Rev. Mat. Iberoam. 38 (2022), no. 2, 635-658
DOI 10.4171/RMI/1289

©2021 Real Sociedad Matematica Espariola
Published by EMS Press and licensed under a CC BY 4.0 license

Minimizing cones
for fractional capillarity problems

Serena Dipierro, Francesco Maggi and Enrico Valdinoci

Abstract. We consider a fractional version of Gaul} capillarity energy. A suitable
extension problem is introduced to derive a boundary monotonicity formula for local
minimizers of this fractional capillarity energy. As a consequence, blow-up limits
of local minimizers are shown to subsequentially converge to minimizing cones.
Finally, we show that in the planar case there is only one possible fractional min-
imizing cone, the one determined by the fractional version of Young’s law.

1. Introduction

In this article we consider local minimizers in the fractional capillarity model introduced
in [9], analyze their blow-up limits at boundary points, show, by means of a new mono-
tonicity formula, that these blow-up limits are cones, and give a complete characterization
of such cones in the planar case.

In the classical capillarity model of GauB, see [8], one studies equilibrium configura-
tions of liquid droplets E in a container w C R”, n > 2, by looking at (volume-constrained)
local minimizers of the (dimensionally re-normalized) surface tension energy

H" YW wNIE) + o H" 1 (0w N IE),

where o € (—1, 1) is the (constant) relative adhesion coefficient determined by the phys-
ical properties of the liquid and of the walls of the container. In the model introduced
in [9], see (1.1) below, the liquid-air surface energy term #"~!(w N 3E) is replaced by
the nonlocal interaction between points x € E and y € w \ E; while the liquid-solid sur-
face energy term #"~!(dw N JE) is replaced by the nonlocal interaction between points
x € E and y ¢ w. These nonlocal interactions are measured by the singular fractional ker-
nel |x — y|~#*+%) 5 €(0,1): as s — 17, they are increasingly concentrated, respectively, at
points x and y near w N dE and dw N dE. For this reason, the fractional capillarity model
provides a nonlocal approximation of the Gaufs capillarity model in the limit s — 1.
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This happens also at the level of the classical equilibrium conditions expressed by the
constancy of the mean curvature of w N JE and by the contact angle condition between the
liquid-air interface and the walls of the container, valid along dw N w N JE, and known
as Young’s law. The validity of a fractional Young law (see (1.10) below) for sufficiently
regular local minimizers of the fractional capillarity energy has been proved in [9], while
its precise asymptotics in the limits s — 1~ and s — 0T have been presented in [5]. The
existence of minimizers in the fractional capillarity model is also addressed in [9]. It is
an open problem to understand if these minimizers are regular up to the boundary of the
container w, and thus to confirm the validity of the fractional Young law in a pointwise
sense. In this paper we take two important steps in what is a general and well-established
strategy for attacking similar questions in geometric variational problems.

Our first result (given in Corollary 1.3) is that blow-up limits of local minimizers sub-
sequentially converge to cones (which, in turn, are also local minimizers). This result relies
on a new monotonicity formula for the fractional capillarity energy (see Theorem 1.2) and
on an equivalence result with a suitable “capillarity adaptation” of the Caffarelli—Silvestre
extension problem (given in Proposition 1.1).

Our second result (stated in Theorem 1.4) is a classification theorem for fractional
minimizing cones in the half-plane: more precisely, we will show that the only possible
fractional minimizing cones in ambient dimension 2 are angular sectors satisfying the
fractional version of Young’s law.

While the first result about the blow-up limits (as well as the extension theorem and the
monotonicity formula used in its proof) is valid in any dimension, the second result about
classification of cones is only proved in dimension 2, due to suitable energy estimates
that would not be valid in higher dimensions. It is an interesting open problem, which
is also open for interior singularities for arbitrary values of s € (0, 1), to understand if
similar rigidity results for minimizing cones are valid in higher dimensions. The other
main open problem is that of obtaining a boundary regularity criterion comparable to the
one available in the interior [1], and analogous to the ones developed in the classical case
to validate Young’s law, see [3,4] and the references therein.

The precise mathematical setting in which we work is the following. Given s € (0, 1)
and two disjoint sets A, B € R”, we define the fractional interaction between A and B as

dx dy
A, B) = .
( ) /fxB |x_ |n+s

Then, given £ € w CR” and o € (—1, 1), we define the fractional capillarity energy of E
inw as

(1.1) Co(E,0):=Jds(E, E°w) + ads(E, 0°).

“ i)

Here above and in the rest of this paper, we use the superscript “c” to denote the comple-
mentary set in R”. Also, given two sets 4, B € R” we use the short notation AB:= AN B
(in this way, the notation E€w is short for (R” \ E) N w). Furthermore, the Lebesgue
measure of a set ' € R” will be denoted by | F'|.

We consider the half-space

H :={x = (x1,...,x,) € R” such that x,, > 0},
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and, given R > 0, we denote by Bg C R” the n-dimensional Euclidean ball of radius R
centered at the origin. In this article, we are interested in local minimizers of the fractional
capillarity energy in H. Briefly, we say that E C H is a local minimizer in H if, for
every R > 0, we have that d;(EBR, E€Br) < 400 and

(12)  J(EBgr.E‘H) + Js(EBS. ESBRH) + o d (EBg. HS)
< J;(FBR. FCH) + d5(FBS, FBRH) + 0 d(FBg, H®),

for every F' C H suchthat F \ Bg = E \ Bg. In particular, blow-up limits of minimizers
in the fractional capillarity problem in bounded domains with smooth boundary are local
minimizers in H, see Theorem A.2 in [9].

In order to exploit extension methods (see e.g. [2]), for any (x,?) € R1+1 = R" x
(0, +0), it is convenient to introduce the fractional Poisson kernel

tS

Pi(x,1) := Cyhs (X2 + 12)@+9/2”

where Cy, s > 0 is a normalizing constant (which, from now on, will be omitted) such that
/]R” Py(x,t)dx =1, forallt > 0.
Given u € L°(R"), we also denote the s-extension of u by
E,(x,t) := /R” u(y)Ps(x — y,t)dy, forall (x,t) € RTFI .

The relevance of this notion of s-extension for our problem lies in the fact that the property
of E being a local minimizer in H for the fractional capillarity energy €s , is equivalent
to the property of E,, being a local minimizer of a Dirichlet-type energy ¥; , that we are
now going to introduce. Indeed, let X = (x,t) € R1+1. As customary, given £ C R”,
we denote by yz:R" — {0, 1} the characteristic function of E. If u = y, we also
write Eg := E,,. In addition, given Q@ € R"*! with v := QN { = 0} and Q7 :=
QMR and U:R" ! — R with u(x) := U(x, 0), we define the energy

u(x)

wxH¢ |x - y|n+s dx dy.

(1.3) F.(U. Q) ::/ zl—S|VU(X)|2dX+(o—1)/
Qt

Given K € R"*! and n > 0, we also set
(1.4) Ky :={X € R""! such that dist(X, K) < n}.

Then, we have the following extension result.
Proposition 1.1. Let E C H be such that d3(EBR, E€ BR) < 400 for every R > 0. The
following statements are equivalent:

(i) E is alocal minimizerin H.
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(ii) For all R > 0 and all bounded, Lipschitz domains Q C R™+1 with
(1.5) QN{t =0} = B,
we have that
(1.6) Fs0(EE, Q) = F5,6(U, Q)

forall U:]R{T'l — R such that U(x,0) = x g (x) for all x € R", for some F C H,
with FBG_, = EB§_,, and U(X) = Eg(X) for all X € (9Q), N R, for
some 1 € (0, R).

The previous result can be seen as the natural counterpart, in the setting of fractional
capillarity problems, of several extension theorems for the fractional Laplacian, for frac-
tional minimal surfaces and, more generally, for nonlocal free boundary problems, see
e.g. [1,2,6, 10, 13, 14]. Among the many applications of the powerful tool provided
by extension results is the possibility of obtaining convenient monotonicity formulae:
actually, to the best of our knowledge, all the monotonicity formulae involving nonlocal
operators rely on identifying appropriate local extension problems methods.

In the setting considered in this paper, we will exploit Proposition 1.1 to obtain a
monotonicity formula that we now describe in detail. We denote by Br C R**! the
(n + 1)-dimensional Euclidean ball of radius R. For E C w and r > 0, we define

Sp(r) :=r"""%,(EEg, B;).

‘We observe that the above function is scale invariant, in the sense that

(1.7) Op(r) = @5, (p).

where

(1.8) E =L {f, xe E}
r r

In this setting, we have the following monotonicity formula.

Theorem 1.2. Assume that E € H is a local minimizer for the fractional capillarity
energy in H. Then, the function (0, +00) 3 r + ® g (r) is monotone nondecreasing.
More precisely, for every r > 0 we have that

(19) = [ (17 |V, Ep (X d 3.

(08,)N{r>0}
Furthermore, we have that ®g is constant if and only if E is a cone, i.e., TE = E for
allt > 0.

As a consequence of Theorem 1.2, we have that suitable blow-up limits of local min-
imizers of the fractional capillarity problem are cones:

Corollary 1.3. Let o C R" be a bounded open set with C'-boundary. Let E C w be a
minimizer of the capillarity functional in (1.1) among sets of prescribed volume contained
in .



Minimizing cones for fractional capillarity problems 639

Assume that 0 € w N (0E). Then for every vanishing sequence r; there exists (a not
relabeled) subsequence and a set Eq C R”, such that, in the notation of (1.8), we have
that yp — X, in Ll (R™). In addition, Ey is a cone.

j

loc

The existence of the minimizers in Corollary 1.3 (and, in fact, of a more general class
of minimizers) is warranted by Proposition 1.1 in [9]. As a matter of fact, Corollary 1.3
is also valid for the “almost minimizers”, as introduced in Definition 1.5 of [9], with the
same proof that we present here.

In the setting of Corollary 1.3, it is natural to consider locally minimizing cones in H
(i.e., sets that are locally minimizing in A and that possess a conical structure). Inter-
estingly, in dimension 2, we can completely characterize locally minimizing cones in H,
according to the following result.

Theorem 1.4. Let n = 2 and let E be a locally minimizing cone in H = {x, > 0}.
Then, E is made of only one component and, up to a rigid motion, we have that

E = {x = (x1,x2) € H such that x; > x,cos ¥},
with v € (0, ) implicitly defined by the formula

_ (sin®)* M(J,s)
(1.10) 140 = —M(n/2,s) ,

-
h M@, s):=2 dtdr.
where M(D.5) [/(O,ﬁ)x(0,+m) (r? + 2r cost 4 1)@+9/2

Notice that (1.10) expresses the fractional Young law mentioned earlier in this intro-
duction, which, in the limit as s — 17 converges to the contact angle prescription given
by the classical Young law. For a detailed asymptotic description of this, see [5].

To prove Theorem 1.4, we use a “translation method” introduced in [11] to prove
the regularity of fractional minimizing surfaces in the plane. In our context, however, the
cone is going to have a singularity at the origin, hence the notion of “regularity” has to be
weaken to a suitable notion of “monotonicity”, taking inspiration by some work in [12].

The rest of this paper is devoted to the proof of the results that we have presented
above. More specifically, Section 2 contains some preliminary observations relating the
nonlocal surface tension energy introduced in [9] and the nonlocal perimeter functional
introduced in [1]. Then, the proof of Proposition 1.1 will be given in Section 3, and the one
of Theorem 1.2 in Section 4. Section 5 contains the proof of Corollary 1.3, and Section 6
the one of Theorem 1 .4.

2. Capillarity and fractional perimeters

In this section, we point out some useful relations between the capillarity functional given
in (1.1) and other fractional energies of geometric type. First of all, we observe that the
energy functional in (1.1) can be related to the fractional perimeter introduced in [1].
Indeed, writing, for any given F, ® C R”,

Perg(F,w) := Js(Fw, Fw) + Js(Fo, F¢o°) + ds(Fof, Fw),
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for every E C » we have that
Cs0(E,w) = Pers(E,w) + (0 — 1) d5(E, ©°).
It is also useful to define, for all ¥ € H and all R > 0,
2.1 Pers o (F, BR) := Perg(F, BRH) + (0 — 1) J5(FBg, HC).

In this setting, we can state the local minimality condition in (1.2) in terms of the fractional
perimeter as follows:

Lemma 2.1. A set E C H is a local minimizer in H if and only if, for every R > 0, we
have that Perg(E, BRH) < +00 and

Pers s (E, BR) < Pers o (F, BRr)
for every F C H such that F \ Bgr = E \ Bg.
Proof. f F C H,

Pers(F, BRH) + (0 — 1) d4(FBg, H°)
= J,(FBRH, F°BRH) + J(FBrH, FB4H) + Js(FBRH, F HC)
+ d5(FBGH, FEBRH) + J(FHC, FCBRH) + (0 — 1) J(FBg, H®)
= Jy(FBg. FCBRH) + J5(FBg. FCB4H) + Js(FBg, H)
+ Jy(FB%. FBrH) + (6 — 1) ds(FBg. H®)
= J(FBR, FH) + Js(FBS, FCBRH) + 0 d (FBg. H).

From this, (1.2) and (2.1), the desired result plainly follows. ]

3. Extension problems and proof of Proposition 1.1

In this section, we analyze the equivalent extension problem stated in Proposition 1.1 and
give a proof of it.

Proof of Proposition 1.1. First of all, we observe that, by (1.3) and (2.1),if V: Ri“ —-R
is such that V(x,0) = y; (x), with L € H,and Q C R"*1 satisfies (1.5),

3.1) Pers,a(lw BR) - ?'},U(V’ Q)
= Perg(L, BRH) + (0 — 1) d5(LBr, H®)

—f zl—S|VV(X)|2dX—(a—1)f/ Lx)+dxary
Qt BrxH¢ |x — y[n+s

=Pers(L,BRH)—/ 15|V (X)) )2 dX.
Qt
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We also remark that, if F C H, then
Perg(F, BR) — Perg(F, BRH)
= Js(FBR, F)+J5(FB%, F°BRr)—ds(FBRrH, F°)—Js(F(BrH)‘, F°BRH)
= Js(FBRH, F¢) + J5(FB%, F¢Bgr) — ds(FBrH, F¢) — d5(FB%, F°BRH)
= Js(FBg, F°BRH) + d5(FB%, FBRH) — ds(FB%, F°BRrH)
(32) =J(FB}, F°BrH®) = J;(FBg. BRH®).
We will also exploit Lemma 7.2 of [1], according to which (up to normalizing constants

that we omit), given L, M, o € R” with Perg (L, w), Pers(M,®) < 400 and Lo = M &€,
for ® € w, then

(3.3) inf/ " (IVV(X)]? = [VEM (X)|?) dX = Perg(L,w) — Pery(M, ),
Q+

where the infimum is taken among all bounded Lipschitz domains € R**! with Q N
{t = 0} € » and among all functions V: R’ ™" — R such that V — Ej is compactly
supported in 2, and V(x,0) = y; (x).

Now, assume that E is a local minimizer in H, and let R, 2, n, U and F be as in the
assumptions of Proposition 1.1 (ii). In the notation of (1.4), we consider the set

&= {X € © such that dist(X, 0R) > Q} = Q\ (09),)2.

By the assumptions of Proposition 1.1 (ii), we know that U — Eg is compactly supported
in Q. Moreover Q N {t =0} € Q N {t = 0} = Bg. Therefore, we can exploit (3.3) with
there replaced by 2 and w chosen to be Bg, thus obtaining

/ t'(IVUX))? - |[VEE(X)|?) dX =[ " (IVU(X)|? — |[VEE(X)|?) dX
Qt Qt

> Perg(F, BR) — Perg(E, BRr).
This and (3.1) give that

o (B, Q)= Fio (U, Q) = Pery o (E, Br)—Pery (E, BRH) + / (S IVE ()P dX
Q+

— Pery o (F, Br) +Pers(F, BRH) —/ +tl_s|VU(X)|2dX
< Pers - (E, BR) — Pers o (F, BR) + Pez(F, BrH)
— Pery(E, BRH) — Pers(F, BR) + Perg(E, BRr).
Consequently, recalling (3.2) and the fact that £ and F coincide outside Bp,
Fs0(BE, Q) — Fi0 (U, Q)

< Per; ;- (E, BR) — Pers o (F, BR) — Js(FB%, BRH ) + J5(EB%, BRH)
= Pers o (E, BR) — Pers o (F, BRr).

The locally minimizing property of £ and Lemma 2.1 thereby imply that ¥ - (Eg, Q) —
Fs.0(U,2) <0, that is (1.6), as desired.
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Let us now suppose that, viceversa, the claim in (1.6) holds true. Our objective is now
to check that E is a local minimizer. To this end, let F € H such that F \ Bg = E \ Bg.
Also, fixed 8 > 0, recalling (3.3), we take a bounded Lipschitz domain Q©®) ¢ R”+!
with Q@ N {r = 0} € Bry1 and a function V(S):]R’_’F+1 — R such that V® —Ep is
compactly supported in Q@ and V) (x,0) = £ (x), with Q® and V©® attaining the
infimum in (3.3) with @ := Bg41 up to an error &, that is,

(3.4) [ (VO X)) P — [VEE(X)?) dX - §
Q@)+

< Pery(F, Br+1) — Perg(E, Br+1).
Let

/

o = sup |x] and p:= max{R,p’}.
xeQ®n{r=0}

By construction, we have that p’ € [0, R + 1), and thus p € [R, R + 1). Let also Q-? :=
Q® y B,. Then, we have that

(35) QP ({1 = 0) =

Furthermore, since V® = Eg in Q6¢? \ Q@ we have that
/ (VYO (X)? — [VEE(X)[?) dX
Q6.0+

_ /(Qm)+ (S (IVV O (X [VEg (X)[?) dX
Therefore, recalling (3.4),
(3.6) /( . WH—S(WV“)(X)P — |VEg (X)) dX —§

< Pers(F, Br+1) — Pers(E, Br+1).

Moreover, in view of (3.5), we are in the position of using (1.6) (with  replaced by Q(%-?
and R replaced by p). In this way, we find that

Froo B, Q0P) < F o (VD Q00),
Consequently, exploiting (1.3), (3.5) and (3.6),
Pers(E, Br+1) — Pers(F, Br+1)

< / 'S (IVEE(X) > = IVVO(X)[?) dX +§
Q@)+

= %50 (EE, Q6. P)) (V(S) Q6. P))
—(0—1)// lexdyﬂo—l)// L)C)erxd)H—S
Byxme [X = y|"** Byxme [X = y|"**

(o — ])<//BRch |XX_E(|n)+S dx dy — //BRch |XX_F(|n)+s dxdy) +6

= —(0 — 1) (J5(EBg, H®) — d5(FBg, H)) + §.

IA
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Hence, since

(Pers(E, Br+1) — Perg(F, BR+1)) — (Perx(E, BRr) — Perg(F, BR))
= ds(EBr+1Bg. E°Bg, ) + d5(EBR., E°Br+1Bg)
—d5(FBr+1Bg, F By ) — ds(FBg, FBri1Byg)
=0,
we find that
Pery(E. Bg) — Pery(F. Br) < —(0 — 1) (45(EBR. HY) — 4,(FBg. H°)) + 6.
Then, by (2.1) and (3.2),

Pers o (E, BR) — Pers,o (F, BR)
= Per,(E, BRH) — Pery(F, BRH) + (0 — 1) (45(EBg, H) — J;(FBg, H®))
< 6§ + Perg(E, BRH) — Pers(E, BR) + Perg(F, Br) — Perg(F, BRH)
=38 —Jds(EB%, BRH ) + d5(FBg, BRH ) = 6.

Sending § “\ 0, we thereby conclude that Per, ; (E, Br) < Pers o (F, Bg). This, combined
with Lemma 2.1, gives that E is a locally minimizer, as desired. [

4. Monotonicity formula and proof of Theorem 1.2

The goal of this section is proving Theorem 1.2.

Proof of Theorem 1.2. Let

Cg = {x € R” \ {0} such that X e E}
|x|
Given ¢ > 0, we define
E® = ((1—&)E) N Bi—s) U(Cg N (B1 \ Bi—s)) U (E \ By),

see Figure 1, and

Ez(£) ifXesf,.
Ue(X):= Ee () ifX € 8\ 8

—&°

Ep(X) ifX eRU\ By,
‘We remark that

1e(ss) ifre B
Ug(x,0) = XE(|§_|) if x € By \ Bi—, = )(E@)(x).
X (x) if x € R" \ By,
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Figure 1. The construction used in the proof of Theorem 1.2. The parts of the boundary of E ©) due
to Cg N (B1 \ B1—¢) are depicted by bold lines.

We also claim that
(4.1) E® cH.

Indeed, let x € E® . If x € By_,, we have that x € (1 — ¢)E, and thus x /(1 — ¢) € E.
Since £ € H, we deduce that x, /(1 — &) > 0, and consequently x,, > 0, which gives
that x € H in this case.

If instead x € By \ Bj—¢, we have that x € Cg, and hence x/|x| € E. In this case,
since £ € H, we find that x,/|x| > 0, and again x € H. Finally, if x € B{, we have
that x € E C H, which completes the proof of (4.1).

We also observe that U, = Eg outside 8;. Then, in view of (4.1), we can fix n > 0
and exploit Proposition 1.1 with

Q:=814,. Ri=1+4n U:=U, and F:=E®,
In this way, we conclude that
42) 0 < Fs0(Us, B1yy) — Fs,o(Eg, Bryy)
= [ 1 VUO0F - IVES(OP) dx
81,

XE0(x) X))
+(@—-1 [/ dx dy — // dxdy
( BiyxH¢ | — |n+s BiinxH¢ x =y |n+s )

N / ' (IVU(X)P - |VEE (X)) dX
£+

1

+ (0= 1) (4(B1E®, H®) — 4,(B1 E, H)).

We set
G(r):= rs—"/ t15|\VEE (X)|? dX,
8}
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and, using the change of variable Y = (y, 0) := X/(1 — ¢), we observe that

/ 15| VU(X)|? dX
£+

1
1 —
e
1—s x o .
o S B e o

=(1—¢g)"* [:3+ O1S|VEE (Y)|?dY
1

VEE(lX )‘de

— &

+e/ " S(IVEE(X)]? = |X - VEE (X)) dHg + o(e)

081)N{r>0}

=(1-¢"*GA) + s/ 'S\ VLEE (X))? dHE + o(e),
(081)N{t>0}

where V denotes the tangential gradient along 08 .
Similarly,

/-;8+t1_S|VEE(X)|2dX

1

= / t15|\VEE (X)|? dX + s/ t"SIVEE (X)|> dHE + o(e)
A 381)N{t>0}

1—¢

=(1—-¢g)"* G(l—e)—i—e/ t"SIVEE(X)|? dHE + o(e),
081)N{r>0}

and accordingly,
(4.3)

1-s 2 2
[, 7 (90008 = VRS (0P ax
=[1-9)" G -1 —-¢)" Gl —¢)

+ s(/ "5V Eg (X))* d Iy —/ :1—S|VEE(X)|2dJ€§) +o(e)
(081)N{t>0} (081)N{t>0}

=1-m—-s)¢) (GA)-G(1 —¢)) — 5/ t"SIVLEE(X) 2 dHE + o(e),
(081)N{t>0}
where V,, denotes the (exterior) normal gradient along 08 .

Furthermore, setting
J(r) :=r"""Jy(B,E,H),
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using the substitutions X := x/(1 —¢) and y := y/(1 — ¢), and noticing that Cg N (dB;)
= E N (0B;), we have that

Js(B1E® H¢) — Jy(B E, H)
= JS(BI—E((I - S)E)v HC) - JS(Bl—é‘Ev HC)
+ dy(B1BS_,Cg, H®) — Js(B B¢ E, HS)

dxd
= // )
Bi_e((1—e) E)xHe 1X — ¥l

xcg (x)dHE dy XE(x)dHE dy
+E<// |X— |nx+s - |x_ |Z+s ) +0(8)
(0B)xH¢ (0B1)xH¢ y

n—s dXdy _ o\ _
—¢) //B]EXHC s —1-9"JA—-¢e)+o0(e)

X -y

= (=" (J(1) = J(1 —&)) + 0(e)
=(—-m—-s)¢) (J(1)=JA —¢)) + o(s).

Then, plugging this information and (4.3) into (4.2), and noticing that ®g (r) = G(r) +
(0 — 1)J(r), we conclude that

0<(1—(@m—s)e) (G)— G —¢)) — Ef(a;e S t"SIVVEE (X)|> dH}

+o—-1)A=m—s)e) (J(1)=J(1—¢)) +o0(s)
=(1-=n-s)e) (Pp(l) —Pe(1—¢))

—s/ 'S IVVEE (X)) dHE + o(e)
a8B1)N{t>0}
=e®(1) — g/ 'S |\VUEE(X))? dHE + o(e).
(081)N{t>0}
Therefore, dividing by € and sending € “\ 0, we see that
“4) o= [ (15 |V Eg (X dey.
(081)N{r>0}

On the other hand, in light of (1.7), we know that
4.5) @, (r) = Pg,,,, (),
forall r, p, A > 0, and thus, choosing p := Ar,

Sp, (r) = Pe(Ar).

As a consequence, taking A ;= Randr := 1+ h,and A := R and r := 1, we see that, for
all R > 0,

@E(R(l + M) = @p(R) _ . Prg(L+7) = Prp() _ P (D

R =
( )= Rh h—0 Rh R
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Combining this and (4.4) (used here on the set Eg), we obtain that

1
— 1" |V, Egp (X)? dJtg
R Ja8)n{t>0

= R/ 'S |\V,Eg(RX)|? dH}
08B1)N{t>0}

P (R)

A%

=R f ' \VVEE (X)) d ity
(08r)N{z>0}

that is (1.9), as desired.

Now, if E is a cone, from (1.7) we have that ®g (r) = ®g(p) for any r, p > 0, and
therefore ® g is constant.

Viceversa, if ® g is constant, we deduce from (1.9) that

/ 175 |V Eg (X) P dJel = 0
08, )N{t>0}

for all r > 0, and therefore X - VEg(X) = 0 forall X € ]R:’_H. By Euler’s formula, this
gives that Eg is homogeneous of degree zero, and consequently, for any 7 > 0,

Xe(tx) = Ep(1x,0) = Eg(x.0) = yg(x).

and hence E is a cone. u

5. Homogeneous structure of the blow-up limits and proof of
Corollary 1.3

In this section, we analyze the structure of the blow-up limit of local minimizers and we
prove Corollary 1.3. To this end, we need the forthcoming auxiliary result which can be
seen as the counterpart of Proposition 9.1 in [1] in our setting.

Lemma 5.1. Let E C H be a local minimizer in H. Let E C H be a sequence of local
minimizers in H and suppose that E, — E in LIOC (R™) as k — +o0.
Then,
lim ®g, (r) = Pe(r) forallr >0.
k——+o00

Proof. We note that
s q)Ek (r) = :Fs,a (EEk . Br)

(G.D =/ tl_S|VEEk(X)|2dX+(0—1)/ X
8)

(B H)xHe¢

By the dominated convergence theorem, we have that

(5.2) lim // XEk(n)ﬂ dxdy = // XE(xn)ﬂ dx dy.
k—+oo JJ (B, HyxHe lx =yl (Br H)xH¢ |x — ¥
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By this and (5.1) we see that, to prove the desired result, it suffices to show that
(5.3) lim t'7 |VEg, (X)|*dX =/ t'75 |VEg (X)|? dX.
k—+o00 3r+ £r+

To this end, we use formula (7.2) in Proposition 7.1 in [1] and we write that, given r,
s >0,

[ 9 Ee — B0 ax = [ 17 (0P X

r

EENTE ey

_ _ _ 2
<Cy / (xg, — xg)(X) — (xg, — xg) )]
ar,S
for some C, 5 > 0, where
Q5 =R\ (By 15 x By _5).
Consequently, the claim in (5.3) is established once we show that

/ g, = xe)®) = (g, — 1)
ar,é’

|x_y|n+s

(5.4) lim

k—+o00

dxdy = 0.

It is convenient to define

X ) =1 () _XE) = xg(y)
fe(x,y) = Ty and  f(x,y) = Tyt

In this way, claim (5.4) can be written as
5.5 lim — =0.
(5.5) Jim I /e = fll2@,4)

We now use < as a short notation for y o  (x,y)dxdy/|x —y |"*S and set B := B, 5.
We point out that

”fk”%’z(@rﬂ // /‘/ //
- = > = >+ >
2 EpxEf (Er B)XE}, (ExBS)XEf
Mmrsin ™ ™
(ExB)x(E{H) (ExB)x(Ef H°)
M ™ Moz ™
(ExBS)x(E{H) (ExBO)X(E{H®)

+ d5(Ex B¢, E{ BH) + J5(Ey B¢, Ef BH®),

and therefore,

Il fiell,
# < Jy(ExB. ESH)+J,(E B, ES BHC)+ 5 (Ey BS, ES BH) +2J,(B, BS)

= 45(Ex B, EEH) + s (Ex B, E]iBH) + 245(B, B) + J5(BH, BH®)
— 4,(Ex B, E{ H) + J5(Ex B¢, E{ BH) + Cy.5,
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with C, s independent of k. Hence, using the local minimizing property of Ej in (1.2),
and taking Fy := Ey B¢,

”fk”izwzr’g)
2
< Js(FxB, F{H) + J5(Fi B¢, F{ BH) + o (J5(Fk B, H®) — J5(Ex B, H)) + Cr.5

<0+ (B, B) + 0(0 — Jds(Er B, HC)) +Crs <2C,s.
This and Fatou’s lemma yield that
”f”iZ(@r!S) =< 4Cr,8-
Now we remark that to prove (5.5) it suffices to show that

5.7 li = .
(5.7) k_iT@”fk”U(@,,s) 1/ 2@, 4)

Indeed, suppose that (5.7) holds true and notice that f; converges to f pointwise. Let ¢ €
Cs°(@,s) and observe that

i) o] < s € L @),

Hence, by the dominated convergence theorem,

lim Jep = / fo.
ar,E

k—>+o00 J@, ;

By density, given & > 0, we can pick ¢, € C§°(Q,,5) such that ||pe — fllL2(q, ) < & In
this way, we find that

tmsop| [ fif = [ <timsw| [ o= [+ [ nlr -l
Qr,S ar,é’ (Qr,b’ @r,é' Qr,S

k——+o00 k—+o00

<|[ fo-| fZ\+nmsup||fk||Lz<@,,8»||<pe—f||Lz(a,,8))
Qrs Qrs k—+00

<tlimsup (| fllz2(@, 5 + 1 fxllL2@ sn)llee = f 2@, 5) < 46y/Crs

k—+o00

Hence, since ¢ can be taken arbitrarily small,

lim / fer =, 7

k—+o00
As a result, if (5.7) holds true, we obtain that
. 2 1 2 2 _ _
kgr-{—loo ”fk - f”Lz(@r,b‘) = klir-il—loo ”fk“Lz(@r,s) + ||f||L2(Qr’8) 2/@,’5 fkf =0,

that is (5.5).
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In view of this observation, to complete the proof of Lemma 5.1, we are left with
proving (5.7). As a matter of fact, by Fatou’s lemma, to prove (5.7) it suffices to check
that

(5.8) limsup || fillL2@, 5 = 1 /2@, 4)-

k—4o00

and therefore the remaining part of this proof is devoted to show this inequality. To this
end, we let Dy be the symmetric difference of E; and E, and we define

Gy := (EB) U (ExB°).
The local minimizing property of Ej as stated in (1.2) yields that

ds(ExB,E{H) + J;(Ex B, E{BH) + 0J,(Ex B, H°)
<Js(GkB,G{H) + J5(GxB°, Gy BH) + 0J;(Gx B, H®)
= Jy(EB,G{H) + J;(ExB°, E°BH) + 0J4(EB, H)
= J;(EB,E°BH) + J,(EB,E{B°H) + J(Ex B, E°BH) + 0Js(EB, H)
<Js(EB,E°BH) + J,(EB,E°B°H) + Js(EB®, E°BH) + oJ4(EB, H)
+ ds(EB, Dy B°H) + d,(Dy B¢, E°BH)
<Js(EB,E°H) + J5;(EB°, E°BH) + 0ds(EB, H) + 245(B, Dy B°).
By [1] (see in particular the proof of Theorem 3.3 there), we know that

lim J4(B, DxB) =0,
k—+o00

and accordingly we can write that

limsup ds(Ex B, E{ H) + J5(Ex BS, E{ BH) + 0 d5(Ex B, HC)

k—>+o0
< Js(EB,E°‘H) + Js(EB°,E°BH) + 0 Js(EB, H®).
Hence, recalling (5.2),
(5.9) llimsup Is(ExB,E{H) + Js(Ex B, E; BH)
—-+00
< Jd;(EB,E‘H) + d;(EB, E°BH).
Besides, from (5.6),

||fk||1242(ar5) c crre
2 = J(ExB. EGH) + J5(Ex B E{HO)

+ ds(Ex B¢, E{ BH) + J4(Ey B¢, E{ BH®),

and a similar formula holds true by replacing f; by f and Ej by E.
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In this way, exploiting again the dominated convergence theorem, we deduce that

: 1 2 2
II:I—I:-T-I;E 5 (”fk”LZ(@r,s) - ”f”LZ(@r,a))

:lzim sup dy(Ex B, ES H) +J5(Ex B, E{ H)+J5(Ex B, E{ BH)+J(Ey BS, E{ BHC)
—+o00

— J(EB,E°H) — Jy(EB, ECHS) — J,(EB°, EBH) — J;(EB®, E BH®)
= limsup Js(Ex B, ECH) + J5(Ex B¢, EEBH) — J5(EB, E°H) — J;(EB, E°BH).

k—+o00
From this and (5.9) we obtain (5.8), as desired. [

With this preliminary work, we can now complete the proof of Corollary 1.3 by
arguing as follows.

Proof of Corollary 1.3. The proof is based on a double blow-up procedure, combined with
the monotonicity formula in Theorem 1.2. The advantage of a double blow-up with respect
to a single blow-up is that the first blow-up reduces the container w to a half-space, thus
allowing us to use Lemma 5.1 in the second blow-up.

Here are the details of the proof. First of all, we consider the sequence of sets Ej g,
with k € N. By Theorem A.2 in [9], up to a subsequence, we know that y E,), converges
in LlloC (R™) to y g+ as k — +o0, for a suitable £* contained in a half-space H*, with E*
locally minimizing in H*. Up to a rigid motion, we can suppose that H* = H.

Now we consider the sequence E h with 2 € N. Using again Theorem A.2 in [9],

up to a subsequence, we see that XEj,, converges as h — +ooin L} (R") to XE,> fora

suitable Eg € H which is locally minimizing in H. Also, thanks to Lemma 5.1, we have
that

(5.10) lim ®p. (1) = Bg,(r).

h—+o0

Then, Corollary 1.3 will be established once we prove the following claims:

(5.11) Ej is a cone
and
(5.12) there exists an infinitesimal sequence 7; > 0 such that

071
X g, converges to x g, in Ly

(R™") as j — 4o0.
To prove (5.11), we exploit (4.5) with A := 1/h and p := Ar, by writing

Op. (r) = dm(%).

1/h

Hence, in light of (5.10),

. . r .
S0 o= 0,0 i o) < g
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Notice that the last limit exists, due to the monotonicity of the function proved in The-
orem 1.2. Furthermore, the identity in (5.13) says that ®f, is constant and then, by
Theorem 1.2, Ey must necessarily be a cone, which proves (5.11).
Now we prove (5.12). For this, let R > 0. By the convergence of E
given ¢ > 0, there exists ig(R, €) € N such that, for all 4 > ho(R, ¢),

*

1/ We know that,

(5.14) [ ey, 0= g ldx <e

BpRr /h
On the other hand, by the convergence of E| i, there exists ko(R, &, &) € N such that, for
allk > ko(R,h,¢),

&
18,0~ dx < g

Scaling back, and using (5.11), this gives that, for all k > ko(R, h, €),

[ Wy @ = 25y, 01 dx <
Br /

Combining this with (5.14), we find that, for all k > k. (R, &) := ko(R, ho(R, €), &),

/ |XE1/(h0(R,s)k) (xX) = xg, ()| dx
Br

= V0 O g O [ g )= 25, () = 20

This establishes (5.12), as desired. ]

6. Locally minimizing cones in the plane and proof of Theorem 1.4

In this section, we take n = 2, and we classify locally minimizing cones, thus proving
Theorem 1.4.

Proof of Theorem 1.4. Let W € C§°(By/10, [0, 1]) be a radially decreasing function with
with W(X) =1 for all X € B;,,. Given R > 2, to be taken as large as we wish in the
following, we consider the transformation

X
6.1) ]R39X+—>Y::X+\I'(E)el,

where e; := (1,0, 0). Denoting this map by Y (X) (see Figure 2), we see that it is invertible,
and we denote its inverse by X (Y'). We also let

(6.2) U:=Eg,

and
UF(Y) :=UX(Y)).
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BRRER T S 08k

S IB(R/2)+1 LX)

e [ . O - —o - NS | R .
1 R)2 R 1 (R/2) + IR

Figure 2. Depicting the action of the map Y defined in (6.1) on a set S. Notice that S N Bg is
translated by e, while S \ Bp is left unchanged. Since W is radially decreasing, the slices S N 98,
corresponding to p € (1, R) are translated by multiples A(p) e1 of e1, where A(p) decreases from
A =1whenp = R/2,to A =0 when p > (9/10)R.

We also denote Uy a similar function, in which W is replaced by —W. In addition, we
setu(x) := U(x,0), u;(y) = U;(y,O) and uzx(y) := Ugx (y,0).

We use coordinates X = (X1, X, X3) = (x,1) € R? x (0, +00). We remark that Y3 (X)
= X3, hence X3(Y) = Y3, and accordingly X3(y,0) = 0. This gives that

(6.3) ugp(y) = U(X(y,0)) = U(x(y,0),0) = xx(x(y,0)).

Then, in the notation of (1.3), we claim that
_ - C
(6.4) |0 (UR BR) + Fs.o(Ug Br) =255, (U, Br)| = 75

for some C > 0. To prove this, we let

Jr(U) = /£+II‘S|VU(X)|2dX and Tr(u) = // ludedz.
BrxH¢

R

A direct computation (see Lemma 1 in [11]) shows that

C
©.5) |#R(UR) + $r(UR) = 29RW)| < 45

for some C > 0.

We introduce the following notation: from now on, we denote by <> any quantity or
bounded function, possibly different from line to line, which changes sign if W is replaced
by —W. We stress that it is not necessary that <> has a sign itself, what matters in this
notation is that its pointwise value changes sign if W is replaced by —W.

Now, we want to use the change of variable y := x(y,0) and Z := x(y,0) — y + z.
In this way, we have that

y—Z=y-—z.
We also observe that, if z € H¢, then Z, = x5(y,0) — y, + 2z, =z, <0,and thus Z € H.
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Furthermore, for all i, j € {1, 2,3},

81j X <&
Dy, Y;(X) = 8i; + ?’81\11(;) =6 + R
Therefore, we can write that
<& 1 o e
dydz = (1 + R + O(E)) dydz.
We also point out that
(6.6) if y € Bg, then x(y,0) € Bpg.
Indeed, if |y| < 99 R/100, then
x(y,0) 9 R
0 = |y —w( Jer| = 1 <R,
501 =y = 9(F22)er| = = 41 <
as long as R is large enough.
If instead |y| > 99 R/100, it follows that
x(y,0) 9 R 9R
0 =(—\If )> sty s 2R
Ix(y.0)[ = |y ( A )e1 = |yl 100 T

and consequently W(x(y,0)/R) = 0, whence x(y,0) = y in this case.
These considerations prove (6.6). Hence, recalling (6.3),

ug() // XE(x(3.0)
= dydz = dyd:z
Tl ) /jI;Rch ly —z|>*s Y BrxHE |y—z|2+s Y
XE() < Ly o
=l o)) e

Given our notation related to <, this also says that

Tr(ug) = //BRch |yxf§|y2)+s (1- % + 0(%)) dy dz.

As a consequence,

xe(¥) ~ g~
|JR(MR)+JR(MR)—2JR(M)|<0 R2 //B chmdde

() [, 55 = OB B2 = ().

From this, (1.3) and (6.5), we obtain (6.4), up to renaming C > 0, as desired.
Moreover, from (1.6), we can write that

?jS‘,O‘(Uv c(L:}R) E ‘?:S‘,U (Ujgs D(BR)
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Using this and (6.4), we conclude that

=

Fso(UR . Br) — Fs0(U, Br) < Fso(Ug . Br) + Fs.0(Ug . Br) — 2F5,5(U. Br)

6.7)

IA
clle

Now we claim that

(6.8) U is monotone in the direction ey,
namely either U(X + tey) > U(X) or U(X + tey) < U(X), for every 7 > 0.

To prove this, we argue by contradiction, supposing that there exist X € ]Ri and 73,7, >0
such that

(6.9) UX 4+ T1e1) > U(X) and U(X + Tre1) < U(X).

Since E is a cone, we have that U is homogeneous of degree zero, and therefore, letting
P:=%'X and Q:=7'X,

we can write (6.9) as

(6.10) U(P +e1) =UE'X +e1) = UX + tye;) > UX) = U(z; ' X) = U(P),
UQ+e)=UE"'X +e) =UX + te) <UX)=UE'X) = UQ).

We can suppose that
(6.11) R/2>M =2+ 0|+ |P]|,
and we set
Vr(X) := min{U(X), U;(X)} and Wg(X) := max{U(X), U;'(X)}.
We remark that
(6.12) Fs,0(VR, BR) + Fs,0(Wr, BR) = Fs,0 (U, Br) + Fs.0(Ug , Br).

In addition, by (1.6),
Fs6(U, Br) < F5,6(Vr, Br).

Combining this and (6.12), we find that
(6.13) Fs.0(WR, BR) < F5,0(Ug , Br).

Now, we denote by W, the minimizer of J3s (W) among all the competitors W with W =
Wg on 085, = ((08um) N {t > 0}) U (Bm x {0}).
We remark that the minimization of the functional leads to the equation

(6.14) div(t'*VW,) =0 in B}.

Also, the same equation is fulfilled by U, in view of (6.2).
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We claim that
(6.15) W, # Wg.

Indeed, suppose by contradiction that W, = Wg. Then, since U < Wg = W,, we deduce
by the strong maximum principle for the equation in (6.14) (see e.g. Corollary 2.3.10
in [7]) that

(6.16) either U <Wg or U=Wg inB};.

On the other hand, by (6.11), we have that

Y(P)=P + W(%)el =P+e and Y(Q)=0 + ‘P(%)el —Q+er.
Consequently, by (6.10),
UL (Y(P)) = U(P) < U(P + e1) = U(Y(P))
and Ug (Y(Q)) = U(Q) > U(Q + 1) = U(Y(Q)).
Therefore, we see that
Wr(Y(P)) = U(Y(P)) and Wg(Y(Q)) = Ug(Y(Q)) > U(Y(Q)).

and these observations say that none of the two possibilities in (6.16) can be fulfilled.
This contradiction proves (6.15). Then, from (6.15), we obtain that there exists §o > 0
such that
I (W) + 80 < I (WR).

We stress that this ¢ is independent of R, because Wg in By does not depend on R,
being
Wr(X) = max{U(X), U(X —ey)} forall X € B,

thanks to (6.11).
Furthermore, if we extend W, to be equal to Wx outside B, we have that

(6.17) FRWR) — Fr(Wy) = I (WR) — I (Wy) = Bo.

Since, by construction w, (x) := W, (x,0) = Wgr(x,0) =: wr(x), we have that Tg (w,) =
Tr(wg). This and (6.17) give that

Fs.0(WR, BR) — Fs,0 (W, Br) = do.
As a consequence, in light of (6.13),
(6.18) Fso(UR . BR) = F5.0(We, Br) = bo.
On the other hand, using again (1.6),

T’s,o(Uv cfBR) =< %,G(Wn £R)~
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Comparing this and (6.18), we see that
%,O(Ulg_v £R) - %,U(U5 £R) Z 80'

Hence, recalling (6.7),
£ > §
R ="
We can now send R — o0 and find that 0 > §¢ > 0. This contradiction proves the validity
of (6.8).
As a consequence of (6.8), we have that u is monotone in the direction e, hence the
cone E is made of only one component.
From this and Theorem 1.4 in [9], one also obtains (1.10). [
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