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1. Introduction

Classical reaction-diffusion equations with Laplacian operators are usually used to model the spatial
diffusion and interaction in population dynamics (Murray [29], Okubo and Levin [32]). However, such equa-
tions are only appropriate for local dispersal of species since Laplacian operators describe the random walk
only when the step size and time size are small compared with the spatial variable and time, respectively.
Whereas recent field data demonstrate that biological populations disperse nonlocally (Nathan et al. [30])
and convolution operators are more suitable to characterize such nonlocal dispersal in population dynamics
(Hao et al. [21], Sherratt [37], Zhao and Ruan [51,52]). On the other hand, time-periodic coefficients have
been incorporated to population dynamical models to characterize seasonal effects of weather, food supply,
mating habits, harvesting seasons, etc. (Cushing [11], Rinaldi et al. [35], Taylor et al. [40]).

Taking both the nonlocal dispersal and time-periodicity into account, in this paper we study time-periodic
traveling wave solutions (periodic traveling waves for short) and spreading properties for the following time-
periodic predator-prey system with nonlocal dispersal

{ (u1)e = di(Jr *ur —ur) +ur(ri(t) = bi(t)ur — ax(t)uz),
(1.1)

(UQ)t = d2(J2 * Uy — U,Q) + Ug(—’l"g(t) — b2(t>u2 + ag(t)ul),

where t > 0, € R, ui(t, z) and ua(t, 2) denote the density of the prey and predators at time ¢ and location
x, respectively. di,dy > 0 are the dispersal coefficients, r;(t), a;(t), bi(t) € CY(R) (i = 1,2) are positive
T-periodic functions for some constant 1" > 0, and 71 = % fo r1(t)dt > 0. The convolution operator J;*v—uv
describes the nonlocal dispersal process and is defined by (Andreu et al. [2], Bates [4])

(J; xv)(t,x) —v(t,z) = /Jl(ac —yo(t,y)dy —v(t,x), i =1,2.
R

Throughout this paper, we always make the following assumption on J;(-) (i = 1,2):
(Hy) J; € CY(R), Ji(—x) = Ji(x) > 0, [ Ji(x)dx =1, and J; has compact support with x; := supp.J; > 0.

The corresponding spatially homogeneous system of (1.1) is

{ ui (t) = ur (8)(r1(t) = ba(t)ua(t) — ar(Bua(t)), 12
uy(t) = ua(t)(=ra(t) — ba(t)ua(t) + az(t)ur(t)). '

By Zhao [53, Theorem 3.1.2], it follows that if 7; > 0, then

u (t) = ua (8)(ra(t) — ba(t)ua(t))

admits a unique positive T-periodic solution p(t), which is globally asymptotically stable for all positive
initial values. Moreover, p(t) can be explicitly given by

poef(: ri(s)ds efoT ri(s)ds _ 1

t) = s y Po = s .
1+ po fot el Tl("')dTbl (s)ds fOT elo Tl(T)drbl (s)ds

(1.3)

Similarly, if aop — 1y 1= & fOT [a2(t)p(t) — r2(t)]dt > 0, then

u(t) = ua(t)(az(t)p(t) — ra(t) — ba(t)ua(t)) (1.4)
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has a unique positive periodic solution ¢(t), which is also globally asymptotically stable.

In the last two decades, there are many studies devoted to periodic traveling waves for monotone time-
periodic evolution systems. For example, Alikakos et al. [1] investigated the existence, uniqueness and
stability of bistable periodic traveling fronts of a time-periodic reaction-diffusion equation, Fang and Zhao
[17] developed the theory of bistable traveling fronts for monotone evolution systems, Zhao and Ruan
[49,50] studied the existence, uniqueness and stability of monostable periodic traveling waves for time-
periodic reaction-diffusion systems, Liang, Yi and Zhao [26] established the theory of spreading speeds and
monostable traveling waves for monotone periodic semiflows. On the other hand, there are many practical
models, such as predator-prey systems and epidemic systems, that are nonmonotone. Due to the lack of
the comparison principle for such nonmonotone systems, it is very interesting and challenging to study the
existence and properties of traveling waves. Recently, Zhang, Wang and Zhao [46,48] proposed a method
based on the Schauder’s fixed theorem to investigate periodic traveling waves for two time-periodic diffusive
epidemic models, Zhang, Wang and Zhao [47] further considered periodic traveling waves for a time-periodic
delayed reaction-diffusion model without quasi-monotonicity.

Since solution maps of the nonlocal dispersal system (1.1) lack compactness with respect to compact
open topology, the method in Zhang, Wang and Zhao [46-48] is not applicable to such nonmonotone time-
periodic predator-prey systems with nonlocal dispersal. To overcome this difficulty, in this paper we prove the
existence of periodic traveling waves of (1.1) (see Theorem 2.12) by appealing to the asymptotic fixed point
theorem (see Hale and Lopes [20], Zhao [53]) with the help of the Kuratowski measure of noncompactness
(see Deimling [12]). The method used here was also applied by Li et al. [25] to a scalar time-periodic nonlocal
dispersal equation with stage structure. The nonexistence of periodic traveling waves (see Theorem 2.14) is
then proved by constructing an auxiliary system and using comparison argument.

Although periodic traveling waves may determine the long time behavior of (1.1) with wave-like initial
values, it is very interesting and important to understand how solutions of (1.1) starting from compactly
supported initial conditions evolve as time increases. Recently, there are some results on the spreading
properties of nonmonotone systems which can be sandwiched by two auxiliary monotone systems, see for
example Fang and Zhao [16], Hsu and Zhao [22], Li et al. [25], Wang [41], Weinberger et al. [42], and Wu
et al. [44]. However, the techniques used in the above references cannot be applied to predator-prey and
epidemic systems. More recently, Ducrot [13,14] and Ducrot et al. [15] considered the spreading properties of
solutions for some autonomous predator-prey and epidemic systems with local diffusion. To the best of our
knowledge, there has been no results on the spreading properties for time-periodic predator-prey systems
with nonlocal dispersal. We would like to emphasize that the main difficulties encountered when studying
(1.1) are the lack of compactness of nonlocal dispersal operators, the lack of comparison principle of the
predator-prey system, and the presence of the time dependence of nonlinearity.

More precisely, in this paper, we establish the spreading properties for solutions of system (1.1) with
compactly supported initial conditions. Roughly speaking, we show that if predators disperse faster than
their prey, then both species spread simultaneously (see Theorem 3.3); whereas if the prey diffuses faster
than predators, then there exist two separate invasion fronts, one front occurs as the prey invades open
habitats, and the other front appears when predators catch up the prey (see Theorem 3.2). Although some
of the proofs are inspired by Ducrot [15] for the autonomous predator-prey system with local diffusion,
there are certain new ideas in this paper which are different from those in [15]. Firstly, to prove that the
prey is always able to spread outside of predators’ range in the case where the prey is faster than predators
(i.e., Theorem 3.2 (ii)), we need to establish a priori estimate for solutions to the nonlocal system (1.1) (see
the proof of Lemma 3.8). Secondly, due to the occurrence of time-periodicity and nonlocal dispersal, the
technique in Ducrot [15] cannot be used to study the lower estimates on the spreading speed. In this paper,
we will generalize the persistence theory in dynamical systems to the initial value problem of (1.1). We
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mention that the multi-front propagation phenomena have been studied intensively for bistable reaction-
diffusion systems and refer to Carrére [8], Fife and McLeod [18], Liu et al. [27], Pol4cik [33], Zhang and
Zhao [45], and the references therein.

The rest of this paper is organized as follows. In section 2, we prove the existence and nonexistence of
periodic traveling waves of (1.1). Section 3 is devoted to the study of the spreading properties of (1.1) to
the initial value problem.

2. Periodic traveling waves

In this section, we consider the existence and nonexistence of periodic traveling waves for system (1.1).
We always assume that (H;) and the following condition are satisfied:

(Hz) asp —rg > 0.
We first give some notations.
Notation 2.1. (i) Set fas := max;c(o, 7] f(t) and fp, := minyejo 7] f(¢) for a given function f € C[0,T] and
J¥ = [g Ji(z)e®ldz(i = 1,2) for any given v € R.
(ii) Denote d := min{d,,ds}, d := max{d;,dy}, and J" := max{JY, J¢}.
(iii) Let 6 > 0 be any given constant. Define

Xo ::{T = (T1,Y2) € C(R,R?): sug 1T (x) e~ < 400,i = 1,2}7
re

w;(0,z) = w;(T,x), Vx € R,i = 1,2}

BT::{w:w Jws) € C(0,T] x R, R?) :
G (wr, wa) € C(0, 7] ) Supreioyack il e~ < +oo

equipped, respectively, with the norms
]l := max{[|T1]l, [ T2llo} = max { sup |1 ()| !, sup [T ()|~ }
zeR zeR

Jwlly = max{lwi |, lwa|§} = max{ sup fua(t,@)le ), sup Jus(t,@)e " |
t€[0,T],z€R te(0,T],zeR

As wusual, a solution (uq(t,x),us(t,z)) of (1.1) is called a T-periodic traveling wave solution if
(Ul(t, Ji), u2(t7 JC)) = (Ul (tv 5)7 UQ(ta f)): § = z+ct, and (Ul (ta 5), UQ(tv 5)) = (Ul (t+T7 5)5 UQ(t+T7 f))v v§7 te
R. It is clear that the wave profile function (Uy(t, &), Ua(t, £)) satisfies

{ (Ul)t + C(Ul)g = dl(Jl * U1 - Ul) + Ul(T’l(t) — bl(t)Ul — al(t)Ug),
(Ug)t + C(Ug)g = d2(<]2 * Uy — UQ) + UQ(*TQ(t) — bg(t)UQ + ag(t)Ul),
where Jz * Ul(ta 5) = f]R J’L(g - y)UZ(ta y)dy7 i = ]-7 2.

In this section, we prove the existence of periodic traveling waves by applying the asymptotic fixed point

theorem combined with the Kuratowski measure of noncompactness. In the following, we state some known
definitions and lemmas.

Definition 2.2 (Zhao [53]). Let E be a Banach space.
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(i) The Kuratowski measure of noncompactness in E is defined by
a(B) = inf{r : B has a finite open cover of diameter < r}

for any bounded set B. Obviously, a(B) = 0 if and only if B is compact. Moreover, a(Bl + Bg) <
a(Bl) + a(Bg) for any bounded sets B; and Bs.

(ii) A continuous mapping f : F — F is said to be a-condensing if it is bounded and «a(f(B)) < «(B)
for any nonempty closed bounded set B C F with a(B) > 0; and it is compact dissipative if there
is a bounded set By in E such that Bj attracts each compact set in E. Clearly, a compact map is
a-condensing.

Lemma 2.3 (Asymptotic fized point theorem (Nussbaum [31])). Let E be a Banach space. If f : E — E is
a-condensing and compact dissipative, then f has a fived point.

To prove that an operator is a-condensing (see Lemma 2.11), we need the following properties of the
Kuratowski measure of noncompactness, see Deimling [12, Section 7.4] and Bana$[3, Lemma 5].

Lemma 2.4. Let E be a Banach space, I C R™ compact and T' C C(I, E) bounded. For each t € I, define
the slice T'(t) := {b(t) : b€ T'}. Then

(i) o(T) > sup,e; (I'(t)). Moreover, if T' is equicontinuous in the sense that for any € > 0 there exists a
d = 0(e) such that sup{|b(t1) — b(t2)| : b € T'} < € whenever [t; —ta| < §, then a(T') = sup,¢; a(T'(¢));

(ii) If T is equicontinuous, then o f(f ['(s)ds) < fot a(T'(s))ds, where fg ['(s)ds := {f(;5 b(s)ds:beT}.
2.1. Construction of a linear evolution system
Set

A\ c) = dg(/Jg(y)e*)‘ydy — 1) —cA+agp—12, A,c>0.
R

One can easily verify that there exists ¢, > 0 such that the equation A(\,¢) = 0 has two positive roots
A1 = A(e) < Ay = Aa(c) for ¢ > ¢,. Moreover, A(\, ¢) < 0 for A € (A1, A2). Recall that ¢(¢) is the unique
positive T-periodic solution of equation (1.4).

Given any ¢ > ¢, let 8 € (0,A1) be small enough such that d1<fR Ji(y)e Pvdy — 1) —c¢f < 0. Take
K € (0,min{)\;, 22521, B}), (t) = exp { fg(ag(s)p(s) —12(s) — agp — r2)ds}, and Ry > 0 such that

w1 s ()™ o i) -

Obviously, A(M\ + &, ¢) < 0. Then, choose a positive number Ry such that

asmpPm Rl + banvionm }

R2>max{1,R1§,— AQ +r0)

Based on the above choice of the numbers j3,x,Ri, Ry, we now define two functions U(t,&) =

(Ul (t7£)7U2(t7€)) and Q(tvé-) = (Q1<t,£>,g2(t,§)) as follows

U (t,€) =p(t), Uy(t€) =max{0,p(t)(1 — Rye )},
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Us(t,§) = min{e™*o(t),q(t)}, Us(t,€) = max{0, e p(t)(1 — Rae™)}.

Lemma 2.5. The function Us(t,£) satisfies

(U2 + e(Ua)e - dalJa + U = U] = Ualaaltp(t) = ra(t) — ba(Ta] 2 0, W6 # -l Z(é))

Proof. If £ < )\1 In q((?), then Us(t, &) = e*18p(t). By some calculations, we have

(Us)t + c(Us)e — dao[Jo * Us — Us) — Usas(t)p(t) — ra(t) — ba(t)Us)]
= o(t)[aa(t)p(t) — ra(t) — agp — r2)e™s 4+ chyp(t)errs

- dQ@(t)e/\lg(/ Ja(y)e MVdy — 1) — p(t)eMEaz(t)p(t) — ra(t) — ba(t) U]

R

> o[~ T+ oh — da( [ Rl vy —1)] =0,
R

If € > 5L In 20 then Us(t,€) = g(t). Thus

(U2)t 4 c(Ua)e — da[Ja x Uy — Us] — Ualaz(t)p(t) — ra(t) — b2(t)Us]
= ¢'(t) — q(t)(aa(t)p(t) — r2(t) — ba(t)q(t)) = 0.

This completes the proof. 0O
Lemma 2.6. The function U, (t,§) satisfies

(U)e +e(Uy)e — dil Iy« Uy = Uy = Uy ra(8) = (6T, — aa(1)T2] < 0, Vf#gln%l

Proof. Clearly, §In 7 <0.1f € > §1In -, then U, (¢,€) = 0. Thus
(U +c(Uy)e —di[Jy« Uy — U] — Uy [r1(t) = bi(8)U; — aq(£)Us] = 0

If ¢ < %ln R%, then U, (t,&) = p(t)(1 — R1e%). By the choice of Ry, %ln 1 -In sa((?) and hence,
Us(t,§) = eMép(t). Noting that p/ () = p(t)[r1(t) — bi(t)p(1)], thus

Uyt +cUy)e —di(Jy Uy —Uy) = Uy (r1(t) = b (U, — aa (£)U>)

)
=p/(t)(1 — R1e®) — cBRyp(t)e’s + leleﬁEp(t)(/Jl(y)efﬁydy — 1)
R

= p()(1 = Rae”)[r1(t) — b1 (1)U, — a1 (H)U-2]
= p'(t) = p(t)[r1(t) = br(&)p(t) + br (8)p(t) Rae™ ] + p(t)ar (1)U
—p'(t)R1€P¢ — p(t)R,eP® (CB —d ( / Ji(y)e PYdy — 1))

R
+p(t)Rie™ [r1(t) — p(t)br (1) + b (8)p(t) Rie” — a1 (1) U]
< [ = p)br(t)R1€P + ar ()T ]p(t) + Rap(t)e’ [Raby (t)p(t)e” — a1 (1)TUs]
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= p(t)(R1e” = 1)[Rap(t)b1 (t)e”s — a1 (t)p(t)e ]
< (R’ = 1) [p(t)bi(t) Ry — ar (t)(t) | p(t)e*s < 0.

This completes the proof. O

Lemma 2.7. The function U,(t,£) satisfies

(Ug)i + c(Uy)e — da(J2 * Uy — Uy) — Uslaa(t)Uy — ra(t) — ba(t)U,] <0, VE # %m R%.

Proof. Obviously, %ln R% <0.If¢> %ln R%, then U, (t, &) = 0. Thus
(Up)e + c(Up)e — do(J2 Uy — Uy) — Uyp(az(t)Uy — r2(t) — b2(t)Us) = 0.

If € < LIn 7, then Uy(t,€) = p(t)eM€(1 — Rye). Since Ry > Ry, we have 2In - < Lln -, and hence
U, (t,€) = p(t)(1 — RyeP%). Noting that 0 < x < min{j, \; }, direct computations show that

(Us)t + c(Us)e — da[Jo Uy — U] — Uslaa(t)Uy — 12(t) — b2(t)Us]
= <p(t)e’\15 {ag(t)p(t) —ro(t) —agp —re + cAy — da ( / Jg(y)e_hydy — 1)
R

— az(Op(t) (1 = R1e%) + ra(t) + ba()p(t)e™€ = Raba(t)p(t)e ™ <]
— Rgﬁp(t)e()‘1+ﬁ)£ [ag(t)p(t) —719(t) —asp — 19 + c(M\1 + K) — R2b2(t)@(t)e(>\1+n)§

—dy / Ja(y)e” Oy 1) — as(Bp(t)(1 ~ Rie™) 4 ra(t) + ba(t)p(t)e <]
R

= p(t)e™ [aa(t)p(t) Rie® + ba(t)p(t)eM€ — Raba(t)p(t)eM ] — Ryp(t)eMr 7
X [ = A\ + K, ¢) + aa(t)p(t) Rie® + ba(t)p(t)e€ — Raby(t)p(t)eM T4
= [ag(t)p(t)Rleﬁ£ + bo(t)p(t)eMs — Rgbg(t)ap(t)e()‘l"’“)q ©(t)eME (1 — Ryer®)
+ Rggp(t)e(/\1+”)£A()\1 + K, C)
< [as(t)p(t) R1e®® + ba(t)p(t)eM] ()€ + Rap(t)eM THEA (N + K, )
£)eN 1T [ay (£)p(t) Riel’ % + by () () e ™ + RyA(M + K, )]
e T agnrpar Ry + banroar + ReA(M + K, ¢)] < 0.

This completes the proof. O
Take oy = 2byppar + qurary and as = rops + 2qprbans, and define
Pr={Ve€Bj :Ut,§) <V(t,§) <UtE)}.

It is clear that I'7 is bounded in C([0, T x R, R?) with respect to the norm ||-||7. For any V = (V;,V2) € 'z,
we define NV (V) := (N1(V),N2(V)) by

MV)(t,€) = arVi(t, &) + Vit §)[ri(t) — bi(H)Vi(t, €) — ar(t)Va(t, E)],
N2(V)(t7 g) = a2‘/2(t7 g) + ‘/2(t7 f)[—7“2(t> - b2(t)vv2(t’ §> + a’2(t)vl(t’ 5)]
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For given V = (V1,V3) € T'r, consider the following linear evolution system

{ (Ui = di(Ji % U = U;) — c(Up)e — iU + N3(V), t € (0,T], E€R, i=1,2,
(U1(0,€),U2(0,8)) = (U7 (), U3(€)) € Xp, £ €R.

2.2. Properties of solution maps of the linear system

In this subsection, we consider the properties of solution maps to a linear system related to (2.2). Let
T(t) := (T1(t), T2(t)) : X9 — Xp be the solution map associated with the linear system

{( )t—ﬁU —d( ik U; — U) (Ui)g—aiUi,t>0,§€R,iZl,Q,
(2.3)

(U1<O’§)’ U2(07£)) = (U{)(f), Ug(f)) € Xy, £ €R,

where the domain of the linear operator £ := (L1, L2) is D(L) = {U = (U1,Us) € Xy : Ug € Xy}. According
to Bates and Chen [5, Lemma 2.1], for each t > 0, T (¢) is a positive operator on Xy. We further denote
G(t) := (G1(t), Ga2(t)) by the solution map associated to
{(ui)t:di(Ji*ui_ui)_aiuiat>0a£€R7izlvzv (2.4)
2.4
(u1(07€)7u2(07§)) = 1/}(5) = (¢1(§)»¢2(§)) € X97 f eR.

Obviously, Gy = ( 1) [Y1], G2(t)[th2]) for any 1 = (P1,12) € Xg. Define ag(¢i)(§) = ¢i(§) and

ar (i) (€) = Jg Ji(€ — y)ar—1(¢:)(y)dy for any integer k > 1. It follows from Weng and Zhao [43] that
Gi(t)[Wil(§) = e™ " Pi()[¥](€), Yt >0, € € R, (Y1,¢2) € X, (2.5)
where (P (t), P2(t)) =: P(t) is defined by P;(t)[1;](&) = e~ Z ak(wz)(f). Moreover, we can see that

T ()] = (To(t) Y], T2(t)[p2]) for any ¢ = (¥1,1)2) € Xy, Where

Ti()[ihi] () = e~ (itet 3~ (dit)kak(wi)(g —ct), Vt>0, E€R, i=1,2. (2.6)

k!
k=0
Then, we have the following result.
Lemma 2.8. There exists a 6y > 0 such that for any 6 € (0, 6], ||T(T)|lo < 1.

Proof. For any ¢ = (11,12) € Xy, we get |lao(¥)]lo = ||#|lo and

lak (1) (€)]e ™K < / Ji(y)ar—1(1:) (€ — y)|dye " < T {|ar—1(¥s)llo

R

for ¢ € R, k > 1. By induction, we obtain [ax(¢:)|lo < T llar—1(¥i)lle < -+ < (T2 ille < (TE)*I1¢lo-
It then follows that

ITa() [ (§)]e0I1¢) < e (dites) Z |ak bi)(€ — ct)|e0el
k=0 k!
elfc—di—a tz |ak 712)1 7Ct)|6*9|5*ct‘
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oo
ooemtmei s gt T )y = ctoemsimctationy,

where : = 1,2, £ € R and ¢ > 0. Thus, for any ¢ > 0, we have
IT @) ]llo < max{e@edmortIidt p(femdimaatTidalty |y, (2.7)
In particular,
IT(T)[W]lo < max{efemdi=ontTdIT (Oemdamant T d)Ty |||, (2.8)

Since limg_,o+ elbe—di—ai+TPd)T — o=aiT < 1, i = 1,2, we deduce that there exists a 6y > 0 such that for
any 6 € (0, 6],

||T(T)H9 = sup ||T(t)[¢“|9 < max{e(ecfdlfalJrJledﬂT’e(ecfdzfangdeg)T} <1.
Ylle=1

This completes the proof. O
Denote o := min{ay, as}. Given any 6 > 0 and L] > 0 (i = 1,2), define
Ve+ i ={Y € Xp:(0,0) <¢(z) < LT :=(L{,LT), Vo € R}.

Then Yy + is a nonempty, closed, and convex subset of Xy. We further prove that for each ¢t > 0, 7 (¢) is an
a-contraction on Yr+ for small § > 0. More precisely, we have the following result.

Lemma 2.9. For any given 0 > 0, a(T (t)[Vr+]) < el0c=4=2ta (Y1) for any t > 0.

Proof. Note that for any ¢ = (¢1,12) € Yr+, we can conclude that 0 < ax(3;)(x) < L] for any k > 1 and
z € R, i =1,2. Then by (2.6), we can obtain that 7 (¢)[¢)] € Xy with 0 < T(¢)[¢](-) < L*; i.e., T(¢) maps
Y+ into itself. By (2.7), for any v, ¢ € Yp+, we have

1T — TE)[@llls < Pt T Dejjy — g, (2.9)

Thus, T (£) is a continuous map on Yy +. Set T(t) = T () + T (1) = (T, (1), TV () + (T2 (1), T2 (1)),

where

k' (z —ct). (2.10)

TOOW) = o — ), TO @) = e ooy 1
k=1
By an argument similar to (2.7), we can show that |71 (t)y — T (t)¢|lg < eP=4=2||¢p — $||p holds.
Thus, a(TW ()[Vr+]) < elle=d=2tq (Y4 ) for any t > 0.
Next, we show that 7(?)(¢) is compact for each t > 0. For any 1) = (¢1,%¢3) € Y+ and yi1, 42 € R, we
have

T2 O 1) = T2 (Ol ()]

< e (ditant ; (dkt) lak (Vi) (y1 — ct) — ar (i) (y2 — ct)]
0 1k
— e~ (ditai)t Z (d;f') /(Ji(yl —ct—y)— Ji(ya — ct —y))ar—1(¥;)(y)dy
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+,—(di+ay)t = (dit)k
<LTe ZT |Ji(z +y1 — y2) — Ji(2)|dz
= R

< Lfe_(dJrg)t(@Et — Dhi(y1 — v2),

where h(x) = [g [Ji(z+2)—Ji(2)|dz, Vo € R. Since lim,_,o h;(x) = 0, it follows that the family of functions
{T; 2)( t)[¢ z]( ): 0<% < LT} (i =1,2) is equicontinuous in = € R.

Thus, for any given sequence {(¢;)n := 7;-(2) O [(Wi)n]tn>1 C 7;(2)(t)[yL+], there exist n,, — oo and
;€ C(R,R) such that lim,, 00 (Pi)n,, () = ¢; (z) uniformly for z in any compact subset of R. Note that
(¥i)n,, € Vi+, it follows from (2.10) that 0 < (¢i)n,, (¥) < L, and hence, 0 < ¢} (z) < L, Vz € R.

7 7

Obviously, limg 460 L;"e")'x' = 0. Hence, for any £ > 0, there exists K7 > 0 such that
[(6i)n,, () — @ (x)]e 0l < 2Lte 0%l < o), V]z| > Ky, i =1,2.
Since limy,—s 400 (@4 )n,, () = 5 (z) uniformly for x € [— K7, K], there exists an integer m* such that
[(¢i)m,, (x) — @ (x)|e” 7l < &1, Vo € [-K1, K1), m>m*, i=1,2.

Thus, we conclude that lim,, 4o [|¢n,, — ¢©*|l0 = 0, which implies that 73 (¢)[);+] is precompact in Xj.
Hence,

ATOVr+]) < AT OWVr+]) + (TP @)Vr+]) < 7D 0a(Yy4)

for any t > 0. The proof is completed. O
2.8. Construction of a nonlinear operator
In this subsection, we first convert (2.2) into an integral system, then we construct a critical nonlinear

operator H : I'r — T'r whose fixed points generate periodic traveling waves of (1.1).
Obviously, we can rewrite (2.2) as the following integral system

U;(t,&) = )+ /T (t —s)IN:(V)(s,)](&)ds, i=1,2, (2.11)
0

where ¢ € [0,7], £ € R. Then we have the following result.

Lemma 2.10. Assume that V = (Vi,Va) € T'r and U® = (UL, U9) € Xq with U(0,-) < U°(-) < U(0,-). Then
the solution U(t,&) = (U1(t,€),Ua(t, €)) of (2.11) satisfies

U(t,€) < U(t,€) S TUE) for (t,€) €[0,T] xR. (2.12)

Proof. The proof of this lemma can be divided into the following steps.
Step 1. We show that

U (4,€) < T ()T (0,))(€) + / Tilt — )L (Uy, Ta) (5, )](€)ds, (2.13)

U,(t:€) < Ta(H)[U-(0,)I(€) + /75(t — 5)Na(Us, Us)(s,)I(§)ds, (2.14)
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Us(t,€) = T2()[U2(0,)]() + /75(t = 8)N2 (U1, Uz)(s, )| () ds.

67

(2.15)

We only prove (2.13), since (2.14) and (2.15) can be proved similarly. Let V;(¢,&) := U, (t,€ + ¢t) and

Va(t,€) :=Ua(t, & + ct) for any (¢,£) € [0,T) x R. To prove (2.13), it suffices to show that

t

Vi(t,€) < Gi(t)[V4(0,4)](€) + /Gl(t — 8)IN1 (Y, V2) (s, )](&) ds.

0

For any ¢ € [0,T], by Lemma 2.6, we have

— 1
(Z1)t < dl[Jl * YV _21] — a1V, +N1(£1av2)7 VE# — 3 th_ —ct, te [O T]
1

Recall that
[e%s) s k
Galt — Wy (s,)(©) = =0 3 I e,
k=0

Define

Bi(t,6) == —(Vy)e + di(Jr % Yy = Vy) — arVy + Ni(Vy, Va)(8,6), V(t,€) € [0,T] x R.

By a direct computation, it then follows that

0
=Gt =)V (s, )E)

= (o + et 3 DO ) e

k=0

et )+ (5 D) )6
k=1 '

= (o + )Gt = )V 5. + T Ty (5, ) e

) AR 1 > —5))F
<[> O s+ S D oy s.te)]
b1 k=1

|

= (01 +d1)Gi (t = 8V, (5,)](6) + Gt — ) V1 (5,)] €)

o)

S

(@1+d1)(t—s) d1 (di(t—s)"" )Rt
— dyetorta z b e a2 )E)

= (o1 +d1)Gi(t = 8)[V1(5,)](€) + Gi(t — 5) [ — Bi(s,-) +di(Jy % Yy = Vy)(s,)
— a1V (s,7) + Ni(Vy, Va)(s,)](€) — diJi + Gi(t = 5) [V (s, )](€)

= (o1 +d1)G1(t = s)[Vy(s,)](§) — didy = Gi(t — s)[V4(s,)](€)
+ diGi(t =) [(J1 * Yy = V)(5,9)](€) — arGalt = 5) [V (s,-)](€)
+ Gt — 8) [N1(Vy, Va)(s, ) — Ea(s,)] (€)

=Gt —s)[Mi(Vy, Va)(s,) — En(s,)](€), 0<s <t <T.

(2.16)
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Integrating both sides of the above equality from 0 to ¢, we have

t

Vi(t,€) = Gu(H)[4(0,)(€) = /Gl(t — 8) [N (Y1, V2)(s,°) — Ea(s, )] (§)ds. (2.17)

0
Further, since E1(t,&) > 0, V€ # %ln R% — ct, it is easy to verify that

/Gl(t — 8)[E1(s,-)](&)ds > 0 for t € [0,T], V& € R.
0

Thus, (2.16) follows from (2.17), and hence (2.13) holds.
Step 2. We show that (2.12) holds. Since V = (Vi,V3) € I'r, we have U(t,&) < V(t,€) < U(t, &) for
(t,€) € [0,T] x R. By Uy (t,€&) = p(t), it then follows that
¢
Ui(t,€) = T[T + /Tl(f —8)[U1(s,) (a1 +71(s) = ba(s)U(s, )] ()ds.

0

In view of UY < U(l), Vi < U, and the positivity of 7;(+), we have

Ui (ta g) - Ul (ta 5)

t

= Ti(O[UT1() + /’E(t =) [Vils. ) (1 +71(s) = bu(s)Va(s, ) — ar(s)Va(s, )] (§)ds

~ L)) - /Tl(t =) [U1(s,) (a1 +71(s) = ba(5)U1(s,)) [ (§)ds

0

< /7'1(15 —5) [(al +71(8) — bi(s)(Vi(s,-) + Ui(s, ))) (Vl(s, ) —Uy(s, ))] (&)ds
0

< /ﬂ(t - S) [(Oxl + "1 — 2b1MpM) (Vl(s, ) — Ul(s, ))} (§)ds, vVt € (O,T}
0

By a1 = 2biypar + qarains > 2biympar — Tim, we have Uy (¢,€) < Uy (¢, €) for any t € [0,7], € € R.
Now, we show that Us(t,€&) < Ua(t,€), V(t,€) € [0,T] x R. Noting that as = raps + 2qarbans, it follows
from (2.15) that

Ug(t,g) - UQ(tvf)

t

z%@@%@ffmvwhﬁw»

- BOUSNE - [ Tatt - 9)[aztals.)

0
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+Va(s, ) (=ra(s) — ba(s)Va(s, ) + az(s)Vi(s, )] (§)ds

> /E(t —5)[(a2 = 7r2(s) = ba(s)(Ua(s, ) + Va(s, ) (Ta(s, ) — Va(s, )] (€)ds

t

> / To(t — 5)[ (s — ranr — 2banraar) (Tals, ) — Vals, )] (€)ds = 0.

Thus, Us(t,§) < Ua(t,€), V(t,€) € [0,T] x R.
13

Moreover, by (2.13) and aq = 2bippar + a1arqar, one has

Ui(t,€) = Uy (t,€)

> Tt +/71t—s 01 (Vi(s,) = Uy (5,)) + Va(s, ) (1 (5)
0

= bi(s)Va(s, ) — a1 (s)Va(s, ) = Uy (s, ) (r1(s) = ba(s)Us (s, ) — ar(s)Ua(s, )] (§)ds

> /ﬂ(t —s)[(a1 +71(s) = ba(s)(Va(s,-) + Uy(s,-)) — ai(s)Ua(s, "))
0
X

> /ﬂ(f —5)[ (a1 — qurarar — 2b1par) (Vils, ) — Uy (s, )] (£)ds = 0,

which implies that Uy (¢,§) > U4 (¢, €), V(¢, &) € [0,T] x R.

Similarly, using (2.14) and as = rop + 2qarbans, one can show that Us(t, &) > Us(t, &) for all (¢,€) €
[0,T] x R. This completes the proof. O

Given V = (V1,V,) € 'y and U° = (U, UY) € Xy with U(0,-) < U°(+) < U(0,-), it follows from (2.11)
that

Ui(T, ) = +/ 5,)](€)ds, i =1,2. (2.18)

From Lemma 2.8, |[T(T)||¢ < 1 for any @ € (0,6p]. Thus, if (U (T,-), U2(T,-)) = (U(-),U2(+)), there holds

T 0 T
() / TT - )NV (5, )lds = S (Ti(T))* / Ti(T = $)N(V) (s, )]ds.
0 0

k=0

For any given V = (V1,V32) € T'p, let U*(¢,&) = (U5 (¢, ), Us (t,&)) be the solution of the following equation:

k=0

] T t
—Ti() S (T(T))* / TiT — $)INA(V) (s, ))(€)ds + / Ti(t - s) 5,)](€)ds
0 0

for (¢,€) € [0,T] x R. Clearly, U*(T,-) = U*(0, ). Moreover, it follows from Lemma 2.10 that U* € I'r.
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We now define a nonlinear operator H := (Hi, Hsz) : I'r — I'r by H(V) = U*; that is,

Hi(V)(€) = Ti(t) 3 (T(T))* / T — ) INi(V)(s,)](€)ds

k=0
t

+ / Ti(t — $)IN:(V)(s, ) (E)ds, (.6) € [0.T] xR, i =1,2.

0

Before proving that H is a-condensing, we state an additional assumption:

(Hg) d > max{C’l,C’g}, where él ="y + 4b1Mp]\/[ + 2a1 090 + a1 P and 62 = 2r9nm + agM(pM =+
qm) +4qnrbans .

We remark that (Hsz) holds for enough large di and dy, since C; and Cy are independent of d; and ds.
Lemma 2.11. Assume that (Hy)-(Hs) hold. Then H : T'r — T'r is a-condensing.

Proof. For any U := (Uy,Us),V := (V1,V3) € 'y, by some calculations, we have

VL) (t,€) = Na(V)(2,€)|e ¢!
= |on(U1(t,€) = Va(t, €)) + ri(8) (U (£,) — Va(t, €)) — bi (1) (UF (¢, €) — V2(£,6))
— ay(t)(Ur(t, )T (t, €) — Va(t, ) Va(t, &) e !
< aq|U1(t,€) — Vi(t, &) e Y&+ (1)UL (8, €) — Va(t, &)|e~ ¢!
+ b1 ()] (U1 (t,€) = Vi(t,€)) (U (£,6) + Vi (8, €))[e "]
+ay (|0 (t, &) (Ua(t, €) — Va(t,€)) + Va(t, ) (U1 (t,€) — Vi (t,€))|e K
< |0 = VIIF +riar|U = VIIF + 2biarpar |T = VI + avar (par + aan) |0 — V[T
=Gl|lT-V|§

and

IN2(T)(t,€) = Na(V) (¢, €)|e"1¢!

= |aa(Ta2(t, &) — Va(t, €)) + az(t) (U1 (t, ) Ua(t, &) — Va(t, ) Va(t, €))
—r2<)<U( €) = Va(t,€)) = ba () (T3 (t,€) = V5 (¢, €)) e *I¢]

az|Us(t,6) = Va(t, &)e™ 1 + as ()| U1 (£, €)Us(t, ) — Vi (£, £)Va(t, §)[e*I¢!

+rz<>| Us(t,€) = Va(t, §)le™ 18 + by (4)|U3 (£, ) — Vi (¢, €)|e ™l < Co|| U — V|17 .

Thus, |N(U) = N(W)||T < C||U - V||I', where C := max{Cy, Cs}. It then follows that a(N(B)) < Ca(B)
for any bounded and closed set B C I'r. By Lemmas 2.9 and 2.4, for any nonempty bounded closed set
B C T'y, we have

a(imm)’f /T T = NGB s )

k=0
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1
- /e(ec—d—g)(T—s)dsa(/\/}(B))

— 1 — el0c—d—a
0

elfem )T —(bc—d—a)T
= (1= e6e=d=2)T)(d + o — 6c) e Ot _1]a(N(B))
C
S dra—0 B

¢ | elbe-d-a)i _
By+-__< =
g—@ca( )+ d+a—0c

C
= B-
C_i+g790a( )

Similar to Lemma 3.8, we obtain that (U;): (¢ = 1,2) is uniformly bounded. Therefore, H(B)(t) is bounded
);

and equicontinuous. By Lemma 2.4 (i), we get a(H(B)) = sup,cp,r) @(H(B)(t,-)). Thus, a(H(B)) <

d*OC:H»aa(B)' Since d > C, we obtain

lim ¢ ¢ <1
050+ d—0c+ d—l—g ’

Hence, there exists some sufficiently small 6 > 0 such that -=— < 1.
Consequently, for any nonempty bounded closed set B C FT w1th a(B) > 0, there holds a(H(B)) < a(B);
i.e., H: 'y — 't is a-condensing. This completes the proof. O
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2.4. FEzistence of periodic traveling waves

In this subsection, we show that a fixed point of the nonlinear operator H generates a periodic traveling
wave of (1.1). In fact, we have the following result.

Theorem 2.12. Assume that (Hy)-(Hg) hold. Then for each ¢ > ¢, system (1.1) has a periodic traveling wave
U(t,€) = (U1(t,€), Ua(t,€)) satisfying 0 < Ui(t,€) < p(t) and 0 < Us(t,€) < q(t) for (t,€) € R?, and

lim Ui(t,€) =p(t), lim Us(t,€) =0 uniformly in t € R. (2.19)
{——o0 £——o0

If, in addition, r1 —a1q > 0, then liminfe_, o Ui(t, &) > 0 uniformly in t € R.

Proof. By Lemma 2.11, the map H : I'r — I'p is a-condensing. We can verify that H : 'y — I'p is
continuous with respect to || - ||7'. Note that I'r is bounded in C([0,7] x R,R) with respect to the norm
| - |¥. From Lemma 2.10, we see that H"(I'y) C I'y for any n > 1. It then follows that # is compact
dissipative. By the asymptotic fixed point theorem (Lemma 2.3), H has a fixed point W = (Wy, W3) € T'p.
Clearly, W(0,-) = W(T,-) and U < W < U on [0,T] x R. Moreover,

¢
Wit &) = T (0)[W; +/ (t — )N (s, ) (€)ds, i = 1,2.
0
Define U(t, &) = (Ui (t, ), Us(t,€)) := W(t — moT, &) for all (t,&) € R?, where mg € Z satisfies moT < t <
(mo + 1)T'. It follows that U(t +T,€) = U(t,€) and
U(t,€) <U(t,€) <U(t,€) for all (t,€) € R%. (2.20)

Noting that U(0,&) = W(0,¢), we get

Ui(t,€) = Ti()[U:(0,)](€) + / Tilt - $)INAU) (s, )](E)ds, i = 1,2.
0

Thus, U(t,€) is a periodic traveling wave of (1.1).

It is clear that 0 < Uy (t,€) < p(t) and 0 < Ua(t,€) < q(t) for (t,€) € R%. Now, we prove that U;(t,&) > 0
for (t,£) € R?, i = 1,2. Assume, by contradiction, that Uj(tg,&) = 0 for some (to,&;) € R% Then from
the first equation of (2.1), we have [p Ji(y)Ui(to,& — y)dy = 0. By (Hi), there exists yo > 0 such that
J1(yo) # 0. By the continuity of Ji, there exists ag > 0 such that J;(y) # 0, Yy € [yo — ao, Yo + ao]. Since
Ji(y) = Ji(—y), it follows that

/ T U (o, €0 — y)dy = / Ty Ui (o, €0 + y)dy = 0.

R R

Thus Ul (t07€0 + y) = 07 Vy S [yO — ap, Yo + ao]’ and hence7

Ui(to,y) =0, Vy € & + [—yo — a0, —Yo + ao] U [yo — ao, Yo + aol.

Let so = &0 + yo + ap and observe that U;(tg, s9) = 0. Thus, we can argue as above to obtain
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Ui(to,y) =0, Yy € so+ [—yo — ao, —yo + ao] U [yo — a0, Yo + ao)-

In particular, Uy (tg,y) = 0, Yy € & + [0, 2ap]. Repeating the argument with sg = &y + yo — ap, we have
Ui(to,y) = 0, Vy € & + [—2a0,0]. It then follows that Uy (tg,y) = 0, Yy € & + [—2ao, 2a¢]. By induction,
we see that Ui(to,&) = 0, V€ € R, which contradicts the fact that lime, o Ui(to,§) = p(to) > 0. Thus,
Up(t,€) > 0 for (¢,£) € R2. Similarly, we can get Ua(t,€) > 0 for (¢,&) € R2.

By (2.20) and the definitions of U(t,¢) and U(t,€), (2.19) follows. It remains to show that
liminfe 400 Ui(£,£) > 0 uniformly in ¢ € R. Since Ux(t,&) < q(t) for (t,€) € R? it is clear that
uy(t,x) := Uy (t,x + ct) satisfies

(u1)e > di(Jr*ur —ur) +ur(ri(t) —ar(t)q(t) — bi(t)ur), wi(0,2) = U1 (0,z). (2.21)
Let v(t,z) be the unique solution of the following initial value problem:
ve =di(Jyxv—v) +o(ri(t) —a1(t)g(t) — b1 (t)v), v(0,z) = U(0,x). (2.22)

Since r1 —a1q > 0, it follows from the comparison theorem and the result on spreading speed for scalar
time-periodic and nonlocal dispersal equations (cf. [24]) that

liggf[ul(t, 0) — v (t)] > litm inf[v(t,0) — vs ()] = 0,

— 00

where v, (t) is the unique and positive T-periodic solution of the equation: v'(t) = v(¢)(r1(t) — a1(t)q(t) —
b1 (t)v(t)). Consequently,

1
liminf Uy (¢, ¢(t + nT)) = lim inf uq (t + nT,0) > w := = min v, (¢) uniformly in ¢ € R,

n— oo n—o0o t€[0,T]
which implies that liminfe_, 4 o Ui(t,€) > w > 0 uniformly in ¢ € R. The proof is completed. O

Remark 2.13. (i) Note that in Theorem 2.12, the condition that J;(-)(¢ = 1,2) has compact support can be
replaced by J := [ Ji(z)e”1*lda < +o0 for any v > 0.

(ii) For this moment, due to the occurrence of time-periodicity and nonlocal dispersal in the predator-prey
system, we cannot obtain any information on the asymptotic behavior of the second component Us(t, &) of
(U1(t,€),Us(t,€)) at +00. We leave this for our future research.

2.5. Nonexistence of periodic traveling waves

Noting that xs := suppJa > 0, [g Jo(x)dz = 1 and Jo € C(R), we have fXQ/ J2(y)dy < 1. To prove
the nonexistence of periodic traveling waves with speed ¢ € (0,¢,), we impose the following additional

assumption
x2/2 T
(1) ds(1 - / By)dy) > p = / £) — ro(t))dt.
—x2/2 0

Roughly speaking, assumption (Hy) reflects that the dispersal kernel Js is not too concentrated. In other
words, since Ja(z — y) describes the movement of predators from location y to location z, (Hs) assumes
that predators do not disperse in large group. In fact we will prove the nonexistence result by applying
the method of contradiction. The condition (Hy) is used to ensure the existence of a positive solution of
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an auxiliary problem (2.23). Using this result, one can construct a lower solution for a related equation of
system (1.1) and then easily obtain a contradiction.

Theorem 2.14. Let (Hy)-(Hs) and (Hy) hold. Then for any ¢ € (0,c.), system (1.1) admits no positive
periodic traveling waves satisfying (2.19).

Proof. Suppose, by contradiction, that there exists such a periodic traveling wave satisfying (2.19) for some
0 < ¢ < ¢4. By (Ha), it follows that p > 0. Then there exists g9 € (0,1) such that

T
1
T/ —¢) — ro(t) — ba(t)e]dt > 0 for any € € (0, gg].
0
=AY oy —
It is easy to see that Cy = }1\1’1% dz(fm JQ(y)E)\ dy 1)+p. Thus, by (H4)7 we can fix € € (0,80) such that
>
x2/2
d Jo(y)e Mdy — 1) + p.
0<e<c = )1\r>1f0 2(Jp 22(v) 3 y=+r and d2(1 — / Jg(y)dy) > pe-
—Xx2/2

Since lime—, oo U1 (¢, €) = p(t) and limg_, o Ua(t,€) = 0 uniformly in ¢t € R, we can choose M, > 0 such
that p(t) —e < U(£,€) < p(t) + e and 0 < Uz(t,€) < € uniformly in ¢ € R, V€ < —M,. Define

= exp — &) —ra(s) — ba(s)e]ds — pet ;.
{ fleaor }

Clearly,
D) _ 0y 1) p(1) — ) = 72(t) — baDIQ: (1) — Q- 1)

Fix a co € (¢, ¢;) and choose £1,&> € R with §; = & — 42 and & < —M.. Consider the following auxiliary
problem:

ol (@) = da ([$ Jala = p)h(y)dy — h(x)) + pohla), @ € (&1,
h&r) =

We prove the following claim:

Claim: The initial value problem (2.23) has a solution h(x) € C([¢1,£2],[0,1]).
Indeed, problem (2.23) is equivalent to the integral equation

(2.23)

T &2

—d2(p _da(y_gy[d2 e
h(z)=e e ( 61)+/€ a )[ /Jg(s—y)h(y)dy—i—p—

Co Co
&1 &1

h(s)|ds, @ € [61, 6],

Define T':= {¢ € C([&1,£],[0,1]) : ¢(€1) = 1}, and an operator T : T' — C[&1, &) by

x &2

~ da

Tolle) =80+ [ 8002 [ oo - oty + Eoto]a

Co
&1 31
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Note that for = € [£1,&2] and s € [&1, 2],

&2 s—&1 £2—&1 X2/2
/Jz(s —y)dy = / Jo(y)dy < / Jo(y)dy = / Jo(y)dy.
131 s—&2 &1—¢&2 —x2/2

For any ¢ € I, we have

d, z [P X2/2
- d
Tlo)(w) < e 1 2 /eﬁﬁ%@L/b@—ywy+1f / Jo(y)dy) ds
0
&1 &1 —Xx2/2

<e < e 4 2 da /e B9 gy

Co
&1

a d
< eTe(8) 41 _ T @8 o 1, Vo € [£1,&)

It is clear that T[#](-) > 0. Hence, T(T") C T
For any « € [£1,&] and ¢, ¢ € T, we have

T16]() ~ Tldl(a \—\/'"“E”d{/ks— iy -+ 220(s) s
/ oz@@/bs— Dy + ()] as|
&1

x

B P\ [~ Be9g516— & LYo -6
SQM%J/SO dsllo — ] < (1+ )6~ 4],
&1

which implies that 7" is continuous. Further, for any ¢ € I, we have that

&2
i~ _ _@ -2z (z—gy) @/ _ Pe
| Tl = | = Zem 070+ 2 [ e )y + o)
&1
ds | a |
-2 [ B2 [ (s - oty + ()] ds
Co Co Co
&1 &

d d d [ 3d, 2
<2% &+3[3+&]/6 Bems)gg < %2 | 20
Co Co co Co Co Co Co
&1

which implies that T'(T") is compact. By the Schauder’s fixed point theorem, we conclude that T has a fixed
point & in T'. Hence, (2.23) has a solution h(z) € C([¢1, &), [0, 1]). This proves the claim.

Define w(t, ) = h(z)Q.(t) for t € R and z € [£1,&)]. Then, one can easily see that w(t + T,z) = (t, )
for x € [&1,&2] and
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&2
(0)¢ = do ( / Jo(z — y)w(t, y)dy — @) —co(W0)s + [az(t)(p(t) — &) — r2(t) — ba(t)e]w
&1

for t > 0, € (&,&). Since Uz(0,&) > 0 for £ € (&1,&2), there exists an e > 0 such that Uy(0,z) >
eow(0,2), z € [€1,&] and Us(t, & + (¢ — co)t) > eqw(¢,&;) for t € [0,T), i =1, 2.

Consider the functions U (t,x + (¢ — co)t) and Us(t,x + (c — co)t), t > 0, z € [£1,&]. Denote Us(t, ) ==
Us(t,x + (¢ — co)t). Since (Uy(t,€),Ua(t,€)) is a solution of system (2.1), we have

(ﬁg)t = d2(J2 * [72 — [72) — Co(Ug)m -+ [ag(t)Ul(t,IE -+ (C — Co)t) — Tg(t) — bQ(t)UQ]ﬁQ (224)

In view of ¢ — ¢g < 0 and & < & < —M,, we have z + (¢ — o)t < —M,, t > 0, x € [£1,&]. Noticing that
Ui(t,&) > p(t) —e and 0 < Us(t,€) < g, V¢ < —M, uniformly in ¢ € R, thus by (2.24) we can conclude that
U, satisfies

&
(U2); > do ( / Jo(z — y)Ua(t, y)dy — Uz) = co(Ua)z + [a2(t) (p(t) — €) — ra(t) — ba(t)e]Us
&

for t > 0, & € (€1,&). Let Up(t,x) := Us(t, ) — egb(t,x) for all t > 0, = € [£1,&). Then, we can obtain
that

A~
)

(02)e = do( [ Talo = 9)Oa(t.y)dy = 02) = o) + [a2()(p(t) — &) = ra(t) — ba(D)]0

U2(0,2) >0, z € [€1,&], Ua(t,&) >0, >0, i=1,2.

In view of the maximum principle for parabolic equations, we can conclude that Us (t,z) > 0forallt > 0 and
x € [£1, &), which implies that Us(t,z + (¢ — ¢o)t) > eqw(t, z) for all t > 0 and z € [£1,£2]. Since ¢ — ¢y < 0
and 71(:51) > 0 for some %y € [£1,&s] with 0 < &1 — & < 1, which contradicts Us(t, Z1 + (¢ — ¢o)t) — 0 as
t — 4o00. This completes the proof. O

3. Spreading properties

In this section, we investigate the spreading properties of solutions to system (1.1) with nonnegative
compact support initial values. Let X = BUC(R,R?) be the space of all R2-valued bounded and uniformly
continuous functions on R. We equip X with the compact open topology; i.e., a sequence {(p,, } converges to
¢ in X if and only if ¢, (z) converges to ¢(x) in X uniformly for z in any bounded subset of R. Moreover,

we define a norm || - || x by
— max|; <k [¢(7)]
oy = > —— =R Iik , Vo € X.
k=1

It follows that (X, | -|/x) is a normed space. Take X+ = {u € X : u > 0} and
X = {uo = (u10,u20) € X : 0 < ugo < p(0), 0 < g < ¢(0)}.

Then, the topology induced by || - ||x on X is equivalent to the compact open topology on X.
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3.1. Preliminaries and main results

Set

di(Jg J1(y)eMdy — 1) + 71 da(Jg J2(y)eMdy — 1) + azp — 12

Cy, = inf and c¢,, := inf

A>0 A A>0 A ’
which are the spreading speeds of
(u1)y = dy(J1 *ur — uq) + ug (r1(t) — b1 (t)u), (3.1)
and
(u2)y = dao(Ja * ug — ug) + ua(—ra(t) — ba(t)us + az(t)p(t)), (3.2)

respectively. Note that c,, denotes the spreading speed of the prey in the absence of predators and c,,
represents the spreading speed of the predators with abundant prey. It is clear that c,, = c. which is
defined in Section 2.

From Jin and Zhao [24, Theorem 3.5], (3.1) admits the following spreading properties.

Lemma 3.1. Assume that 71 > 0, and let uy(t,x;¢) be the solution of (3.1) with initial function ¢ € X
satisfying 0 < ¢ < p(0). Then c,, is the spreading speed for solutions of (3.1) with compactly supported
initial data; i.e.,

(i) For any ¢ > cy,, if ¢(x) =0 for x outside a bounded interval, then

lim up(t, z; ) = 0;
t——o0,|z|>ct

(ii) For any c € (0,cy,), if ¢ #Z 0, then limy_, 4 oo |o)<ct(ui(t, 5 0) — p(t)) = 0.

Recall that fys := max,cpo,r) f(t) and fp, := mingcpo 77 f(t) for a given function f € C[0,T]. To obtain
our main results, we also need the following technique assumptions:

(HS) T1im > 1.
(He) di > rias + 3(aons + arng) My and do > ($a1n + Sasnr) My — rop,, where M, := max{p, qu }-

We note that condition (Hg) means that the diffusion coefficients dy, d2 are not too small, which indicates
that, to spread successfully, both the prey and predators need to disperse with reasonable rates. Such
a condition is used to discuss the smoothness of solutions of (1.1). In fact, in the proofs of two critical
Lemmas 3.8 and 3.10, we need to show that some solution sequence {u,(t,x)} of the initial value problem
of (1.1) has a convergent subsequence. Notice that the solutions of the nonlocal dispersal system have lower
regularity with respect to x. Using (Hg) and the specific form of the coupling of system (1.1), we can obtain
a priori estimate which yields that w, (¢,2) and (uy):(¢,2) have global Lipschitz constants with respect to
x, which are independent of n (see e.g., (3.15)).

To establish the lower estimates of the spreading speed, we need to consider an eigenvalue problem of a
time-periodic nonlocal operator. Let R > max{x1, x2} > 0 be a given constant. Denote 2z = (—R, R) and

LEG[0) = —u(t,7) + chu(t, ) + d; / Ji(w = y)o(t,y)dy + (wi(t) — di)(t, )
Q
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for (t,z) € R x Q, where i = 1,2, Q = Qg or @ =R, wy(t) = ri(t), and w2 (t) = az2(t)p(t) — r2(t).
Given i € {1,2}. We consider the following spectral problem: to find a positive and T-periodic function
$; € CY(R x Q) NC(R x Qr) and a number A € R such that

Ci;f’z[tm]Jr)\qbi:O, teR,z e, 53)
gilt,x) = ¢yt + T,x), teRze '

Motivated by the results of Berestycki et al. [6] and Coville and Hamel [10], we introduce the following
quantity which is called the generalized principal eigenvalue of (3.3):

Ae(LEg) =sup {1 € R|3p; € CT(R x Q)N C(R x Q), ¢; >0 and

wi

d“‘h oloil +A¢; <0in R x Q,and ¢;(t, ) = ¢;(t + T,z) for t € R,z € Q}.

Coville and Hamel [10] studied the spectral problem for an autonomous version of (3.3). Indeed, when
w;(t) = ©;, where @; are constants, they showed that the generalized principal eigenvalue )\p(ﬁglé) of (3.3) is
always achieved; i.e., there is a positive and T-periodic function ¢; € C'(2)NC(Q) such that (3.3) holds with
A=A (EG}“J ). The function ¢; is called the generalized principal eigenfunction associated with A (Ed“‘] ).
Moreover, the map @; — d; — A¢( dfi"é) is Lipschitz continuous and limpg_, o )‘C(ﬁgi {23) = A (E ) We
mention that there are also some results on the principal spectral theory of (3.3) in the case where c=10
and 2 is a bounded domain. We refer to Berestycki et al. [7], Rawal and Shen [34], Su et al. [38], Sun et al.
[39] and the references therein.

We make the following assumption on the time-periodic eigenvalue problem (3.3):

(H7) The generalized principal eigenvalue )\C(/.’,g‘]é) of (3.3) is achieved. The map w; — d; — )\C(/.’,g‘]é) is
continuous and limp_,o0 A (ﬁg{h) = )\C(ﬁi_j;:%).

The spreading properties of solutions to system (1.1) with compactly supported initial values are given
in the following two theorems.

Theorem 3.2. Let (H,)-(Hy) and (Hs)-(Hg) hold, and uo € X be nontrivially compactly supported. If c,, >
Cuy, then the solution u = (uy,us) of (1.1) with initial data uo(-) satisfies the following properties:

(i) For any ¢ > cyy, limy— o0 SUP|y > ¢ w1 (t, ) = 0;
(i) For each ¢ > cy,, iMoo SUP|y > o u2(t, ) = 0, and for all ¢y, < c1 < ca < cyy,

lim sup  |p(t) — ui(t, x)| = 0; (3.4)
t—r+oo crt<|z|<eat

(iii) If, in addition, (H;) holds, )\C([,fll’ﬁél) <0 and A (L7 1) <0, then there exists 0 > 0 such that for

asp—r2,R
any € R, Iiminf(uy (¢, + ct), u2(t,x + ct)) > (o, 0)-
t—+4oo

Theorem 3.3. Let (H;)-(Hy) and (Hs)-(Hg) hold, and ug € X be nontrivial compactly supported. If ¢u, > ¢y, ,
then the solution u = (uy,ug) of (1.1) with initial data ug(-) satisfies the following properties:

(i) For any ¢ > cyy, limys oo SUP|y > e (ua () + uz(t, x)) = 0;

(i) If, in addition, (H7) holds, A. (Edl"h) < 0 and A (L% r) <0, then there exists o > 0 such that for

azp—r2,R

any © € R, ltierinf(ul(t,x + ct),uQ(mx +ct)) > (0, 0).
— 400
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Remark 3.4. It should be noted that the conditions:

H,) holds, A\o(£71) <0 and A (L% <0
T‘l,]R

azp—r2,R

play an important role in establishing lower estimates of the spreading speed of (1.1). As mentioned above,
Coville and Hamel [10] showed that (H7) holds for autonomous problem of (3.3). We conjecture that (Hr)
also holds for the time-periodic eigenvalue problem (3.3) and leave it for future research.

8.2. Proofs of main results

In this subsection, we always assume that (H;)-(Hs) and (H;)-(Hg) hold and prove Theorems 3.2 and 3.3.
We first prove two preliminary lemmas on the uniformly boundedness of solutions to system (1.1) and on
the spatial dynamics of an auxiliary system.

Lemma 3.5. System (1.1) admits a unique solution u = (u1,us) with initial value ug(-) = (u10(+), u20(-)) € X.
Moreover, 0 < uy(t,x),us(t, z) < M, = max{pp,qm}, V6 >0, z € R.

Proof. The existence and uniqueness of solutions to system (1.1) are standard. Here, we only show that the
solution u(t, x) is uniformly bounded. It is easy to see that [0, 00)? is an invariant domain for system (1.1).
Thus, u(t,z) > 0. From the first equation of (1.1), we have

{ (u1)e < di(Jy*ur —ur) +ur(re(t) — b1 (t)ur),
(3.5)

u10 < p(0).

By the comparison principle, one can see that 0 < wuj(x,t) < p(t). Thus, by the second equation of system
(1.1), we get

(u2)r < do(Jo % ug — ug) + ua(—ra(t) — ba(t)uz + az(t)p(t)).

Since 0 < wgg < ¢(0), by the comparison principle, there holds 0 < wug(x,t) < ¢(t). Thus, 0 <
u(t, @), ua(t, x) < M, = max{pa,qm}, ¥Vt > 0, x € R. This completes the proof. O

In the following we consider the time-periodic nonlocal dispersal equation
(u1)r = di(J1 % ug —uq) + ur(ri(t) — by (t)us — a1 (t)e), (3.6)
where € > 0 is small enough such that 71 — ae := % fOT [r1(t) — a1 (t)e]dt > 0.
Lemma 3.6. Let

e — inf di(Jg J1(y)eMdy — 1) + 71 — me
A>0 A

Then the following statements hold:

(i) cc is the spreading speed for solutions of (3.6) with compact support.
(ii) c. and p:(t) are nonincreasing in €. Moreover, lim._,q cc = ¢, and limq_,o pc(t) = p(t), where p(t) is
the unique positive T-periodic solution of

ui (t) = ur () (ra(t) = br(t)ua (t) — ar (t)e). (3.7)
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Proof. The statement (i) follows from Lemma 3.1. Next, we prove the statement (ii). Clearly, by the defi-
nitions of ¢ and ¢,,, we know that ¢, is nonincreasing in € and lim._, ¢. = ¢,,. Moreover, similar to (1.3),
the positive T-periodic solution p.(t) of (3.7) has the following form:

- pgefot (r1(s)—ai(s)e)ds
1 +pg f(;: 6-[5(7"1(7—)_(11(7')5)(17'{)1 (S)ds

0 efoT(Tl(S)_al(S)E)ds ~1
’ pa = T /‘9(1'- (T)—a (T)&)dT > 0
Jo et ! bi(s)ds

pe(t)

Thus, lim._,o pe () = p(t) and p.(¢) is nonincreasing in e. The proof is completed. O

3.2.1. Proofs of Theorems 3.2 (i)-(ii) and 3.3 (i)
In this subsection, we prove the statements (i)-(ii) of Theorem 3.2 and statement (i) of Theorem 3.3. We
first prove the following critical lemma.

Lemma 3.7. If ¢ > cy,, then limyiooSup, s (ui(t, @) + u2(t,x)) = 0, and if ¢ > cy,, then

hmtg)ﬁ»oo SuplwIZCt ’U/2<t) x) — 0
Proof. We first show that lim;_, o, SUP| 3>t U2 (t,z) = 0 for ¢ > cy,. Define
Tt ) 1= Byp(t)e (et

where By > 0, ¢(t) = elo(a2()p(s)=ra(s)=azp=r2)ds anq ¢ > 0 is the unique positive root of the equation:

A1(A) = dg(/Jg(y)eAydy — 1) — Cyy A+ agp —rg = 0.
R

Since 0 < uy < p(t), we can show that

(ﬂg)t — dQ[J2 * ’172 — ﬂg] — ﬂg [ag(t)ul — Tg(t) — bg(t)ﬂg]
> (U2)¢ — da[Ja * Ug — U] — Uslas(t)p(t) — ra(t)]
= €y, SlUs + Usfaz(t)p(t) — ra(t) — asp — 1a)

—dy [/h(y)ewdy — 1|ty — uglaz(t)p(t) — r2(t)] = 0.
R

Thus ua(t,x) is a super-solution of the wus-equation of (1.1). Since wgo(x) is compactly supported and
bounded, we can take Bj large enough such that ugg(z) < w2(0,2). By the comparison principle, we
have ua(t,x) < Uy(t,x) for any (t,z) € R2 Thus, limy, eosup,sq ua(t,z) = 0 for ¢ > ¢y, By
comparing the function uy(t,z) with ig(t,z) := Bag(t)es@teuw2t) where By > 0, similarly we have
limy 4 oo SUP, <o U2(t, ) = 0 for ¢ > cy,.

Next, we prove lim;, 4 oo SUP| ;> u1(t, ¥) = 0 for ¢ > ¢y, . Let W1 be the solution of

(ﬂl)t = dl(Jl * U —ﬂ1) +ﬂ1(7"1(t) — bl(t)ﬂl)

associated with the initial value @; (0, 2) = uip(x). Since ug > 0, @y is a super-solution for the u;-equation
n (1.1). By the comparison principle, we have ui(t,z) < Uy (¢, ), (t,z) € R% From Lemma 3.1, we get

lim sup wi(t,z) < lim sup wi(t,z) =0, Ve >cy,.
t—>+ooll_|2pct 1(t, )_t—>+oo‘z‘22t 1t ) ’ “

By the nonnegativity of u1, we have im0 SUpP|y> u1(t,2) = 0 for ¢ > ¢y,
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Finally, we show that lim;—, oo SUp|,>¢ u2(t, ¥) = 0 for ¢ > ¢y, . Define a function

No(N €)== dg(/Jg(y)e’\ydy - 1) —Ccuy A te=0, ,A>0.

It is clear that Ag(),0) = 0 has two roots A) = 0 and A\J > 0. Note that %Ag()\, €) > 0and BB_;AQ()\, €)>0
for A > 0. By the continuity of Ay(A,¢€), one can see that for sufficiently small € € (O,W) with
(a2nr — 1)€ — 12, < 0, the equation Ay(), €) = 0 has two positive roots A\§ < A§ with lim._,0 A = \? = 0.
We can further choose € > 0 small enough such that A\{ < ¢. Let A2 be the smaller positive root of the
following equation

Asz(A €)= dg(/JQ(y)eAydy — 1) —cA+e=0.
R

Since ¢ > ¢,,, it follows that Az(\,€) < Ag(),€) for A\, e > 0. Thus ¢ > X > \a. Moreover, for any ¢ > ¢, ,
there exists £ > 0 such that for any ¢ > ¢, sup,>.; u1(t, z) < e. Define

Us(t, ) := Ag(t)e 20,

where A > 0 is large enough, é(t) = elollaz()=De=r2(s)lds - Clearly, o(t) < ellezn=Ne=ramlt < 1 Direct
computations show that, for ¢t > ¢ and z > ct,

(ﬂg)t - dQ[JQ * Uy — ﬂg] — Uo [(lz(t)ul — T‘Q(f) — bg(t)ﬂg]
> (ﬂg)t — d2[J2 * Uy — ﬂg] — U2 [a2<t)6 — Tg(t)]

= [(as(t) — D)e — ralt) + Ao — dg(/Jg(y)eS‘wdy 1) —as(t)e +ma(t)] = 0.
R

Hence, we get that 7 (t,2) is a super-solution of the us-equation of (1.1) for any ¢ > # and = > ct. Since
¢ > A2, we can choose A large enough such that

Since us is bounded, we can further take A large enough such that
ug(t, ) < Up(t,x) for any et — x <a <ct, t > 1,

where x = max{x1, x2}. Therefore, by the comparison theorem (cf. Zhang et al. [45, Lemma 4.7]), we get
ug(t, ) < Us(t,x) for any & > ct, t > t, which yields that

lim sup us(t,z) =0, V® > c.
t~>+oox2£t 2(, ) ’

Choosing ¢ arbitrarily close to c,,, we have lim;, o sup,>. u2(t,z) = 0. Similarly, we can show that
limg oo SUP,<_ o u2(t, 2) = 0 for ¢ > ¢y, . This completes the proof. O

The following lemma plays an important role in proving (3.4); i.e., the second part of Theorem 3.2 (ii).
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Lemma 3.8. For any c € (cy,, Cu, ), we have
tlirglo[ul(t,:c + ct) — p(t)] = 0 uniformly on every compact subset of R. (3.8)
Proof. By the proof of Lemma 3.7, for any given € > 0, there exists x. > 0 such that
ug(t,z) < e for any (t,z) such that |z| > z. + ¢y, t. (3.9)

The rest of the proof is divided into three steps.
Step 1. Choose ¢’ € (¢, ¢y, ) and claim that

t
Ja>0, z;1 € R, 71 >0, s.t. liminf inf 1wy <C—I,:U +ct + 3:1> > - (3.10)
t—+o0 z€(—a,a) c
Take
1 v
Jis(y) == (g)e““l ,0<o<1. (3.11)
o o

Given any a > 0, consider the following eigenvalue problem:

di ( Jg J1oc (W) V20(x — y)dy — th2a(2)) = —A2at24(x), € (—2a,20a),
aq () =0, x € R\(—2a,2a), (3.12)

[¥2al[c0 = 1.

From Garcia and Rossi [19, Theorems 2.1 and 1.4], the above eigenvalue problem has a principal eigenvalue
A2 With a principal eigenfunction vy, € C[—2a,2a]. Thanks to the strong maximum principle, the non-
negative eigenfunction s, is strictly positive in [—2a, 2a] (cf. Chasseigne et al. [9, Remark 3.1]). Moreover,
since fR Jis(y)dy > 1, we have Ay, < 0 for sufficiently large a.

Take No := max.e[—24,2q] |3§Z—§3| We can take € > 0 such that % < 1—aipe. Let 1 = 2. + 2a/0.
Choose a,o,n > 0 such that Ay, <0 and

/ 2a/c—x1

CC— +coNy — (1 —biyne 1 — alMs) <0. (3.13)
Uy
Define
-1 (z—c't) ,
uy (t,x) :=ne °u Yoo (o(x — 't — x1)).

Next, we show that u; > u;.
For —2a < o(x—c't—x1) < 2a, we have |z| > 1+t —2a/0 > x4+ cy,t. From (3.9), we have us(t, z) < e.
By (Hs), it then follows from (3.13) that

Hluy|(t,z) == (wy)e — di(J1 %y —wq) — g (r1(t) — b1 (H)uy — a1 (t)usz)
< (Hl)t - dl(Jl kU — Hl) - Hl(rl(t) - bl(t)ﬂ1 - al(t)e)

/ _zfc/t _zfc/t

—ne 1 Pog(o(x — 't —x1)) — dome (o — 't —a1))
Cu,

—pdye [ / T aa(0(z =ty = 21))dy = Yaalo(@ - 21— ¢1))]
R
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=y (r1(t) = b1(t)uy — ai(t)e)

Cl 7@—0/1,

= —u —cdone 1 Yy, (0(x — 't —a1)) —uy (r1(t) — bi(t)yy —ai(t)e)
—ndie” | / o (y)a(0(z = ¢t = 21) = y)dy — Yaalo(@ — 't — 1))
R
' hya(o(x — 't — 1))
— _ a — t
Uy [Cul c a¢2a(a(x — ot =) + Aaq — 1 (t) + b1 (B)uy + as( )e’:‘}
C/ , 2a/0c—x1
< [cﬁ 4+ coNg—14+biyne +(11ME:| <0

for —2a < o(z — ¢t — x1) < 2a. Hence, we have Hu;|(¢t,z) <0 for all z € R and ¢ > 0.

Recalling that w; is positive for any positive time and 9,(-) has compact support, we can assume that
up(1l,2) > u,(1,z) for all z € R. Hence, by the comparison principle, we get ui(t,z) > u,y(t,z) for x € R
and t > 1, which implies that

~

t t -1 r—cC
uy (%733) > Ml(%al") = ne fur ( t)q/)m(a(x—ct—xl)) for t > %, x €R.

Note that o € (0,1). Therefore, for ¢ > % and z € (—a,a), we have

1 11 (a+x1)

t -1 (z+=z — o :
u1(c—,,x+ct+x1) > e F 1)w2a(0ff:) zne - min  4q(z) = m >0,
C

z€[—a,a]
and hence, (3.10) holds.

Step 2. We now claim that there exist a > 0, ny > 0 and =5 € R such that

lim inf inf ui (', z + et + 22) > 1o (3.14)
t=+oo pre( t], (-5, %

Take a > 0 and € > 0 such that r1,,, > ajpe+A,. Then choose i’ € (0,71) such that by’ < r1m—a1pe—Aa-
Fix ¢ > 0 and define

t
u (t',2) = n"Ya(z —ct —21), t' € [c_ t},
= c

,)

where (Aq,1),) satisfies (3.12) with Ji,(-) = Ji(-) and 2a replaced by a.
For —a<xz—ct—x1 <a,|z| >z +ct —a >z + cy,t. Then uy < e, and hence

(w e (t' o) —di(Jrxu —u)t 2) —u (', 2)[r (') = b1 ()u, (', 2) — a1 ()ua (', 2)]
< (u,)v (t',2) — dy(J1 * u — gl)(t/,x) — gl(t',x)[rl(t') - bl(t’)ul(t/,x) — a1 (t')e]

=—di [/ T ()N Ya(x —y — 21 — ct)dy — n'tha(x — 21 — ct)}

R
—u, (@) [r () = b (), (', 2) — ax(t)e]
=u, (', 2)[ A = r1(t) + b1 (t)u, (¢, 2) + ai (t)e]
<u, (', 2)Aa — rim + bivm’ + arne] <0

Therefore, we have H(u, |(',x) <0 for all z € R and ' € [‘;—f, t]
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It follows from (3.10) that for ¢t > 1 and z € (—a,a),

ct
Uy (E,x +ct —I—.Z‘l) >m > 77/%(9?)

Since Y(x) = 0 for |z| > a, we have ui(%,x + ct + x1) > n/thy(x) for z € R and ¢ > 1. Noting that
0 (z) = gl(i—f,x+ct+x1), we have u1 (%, z) > gl(i—f,x) for 2 € R and ¢ > 1. Hence, by the comparison
principle, we have uy (t',x) > u, (t’,x) forx e R, t' € [(“;—f,t] and ¢t > 1. It thus follows that (3.14) holds
with 72 :=n'infoe(—a 2y Ya(z).

Step 3. We now prove (3.8). Let {t,, }nez = {nT },cz. Define
Ut (t,x) = ug(tn + 2+ cty), uop(t,x) :=ua(ty, +t,x + cty)

for (t,x) € [—tn,+00) x R. By the periodicity of a;(t), b;(t) and r;(¢), we can see that u,(t,z) =
(u1n(t, @), ugp (t, x)) satisfies

(uin)e = di[J1 * vu1p — Urp] + wrn[r1(8) — b1 (B)urn — a1 (t)usy],

(uon)e = da[J2 * ugp — Uap] + Uzn[—T2(t) — b2 ()uan + az(t)u1n],

U10,n(—tn, @) 1= u1(0,2 + ctp), U20.n(—tn,x) = u2(0,x + ct,)
for (t,x) € [—tpn, +00) x R.

By Lemma 3.5, 0 < w1, (t, ), uan(t, ) < M, for (t,x) € [—t,,+00) x R. Next, we prove the following a
priori estimate on uy, (¢, x):

|(win)els [(win)ee| < C and |uin (8,2 + ) = win(t, 2)], [(win)e(t 2 +75) = (win)e(t, )] < Oy, (3.15)

for i =1,2, t > —t,,, x € R and some positive number C and any v > 0.
In fact, it is clear that

|(u1n)e| < My (2dy + r1as + Mibiag + e M) =: C,
|(ugn)e| < My (2da + rans + asne My + bopr M) =: Cs,

and

[(urn)ee] < dil i (win)el + da|(urn)el + |(urn)el [71(8) + b (8)urn| + a1 (t) Juzn|]
+ [urn| [P (O] + b1 ()| (wrn)e| + [0 ()] [urn] + a1 (8)|(uzn)e] + [af ()] uzn]]
< 2d1Cy + C1(bine Mo + riag + arng M)
+ M, [tgﬁ)jg](m (O] + |ay ()| M + |6} ()| M) + Caarnr + Crbinr] =: Cs,

|(uan)ee] < dalJa s (uan)e| + dol(uan)el + [(uzn)el [az(t)[uin| + r2(t) + ba(t)|uzn|]
+ Juan| [|ah () |uin] + az(8)|(uin)e| + [r5(E)] + ba ()| (uzn)e| + [b5(E)|[uzn|]
< 2dyCy + Oy (Maagns + rans + banr M)

+ M, | max (|ab(t)| M, + |ry(t)] + by (¢)| M) + Crazns + Cabans| =: Cy.

X
t€[0,T]

Since J! € L' by (Hy), there exist L; > 0, i = 1,2, for any v > 0, such that
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/\J(er y) — Ji(x —y)ldy =~ /‘/1J (z + 017 — y)db:|dy
0

R

1
7//| (x + 601y —y)|dydfy < Liy.
0

Let Um(t,x) = Ui (t,x +v) — uin(t,2), ¢ = 1,2. Then it follows that

(Uin)e(t, ) = dy /(Jl(x +y—y) — Ji(x — y))uin(t,y)dy — diUwn(t, x)
R

+ 7y (t)Uln(t, x) — by (t)Uln(t, ) (urn (t,  + ) + urn(t, z))
— ay (O urn (t, 2 + ) Uan (t, ) — a1 () U (£, 2)ugn (t, )

and
(UQn)t(ta 1’) = d2 /(JQ(x + v y) - JZ(x - y))u2n(t7 y)dy - dQUQn(t7 {II)
R
+ ag(t)[urn(t, x + ’y)(v]gn(t, x) + Uln(t, x)uop (t, )]
— o () Uan(t, ) — bo(t)Usp (t, ) (uan (t, 2 + ) + ugn (L, x)).
Hence,
([jln) (t LC) = 2U1n t LE dl/ Jl $+’7 y Jl(x - y))uln(ta y)dy - leﬁfn(tax)
R
+2r (U2 (t,2) — 26y () U2, (t, ) (uin (t, 2 +7) + wrn(t, )
— 2a1(t)ur, (t,x + ’y)(}m(t, x)Ugn(t, x) — 2a1 (t)ugn(t, m)(v]fn(t, x)
and

(U3 )1lt,2) = 20an(t,2) [d2 [ (e +7 =) = Jaw — 9)usa(t,)dy] — 20203, (8, 2)
R

+ 2as(t)urn(t, x + 7)(]'22” (t, ) 4 2a2(t)uan (t, x)Uln(t, SL‘)UQn (t,x)
— 25 () U3, (t, @) — 2ba () U3, (¢, ) (uan (t, @ + ) + uzn(t, ).

By the above two equalities, we have

(UF)e(t, ) + (

< 2U1n t .’,E / Jl x + 77— y Jl(z - y))uln(ta y)dy} - 2dll?12n(ta :17)

+2r1 (U, (1, 2) + ar(Dura(t, 2 +7) (U, (1 2) + U3, (8, 2)) — 2ra(8) U3, (¢, 2)

+ 20U, (t, ) [dQ /(Jz(ﬂc +v—y) — Jo(x — y))uzn(t, y)dy} — 2d>U3, (t, )
R

+ 2as(t)urn(t, @ + 1)U, (8, 2) + az(t)uza (t, 2) (U7, (¢, @) + U3, (¢, 7))

85
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< 4dy LyyM? + 4dy Loy M?

+2[r(0) — d + Saa(t)uza(t, ) + an(Ousa(t, -+ )| U, (0.0)

+2 [%az(t)u%(t, @) = da + (az(t) + %al(t))uln(t, 2 +7) = ra(t)| U3, (t.2)

1 1 .
< 4d1L1’7M3 + 2(7"1M + §a2MM* + ialMM* — dl)U%n(L:L')

3 1 .
+ 4 Loy M? + 2(Saon M, + Sa1ar M, = ram — d2 ) U3, (1, )

- <4d1L1Mf n 4d2L2Mf)7 kU2, (tx) — kU2, (L, 2),

where

1 1 3 1
k= 2(d1 —TiM §a2MM* - §G1MM*>, ko = 2(d2 - 502MM* - §QIMM* +T2m>-

From (Hg), we see that k = min{kq, ko} > 0. Then
(O2,(t2) + U3, (6, 2))0 < (4di Lo M2 4 Ado Lo M2 )y = k(U2 (1,2) + U3, (1, 0)]
= 007 - E[ﬁfn(tv ZZ?) + UQZn(tv JC)],

where Cy = 4dy Ly M2 +4dy Loy M?2. Since U2, 4+ U2, is bounded, it is easy to verify that U2 (¢, 2)+U2, (¢, z) <
Cov/k. That is,

lurn (t, @ +7) = win(t,2)* + ugn(t, @ + ) — uza(t, 2)|* < Coy/k.
Thus, for any v > 0, we have
[u1n (B, 2 + ) — urn(t, 2)| < Cs7, |ugn(t,z + ) — uan(t,z)| < Cgy, YVt > —t,, © € R.
Moreover, for any t > —t,,, © € R, we get

[(uan)e(t, @ + ) = (uan)e(t, )]
= |dy[J1 *urn(t, @ +7) — win(t, x + 7)) — di[J1 * urn(t, @) — urn(t, 2)]
Ttz 4 9) [r1(6) — by (B (t,2 1) — ar(Buzn(to 2+ )]
— U (t, ) [ri(t) — by (H)urn(t, ) — aq (t)uzn(t, x)]’
< [2d1 4 rin + 2Mbiyg + ann M) Csy + a1 M Coy =: Cry,

and similarly,
[(ugn)e(t, x4+ ) = (u2n)i(t, @)| < [2da + rons + aons My + 2023y M. Coy + aop M.Csy =: Csy.

Taking C = max{C1, - ,Cs}, the results about a priori estimates on u, (¢, z) hold.

Therefore, by the Arzela-Ascoli theorem, there exists a subsequence of {¢,}, still denoted by {t,}, such
that (w1, (t, ), uzn (t, 7)) converges to (U1o0(t, T), Usso (t, 2)) locally uniformly in (t,2) € R? as n — oo. From
(3.9), we see that uy0 (%, z) satisfies

(U100)t — d1[J1 * Utoo — Utoo] — Utoo[T1(E) — b1 (t)U10e — a1 (t)e] > 0.
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By (3.14), we obtain

lim inf inf ur (', + 9 + cty) > o (3.16)

tn—+o0 tle[a;ﬂ 7tn]aI€(7%’%)

c

Note that t +¢,, € [%,tn] for t <0 with |¢| < 1. Since u1,(t,  + 22) = ui(t + tn, z + ct,, + z2), it follows
from (3.16) that infye(—a 2)u1co(t,z + 22) > 2 for any ¢ < 0 with [¢| < 1. Let usc be the solution of

(u1e)e(t, ) = di(Jy * ure — uie) (8, @) + ure(t, 2)[r1(¢) — b1 (B)ure(t, ) — ay(t)e]
with initial data uq.(0,x) = §(x), where §(z) € C(R, [0, 12]) is defined by

72, x € (
nondecreasing, x € ( —
nonincreasing, x € (% +x2,5 + xg),

0, z€R\(— % +m9,%+19).

e
+
&

g
|

IS
+
=
[\v]

S~—

By the comparison principle, we have u14(t, ) > u1(t, x) for any (¢,x) € R?. Moreover, by Lemma 3.6 (i),
we know that lim; o [u1c (¢, ) — p-(t)] = 0 converges locally uniformly in « € R. Since lim._,q p:(t) = p(t),
we may assume that p.(t) > p(t) — e. Thus, lim;— o0 [U100 (¢, ) — pe(t)] > 0 locally uniformly in « € R. By
the definition of %1, we then obtain that

lginﬁg[ul(t, x+ct) —p(t)] > ltlinﬁgof[ul(u x+ct)—pe(t) —e] > —¢

locally uniformly in z. By the arbitrariness of e, lim;_,o[u1 (¢, z + ct) — p(¥)] = 0 locally uniformly on every
compact subset of R. The proof is completed. O

Proofs of Theorems 3.2 (i)-(ii) and 3.3 (i). From Lemma 3.7, we see that the statement (i) of Theo-
rems 3.2-3.3 and the first part of statement (ii) of Theorem 3.2 hold. Thus, we only need to prove the
second part of Theorem 3.3 (ii); i.e., (3.4). If it is not true, then we can assume that there exist two
sequences {t,} and {z,} satisfying cit, < z, < caty, and ¢, — 400, as n — +00 such that

lim sup[ug (tn, zn) — p(tn)] < 0.

n—-+oo

Let ¢, = 2=. Then ¢, € (c1,¢2) C (Cuy,Cuy). Thus, there exists a subsequence {n;} of {n} such that

ty ”

limj 4 o €, = ¢ € [c1,¢2]. By Lemma 3.8, it then follows that

ul(tnjvxnj) _p(t’rLJ) = ul(tnj7cnjtnj) _p(tn]) — 0 as ] — +OO7
which contradicts limsup,, , .o [u1(tn, 2n) — p(tn)] < 0. This completes the proof of Theorems 3.2 (i)-(ii)
and 3.3 (i). O

3.2.2. Proofs of Theorems 3.2 (iii) and 3.3 (ii)
In this subsection, we prove the statement (iii) of Theorem 3.2 and statement (ii) of Theorem 3.3 by
using the persistence theory in dynamical systems.

Definition 3.9. Let (Zp, po) be a metric space with the metric pg.

(i) {¥;}4>0 is a T-periodic semiflow on (Zy, pg) provided that {U,};>¢ satisfies: (1) Uy(v) = v, Yv € Zy;
(2) U (T (v)) = Upyr(v), VE>0, v E Zp; (3) Ui(v) is continuous in (¢,v) on [0, +00) X Zo;



88 S.-L. Wu et al. / J. Math. Pures Appl. 170 (2023) 57-95

(ii) ¥ is called the Poincaré map associated with the periodic semiflow {¥,};>0.

Let w(t,x) = u(t, z + ct;ug). Clearly, w(0,-) = uo(:), and w(t, z) =: w(t, z;ug) satisfies

{ (w1)t = dl(Jl * W1 — wl) =+ c(w1)w =+ wq (Tl(t) — bl(t)wl — al(t)wg),
(3.17)

(’wg)t = d2(J2 * Wo — wg) + C(wg)x + ’LUQ(—’/‘Q(t) — bQ(t)'LUQ =+ ag(t)wl).

We can see that to prove Theorems 3.2 (iii) and 3.3 (ii), it suffices to prove the persistence of w(t, z:). Define
a family of operators {®;};>0 on X+ by

Dy (ug)(x) = w(t,z;up) for t >0, z € R and up € X+.

One can easily show that {®;};>¢ is a T-periodic semiflow on X*.

For any y € R, let T, be the translation operator on X defined by T,(¢)(z) = p(z —vy), Vz € R, p € X.
It then follows that ®; := T.; o ®;, WVt > 0, is also a semiflow on X+, and for any up € X1, w(t,z) ==
W(t, z;up) = Oy (ug)(2) satisfies

{ (12)1),5 = dl(Jl * Wy — 1D1) + 11)1(7“1(t) — bl(t)uh — Ch(t)ﬁ]g),
(12)2),5 = dQ(JQ * Wg — 11)2) + @2(—7‘2(15) — bg(t)TIJQ + a2(t)u71).

Clearly, w(t, z) = w(t,x + ct) := ©(t, z). We then have the following result.

Lemma 3.10. &1 is a-contracting in the sense that lim, o a(®%(B)) = 0 for any bounded set B C X.
Further, & has a global attractor in X.

Proof. Let B be a given bounded subset in X. Motivated by Hsu et al. [23, Lemma 4.1}, we first prove that
®, is asymptotically compact on B in the sense that for any sequences {ug,} € B and {t,} — 400, there
exist subsequences {ugn,} and {t,,} — +oc such that Dy, (uo,n,;) converges with respect to the compact
open topology as j — 400. Let

wp(t,x) = (win(t, ), wan(t, x)) = @ (uon)(z), Yuon € X, t>0, zeR.

By Lemma 3.5, we know that the family of functions {®, (uo,,)(z)}n>1 is uniformly bounded on R for all
n > 1. In view of the Arzela-Ascoli theorem, it suffices to show that {®;, (ug)(z)}n>1 is equicontinuous
in z € R for all n > 1. Since w(t,,z) = W(tn, = + cty,), it is equivalent to show that {®;, (ug,)(2)} n>1 is
equicontinuous in z € R for all n > 1.

Define (w1, (t, 2), Wan(t, 2)) = (W1n(t + tn, 2), Wan(t + tn,2)) for all t > —t, and z € R. Clearly,
(W01,,(0, 2), War (0, 2)) = (W1 (tn, 2), Won(tn, 2)) = &Jtn(uoyn)(z), Vn > 1, z € R. Since J! € L' by (Hy),
there exist L; > 0, ¢ = 1,2, such that

/|Ji<zl ) = iz — p)ldy < Lilz1 — zal, V1,2 €R.
R

Note that w1, (t, 2), Wan(t, z) < My, Yn>1, ¢ >0, z € R. Thus, for any ¢ > 0, if |21 — 23| < 8 = L% > 0,
then

‘ /(Ji(zl —y) — Ji(z2 — y))Win(t,y)dy| < Mg, i=1,2.
R
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For any 21, 22 € R, let Vi, (t) := win(t, 21) — Win(t, 22), Van(t) := Wan(t, 21) — Wan(t, 22). Then it follows
that

(Vi (8) + V3, (8):

= 2V1,(t) [dl /(Jl(zl —y) — Ji(ze — y))@ln(tay)dy} —2d, V2, (t)
R

tn) Vi (t) = 201 (t + t) Vi, () (W1 (t, 21) + W1n(t, 22))
Yian (£, 21) Vin (t) = 201 (t + tp) w1 (t, 22) Vin (t) Van (t)

+2Von (1) | da /(JQ(Zl —y) — Ja(z2 — y))w2n(t7y)dyi| —2dy Vi, (1)
R
[

+ ) [1n (£, 21) Vi, (£)+ Vi () Vo (8)Wan (£, 22)]
+ tn) Vi (8) — 2b2(t + ) Vi, () (2n (£, 21) + Wan (t, 22))

+ 205 (t + tn) W10 (t, 21) Vo (8) + ag(t + b)) 0o (£, 22) (V7 (8) + Vi (1))
1 1 _
< 4dy M2e + 4dp M2 — 2 {dl — i — sanr M. — iaQMM*} V2 (1)
3

1 _
— Q[dg + rom — §G1MM* - §a2MM*} V22n(t)

< Ce = k(VE, (1) + Vay (1)),
where C' = 4d; M2 +4dy M? and k = min{ky, ko }. By the variation of constants formula and the comparison

argument, we have

V2,(0) 4+ V2, (1) < e BT, (5) + V2 () + Ce [ ek Day.

m\ﬂ-
(9]

Letting t = 0 and s = —t,, in the above inequality, we further obtain
Vin(0) + V5, (0) < e 5 (Vi (—tn) + Vo (—tn)) + Ce /.

It then follows that
2
Z |u~)in(tna Zl — Wi, tna 22 Z wln O Zl IZJML(O, 22)|2 + Q€/E

In view of up,, € B C X, thus W15,(0, 21) and wa, (0, 22) are uniformly continuous for z1, 2z € R. Hence,
there exists 63 > 0 such that |y, (0, 21) — Wi (0, 22)| < 52 i = 1,2, provided that |z; — 2| < d5. Thus, for
any 21, zp € R with |21 — 25| < 6 := min{dy, do, d3},

|U~]in(tn721) - win(tn722)| < (2 +Q5/E)57 1= 172-
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Consequently, ‘f% is asymptotically compact on B, and so is ®7.
Now we consider the omega limit set of B for the Poincaré map ®7; i.e.,

w(B) = {ug € X : lim @y (ug ;) = uo for some sequences ug ; € B and n; — +00}.
Jj—+oo

Since ®7. is asymptotically compact on B, it then follows that w(B) is a nonempty, compact, and invariant
set for 7 in X, and w(B) attracts B (see, e.g., the proof of Sell and You [36, Lemma 23.1 (2)] for
continuous-time semiflows). In view of Zhao [53, Lemma 1.1.2 (b)], one has

a(P}(B)) < a(w(B)) + §(P7(B),w(B)) = 6(P7(B),w(B)) — 0 as n — +0oo.

Then &7 is a-contracting, and thus, ® is asymptotically smooth. Note that &1 is uniformly bounded, it
follows from Zhao [53, Theorem 1.1.3(b)] (see also Magal and Zhao [28, Lemma 2.1 (b)]), that &7 has a
global attractor in X. This completes the proof. O

We are now ready to give the proofs of Theorems 3.2 (iii) and 3.3 (ii).

Proofs of Theorems 3.2 (iii) and 3.3 (ii). The proofs of these statements can be divided into the following
steps.
Step 1. Let

P:=X, Py:={up € P:ujg £ 0 and uyy # 0}, and 9P, := P\ P,.

By the strong maximum principle of parabolic equations and Lemma 3.5, it is easy to see that for any initial
data ug € Py, the solution w(t, z) of (3.17) satisfies 0 < w1 (¢, z) < My, 0 < wa(t,x) < M, for all ¢ > 0 and
x € R. It follows that ®%(Fy) = w(nT,; Py) C Py, Vn € N. Let

My = {UO € opb, : @%(UO) € 0P, Vn € N}

and w(ug) be the omega limit set of the orbit v+ (ug) := {®%(ug), Vn € N}. Now we prove the following
claim.

Claim. {J,, <, w(uo) € {(0,0), (p(0),0)}.

Indeed, for any given ug € My, we have ®7.(ug) € 0Py, Vn € N, which implies that w;(nT,-;up) =0 or
wa(nT, -;up) = 0. Moreover, for all ¢ > 0, we have w;(t,-;up) = 0 or wa(t, ;ug) = 0. If wy(t,-;ug) =0 for
all t > 0, then wa(t, -;ug) satisfies

{ (wa)¢ = da(Jo % wy — wa) + c(wa), + wa(—r2(t) — ba(t)ws), t >0, = € R,

w2(0,2) = uzo(z) > 0, z €R.
Let z(z,t) be the unique solution of the following initial value problem:

{zt:dg(Jg*z—z)—Fczx—rz(t)z, t>0, zcR,

z(0,2) = ugo(x) >0, z € R.

By similar discussions in section 2.2, we have

—dot — [Lro(T)dT = (th)k
2(t,x) = e %l Jo 2 Z o ax (us0)(x + ct).
k=0 ’
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Noting that ax(u20)(-) < M., Vk, we obtain
0 < 2(t, ) < Mye Jor2(Mdr<M.e™™m" g agt 5 0.

It then follows from 0 < wsy(¢,-) < 2(t,-) that lim; 4 wa(t,-) = 0 uniformly for x in any bounded subset
of R. If wy (70, -; ug) # 0 for some 79 > 0, then by the strong maximum principle, we can get wi(¢,-;ug) > 0
for all ¢ > 7p. This implies that wa(t, -;ug) = 0 for all ¢ > 79. Thus, wy (¢, -;ug) satisfies

{ (wl)t = dl(Jl * Wy — ’w1> + c(wl)x + w1<7"1(t) — bl(t)wl), t>r1, v €R,

w1(0,2) = uip(z) >0, z € R.

It follows that either lim;_,oo[w1 (¢, ) — p(t)] = 0 or limy oo w1 (t,-) = 0 uniformly for x in any bounded
subset of R. Hence, the claim holds.

Step 2. We are going to prove that (0,0) is a uniform weak repeller for Py in the sense that there exists
a 01 > 0 such that

lim sup || @7 (1) — (0,0)||x > 01 for all ug € Py.

n—-+oo

Given any € > 0, by the continuous dependence of ®;(ug) on the initial value with respect to compact open
topology, there exists d; > 0 such that for all ug € Py with |lug||x < 1, there holds ||®:(ug)||x < € for any
t € 0,T].

Suppose, by contradiction, there exists ug € Py such that limsup,, ,, . ||®7(uo)|[x < 1. Then there
exists mg > 1 such that ||®%(uo)|lx < d1, Vn > ng. For any t > noT, let t = nT +t' with n > ng and
t' €10, T), we have

[@e(uo)llx = [|Pe (7 (uo))l[x <e.
In particular,
0 <wi(t,z;ug) <€ t>ngT, xR, i=1,2. (3.18)
Take ro = biar + a1ar. Consequently, it follows that the equation for wi (¢, x;ug) satisfies

(w1)e > di(J1 % wy —wr) + c(wr), +wi(ri(t) — bi(t)e — ai(t)e)
2 dl(Jl * Wy — wl) —+ C(U)l)m +’LU1 [Tl(t) — (blM =+ alM)e]
=dy(J1 *wy —wy) + e(wy)y + wy(r1(t) — ree), t > neT, = € R.

It views of ug € Py, by the strong maximum principle, we have wy (noT, -) > 0. Since limg_, )\c(ﬁflllé;) =
)\c(ﬁgll ’H‘Q) < 0, we can choose R > max{x1,x2} > 0 such that )\c(ﬁﬁi:é;) < 0. By (H7), we can choose
e > 0 small enough such that A.(e) := )\C(L’f;:];OE’QR) < 0. Choose &; > 0 such that wy(noT,z) >
are el g (ngT, x), = € Qp, where ¢;(t,-) > 0 is the generalized principal eigenfunction corresponding
to the generalized principal eigenvalue A.(€) of eigenvalue problem

L o 1)t w) + A€ (t,z) =0, t €R, x € Qp,

r1—ro€6,R

q'gl(t,l‘) = (Z)l(t—FT,l‘) >0, teR, x€ QR.

Define the function w, (¢, z) as follows
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w,(t,x) = o?le_AC(E)tél(t,x), t>nT, x € Q.

Then w, (¢, ) satisfies

(wy)e = d1(Jq,, J1( — y)w; (t,y)dy — w; (t,2))
+e(wy)e +w (r1(t) —ro€), t 2 noT, x € Qp,

w, (noT, z) = are T (ngT, z) < wi(neT, ), = € Qg.
It then follows from the comparison principle that
wi(t,x) > w,(t,2) = Gre O (t,x), Yt >neT, x € Qp.

Since ¢1(t,z) is a positive T-periodic function in ¢, we have lim,_, o w1 (t, z;ug) = 400, Vz € Qp. This is a
contradiction to (3.18). Hence, we conclude that (0,0) is a uniform weak repeller and {(0,0)} is an isolated
invariant set in F,.

Step 3. We are going to prove that (p(0),0) is a uniformly weak repeller in the sense that there exists a
d2 > 0 such that

lim sup || @7 (ug) — (p(0),0)||x > 02 for all ug € Py.

n——4oo

Given any € > 0. By the continuous dependence of ®;(ug) on the initial data with respect to compact
open topology, there exists d > 0 such that for any uy € Py with |lug — (p(0),0)||x < d2, we have
[®¢(u0) — P:(p(0),0)[[x <€ Vte[0,T].

Suppose, by contradiction, there exists ug € Py such that limsup,, ,, o [|®%(ug) — (p(0),0)| x < d2. Then
there exists ng > 1 such that ||®%(ug) — (p(0),0)||x < d2, VYn > ng. For any ¢ > noT, let t = nT + " with
n >mng and t” € [0,T), we have

I1(uo) — 1 (p(0),0)l|x = 10 (D3 (ui)) — P (p(0), 0)x < .
Then

wi (t, x;ug) > p(t) —e, 0 < wa(t,z;up) <€, Vt>neT, z€R. (3.19)
Take 79 = bops + aapr. Therefore, it follows that the equation for ws (¢, x;ug) satisfies

(wa)e = da(Jz * w2 — wa) + c(wa)y + w2 [az(B)p(t) — ra(t) — (bans + azar)e]
= d2(J2 * Wo — 1U2) + C(UJQ);E + ’LUQ[CLQ(f)])(t) — Tg(t) — fQG],t >nod, x € R.

It views of ug € Py, by the maximum principle, we have wa(n¢T, ) > 0. Since

lim A(L22 o ) =M (L827 1) <0,

R—soo azp—r2,Qr azp—ra,

we can choose R > max{x1, x2} > 0 such that A,(£%” ) < 0. Using (H7), there exists € > 0 such that

azp—rz,Qlr " -
Ae(€) := Ao (L2272 ) < 0. Thus, we can take Gz > 0 such that wo(neT,x) > dge (0T gy (ng T, x),

. azp—r2—T2€,QR
x € Qpg, where ¢o(t,-) > 0 is the generalized principal eigenfunction corresponding to the generalized

principal eigenvalue \.(€) of the eigenvalue problem
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da,J. Y 7
‘Cazp 27"2 —26,QR [(bZ](tvx) + AC(€)¢2(t’x) =0, teR, z € Qp,

Go(t,z) = do(t+T,x) >0, teR, z e Qg
Let wy(t, ) be a function defined as
wy(t, ) = dgefj‘c(e))tqgg(t,x), t>noT, z € Qg.

Then w,(t, ) satisfies

(wa)e = da fQR Jao(x — y)wsy (t, y)dy — wy(t, 2)) + c(wy)s
+w2(a2( ) ( )77’2( ) 77’26), t>ngl, x € QR,

wo(noT, ) = dge™ (0T gy (T, ) < wy(noT,z), = € Q.
It follows from the comparison principle that
wa(t,x) > wy(t,x) = &ge_J\C(e)tng(t,ac), Vt>neT, z € Qg.

Since ng(t,x) is a positive T-periodic function in ¢, we have lim;_, o wa(t, z;u9) = 400, Vo € Qp. This
contradicts (3.19). Hence, we conclude that (p(0),0) is a uniform weak repeller and {(p(0),0)} is an isolated
invariant set in F,.

Step 4. Completion of the proof. The above results yield that
W2({(0,00}) NPy =0, W*({(p(0),0)}) N Py =0,

where W#({(0,0)}) and W*({(p(0),0)}) are the stable set of (0,0) and (p(0),0), respectively. Moreover, it is
easy to verify that there are no subsets of {(0,0), (p(0),0)} forming a cycle in 0Fy. Further, since &1 admits
a global attractor on P, it then follows from Zhao [53, Theorem 1.3.1 and Remark 1.3.1] that &7 : P — P
is uniformly persistent with respect to (Py, 9P,); that is, there exists a 6 > 0 such that

lim inf d(®7(ug), OPy) > ‘v’uo € P,.
n——+oo
By Zhao [53, Theorem 1.3.6], we obtain that &1 : Py — Py has a global attractor Ay.
Next, we define a continuous function p: P — [0,400) by

p(up) := min { ;161]{{ ulo(x),xirel]% uso(z)}, Vug € P.

Since Ag = @ (Ap) (i.e. Ap is invariant for 1) C int(P), we have ¥ (-) > 0, 1p2(-) > 0 for all (11, 12) € Ap.
By ®:(Py) C Py, Vt > 0, we have Uycjo71P:(Ao) C Fo. Note that ®&7(Ag) = Ao, ®; is a T-periodic
semiflow and lim;, oo d(P:(ug), P:(Ap)) = 0, Yuy € Py (see the proof of Zhao [53, Theorem 3.1.1]),
we get limy o0 d(P¢(uo), Urejo,rPi(Ao)) = 0. By the continuity of ®:(ug) for (t,up) € [0,400) x P
and the compactness of [0,T] x Ay, it follows that Uscjo71P:(Ao) is a compact subset of Fy. Thus,
minuoeute[o,T]@(Ao)75(“0) > 0. Hence, there exists €, > 0 such that for any ug € Py,

lim inf min{w; (¢, ), wa(t, )} = liminf p(Ps(ug)) > €.

t——+oo t——+oo

Further, there exists ¢ € (0, e4) such that liminf;_, o, w;(t,2) > g; i.e., liminfy_, 4 o u;(t,x+ct) > 0,1 = 1,2.
This completes the proofs of the statement (iii) of Theorem 3.2 and statement (ii) of Theorem 3.3. O
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