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Abstract
In modeling the population dynamics of biological species and the transmission dynamics
of infectious diseases, age-structure and nonlocal diffusion are two important components
since individuals need to be mature enough to move and they disperse and interact each other
nonlocally. In this paper we study the principal spectral theory of age-structured models
with nonlocal diffusion within a population of multigroups. First, we provide a criterion on
the existence of the principal eigenvalue by using the theory of positive resolvent operators
with their perturbations. Then we define the generalized principal eigenvalue and use it to
investigate the influence of diffusion rate on the principal eigenvalue. Next we establish
the strong maximum principle for age-structured nonlocal diffusion operators. Finally, as
an example we apply our established theory to an age-structured cooperative system with
nonlocal diffusion.
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1 Introduction

For scalar linear and nonlinear age-structured equations with nonlocal diffusion, recently
we [14, 24–26] developed some basic theories including the semigroup of linear operators,
asymptotic behavior, spectral theory, asynchronous exponential growth, strong maximum
principle, global dynamics, etc. In this paper, we continue to study the existence of the prin-
cipal eigenvalue, asymptotic behavior of the generalized principal eigenvalue with respect
to the diffusion rate, and global dynamics of multigroup age-structured models with non-
local diffusion and cooperative type nonlinearity. More precisely, we are interested in the
eigenvalue problem corresponding to the following multigroup age-structured models with
nonlocal diffusion:

⎧
⎪⎪⎨

⎪⎪⎩

∂aui (a, x) = Di

γ
mi
i

[∫

�
Jγi (x − y)ui (a, y)dy − ui (a, x)

]

−μi (a, x)ui (a, x), a ∈ (0, a+), x ∈ �,
ui (0, x) = ∑M

j=1

∫ a+
0 βi j (a, x)u j (a, x)da, x ∈ �,

(1.1)

where ui (a, x), i = 1, . . . ,M, denotes the density of individuals that belong to the i th
group at age a and location x ∈ � and M denotes the number of groups in a population;
a+ < ∞ represents the maximum age and � ⊂ R

N is a bounded domain with smooth
boundary, Di > 0, i = 1, . . . ,M, are the diffusion rates, γi > 0, i = 1, . . . ,M, represent
the diffusion ranges, and mi ∈ [0, 2), i = 1, . . . ,M, are the cost parameters with Jγi (x) =
1
γ N
i
J
(

x
γi

)
, i = 1, . . . ,M, for x ∈ R

N . The diffusion kernel J satisfies the following

assumption.

Assumption 1.1 The kernel J ∈ C(RN ) is nonnegative and supported in B(0, r) for some
r > 0, and satisfies J (0) > 0 and

∫

RN J (x)dx = 1, where B(0, r) ⊂ R
N is the open ball

centered at 0 with radius r .
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We point out that the nonlocal diffusion operator in (1.1) corresponds to zero Dirichlet
boundary condition. Next we provide the following assumptions on the transmission rates
βi j and the death rates μi for all i, j = 1, . . . ,M :

Assumption 1.2 • βi j ∈ C(RN , L∞+ (0, a+));
• μi ∈ C(RN , L∞

loc,+[0, a+));
• min1≤i≤M

∫ a+
0 μ

i
(a)da = ∞ and μ̃ := min1≤i≤M {inf [0,a+]×� μi (a, x)} > 0, where

μ
i
(a) := min

x∈�
μi (a, x), μi (a) := max

x∈�
μi (a, x),

β
i j
(a) := min

x∈�
βi j (a, x), β i j (a) := max

x∈�
βi j (a, x).

• Moreover, assume that for any (a, x) ∈ (0, a+)×�, the matrix

β(a, x) = (
βi j (a, x)

)

(i, j)=1,...,M is either irreducible or primitive.

The last assumption ensures that the spectral radii are the principal eigenvalues of these
matrices. Throughout the paper, we will denote spectral radius of a matrix or a linear operator
T by r(T ).

Themotivation for studying the principal spectral theory is to investigate the global dynam-
ics of the following nonlinear cooperative age-structured models with nonlocal diffusion:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ui (t, a, x)+ ∂aui (t, a, x) = Di
[∫

�
J (x − y)ui (t, a, y)dy − ui (t, a, x)

]

−μi (a, x)ui (t, a, x), t > 0, a ∈ (0, a+), x ∈ �,
ui (t, 0, x) = fi

(∑M
j=1

∫ a+
0 βi j (a, x)u j (t, a, x)da

)
, t > 0, x ∈ �,

ui (0, a, x) = ui0(a, x), (a, x) ∈ (0, a+)×�,
(1.2)

where ui (t, a, x) for i = 1, . . . ,M denotes the density of population at time t , age a and
position x , J is a dispersal kernel and f is a cooperative type nonlinearity describing the
cooperative rate of the population. Such equations appear naturally in describing some eco-
logical problems when in addition to the dispersion of the individuals in the environment,
the birth and death of these individuals are also modeled, see Fife [19], García-Melián and
Rossi [21], Hutson et al. [22], Medlock and Kot [36], and Murray [37]. It could be used to
characterize the spatio-temporal dynamics of biological species and transmission dynamics
of infectious diseases in which the age structure of the population is a very important factor
and the dispersal is in long distance. We mention again that the nonlocal diffusion operator
in (1.2) corresponds to zero Dirichlet boundary condition, which indicates that the region
outside their habitat, RN \�, is hostile that the population cannot survive there, see Hutson
et al. [22]. Next we provide the assumptions on f in the following.

Assumption 1.3 We assume that f = ( f1, . . . , fM ) satisfies the following conditions,

(i) fi ∈ C1(R+);
(ii) f ′

i (y) > 0 for all y ∈ [0,∞);
(iii) fi (0) ≡ 0 and fi (y)

y is decreasing with respect to y ∈ [0,∞);
(iv) There exists L > 0 such that fi (y) ≤ L for all y ∈ R+.

In Assumption 1.3, (i) assumes the good regularity of f ; (ii) guarantees the cooperativity
of system (1.2); (iii) implies that the nonlinearity is sub-homogeneous; (iv) guarantees that
solutions of (1.2) will remain uniformly bounded for all times. In applications, f (y) can
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correspond to some classical nonlinearity, for example each fi , 1 ≤ i ≤ M can be chosen as
follows, fi (y) = y

1+Ay , y ≥ 0, with A > 0 being a constant or fi (y) = 1 − e−y, y ≥ 0.
Before proceeding, we briefly recall the principal spectral theory in cooperative reaction

diffusion and nonlocal diffusion systems including autonomous and time-periodic systems.
For reaction diffusion, Dancer [13] investigated the principal eigenvalue of a linear cooper-
ating elliptic system with small diffusion. Later Lam and Lou [29] analyzed the asymptotic
behavior of the principal eigenvalue for cooperative elliptic systems. Recently Bai and He [2]
generalized the results in [29] to cooperative periodic-parabolic systems. The above results
mainly focused on the asymptotic behavior of the principal eigenvalue with a small diffusion.
Most recently Zhang and Zhao [52] studied the case of a large diffusion and also obtained
the asymptotic behavior of the basic reproduction ratio in reaction-diffusion systems. For
nonlocal diffusion, Bao and Shen [3] first provided a criteria for the existence of princi-
pal eigenvalues of linear time periodic cooperative systems. Liang et al. [31] studied the
principal eigenvalue for periodic nonlocal dispersal systems with time delay. In the reac-
tion diffusion case, most researchers established the existence of principal eigenvalues by
employing Krein-Rutman theorem due to the compactness of solution maps for second order
elliptic operators and further investigated the asymptotic behavior with respect to diffusion
coefficient by using variational structure for the autonomous case and sup-inf characteriza-
tion method for the time-periodic case. While in the nonlocal diffusion case, due to the lack
of compactness of solution maps one needs to use different methods such as generalized
Krein-Rutman theorem [16, 38], see Coville [10, 12] and the references cited therein, or
perturbation of positive operators [8], see Rawal and Shen [40], Shen and Xie [42] and the
references cited therein, to obtain the existence of generalized principal eigenvalues. Further,
combining these two methods, Shen and Vo [43] and Su et al. [44] discussed the asymptotic
behavior of generalized principal eigenvalues in the time-periodic case by employing the
idea from Berestycki et al. [5]. There are also many other studies on the analysis of (general-
ized) principal eigenvalues for nonlocal diffusion equations in different situations including
cooperative systems, see Liang and Zhou [32], Li et al. [30] and the references cited therein.

To the best of our knowledge, there is little literature on the principal eigenvalue in
age-structured cooperative models with nonlocal diffusion. Ducrot et al. [15] obtained the
principal eigenvalue in investigating the existence of traveling wave solutions of multigroup
age-structured epidemic models; however, they considered the Laplace diffusion and spa-
tial variable independent coefficients. The purpose of this paper is to first investigate the
existence of the principal eigenvalue of multigroup age-structured models with nonlocal dif-
fusion and then study the asymptotic behavior of the principal eigenvalue in both small and
large diffusions. We will extend the idea in our previous paper [14] for the scalar case to
cooperative systems. More concretely, we will choose an extended function space to include
the integral boundary condition, see the definition of A in (2.11), which is different from
the previous studies. The reason behind is that there is a ∂a term and an integral boundary
condition in the equation (1.1), which prevent us to use directly the results of autonomous
and time-periodic cases in nonlocal diffusion operators. Next, we will introduce the theory
of resolvent positive operators with their perturbations by Arendt [1] and Thieme [46, 47]
to investigate the existence of principal eigenvalue, which is similar to Bürger’s idea [8] for
perturbations of positive operators and generalized Krein-Rutman theorem [16, 38]. Last,
we follow the idea of Berestycki et al. [6] to define the generalized principal eigenvalue and
use it to study the asymptotic behavior with respect to diffusion. We would like to mention
that only the Dirichlet boundary condition is considered here, but the theory can be applied
to Neumann case as well, see [25], where we studied a scalar age-structured model with
nonlocal diffusion of Neumann type.
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The paper is organized as follows. In Sect. 2, we introduce our working operators and
function spaces. In Sect. 3, we first analyze the spectral bound s(B1 + C) of B1 + C, which
corresponds to age-structured models without nonlocal diffusion, and compare it with the
spectral bound s(A) of A defined in (2.11), which corresponds to age-structured models
with nonlocal diffusion, and then obtain a non-strict size relation between s(B1 + C) and
s(A). In Sect. 4, we find an easily verifiable and sufficient condition for s(A) being the
principal eigenvalue. In Sect. 5, we study the effects of diffusion rate and diffusion range
on the generalized principal eigenvalue of A and discuss the continuous dependence of the
principal eigenvalue on the transmission and death ratesβ andμ. In Sect. 6, we give the strong
maximum principle which is of fundamental importance and independent interest. In Sect. 7,
we apply our established theory to the age-structured cooperative system with nonlocal
diffusion (1.2) and analyze the existence, uniqueness and stability via the magnitude of
spectral bound of the linearized operator. Moreover, we investigate the asymptotic properties
of the nontrivial equilibrium of (1.2) with respect to the diffusion rate and diffusion range.
In “Appendix”, we first establish the spectral theory when μ(a, x) ≡ μ(a) and β(a, x) ≡
β(a) for problem (1.1) and then recall the theory of resolvent positive operators with their
perturbations and Perron–Frobenius theory.

Finally, we want to mention that the assumptions that J has a compact support and � is
bounded can be relaxed. For the principal spectral theory, we only need � to be bounded
without requiring that J has a compact support. Moreover, the boundedness of � seems
necessary due to the lack of Harnack’s inequality for such parabolic problems, see Shen and
Vo [43]. However, in order to study the limiting properties of principal eigenvalues, J is
needed to be compactly supported for Taylor expansion later. In addition, the condition that
� is bounded can even be removed if one only defines the generalized principal eigenvalue,
see Berestycki [5]. Here to give a unified presentation of the results, we assumed both of
them.

Besides, we consider here a general form of boundary condition on a; i.e. the second
equation in (1.1). In fact, the matrix β could be diagonal representing the birth rates of each
group i . Otherwise, βi j can represent the transmission rate from group j to group i , see
Ducrot [15] for a multigroup age-structured epidemic model.

2 Notations

In this section, we will introduce our notations and some preparatory results. We denote by
X and X+ respectively the Banach space X = C(�) and its positive cone or the Banach
space X = L1(�) and its positive cone. Here recall that� ⊂ R

N is a given bounded domain.
Recall that for both cases X+ is a normal and generating cone. In addition, we denote by I
the identity operator.

Then we define the following function spaces

X = XM × L1((0, a+), XM ), X0 = {0XM } × L1((0, a+), XM ),

endowed with the product norms and the positive cones:

X+ = XM+ × L1+((0, a+), XM ) = XM+ × {u ∈ L1((0, a+), XM ) : u(a, ·) ∈ XM+ , a.e. in (0, a+)},
X+

0 = X+ ∩ X0.

We define the norm in XM as follows, ‖u‖XM := max1≤i≤M ‖ui‖X . We also define the linear
positive and bounded operator K ∈ L(X) by
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[Kϕ](·) =
∫

�

J (· − y)ϕ(y)dy, ∀ϕ ∈ X . (2.1)

Note that one has by Assumption 1.1

‖K‖L(X) ≤
{
supy∈�

∫

�
J (x − y)dx if X = L1(�)

supx∈�
∫

�
J (x − y)dy if X = C(�)

≤
∫

RN
J (z)dz = 1. (2.2)

In addition, we define the linear positive and bounded operator K ∈ L(XM ) by

[Kϕ](·)
= diag

{∫

�

J (· − y)ϕ1(y)dy, . . . ,
∫

�

J (· − y)ϕM (y)dy

}

, ∀ϕ = (ϕ1, . . . , ϕM ) ∈ XM .

(2.3)

2.1 Evolution FamilyWithout Diffusion

We consider the following problem posed in X for 0 ≤ τ ≤ a < a+ and i = 1, . . . ,M :
{
∂avi (a) = −μi (a, ·)vi (a), τ < a < a+,
vi (τ ) = ηi ∈ X .

(2.4)

This problem generates an evolution family on XM , denoted by 
 = diag{
1, . . . ,
M }
that is explicitly given for 0 ≤ τ ≤ a < a+ and η = (η1, . . . , ηM ) ∈ XM by


i (τ, a)ηi = πi (τ, a, ·)ηi
with πi (τ, a, x) := exp

(

−
∫ a

τ

μi (s, x)ds

)

for 0 ≤ τ ≤ a < a+ and x ∈ �. (2.5)

Observe that one has

‖
(τ, a)‖L(XM ) ≤ max
i=1,...,M

exp

(

−
∫ a

τ

μ
i
(s)ds

)

≤ e−μ̃(a−τ) ≤ 1, ∀ 0 ≤ τ ≤ a < a+.

(2.6)

We also define the following family of bounded linear operators {Wλ}λ>−μ̃ ⊂ L (X ,X0) for
(η, g) ∈ X by

Wλ(η, g) = (0XM , h)

with h(a) = e−λa
(0, a)η +
∫ a

0
e−λ(a−s)
(s, a)g(s)ds. (2.7)

We will show that this provides a family of positive pseudoresolvents. To this aim, one can
make some computations to obtain

WνWλ(η, g) =
∫ a

0
e−ν(a−s)
(s, a)e−λs
(0, s)ηds

+
∫ a

0
e−ν(a−s)
(s, a)

∫ s

0
e−λ(s−τ)
(τ, s)g(τ )dτds

=
∫ a

0
e−νae−(λ−ν)sds
(0, a)η +

∫ a

0

∫ s

0
eλτ−νae−(λ−ν)s
(τ, a)g(τ )dτds.
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Hence for ν �= λ, we have

WνWλ(η, g) = 1

ν − λ
(
e−λa − e−νa)
(0, a)η + 1

ν − λ
(
e−(λ−ν)a − e−(λ−μ)τ)

∫ a

0
eλτ−νa
(τ, a)g(τ )dτ

= 1

ν − λ (Wλ − Wν) (η, g).

Moreover, one see (for example Magal and Ruan [33, Lemma 3.8.3]) that for all λ > −μ̃,
Wλ(η, g) = 0X only occurs if η = 0XM , g = 0L1((0,a+),XM )

and

lim
λ→∞ λWλ(0XM , g) = (0XM , g), ∀(0XM , g) ∈ X0.

Moreover, for any λ > −μ̃, one has

‖Wλ‖L(X ,X0) ≤ 1

λ+ μ̃ .

Thus by Pazy [39, Section 1.9] there exists a unique closed Hille–Yosida operator B1 in X
such that

(λI − B1)
−1 = Wλ for all λ > −μ̃.

Recalling (2.1) we also define the bounded linear operator B2 ∈ L(X0) given by

B2(0XM , g) = (
0XM ,DKg(·)) , ∀(0, g) ∈ X , with D := diag{D1, . . . , DM }.

2.2 Evolution FamilyWith Diffusion

Consider now the following evolution equation for ηi ∈ X and 0 ≤ τ ≤ a < a+ and
i = 1, . . . ,M :

{
∂aui (a) = Di (K − I )ui (a)− μi (a, ·)ui (a), τ < a < a+,
ui (τ ) = ηi ∈ X .

(2.8)

Define the evolution family

{U(τ, a)}0≤τ≤a<a+ = diag {U1(τ, a), . . . ,UM (τ, a)}0≤τ≤a<a+ ,

where Ui is associated with (2.8). Using the constant of variation formula Ui becomes for all
0 ≤ τ ≤ a < a+ the solution of the equation

Ui (τ, a) = e−Di (a−τ)
i (τ, a)+ Di

∫ a

τ

e−Di (a−l)
i (l, a)K Ui (τ, l)dl. (2.9)

Note that the right hand side of (2.8) is linear and boundedwith respect to u, thus the existence
and uniqueness of {Ui (τ, a)}0≤τ≤a<a+ can be obtained from the general semigroup theory
(see [39]). Next let us prove that {Ui (τ, a)}0≤τ≤a<a+ is exponentially bounded for each
i = 1, . . . ,M .
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To this aim fix φ = (φ1, . . . , φM ) ∈ XM , τ ∈ [0, a+) and set ui (a) = Ui (τ, a)φi . Then
one has

‖ui (a)‖X ≤ e−(Di+μ̃)(a−τ)‖φi‖X + Di‖K‖L(X)
∫ a

τ

e−(Di+μ̃)(a−l)‖ui (l)‖Xdl.

Next Gronwall’s inequality yields

‖ui (a)‖X e(Di+μ̃)(a−τ) ≤ ‖φi‖X eDi‖K‖L(X)(a−τ),

which implies due to (2.2) that

‖Ui (τ, a)‖L(X) ≤ e−μ̃(a−τ).

As a consequence {U(τ, a)}0≤τ≤a<a+ is positive and exponentially bounded in XM and
satisfies

‖U(a, a + t)‖L(XM ) ≤ e−μ̃t , ∀t ≥ 0, 0 ≤ a < a+ − t . (2.10)

Now we define the family of bounded linear operators {Rλ}λ>−μ̃ ⊂ L(X ,X0) as follows:

Rλ(η, g) = (0XM , h)

with h(a) = e−λaU(0, a)η +
∫ a

0
e−λ(a−s)U(s, a)g(s)ds.

Moreover, for any λ > −μ̃, one has

‖Rλ‖L(X ,X0) ≤ 1

λ+ μ̃ .

Then by the same procedure as the case without diffusion, we can prove that this provides
a family of positive pseudoresolvents. Thus again by Pazy [39, Section 1.9] there exists a
unique closed Hille–Yosida operator B in X such that

(λI − B)−1 = Rλ for all λ > −μ̃.
Next we define the part of B in X0, denoted by B0. That is,

B0x = Bx, ∀x ∈ D(B0), with D(B0) := {x ∈ D(B) : Bx ∈ X0}.
Note that B0 is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators on X0, denoted by {TB0(t)}t≥0. Moreover, it satisfies the following estimate

∥
∥TB0(t)

∥
∥L(X0)

≤ e−μ̃t , ∀t ≥ 0.

Observe now that we have B1 + B2 − DI = B. From now on for the sake of convenience,
we denote B1 := B1 − DI .

On the other hand, we define C ∈ L(X0,X ) by

C(0XM , h) =
(∫ a+

0
β(a, ·)h(a)da, 0L1((0,a+),XM )

)

, (0XM , h) ∈ X0,

and A : dom(A) ⊂ X → X by
{
dom(A) = dom(B) ⊂ X0,

A = B + C.
(2.11)
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This shows thatA is not densely defined in X . In addition, we will later use the matrix norm
defined as follows:

∥
∥β

∥
∥L([L∞(0,a+)]M ) := max

1≤i≤M

M∑

j=1

∥
∥β i j

∥
∥
L∞(0,a+) .

Remark 2.1 In addition, for each fixed x ∈ �, following the above procedures, one can obtain
the age-structured operator, denoted by Bx

1 + Cx defined on R
M × L1((0, a+),RM ).

Now define the map F : X0 → X by

F
(
0XM , ψ

) =
(
f
(∫ a+

0 β(a, ·)ψ(a)da
)
, 0L1((0,a+),XM )

)
, f = diag{ f1, . . . , fM }.

Then by identifyingU (t) = (
0XM , u(t)

)
, one can write down problem (1.2) as the following

abstract Cauchy problem:
{

dU
dt = BU + F(U ),

U (0) = U0,
with U0 = (

0XM , u0
)
. (2.12)

As mentioned before, we will study the principal spectral theory of the linearized problem
corresponding to (2.12), that is the principal spectral theory ofA = B+ f ′(0)C. For the sake
of convenience, we first ignore the term f ′(0) before investigating the global dynamics of
(1.2), see Sect. 7. Here f ′(0) = diag{ f ′

1(0), . . . , f
′
M (0)}.

Finally, let us introduce briefly our idea in establishing the existence of principal eigen-
value. Observe that if α ∈ ρ(B1 + C), then the existence of nontrivial solutions of

Au = (B2 + B1 + C)u = αu
in X0 is equivalent to the existence of nontrivial solutions of

B2(α I − B1 − C)−1v = v
inX , where I is the identity operator. Next on one hand, we will prove thatA is a positive and
compact perturbation of B1 + C (see “Appendix” for precise definitions). On the the hand,
we will provide an easily verifiable and general sufficient condition for s(A) > s(B1 + C).
Finally we can apply the theory of resolvent positive operators with their perturbations to
study the existence of principal eigenvalue of our problem (1.1).

Before ending with this section, we would like to emphasize that when we use notations
<, ≤, =, >, and≥, they could indicate the order in X or in XM and inR orRM depending
on the context. For the sake of convenience, we will also omit subscripts of the zero elements
in the function spaces.

3 Preliminaries

In this section we present some necessary propositions and lemmas 1) to figure out the
existence of the spectral bounds of B1 + C andA which correspond to the evolution families
without diffusion {
(τ, a)}0≤τ≤a<a+ and with diffusion {U(τ, a)}0≤τ≤a<a+ respectively;
2) to show that A is a positive and compact perturbation of B1 + C. For convenience, we
consider the kernel J without scaling, but the theory is valid for the kernels with scaling. We
emphasize that the following results hold for both X = C(�) and X = L1(�) if we do not
indicate what X is exactly.
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First we provide the following additional assumption throughout this section.

Assumption 3.1 Define

Hα :=
∫ a+

0
β(a)e−(α+D)a
(0, a)da,

where


(γ, a) = diag{e− ∫ a
γ μ1(s)ds, . . . , e− ∫ a

γ μM (s)ds}. (3.1)

Assume that there exists α0 ∈ R such that r(Hα0) > 1.

3.1 Characterization of s(B1 + C)

Now recalling that the functions

{π(τ, a, x)}0≤τ≤a<a+,x∈� = diag{π1(τ, a, x), . . . , πM (τ, a, x)}0≤τ≤a<a+,x∈�

are defined in (2.5), we define for α ∈ R a continuous function Gα : � → L(RM ), where
L(RM ) denotes all M × M matrices in R

Gα(x) =
∫ a+

0
β(a, x)e−(α+D)aπ(0, a, x)da, ∀x ∈ �. (3.2)

We also consider for α ∈ R a multiplication operator Gα ∈ L(XM ) given by

[Gαg](x) = Gα(x)g(x), g ∈ XM . (3.3)

Then the following proposition holds.

Proposition 3.2 Let Assumption 3.1 hold. Then there exists α∗∗ ∈ (α0,∞) satisfying the
equation

max
x∈�

r (Gα∗∗(x)) = max
x∈�

r

(∫ a+

0
β(a, x)e−(α∗∗+D)aπ(0, a, x)da

)

= 1. (3.4)

Moreover, B1 + C is a resolvent positive operator with s(B1 + C) = α∗∗ and

r (Gα∗∗) = r

(∫ a+

0
β(a, ·)e−(α∗∗+D)a
(0, a)da

)

= 1. (3.5)

Proof Observe that the operator α I − B1 − C is invertible if and only if the operator I −
C(α I − B1)

−1 is invertible. In that case, we have

(α I − B1 − C)−1 = (α I − B1)
−1 [I − C(α I − B1)

−1]−1
.

We now compute the inverse of I − C(α I − B1)
−1. To this aim choose α ∈ ρ(B1) and

consider

(̂κ, ϕ̂) = [
I − C(α I − B1)

−1] (κ, ϕ).

First we define

(0, φ) = (α I − B1)
−1(κ, ϕ).

123



Principal spectral theory in multigroup age-structured models… Page 11 of 60   197 

It follows that

ϕ̂ = ϕ and κ̂ = κ −
∫ a+

0
β(a, ·)φ(a)da.

Next recall from (2.7) that one has

φ(a) = e−(α+D)a
(0, a)κ +
∫ a

0
e−(α+D)(a−s)
(s, a)ϕ(s)ds.

It follows that

κ −
∫ a+

0
β(s, ·)e−(α+D)s
(0, s)κds

=
∫ a+

0
β(s, x)

∫ s

0
e−(α+D)(s−τ)
(τ, s)ϕ̂(τ )dτds + κ̂,

which is equivalent to

(I − Gα)κ =
∫ a+

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)
(τ, s)ϕ̂(τ )dτds + κ̂, (3.6)

where Gα is defined in (3.3). Thus if 1 ∈ ρ(Gα), then

κ = (I − Gα)−1

[∫ a+

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)
(τ, s)ϕ̂(τ )dτds + κ̂

]

, (3.7)

which implies that

(κ, ϕ) = [
I − C(α I − B1)

−1]−1
(̂κ, ϕ̂)

=
(

(I − Gα)−1

[∫ a+

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)
(τ, s)ϕ̂(τ )dτds + κ̂

]

, ϕ̂

)

.

(3.8)

It follows that α ∈ ρ(B1 + C) and thus (α I − B1 − C)−1 exists. Now we have shown that

α ∈ ρ(B1 + C) ∩ R ⇔ 1 ∈ ρ(Gα),
thus the problem is inverted into finding such α satisfying 1 ∈ ρ(Gα).

By assumptions on β and μ, we have

Gαg ≥
∫ a+

0
β(a)e−(α+D)a
(0, a)dag = Hαg, g ∈ XM , (3.9)

Then one has from (3.9) that Gα ≥ Hα in the sense of positive operators (actually Hα is
a matrix function of α). Since β(a) is irreducible or primitive, Hα is also irreducible or
primitive. Thus Perron–Frobenius theorem (see Proposition A.10 in “Appendix”) applies
and provides that the spectral radius r(Hα) is the principal eigenvalue of Hα . Moreover,
observing that r(Hα) is continuous and decreasing with respect to α and satisfies

lim
α→∞ r(Hα) = 0, r(Hα0) > 1,

then there is a unique α∗ ∈ (α0,∞) such that

r(Hα∗) = r

(∫ a+

0
β(a)e−(α∗+D)a
(0, a)da

)

= 1.
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Now by the theory of positive operators (see [35]), we have immediately that r(Gα∗) ≥
r(Hα∗) = 1. Again observing that r(Gα) is also a strictly decreasing continuous function
with respect to α (or see the proof in Proposition 3.3), it follows that there exists a unique
α∗∗ ∈ R satisfying r(Gα∗∗) = 1. Note that for any α ∈ R, when α > α∗∗ we have r(Gα) <
r(Gα∗∗) = 1, (I −Gα)−1 exists. It follows that α ∈ ρ(B1 + C) when α > α∗∗, which implies
that ρ(B1 + C) contains a ray (α∗∗,∞). Further, (α I − B1 − C)−1 is obviously a positive
operator by (3.8) for all α > α∗∗. Thus B1 + C is a resolvent positive operator.

Moreover, α∗∗ is larger than any other real spectral value in σ(B1 + C). It follows that
α∗∗ = sR(B1+C), where sR(A) := sup{λ ∈ R; λ ∈ σ(A)}. Nowwe have known that B1+C
is a resolvent positive operator. But since X is a Banach space with a normal and generating
cone X+ and s(B1 + C) ≥ α∗∗ > −∞ due to α∗∗ ∈ σ(B1 + C), we can conclude from
Theorem A.5 that s(B1 + C) = sR(B1 + C) = α∗∗.

Next note that Gα is actually a positive multiplication operator in XM . We can obtain the
spectral radius r(Gα) of Gα (see [31, Proposition 2.7]) via

r(Gα) = max
x∈�

r(Gα(x)) = max
x∈�

r

(∫ a+

0
β(a, x)e−(α+D)aπ(0, a, x)da

)

.

Thus α∗∗ satisfies (3.4). ��

3.2 Characterization of s(A)

Next we will prove that A is resolvent positive and provide a precise characterization of its
spectral bound s(A). Recall that {U(τ, a)}0≤τ≤a<a+ is defined in (2.9) and let us define for
λ ∈ R the operator Mλ ∈ L(XM ) by

Mλφ =
∫ a+

0
β(a, ·)e−λaU(0, a)φ da, ∀φ ∈ XM . (3.10)

Then the following proposition holds.

Proposition 3.3 There exists λ0 ∈ R such that

r(Mλ0) = r

(∫ a+

0
β(a, ·)e−λ0aU(0, a) da

)

= 1. (3.11)

Moreover, the operator A is resolvent positive and its spectral bound satisfies s(A) = λ0.

Proof Consider the resolvent equation

(0, φ) = (λI − A)−1(ζ, ϕ), ∀ (ζ, ϕ) ∈ X , λ ∈ ρ(A),
following the same procedure in Proposition 3.2, we can obtain

[(λI − A)−1(ζ, ϕ)](a, ·)

= (
0, e−λaU(0, a)(I − Mλ)

−1

[∫ a+

0
β(s, ·)

∫ s

0
e−λ(s−τ)U(τ, s)ϕ(τ)dτds + ζ

]

+
∫ a

0
e−λ(a−τ)U(τ, a)ϕ(τ)dτ

)
. (3.12)
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It follows that λ ∈ ρ(A) ∩ R ⇔ 1 ∈ ρ(Mλ). Now define an operator Cλ : XM → XM for
λ ∈ C by

Cλφ :=
∫ a+

0
β(a)e−λa
(0, a)eD(K−I )aφda, ∀φ ∈ XM ,

where 
(0, a) is defined in (3.1) and {eD(K−I )a}a≥0 denotes the strongly continuous semi-
group generated by the bounded operator D(K − I ). We can see from the assumptions on β
and μ that Mλ ≥ Cλ in the positive operator sense.

Nowwe claim that r(Mλ) is decreasing and log-convex (and thus continuous)with respect
to the parameter λ ∈ R.

Claim 3.4 r(Mλ) is decreasing and log-convex with respect to λ ∈ R.

For now let us assume that the claim is true. On the other hand, from Theorem A.2-(iv) in
the “Appendix”, there exists a unique simple real value ξ0 such that r(Cξ0) = 1. Therefore,
by the theory of positive operators,

r(Mξ0) ≥ r(Cξ0) = 1.

Moreover, lim
λ→∞ r(Mλ) = 0. Since r(Mλ) is continuous and decreasing with respect to λ

by Claim 3.4, there exists a real λ0 ≥ ξ0 such that r(Mλ0) = 1.
Next let us prove that λ0 is unique. To this aim, assume that there is λς < λμ such that

r(Mλς ) = r(Mλμ) = 1. Since λ → r(Mλ) is decreasing and log convex, it follows that
r(Mλ) = 1 for all λ ≥ λς . This contradicts the fact that r(Mλ) → 0 as λ → ∞. Thus
there is a unique λ0 ∈ R such that r(Mλ0) = 1. This is equivalent to the uniqueness of λ0.
Moreover, we have shown that the mapping λ→ r(Mλ) is strictly decreasing on the interval
(−∞,∞).

In addition, since Mλ is positive, 1 = r(Mλ0) ∈ σ(Mλ0) �= ∅, which implies that
λ0 ∈ σ(A), thus σ(A) �= ∅. At last, the conclusion that s(A) = λ0 follows by the same
argument in Proposition 3.2,we omit it.Moreover,A is resolvent positive sinceρ(A) contains
a ray (λ0,∞) and (λI − A)−1 is positive for all λ > λ0 by (3.12). ��

Now let us prove the above claim.

Proof of Claim 3.4 We use the generalized Kingman’s theorem from Kato [27] to show it.
First we claim that λ→ Mλ is completely monotonic. Then λ→ r(Mλ) is decreasing and
super-convex by Thieme [47, Theorem 2.5] and hence log-convex. By the definition from
Thieme [47], an infinitely often differentiable function f : (�,∞) → Z+ is said to be
completely monotonic if

(−1)n f (n)(λ) ∈ Z+, ∀λ > �, n ∈ N,

where Z+ is a normal and generating cone of an ordered Banach space Z and (�,∞) is the
domain of f . A family {Fλ}λ>a of positive operators on Z is said to be completely monotonic
if f (λ) = Fλx is completely monotonic for every x ∈ Z+. For our case, Mλ is indeed
infinitely often differentiable with respect to λ ∈ R and

(−1)nM(n)
λ φ =

∫ a+

0
β(a, ·)ane−λaU(0, a)φda ∈ XM+ , λ ∈ R, n ∈ N, φ ∈ XM+ .

Thus, our result follows. ��
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Remark 3.5 From the above Proposition 3.3, we can obtain that s(A) ≥ s(B1 + C) since A
is resolvent positive. Theorem A.6 applies and provides that case (i) was ruled out. But we
cannot obtain the strict relation, i.e. s(A) > s(B1 + C), because α∗∗ and λ0 are obtained by
taking the spectral radius of the operators equal to 1 (see Propositions 3.2 and 3.3) where a
limit process occurs in which the strict relation may not be preserved. However, if r(Gα) and
r(Mλ) are eigenvalues of Gα and Mλ respectively, we could obtain the strict relation, see
Marek [35, Theorem 4.3] which is the Frobenius theory for positive operators.

3.3 A Special Case: s(A) > s(B1 + C)

Next, we give a special case where s(A) > s(B1 + C) holds.

Proposition 3.6 Assume that μ(a, x) ≡ μ(a), β(a, x) ≡ β(a) and Di = D for all i =
1, . . . ,M, then one has s(A) > s(B1 + C).

Proof Note that whenμ(a, x) ≡ μ(a) and β(a, x) ≡ β(a), s(B1+C) = α∗∗ and s(A) = λ0
satisfies the following equations

r

(∫ a+

0
β(a)e−α∗∗ae−Dae− ∫ a

0 μ(s)dsda

)

= 1 (3.13)

and

r(Mλ0) = r

(∫ a+

0
β(a)e−λ0ae− ∫ a

0 μ(s)dseD(K−I )ada

)

= 1, (3.14)

respectively. It is known from García-Melián and Rossi [21, Theorem 2.1] that the operator
−L defined by

Lϕ :=
∫

�

J (· − y)ϕ(y)dy − ϕ, ϕ ∈ C(�),

has a principal and simple eigenvalue 0 < θ0 < 1 associatedwith a positive eigenfunction ϕ0.
It follows that −DK + DI has a principal eigenvalue Dθ0 associated with an eigenfunction
ϕ = {ϕ0, . . . , ϕ0} in the sense that each component of eigenfunctions is positive and θ0 is
isolated. Note that θ0 is not simple any more. Further, from Theorem A.2 we have shown that
Mκ0−Dθ0 has an eigenvalue associated to 1 with a positive eigenfunction Φ0 ∈ XM and

r(Mκ0−Dθ0) = 1, (3.15)

where κ0 is the principal eigenvalue of themultigroup age-structured operator; i.e. κ0 satisfies
the following characteristic equation

r

(∫ a+

0
β(a)e−κ0ae− ∫ a

0 μ(s)dsda

)

= 1. (3.16)

Now comparing (3.13) with (3.16) and (3.15) with (3.14), we have α∗∗ = κ0 − D while
λ0 = κ0 − Dθ0. It is obvious that λ0 > α∗∗, which implies that s(A) > s(B1 + C). ��
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3.4 A Key Proposition

Nextwe give a key proposition on the solvability of the following equation,which is important
in studying the effects of diffusion rate on the principal eigenvalue later. Consider the problem

{
∂aui (a, x) = −(α + Di )ui (a, x)− μi (a, x)ui (a, x), (a, x) ∈ (0, a+)×�,
ui (0, x) = ∑M

j=1

∫ a+
0 βi j (a, x)u j (a, x)da, x ∈ �. (3.17)

Proposition 3.7 Let Assumption 3.1 hold. Then there exists a continuous function x → α(x) :
� → R such that for any x ∈ �, equation (3.17) with α = α(x) has a positive solution
a → u(a, x) = (u1(a, x), . . . , uM (a, x)) ∈ W 1,1((0, a+),RM ) and

r

(∫ a+

0
β(a, x)e−(α(x)+D)aπ(0, a, x)da

)

= 1, ∀x ∈ �. (3.18)

Moreover, α(x) ≤ α∗∗ for all x ∈ �, where α∗∗ is defined in (3.4).

Proof Solving (3.17) explicitly, we obtain a formal positive solution

ui (a, x) = e−(α+Di )aπi (0, a, x)ui (0, x)

provided u(0, x) = (u1(0, x), . . . , uM (0, x)) > 0. Then plugging it into the integral initial
condition we get that

M∑

j=1

∫ a+

0
βi j (a, x)e

−(α+Dj )aπ j (0, a, x)u j (0, x)da = ui (0, x).

Now define

G(α, x) := Gα(x) =
∫ a+

0
β(a, x)e−(α+D)aπ(0, a, x)da.

Observe that G : R × � → L(RM ) is continuously differentiable with respect to α and
continuous with respect to x respectively due to the assumptions on β and μ, where L(RM )

denotes all M × M matrices inR. Moreover, for any x ∈ �, one has by Assumption 3.1 that

lim
α→∞ r (G(α, x)) = 0, r (G(α0, x)) ≥ r(Hα0) > 1. (3.19)

Thus for any x ∈ �, thanks to the monotonicity of G with respect to α, there always exists
a unique α(x) such that (3.18) hold.

Next let us prove that α is continuous. Observe that

∂G(α, x)

∂α
= −

∫ a+

0
β(a, x)ae−(α+D)a
(0, a, x)da, ∀x ∈ �. (3.20)

Thus now for any x ∈ �, − ∂G
∂α
(α, x) is irreducible or primitive and nonnegative. Since the

spectral radius of an irreducible and nonnegative matrix is coming from a simple root of the
corresponding characteristic polynomial, we have by implicit function theorem (applying to
the characteristic polynomial) that for any x ∈ �, r(G(·, x)) is smooth in R. Moreover, for
any x ∈ �, G(·, x) is decreasing in the matrix sense, which implies by Perron–Frobenius
theorem (see Proposition A.10) that

∂r(G(α, x))

∂α
< 0.
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The continuity of α comes again from implicit function theorem (applying to the spectral
radius). In addiction, one has that α(x) ≤ α∗∗ by (3.4) since α∗∗ = maxx∈� α(x) due to the
monotonicity of Gα with respect to α. Thus the proposition is proved. ��

3.5 Compact Perturbation

In this subsection, we will show that A is a compact and positive perturbation of B1 + C.

Proposition 3.8 For any real number α > α∗∗, B2(α I − B1 − C)−1 is a compact operator
in X .

Proof We only prove the result in the case X = C(�), since

L1((0, a+), [C(�)]M ) ⊂ L1((0, a+), [L1(�)]M ).
Let us choose a sequence {(ηn, ψn)}n∈N ⊂ X satisfying

‖(ηn, ψn)‖X := ‖ψn‖L1((0,a+),XM ) + ‖ηn‖XM ≤ 1, for any n ∈ N.

By (3.8) we have for Reα > α∗∗ that

B2(α I − B1 − C)−1(ηn, ψn) = (0, φn) = (0,DKg1n + DKg2n) ,

where

g1n(a) = e−(α+D)a
(0, a)(I − Gα)−1

[
∫ a+

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)
(τ, s)ψn(τ )dτds + ηn

]
,

g2n(a) =
∫ a

0
e−(α+D)(a−τ)
(τ, a)ψn(τ )dτ. (3.21)

Note that g1n and g2n are continuous with respect to a ∈ [0, a+], so is φn . In the following
context, we denote Dmax := max1≤i≤M Di and Dmin := min1≤i≤M Di .

First observe that when α > α∗∗, one has

‖g(ηn, ψn)‖XM : =
∥
∥
∥
∥
∥
(I − Gα)−1[

∫ a+

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)
(τ, s)ψn(τ )dτds + ηn

]
∥
∥
∥
∥
∥
XM

≤ Cα
[
∫ a+

0

∥
∥β

∥
∥
L([L∞(0,a+)]M )

∫ s

0
e−(α+Dmin)(s−τ) ‖
(τ, s)‖L(XM ) ‖ψn(τ )‖XM dτds + ‖ηn‖XM

]

≤ Cα
[ ∥
∥β

∥
∥
L([L∞(0,a+)]M )

∫ a+

0
‖ψn(τ )‖XM dτ

∫ a+

τ

e−(α+Dmin+μ̃)(s−τ)ds + ‖ηn‖XM

]

≤ Cα

[∥
∥β

∥
∥
L([L∞(0,a+)]M )

α + Dmin + μ̃ ‖ψn‖L1((0,a+),XM ) + ‖ηn‖XM

]

≤ Cα

[∥
∥β

∥
∥
L([L∞(0,a+)]M )

α + Dmin + μ̃ + 1

]

=: C̃α, (3.22)
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where we used the fact that
∥
∥(I − Gα)−1

∥
∥L(XM )

≤ Cα with Cα > 0 being a constant, due to

α > α∗∗. Here C̃α > 0 is another constant.
Next, one has

‖g1n‖L1((0,a+),XM ) ≤ C̃α

∫ a+

0
e−(α+Dmin+μ̃)ada ≤ C̃α

α + Dmin + μ̃ ,

‖g2n‖L1((0,a+),XM ) ≤
∫ a+

0
‖ψn(τ )‖XM dτ

∫ a+

τ

e−(α+Dmin+μ̃)(a−τ)da ≤ 1

α + Dmin + μ̃ .

It follows from (2.2) that for any n ∈ N,

‖φn‖L1((0,a+),XM ) ≤ Dmax

α + Dmin + μ̃
[
C̃α + 1

]
. (3.23)

Moreover, thanks to the presence of the continuous kernel J , one can obtain that the functions
{φn}n∈N are equicontinuous with respect to x ∈ �. It follows by Arzela-Ascoli theorem that
{φn(a, ·)}n∈N is compact in XM = C(�,RM ) for any a ∈ [0, a+].

Next let us show that g1n and g2n are equi-integrable respect to a. Observe by (3.21) that
for any n ∈ N and l > 0, one has (note that e−(a+D)(a−τ) and π(τ, a, ·) are commuted since
they are diagonal matrices)

|g2n(a + l)− g2n(a)|
≤
∫ a+l

a
e−(α+D)(a+l−τ)π(τ, a + l, ·)ψn(τ )dτ

+
∫ a

0

[
e−(α+D)(a+l−τ)π(τ, a + l, ·)− e−(α+D)(a−τ)π(τ, a, ·)

]
ψn(τ )dτ

≤
∫ a+l

a
e−(α+D)(a+l−τ)π(τ, a + l, ·)ψn(τ )dτ

+
∫ a

0
e−(α+D)(a−τ)π(τ, a + l, ·)

[
I − e−(α+D)l

]
ψn(τ )dτ

+
∫ a

0
e−(α+D)(a−τ)π(τ, a, ·) [I − π(a, a + l, ·)]ψn(τ )dτ

≤
∫ a+l

a
e−(α+D+μ̃)(a+l−τ)ψn(τ )dτ

+
∫ a

0
e−(α+D+μ̃)(a−τ)e−μ̃l [I − e−(α+D)l

]
ψn(τ )dτ

+
∫ a

0
e−(α+D+μ̃)(a−τ) [I − e−μ̃l I

]
ψn(τ )dτ.

It follows by setting k = α + Dmin + μ̃ that

∫ a+

0
‖g2n(a + l)− g2n(a)‖XM da

≤
∫ a+

0

∫ a+l

a
e−k(a+l−τ) ‖ψn(τ )‖XM dτda

+
∫ a+

0

∫ a

0
e−k(a−τ)e−μ̃l [1 − e−(α+Dmax)l

]
‖ψn(τ )‖XM dτda
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+
∫ a+

0

∫ a

0
e−k(a−τ) [1 − e−μ̃l] ‖ψn(τ )‖XM dτda

:= I1 + I2 + I3.

Via integration by parts, one has

I2 ≤ e−μ̃l [1 − e−(α+Dmax)l
] ∫ a+

0

∫ a+

τ

e−k(a−τ)da ‖ψn(τ )‖XM dτ

≤ 1

k

[
1 − e−(α+Dmax)l

]
‖ψn‖L1((0,a+),XM )

l→0−→ 0, uniformly in n ∈ N.

Similarly, one also obtain I3 → 0 as l → 0 uniformly in n ∈ N.
Next let us deal with I1. To this aim, we split it into two cases: 0 ≤ a ≤ τ ≤ a + l ≤ a+

and 0 ≤ a ≤ τ ≤ a+ ≤ a + l.
Case 0 ≤ a ≤ τ ≤ a + l ≤ a+. Via integration by parts, one has

I1 ≤
∫ a+

0

∫ τ

τ−l
e−k(a+l−τ)da ‖ψn(τ )‖XM dτ

l→0−→ 0, uniformly in n ∈ N.

Case 0 ≤ a ≤ τ ≤ a+ ≤ a + l. Via integration by parts, one has

I1 ≤
∫ a+l

0

∫ a+l

a
e−k(a+l−τ) ‖ψn(τ )‖XM dτda

≤
∫ a+l

0

∫ τ

τ−l
e−k(a+l−τ)da ‖ψn(τ )‖XM dτ

l→0−→ 0, uniformly in n ∈ N.

In summary, we have shown that
∫ a+
0 ‖g2n(a + l)− g2n(a)‖XM da → 0 as l → 0 uniformly

in n ∈ N. Similarly, one can show by (3.22) that
∫ a+
0 ‖g1n(a + l)− g1n(a)‖XM da →

0 as l → 0 uniformly in n ∈ N. It follows that
∫ a+
0 ‖φn(a + l)− φn(a)‖XM da → 0

as l → 0 uniformly in n ∈ N. Combining with (3.23), {a → φn(a)}n∈N is compact in
L1((0, a+), XM ). Thus for any a ∈ [0, a+] there exists a limit φ(a) ∈ XM such that, up
to a subsequence, φn → φ in L1((0, a+), XM ). Hence the operator B2(α I − B1 − C)−1 is
compact on X . ��
Corollary 3.9 The operator B2 is a compact perturbator of B1 + C and the operator A =
B1 + B2 + C a compact perturbation of B1 + C.

Proof (α I − B1 − C)−1B2(α I − B1 − C)−1 is compact for some α > s(B1 + C) since
B2(α I − B1 − C)−1 is compact by Proposition 3.8. ��

4 Principal Spectral Theory

In this section, we state and prove the main results on the existence of principal eigenvalues.
Wewill assume the existence of s(B1+C) throughout this section. Firstwe provide a sufficient
condition to make the spectral bound s(A) become the principal eigenvalue.

4.1 Principal Eigenvalue

Theorem 4.1 Assume s(A) > s(B1 + C), then s(A) is the principal eigenvalue of A.
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Proof Denote

Fλ = B2(λI − B1 − C)−1, Reλ > α∗∗. (4.1)

Note that A = B1 + C + B2 is a compact perturbation of B1 + C by Corollary 3.9. We
will use Theorem A.9 to prove the conclusion. First, we know that A is resolvent positive
by Proposition 3.3. It follows that case (i) in Theorem A.6 will be ruled out. Secondly,
by the assumption s(A) > s(B1 + C) we know that only case (iii) in Theorem A.6 will
happen, otherwise s(A) = s(B1 + C) which is a contradiction if case (ii) in Theorem A.6
would happen. Hence, there exists λ2 > λ1 > s(B1 + C) such that r(Fλ1) ≥ 1 > r(Fλ2).
Now the hypothesis in Theorem A.9 holds, then s(A) is an eigenvalue of A with a positive
eigenfunction, has finite algebraic multiplicity, and is a pole of the resolvent ofA. It follows
that s(A) is the principal eigenvalue of A. ��

Combining the above theorem with Proposition 3.6, one can immediately obtain the fol-
lowing conclusion.

Corollary 4.2 Assume μ(a, x) ≡ μ(a) and β(a, x) ≡ β(a) and in addition, Di = D for all
1 ≤ i ≤ M, then s(A) is the principal eigenvalue of A.

Next, we give a sufficient and necessary condition to reach s(A) > s(B1 + C).

Corollary 4.3 The inequality s(A) > s(B1 + C) holds if and only if there is λ∗ > s(B1 + C)
such that r(Fλ∗) ≥ 1, where Fλ is defined in (4.1).

Proof If there exists λ∗ > s(B1+C) such that r(Fλ∗) ≥ 1, then case (iii) in TheoremA.6 will
happen which implies that s(A) > s(B1 + C), because we can always find ϑ large enough
such that r(Fϑ) < 1 regarding to (3.21). Conversely, if s(A) > s(B1 + C), by the same
argument in Theorem 4.1, we have the desired result. ��

Note that Theorem 4.1 is valid for both X = L1(�) and X = C(�), as long as
s(A) > s(B1 + C). Next we will show that s(A) is also algebraically simple under the addi-
tional assumption on β. Once it is true, the eigenfunctions in X = L1(�) and X = C(�)
respectively associated with s(A) are the same, due to C(�) ⊂ L1(�).

Assumption 4.4 There exists a1 ∈ [0, a+) such that β
i i
(a) > 0 a.e. [a1, a+) for all 1 ≤ i ≤

M .

Remark 4.5 Before proceeding, let us make some comments on Assumption 4.4. It is moti-
vated by Engel and Nagel [17, Theorem 4.4] to show that the semigroup generated by the
age-structured operator is irreducible. In our situation, we will prove a similar property,
which is called conditionally strictly positive (see Definition A.8 in “Appendix”), under this
assumption. In addition, if one would like to relate this assumption to cooperativity, this
assumption can be relaxed to β

im(i)
(a) > 0 a.e. in [a1, a+) for some 1 ≤ i ≤ M and all

m(i) ∈ {1, 2, . . . ,M} are different to each other.

Theorem 4.6 Let Assumption 4.4 hold and assume s(A) > s(B1 + C), then s(A) is the
algebraically simple principal eigenvalue of A.

Proof We will show that all positive nonzero fixed points of Fλ are conditionally strictly
positive (see Definition A.8 in “Appendix”), and then employ TheoremA.9 again to conclude
the result.
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First observe that Fλ maps X into X0, then we introduce the restriction of Fλ to X0 and
the associated operator Lλ, λ > α∗∗ in L1((0, a+), XM ), see (3.21),

[Lλψ](a, x) = D
∫

�

J (x − y)e−(λ+D)aπ(0, a, y)[(I − Gλ)
−1g̃ψ](y)dy

+D
∫

�

J (x − y)
∫ a

0
e−(λ+D)(a−γ )π(γ, a, y)ψ(γ, y)dγ dy, (4.2)

where J = diag{J , . . . , J } and g̃ : L1((0, a+), XM )→ XM is given by

[g̃ψ](y) :=
∫ a+

0
β(s, y)

∫ s

0
e−(λ+D)(s−γ )π(γ, s, y)ψ(γ, y)dγ ds.

We use Lλ both for the operator in L1((0, a+), XM ) and the operator in X0 = {0} ×
L1((0, a+), XM ). Observe that (a, x) → [Lλψ](a, x) is continuous. Thus Lλ is strictly
positive in the sense that for ψ ∈ L1+((0, a+), XM ) being a fixed point of Lλ, if there exists
some point (a0, x0) ∈ [0, a+) × � such that [Lλψ](a0, x0) = 0RM , then ψ ≡ 0RM in
[0, a+)×�.

In fact, [Lλψ](a0, x0) = 0RM implies that

D
∫

�

J (x0 − y)e−(λ+D)a0π(0, a0, y)[(I − Gλ)
−1 g̃ψ](y)dy = 0RM ,

which follows by the positivity of
∫

�
J (x0 − y)dy and (I − Gλ)−1 = ∑∞

n=0 G
n
λ, λ > α

∗∗,
along with exponential functions that

∫ a+

0
β(s, y)

∫ s

0
ψ(γ, y)dγ ds = 0RM for all y ∈ B(x0, r). (4.3)

Now denote

H(s, y) :=
∫ a+

s
β(σ, y)dσ.

Then (4.3) can be transformed by using integration by parts into

0RM =
∫ a+

0
β(s, y)

∫ s

0
ψ(γ, y)dγ ds

= −H(s, y)
∫ s

0
ψ(γ, y)dγ

∣
∣s=a+
s=0 +

∫ a+

0
H(s, y)ψ(s, y)ds

=
∫ a+

0
H(s, y)ψ(s, y)ds, for all y ∈ B(x0, r).

But by Assumption 4.4, one has H(s, y) ≥ ∫ a+
s β(σ)dσ and thus all diagonal elements of

H(s, y) are positive for all (s, y) ∈ [0, a+) × �. This will give us ψ ≡ 0RM in [0, a+) ×
B(x0, r).

Next, by remembering that ψ is a fixed point of Lλ and considering the second term of
(4.2), we first ignore the exponential terms due to their positivity, then iterate Lλ for n−times
to obtain
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0RM = [Lλψ](a0, x0) = [Ln
λψ](a0, x0)

≥ Dn
∫

�

· · ·
∫

�

n∏

m=1

[

J (xm−1 − xm)
∫ am−1

0
e−(λ+D)(am−1−am )π(am, am−1, xm)dam

]

ψ(an, xn)dxn · · · dx1.
It follows thatψ(·, x) ≡ 0RM in B(x0, nr)∩�.Nowwhenn is sufficiently large, B(x0, nr)∩�
will cover �, thus ψ ≡ 0RM in [0, a+)×�. Thus Lλ is strictly positive.

Now for any positive nonzero fixed point of Lλ, denoted by ψ ∈ L1+((0, a+), XM ), and
any ψ∗ ∈ L∞+ ((0, a+), (XM )∗) with L∗

λψ
∗ �= 0, where X∗ denotes the dual space of X , one

has

〈ψ,ψ∗〉 = 〈Lλψ,ψ∗〉 > 0.

It follows that all positive nonzero fixed points of Lλ are conditionally strictly positive and
so is Fλ. ��

4.2 Criteria

Since the condition s(A) > s(B1 + C) is hard to check, it is expected to find an easily
verifiable and general sufficient condition for λ1(A) being the principal eigenvalue of A for
the sake of applications. This leads us to our main theorem on the existence of principal
eigenvalue of A in this section.

Before proceeding,wefirst provide another assumption onβ tomake sure that the principal
eigenfunction φ can attain its positive maximum and minimum in [0, a2] × � for some
a2 ∈ (0, a+).

Assumption 4.7 We assume that β ≡ 0L(RM ) in [a2, a+)×� for some a2 ∈ (0, a+).

We would like to mention that above assumption is somehow reasonable for applications.
It means that the birth rate or transmission rate of the population becomes zero when they
reach very large ages.

Now, let us rewrite the function space X as follows:

X = XM × L1((0, a+), XM ) = XM ×
(
L1((0, a2), X

M )× L1((a2, a
+), XM )

)

with a functionψ ∈ L1((0, a+), XM )mapped into (ψ |(0,a2), ψ |(a2,a+)) ∈ L1((0, a2), XM )×
L1((a2, a+), XM ). Define the operator B̂ in XM × L1((0, a2), XM ) by

B̂(0, ψ) = (−ψ(0), −∂aψ + D[K − I ]ψ(a)− μ(a, ·)φ(a)) ,
dom(B̂) = {0XM } × W 1,1((0, a2), X

M ).

Note that B̂ is a closed operator under Assumption 4.7 and μ(a, x) = diag{μ1(a,
x), . . . , μM (a, x)}. Moreover, define the operator Ĉ as follows:

Ĉ(0, h) =
(∫ a2

0
β(a, ·)h(a)da, 0

)

, dom(Ĉ) = {0XM } × L1((0, a2), X
M ).

Define the operator Â := B̂ + Ĉ with dom(Â) = {0XM } × W 1,1((0, a2), XM ).
Next let us show σ(Â)∩R = σ(A)∩R. To do so, it suffices to show ρ(Â)∩R = ρ(A)∩R.

Recalling the argument in Proposition 3.3, it says that

λ ∈ ρ(A) ∩ R ⇔ 1 ∈ ρ(Mλ).

123



  197 Page 22 of 60 H. Kang, S. Ruan

Similarly, Proposition 3.3 with a+ = a2 applies to Â to get

λ ∈ ρ(Â) ∩ R ⇔ 1 ∈ ρ(M̂λ),

where M̂λ ∈ L(XM ) is defined by

M̂λφ =
∫ a2

0
β(a, ·)e−λaU(0, a)φ da, ∀φ ∈ XM .

But it is true that under Assumption 4.7, the operatorMλ = M̂λ. It follows that σ(Â)∩R =
σ(A)∩R, thus we can study the principal spectral theory of Â instead ofA in the following,
provided Assumption 4.7 holds. Further, in order to not introduce too many notations, we
still denote A and B under Assumption 4.7.

Remark 4.8 Under Assumption 4.7, Assumption 4.4, if needed, can be modified as that there
exists a1 such that β i i (a) > 0 a.e [a1, a2] for all 1 ≤ i ≤ M . In summary, if Assumptions 4.4
and 4.7 are both satisfied, then there exists 0 < a1 < a2 < a+ such thatβ((a2, a+), ·) ≡ 0: 1)
to guarantee some strictly positivity of the principal eigenfunction and βi i ([a1, a2], ·) > 0 for
1 ≤ i ≤ M : 2) to guarantee some irreducibility which implies that the principal eigenvalue
is simple. In addition, the above assumptions are also valid for a+ = ∞.

Now we provide the second criteria under Assumption 4.7.

Theorem 4.9 Let Assumption 4.7 hold. Assume that

x → 1

α∗∗ − α(x) /∈ L1
loc(�), (4.4)

and that for each x ∈ �, Bx
1 + Cx possesses a positive eigenvector φ(x) corresponding to

α(x), then s(A) is the principal eigenvalue ofA. Here α(x) is defined in Proposition 3.7 and
Bx
1 + Cx is defined in Remark 2.1.

Proof The idea of the proof below came from Liang et al. [31, Lemma 3.8] or see Bao
and Shen [3, Proposition 3.1]. For completeness and the reader’s convenience, we provide a
detailed and modified proof.

By assumption, for any x ∈ �, φ(·, x) := [φ(x)](·) = [[φ1(x)], . . . , [φM (x)]] (·) as the
principal eigenfunction of Bx

1 + Cx is belonging to W 1,1((0, a2),RM ). We will prove that
the eigenfunction φ(·, x) is continuous for all x ∈ �.

To this aim, let us first write down the equation that φ satisfies,
{
∂aφ(a, x) = −(D + μ(a, x))φ(a, x)− α(x)φ(a, x), a ∈ (0, a2),
φ(0, x) = ∫ a2

0 β(a, x)φ(a, x)da.
(4.5)

Let us choose a sequence xn → x0 as n → ∞ and consider the sequence φ(·, xn) with
normalization ‖φ(·, xn)‖L1((0,a2),RM ) = 1 for all xn ∈ �. Observing the first equation of
(4.5), one has

‖∂aφ(·, xn)‖L1((0,a2),RM ) ≤ C,

where C > 0 is a constant varying according to the context and independent of n. It follows
that φ(·, xn) ∈ W 1,1((0, a2),RM ) ⊂ L∞((0, a2),RM ) and ‖φ(·, xn)‖L∞((0,a2),RM ) ≤ C .
Again by the first equation of (4.5), one has

‖∂aφ(·, xn)‖L∞((0,a2),RM ) ≤ C .
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Thus we have ‖φ(·, xn)‖W 1,∞((0,a2),RM ) ≤ C . By the compact Sobolev embedding, we can
find a limit, denoted by φ̂(·), up to a subsequence such that

φ(·, xn)→ φ̂(·) uniformly on [0, a2].
Since x → μ(·, x) ∈ C(�, [L∞(0, a2)]M ), one has μ(a, xn)→ μ(a, x0) in [L∞(0, a2)]M ,
and thus μ(a, xn)φ(a, xn) → μ(a, x0)φ̂(a) in [L∞(0, a2)]M . Applying the same argument
to β and passing to the limit on (4.5), one obtains

{
∂a φ̂(a) = −(D + μ(a, x0))φ̂(a)− α(x0)φ̂(a), a ∈ (0, a2),
φ̂(0) = ∫ a2

0 β(a, x0)φ̂(a)da.
(4.6)

Observe that φ̂ is the principal eigenfunction of the operator Bx0
1 + Cx0 corresponding to

α(x0). Moreover,
∥
∥φ̂

∥
∥
L1((0,a2),RM )

= 1. Thanks to the simplicity of the principal eigenvalue,

we have φ̂(a) = φ(a, x0). Thus the eigenfunction φ(·, x) is continuous for all x ∈ �. We
normalize φ such that

max
0≤i≤M,(a,x)∈[0,a2]×�

φi (a, x) = 1.

According to Assumption 1.1 on the kernel J , there exist r > 0 and c0 > 0 such that
J (x − y) > c0 for all x, y ∈ � with |x − y| < r . Next let

c1 = min
1≤i≤M,(a,x)∈[0,a2]×�

φi (a, x).

Due to Assumption 4.7, c1 > 0 holds. Since (ζ − α)−1 /∈ L1
loc(�), we can choose ζ > α

∗∗,
some δ > 0 and x1 ∈ � such that B(x1, δ) ⊂ B(x1, 2δ) ⊂ �,

∫

B(x1,δ)

1

ζ − α(x)dx ≥ 2(Dminc0c1)
−1

and 3δ < r , where B(x, r) is the ball centered at x with radius r and Dmin = min1≤i≤M {Di }.
Let p(x) be a continuous function on � defined by

p(x) =
{
1, x ∈ B(x1, δ),

0, x ∈ � \ B(x1, 2δ)
(4.7)

with p(x) ≤ 1 for all x ∈ � and [φ̃(x)](a) = φ̃(a, x) := p(x)[φ(x)](a),∀(a, x) ∈
[0, a2] ×�. It then follows that for any (a, x) ∈ [0, a2] ×�\B(x1, 2δ) and 1 ≤ i ≤ M , we
have

∫

�

J (x − y)
dy

ζ − α(y) φ̃i (a, y) ≥ 0.

For any (a, x) ∈ [0, a2] × B(x1, 2δ) and 1 ≤ i ≤ M , we see that
∫

�

J (x − y)
dy

ζ − α(y) φ̃i (a, y)

≥
∫

B(x1,δ)
J (x − y)

dy

ζ − α(y) [φi (y)](a)

≥ 2c0c1(Dminc0c1)
−1 ≥ 2D−1

minφ̃i (a, x). (4.8)

123



  197 Page 24 of 60 H. Kang, S. Ruan

Note that

[(ζ I − B1 − C)−1(0, φ̃)](x) = (ζ I − Bx
1 − Cx )−1(0, [φ̃(x)])

= (ζ − α(x))−1(0, [φ̃(x)]) (4.9)

for all x ∈ �. It then follows that
Fζ (0, φ̃) = B2(ζ I − B1 − C)−1(0, φ̃) ≥ 2(0, φ̃) > (0, φ̃). (4.10)

Thus, there exists ζ > s(B1 + C) such that r(Fζ ) > 1. Then by Corollary 4.3, it follows that
s(A) > s(B1 + C) which implies the desired result by Theorem 4.1. ��

Remark 4.10 Such a non-locally integrable condition (4.4) is comparable with the one in the
nonlocal diffusion problem, see Coville [10] and Shen and Vo [43].

4.3 Relation BetweenM� andA

We next give a proposition to characterize the relation between the eigenvalues of Mλ to
those of A = B + C, also see Kang and Ruan [24] or Walker [49].

Proposition 4.11 Under Assumption 4.7, let λ ∈ C and m ∈ N \ {0}. Then λ ∈ σp(A) with
geometric multiplicity m if and only if 1 ∈ σp(Mλ) with geometric multiplicity m, where
σp(A) denotes the point spectrum of A.

Proof Let λ ∈ C. Suppose that λ ∈ σp(A) has geometric multiplicity m so that there are m
linearly independent elements

(
0, φ1

)
, . . . ,

(
0, φm

) ∈ dom(A) with (λ− A)
(
0, φ j

) = (0, 0) for j = 1, . . . ,m.

Then by solving the above eigenvalue problem explicitly, we get

φ j (a) = e−λaU(0, a)φ j (0) with φ j (0) = Mλφ j (0).

Hence, φ1(0), . . . , φm(0) are necessarily linearly independent eigenvectors of Mλ corre-
sponding to the eigenvalue 1.

Now suppose that 1 ∈ σp(Mλ) has geometric multiplicity m so that there are linearly
independent ψ1, . . . , ψm ∈ XM with Mλψ j = ψ j for j = 1, . . . ,m. Put (0, φ j ) =(
0, e−λaU(0, a)ψ j

) ∈ dom(A) and note that for j = 1, . . . ,m, we have

∂aφ j + λφ j − D[L − I ]φ j + μφ j = 0,
∫ a2

0
β(a, ·)φ j (a)da = Mλψ j = ψ j = φ j (0),

which is equivalent to

A(0, φ j ) = λ(0, φ j ) and (0, φ j ) ∈ dom(A).

Thus λ ∈ σp(A). If α1, . . . , αm are any scalars, the unique solvability of the Cauchy problem

∂aφ + λφ − D[L − I ]φ + μφ = 0, φ(0, ·) =
m∑

j=1

α jψ j

ensures that (0, φ1), . . . , (0, φm) are linearly independent. Hence, the result is desired. ��
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5 Limiting Properties

In this section we study the effects of diffusion rate and diffusion range characterized by γ
on the spectral bound s(A) ofA respectively. Remembering in the previous section, we have
shown that under Assumption 4.7, the eigenvalue problem to A on [0, a+) is equivalent to
the one on [0, a2] and further the principal eigenfunction associated with s(A) is positive in
[0, a2].

Thus in the following context, we will let Assumption 4.7 hold throughout the whole
section. Before proceeding, let us first clarify the strict positivity in X . If f > 0 in X = C(�),
it means that f (x) > 0 for all x ∈ �, if f > 0 in X = L1(�), it means that f (x) > 0 a.e.
in �. Following Berestyki et al. [5, 6], we introduce the following definition.

Definition 5.1 Define the generalized principal eigenvalue by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λp(A) := sup{λ ∈ R :
∃φ ∈ W 1,1((0, a2), XM ) s.t. φ > 0 and(−A + λ)(0, φ) ≤ (0, 0) in [0, a2]},
λ′
p(A) := inf{λ ∈ R :

∃φ ∈ W 1,1((0, a2), XM ) s.t. φ > 0 and(−A + λ)(0, φ) ≥ (0, 0) in [0, a2]},
(5.1)

Note that the sets in Definition 5.1 are nonempty, see the proof of Theorem 5.3 in the
following. As mentioned before, such ideas are widely used to prove the existence and
asymptotic behavior of principal eigenvalues with respect to diffusion rate, see Coville [10],
Li et al. [30] and Su et al. [45] for nonlocal diffusion equations, Shen and Vo [43] and Su et
al. [44] for time periodic nonlocal diffusion equations. As Shen and Vo [43] highlighted for
the time periodic case, we remark that the parabolic-type operators A containing ∂a is not
self-adjoint, and thuswe lack the usual L2(�) variational formula for the principal eigenvalue
λ1(A). The generalized principal eigenvalue of λp(A), λ′

p(A) defined in (5.1) remedy the
situation and play crucial roles in the following text.

5.1 Without Kernel Scaling

In this subsection first we study the diffusion without kernel scaling and have the following
result.

Proposition 5.2 Let Assumption 4.7 hold and assume that λ1(A) is the eigenvalue of A
associated with (0, φ1) with φ1 > 0RM , then λ1(A) = λp(A) = λ′

p(A).

Proof First, we prove that λ1 = λp . Since λ1(A) is the eigenvalue of A associated with
(0, φ1) ∈ dom(A), that is

A(0, φ1)− λ1(0, φ1) = (0, 0) in [0, a2]; (5.2)

and since φ1 > 0 in [0, a2], we have λ1 ≤ λp . Suppose by contradiction that λ1 < λp . From
the definition of λp , there are λ ∈ (λ1, λp) and (0, φ) ∈ dom(A) such that

−A(0, φ)+ λ(0, φ) ≤ (0, 0) in [0, a2];
that is,

{
∂aφ(a)− D [K − I ]φ + μ(a, ·)φ + λφ ≤ 0,

φ(0)− ∫ a2
0 β(a, ·)φ(a)da ≤ 0.

(5.3)
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Now solving the first inequality in (5.3), we obtain

φ(a) ≤ e−λaU(0, a)φ(0).

Plugging it into the second inequality in (5.3), we have

φ(0) ≤
∫ a2

0
β(a, ·)e−λaU(0, a)φ(0)da. (5.4)

It follows that Mλφ(0) ≥ φ(0), which implies that r(Mλ) ≥ 1. But we know that λ1 is
the eigenvalue of A, then by Proposition 4.11 we have r(Mλ1) = 1. Since λ → r(Mλ) is
decreasing by Claim 3.4, one has λ1 ≥ λ. This contradiction leads to λ1 = λp .

Next, we prove λ1 = λ′
p . Obviously, λ1 ≥ λ′

p . Assume that λ1 > λ′
p . There are λ̃ ∈

(λ′
p, λ1) and (0, φ̃) ∈ dom(A) with φ̃ > 0 in [0, a2] such that −A(0, φ̃)+ λ̃(0, φ̃) ≥ (0, 0).

By reversing the above inequalities, we have the desired conclusion via a similar argument
as above. ��

Nowwe give themain theorem in this section about the effects of diffusion rate on s(A). In
the next result, we write sD(A) for s(A) to highlight the dependence on D = (D1, . . . , DM ).

Theorem 5.3 Let Assumption 4.7 hold and assume that sD(A) is the principal eigenvalue of
A, then the function D → sD(A) is continuous on (0,∞)M and satisfies

sD(A)→
{
s(B0

1 + C) as D → 0+
RM ,

−∞ as D → ∞RM ,
(5.5)

where

B0
1(0, f ) := (− f (0, ·), −∂a f − μ f ) , (0, f ) ∈ dom(A).

Proof Since sD(A) is a simple eigenvalue, the continuity of D → sD(A) follows from
the similar argument in Theorem 4.9, or see Kato [28, Section IV. 3.5] for the classical
perturbation theory.

For the limits, we first claim that for every ε > 0, there exists Dε > 0 such that

sD(A) ≤ s(B0
1 + C)+ ε, ∀D ∈ (0, Dε). (5.6)

Here D ∈ (0, Dε) means Di ∈ (0, Diε) for 1 ≤ i ≤ M . Denote ϑ = s(B0
1 + C). Consider

the equation (4.5) with D = 0L(RM ) for each i = 1, . . . ,M , which is written as follows,

{
∂aφi (a, x) = −(α(x)+ μi (a, x))φi (a, x), (a, x) ∈ (0, a2)×�,
φi (0, x) = ∑M

j=1

∫ a2
0 βi j (a, x)φ j (a, x)da, x ∈ �. (5.7)

By Proposition 3.7, we know that for each x ∈ �, (5.7) has a positive solution φ ∈
W 1,1((0, a2),RM ), which is the principal eigenvector of Gα(x) associated with 1. More-
over, by the argument in Theorem 4.9, φ(·, x) is also continuous in x ∈ �. Thus
φ ∈ W 1,1((0, a2), [C(�)]M ), (0, φ) ∈ dom(A) and φ > 0 in [0, a2]. Further, it is easy
to check that for each i = 1, . . . ,M ,
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−[A(0, φ)]i + (ϑ + ε)[(0, φ)]i

=
⎛

⎝φi (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)φ j (a, x)da,

∂aφi (a, x)− Di

[∫

�

J (x − y)φi (a, y)dy − φi (a, x)
]

+ μi (a, x)φ + (ϑ + ε)φi
⎞

⎠ .

Since min[0,a2]×� φi > 0 and max[0,a2]×� φi < ∞ for each i = 1, . . . ,M , it is straightfor-
ward to check that for each ε > 0, there exists Diε > 0 such that for each Di ∈ (0, Diε),
there holds

∂aφi (a, x)− Di

[∫

�

J (x − y)φi (a, y)dy − φi (a, x)
]

+ μi (a, x)φi + (ϑ + ε)φi

= −Di

[∫

�

J (x − y)φi (a, y)dy − φi (a, x)
]

+ (ϑ − α(x))φi + εφi

≥ −Di

[∫

�

J (x − y)φi (a, y)dy − φi (a, x)
]

+ εφi
≥ 0, (5.8)

wherewe usedϑ ≥ α(x) fromProposition 3.7where Di = 0. It then follows that−A(0, φ)+
(ϑ + ε)(0, φ) ≥ (0, 0) which, by the definition of λ′

p(A), implies that sD(A) = λ′
p(A) ≤

s(B0
1 + C)+ ε.
Note from Proposition 3.2 that s(B0

1 + C) = α1 which satisfies

max
x∈�

r

(∫ a2

0
β(a, x)e−α1aπ(0, a, x)da

)

= 1.

While s(B1 + C) = α∗∗ by Proposition 3.2 which satisfies

max
x∈�

r

(∫ a2

0
β(a, x)e−(α∗∗+D)aπ(0, a, x)da

)

= 1.

Since (βi j ) is irreducible or primitive, it implies that the spectral radius of the matrix
∫ a2

0
β(a, x)e−(α∗∗+D)aπ(0, a, x)da

is monotonewith respect to thematrix, see Proposition A.10-(iv). It follows that α1−Dmax ≤
α∗∗, where Dmax = max1≤i≤M {Di }. Thus By Remark 3.5, we find that

sD(A) ≥ s(B1 + C) ≥ sD(B0
1 + C)− Dmax.

It follows that

lim inf
D→0+

RM

sD(A) ≥ s(B0
1 + C). (5.9)

Setting D → 0+
RM , we find that

s(B0
1 + C) ≤ lim inf

D→0+
RM

sD(A) ≤ lim sup
D→0+

RM

sD(A) ≤ s(B0
1 + C)+ ε, ∀ε > 0,

which leads to sD(A)→ s(B0
1 + C) as D → 0+

RM .
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Finally, to show that sD(A)→ −∞ as D → ∞RM , we consider the operator K − I . It is
known again from García-Melián and Rossi [21, Theorem 2.1] that the principal eigenvalue
of −K + I exists and is positive. Let θ0 > 0 be the principal eigenvalue of −K + I and
ϕ0 be an associated positive eigenfunction. Let (λ1, �1(a)) be the principal eigenpair of the
age-structured operator, that is, they satisfies the following equation

{
∂a�

1(a) = −(λ1 + μ(a))�1(a),

�1(0) = ∫ a2
0 β(a)�1(a)da,

where λ1 satisfies

r

(∫ a2

0
β(a)e−λ1ae− ∫ a

0 μ(s)dsda

)

= 1.

Note that �1(a) = (�1
1 (a), . . . , �

1
M (a)) is positive. Now let λD = −Dminθ0 + λ1 and

�(a, x) = ϕ0(x)�1(a) = (
ϕ0(x)�

1
1 (a), . . . , ϕ0(x)�

1
M (a)

)
,

where Dmin = min1≤i≤M {Di }. It is obvious that (0, �) ∈ dom(A) with � > 0 in [0, a2]
and we see that for each i = 1, . . . ,M ,

−[A(0, �)]i + λD[(0, �)]i

=
⎛

⎝�i (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)� j (a, x)da,

∂a�i (a, x)− Di

[∫

�

J (x − y)�i (a, y)dy −�i (a, x)

]

+ μi (a, x)�i + λD�i

)

:= (
I1, I2

)
, (5.10)

where

I2 = ∂�1
i (a)

∂a
ϕ0(x)− Di

[∫

�

J (x − y)ϕ0(y)dy − ϕ0(x)
]

�1
i (a)

+μi (a, x)�
1
i (a)ϕ0(x)+ (−Dminθ0 + λ1)ϕ0(x)�1

i (a)

≥
(
∂a�

1
i (a)+ μi

(a)�1
i (a)+ λ1�1

i (a)
)
ϕ0(x)+ Diθ0ϕ0(x)�

1
i (a)− Dminθ0ϕ0(x)�

1
i (a)

≥ 0 (5.11)

and

I1 =
M∑

j=1

∫ a2

0
β i j (a)�

1
j (a)daϕ0(x)−

M∑

j=1

∫ a2

0
βi j (a, x)�

1
j (a)ϕ0(x)da ≥ 0. (5.12)

Thus, (λD, (0, �)) is a test pair for λ′
p(A). It follows that sD(A) = λ′

p(A) ≤ λD . Setting

D → ∞RM , we reach at sD(A)→ −∞ as D → ∞RM . ��
Remark 5.4 FromProposition 3.2, we know that s(B0

1+C) equals the valueα1 which satisfies

max
x∈�

r

(∫ a2

0
β(a, x)e−α1aπ(0, a, x)da

)

= 1.
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Theorem 5.5 Let Assumption 4.7 hold and assume thatμ(a, x) = μ1(a)+μ2(x), β(a, x) ≡
β(a) and μ2

i (x) ≡ μ(x), Di = D for all i = 1, . . . ,M, suppose that J is symmetric, i.e.
J (x) = J (−x) and, in addition, the operator

v → D

[∫

�

J (· − y)v(y)− v
]

− μv : C(�)→ C(�)

admits a principal eigenvalue, then D → sD(A) is strictly decreasing.

Proof We write A = T + L , where

L(0, v) =
(

0, D

[∫

�

J (· − y)v(y)dy − v
]

− μv
)

, v ∈ C(�)

T (0, φ) =
(

−φ(0)+
∫ a2

0
β(a)φ(a)da, −φ′ − μ1φ

)

, φ ∈ W 1,1((0, a2),R
M ).

Let (λD1 (L), (0, v1)) be the principal eigenpair of −L . Then by the same argument as in
Shen and Vo [43, Theorem C(2)], we have that D → λD1 (L) is strictly increasing. Now let
(λ1(T ), (0, φ1)) be the principal eigenpair of T . It follows that sD(A) = −λD1 (L)+ λ1(T )
is the principal eigenvalue of A with the principal eigenfunction (0, v1φ1). As D → λD1 (L)
is strictly increasing, so D → sD(A) is strictly decreasing. ��

5.2 With Kernel Scaling

In this subsection we study the effects of diffusion rate and diffusion range on the principal
eigenvalue. Define Kγi ,� for 1 ≤ i ≤ M as follows:

[Kγi ,� f ](·) =
∫

�

Jγi (· − y) f (y)dy, f ∈ X . (5.13)

Here the kernek J satisfies the scaling Jγi (x) = 1
γ N
i
J
(

x
γi

)
for x ∈ R

N , where γ =
(γ1, . . . , γM ) > 0 represents the diffusion range. Now we introduce the nonlocal diffusion
operator Di

γ
mi
i

[Kγi ,� − I ], where m = (m1, . . . ,mM ) ∈ [[0, 2)]M is the cost parameter.

Compared with the non-scaled case, the scaled kernel will provide us many more results,
in particular, when we study the global dynamics of (1.2), see Sect. 7. For example, when
m ∈ [(0, 2)]M , both small and large diffusion ranges are favored provided s(B0

1 + C) > 0.
In the meanwhile, such situations will bring us additional difficulties since more parameters
are involved and thus more delicate inequalities are needed to obtain the desired results, for
example, the decaying rates of generalized principal eigenfunctions in terms of γ , see the
proof of Theorem 5.7 for more details. We mention that such analysis for a scalar nonlocal
equation was developed by Shen and Vo [43] and borrowed here for us to deal with our
equation coupled with age structure.

Write Aγ,m,� = Bγ,m,� + C for A = B + C to highlight the dependence on γ,m and �
and further denote Bμγ,m,�, Cβ for B, C to represent the dependence on μ and β respectively.
Wemainly employ the idea from Shen andVo [43, TheoremD] to prove the following results.

Proposition 5.6 Let m ≥ 0, γ > 0. We have the following statements.

(i) s(Bγ,m,�+Cβ) is non-decreasing with respect to β and s(Bμγ,m,�+C) is non-increasing
with respect to μ;

123



  197 Page 30 of 60 H. Kang, S. Ruan

(ii) Let the assumptions in Theorem 4.9 hold, where Di is changed into Di
γm

for 1 ≤ i ≤ M,
then s(Aγ,m,�) is the principal eigenvalue of Aγ,m,�. Assume that λ1(Aγ,m,�) is the
eigenvalue of Aγ,m,� associated with φ ∈ W 1,1((0, a2), [C(�)]M ) satisfying φ > 0 in
[0, a2], then

λ1(Aγ,m,�) = λp(Aγ,m,�) = λ′
p(Aγ,m,�);

(iii) Moreover,λp(Bμγ,m,�+C) is Lipschitz continuouswith respect toμ inC(�, [L∞+ (0, a2)]M ).
More precisely,

|λp(Bμ
1

γ,m,� + C)− λp(Bμ
2

γ,m,� + C)| ≤ ∥
∥μ1 − μ2

∥
∥
C(�,[L∞+ (0,a2)]M )

for any μ1, μ2 ∈ C(�, [L∞+ (0, a2)]M );
(iv) If �1 ⊂ �2, then λ′

p(Aγ,m,�1) ≤ λ′
p(Aγ,m,�2). Assume that in addition X = C(�),

s(Aγ,m,�1) and s(Aγ,m,�2) are principal eigenvalues of Aγ,m,�1 and Aγ,m,�2 respec-
tively, then

|λ′
p(Aγ,m,�1)− λ′

p(Aγ,m,�2)| ≤ C0|�2 \�1|,
where C0 > 0 depends on a, γ, D,m, Jγ and �2;

(v) Assume that s(Aγ,m,�) is the principal eigenvalue of Aγ,m,�, then the function γ →
s(Aγ,m,�) is continuous.

Proof First note that Proposition 5.2 holds for Aγ,m,�, thus (ii) follows.
For (i), if (β1i j ) ≥ (β2i j ) for i, j = 1, . . . ,M , it follows that Mλ(β

1) ≥ Mλ(β
2)

in the positive operator sense which implies that r(Mλ(β
1)) ≥ r(Mλ(β

2)). Thus by
Proposition 3.3, we have s(Bγ,m,� + Cβ1) ≥ s(Bγ,m,� + Cβ2) by the monotonicity of
r(Mλ) with respect to λ. Similarly, when μ1

i ≥ μ2
i for i = 1, . . . ,M , since U(0, a)

is positive in X , we have Uμ1(0, a) ≤ Uμ2(0, a) in the positive operator sense, which
implies that Mλ(μ

1) ≤ Mλ(μ
2). Then it follows that r(Mλ(μ

1)) ≤ r(Mλ(μ
2)), hence

s(Bμ
1

γ,m,� + C) ≤ s(Bμ
2

γ,m,� + C) by the above argument.
To prove (iii) and (iv), we can use the same argument as in Shen and Vo [43, Proposition

6.1] by fixing the first component of −Aγ,m,�(0, φ) + λ(0, φ) = (0, 0); i.e. keeping the
integral condition

∫ a2
0 β(a, ·)φ(a)da = φ(0) hold. In order to illustrate, we prove (iii) and

omit (iv) (note that the reversed relation in (iv) compared with [43, Proposition 6.1(4)]). Let

us fix λ < λp(Bμ
1

γ,m,� + C). By Definition 5.1, there exists (0, φ) ∈ D(Aγ,m,�) with φ > 0
such that for each i = 1, . . . ,M ,

−[Bμ1γ,m,�(0, φ)]i − [C(0, φ)]i + [λ(0, φ)]i ≤ (0, 0), in [0, a2].
Clearly,

(0, 0) ≥ −[Bμ1γ,m,�(0, φ)]i − [C(0, φ)]i + λ[(0, φ)]i

=
⎛

⎝φi (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)φ j (a, x)da,

∂φi

∂a
− Di

γ
mi
i

[
Kγi ,� − I

]
φi + μ1

i φi + λφi
⎞

⎠

=
⎛

⎝φi (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)φ j (a, x)da,

∂φi

∂a
− Di

γ
mi
i

[
Kγi ,� − I

]
φi

+[μ2
i + μ1

i − μ2
i ]φi + λφi

)
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≥
(

φi (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)φ j (a, x)da,

∂φi

∂a
− Di

γ
mi
i

[
Kγi ,� − I

]
φi + μ2

i φi + λφi −
∥
∥
∥μ

1 − μ2
∥
∥
∥
C(�,[L∞+ (0,a2)]M )

φi

)

,

Again by Definition 5.1,

λ− ∥
∥μ1 − μ2

∥
∥
C(�,[L∞+ (0,a2)]M ) ≤ λp(Bμ

2

γ,m,� + C).

Since this holds for any λ < λp(Bμ
1

γ,m,� + C), we arrive at

λp(Bμ
1

γ,m,� + C)− λp(Bμ
2

γ,m,� + C) ≤ ∥
∥μ1 − μ2

∥
∥
C(�,[L∞+ (0,a2)]M ) .

Switching the roles of μ1 and μ2, we find that

λp(Bμ
2

γ,m,� + C)− λp(Bμ
1

γ,m,� + C) ≤ ∥
∥μ1 − μ2

∥
∥
C(�,[L∞+ (0,a2)]M ) .

Thus the result follows.
For (v) we can use the same argument in proving the continuity of D → sD(A) in

Theorem 5.3 and omit it here. ��
Theorem 5.7 Let Assumption 4.7 hold and assume that s(Aγ,m,�) is the principal eigenvalue
of Aγ,m,�, then
(i) As γ → ∞RM , there holds

s(Aγ,m,�)→
{
s(B0

1 + C)− D, m = 0RM , Di ≡ D, 1 ≤ i ≤ M,

s(B0
1 + C), m > 0RM ; (5.14)

(ii) Suppose that in addition, J is symmetric, i.e. J (x) = J (−x)andμi ∈ C2(RN , L∞+ (0, a2))
and βi j ∈ C2(RN , L∞+ (0, a2)) for all 1 ≤ i, j ≤ M. As γ → 0+

RM there holds

s(Aγ,m,�)→ s(B0
1 + C), ∀m ∈ [[0, 2)]M ,

where

B0
1(0, f ) := (− f (0, ·), −∂a f − μ f ) , (0, f ) ∈ dom(A).

Proof (i) We first prove the result in the case m > 0RM . Note from Remark 5.4 that s(B0
1 +

C) = α1 which satisfies

max
x∈�

r

(∫ a2

0
βi j (a, x)e

−α1aπ j (0, a, x)da

)

= 1.

While s(B1 + C) = α∗∗ by Proposition 3.2 which satisfies

max
x∈�

r

⎛

⎝

∫ a2

0
βi j (a, x)e

−(α∗∗+ D j

γ
m j
j

)a

π j (0, a, x)da

⎞

⎠ = 1.

It follows that α1 −
(

Dj

γ
m j
j

)

max

≤ α∗∗, where
(

Dj

γ
m j
j

)

max

= max1≤ j≤M

{
Dj

γ
m j
j

}

. Thus By

Remark 3.5, we find that

s(Aγ,m,�) ≥ s(B1 + C) ≥ s(B0
1 + C)−

(
Dj

γ
m j
j

)

max

.
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Hence, we have

lim inf
γ→∞

RM
λ1(Aγ,m,�) ≥ s(B0

1 + C). (5.15)

Let us still consider equation (5.7)with a positive solutionφ(a, x) ∈ W 1,1((0, a2), [C(�)]M )
and ϑ = s(B0

1 + C). For any ε > 0, we see that for each (a, x) ∈ [0, a2] × � and for each
i = 1, . . . ,M ,

−[Aγ,m,�(0, φ)]i + (ϑ + ε)[(0, φ)]i

=
⎛

⎝φi (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)φ j (a, x)da,

∂aφi (a, x)− Di

γ
mi
i

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ μi (a, x)φi + (ϑ + ε)φi
)

and

∂aφi (a, x)− Di

γ
mi
i

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ μi (a, x)φi + (ϑ + ε)φi

= − Di

γ
mi
i

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ εφi + (ϑ − α(x))φi

≥ − Di

γ
mi
i

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ εφi . (5.16)

Since min[0,a2]×� φi > 0, max[0,a2]×� φi <∞ and

∥
∥
∥
∥
∥

Di

γ
mi
i

[∫

�

Jγi (· − y)φi (a, y)dy − φi (a, ·)
]∥∥
∥
∥
∥
C(�)

→ 0 as γi → ∞,

there is γiε > 0 such that (5.16)≥ 0 for all γi ≥ γiε and for all i = 1, . . . ,M . It then follows
that−Aγ,m,�(0, φ)+ (ϑ+ε)(0, φ) ≥ (0, 0),which by the definition of λ′

p(Aγ,m,�) implies
that

s(Aγ,m,�) = λ′
p(Aγ,m,�) ≤ s(B0

1 + C)+ ε.

The arbitrariness of ε then yields (i) with m > 0RM .
Nowwe prove the result in the casesm = 0RM and Di ≡ D for all 1 ≤ i ≤ M . Remark 3.5

ensures that λ1(Aγ,m,�) ≥ s(B1 + C) = s(B0
1 + C)− D. It remains to show that

lim sup
γ→∞

RM

λ1(Aγ,m,�) ≤ s(B0
1 + C)− D. (5.17)

Letφ be the solutionof (5.7) as above. For any ε > 0,wehave that for each (a, x) ∈ [0, a2]×�
and for all i = 1, . . . ,M ,
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−[Aγ,0,�(0, φ)]i + (ϑ + ε)[(0, φ)]i

=
⎛

⎝φi (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)φ j (a, x)da,

∂aφi (a, x)− D

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ μi (a, x)φi + (ϑ + ε)φi
)

,

where

∂aφi (a, x)− D

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ μi (a, x)φi + (ϑ + ε)φi

≥ −D

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ εφi + (ϑ − α(x))φi

≥ −D

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ εφi . (5.18)

Hence for ε > 0, there holds for all (a, x) ∈ [0, a2] ×�

−[Aγ,0,�(0, φ)]i + (ϑ + ε − D)[(0, φ)]i ≥
(

0,−D
∫

�

Jγi (x − y)φi (a, y)dy + εφi
)

.

As
∥
∥
∫

�
Jγi (· − y)φi (a, y)dy

∥
∥
C(�) → 0 when γi → ∞, we can follow the arguments in the

case m > 0RM to conclude (5.17).
(ii) Letφ = (φ1, . . . , φM ) be the solution of (5.7).Due to the regularities ofμi andβi j with

respect to x, by Proposition 3.2 and implicit function theorem, we have α ∈ C2(�) and φ ∈
W 1,1((0, a2), [C2(�)]M ) (see [14] for more details). Let φ̃ ∈ W 1,1((0, a2), [C2(RN )]M )
be positive and satisfy φ̃(a, x) = φ(a, x) for (a, x) ∈ [0, a2] × �. For any ε > 0, similar
argument as in (5.16) leads to for each i = 1, . . . ,M that

∂aφi (a, x)− Di

γ
mi
i

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ μi (a, x)φi + (ϑ + ε)φi
(5.19)

≥ − Di

γ
mi
i

[∫

�

Jγi (x − y)φi (a, y)dy − φi (a, x)
]

+ εφi

≥ − Di

γ
mi
i

[∫

RN
Jγi (x − y)φ̃i (a, y)dy − φ̃i (a, x)

]

+ εφi

= − Di

γ
mi
i

[∫

RN
J (z)φ̃i (a, x + γi z)dz − φ̃i (a, x)

]

+ εφi , (a, x) ∈ [0, a2] ×�. (5.20)

Then by Taylor expansion (see the same argument as in Shen and Vo [43, Theorem D(2)])
dealing with the estimates of

Di

γ
mi
i

[∫

RN
J (z)φ̃i (a, x + γi z)dz − φ̃i (a, x)

]

,

we can show that (5.20)≥ 0 in [0, a2] × � for sufficiently small γi and i = 1, . . . ,M . It
follows that

Aγ,m,�(0, φ)+ (ϑ + ε)(0, φ) ≥ (0, 0) in [0, a2] ×�
for (0, . . . , 0) < (γ1, . . . , γM )� (1, . . . , 1),
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which implies

lim sup
γ→0+

RM

λ1(Aγ,m,�) = lim sup
γ→0+

RM

λ′
p(Aγ,m,�) ≤ s(B0

1 + C).

Now we show the reverse inequality; i.e.,

lim inf
γ→0+

RM

λ1(Aγ,m,�) ≥ s(B0
1 + C). (5.21)

For any ε > 0, there exists an open ball Bε ⊂ � of radius ε such that α(x)+ε ≥ s(B0
1+C) :=

ϑ in Bε , where α(x) is from Proposition 3.7 for D = 0 and s(B0
1 + C) corresponding the

value α1 in Remark 5.4. Let φ̃iε ∈ W 1,1((0, a2),C2(RN )) be nonnegative and satisfy for
each i = 1, . . . ,M that

φ̃iε = φi in [0, a2] × Bε, φ̃iε = 0 in [0, a2] × (RN \ B2ε)

and sup
[0,a2]×RN

φ̃iε ≤ sup
[0,a2]×RN

φi = 1.

Set φ̃ = (φ̃1ε, . . . , φ̃Mε). Then we have for (a, x) ∈ [0, a2] × Bε that

−[Aγ,m,Bε (0, φ)]i +
(

ϑ − ε − 1

| ln ε|
)

[(0, φ)]i := (I3, I4),

where

I3 = φi (0, x)−
M∑

j=1

∫ a2

0
βi j (a, x)φ j (a, x)da = 0

and

I4 = ∂aφi (a, x)− Di

γ
mi
i

[∫

Bε
Jγi (x − y)φi (a, y)dy − φi (a, x)

]

+
[

μi (a, x)+ ϑ − ε − 1

| ln ε|
]

φi (a, x)

= − Di

γ
mi
i

[∫

Bε
Jγi (x − y)φi (a, y)dy − φi (a, x)

]

+
[

−α(x)+ ϑ − ε − 1

| ln ε|
]

φi (a, x)

≤ − Di

γ
mi
i

[∫

Bε
Jγi (x − y)φi (a, y)dy − φi (a, x)

]

− φi (a, x)

| ln ε|
= − Di

γ
mi
i

[∫

RN
Jγi (x − y)φ̃iε(a, y)dy − φ̃iε(a, x)−

∫

B2ε\Bε
Jγi (x − y)φ̃iε(a, y)dy

]

−φi (a, x)| ln ε| .

Still based on Taylor expansion (see the same argument as in Shen and Vo [43, Theorem
D(2)]) dealing with the estimate of

Di

γ
mi
i

[∫

RN
Jγi (x − y)φ̃iε(a, y)dy − φ̃iε(a, x)−

∫

B2ε\Bε
Jγi (x − y)φ̃iε(a, y)dy

]

,
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we have for each i = 1, . . . ,M , by choosing γi > 0 such that γ kii = ε with ki = mi+2N
N ,

that

−[Aγ,m,Bε (0, φ)]i +
(

ϑ − ε − 1

| ln ε|
)

[(0, φ)]i ≤ (0, 0) in [0, a2] × Bε, 0 < ε � 1.

It then follows from the generalized principal eigenvalue and Proposition 5.2 that

λ1(Aγ,m,Bε ) = λp(Aγ,m,Bε ) ≥ s(B0
1 + C)− ε − 1

| ln ε| , 0 < ε � 1.

By Proposition 5.6-(iii), λ1(Aγ,m,�) ≥ λ1(Aγ,m,Bε ), which yields that

λ1(Aγ,m,�) ≥ s(B0
1 + C)− ε − 1

| ln ε| , 0 < ε � 1.

Letting γ → 0+
RM , we have (5.21). Thus the result is desired. ��

Remark 5.8 (1) Note that when β(a, x) ≡ β(a) and μ(a, x) ≡ μ(a), the age-structure
and nonlocal diffusion can be decoupled, then the spectrum of A is quite clear, see
“Appendix”. Thus the limiting properties of the principal eigenvalue of A is fully and
only determined by the one of nonlocal diffusion, and we omit the case.

(2) Note that we did not discuss the case when m = 2RM and γ → 0+
RM . We conjecture

that the principal eigenvalue for scalar age-structured models with nonlocal diffusion
converges to the one for scalar age-structured models with Laplace diffusion. Actually,
without age-structure, the autonomous nonlocal diffusion operator has an L2 variational
structure which can be used to show the convergence, see Berestycki et al. [5] and Su
et al. [45]. While for the time-periodic nonlocal diffusion operator, Shen and Xie [41,
42] used the idea of solution mappings to show the convergence, where they employed
the spectral mapping theorem which is not valid in our case since we have a first order
differential operator ∂a that is unbounded. However, when we add a nonlocal boundary
condition to the transmission rate β, it can be proved that the semigroup generated by
solutions is eventually compact so that the spectral mapping theorem holds. Thus we can
use it to show the desired convergence, see Kang and Ruan [23].

6 StrongMaximum Principle

In this section by using the sign of spectral bound s(A) we establish the strong maximum
principle under the case without kernel scaling, which is of fundamental importance and
independent interest.

Definition 6.1 (Strong Maximum Principle) We say thatA admits the strong maximum prin-
ciple if for any function (0, u) ∈ dom(A) satisfying

{
A(0, u) ≤ (0, 0) in [0, a2] ×�,
(0, u) ≥ (0, 0) in [0, a2] × ∂�, (6.1)

there must hold u > 0RM in [0, a2] ×� unless u ≡ 0RM in [0, a2] ×�.
Theorem 6.2 Assume that there exists 0 ≤ a1 < a2 < a+ such that β ≡ 0L(RM ) on

[a2, a+)×� and β
i j
> 0 on [a1, a2) for all 1 ≤ i �= j ≤ M. In addition, assume that λ1(A)

is the principal eigenvalue of A, then A admits the strong maximum principle if and only if
λ1(A) < 0.

123



  197 Page 36 of 60 H. Kang, S. Ruan

Proof If λ1 := λ1(A) is the principal eigenvalue of A associated with an eigenfunction
φ ∈ W 1,1((0, a2), [C(�)]M ) with φ > 0RM , then

A(0, φ)− λ1(0, φ) = (0, 0);
that is, for each i = 1, . . . ,M ,

{
−∂aφi + Di

[∫

�
J (x − y)φi (a, y)dy − φi (a, x)

] − μi (a, x)φi − λ1φi = 0,

φi (0, x)− ∑M
j=1

∫ a2
0 βi j (a, x)φ j (a, x)da = 0.

(6.2)

For the sufficiency, that is λ1 < 0 implies the strongmaximumprinciple, let (0, u) ∈ dom(A)
be nonzero and satisfy (6.1). Assume by contradiction that there exists (a0, x0) ∈ [0, a2]×�
such that u j (a0, x0) = min[0,a2]×� u j ≤ 0 for some j ∈ {1, . . . ,M}. Then consider the set

� := {ε ∈ R : ui + εφi ≥ 0 in [0, a2] ×�, for each i = 1, . . . ,M}.
Denote by ε0 = min� and ψ = u + ε0φ. It is clear that ε0 ≥ 0 by the assumption
u j (a0, x0) ≤ 0 and that ψ ≥ 0. Now if ε0 > 0, by simple computations, we have for each
i = 1, . . . ,M that

⎧
⎪⎨

⎪⎩

∂aψi − Di
[∫

�
J (x − y)ψi (a, y)dy − ψi (a, x)

]+μi (a, x)ψi

≥ −ε0λ1φi > 0, (a, x) ∈ (0, a2] ×�,
ψi (0, x) ≥ ∑M

j=1

∫ a2
0 βi j (a, x)ψ j (a, x)da, x ∈ �.

(6.3)

That is,
{
∂aψi > Di

[∫

�
J (x − y)ψi (a, y)dy − ψi (a, x)

] − μi (a, x)ψi , (a, x) ∈ (0, a2] ×�,
ψi (0, x) ≥ ∑M

j=1

∫ a2
0 βi j (a, x)ψ j (a, x)da, x ∈ �.

(6.4)

It follows from the first inequality in (6.4) thatψ(a, ·) > U(0, a)ψ(0, ·) ≥ 0RM in (0, a2]×�.
Plugging it into the second inequality, we have ψ(0, x) > 0RM by Assumption 4.4 which
implies thatψ is strictly positive in [0, a2]×�. This contradicts the fact that ε0 is the infimum
of �.

If ε0 = 0, it follows that u j (a0, x0) = 0 and thus u j ≥ 0.
Case a0 > 0. Recalling again the constant of variation formula (2.9), one has

u j (a, x) ≥ e−Dj aπ j (0, a, x)u(0, x)+ Dj

∫ a

0
e−Dj (a−l)π j (l, a, x)[Ku j ](l, x)dl. (6.5)

Considering the above inequality at (a0, x0), it follows that for any l ∈ [0, a0], one has
[Ku j ](l, x0) = 0 and thus u j (l, x1) = 0 for all x1 ∈ B(x0, r). Next consider (6.5) at
(l, x1), one has u j (l, x2) = 0 for all x2 ∈ B(x1, r). Then continue this process as we did in
Theorem 4.6, we get u j (l, ·) ≡ 0 in � ∩ B(x0, nr) with some n ∈ N large enough for all
l ∈ [0, a0]. On the other hand, by the nonlocal equation, the solution starting at u j (a0, ·) ≡ 0
will be zero, i.e. u j (l, ·) ≡ 0when l > a0, which implies u j ≡ 0. Now consider the following
equation

M∑

i=1

∫ a2

0
β j i (a, x)ui (a, x)da ≤ u j (0, x) = 0, ∀x ∈ �,

the assumption on β implies that for all i �= j , ui (a, x) = 0 in [a1, a2] ×�. Then consider
the equation (6.5) for ui with i �= j at (̃a, x) for some ã ∈ (a1, a2], one can by the above
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argument to obtain ui ≡ 0 for all i �= j . Thus u ≡ 0, which contradicts the fact that u is
nonzero.

Case a0 = 0. One has u j (0, x0) = 0, then the integral boundary condition implies

M∑

i=1

∫ a2

0
β j i (a, x0)ui (a, x0)da ≤ u j (0, x0) = 0

which shows ui (·, x0) ≡ 0 in [a1, a2] for i �= j . Then we can choose a point ã ∈ (a1, a2].
Considering the equation (6.5) for ui with i �= j at (̃a, x0), we have the same contradiction
as above. Hence u > 0 in [0, a2] ×�, which concludes the desired result.

For the necessity, that is, strong maximum principle implies λ1 < 0, the proof of each
component is similar to that of Shen and Vo [43, Theorem F] and is omitted here. ��

7 Applications

In this section, we apply the theory established in the previous sections to the age-structured
cooperative model with nonlocal diffusion, i.e. (1.2). Let Assumptions 1.1, 1.2 and 1.3 hold.
In addition, we also let Assumptions 4.4 and 4.7 hold, which is rewritten as follows,

Assumption 7.1 There exist a1 and a2 with 0 ≤ a1 < a2 < a+ such that β ≡ 0L(RM ) on
[a2, a+)×� and β

i i
> 0 on [a1, a2) for all 1 ≤ i ≤ M .

Recall that if Assumption 7.1 holds, then the principal eigenfunction φ(·, x) is continuous
with respect to x by the simplicity of principal eigenvalue. For the sake of simplicity, we will
not repeat Assumptions 1.1, 1.2 and 1.3 and 7.1 in this section.

7.1 Comparison Principle

Let us first consider the kernel without scaling and write down the equation that the equilib-
rium satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂ui (a,x)
∂a = Di

[∫

�
J (x − y)ui (a, y)dy − ui (a, x)

]

−μi (a, x)ui (a, x), (a, x) ∈ (0, a2] ×�,
ui (0, x) = fi

(∑M
j=1

∫ a2
0 βi j (a, x)u j (a, x)da

)
, x ∈ �,

(7.1)

where i = 1, . . . ,M . We denote f (u) = diag{ f1(u1), . . . , fM (uM )}.
Definition 7.2 u ∈ W 1,1((0, a2), [C(�)]M ) is called a super-solution (resp. sub-solution) of
(7.1) if = are replaced by ≥ (resp. ≤) in the two equations of (7.1).

Now let us prove the comparison principle for (7.1).

Lemma 7.3 Let 0RM < u ∈ W 1,1((0, a2), [C(�)]M ) be a sub-solution of (7.1) and 0RM <

v ∈ W 1,1((0, a2), [C(�)]M ) be a super-solution of (7.1). Then u ≤ v in [0, a2] ×�.
Proof Let α∗ := sup{α > 0 : αu ≤ v in [0, a2]×�}. By assumptions on u and v, the number
α∗ is well defined and positive. If α∗ ≥ 1, then we are done. So we assume that α∗ < 1.

Set w := v − α∗u, then w ≥ 0. Further, set

a0 := min{a ∈ [0, a2] : ∃x ∈ �, i ∈ {1, . . . ,M}, s.t. wi (a0, x) = 0}.
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Such a0 exists due to the definition of α∗. It follows that there exists x0 ∈ � such that
wi (a0, x0) = 0.

If a0 ∈ (0, a2], observe that wi satisfies the following equation,

∂awi (a, x) ≥ Di

[∫

�

J (x − y)wi (a, y)dy − wi (a, x)

]

−μi (a, x)wi (a, x), (a, x) ∈ (0, a2] ×�.
Recalling the constant of variation formula (2.9), one has

wi (a, x) ≥ e−Diaπi (0, a, x)wi (0, x)+ Di

∫ a

0
e−Di (a−l)πi (l, a, x)[Kwi ](l, x)dl. (7.2)

Considering the above inequality at (a0, x0), we have a contradiction, since by the definition
of a0,wi (a, x) > 0 for all (a, x) ∈ [0, a0)×� implies the right hand side of (7.2) is positive.

If a0 = 0, one has wi (0, x0) = 0. Thanks to Assumption 7.1 on β, one has

M∑

j=1

∫ a2

0
βi j (a, x0)u j (a, x0)da > 0.

On the other hand by Assumption 1.3-(iii) on f , one has that wi (0, x0) satisfies

wi (0, x0) = vi (0, x0)− α∗ui (0, x0)

≥ fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)v j (a, x0)da

⎞

⎠ − α∗ fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)u j (a, x0)da

⎞

⎠

> fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)v j (a, x0)da

⎞

⎠ − fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)α∗u j (a, x0)da

⎞

⎠

≥ 0,

where we used the Assumption 1.3-(iii) and α∗ < 1. It is a contradiction withwi (0, x0) = 0.
Thus α∗ ≥ 1 and the proof is complete. ��

7.2 Existence and Uniqueness of Positive Equilibrium

Next let us define the linearized operatorAL which is obtained by linearizing (7.1) at u = 0:

AL(0, φ) :=
(

−φ(0, ·)+ f ′(0)
∫ a2

0
β(a, ·)φ(a, ·)da, −∂aφ + D(K − I )φ − μφ

)

,

(0, φ) ∈ dom(AL), (7.3)

where dom(AL) = {0} × W 1,1((0, a2), [C(�)]M ) and denote the spectral bound of AL by
λL1 , where f ′(0) = diag{ f ′

1(0), . . . , f
′
M (0)}. Recall from Proposition 3.3 that λL1 satisfies

r

(

f ′(0)
∫ a2

0
β(a, ·)e−λL1 aU(0, a)da

)

= 1.

Theorem 7.4 Assume λL1 > 0, then there exists at least one positive nontrivial solution
u∗(a, x) of (7.1) belonging to W 1,1((0, a2), [L1(�)]M ).
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Proof 1. Construction of super/sub-solutions. Set ui ≡ L for all 1 ≤ i ≤ M , where L is
from the Assumption 1.3-(iv). Let us verify that u(a, x) is indeed a super-solution of (7.1).

∂aui (a, x)− D

[∫

�

J (x − y)ui (a, y)dy − ui (a, x)

]

+ μi (a, x)ui (a, x)

= DL

[

1 −
∫

�

J (x − y)dy

]

+ μi (a, x)L ≥ 0, for all 1 ≤ i ≤ M . (7.4)

Further, for all 1 ≤ i ≤ M

ui (0, x) = L ≥ fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)u j (a, x)da

⎞

⎠

Next, we construct a sub-solution of (7.1) motivated by Coville [10, Theorem 1.6]. For any
δ > 0 sufficiently small, we can find a small constant ε = ε(δ) > 0 such that f (u) ≥
( f ′(0)− δ I )u for 0RM < u ≤ εRM . Such ε can be achieved due to Assumption 1.1 on f .

Then we consider the following linear equation
{
∂aφ(a, x) = −(D + μ(a, x))φ(a, x)− αφ(a, x), a ∈ (0, a2),
φ(0, x) = ( f ′(0)− δ I ) ∫ a2

0 β(a, x)φ(a, x)da.
(7.5)

Then by Proposition 3.7, there exists a continuous function x → α(x) : R
n → R such

that for any x ∈ R
n , equation (7.5) with α = α(x) has a positive solution a → φ(a, x) ∈

W 1,1((0, a2),RM ). Denote α∗∗ = maxx∈� α(x). From the definition of α∗∗ there exists a
sequence of points (xn)n∈N such that xn ∈ � and |α∗∗ −α(xn)| ≤ 1

n . Thus, by the continuity
ofα(x), for each n there exists ηn > 0 such that for all x ∈ Bηn (xn)wehave |α∗∗−α(x)| ≤ 2

n .
Now we consider a sequence of real numbers {εn}n∈N which converges to zero such that

εn ≤ ηn
2 . Next let {χn}n∈N be the following sequence of cut-off functions:χn(x) := χ( |x−xn |

εn
)

where χ is a smooth function such that 0 ≤ χ ≤ 1, χ(x) = 0 for |x | ≥ 2 and χ(x) = 1 for
|x | ≤ 1.

Finally, let us consider the following sequence of continuous functions {αn}n∈N defined
by αn(x) := sup{α(x), α∗∗χn(x)}. Observe that by construction the sequence {αn}n∈N is
such that ‖α − αn‖C(�) → 0.

By construction, for each n, the function αn satisfies maxx∈� αn = α∗∗ and αn ≡ α∗∗ in
B εn

2
(xn). Therefore, the sequence {αn}n∈N satisfies 1

α∗∗−αn /∈ L1
loc(�). Next set

μn(a, x) = μ(a, x)− αn(x)I + α(x)I
and consider the equation (7.5) with μ being replaced by μn . Then it can be checked that

r

(

( f ′(0)− δ I )
∫ a2

0
β(a, x)e−(D+αn(x))ae− ∫ a

0 μn(s,x)dsda

)

= 1.

It follows that αn is a continuous function such that for any x ∈ R
n , equation (7.5) with

μ being replaced by μn and with α = αn(x), has a positive solution a → φn(a, x) ∈
W 1,1((0, a2),RM ). Hence by Theorem 4.9, there exists a principal eigenpair (λn1, φn) of the
eigenvalue problem:

⎧
⎪⎨

⎪⎩

∂aφ(a, x) = D
[∫

�
J (x − y)φ(a, y)dy − φ(a, x)]

−μn(a, x)φ(a, x)− λφ(a, x), (a, x) ∈ (0, a2)×�,
φ(0, x) = ( f ′(0)− δ I ) ∫ a2

0 β(a, x)φ(a, x)da, x ∈ �
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such that 0 < φn ∈ W 1,1((0, a2), [C(�)]M ).
Using the fact that ‖μ− μn‖C(�,[L∞(0,a2)]M ) → 0 as n → ∞, from Proposition 5.6 it

follows that for n big enough, say n ≥ n0, we have

λn1 >
λL1

2
> 0.

Moreover, by choosing n0 bigger if necessary, we achieve for n ≥ n0 that

λn1 − ‖μ− μn‖C(�,[L∞(0,a2)]M ) ≥ λL1

4
> 0.

Now for n ≥ n0 fixed and ψ = ε1φn with ε1 > 0 small enough such that∫ a2
0 β(a, x)ψ(a, x)da ≤ εRM , we have

⎧
⎪⎨

⎪⎩

∂aψ(a, x)− D
[∫

�
J (x − y)ψ(a, y)dy − ψ(a, x)] + μ(a, x)ψ(a, x)

= −(μn(a, x)− μ(a, x)+ λn1)ψ ≤ 0,

ψ(0, x) = ( f ′(0)− δ I ) ∫ a2
0 β(a, x)ψ(a, x)da ≤ f

(∫ a2
0 β(a, x)ψ(a, x)da

)
,

where we used the fact that f (u) ≥ ( f ′(0) − δ I )u for 0RM < u ≤ εRM . It implies that for
ε1 > 0 sufficiently small and n large enough, ε1φn is a sub-solution of (7.1). From now on,
we fix a n large enough and denote u = ε1φn .

2. Existence via iterative scheme.Now it is clear that we can choose ε small enough such
that u ≤ u. Then by a basic iterative scheme we obtain the existence of a positive nontrivial
solution u of (7.1). For the completeness, we provide the iterative scheme in the following.

Let un for n ≥ 1 be the solution of the following linear problem
⎧
⎪⎨

⎪⎩

∂aun(a, x) = D
[∫

�
J (x − y)un(a, y)dy − un(a, x)

]

−μ(a, x)un(a, x), (a, x) ∈ (0, a2)×�,
un(0, x) = f

(∫ a2
0 β(a, x)un−1(a, x)da

)
, x ∈ �,

(7.6)

where u0 = u. First note that un is well defined and is belonging toW 1,1((0, a2), [L1(�)]M ).
Then we will show that un is increasing and that

u ≤ u1 ≤ u2 ≤ · · · ≤ u. (7.7)

Indeed, taking w := u1 − u and v := u − u1, by Assumption 1.3-(ii) of f , they satisfy
respectively

⎧
⎪⎨

⎪⎩

∂aw(a, x) ≥ D
[∫

�
J (x − y)w(a, y)dy − w(a, x)]

−μ(a, x)w(a, x), (a, x) ∈ (0, a2)×�,
w(0, x) ≥ 0, x ∈ �

and
⎧
⎪⎨

⎪⎩

∂av(a, x) ≥ D
[∫

�
J (x − y)v(a, y)dy − v(a, x)]

−μ(a, x)v(a, x), (a, x) ∈ (0, a2)×�,
v(0, x) ≥ 0, x ∈ �.

Using comparison principle of nonlocal diffusion equations, we conclude that w ≥ 0 and
v ≥ 0, that is u ≤ u1 ≤ u. Now by induction, we can obtain the desired result (7.7).
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Next for (a, x) ∈ [0, a2] × � a.e., un(a, x) has a limit, denoted by u∗(a, x), that is
un(a, x)→ u∗(a, x) in [0, a2] ×� a.e. and thus by the continuity of f we have that for any
x ∈ �,

f

(∫ a2

0
β(a, x)un(a, x)da

)
n→∞−−−→ f

(∫ a2

0
β(a, x)u∗(a, x)da

)

,

which implies that u∗(0, x) = f
(∫ a2

0 β(a, x)u∗(a, x)da
)
. In addition, one has

pn(a, x) := D
[∫

�

J (x − y)un(a, y)dy − un(a, x)

]

− μ(a, x)un(a, x)
n→∞−−−→ D

[∫

�

J (x − y)u∗(a, y)dy − u∗(a, x)
]

− μ(a, x)u∗(a, x) := p(a, x),

a.e. in [0, a2] ×�. Hence, for any x ∈ � and [η, ξ ] ⊂ [0, a2], one has

un(ξ, x)− un(η, x) =
∫ ξ

η

pn(a, x)da,

which implies that

u∗(ξ, x)− u∗(η, x) =
∫ ξ

η

p(a, x)da.

It follows that u∗ ∈ W 1,1((0, a2), [L1(�)]M ) satisfies the equation (7.1) with ∂au∗ = p
a.e. in (0, a2) × �. Further, u∗(·, x) is continuous in [0, a2] for a.e. x ∈ �. Thus, one has
un(0, x)→ u∗(0, x) as n → ∞ in �, which implies that

u∗(0, x) = f

(∫ a2

0
β(a, x)u∗(a, x)da

)

.

Thus the proof is complete. ��
Next we investigate the uniqueness of u∗. Before proceeding, we first study the regularity

of u∗ with respect to x . We make the following additional assumption.

Assumption 7.5 Assume that F(x, u) := u − G0(x) f (u) is strictly monotone with respect
to u ∈ R

M+ for any x ∈ �, where G0(x) is defined in (3.2) with α = 0 and a+ replaced by
a2.

Assumption 7.5 with G0(x) = I is widely used to obtain the regularity of solutions of
nonlocal diffusion problems, see Bates et al. [4] and Berestycki and Rodríguez [7].

Now let us revisit the problem (7.1). Solving the first equation of (7.1), one obtains

u(a, x) = e−Daπ(0, a, x)u(0, x)+ D
∫ a

0
e−D(a−l)π(l, a, x)[Ku](l, x)dl.

Then plugging the above equality into the boundary condition, one has

ũ(x) :=
∫ a2

0
β(a, x)u(a, x)da =

∫ a2

0
β(a, x)e−Daπ(0, a, x)u(0, x)da

+ D
∫ a2

0
β(a, x)

∫ a

0
e−D(a−l)π(l, a, x)[Ku](l, x)dlda

=: G0(x) f (̃u(x))+ H(x), (7.8)
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where

H(x) = D
∫ a2

0
β(a, x)

∫ a

0
e−D(a−l)π(l, a, x)[Ku](l, x)dlda

is continuous, due to Ku ∈ W 1,1((0, a2), [C(�)]M ) for any u ∈ W 1,1((0, a2), [L1(�)]M ),
by Assumption 1.1 on J . Now under Assumption 7.5, for any x ∈ �, one has ũ(x) =
F−1(x, H(x)), where F−1 denotes the inverse of F with respect to u for any fixed x ∈ �.
Thus ũ is continuous. It follows that u(0, ·) is continuous and so is u(a, ·).
Theorem 7.6 Under Assumption 7.5, the positive equilibrium u∗ is unique.

Proof We prove the uniqueness by using the sliding argument. Let u and v be two positive
bounded solutions of (7.1). Since they are bounded and strictly positive, the followingquantity
is well defined:

κ∗ := inf{κ > 0 : κu ≥ v in [0, a2] ×�}.
We claim that κ∗ ≤ 1. Indeed, assume by contradiction that κ∗ > 1. We consider the
following nonlocal problem

∂aw = D
[∫

�

J (x − y)w(a, y)dy − w(a, x)
]

− μ(a, x)w(a, x), (a, x) ∈ (0, a2)×�.
(7.9)

By Bao and Shen [3, Proposition 2.1] and Assumption 1.1 on J , solutions of equation
(7.9) have strong monotone property; i.e., for φ,ψ ∈ [C+(�)]M with φ ≥ ψ, φ �≡
ψ,w(a, x;φ)� w(a, x;ψ), a > 0 at which bothw(a, x;φ) andw(a, x;ψ) exist, wherew
is the solution of (7.9). Here the notation�means that if f1 � f2 with fi = ( fi1, . . . , fiM )
for i = 1, 2 in [C+(�)]M , then f1 j (x) > f2 j (x) for all x ∈ � and 1 ≤ j ≤ M .

On one hand, from the integral boundary condition with Assumption 7.1 on β, we have
due to κ∗ > 1 and assumptions of f that

κ∗u0 := κ∗u(0, x; u0) = κ∗ f
(∫ a2

0
β(a, x)u(a, x)da

)

> f

(∫ a2

0
β(a, x)κ∗u(a, x)da

)

≥ f

(∫ a2

0
β(a, x)v(a, x)da

)

= v(0, x; v0) =: v0.
It follows from the strong monotone property that

w(a, x; κ∗u0)� w(a, x; v0). (7.10)

On the other hand, let φ(a, x) = κ∗w(a, x; u0). Then φ(0, x) = κ∗u0 and

∂aφ = D
[∫

�

J (x − y)φ(a, y)dy − φ(a, x)
]

− μ(a, x)φ(a, x), (a, x) ∈ (0, a2)×�.

By the uniqueness of solutions for nonlocal diffusion equations, we have

κ∗w(a, x; u0) = w(a, x; κ∗u0) (7.11)
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Now combing (7.10) and (7.11), we have

κ∗u(a, x) = κ∗w(a, x; u0)� w(a, x; v0) = v(a, x),
which is a contradiction with the definition of κ∗. We conclude that u ≥ v. Now switch u and
v in the above argument, we also have v ≥ u, which shows the uniqueness of the solution. ��

7.3 Stability

In this subsection we will show the global stability of the positive equilibrium u∗ obtained in
Theorem 7.4. First the existence of a solution u(t, a, x) for (1.2) defined for all time t ≥ 0
follows from a standard semigroup method by writing equation (1.2) as an abstract Cauchy
problem (2.12), which is shown in the following,

{
dU
dt = BU + F(U ),

U (0) = U0,
with U0 = (

0, u0
)
. (7.12)

and based on the Lipshcitz assumption on f , see Thieme [46, 48] or Magal and Ruan [33].
Next, thanks to the definition of B, there holds that B is resolvent positive. Moreover, F is
monotone due to Assumption 1.3-(ii) on f , i.e. 0 ≤ U ≤ V ⇒ 0 ≤ F(U ) ≤ F(V ). Thus
by Magal et al. [34, Theorem 4.5], we can conclude that weak comparison principle holds
for (7.12), which is written as follows,

Lemma 7.7 (WeakComparison Principle)Assume thatB is resolvent positive and F ismono-
tone. In addition, U0 ∈ X0 and U0 ≥ 0X0 but U0 �≡ 0X0 , then the mild solution to (7.12),
U (t) ≥ 0X0 for any t ≥ 0.

It follows that weak comparison principle also holds for (1.2). Now we give the strong
comparison principle for (1.2).

Lemma 7.8 (StrongComparisonPrinciple)Assume that u0(a, x) ≥ 0RM but u0(a, x) �≡ 0RM

in [0, a2] ×�, then the solution to (1.2), u(t, a, x) > 0RM for any t > 0 in [0, a2] ×�.
Proof Solving the problem (1.2) along the characteristic line a − t = c, where c ∈ R, we
now derive the formula for a solution to (1.2). For fixed c ∈ R, we set w(t) = u(t, t + c) for
t ∈ [max(−c, 0),∞). With a = t + c one obtains for t ∈ [max(−c, 0),∞) the equation

∂tw(t) = D[K − I ]w − μ(t + c, ·)w. (7.13)

Wefirst study the case c ≥ 0. Clearly,w(0) = u(0, c) = u(0, a−t) = u0(a−t). Considering
the equation (7.13) with initial dataw(0) ≥ 0RM andw(0) �≡ 0RM , we havew(t) > 0RM for
t > 0 by the strong comparison principle of the nonlocal diffusion problem, due to J (0) > 0
in Assumption 1.1. It follows that u(t, a) > 0RM for a ≥ t . On the other hand, integrating
(7.13) from 0 to t , one obtains

w(t) = U(c, t + c)w(0).

and

u(t, a) = U(a − t, a)u0(a − t).

Next we consider the case c < 0. Integrating (7.13) from −c to t , one gets

w(t) = U(0, t + c)w(−c).
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and

u(t, a) = U(0, a)u(t − a, 0).

Thus now the solution to (1.2) reads as follows,

u(t, a) =
{
U(a − t, a)u0(a − t), a ≥ t,

U(0, a)u(t − a, 0), a < t .
(7.14)

Next we plug the explicit formula (7.14) into u(t, 0) to obtain

u(t, 0) = f
(∫ t

0 χ(a)β(a, ·)U(0, a)u(t − a, 0)da

+ ∫ a2
t χ(a)β(a, ·)U(a − t, a)u0(a − t)da

)
, (7.15)

where χ(a) is a cutoff function satisfying χ(a) = 1 when a ∈ (0, a2) otherwise χ(a) = 0.
Now we separate two cases.

Case 1. If t < a2, (7.15) is written as follows,

u(t, 0) = f

(∫ t

0
β(a, ·)U(0, a)u(t − a, 0)da +

∫ a2

t
β(a, ·)U(a − t, a)u0(a − t)da

)

.

(7.16)

Since u(t, a) = U(a − t, a)u0(a − t) > 0RM for a ≥ t and βi i (a, ·) ≥ β
i i
(a) > 0 a.e. in

[a1, a2] by Assumption 7.1 on β, the second term in the right hand of (7.16) must be positive.
It follows by Assumption 1.3 on f , we have u(t, 0) > 0RM . Thus u(t, a) > 0RM for a < t
via (7.14).

Case 2. If t ≥ a2, (7.15) is written as follows,

u(t, 0) = f

(∫ a2

0
β(a, ·)U(0, a)u(t − a, 0)da

)

. (7.17)

Let us claim that u(t, 0, x) := [u(t, 0)](x) > 0RM in [a2,∞)×�. By contradiction, suppose
that there exist i ∈ {1, . . . ,M} and (t0, x0) ∈ [a2,∞) × � such that ui (t0, 0, x0) = 0. By
Assumption 1.3 on f , one obtains

0 =
M∑

j=1

∫ a2

0
βi j (a, x0)U j (0, a)u j (t0 − a, 0, x0)da

≥
∫ a2

0
βi i (a, x0)e

− ∫ a
0 (Di+μi (s))dseDi Kaui (t0 − a, 0, x0)da,

where we used the fact that e− ∫ a
0 (Di+μi (s))ds and eDi Ka are communicated. By Assump-

tion 7.1 on β, one has βi i (a, x0) ≥ β
i i
(a) > 0 a.e. in [a1, a2], then we can find one point

b0 ∈ [a2−ε, a2] such that eDi Kaui (t0−b0, 0, x0) = 0, where ε > 0 small enough satisfying
a1 ≤ a2 − ε. By definition, one has

eDi Kaui (t0 − b0, 0, x0) =
∞∑

n=0

(Dia)n

n! K ∗n ∗ ui (t0 − b0, 0, x0),

where K ∗n denotes the n−fold convolution of K , that is K ∗n = K ∗ · · · ∗ K , n times. It
follows that for each n ∈ N,

K ∗n ∗ ui (t0 − b0, 0, x0) = 0.
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However, by Assumption 1.1 on J , one has J > 0 in B(0, r), which implies that

ui (t0 − b0, 0, x) = 0, for all x ∈ B(x0, nr) ∩�.
When n is large enough, B(x0, nr) ∩� covers �, and thus ui (t0 − b0, 0, ·) ≡ 0 in �.

Next replace t0 by t0 − b0 in (7.15). If t0 − b0 falls in [0, a2), by the argument as Case
1, one has u(t0 − b0, 0) > 0RM , which is a contradiction. Hence, t0 − b0 must fall in
[a2,∞). Then by the same argument as Case 2, one can find b1 ∈ [a2 − ε, a2], such that
ui (t0 − b0 − b1, 0) = 0. Now doing the above process by induction, one can find a sequence
{bi }i≥0 such that ui (t0 − ∑M

i=0 bi , 0) = 0 for any M ≥ 0. But we know every bi is in

[a2 − ε, a2], then there always exists a minimal M0 > 0, such that t0 −∑M0
i=0 bi < a2. Then

by Case 1, one has ui (t0 − ∑M0
i=0 bi , 0) > 0.

Now consider the i−th equation of (7.17) at t = t0 − ∑M0−1
i=0 bi , which is larger than

or equal to a2, we get a contradiction, since now the left hand side of (7.17) equals to zero,
while the right hand side of (7.17) is larger than zero.

In summary, we cannot have i ∈ {1, . . . ,M} and (t, x) ∈ (0,∞) × � such that
ui (t, 0, x) = 0, which implies u(t, 0, x) > 0RM and thus u(t, a) > 0RM by (7.14). Hence
the proof is complete. ��

Now we provide the following global stability result.

Theorem 7.9 (Stability) Let Assumption 7.5 hold. Assume λL1 > 0, then the nontrivial equi-
librium u∗ is stable in the sense of u(t, a, x) → u∗(a, x) pointwise as t → ∞, where
u(t, a, x) is a solution of (1.2) with initial data u0(a, x) ≥ 0RM but u(a, x) �≡ 0RM in
[0, a2] ×�.
Proof If u0(a, x) ≥ 0RM but u(a, x) �≡ 0RM in [0, a2]×�, using strong comparison principle
(Lemma 7.8), there exists a positive constant δ such that u(1, a, x) > δRM in [0, a2] × �.
Since λL1 > 0, we can still allow εu defined in Theorem 7.4 to be a sub-solution of (7.1)
for ε small enough. Since u(1, a, x) ≥ δRM and u is bounded, by choosing ε smaller if
necessary we also achieve that εu ≤ u(1, a, x). Now let us denote U (t, a, x) the solution of
(1.2) with initial data εu. By weak comparison principle (Lemma 7.7),U (t, a, x) ≥ εu(a, x)
for all t ≥ 0. Given s ≥ 0, let zs(t, a, x) := U (t + s, a, x) − U (t, a, x), which satisfies
zs(0, a, x) ≥ 0RM by the above argument and

{
dU
dt = BU + GU ,

U (0) = U0,
with U = (

0, zs
)
, (7.18)

on (0,∞)×[0, a2]×� for some functionG on (0,∞)×[0, a2]×�with ‖G‖L∞ ≤ ∥
∥F ′∥∥

L∞ .
The weak comparison principle (Lemma 7.7) then implies that zs ≥ 0RM for all s ≥ 0, which
follows thatU (t, a, x) is a non-decreasing functionof the time andU(t, a, x) ≤ u(t+1, a, x).

On the other hand, L which is defined in the proof in Theorem 7.4 is a super-solution
of (7.1) and u0 is bounded, we also have u(t, a, x) ≤ U (t, a, x) if necessary choosing L
large enough, where U (t, a, x) denotes the solution of (1.2) with initial data U (0, a, x) =
LRM ≥ u0. A similar argument as above using the comparison principle shows that U is a
non-increasing function of t . Thus we have for all time t ≥ 0 that

εu ≤ U (t, a, x) ≤ u(t + 1, a, x) ≤ U (t + 1, a, x).

Since U (t, a, x) (respectively U (t, a, x)) is a uniformly bounded monotonic function of t ,
U (resp.U ) converges pointwise to p (resp. p) which is a solution of (7.1). FromU �= 0RM ,
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using the uniqueness of a non-trivial solution of (7.1), we deduce that p ≡ p = u∗ �= 0RM

and therefore, u(t, a, x)→ u∗ pointwise in [0, a2] ×�. ��

7.4 Global Dynamics in Terms of Diffusion Rate and Diffusion Range

In the following we give a similar result on the global dynamics of (1.2) by using the values
of diffusion rate D = (D1, . . . , DM ) and diffusion range γ = (γ1, . . . , γM ) without and
with kernel scaling, respectively. Before that, we introduce a notation � which means that
if xRM � yRM , then xi is much smaller than yi for all 1 ≤ i ≤ M .

Theorem 7.10 Let Assumption 7.5 hold. Assume that s(AL) coincides the principal eigen-
value of AL defined in (7.3), then equation (1.2) admits a unique positive equilibrium
u∗ ∈ [C([0, a2] × �)]M that is stable for each 0RM < D � 1RM if s(B0

1 + C) > 0,
where s(B0

1 + C) = α2 and α2 satisfies

max
x∈�

r

(

f ′(0)
∫ a2

0
β(a, x)e−α2aπ(0, a, x)da

)

= 1. (7.19)

Proof Note thatAL defined in (7.3) also satisfies all the properties ofA discussed in Sect. 5.
Then by Theorem 5.3, sD(AL) > 0 for all 0 < D � 1 if s(B0

1 + C) > 0. Thus the result
follows from Theorem 7.4, Theorem 7.6 and Theorem 7.9. ��
Theorem 7.11 Let Assumption 7.5 hold. Assume that s(AL) coincides the principal eigen-
value of AL defined in (7.3), then we have the following results.

(i) For each m > 0RM , assume s(B0
1 + C) = α2 > 0, then there exists 1RM � γ 1 < ∞RM

such that for each γ > γ1 equation (1.2) with kernel scaling defined in (5.13) admits a
unique stable positive equilibrium u∗ ∈ [C([0, a2] ×�)]M;

(ii) Suppose that J is symmetric, i.e. J (x) = J (−x), μi ∈ C2(RN , L∞+ (0, a2)) and βi j ∈
C2(RN , L∞+ (0, a2)) for all 1 ≤ i, j ≤ M. For each m ∈ [[0, 2)]M, assume s(B0

1 + C) =
α2 > 0, then there exists 0RM < γ2 � 1RM such that for each 0RM < γ < γ2 equation
(1.2) with kernel scaling defined in (5.13) admits a unique stable positive equilibrium
u∗ ∈ [C([0, a2] ×�)]M.

Proof It follows from Theorems 5.7, 7.4, 7.6 and 7.9. ��
At the end of this section, we investigate the asymptotic behavior of the equilibrium u∗ in

terms of D without kernel scaling and in terms of γ with kernel scaling respectively. In order
to highlight the dependence of u∗ on D or γ , we denote u∗ by u∗

D or u∗
γ . Before proceeding,

we first give a lemma on the solution of (7.1) without nonlocal diffusion; that is,
{
∂av(a, x) = −μ(a, x)v(a, x), (a, x) ∈ (0, a2)×�,
v(0, x) = f

(∫ a2
0 β(a, x)v(a, x)da

)
, x ∈ �. (7.20)

Lemma 7.12 Assume

min
x∈�

r

(

f ′(0)
∫ a2

0
β(a, x)π(0, a, x)da

)

> 1, (7.21)

then the equation (7.20) has a unique positive solution, denoted by v∗(a, x), which is belong-
ing to W 1,1((0, a2), [C(�)]M ).
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Proof First note that (7.21) implies that for any x ∈ �,

r

(

f ′(0)
∫ a2

0
β(a, x)π(0, a, x)da

)

> 1.

Then one can always find an element 0RM < v ∈ XM again by the argument as Theorem 7.4
such that

( f ′(0)− δ)
∫ a2

0
β(a, x)π(0, a, x)dav ≥ v,

provided δ > 0 is sufficiently small. Now we fix x ∈ �. We see that v(a, x) := επ(0, a, x)v
is a sub-solution of (7.20) when (7.21) holds by taking ε > 0 sufficiently small. Meanwhile,
v := LRM for L sufficiently large is also a super-solution of (7.20). Now it is clear that we can
choose ε > 0 and L > 0 such that v ≤ v. Then by a basic iterative scheme as in Theorem 7.4
we obtain the existence of a positive nontrivial solution v∗(·, x) ∈ W 1,1(0, a2) of (7.20) for
any x ∈ �. Next we can use the sliding argument again as we did in Theorem 7.6 to show

that v∗(·, x) is unique. At last, noting that v∗(·, x) ∈ [εe− ∫ a2
0 μ(s)ds, L], the continuity of v∗

in x comes from a similar argument as Theorem 4.9, we omit them here. ��
Theorem 7.13 Let Assumption 7.5 hold. Assume that s(AL) coincides the principal eigen-
value ofAL defined in (7.3), and in addition, assume (7.21) holds, and v∗ is fromLemma 7.12,
we have the following asymptotic results:

(i) Assume u∗
D(a, x) is given by Theorem 7.10, then

lim
D→0+

RM

u∗
D(a, x) = v∗(a, x), uniformly in (a, x) ∈ [0, a2] ×�; (7.22)

(ii) Assume u∗
γ (a, x) is given by Theorem 7.11, m ∈ [[0, 2)]M and J is symmetric, i.e.

J (x) = J (−x), then

lim
γ→0+

RM

u∗
γ (a, x) = v∗(a, x), uniformly in (a, x) ∈ [0, a2] ×�; (7.23)

(iii) Assume u∗
γ (a, x) is given by Theorem 7.11 and m > 0RM , then

lim
γ→∞

RM
u∗
γ (a, x) = v∗(a, x), uniformly in (a, x) ∈ [0, a2] ×�. (7.24)

Proof We first show (iii). It suffices to show that for each 0 < δ � 1, there exists γδ > 0RM

such that for each γ ∈ (0RM , γδ) there holds

(1 − δ)v∗(a, x) ≤ u∗
γ (a, x) ≤ (1 + δ)v∗(a, x), (a, x) ∈ [0, a2] ×�.

We here outline the proof of the upper bound and the lower bound follows from similar
arguments. Denote v := (1 + δ)v∗ and define Fγi : C([0, a2] × �) → C([0, a2] × �) as
follows,

Fγi (vi ) := Di

γi mi

[∫

�

Jγi (x − y)vi (a, y)dy − vi (a, x)
]

, vi ∈ C([0, a2] ×�).

By the same argument in Theorem 5.7-(iii), one can show for each vi ∈ C([0, a2] ×�)
Fγi (vi ) = O(γ−mi

i ), as γi → ∞ uniformly in (a, x) ∈ [0, a2] ×�. (7.25)
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On the other hand, thanks to the non-negativeness of β and v∗, one has

M∑

j=1

∫ a2

0
βi j (a, x0)v

∗
j (a, x0)da > 0.

Since for each (a, x) ∈ [0, a2] ×�,

fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v j (a, x)da

⎞

⎠ − (1 + δ) fi
⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v

∗
j (a, x)da

⎞

⎠

=
M∑

j=1

∫ a2

0
βi j (a, x)v j (a, x)da

⎡

⎣
fi
(∑M

j=1

∫ a2
0 βi j (a, x)v j (a, x)da

)

∑M
j=1

∫ a2
0 βi j (a, x)v j (a, x)da

−
fi
(∑M

j=1

∫ a2
0 βi j (a, x)v∗

j (a, x)da
)

∑M
j=1

∫ a2
0 βi j (a, x)v∗

j (a, x)da

⎤

⎦ < 0.

wherewe useAssumption 1.3-(iii), there exists a sufficiently small positive constant c = c(δ),
which satisfies c(δ)→ 0 as δ → 0, such that

sup
[0,a2]×�

⎡

⎣ fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v j (a, x)da

⎞

⎠

−(1+δ) fi
⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v

∗
j (a, x)da

⎞

⎠

⎤

⎦

≤ −c < 0. (7.26)

It implies that for any δ > 0, we can find γi (δ) > 0 such that |Fγi (vi )| ≤ c(δ) for each
γi ∈ (γi (δ),∞). Set γ (δ) = max1≤i≤M γi (δ).

Now fix this γ (δ), let us show that for each γ ∈ (γ (δ),∞RM ), there holds u∗
γ (a, x) ≤

v(a, x) for all (a, x) ∈ [0, a2] ×�. To do that, fix any γ ∈ (γ (δ),∞RM ) and define

α∗ := sup{α > 0 : αu∗
γ (a, x) ≤ v(a, x) in [0, a2] ×�}.

Since min[0,a2]×� u∗
γ > 0RM and v(a, x) is bounded, the number α∗ is well defined and

positive. Due to the continuity of v(a, x) and u∗
γ (a, x), there holds v(a, x) ≥ α∗u∗

γ (a, x) for

all (a, x) ∈ [0, a2] ×�.
Clearly, if α∗ ≥ 1, then we are done. So we assume that α∗ < 1. Setw := v−α∗u∗

γ , then

w ≥ 0. Further, set a0 := min{a ∈ [0, a2] : ∃x ∈ �, i ∈ {1, . . . ,M}, s.t. wi (a0, x) = 0}.
Such a0 exists due to the definition of α∗. It follows that there exists x0 ∈ � such that
wi (a0, x0) = 0.

If a0 = 0, that is, wi (0, x0) = 0. One has by (7.26)
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vi (0, x) = (1 + δ) f )i
⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v

∗
i (a, x)da

⎞

⎠

> (1 + δ) fi
⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v

∗
j (a, x)da

⎞

⎠ + fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v j (a, x)da

⎞

⎠

−(1 + δ) fi
⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v

∗
j (a, x)da

⎞

⎠ + c

2

= fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x)v j (a, x)da

⎞

⎠ + c

2
.

Thus wi (0, x0) satisfies

wi (0, x0) = vi (0, x0)− α∗u∗
γ i
(0, x0)

> fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)v j (a, x0)da

⎞

⎠

+ c

2
− α∗ fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)u

∗
γ j
(a, x0)da

⎞

⎠

> fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)v j (a, x0)da

⎞

⎠

+ c

2
− fi

⎛

⎝
M∑

j=1

∫ a2

0
βi j (a, x0)α∗u∗

γ j
(a, x0)da

⎞

⎠

≥ c

2
, (7.27)

where we used the Assumption 1.3-(iii) and α∗ < 1. It is a contradiction withwi (0, x0) = 0.
If a0 ∈ (0, a2], observe that wi satisfies

∂awi (a, x) = Di

γi mi

[∫

�

Jγi (x − y)wi (a, y)dy − wi (a, x)

]

− μi (a, x)wi (a, x)

− Di

γi mi

[∫

�

Jγi (x − y)vi (a, y)dy − vi (a, x)
]

= Di

γi mi

[∫

�

Jγi (x − y)wi (a, y)dy − wi (a, x)

]

−μi (a, x)wi (a, x)− Fγi (vi ), (7.28)

Again by the constant of variation formula (2.9), one has

wi (a, x) = e
− Di
γi
mi aπi (0, a, x)wi (0, x)+ Di

γi mi

∫ a

0
e
− Di
γi
mi (a−l)

πi (l, a, x)[Kγi ,�wi ](l, x)dl

+
∫ a

0
e
− Di
γi
mi (a−l)

πi (l, a, x)[Fγi (vi )](l, x)dl. (7.29)
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Recall that wi (0, x) >
c(δ)
2 by (7.27) which is independent in γi and Di . Now considering

the above inequality (7.29) at (a0, x0), wi (a, x) > 0 for all (a, x) ∈ [0, a0)×� implies

e
− Di
γ
mi
i

a
πi (0, a, x)wi (0, x) ≥ c(δ)

4
e− ∫ a2

0 μi (s)ds,

Di

γ
mi
i

∫ a

0
e
− Di
γ
mi
i

(a−l)
πi (l, a, x)[Kγi ,�wi ](l, x)dl = O(γ−mi

i ).

These inequalities combining with (7.25) (up to increase γi if necessary) implies the right
hand side of (7.29) is positive. But the left hand sidewi (a0, x0) = 0 induces a contradiction.
Thus α∗ ≥ 1 and the proof is complete.

For (ii) note by the argument in Theorem 5.7-(ii) that

Fγi (vi ) = Di

γi mi

[∫

�

Jγi (x − y)vi (a, y)dy − vi (a, x)
]

= O(γ 2−mi
i ) as γi → 0+

uniformly in (a, x) ∈ [0, a2] ×�. Then we revisit (7.29). Observe
Di

γ
mi
i

Kγi ,�wi = O(γ−mi
i ) as γi → 0+

uniformly in (a, x) ∈ [0, a2] ×�. It follows that when 0 < γi � 1,

Di

γ
mi
i

∫ a

0
e
− Di
γ
mi
i

(a−l)
πi (l, a, x)[Kγi ,�wi ](l, x)dl

−
∫ a

0
e
− Di
γ
mi
i

(a−l)
πi (l, a, x)[Fγi (vi )](l, x)dl > 0.

Then the remaining proof is the same with (iii).
For (i) we follow the lines as in the proof of (iii) except that we need to set γ = 1RM and

replace the limit

Fγi (vi ) = Di

γi mi

[∫

�

Jγi (x − y)vi (a, y)dy − vi (a, x)
]

→ 0 as γi → 0+

uniformly in (a, x) ∈ [0, a2] ×� by the following limit

F1(vi ) = Di

[∫

�

J (x − y)vi (a, y)dy − vi (a, x)
]

→ 0 as Di → 0+

uniformly in (a, x) ∈ [0, a2] ×� and (7.29) is replaced by the following equality

wi (a, x) = e−Diaπi (0, a, x)w(0, x)+ Di

∫ a

0
e−Di (a−l)πi (l, a, x)[Kwi ](l, x)dl

−
∫ a

0
e−Di (a−l)πi (l, a, x)[F1(vi )](l, x)dl.

��
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8 Discussions

Age-structured models with nonlocal diffusion could be used to characterize the spatio-
temporal transmission dynamics of infectious diseases in which the age structure of hosts
is a very important factor and the disease spreads from places to places which are not geo-
graphically connected via the long distance traveling of hosts. There are very few theoretical
studies on the dynamics of such equations due to the lack of methods and techniques in
treating them. In this paper, we studied the spectrum theory for multigroup age-structured
models with nonlocal diffusion. First we gave a sufficient and easily verifiable condition
on the existence of principal eigenvalue by using the theory of resolvent positive operators
with their perturbations. Then we used the generalized principal eigenvalue to characterize
the principal eigenvalue and applied it to discuss the effects of diffusion rate and diffusion
range on the principal eigenvalue. Next we established the strong maximum principle for
such age-structured models with nonlocal diffusion. Finally we investigated the existence,
uniqueness and stability of such equations with cooperative type of nonlinearity.

Here we assumed that the diffusion kernels are the same for each component. We expect
to study the effects of different kernels for different components on the principal eigenvalue
and in particular the dynamics of such systems in the future. In addition, we expect that the
results on the principal eigenvalue and the construction of sub- and super-solutions can be
applied to study traveling wave solutions and spreading speeds of multigroup age-structured
models with nonlocal diffusion and we leave this for future consideration.

Finally, we believe that our results can be applied to age-structured models with nonlocal
diffusion of Neumann type, see Kang and Ruan [25] where we applied such a theory to a
scalar age-structured equation with nonlocal diffusion of Neumann boundary conditions and
found that the principal eigenvalue converges to that of the equation without diffusion derived
from the spatial average of reaction terms. Further, similar results for cooperative systems
with Neumann boundary conditions can be found in Zhang and Zhao [52].
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A Appendix

A.1 Transmission and Death Rates Independent of x

Nowwe introduce the eigenvalues and eigenfunctions of the nonlocal problemwith Dirichlet
boundary condition, which are denoted by (θi , ϕi )i≥0, in the domain � ⊂ R

N ; that is,

{
−Lϕ := −(J ∗ ϕi − ϕi )(x) = θiϕi (x), x ∈ �
ϕi (x) = 0, x ∈ R

N \� (A.1)

with

∫

�

ϕ2i (x)dx = 1, i ≥ 0. (A.2)
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Note that the eigenfunctions ϕi of (A.1) satisfy ϕi = 0 in R
N\�, the integral in the convo-

lution term can indeed be confined in �. Therefore, we define the operator

[Ku](x) =
∫

�

J (x − y)u(y)dy, u ∈ L2(�).

Now observe that θ is an eigenvalue of (A.1)-(A.2) if and only if θ̂ = 1− θ is an eigenvalue
of K in L2(�). It is easy to see that K is compact and self-adjoint in L2(�). Hence, by the
classical spectral theorem, there exists an orthonormal basis consisting of eigenvectors of
K with corresponding eigenvalues {θ̂n} ⊂ R and θ̂n → 0. Furthermore, we are interested
in the existence of a principal eigenvalue, that is an eigenvalue associated to a nonnegative
eigenfunction. We state a result related to the principal eigenvalue (see [11, 21, 22]).

Theorem A.1 [21] Problem (A.1)–(A.2) admits an eigenvalue θ0 associated to a positive
eigenfunction ϕ0 ∈ C(�). Moreover, it is simple and unique and satisfies 0 < θ0 < 1.
Furthermore, θ0 can be variationally characterized as

θ0 = 1 −
⎛

⎝ sup
u∈L2(�),‖u‖L2(�)=1

∫

�

(∫

�

J (x − y)u(y)dy

)2

dx

⎞

⎠

1/2

. (A.3)

For other eigenvalues we can arrange them as 0 < θ0 < θ1 ≤ θ2 ≤ · · · → 1. Next we
introduce an operator for the system of nonlocal diffusion with Dirichlet boundary condition

− Lu = diag{−Lu1, . . . ,−LuM }, u = (u1, . . . , uM ) ∈ W := L2(�,RM ). (A.4)

Then it is easy to see that −L has the same eigenvalues as the ones of −L . Moreover, the
eigenvalues of −L can be still arranged in the following way:

0 < θ0 < θ1 ≤ θ2 ≤ · · · .
Here we would like to emphasize that θ0 is a principal eigenvalue of L associated with a

positive eigenfunction (ϕ0, . . . , ϕ0) in the sense that each component of the eigenfunction
is positive and θ0 is isolated. Note that θ0 is not simple, since there are linearly independent
positive eigenfunctions, for example (2ϕ0, ϕ0, . . . , ϕ0). But for convenience, we are only
interested in (ϕ0, . . . , ϕ0).

Now we denote the usual population operator without diffusion by B̃ defined in V :=
L2((0, a+),RM ):

[B̃ηi ](a) = −∂ηi (a)
∂a

− μi (a)ηi (a), ∀η ∈ dom(B), (A.5)

dom(B̃) = {
η(a)|η, Bη ∈ L2(0, a+), ηi (0) =

M∑

j=1

∫ a+

0
β
i j
(a)η j (a)da

}
(A.6)

and {κ j } j≥0 be the eigenvalues of B̃, i.e., the solution of the following equation

∂awi (a, x) ≥ Di
[∫

�
J (x − y)wi (a, y)dy − wi (a, x)

]

−μi (a, x)wi (a, x), (a, x) ∈ (0, a2] ×�.
while the principal eigenvalue, denoted by κ0, satisfies

r

(∫ a+

0
β(a)e−κ0aπ(a)da

)

= 1,
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where det denotes the determinant and

π(a) := diag{π1(a), . . . , πM (a)} = diag{e− ∫ a
0 μ1(ρ)dρ, . . . , e− ∫ a

0 μM (ρ)dρ}.
Arrange κ in the following way (see [50]):

κ0 > Reκ1 ≥ Reκ2 ≥ · · · .
Introduce the state space E := L2((0, a+) × �,RM ) with the usual norm ‖·‖ and inner
product 〈·, ·〉 and define an operator Ã : E → E by

[ Ãφ]i (a, x) = (J ∗ φi − φi )(a, x)− ∂φi (a, x)

∂a
− μi (a)φi (a, x), ∀φ ∈ dom( Ã),

dom( Ã) = {
φ(a, x)

∣
∣φ, Aφ ∈ E, φ|RN \� = 0, φi (0, x) =

M∑

j=1

∫ a+

0
β
i j
(a)φ j (a, x)da

}
.

(A.7)

Next let us solve the resolvent equation

(ξ I − Ã)φ = ψ, ∀ψ ∈ E .

If for any i, j ≥ 0, ξ + θi �= κ j , then define

φψ(a, x) =
∞∑

i=0

(
(ξ + θi )I − B̃

)−1〈ψ(a, ·),Φi 〉W ◦Φi (x),

where

〈ψ(a, ·),Φi 〉W
=
(∫

�

ψ1(a, x)ϕi (x)dx, . . . ,
∫

�

ψM (a, x)ϕi (x)dx

)

, Φi = (ϕi , . . . , ϕi ) ∈ W ,

and

u ◦Φi = (u1ϕi , . . . , uMϕi ), u ∈ V .

Since B̃ is the infinitesimal generator of a bounded strongly continuous semigroup, there
exist constants O > 0 and ω ∈ R such that

∥
∥(ξ I − B̃)−1

∥
∥L(V ) ≤ O

Reξ − ω, ∀Reξ > ω.

Recall that θi > 0 for all i , then Re(ξ + θi ) > ω for all i > 0 provided Reξ > ω,

∞∑

i=0

∥
∥
∥
(
(ξ + θi )I − B̃

)−1〈ψ(a, ·),Φi 〉W
∥
∥
∥
2

V

≤
[

O

Re(ξ + θ0)− ω
]2 ∞∑

i=0

‖〈ψ(a, ·),Φi 〉W ‖2V

≤
[

O

Re(ξ + θ0)− ω
]2

‖ψ‖2E <∞. (A.8)
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Thus, φψ(a, x) is well defined. Moreover, for any n > 0,

(ξ I − Ã)
n∑

i=0

(
(ξ + θi )I − B̃

)−1〈ψ(a, ·),Φi 〉W ◦Φi (x)

=
n∑

i=0

〈ψ(a, ·),Φi 〉W ◦Φi (x)→ ψ(a, x) in E as n → ∞.

Since B̃ andL are both closed operators on E , so is Ã. Hence (ξ I − Ã)φψ = ψ , i.e. φψ(a, x)
is a solution of the resolvent equation. Now choose φ ∈ dom( Ã), we have

〈 Ãφ, φ〉E =
M∑

i=1

∫

(0,a+)×�
−∂φi (a, x)

∂a
φi (a, x)dadx −

∫

(0,a+)×�
μi (a)|φi (a, x)|2dadx

+
∫

(0,a+)×�
(J ∗ φi (a, x)− φi (a, x))φi (a, x)dadx

≤
M∑

i=1

1

2

∫

�

|φi (0, x)|2dx

=
M∑

i=1

M∑

j=1

1

2

∫

�

[∫ a+

0
β
i j
(a)φ j (a, x)da

]2

dx

≤
M∑

i=1

M∑

j=1

1

2

∫

�

[∫ a+

0
β2
i j
(a)da

][∫ a+

0
φ2j (a, x)da

]

dx

≤ 1

2

∥
∥
∥β

∥
∥
∥
2

L(V )
‖φ‖2E , (A.9)

where
∥
∥
∥β

∥
∥
∥L(V )

:= max1≤ j≤M
∑M

i=1

∥
∥
∥β i j

∥
∥
∥
2

L2(0,a+)
and we used the symmetry of J

∫

(0,a+)×�
(J ∗ φi (a, x)− φi (a, x))φi (a, x)dadx

≤
∫

(0,a+)

∫

�

∫

�

J (x − y)(φi (a, y)− φi (a, x))φi (a, x)dydxda

= −1

2

∫

(0,a+)

∫

�

∫

�

J (x − y)(φi (a, y)− φi (a, x))2dydxda ≤ 0. (A.10)

It follows that for all sufficiently large ξ , Ã − ξ I is a dissipative operator on E .
On the other hand, it can be shown that φ is the unique solution of the resolvent equation

by the uniqueness resolvent solution of age-structured models with orthonormal basis in W .
Thus ξ ∈ ρ( Ã), the resolvent set of Ã, and

(ξ I − Ã)−1ψ =
∞∑

i=0

(
(ξ + θi )I − B̃

)−1〈ψ(a, ·),Φi 〉W ◦Φi (x). (A.11)

It yields that R(ξ I − Ã), the range of ξ I − Ã is equal to the whole space E , and by (A.9),
Ã−ξ I is dissipativewhen ξ is sufficiently large, it follows fromPazy [39, Chapter I, Theorem

4.6] that dom( Ã− ξ I ) is dense and dom( Ã − ξ I ) = E , so does dom( Ã) and dom( Ã) = E .
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Moreover, from (A.8) we have

∥
∥(ξ I − Ã)−1

∥
∥
E ≤ O

Re(ξ + θ0)− ω .

Hille–Yosida theorem implies that Ã is an infinitesimal generator of a C0-semigroup
{S(t)}t≥0. (In fact, one can conclude the same result by using Lumer–Phillips theorem in
Pazy [39].)

If there are some i, j such that ξ + θi = κ j , then
 i (a, x) = e−(ξ+θi )aπ(a)Φi (x)

satisfies (ξ I − Ã) i = 0; i.e., ξ ∈ σp( Ã), the point spectrum of A. Furthermore, if (ξ I −
Ã)! = 0, expanding the known initial function !(0, x) as

!(0, x) =
( ∞∑

i=0

α1iϕi (x), . . . ,
∞∑

i=0

αMiϕi (x)

)

in W ,

then we have

!(a, x) =
( ∞∑

i=0

α1i e
−(ξ+θi )aπ1(a)ϕi (x), . . . ,

∞∑

i=0

αMie
−(ξ+θi )aπM (a)ϕi (x)

)

.

In view of the initial condition

!(0, x) =
∫ a+

0
β(a)!(a, x)da,

weget for each i = 1, . . . ,M , eitherα1i = 0, . . . , αMi = 0or 1 ∈ σP
(∫ a+

0 β(a)e−(ξ+θi )aπ(a)
da), which implies that κ j = ξ + θi is an eigenvalue of B̃ by the theory of age-structured
models. Hence, ξ = κ j − θi is an eigenvalue of Ã. In particular, for ξ0 = κ0 − θ0, which is
the principal eigenvalue of Ã, (ξ I − Ã) = 0 has one positive linear solution, which is

 ξ0(a, x) = e−κ0aπ(a)Φ0(x). (A.12)

Define an operator

Cξ =
∫ a+

0
β(a)e−ξaπ(a)eLada.

It is easy to see that Cξ is a positive and self-adjoint operator in W , since L is self-adjoint,
and that Φ0(x) is the eigenfunction of the eigenvalue 1 of Cξ0 . Thus, r(Cξ0) ≥ 1.

In addition, note that {ϕi }i≥0 are indeed in Cb(�) due to the fact that J is continuous
and eLa : Cb(�) → Cb(�) is an e−a contraction mapping, where e−a is the Kuratowski
measure of noncompactness in the metric space (Cb(�), d), see Fang and Zhao [18], where
Cb(�) represents the space of continuous bounded functions in�, and for any u, v ∈ Cb(�),
d(u, v) := ∑∞

k=1
1
2k

max−k≤x≤k |u(x)−v(x)|. It follows by Perron–Frobenius Theorem that

re(Cξ0) ≤ ∥
∥Cξ0

∥
∥
e ≤ r

(∫ a+

0
β(a)e−ξ0aπ(a)

∥
∥eLa

∥
∥
e da

)

≤ r

(∫ a+

0
β(a)e−κ0aπ(a)diag{e−(1−θ0)a, . . . , e−(1−θ0)a}

)

da
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< r

(∫ a+

0
β(a)e−κ0aπ(a)da

)

= 1, (A.13)

where re(A) and ‖A‖e represent the essential spectral radius and essential norm of operator
A in E , respectively. Now suppose that r(Cξ0) > 1, for the sake of contraction, we then see
from the generalized Krein-Rutman theorem (see [38] or [51]) that r(Cξ0) is an eigenvalue
of Cξ0 corresponding to a positive eigenvector ψ ∈ W . It follows that

r(Cξ0)〈ψ,Φ0〉W = 〈Cξ0ψ,Φ0〉W = 〈ψ, Cξ0Φ0〉W = 〈ψ,Φ0〉W ,
which implies that r(Cξ0) = 1 since 〈ψ,Φ0〉 > 0. This is a contradiction. Thus r(Cξ0) = 1.

In summary, we have the following theorem.

Theorem A.2 The following statements are valid.

(i) The operator Ã defined in (A.7) generates a strongly continuous semigroup {S(t)}t≥0

on E;
(ii) σ( Ã) = σP ( Ã) = {κi − θ j }∞i, j=0;

(iii) The operator Ã has a real principal eigenvalue ξ0 corresponding to the eigenfunction
 ξ0 defined in (A.12); that is, ξ0 is greater than any real part of eigenvalues of A;

(iv) For the operator Cξ0 , 1 is an eigenvalue with an eigenfunction Φ0(x). Furthermore,
r(Cξ0) = 1.

The proofs of (i)-(iii) are similar to those in Chan and Guo [9, Theorem 1] or Kang and
Ruan [26, Theorem2.2].We omit themhere. The proof of (iv) is shown in the above argument.

A.2 Resolvent Positive Operators

In this section we recall the theory of resolvent positive operators, the readers can refer to
Thieme [47, 48] for details. A linear operator A : Z1 → Z , defined on a linear subspace Z1

of Z , is said to be positive if Ax ∈ Z+ for all x ∈ Z1 ∩ Z+ and A is not the 0 operator, where
Z+ is a closed convex cone that is normal and generating.

Definition A.3 A closed operator A in Z is said to be resolvent positive if the resolvent set
of A, ρ(A), contains a ray (ω,∞) and (λI − A)−1 is a positive operator (i.e. maps Z+ into
Z+) for all λ > ω.

Definition A.4 We define the spectral bound of a closed operator A as

s(A) = sup{Reλ ∈ R; λ ∈ σ(A)},
the real spectral bound of A as

sR(A) = sup{λ ∈ R; λ ∈ σ(A)},
and the spectral radius of A as

r(A) = sup{|λ|; λ ∈ σ(A)}.
If B is a resolvent positive operator and C : dom(B) → Z is a positive linear operator,

then A = B +C is called a positive perturbation of B. If B +C is a positive perturbation of
B and λ > s(B), then C(λI − B)−1 is automatically bounded (without C being necessarily
closed). This is a consequence of Z+ being normal and generating.
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Theorem A.5 [47, Theorem 3.5] Let the cone Z+ be normal and generating and A be a
resolvent positive operator in Z. Then s(A) = sR(A) < ∞ and s(A) ∈ σ(A) whenever
s(A) > −∞. Moreover, there is a constant c > 0 such that

∥
∥(λI − A)−1

∥
∥ ≤ c

∥
∥(ReλI − A)−1

∥
∥ whenever Reλ > s(A).

Now define

Fλ = C(λI − B)−1, λ > s(B). (A.14)

Theorem A.6 [48, Theorem 3.6] Let Z be an ordered Banach space with normal and gener-
ating cone Z+ and let A = B+C be a positive perturbation of B. Then r(Fλ) is a decreasing
convex function of λ > s(B), and exactly one of the following three cases holds:

(i) if r(Fλ) ≥ 1 for all λ > s(B), then A is not resolvent positive;
(ii) if r(Fλ) < 1 for all λ > s(B), then A is resolvent positive and s(A) = s(B);
(iii) if there exists ν > λ > s(B) such that r(Fν) < 1 ≤ r(Fλ), then A is resolvent-positive

and s(B) < s(A) <∞; further s = s(A) is characterized by r(Fs) = 1.

Definition A.7 The operator C : dom(B) → Z is called a compact perturbator of B and
A = B + C a compact perturbation of B if

(λI − B)−1Fλ : dom(B)→ dom(B) is compact for some λ > s(B)

and

(λI − B)−1(Fλ)
2 : Z → Z is compact for some λ > s(B).

C is called an essentially compact perturbator of B and A = B + C an essentially compact
perturbation of B if there is some n ∈ N such that (λI−B)−1Fn

λ is compact for all λ > s(B).

Definition A.8 Let Fλ be a positive resolvent output family for B. A vector x ∈ X+ is said
to be conditionally strictly positive if the following holds:

If x∗ ∈ Z∗+ and F∗
λ x

∗ �= 0 for some (and then for all) λ > s(B), then 〈x, x∗〉 > 0.

Similarly a functional x∗ ∈ Z∗+ is said to be conditionally strictly positive if the following
holds:

If x ∈ Z+ and Fλx �= 0 for some (and then for all) λ > s(B), then 〈x, x∗〉 > 0.

Theorem A.9 [47, Theorems4.7 and4.9]Assume thatC is an essentially compact perturbator
of B. Moreover assume that there exists λ2 > λ1 > s(B) such that r(Fλ1) ≥ 1 > r(Fλ2).
Then s(B) < s(A) <∞ and the following statements hold:

(i) s(A) is an eigenvalue of A associated with positive eigenvectors of A and A∗, has finite
algebraic multiplicity, and is a pole of the resolvent of A. If C is a compact perturbator
of B, then all spectral values λ of A with Reλ ∈ (s(B), s(A)] are poles of the resolvent
of A and eigenvalues of A with finite algebraic multiplicity;

(ii) 1 is an eigenvalue of Fs(A) and is associated with an eigenvector w ∈ Z of Fs(A) such
that (λI − B)−1w ∈ Z+ and with an eigenvector v∗ ∈ Z∗+ of F∗

s(A). Actually s(A) is the
largest λ ∈ R for which 1 is an eigenvalue of Fλ.

Moreover, if Z is aBanach lattice and there exists a fixedpoint of F∗
s in Z∗+ that is conditionally

strictly positive, then the following statements hold:
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(iii) s = s(A) is associated with a positive eigenvector v of A such that w = (s(A)I − B)v
is a positive fixed point of Fs(A);

(iv) s is the only eigenvalue of A associated with a positive eigenvector.

Finally we assume in addition that all positive non-zero fixed points of Fs are conditionally
strictly positive. Then the following holds:

(v) s = s(A) is a first order pole of the resolvent of A.
(vi) The eigenspace of A associated with s(A) is one-dimensional and spanned by a positive

eigenvector v of A. The eigenspace of A∗ associated with s(A) is also spanned by a
positive eigenvector v∗.

A.3 Perron–Frobenius Theory

In this section we recall Perron–Frobenius theory, the interested readers can refer to Marek
[35] for more details.

Proposition A.10 If A is a nonnegative and irreducible matrix, then

(i) the spectral radius r(A) is a simple eigenvalue of A, i.e. from (A − r(A)I )p y = 0 it
follows that Ay = r(A)y and if Ay1 = r(A)y1, y1 �= 0, then there exists a constant c
such that y = cy1;

(ii) corresponding to r(A) there exists one eigenvector x0 with all positive components;
(iii) corresponding to r(A) there exists one eigenvector of the adjoint matrix A′ with all

positive components;
(iv) if A ≥ B and A �= B, then r(A) > r(B).

Moreover, if A is a nonnegative and primitive matrix, the results in the above proposition
hold and in addition, the spectral radius r(A) is a dominant eigenvalue of A, i.e. it is strictly
larger than the modulus of any other eigenvalue λ of A.
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