (Ayma) < A;,(Ay,m,gz). Assume that in addition X = C(Q),
s(Ay m. ) and s(A, i q,) are principal eigenvalues of A, .o, and A, o, respec-
tively, then

|}»/p(u4y,m,s21) - )»/,,(Ay,m,szz)l < Col22 \ Q,

where Cy > O depends ona, y, D, m, J, and Q;
(v) Assume that s(A, ) is the principal eigenvalue of Ay . q, then the function y —
s(Ay m,@) is continuous.

Proof First note that Proposition 5.2 holds for A, ,, o, thus (ii) follows.

For (i), if (ﬂilj) > (ﬂfj) fori,j = 1,..., M, it follows that M, (B)) > M, (B?)
in the positive operator sense which implies that r(Mj(8)) > r(M;.(8%)). Thus by
Proposition 3.3, we have s(By .o + Cﬂl) > s(Byma + Cﬂ2) by the monotonicity of
r(M;) with respect to A. Similarly, when /L} > /L,.Z fori = 1,..., M, since U(0, a)
is positive in X, we have U1 0,a) < U,20,a) in the positive operator sense, which
implies that M; (') < M (u?). Then it follows that r(M; (u!)) < r(Mj(u?)), hence
S(B o +C) < s(B., o +C) by the above argument.

To prove (iii) and (iv), we can use the same argument as in Shen and Vo [43, Proposition
6.1] by fixing the first component of —A,, ,; o (0, ¢) + A(0, ¢) = (0, 0); i.e. keeping the
integral condition f(f 2 B(a, Yp(a)da = ¢(0) hold. In order to illustrate, we prove (iii) and
omit (iv) (note that the reversed relation in (iv) compared with [43, Proposition 6.1(4)]). Let
us fix A < )\p(Bg’lqu + C). By Definition 5.1, there exists (0, ¢) € D(Ay @) with¢ > 0
such that foreachi =1,..., M,

—[Bf,'m,Q(O, d)1i —1CO, $)]; + A0, $)]; < (0,0), in]0, az].
Clearly,

0.0

%

—[8B},00, $)1i —[CO, §); + A0, $)1;

da y

l

M a 8¢ D
8003 [ fy@ 0@ nda 2= 20Ky 0= 1160+ 1l i
Jj=1

[ a¢i D
= (@-(o,x)—jZ_;/O s 09 0da, 50 = [Kna = 1]
Hu? + l = w1+ 191)
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M ar
> (¢i(0,x) —Z/O Bij(a, )¢ (a, x)da,
j=1

¢ D;

da yl.mi

2 1 2
Ky = 105+ wles 200 — |t w0 MM)@),

Again by Definition 5.1,
12 u?
A= ||“ K ”c@,uf(o,az)]M) =2pBy o +0).

1
Since this holds for any A < )LP(B;L‘MQ + C), we arrive at

! u? 1 2
Ap(By, o +C) —2p(B, , o +0) = (e “c(ﬁ,[Lf(o,az)]M) :
Switching the roles of u! and 2, we find that

(B 40 =B o 40) < |u! =2
pBy o +CO —Ap(B,, og+C) = ! = ||C(§,[L3_°(0,a2)]M)'

Thus the result follows.
For (v) we can use the same argument in proving the continuity of D — sP(A) in
Theorem 5.3 and omit it here. O

Theorem 5.7 Let Assumption 4.7 hold and assume that s (A, @) is the principal eigenvalue
of Ay m,q, then
(i) As y — oogwm, there holds

<M,

s(B+C)—D, m=0ju, D;=D, 1 <i< (5.14)

s(A —
Aym2) {s(zs? +0), m > Ogar:

(ii) Suppose thatin addition, J is symmetric, i.e. J (x) = J(—x) and u; € C*(RN, L0, a2))
and Bij € C2(RN, L°(0, ap)) forall 1 < i, j < M. As y — OF,, there holds

s(Aym.q) — s(BY +C), Vm € [[0,2)],
where

BYO, )= (—£(0,), —daf —pf), 0, f) € dom(A).

Proof (i) We first prove the result in the case m > Ogum . Note from Remark 5.4 that s(B(]) +
C) = «y which satisfies

a
max r </ ,Bij(a,x)e‘“‘“m(O,a,x)da) =1.
xXeQ 0
While s(Bj + C) = o™ by Proposition 3.2 which satisfies
a —(oz**+DTjj)a
max r / Bij(a, x)e 'i' 7 0,a,x)da | = 1.
xeQ 0

J

It follows that oy — <?—”f/> < a™*, where (DT,’,) = maXi<j<m :D,—n’j } Thus By
Vi "/ max Vi max

Remark 3.5, we find that

0 Dj
SApme) = 5B +0 =B +0 - (4]
Vi max
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Hence, we have

liminf A;(Aymq) > s(B) +0). (5.15)
¥ —>00pM

Letus still consider equation (5.7) with a positive solution ¢ (a, x) € W0, az), [C(€2)1M)
and v = s(B? +C). For any € > 0, we see that for each (a, x) € [0, a2] x  and for each
i=1,...,.M,

—[Aym.200.$)]i + @ + )0, P)];
M g
=[¢:0.) =) /0 Bij(a, ) (a, x)da,
j=1
D;
hdi(a. %) = Z; [/Q Ty (x = y)¢i(a, y)dy — i (a, x)] + pi(a, )i + (@ + e)@)
and

D;
dai(a, x) — N [/Q Jy, (x = y)¢i(a, y)dy — ¢i(a, x)] + pia, )¢ + (3 + )i

D;
= [ [ 9t = nnta vy~ outa x>] e+ (0 — a0y
D;
=~ [/Q Jy,.<x—y)¢>i<a,y)dy—qbi(a,x)] +edi. (5.16)

Since ming ;1.5 @i > 0, maxyy , 5@ < o0 and

— Qasy; — oo,

D;
—m; |:/ Jy, (- = y)gi(a, y)dy — ¢i(a, )i|
Vi Q

c®@)
there is y;¢ > 0 such that (5.16)> O for all y; > y;c and foralli = 1, ..., M. It then follows

that — A, ,, 0 (0, ¢)+ (¥ +€)(0, ¢) > (0, 0), which by the definition of )Jp (Ay m,0) implies
that

s(Aym@) =X, (Ayma) <s(B) +0) +e

The arbitrariness of € then yields (i) with m > Ogu.
Now we prove the resultin the cases m = Opn and D; = D forall1 <i < M.Remark 3.5
ensures that A1 (A, Q) > s(B1 +C) = s(B? + C) — D. It remains to show that

limsup A1 (Ay mq) <sBY+C) — D. (5.17)

}’—>OORM

Let ¢ be the solution of (5.7) as above. Forany € > 0, we have that foreach (a, x) € [0, a2]xQ
andforalli =1,..., M,
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—[A4y,0,20, 9l + (@ + €)[(0, )1

M a
600 =% [" @ 0@ xda.
=1

dai(a, x) — D [/Q T = i@, dy — di(a, x)} T pita )i + (0 + e)qsi) ,
where
Oa¢pi(a,x) — D [/Q Jy (x = y)i(a, y)dy — d’i(a,x)} + wia, x)¢; + (3 + €)¢;
> D [ /Q Ty = Vi(a, )y — q»(a,x)] edi + (0 — ()
> D [ fg Ty = Vi(a, )y — ¢,~<a,x>] + e (5.18)
Hence for € > 0, there holds for all (a, x) € [0, az] x Q
4020, O + @ + ¢ — DO, ) > (o, =D [ 1= i@y + e¢,-) .

As HfQ Jy (= y)gi(a, y)dy”c(ﬁ) — 0 when y; — oo, we can follow the arguments in the
case m > Ogwm to conclude (5.17).

(ii)Let¢ = (@1, ..., ¢m) be the solution of (5.7). Due to the regularities of 11; and B;; with
respect to x, by Proposition 3.2 and implicit function theorem, we have « € C?(R2) and ¢ €
W10, a2), [CE()]M) (see [14] for more details). Let ¢ € W1 ((0, a), [CZ(RN)IM)
be positive and satisfy d;(a, x) = ¢(a, x) for (a, x) € [0, az] x Q. For any € > 0, similar
argument as in (5.16) leads to foreachi = 1, ..., M that

D;
dapi(a, x) — v [/Q Jy, (x = y)¢i(a, y)dy — ¢i(a, x)] + nia, x)¢; + (3 + )i

l

(5.19)
D; [
Z / Jy, (x — y)¢i(a, y)dy — ¢i(d,x)] + €
Vi LJQ
D [ - -
= /RN Ty (x = y)gi(a, y)dy — ¢i (a,x)} + e

= — l,),; / J(z)qgi(a, X+ vyiz)dz — (}3,~(a,x)i| +egi, (a,x) €[0,ar] x Q. (5.20)
. RN

i L

Then by Taylor expansion (see the same argument as in Shen and Vo [43, Theorem D(2)])
dealing with the estimates of

l;)rf, |:/ J(Z)(Z),'(a, x + yiz)dz — qzi(a,x)il ,
Vi RN

1

we can show that (5.20)> 0 in [0, a2] x § for sufficiently small y; andi = 1,..., M. It
follows that

Ay .m0, ¢) + (4 €)(0,¢) = (0,0)in [0, a2] x Q@
for (0,...,0) < (y1, .-, ym) < (1,..., 1),
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which implies
lim sup A1 (A, @) = lim sup A7, (Ay m.0) < s(B) +C).
VQOEM }/*)()];SM

Now we show the reverse inequality; i.e.,

lim inf A1 (Ay n.0) > s(B) +C). (5.21)

4
y—)ORM

For any € > 0, there exists an open ball B C 2 of radius € such that o (x)+€ > s(l’)’(l) +C) =
¥ in B¢, where «a(x) is from Proposition 3.7 for D = 0 and s(B? + C) corresponding the
value o) in Remark 5.4. Let (jEié € Wl’l((O, ap), CZ(RN)) be nonnegative and satisfy for
eachi =1,..., M that

$ic = ¢ in [0, a2] x Be, ¢ic =0 in [0,az] x (RY \ Bae)
and sup d~>,~€§ sup ¢ = 1.

[0,a2] xRN [0,a2]xRN

Set ¢ = (Pie., . .., dume). Then we have for (a, x) € [0, as] x B, that

1
—[Ay.m,B. (0, P)li + <19 —€— 7) [0, )i :== (I3, 1),

|Ine|
where
M g
b=6:0.0=3 [ Byta, )60 nda =0
j=1
and
D;
I4 = aa¢i(a7 .X) - m; |:/ J}/i (.X - )’)¢i(a’ y)dy - ¢i(a’ x)]

i €

+ [ui(a,x)+z9 —€— ;] ¢i(a, x)
|Inel

D; [ |
R / in(x_y)(pi(a’y)dy_‘bi(a»x)]+|:—oz(x)+19—e—7:| bi(a, x)
i LB |Ine]
| i(a,
e IF / Jy (x = )i(a, y)dy — ¢i(a,x):| _ ¢ila, x)
Vi LIB |In€|
D [ i ) )
Ty / Jyi (X = ¥)pic(a, y)dy — pie(a, x) — / Sy (x = ¥)Pic(a, y)dy]
yi SR B\ Be
_ ¢ila,x)
|Ine|

Still based on Taylor expansion (see the same argument as in Shen and Vo [43, Theorem
D(2)]) dealing with the estimate of

D; ~ <
o [/ Jy (x = y)pie(a, y)dy — pic(a, x) — /
7 RN B

Ty (x — y)gic(a, y)dy] :
ZE\BG
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m;+2N

we have for eachi = 1,..., M, by choosing y; > 0 such that yiki = e with k; = =5,

that

1
—[Ay.m,B. (0, P)i + <ﬁ —€— 7) [0, #)]i =(0,0)in [0, a2] x Be, 0 <€ K 1.

|In€|

It then follows from the generalized principal eigenvalue and Proposition 5.2 that

Ay B) = hp(Aymp) > s(B)+C) —e— ., 0<e<x 1.

1
[Ine€|
By Proposition 5.6-(iii), A1 (Ay,m,@) = A1(Ay, m, B, ), Which yields that

MAy ) =B +C) — e — , 0<e<x 1.

1
|In€|
n
RM°
Remark 5.8 (1) Note that when S(a,x) = B(a) and u(a,x) = w(a), the age-structure

and nonlocal diffusion can be decoupled, then the spectrum of A is quite clear, see
“Appendix”. Thus the limiting properties of the principal eigenvalue of A is fully and
only determined by the one of nonlocal diffusion, and we omit the case.

(2) Note that we did not discuss the case when m = 2pm and y — OE{SM. We conjecture
that the principal eigenvalue for scalar age-structured models with nonlocal diffusion
converges to the one for scalar age-structured models with Laplace diffusion. Actually,
without age-structure, the autonomous nonlocal diffusion operator has an L? variational
structure which can be used to show the convergence, see Berestycki et al. [5] and Su
et al. [45]. While for the time-periodic nonlocal diffusion operator, Shen and Xie [41,
42] used the idea of solution mappings to show the convergence, where they employed
the spectral mapping theorem which is not valid in our case since we have a first order
differential operator d, that is unbounded. However, when we add a nonlocal boundary
condition to the transmission rate S, it can be proved that the semigroup generated by
solutions is eventually compact so that the spectral mapping theorem holds. Thus we can
use it to show the desired convergence, see Kang and Ruan [23].

Letting y — 0..,,, we have (5.21). Thus the result is desired. O

6 Strong Maximum Principle

In this section by using the sign of spectral bound s(.A) we establish the strong maximum
principle under the case without kernel scaling, which is of fundamental importance and
independent interest.

Definition 6.1 (Strong Maximum Principle) We say that A admits the strong maximum prin-
ciple if for any function (0, u) € dom(A) satisfying

A, u) <(0,0) in[0,az] x €,

. (6.1)
0,u) = (0,0)  in[0,az] x 9€2,
there must hold # > Opwm in [0, az] x €2 unless u = Opw in [0, az] x Q.

Theorem 6.2 Assume that there exists 0 < a1 < ay < a' such that B = Oﬁ(RM) on
[az, a™) x ﬁandﬁij > Qonlay,ay) foralll <i # j < M. In addition, assume that 1.1 (A)

is the principal eigenvalue of A, then A admits the strong maximum principle if and only if
A1(A) < 0.

@ Springer



197  Page 36 of 60 H.Kang, S. Ruan

Proof If A1 := A1(A) is the principal eigenvalue of A associated with an eigenfunction
¢ € WH((0, ), [C()]M) with ¢ > Ogu, then

A0, ¢) — 21(0, ¢) = (0, 0);
that is, foreachi =1,..., M,
—040i + D [ [ ] (x — Y)¢i(a, y)dy — ¢i(a, x)| — pi(a, x)¢;j — k1 =0,
¢i(0.x) = Y0, [3? Bij(a. x)¢;(a. x)da = 0.

For the sufficiency, thatis A < 0implies the strong maximum principle, let (0, u) € dom(A)
be nonzero and satisfy (6.1). Assume by contradiction that there exists (ag, xo) € [0, az] x
such that u j (ag, x0) = min[g,q,|xq #; < 0 forsome j € {1, ..., M}. Then consider the set

(6.2)

N={eeR:u;+e€¢; >0 in [0,az] x Q, foreachi =1,..., M}.

Denote by € = minI" and ¥ = u + €o¢. It is clear that ¢g > 0 by the assumption
uj(ap, xo) < 0 and that > 0. Now if €9 > 0, by simple computations, we have for each
i=1,..., M that

dai — Di [ o J (x — WWila, y)dy — Yi(a, x)|+wi(a, x)¥i
> —eohi; >0, (a,x) € (0,ar] x Q, (6.3)

¥i(0.x) = YoM [02 Bij(a. x)¥j(a. x)da, x €.
That is,

Vi > Di[[q J(x —¥ia, y)dy — ¥i(a,x)] — pila, x)¥i.  (a.x) € 0,a2] x 2,
¥ (0, x) > Zﬁil Jo? Bij(a, )y (a, x)da, x e Q.
(6.4)

It follows from the firstinequality in (6.4) that y (a, -) > U(0, a)¥ (0, -) > Opm in (0, az] x 2.
Plugging it into the second inequality, we have (0, x) > Opm by Assumption 4.4 which
implies that i is strictly positive in [0, a;] x 2. This contradicts the fact that €q is the infimum
of T.

If €9 = 0, it follows that u j (ag, xo) = 0 and thus u; > 0.

Case ap > 0. Recalling again the constant of variation formula (2.9), one has

uj(a,x) > e Pi%;(0,a, x)u(0, x) +D,~/O e Pi@ g, a, x)[Ku;1(l, x)dl. (6.5)

Considering the above inequality at (ag, xo), it follows that for any [ € [0, ap], one has
[Ku;l(l,x0) = 0 and thus u;(l,x;) = O for all x; € B(xp,r). Next consider (6.5) at
(/, x1), one has u (I, x2) = 0 for all x € B(xy, r). Then continue this process as we did in
Theorem 4.6, we get uj(l,-) = 0in Q N B(xg, nr) with some n € N large enough for all
[ € [0, ap]. On the other hand, by the nonlocal equation, the solution starting at u ; (ag, -) = 0
will be zero, i.e.u(/, -) = Owhen! > ag, whichimplies #; = 0. Now consider the following
equation

M ar J—
Z/ Bji(a, x)ui(a, x)da < u;(0,x) =0, Vx € Q,
i=1"0

the assumption on § implies that for all i # j, u;(a, x) = 0in [a1, az] X Q. Then consider
the equation (6.5) for u; with i # j at (d, x) for some @ € (aj, ay], one can by the above
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argument to obtain u; = 0 for all i # j. Thus u = 0, which contradicts the fact that u is
nonzero.
Case ap = 0. One has 1 (0, xo) = 0, then the integral boundary condition implies

M a
> / Bji(a. xo)ui(a. xo)da < u;(0, x0) =0
i=170

which shows u; (-, x9) = 0 in [ay, as] for i # j. Then we can choose a point @ € (aj, az].
Considering the equation (6.5) for u; with i # j at (@, x9), we have the same contradiction
as above. Hence # > 0in [0, ap] x €2, which concludes the desired result.

For the necessity, that is, strong maximum principle implies A; < 0, the proof of each
component is similar to that of Shen and Vo [43, Theorem F] and is omitted here. O

7 Applications

In this section, we apply the theory established in the previous sections to the age-structured
cooperative model with nonlocal diffusion, i.e. (1.2). Let Assumptions 1.1, 1.2 and 1.3 hold.
In addition, we also let Assumptions 4.4 and 4.7 hold, which is rewritten as follows,

Assumption 7.1 There exist a; and a, with 0 < a; < a» < a™ such that 8 = Oz @®my on
[az, at) x §andéii >0onaj,ap) foralll <i < M.

Recall that if Assumption 7.1 holds, then the principal eigenfunction ¢ (-, x) is continuous
with respect to x by the simplicity of principal eigenvalue. For the sake of simplicity, we will
not repeat Assumptions 1.1, 1.2 and 1.3 and 7.1 in this section.

7.1 Comparison Principle

Let us first consider the kernel without scaling and write down the equation that the equilib-
rium satisfies
236 = Di[Jo ) (v = yuita, y)dy — ui(a, x)]
—pila, xui(a, x), (a,x) € (0,a2] x Q, (7.1)
u;i (0, x) = fi (Zj"’zl IS ﬂ,»j(a,x)uj(a,x)da), x€Q,

wherei = 1,..., M. We denote f(u) = diag{f1(u1), ..., fu(um)}.

Definition 7.2 u € Wh1((0, a2), [C(2)]M) is called a super-solution (resp. sub-solution) of
(7.1) if = are replaced by > (resp. <) in the two equations of (7.1).

Now let us prove the comparison principle for (7.1).

Lemma7.3 Let Opum <ue€ WLL(0, ap), [C()1M) be a sub-solution of (7.1) amiORM <
ve W0, a), [C(ED)IM) be a super-solution of (7.1). Thenu < v in [0, az] x Q.

Proof Leto, := sup{a > 0: ou < vin[0, az] x Q. By assumptions on u« and v, the number
o, is well defined and positive. If o, > 1, then we are done. So we assume that a, < 1.
Set w := v — au, then w > 0. Further, set

ap :=minfa € [0,a2] : Ix € Q,i € {1, ..., M}, s.t. w;(ag, x) = 0}.
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Such aq exists due to the definition of a,. It follows that there exists xo € Q such that
w; (ag, x0) = 0.
If ap € (0, az], observe that w; satisfies the following equation,

dawi(a, x) = Dj [/Q J(x = y)wi(a, y)dy — wi(a,X)]
—ui(a, x)w;i(a, x), (a,x) € (0,a] x Q.
Recalling the constant of variation formula (2.9), one has
wi(a, x) = e Pm;(0, a, x)w; (0, x) + D; /0 e P D1, a, ) [Kwildl, x)dl. (7.2)
Considering the above inequality at (ag, xo), we have a contradiction, since by the definition

of ap, w; (a, x) > Oforall (a, x) € [0, ap) x Q implies the right hand side of (7.2) is positive.
If ap = 0, one has w; (0, xp) = 0. Thanks to Assumption 7.1 on f, one has

M a
Z/ Bij(a, xo)uj(a, xo)da > 0.
j=1"°

On the other hand by Assumption 1.3-(iii) on f, one has that w; (0, xo) satisfies

w; (0, x0) = v; (0, x0) — axu; (0, xp)

M g M g

> fi (Z/o ﬂij(d,xo)vj(a,xo)da) — o fi (Z/O ﬁij(&xo)uj(a,m)da)
=1 =1
M g M g

> fi Z/o Bij(a, xo)vj(a, xo)da | — fi Z/o Bij(a, xo)axu(a, xo)da
=1 =1

>0,

where we used the Assumption 1.3-(iii) and v, < 1. Itis a contradiction with w; (0, xo) = 0.
Thus a, > 1 and the proof is complete. O

7.2 Existence and Uniqueness of Positive Equilibrium
Next let us define the linearized operator A% which is obtained by linearizing (7.1) at u = 0:
a
AL, ¢) = <—¢(0, )+ £/(0) / Bla,)¢(a, Yda, —d,¢ + DK — )¢ — M¢>) ;
0

0, ¢) € dom(A"), (7.3)

where dom(AL) = {0} x WH1((0, ap), [C(R2)]M) and denote the spectral bound of AL by
AIL, where f'(0) = diag{ f{(0), ..., f},(0)}. Recall from Proposition 3.3 that le satisfies

r <f/(0) /“2 B(a, ~)€7AIL“U(0, a)da) =1.
0

Theorem 7.4 Assume AIL > 0, then there exists at least one positive nontrivial solution
u*(a, x) of (1.1) belonging to Wh1((0, a2), [LY(2)14).
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Proof 1. Construction of super/sub-solutions. Set; = L forall 1 <i < M, where L is
from the Assumption 1.3-(iv). Let us verify that u(a, x) is indeed a super-solution of (7.1).

dqui(a,x) — D [/ J(x = y)ui(a, y)dy —u;(a, X)} + wila, x)u;(a, x)
Q

=DL |:1 —/ J(x —y)dy] + wi(a,x)L >0, foralll <i <M. (7.4)
Q

Further, forall 1 <i <M

M a
u;j(0,x) =L > f; Z/ 2/3,'1'(11,x)ﬁj(a,x)da
j=170

Next, we construct a sub-solution of (7.1) motivated by Coville [10, Theorem 1.6]. For any

8 > 0 sufficiently small, we can find a small constant € = €(§) > 0 such that f(u) >

(f'(0) — 8I)u for Ogm < u < egm. Such € can be achieved due to Assumption 1.1 on f.
Then we consider the following linear equation

8a¢(avx) = _(D+ M(avx))¢(a7x) _O“p(avx)’ ae (Oa a2)9
@0, x) = (f'(0) = 81) [3* Bla, x)$(a, x)da.

Then by Proposition 3.7, there exists a continuous function x — «(x) : R” — R such
that for any x € R”, equation (7.5) with « = «(x) has a positive solution a — ¢(a, x) €
w10, ap), RM). Denote o** = max g o(x). From the definition of ™" there exists a
sequence of points (x,),eN such that x, € Q and |a™* — o (x,)| < % Thus, by the continuity
of a(x), foreach n there exists , > Osuchthatforallx € By, (x,) wehave o™ —a(x)| < %

Now we consider a sequence of real numbers {¢, },cn Which converges to zero such that
€ < % Nextlet { x,, },en be the following sequence of cut-off functions: x, (x) := x (lx%”‘)
where x is a smooth function such that 0 < y < 1, x(x) = 0 for |x| > 2 and x(x) = 1 for
lx] < 1.

Finally, let us consider the following sequence of continuous functions {«}, },en defined
by o, (x) = sup{a(x), @™ x,(x)}. Observe that by construction the sequence {o,},eN is

such that ||ja — ozn||c(§) — 0.

(7.5)

*k

By construction, for each n, the function «, satisfies max g, = «* and @, = «** in
B%n (x). Therefore, the sequence {«, },cN satisfies a**li_% ¢ L}OC(Q). Next set

mnla, x) = pla, x) — oy (xX)I +a(x)I

and consider the equation (7.5) with p being replaced by w,,. Then it can be checked that

a ra
r ((f’(o) - 51)/ 2 Bla, x)e” Prontag=Jy “"(S*“‘)dsda) =1.
0

It follows that «,, is a continuous function such that for any x € R”, equation (7.5) with
u being replaced by pu, and with « = «;,(x), has a positive solution a — ¢y (a, x) €
w10, ap), RM). Hence by Theorem 4.9, there exists a principal eigenpair (A7, ¢,,) of the
eigenvalue problem:

dap(a.x) =D [o T(x — )¢(a, y)dy — d(a, x)]
_/“Ll’l(a5x)¢(av-x) _)"¢(a7x)5 (avx) € (07 02) X§a
¢>(0,x):(f’(O)—81)f612ﬂ(a,x)¢(a,x)da, xeQ
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such that 0 < ¢, € WH1((0, ), [C(Q)1M).
Using the fact that || — up ||C(§,[L°°(0,a2)]M) — 0 as n — oo, from Proposition 5.6 it
follows that for n big enough, say n > ng, we have

)\.L
)\'1'>71>0.

Moreover, by choosing ng bigger if necessary, we achieve for n > ng that

)»L
1
}Jf —lln— Mn”c(ﬁ,[Loo(oqaz)]M) = T > 0.

Now for n > ng fixed and v = ¢€;¢, with ¢, > 0 small enough such that
o7 Bla, x)¥(a, x)da < egum, we have

aaW(avx) -D [fQ j(X - }’)W(a» Y)dy - w(aa .X)] + M(CLX)W(G’X)
= —(un(a, x) — pla, x) + ANy <0,
¥ (0,x) = (f'(0) = 81) [5* Bla, )Y (a, x)da < f (fy* Bla, V)Y (a, x)da),

where we used the fact that f(u) > (f'(0) — §1)u for Ogm < u < epm. It implies that for
€1 > 0 sufficiently small and n large enough, €1¢, is a sub-solution of (7.1). From now on,
we fix a n large enough and denote u = €1¢,,.

2. Existence via iterative scheme. Now it is clear that we can choose € small enough such
that u < u. Then by a basic iterative scheme we obtain the existence of a positive nontrivial
solution u of (7.1). For the completeness, we provide the iterative scheme in the following.

Let u, for n > 1 be the solution of the following linear problem

dqun(a,x) =D [fg J(x = y)un(a, y)dy — un(a, X)]
—u(a, up(a,x), (a,x) e 0, a) x Q, (7.6)
un(0,x) = f (fo? B@, up—1(a, x)da), xe€Q,

where ug = u. First note that u,, is well defined and is belonging to WL, ap), [LY (2)1M).
Then we will show that u,, is increasing and that

u<uy<up=---<u (7.7)

Indeed, taking w := u; — u and v := u — uj, by Assumption 1.3-(ii) of f, they satisfy
respectively

daw(a,x) = D[ [o T(x — y)wla, y)dy — w(a, x)]
—w(a, x)w(a, x), (a,x) € 0,a) x Q,
w(0,x) >0, xeQ

and

dav(a, x) = D[ [o T(x — y)v(a, y)dy — v(a, x)]
—u(a, x)v(a, x), (a,x) e 0,a) x Q,
v(0,x) >0, xeQ.

Using comparison principle of nonlocal diffusion equations, we conclude that w > 0 and
v > 0, thatis u < u; < u. Now by induction, we can obtain the desired result (7.7).
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Next for (a,x) € [0,az] x ga.e., un(a, x) has a limit, denoted by u*(a, x), that is
up(a, x) — u*(a, x)in [0, ap] x Q a.e. and thus by the continuity of f we have that for any
X e,

f (/az B(a, x)uy(a, x)da) nzes f (/az ,B(a,x)u*(a,x)da) ,
0 0

which implies that u*(0, x) = f (f;? B(a. x)u*(a, x)da). In addition, one has
pn(a,x) =D [/ J(x = yun(a, y)dy — un(a, X)] — pla, x)uy(a, x)
Q

Iz p |:/ J(x —y)u(a, y)dy — u*(a,x)] — wu(a, x)u*(a, x) := p(a, x),
Q
a.e.in [0, ax] x Q. Hence, for any x € Q and [, £] C [0, az], one has

£
un(§,x) —uy(n, x) = / pnla, x)da,
n

which implies that
3
u*(S,x)—u*(n,X)=/ p(a,x)da.
n

It follows that u* € W'1((0, a2), [L'(Q2)]M) satisfies the equation (7.1) with d,u* = p
a.e. in (0, ap) x Q. Further, u*(-, x) is continuous in [0, a>] for a.e. x € . Thus, one has
un(0, x) — u*(0, x) as n — oo in 2, which implies that

u*(0,x) = f (/az B(a, x)u*(a, x)da) .
0

Thus the proof is complete. O

Next we investigate the uniqueness of u*. Before proceeding, we first study the regularity
of u* with respect to x. We make the following additional assumption.

Assumption 7.5 Assumeﬁthat F(x,u) :=u — Go(x) f(u) is strictly monotone with respect
tou € ]Rf for any x € @, where Gg(x) is defined in (3.2) with @ = 0 and a™ replaced by
ap.

Assumption 7.5 with Go(x) = I is widely used to obtain the regularity of solutions of
nonlocal diffusion problems, see Bates et al. [4] and Berestycki and Rodriguez [7].
Now let us revisit the problem (7.1). Solving the first equation of (7.1), one obtains
a
u(a,x) =e Pm(0,a, x)u(0, x) + D/ e P D, a, x)[Kuld, x)dl.
0
Then plugging the above equality into the boundary condition, one has

u(x) = /02 B(a, x)u(a, x)da = /02 Ba, x)e P (0, a, x)u(0, x)da
0 0

+D/a2ﬂ(a,x)/ae_p(“_l)n(l,a,x)[ICu](l,x)dlda
0 0
=: Go(x) f((x)) + H(x), (7.8)
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where
H(x) =D/ 2,_e(a,x)/ e P D, a, x)[Kull, x)dlda
0 0

is continuous, due to Ku € W'1((0, a2), [C()]1M) for any u € W1((0, ap), [L'(2)]Y),
by Assumption 1.1 on J. Now under Assumption 7.5, for any x € €2, one has u(x) =
F~Y(x, H(x)), where F~! denotes the inverse of F with respect to u for any fixed x € Q.

Thus % is continuous. It follows that u(0, -) is continuous and so is u(a, -).
Theorem 7.6 Under Assumption 7.5, the positive equilibrium u™ is unique.

Proof We prove the uniqueness by using the sliding argument. Let « and v be two positive
bounded solutions of (7.1). Since they are bounded and strictly positive, the following quantity
is well defined:

K* :=inf{k > 0:xu > vin[0, az] x Q}.

We claim that «* < 1. Indeed, assume by contradiction that x* > 1. We consider the
following nonlocal problem

oaw =D |:/ Jx —y)w(a, y)dy —w(a, x)i| — pla, x)w(a, x), (a,x) € (0,a) x Q.
Q
(7.9

By Bao and Shen [3, Proposition 2.1] and Assumption 1.1 on J, solutions of equation
(7.9) have strong monotone property; i.e., for ¢, € [Co(DM with ¢ > ¥, ¢ #
v, w(a, x; ¢) > wla, x; ¥),a > 0at which both w(a, x; ¢) and w(a, x; V) exist, where w
is the solution of (7.9). Here the notation >> means that if f1 > f> with f; = (fi1, ..., fim)
fori = 1,2in [C4+ ()], then f1;(x) > foj(x) forallx € Qand 1 < j < M.

On one hand, from the integral boundary condition with Assumption 7.1 on 8, we have
due to «* > 1 and assumptions of f that

kK ug = k*u(0, x; ug) = «* f </a2 B(a, x)u(a,x)da)
0

> f (/02 Bl(a, x)K*u(a,x)da)
0

f (/az B(a, x)v(a, x)da)
0

= v(0, x; v9) =: vg.

A%

It follows from the strong monotone property that
w(a, x; k*ug) > w(a, x; vo). (7.10)
On the other hand, let ¢ (a, x) = k*w(a, x; ug). Then ¢ (0, x) = k*ugy and
da¢p =D [/ J(x = y)¢(a, y)dy — ¢(a,X)} — (@, x)p(a,x), (a,x) € (0,a2) x Q.
Q
By the uniqueness of solutions for nonlocal diffusion equations, we have

K*w(a, x; up) = wa, x; k*up) (7.11)
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Now combing (7.10) and (7.11), we have
kK u(a, x) = c*w(a, x; ug) > wa, x; vo) = v(a, x),

which is a contradiction with the definition of «*. We conclude that u > v. Now switch u and
v in the above argument, we also have v > u, which shows the uniqueness of the solution. O

7.3 Stability

In this subsection we will show the global stability of the positive equilibrium u* obtained in
Theorem 7.4. First the existence of a solution u(¢, a, x) for (1.2) defined for all time # > 0
follows from a standard semigroup method by writing equation (1.2) as an abstract Cauchy
problem (2.12), which is shown in the following,

U = BU + F(U).

with Uy = (0, . 7.12
U =Up, 0= Ona) e

and based on the Lipshcitz assumption on f, see Thieme [46, 48] or Magal and Ruan [33].
Next, thanks to the definition of B, there holds that B is resolvent positive. Moreover, F is
monotone due to Assumption 1.3-(ii) on f,i.e.0 < U <V = 0 < F(U) < F(V). Thus
by Magal et al. [34, Theorem 4.5], we can conclude that weak comparison principle holds
for (7.12), which is written as follows,

Lemma 7.7 (Weak Comparison Principle) Assume that 3 is resolvent positive and F is mono-
tone. In addition, Uy € Xy and Uy > Oy, but Uy # Ox,, then the mild solution to (7.12),
U(t) > Ox, forany t > 0.

It follows that weak comparison principle also holds for (1.2). Now we give the strong
comparison principle for (1.2).

Lemma 7.8 LStrong Comparison Principle) Assume that ug(a, x) > Opm butug(a, x) 35 Opm
in [0, az] x 2, then the solution to (1.2), u(t, a, x) > Ogm for any t > 0in [0, az] x Q.

Proof Solving the problem (1.2) along the characteristic line a — r = ¢, where ¢ € R, we
now derive the formula for a solution to (1.2). For fixed ¢ € R, we set w(t) = u(t, t + ¢) for
t € [max(—c, 0), 0o). With a = t + ¢ one obtains for t € [max(—c, 0), c0) the equation

hw() =DIK—Tw — pu(t +c, Hw. (7.13)

We first study the case ¢ > 0. Clearly, w(0) = u(0, ¢) = u(0, a—t) = up(a—1t). Considering
the equation (7.13) with initial data w(0) > Opwx and w(0) # Ogm, we have w(t) > Opum for
¢t > 0 by the strong comparison principle of the nonlocal diffusion problem, due to J(0) > 0
in Assumption 1.1. It follows that u(¢, a) > Ogm for a > ¢. On the other hand, integrating
(7.13) from O to ¢, one obtains

w(t) =U(c, t + c)w(0).
and
u(t,a) =U(a —t,a)up(a —t).
Next we consider the case ¢ < 0. Integrating (7.13) from —c to 7, one gets

w(t) =UQ, t + c)w(—c).
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and
u(t,a) =UQO, a)u(t —a,0).

Thus now the solution to (1.2) reads as follows,

u(t. a) = iZ/l(a —t,a)upla —t), a>t, (7.14)

UQO, a)u(t — a, 0), a<t.

Next we plug the explicit formula (7.14) into u(¢, 0) to obtain

u(t,0) = f (fg x(@)B(a, YUO, a)u(t — a,0)da
+ [* x(@B(a, WU(a —t,a)up(a — t)da) (7.15)

where x (a) is a cutoff function satisfying x (@) = 1 when a € (0, a») otherwise x (a) = 0.
Now we separate two cases.
Case 1. If r < ap, (7.15) is written as follows,

t a
ut,0)=f (/ B(a, YUO, a)u(t — a, 0)da + / ’ B(a, YU(a —t,a)up(a — t)da) .
0 t
(7.16)

Since u(t,a) = U(a — t,a)up(a —t) > Ogm fora > t and B;;(a, -) > ;3 (a) > 0 ae. in
[a1, a2] by Assumption 7.1 on 8, the second term in the right hand of (7.16) must be positive.
It follows by Assumption 1.3 on f, we have u(t, 0) > Ogum. Thus u(t, a) > Ogm fora <t
via (7.14).

Case 2. If t > ap, (7.15) is written as follows,

u(t,0)=f (/az B(a, YUQO, a)u(t —a, 0)da> . (7.17)
0

Letus claim thatu(z, 0, x) := [u(?, 0)](x) > Opw in[az, o0) x Q. By contradiction, suppose
that there existi € {1, ..., M} and (¢, x9) € [a2, 00) x 2 such that u; (79, 0, x9) = 0. By
Assumption 1.3 on f, one obtains

M a
0=>" /0 Bij(a, xo)U; (0, a)uj(tg — a, 0, xo)da
j=1

a a _
> / Bii(a, xo)e~ Jo PiAioNds DiKay, 4y g0, xp)da,
0

where we used the fact that e~ Jo (Pi+Ei($)ds apd ¢PiKa are communicated. By Assump-
tion 7.1 on B, one has S;;(a, xo) > ﬁ”(a) > 0 a.e. in [ay, az], then we can find one point
bo € [az —¢, an] such that ePiKay; (1 — by, 0, x¢) = 0, where € > 0 small enough satisfying

a) < ap — €. By definition, one has
o0
) D;a)"
PRt = bo, 0, x0) = ) %K * i (19 — bo, 0, xo),
n!
n=0

where K*" denotes the n—fold convolution of K, thatis K* = K % --- x K, n times. It
follows that for eachn € N,

K™ xu;(tg — by, 0, x9) = 0.
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However, by Assumption 1.1 on J, one has J > 0 in B(0, r), which implies that
u;(to — by, 0, x) =0, forall x € B(xq, nr) N Q.

When n is large enough, B(xo, nr) N Q covers , and thus u; (tg — by, 0, -) = 0in Q.

Next replace 7y by to — bo in (7.15). If 1o — bg falls in [0, a2), by the argument as Case
1, one has u(ty — by, 0) > Ogm, which is a contradiction. Hence, fo — bo must fall in
[a>, 00). Then by the same argument as Case 2, one can find b; € [ax — €, a;], such that
u;i (to —bo — b1, 0) = 0. Now doing the above process by induction, one can find a sequence
{bi}i=0 such that u;(tp — Z?io b;i,0) = 0 for any M > 0. But we know every b; is in
[az — €, aa], then there always exists a minimal My > 0, such that 7y — Z?/I:Uo b; < ap. Then
by Case 1, one has u; (1 — Zf‘i"o b;i,0) > 0.

Now consider the i —th equation of (7.17) att = 9 — Z?”zoo_l bi, which is larger than
or equal to ap, we get a contradiction, since now the left hand side of (7.17) equals to zero,
while the right hand side of (7.17) is larger than zero.

In summary, we cannot have i € {1,..., M} and (¢,x) € (0,00) X Q such that
u;(t,0,x) = 0, which implies u(¢, 0, x) > Ogpm and thus u(¢, a) > Orm by (7.14). Hence
the proof is complete. o

Now we provide the following global stability result.

Theorem 7.9 (Stability) Let Assumption 7.5 hold. Assume XIL > 0, then the nontrivial equi-
librium u™* is stable in the sense of u(t,a,x) — u*(a, x) pointwise as t — 00, where
u(t,a,x) is a solution of (1.2) with initial data up(a,x) > Opm but u(a,x) # Ogwm in
[0, az] X 5

Proof Tfug(a, x) > Ogum butu(a, x) # Ogwm in [0, a2] x 2, using strong comparison principle
(Lemma 7.8), there exists a positive constant ¢ such that u(1, a, x) > gum in [0, az] x Q.
Since AlL > 0, we can still allow €u defined in Theorem 7.4 to be a sub-solution of (7.1)
for € small enough. Since u(1,a,x) > Spm and u is bounded, by choosing € smaller if
necessary we also achieve that ex < u(1, a, x). Now let us denote U (¢, a, x) the solution of
(1.2) with initial data eu. By weak comparison principle (Lemma 7.7), U (t, a, x) > €u(a, x)
forallt > 0. Givens > 0, let z°(¢t,a,x) := U(t + s,a,x) — U(t, a, x), which satisfies
z°(0, a, x) > Opm by the above argument and

du

ith U = (0, %), 7.18
U©) = Up. wi ( z ) ( )

on (0, 00) x [0, az] x  for some function G on (0, 00) x [0, ax] x Q with || G || e < H F’ H 100
The weak comparison principle (Lemma 7.7) then implies that z° > Opum forall s > 0, which
followsthat U (¢, a, x) isanon-decreasing function of thetimeand U (¢, a, x) < u(t+1, a, x).

On the other hand, L which is defined in the proof in Theorem 7.4 is a super-solution
of (7.1) and ug is bounded, we also have u(r, a, x) < U(t, a, x) if necessary choosing L
large enough, where U(t, a, x) denotes the solution of (1.2) with initial data U(0,a,x) =
Lgm > ug. A similar argument as above using the comparison principle shows that Uisa
non-increasing function of 7. Thus we have for all time 7 > 0 that

eu <U(t,a,x) <u(t+1,a,x) <UE+1,a,x).
Since U (¢, a, x) (respectively U (¢, a, x)) is a uniformly bounded monotonic function of ¢,

U (resp. U) converges pointwise to p (resp. p) which is a solution of (7.1). From U # Opw,
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using the uniqueness of a non-trivial solution of (7.1), we deduce that p = p = u™ # Ogn
and therefore, u(t, a, x) — u* pointwise in [0, a2] x Q. ]

7.4 Global Dynamics in Terms of Diffusion Rate and Diffusion Range

In the following we give a similar result on the global dynamics of (1.2) by using the values
of diffusion rate D = (D1, ..., Dy) and diffusion range y = (y1, ..., yu) without and
with kernel scaling, respectively. Before that, we introduce a notation < which means that
if xpm < ypu, then x; is much smaller than y; forall 1 <i < M.

Theorem 7.10 Let Assumption 7.5 hold. Assume that s(AL) coincides the principal eigen-
value of AL defined in (7.3), then equation (1.2) admits a unique positive equilibrium
u* € [C([0,a2] x WM that is stable for each Opy < D K lgm ifs(B(]) +C) > 0,
where s(B? + C) = ap and ay satisfies

max r (f/(O) /dz B(a, x)e ***m (0, a,x)da) =1. (7.19)
0

xeQ

Proof Note that AL defined in (7.3) also satisfies all the properties of A discussed in Sect. 5.
Then by Theorem 5.3, sP(AL) > 0 forall 0 < D <« 1if s(BY + C) > 0. Thus the result
follows from Theorem 7.4, Theorem 7.6 and Theorem 7.9. O

Theorem 7.11 Let Assumption 7.5 hold. Assume that s(AL) coincides the principal eigen-
value of AL defined in (1.3), then we have the following results.

(i) For each m > Ogu, assume s(B? +C) = ap > 0, then there exists lzgn <K y! < oogm
such that for each y > y| equation (1.2) with kernel scaling defined in (5.13) admits a
unique stable positive equilibrium u* € [C ([0, az] x QM

(ii) Suppose that J is symmetric, i.e. J(x) = J(—x), i € CZRY, L(0, a2)) and B;; €
C2(]RN, Lf(O, ap)) forall1 <i,j < M. Foreachm € [[O, DM, assume s(B(]) +C) =
ap > 0, then there exists Opu < y2 K lgm such that for each Ogpm < y < y» equation
(1.2) with kernel scaling defined in (5.13) admits a unique stable positive equilibrium
u* € [C([0, az] x M.

Proof 1t follows from Theorems 5.7, 7.4, 7.6 and 7.9. O

At the end of this section, we investigate the asymptotic behavior of the equilibrium u«* in
terms of D without kernel scaling and in terms of y with kernel scaling respectively. In order
to highlight the dependence of u™ on D or y, we denote u* by u7, or u,. Before proceeding,
we first give a lemma on the solution of (7.1) without nonlocal diffusion; that is,

dav(a, x) = —p(a, x)v(a, x), (a,x) € (0,a2) x Q,
! ) (7.20)
{U(O,x) =f( 0 B(a,x)v(a, x)da), x€Q.
Lemma7.12 Assume
min r <f/(0) /112 ,B(a,x)rr(O,a,x)da) > 1, (7.21)
xeQ 0

then the equation (7.20) has a unique positive solution, denoted by v*(a, x), which is belong-
ing to W1 ((0, a2), [C(@)]Y).
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Proof First note that (7.21) implies that for any x € Q,
ay
r <f/(0)/ ﬂ(a,x)n(O,a,x)da> > 1.
0

Then one can always find an element Ogy < v € XM again by the argument as Theorem 7.4
such that

(f'(0) — &) / Ba. )0, a. x)dav > v.
0

provided § > 0 is sufficiently small. Now we fix x € Q. We see that v(a, x) := ex (0, a, x)v
is a sub-solution of (7.20) when (7.21) holds by taking € > 0 sufficiently small. Meanwhile,
v := Lpw for L sufficiently large is also a super-solution of (7.20). Now it is clear that we can
choose € > 0 and L > 0O such that v < v. Then by a basic iterative scheme as in Theorem 7.4
we obtain the existence of a positive nontrivial solution v*(-, x) € W!1(0, az) of (7.20) for
any x € Q. Next we can use the sliding argument again as we did in Theorem 7.6 to show
that v*(-, x) is unique. At last, noting that v*(-, x) € [ee™ o As)s 1] the continuity of v*
in x comes from a similar argument as Theorem 4.9, we omit them here. O

Theorem 7.13 Let Assumption 7.5 hold. Assume that s(AL) coincides the principal eigen-
value of AL defined in (7.3), and in addition, assume (7.21) holds, and v* is from Lemma 7.12,
we have the following asymptotic results:

(i) Assume uj,(a, x) is given by Theorem 7.10, then

lim+ ujy(a, x) = v*(a, x), uniformly in (a, x) € [0, az] x Q; (7.22)
D—0
RM

(ii) Assume u;(a,x) is given by Theorem 711, m € [[0,2)IM and J is symmetric, i.e.
J(x) = J(—x), then

linl u;(a, x) = v*(a, x), uniformly in (a, x) € [0, az] x Q; (7.23)
y—)ORM

(iil) Assume u}(a, x) is given by Theorem 7.11 and m > Ogm, then

lim u;j(a,x) = v*(a, x), uniformly in (a, x) € [0, az] x Q. (7.24)
)/HOORM

Proof We first show (iii). It suffices to show that for each 0 < § < 1, there exists ys > Ogum
such that for each y € (Ogm, ys) there holds

1 =8v*@a,x) < u]*,(a,x) < (1 4+8&v*@a,x), (a,x)el0,a] x Q.

We here outline the proof of the upper bound and the lower bound follows from similar
arguments. Denote v := (1 4 §)v* and define F, : C([0, a2] x ) — C([0, a2] x Q) as
follows,

D; —
Fy, (vj) := o [/Q Sy (x = y)vi(a, y)dy — vi(a,X)] . vi € C([0,a2] x Q).

;M

By the same argument in Theorem 5.7-(iii), one can show for each v; € C([0, a] x )

Fy,(v;) = O(yifmi), as y; — oo uniformly in (a, x) € [0, a2] x Q. (7.25)
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On the other hand, thanks to the non-negativeness of 8 and v*, one has
[/
> / Bij(a, xo)vj(a, xo)da > 0.
j=1"0

Since for each (a, x) € [0, a2] x Q,

M a M ar
fi Z/O Bij(a, x)vj(a, x)da | — (1436 f; Z/O Bij(a. x)vi(a. x)da
j=1 j=1

M g fi (Zﬁil f(fz ﬂij(a,X)vj(a,x)da>
=Z/ Bijla,x)vj(a,x)da T

j=1"0 Zj:ljo Bij(a,x)vj(a, x)da
fi (ij[:l Io? Bij(a, x)vi(a, x)a’a)

— 7 o " < 0.
Y o’ Bijla, x)vi(a, x)da

where we use Assumption 1.3-(iii), there exists a sufficiently small positive constant ¢ = ¢(8),
which satisfies ¢(§) — 0 as § — 0, such that

[0,a2]x 2

M g
sup fi Z/O Bij(a,x)vj(a, x)da
j=1

M g
—(1+d) fi Z/o ﬂ,-‘,-(a,x)vjf(a,x)da
j=1

<—c<o. (7.26)

It implies that for any § > 0, we can find y;(§) > 0 such that |F), (v;)| < c(§) for each
Vi € (Yi(3),00). Set y (8) = maxi<i<p yi(9).

Now fix this y (§), let us show that for each y € (y(6), cogm), there holds u]’j(a, x) <
v(a, x) for all (a, x) € [0, az] x Q. To do that, fix any y € (¥ (8), oopum) and define

@ i=sup{a > 0: au(a, x) < v(a, x)in[0, az] x QL.

Since miny, .1, g u) > Ogw and v(a, x) is bounded, the number a is well defined and
positive. Due to the continuity of v(a, x) and uj (a, x), there holds v(a, x) > oz*u;’j (a, x) for
all (a, x) € [0, ar] x Q.

Clearly, if a, > 1, then we are done. So we assume that o, < 1. Setw = v — a*u’;, then

w > 0. Further, set ag := min{a € [0, a2] : Ix € Q,i € {1,..., M}, s.t. wi(@,x) = 0}.
Such aq exists due to the definition of ay. It follows that there exists xo € €2 such that
w; (ag, x0) = 0.

If ap = 0, that is, w; (0, xo) = 0. One has by (7.26)
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M a
w02 = 1 +0)0 (3 [ (e 0vf @, x)da
j=1"°
M ap M az
> (1+8)f; Z/O Bij(a, x)vi(a, x)da | + f; Z/O Bij(a, x)vj(a, x)da
j=1 j=1
M a c
—(1498)fi jX_;/O ﬂij(a,x)v}’f(a,x)da +§

M a
= fi Z/(; Bijla,x)vj(a,x)da | + %
Jj=l

Thus w; (0, x¢) satisfies

w; (0, x0) = v; (0, x0) — et (0, x0)

M a»
> fi Z/o Bij(a, xo)vj(a, xo)da
=1

M g

c

+3 i 21/0 Bij(a, xo)uy, (a, x0)da
j:

M a
> f; Z/O Bij(a, x0)vj(a, xo)da
j=1

M a
C
+§ — fi E 1/(; ﬁij(a, X())O(*u;j(a7 xo)da
j=

c

> —, 7.27

z 5 (7.27)

where we used the Assumption 1.3-(iii) and «,. < 1. Itis a contradiction with w; (0, xg) = 0.
If ag € (0, az], observe that w; satisfies

i, x) = [/ Ty Gx = yywi(a, y)dy — wia, x)} — pia, ywi(a, x)
(. Q
D,
= U Jy, (x = y)vi(a, y)dy — vi(a,x)}
vi™i LJa
D;
= —r [/ Jy (x = y)wi(a, y)dy — wi(a,X)]
vi"i Lo
—pila, x)w;(a, x) — Fy, (v;), (7.28)

Again by the constant of variation formula (2.9), one has

~hra Di [* -—r@-D
wia,x) =e " 7 (0,a, x)w; (0, x) + — - e v 7i(l,a, x)[Ky w1, x)dl
vi"™ Jo
@ B a1
+ | e n" mi(l, a, x)[Fy, (v)](, x)dl. (7.29)
0
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Recall that w; (0, x) > %‘S) by (7.27) which is independent in y; and D;. Now considering
the above inequality (7.29) at (ag, xo), w; (a, x) > 0 for all (a, x) € [0, ap) x Q implies

D;

o d 3 ay —
e " mi(0,a, 0)w;(0,x) > %fﬁ]z”"(”d&,

mi

Di (¢ —a=D .
- / e Vi mwi(l, a, x)[Ky, qwil, x)dl = O(y; ™).
Vi 0
These inequalities combining with (7.25) (up to increase y; if necessary) implies the right
hand side of (7.29) is positive. But the left hand side w; (ag, xo) = 0 induces a contradiction.
Thus o > 1 and the proof is complete.
For (ii) note by the argument in Theorem 5.7-(ii) that

Dl 2—m; +
Fy,(vi) = i Jy, (x = y)vi(a, y)dy —vi(a,x) | =O0@; "asy; >0
Q

. 1m
i

uniformly in (a, x) € [0, az] x Q. Then we revisit (7.29). Observe

D;
Tl.Ky,-,Qwi = O(V,'

l

“MYyasy; — 0T
uniformly in (a, x) € [0, a2] x Q. It follows that when 0 < y; < 1,

D

Di a — U (a_l)
/ e i mi(l,a, x)[Ky qw;](, x)dl
0

m;
Vi

D;

a -k (=D
—/ e Vi mi(l, a, x)[Fy, (vi)]U, x)dl > 0.
0

Then the remaining proof is the same with (iii).
For (i) we follow the lines as in the proof of (iii) except that we need to set y = Ipm and
replace the limit

Fy(v) = —-
(V) =
Y

| [ = puenay —uan | - oas 0
uniformly in (a, x) € [0, a2] x Q by the following limit

Fi(v;) = D; [/Q J(x = y)vi(a, y)dy — vi(a,x)] — Oas D; — 0F
uniformly in (a, x) € [0, az] x Q and (7.29) is replaced by the following equality

wi(a, x) = e P90, a, x)w(0, x) + Di/ e D@D 1, a, x)[Kw;1(, x)dl
0

_/ue—Di(”_l)n,-(l,a,x)[Fl(vi)](l,x)dl.
0
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8 Discussions

Age-structured models with nonlocal diffusion could be used to characterize the spatio-
temporal transmission dynamics of infectious diseases in which the age structure of hosts
is a very important factor and the disease spreads from places to places which are not geo-
graphically connected via the long distance traveling of hosts. There are very few theoretical
studies on the dynamics of such equations due to the lack of methods and techniques in
treating them. In this paper, we studied the spectrum theory for multigroup age-structured
models with nonlocal diffusion. First we gave a sufficient and easily verifiable condition
on the existence of principal eigenvalue by using the theory of resolvent positive operators
with their perturbations. Then we used the generalized principal eigenvalue to characterize
the principal eigenvalue and applied it to discuss the effects of diffusion rate and diffusion
range on the principal eigenvalue. Next we established the strong maximum principle for
such age-structured models with nonlocal diffusion. Finally we investigated the existence,
uniqueness and stability of such equations with cooperative type of nonlinearity.

Here we assumed that the diffusion kernels are the same for each component. We expect
to study the effects of different kernels for different components on the principal eigenvalue
and in particular the dynamics of such systems in the future. In addition, we expect that the
results on the principal eigenvalue and the construction of sub- and super-solutions can be
applied to study traveling wave solutions and spreading speeds of multigroup age-structured
models with nonlocal diffusion and we leave this for future consideration.

Finally, we believe that our results can be applied to age-structured models with nonlocal
diffusion of Neumann type, see Kang and Ruan [25] where we applied such a theory to a
scalar age-structured equation with nonlocal diffusion of Neumann boundary conditions and
found that the principal eigenvalue converges to that of the equation without diffusion derived
from the spatial average of reaction terms. Further, similar results for cooperative systems
with Neumann boundary conditions can be found in Zhang and Zhao [52].
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A Appendix
A.1 Transmission and Death Rates Independent of x

Now we introduce the eigenvalues and eigenfunctions of the nonlocal problem with Dirichlet
boundary condition, which are denoted by (6;, ¢;);>0, in the domain & C RY; that is,

{—Lgo =—(J *%‘N— pi)(x) = 0;pi(x), x € Q2 (A1)
QD[(X):O, x eR \Q
with
/ gaiz(x)dx =1,i>0. (A2)
Q
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Note that the eigenfunctions ¢; of (A.1) satisfy ¢; = 0 in R¥\, the integral in the convo-
lution term can indeed be confined in 2. Therefore, we define the operator

[Kul(x) = /Q J(x — yu(y)dy, u e L*().

Now observe that 6 is an eigenvalue of (A.1)-(A.2) if and only if §=1-—06isan eigenvalue
of K in L?(R). It is easy to see that K is compact and self-adjoint in L?(£2). Hence, by the
classical spectral theorem, there exists an orthonormal basis consisting of eigenvectors of
K with corresponding eigenvalues {é,,} C R and 6, — 0. Furthermore, we are interested
in the existence of a principal eigenvalue, that is an eigenvalue associated to a nonnegative
eigenfunction. We state a result related to the principal eigenvalue (see [11, 21, 22]).

Theorem A.1 [21] Probkm (A.1)-(A.2) admits an eigenvalue 0y associated to a positive
eigenfunction o9 € C(R). Moreover, it is simple and unique and satisfies 0 < 6y < 1.
Furthermore, 6y can be variationally characterized as

1/2

2
bo=1— sup /(/ J(x—y)u(y)dy) dx . (A3)
ueL2(Q), |lull -1/ \J@

L2(Q)

For other eigenvalues we can arrange them as 0 < 6y < 6; < 6, < --- — 1. Next we
introduce an operator for the system of nonlocal diffusion with Dirichlet boundary condition

— Lu = diag{—Luy, ..., —Lup}, u= (ui,...,up) € W:=L*(Q,RM™). (A4)

Then it is easy to see that —£ has the same eigenvalues as the ones of —L. Moreover, the
eigenvalues of —£ can be still arranged in the following way:

0<O)<b <6 <---.

Here we would like to emphasize that 6y is a principal eigenvalue of £ associated with a
positive eigenfunction (¢o, ..., ¢o) in the sense that each component of the eigenfunction
is positive and 6 is isolated. Note that 8y is not simple, since there are linearly independent
positive eigenfunctions, for example (2¢9, ¢o, - . ., ¢o). But for convenience, we are only
interested in (¢, . . ., ¢o).

Now we denote the usual population operator without diffusion by B defined in V :=
L2((0, a™), RM):

an;(a)

[Bnil(a) = — ”

~ T(@m@). ¥n € dom(B), (A5)
~ M ll+
dom(B) = (n(@ln, By € 120, a*), ni©) = 3 /0 B, @nj@yda)  (AS6)
j=1 '

and {x} j>o be the eigenvalues of B, i.e., the solution of the following equation

dawi(a,x) = Di [ [ J(x — y)wi(a, y)dy — wj(a, x)]
—ui(a, x)wi(a,x), (a,x)e,a]x Q.

while the principal eigenvalue, denoted by kg, satisfies

a+
r (/ ﬂ(a)e’“’“n(a)da) =1,
, =
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where det denotes the determinant and
7 (a) := diag{m(a), ..., mp(a)} = diag{e’fél mpydp e o Hu(p)dpy
Arrange « in the following way (see [50]):
ko > Rex; > Rexkp > ---

Introduce the state space E := Lz((~0, at) x Q,RM) with the usual norm |-|| and inner
product (-, -) and define an operator A : E — E by

d¢; (a, x)
da

[Agli(a, x) = (J * ¢ — ¢i)(a, x) — — i (@)gi(a, x), Yo € dom(A),

dom(;f) = {d)(a, X)

M +
¢, Ap € E, §lpng =0, i (0, x) = 21/0 B, (@;(a, x)da}.
" (A7)
Next let us solve the resolvent equation
E1—A¢ =1y, ¥y € E.

If for any i, j > 0, & + 6; # «;, then define

o0

$y(a.x) =Y (E+6)1 —B) (Y(a. ). di)w o i (x),
i=0
where
(vf(aa ’)7¢i)W
= (/Q lﬂl(a,x)wz'(x)dx,---,/QlﬂM(a,x)wz‘(x)dx>, D = (¢i,...,0) €W,
and

uo®d; = W1@i,...,upmp), ucVv.

Since B is the infinitesimal generator of a bounded strongly continuous semigroup, there
exist constants O > 0 and w € R such that

- )
I =B, < Rt — o VReE >0

Recall that §; > O for all i, then Re(§ + 6;) > w for all i > 0 provided Re§ > w,

g [(€+6001-B) v, az-m”zv

0 ’&
[7} > (@, ), eiwlly

<
~ LRe(¢ +6p)) —w =
0 I
= [m] ¥l < oo. (A.8)
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Thus, ¢y (a, x) is well defined. Moreover, for any n > 0,

E1-K)Y (€ +0)1 — B) (y(a. ). ®i)w o i (x)

i=0
n
= (¥(a.). Di)w o Di(x) = ¥(a.x) in E asn — o0.
i=0
Since B and £ are both closed operators on E, 50 is A. Hence (11— Z)d),/, =v,ie. ¢y (a,x)
is a solution of the resolvent equation. Now choose ¢ € dom(A), we have

M

~ 8 i _
(Ag, P)E = Z/(O - ¢:(a, X)¢z(a x)dadx —/ i ()¢ (a, x)|*dadx

da 0.a+t)xQ

+/ (J % ¢j(a, x) — ¢i(a, x))pi(a, x)dadx
0,a+)xQ

IA
AME
| =

I
-

f 1610, ) 2dx

UL sna]
/ [/ 5 (")d“} [f ¢ (a, X)da:|

M-
EMa HMa

=

1,

1 2 2
=3 HQHM 161 (A9)
Iy 2
where Hé”ﬁ(v) = Maxi<j<M )i ‘élj L2004 and we used the symmetry of J

/ (J x@i(a,x) — ¢i(a, x))p;(a, x)dadx
(V) a*)XQ
< / / / I — ) @ia. y) — ¢i (@, )i (a. x)dydxda
() a*) QLJIQ
= —l/ / / J(x — y)($i(a, y) — pia, x))*dydxda < 0. (A.10)
(0] a*) QLJIQ

It follows that for all sufficiently large &, A-— &1 is a dissipative operator on E.

On the other hand, it can be shown that ¢ is the unique solution of the resolvent equation
by the uniqueness resolvent solution of age-structured models with orthonormal basis in W.
Thus & € ,o(A) the resolvent set of A and

EL =Dy =Y (E+61 = B) (Y@ ). @)w o ®i(x). (A.11)

i=0

It yields that R(§1 — A), the range of £1 — Ais equal to the whole space E, and by (A.9),
A—E&1 is dissipative when £ is sufficiently large, it follows from Pazy [39, Chapter I, Theorem

4.6] that dom(g— &) is dense and dom(g —&I) = E,sodoes dom(g) and dom(g) =
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Moreover, from (A.8) we have

(0]

_N_l e —
61 =71 = s

Hille—Yosida theorem implies that A is an infinitesimal generator of a Cp-semigroup
{S(#)};>0. (In fact, one can conclude the same result by using Lumer—Phillips theorem in
Pazy [39].)
If there are some 7, j such that § + 6; = «;, then
®;(a, x) = e ET0 (@), (x)

Satlsﬁes &I — A)CD =0;ie.,& € op(A) the point spectrum of A. Furthermore, if (§1 —
A)@ = 0, expanding the known initial function ® (0, x) as

@(O, x) = (Z otligo,-(x), ey ZO{M,‘(/),'(X)> in W
i=0 i=0

then we have

o0 [o,0)
O(a, x) = <Z‘Xlie_(é-i_ei)a”l(a)(Pi(x), e ZaMie_(s-‘rei)a”M(a)(Pi(x)) .

i=0 i=0

In view of the initial condition
a+
00,x) = / B(a)O(a, x)da,
, =

wegetforeachi =1, ..., M,eitheray; =0, ...,ay; =0orl € op (féﬁ é(a)e_(s"'ei)“n(a)

da), which implies that k; = § + 6; is an eigenvalue of B by the theory of age-structured
models. Hence, § = «; — 6, 1s an elgenvalue of A. In particular, for &y = k¢ — 6y, which is
the principal eigenvalue of A &I - A)d> = 0 has one positive linear solution, which is

Dg, (a, x) = e I (a)Po(x). (A.12)

Define an operator

a+
Ce = / B(a)e $%m(a)e™da.
, =

It is easy to see that C is a positive and self-adjoint operator in W, since L is self-adjoint,
and that ®¢(x) is the eigenfunction of the eigenvalue 1 of Cg,. Thus, r(Cg,) > 1.

In addition, note that {¢;};>0 are indeed in C,(2) due to the fact that J is continuous
and el? : Cp(Q) — Cp(Q) is an e~ ? contraction mapping, where e~ is the Kuratowski
measure of noncompactness in the metric space (Cp(2), d), see Fang and Zhao [18], where
Cp(2) represents the space of continuous bounded functions in €2, and for any u, v € Cp(2),
d(u,v) .= Z,fil zik max_k<y<k |u(x)—v(x)|. It follows by Perron—Frobenius Theorem that

e < leal, = (e venio o) )

a+
r (/ B(a)e 0% (a)diag{e” 1% 6(190)“}> da
, =
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<r (/u ,B(a)e"“’”n(a)da)
, =

=1, (A.13)

where r,(A) and || A||, represent the essential spectral radius and essential norm of operator
A in E, respectively. Now suppose that r(Cg,) > 1, for the sake of contraction, we then see
from the generalized Krein-Rutman theorem (see [38] or [51]) that 7(C¢,) is an eigenvalue
of Cg¢, corresponding to a positive eigenvector ¢ € W. It follows that

r(Ce) (¥, Poyw = (Cey ¥, Po)w = (¥, Ce, Po)w = (¥, Po)w,

which implies that r(Cg,) = 1 since (y, @g) > 0. This is a contradiction. Thus r(Cg,) = 1.
In summary, we have the following theorem.

Theorem A.2 The following statements are valid.

(i) The operator A defined in (A.7) generates a strongly continuous semigroup {S(t)};>0
onEr
(i) o(A) =0p(A) ={Kki —6;}75 o
(iii) The operator A has a real principal eigenvalue &y corresponding to the eigenfunction
D¢, defined in (A.12); that is, &y is greater than any real part of eigenvalues of A;
(iv) For the operator Cg,, 1 is an eigenvalue with an eigenfunction @y(x). Furthermore,
r(Cg) = 1.

The proofs of (i)-(iii) are similar to those in Chan and Guo [9, Theorem 1] or Kang and
Ruan [26, Theorem 2.2]. We omit them here. The proof of (iv) is shown in the above argument.

A.2 Resolvent Positive Operators

In this section we recall the theory of resolvent positive operators, the readers can refer to
Thieme [47, 48] for details. A linear operator A : Z; — Z, defined on a linear subspace Z;
of Z, is said to be positive if Ax € Z, forallx € Z1 N Z, and A is not the O operator, where
Z 4 is a closed convex cone that is normal and generating.

Definition A.3 A closed operator A in Z is said to be resolvent positive if the resolvent set
of A, p(A), contains a ray (w, co) and (Al — A lisa positive operator (i.e. maps Z into
Zy)forall A > w.

Definition A.4 We define the spectral bound of a closed operator A as
s(A) =sup{Rer e R; L € 6 (A)},
the real spectral bound of A as
sr(A) =sup{r € R; A € 0(A)},
and the spectral radius of A as
r(A) = sup{|A]; 1 € o (A)}.

If B is a resolvent positive operator and C : dom(B) — Z is a positive linear operator,
then A = B + C is called a positive perturbation of B. If B 4 C is a positive perturbation of
Band A > s(B),then C(AI — B)"is automatically bounded (without C being necessarily
closed). This is a consequence of Z being normal and generating.
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Theorem A.5 [47, Theorem 3.5] Let the cone Zy be normal and generating and A be a
resolvent positive operator in Z. Then s(A) = sp(A) < oo and s(A) € o(A) whenever
s(A) > —o00. Moreover, there is a constant ¢ > 0 such that

|| A — A)f1 || <c || (Rerl — A)7l || whenever Rel > s(A).
Now define
F,=COI—B)', »>s(B). (A.14)

Theorem A.6 [48, Theorem 3.6] Let Z be an ordered Banach space with normal and gener-
ating cone Z 4 andlet A = B+ C be a positive perturbation of B. Then r (F)) is a decreasing
convex function of A > s(B), and exactly one of the following three cases holds:

(1) ifr(Fy) = 1 forall » > s(B), then A is not resolvent positive;
(i) ifr(Fy) < 1 forall . > s(B), then A is resolvent positive and s(A) = s(B);
(iii) if there exists v > A > s(B) such that r(F,) < 1 < r(F)), then A is resolvent-positive
and s(B) < s(A) < oo, further s = s(A) is characterized by r (F;) = 1.

Definition A.7 The operator C : dom(B) — Z is called a compact perturbator of B and
A = B + C a compact perturbation of B if

Al — B)’IFA :dom(B) — dom(B) is compact for some A > s(B)
and
W =B NF)?:Z— Zis compact for some A > s(B).

C is called an essentially compact perturbator of B and A = B + C an essentially compact
perturbation of B if there is some n € N such that (A — B)~! F}"is compactforall A > s(B).

Definition A.8 Let F) be a positive resolvent output family for B. A vector x € X is said
to be conditionally strictly positive if the following holds:

If x* € Z% and F;'x* # 0 for some (and then for all) A > s(B), then (x, x*) > 0.

Similarly a functional x* € Z% is said to be conditionally strictly positive if the following
holds:

If x € Z4 and Fyx # 0 for some (and then for all) A > s(B), then (x, x*) > 0.

Theorem A.9 [47, Theorems 4.7 and 4.9] Assume that C is an essentially compact perturbator
of B. Moreover assume that there exists Ay > A1 > s(B) such that r(Fy,) > 1 > r(Fy,).
Then s(B) < s(A) < oo and the following statements hold:

(1) s(A) is an eigenvalue of A associated with positive eigenvectors of A and A*, has finite
algebraic multiplicity, and is a pole of the resolvent of A. If C is a compact perturbator
of B, then all spectral values A of A with Re)l € (s(B), s(A)] are poles of the resolvent
of A and eigenvalues of A with finite algebraic multiplicity;

(ii) 1 is an eigenvalue of Fyay and is associated with an eigenvector w € Z of Fy(a) such
that (\ — B)~'w € Z, and with an eigenvector v* € Z% of FS*(A). Actually s(A) is the
largest . € R for which 1 is an eigenvalue of F).

Moreover, if Z is a Banach lattice and there exists a fixed point of F' in Z} that is conditionally
strictly positive, then the following statements hold:
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(iii) s = s(A) is associated with a positive eigenvector v of A such that w = (s(A)I — B)v
is a positive fixed point of Fy(a);
(iv) s is the only eigenvalue of A associated with a positive eigenvector.

Finally we assume in addition that all positive non-zero fixed points of Fg are conditionally
strictly positive. Then the following holds:

(v) s = s(A) is a first order pole of the resolvent of A.

(vi) The eigenspace of A associated with s(A) is one-dimensional and spanned by a positive
eigenvector v of A. The eigenspace of A* associated with s(A) is also spanned by a
positive eigenvector v*.

A.3 Perron-Frobenius Theory

In this section we recall Perron—Frobenius theory, the interested readers can refer to Marek
[35] for more details.

Proposition A.10 If A is a nonnegative and irreducible matrix, then

(1) the spectral radius r(A) is a simple eigenvalue of A, i.e. from (A —r(A)[)Py = 0 it
follows that Ay = r(A)y and if Ay1 = r(A)y1, y1 # 0, then there exists a constant ¢
such that y = cyy;

(ii) corresponding to r(A) there exists one eigenvector xo with all positive components;

(iii) corresponding to r(A) there exists one eigenvector of the adjoint matrix A’ with all
positive components;
(iv) if A > B and A # B, thenr(A) > r(B).

Moreover, if A is a nonnegative and primitive matrix, the results in the above proposition
hold and in addition, the spectral radius r(A) is a dominant eigenvalue of A, i.e. it is strictly
larger than the modulus of any other eigenvalue A of A.
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