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Minimizing cones

for fractional capillarity problems

Serena Dipierro, Francesco Maggi and Enrico Valdinoci

Abstract. We consider a fractional version of Gauû capillarity energy. A suitable

extension problem is introduced to derive a boundary monotonicity formula for local

minimizers of this fractional capillarity energy. As a consequence, blow-up limits

of local minimizers are shown to subsequentially converge to minimizing cones.

Finally, we show that in the planar case there is only one possible fractional min-

imizing cone, the one determined by the fractional version of Young’s law.

1. Introduction

In this article we consider local minimizers in the fractional capillarity model introduced

in [9], analyze their blow-up limits at boundary points, show, by means of a new mono-

tonicity formula, that these blow-up limits are cones, and give a complete characterization

of such cones in the planar case.

In the classical capillarity model of Gauû, see [8], one studies equilibrium configura-

tions of liquid droplets E in a container ! � R
n, n � 2, by looking at (volume-constrained)

local minimizers of the (dimensionally re-normalized) surface tension energy

H n�1.! \ @E/ C �H n�1.@! \ @E/ ;

where � 2 .�1; 1/ is the (constant) relative adhesion coefficient determined by the phys-

ical properties of the liquid and of the walls of the container. In the model introduced

in [9], see (1.1) below, the liquid-air surface energy term H n�1.! \ @E/ is replaced by

the nonlocal interaction between points x 2 E and y 2 ! n E; while the liquid-solid sur-

face energy term H n�1.@! \ @E/ is replaced by the nonlocal interaction between points

x 2 E and y 62 !. These nonlocal interactions are measured by the singular fractional ker-

nel jx � yj�.nCs/, s 2 .0;1/: as s ! 1�, they are increasingly concentrated, respectively, at

points x and y near ! \ @E and @! \ @E. For this reason, the fractional capillarity model

provides a nonlocal approximation of the Gauû capillarity model in the limit s ! 1�.
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This happens also at the level of the classical equilibrium conditions expressed by the

constancy of the mean curvature of ! \ @E and by the contact angle condition between the

liquid-air interface and the walls of the container, valid along @! \ ! \ @E, and known

as Young’s law. The validity of a fractional Young law (see (1.10) below) for sufficiently

regular local minimizers of the fractional capillarity energy has been proved in [9], while

its precise asymptotics in the limits s ! 1� and s ! 0C have been presented in [5]. The

existence of minimizers in the fractional capillarity model is also addressed in [9]. It is

an open problem to understand if these minimizers are regular up to the boundary of the

container !, and thus to confirm the validity of the fractional Young law in a pointwise

sense. In this paper we take two important steps in what is a general and well-established

strategy for attacking similar questions in geometric variational problems.

Our first result (given in Corollary 1.3) is that blow-up limits of local minimizers sub-

sequentially converge to cones (which, in turn, are also local minimizers). This result relies

on a new monotonicity formula for the fractional capillarity energy (see Theorem 1.2) and

on an equivalence result with a suitable ªcapillarity adaptationº of the Caffarelli±Silvestre

extension problem (given in Proposition 1.1).

Our second result (stated in Theorem 1.4) is a classification theorem for fractional

minimizing cones in the half-plane: more precisely, we will show that the only possible

fractional minimizing cones in ambient dimension 2 are angular sectors satisfying the

fractional version of Young’s law.

While the first result about the blow-up limits (as well as the extension theorem and the

monotonicity formula used in its proof) is valid in any dimension, the second result about

classification of cones is only proved in dimension 2, due to suitable energy estimates

that would not be valid in higher dimensions. It is an interesting open problem, which

is also open for interior singularities for arbitrary values of s 2 .0; 1/, to understand if

similar rigidity results for minimizing cones are valid in higher dimensions. The other

main open problem is that of obtaining a boundary regularity criterion comparable to the

one available in the interior [1], and analogous to the ones developed in the classical case

to validate Young’s law, see [3, 4] and the references therein.

The precise mathematical setting in which we work is the following. Given s 2 .0; 1/

and two disjoint sets A; B � R
n, we define the fractional interaction between A and B as

Is.A; B/ WD

“

A�B

dx dy

jx � yjnCs
�

Then, given E � ! � R
n and � 2 .�1;1/, we define the fractional capillarity energy of E

in ! as

(1.1) Cs;� .E; !/ WD Is.E; Ec!/ C �Is.E; !c/:

Here above and in the rest of this paper, we use the superscript ªcº to denote the comple-

mentary set in R
n. Also, given two sets A, B � R

n we use the short notation AB WD A \ B

(in this way, the notation Ec! is short for .Rn n E/ \ !). Furthermore, the Lebesgue

measure of a set F � R
n will be denoted by jF j.

We consider the half-space

H WD ¹x D .x1; : : : ; xn/ 2 R
n such that xn > 0º;
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and, given R > 0, we denote by BR � R
n the n-dimensional Euclidean ball of radius R

centered at the origin. In this article, we are interested in local minimizers of the fractional

capillarity energy in H . Briefly, we say that E � H is a local minimizer in H if, for

every R > 0, we have that Is.EBR; EcBR/ < C1 and

Is.EBR; EcH/ C Is.EBc
R; EcBRH/ C �Is.EBR; H c/

� Is.FBR; F cH/ C Is.FBc
R; F cBRH/ C �Is.FBR; H c/;

(1.2)

for every F � H such that F n BR D E n BR. In particular, blow-up limits of minimizers

in the fractional capillarity problem in bounded domains with smooth boundary are local

minimizers in H , see Theorem A.2 in [9].

In order to exploit extension methods (see e.g. [2]), for any .x; t/ 2 R
nC1
C WD R

n �

.0; C1/, it is convenient to introduce the fractional Poisson kernel

Ps.x; t/ WD Cn;s

t s

.jxj2 C t2/.nCs/=2
;

where Cn;s > 0 is a normalizing constant (which, from now on, will be omitted) such that

Z

Rn

Ps.x; t/ dx D 1; for all t > 0:

Given u 2 L1.Rn/, we also denote the s-extension of u by

Eu.x; t/ WD

Z

Rn

u.y/ Ps.x � y; t/ dy; for all .x; t/ 2 R
nC1
C :

The relevance of this notion of s-extension for our problem lies in the fact that the property

of E being a local minimizer in H for the fractional capillarity energy Cs;� is equivalent

to the property of Eu being a local minimizer of a Dirichlet-type energy Fs;� that we are

now going to introduce. Indeed, let X D .x; t/ 2 R
nC1
C . As customary, given E � R

n,

we denote by �E W R
n ! ¹0; 1º the characteristic function of E. If u D �E , we also

write EE WD E�E
. In addition, given � � R

nC1 with ! WD � \ ¹t D 0º and �C WD

� \ R
nC1
C , and U W R

nC1 ! R with u.x/ WD U.x; 0/, we define the energy

(1.3) Fs;� .U; �/ WD

Z

�C

t1�sjrU.X/j2 dX C .� � 1/

“

!�H c

u.x/

jx � yjnCs
dx dy:

Given K � R
nC1 and � > 0, we also set

(1.4) K� WD ¹X 2 R
nC1 such that dist.X; K/ < �º:

Then, we have the following extension result.

Proposition 1.1. Let E � H be such that Is.EBR; EcBR/ < C1 for every R > 0. The

following statements are equivalent :

(i) E is a local minimizer in H .
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(ii) For all R > 0 and all bounded, Lipschitz domains � � R
nC1 with

(1.5) � \ ¹t D 0º D BR;

we have that

(1.6) Fs;� .EE ; �/ � Fs;� .U; �/

for all U WRnC1
C ! R such that U.x;0/ D �F .x/ for all x 2 R

n, for some F � H ,

with FBc
R�� D EBc

R�� , and U.X/ D EE .X/ for all X 2 .@�/� \ R
nC1
C , for

some � 2 .0; R/.

The previous result can be seen as the natural counterpart, in the setting of fractional

capillarity problems, of several extension theorems for the fractional Laplacian, for frac-

tional minimal surfaces and, more generally, for nonlocal free boundary problems, see

e.g. [1, 2, 6, 10, 13, 14]. Among the many applications of the powerful tool provided

by extension results is the possibility of obtaining convenient monotonicity formulae:

actually, to the best of our knowledge, all the monotonicity formulae involving nonlocal

operators rely on identifying appropriate local extension problems methods.

In the setting considered in this paper, we will exploit Proposition 1.1 to obtain a

monotonicity formula that we now describe in detail. We denote by BR � R
nC1 the

.n C 1/-dimensional Euclidean ball of radius R. For E � ! and r > 0, we define

ˆE .r/ WD rs�nFs;� .EE ; Br /:

We observe that the above function is scale invariant, in the sense that

(1.7) ˆE .r/ D ˆEr=�
.�/;

where

(1.8) Er WD
E

r
D

°x

r
; x 2 E

±

:

In this setting, we have the following monotonicity formula.

Theorem 1.2. Assume that E � H is a local minimizer for the fractional capillarity

energy in H . Then, the function .0; C1/ 3 r 7! ˆE .r/ is monotone nondecreasing.

More precisely, for every r > 0 we have that

(1.9) ˆ0
E .r/ � rs�n

Z

.@Br /\¹t>0º

t1�s jr� EE .X/j2 dH n
X :

Furthermore, we have that ˆE is constant if and only if E is a cone, i.e., �E D E for

all � > 0.

As a consequence of Theorem 1.2, we have that suitable blow-up limits of local min-

imizers of the fractional capillarity problem are cones:

Corollary 1.3. Let ! � R
n be a bounded open set with C 1-boundary. Let E � ! be a

minimizer of the capillarity functional in (1.1) among sets of prescribed volume contained

in !.
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Assume that 0 2 ! \ .@E/. Then for every vanishing sequence rj there exists .a not

relabeled/ subsequence and a set E0 � R
n, such that, in the notation of (1.8), we have

that �Erj
! �E0

in L1
loc.R

n/. In addition, E0 is a cone.

The existence of the minimizers in Corollary 1.3 (and, in fact, of a more general class

of minimizers) is warranted by Proposition 1.1 in [9]. As a matter of fact, Corollary 1.3

is also valid for the ªalmost minimizersº, as introduced in Definition 1.5 of [9], with the

same proof that we present here.

In the setting of Corollary 1.3, it is natural to consider locally minimizing cones in H

(i.e., sets that are locally minimizing in H and that possess a conical structure). Inter-

estingly, in dimension 2, we can completely characterize locally minimizing cones in H ,

according to the following result.

Theorem 1.4. Let n D 2 and let E be a locally minimizing cone in H D ¹x2 > 0º.

Then, E is made of only one component and, up to a rigid motion, we have that

E D ¹x D .x1; x2/ 2 H such that x1 > x2 cos #º;

with # 2 .0; �/ implicitly defined by the formula

1 C � D
.sin #/s M.#; s/

M.�=2; s/
;

where M.#; s/ WD 2

“

.0;#/�.0;C1/

r

.r2 C 2r cos t C 1/.2Cs/=2
dt dr:

(1.10)

Notice that (1.10) expresses the fractional Young law mentioned earlier in this intro-

duction, which, in the limit as s ! 1� converges to the contact angle prescription given

by the classical Young law. For a detailed asymptotic description of this, see [5].

To prove Theorem 1.4, we use a ªtranslation methodº introduced in [11] to prove

the regularity of fractional minimizing surfaces in the plane. In our context, however, the

cone is going to have a singularity at the origin, hence the notion of ªregularityº has to be

weaken to a suitable notion of ªmonotonicityº, taking inspiration by some work in [12].

The rest of this paper is devoted to the proof of the results that we have presented

above. More specifically, Section 2 contains some preliminary observations relating the

nonlocal surface tension energy introduced in [9] and the nonlocal perimeter functional

introduced in [1]. Then, the proof of Proposition 1.1 will be given in Section 3, and the one

of Theorem 1.2 in Section 4. Section 5 contains the proof of Corollary 1.3, and Section 6

the one of Theorem 1.4.

2. Capillarity and fractional perimeters

In this section, we point out some useful relations between the capillarity functional given

in (1.1) and other fractional energies of geometric type. First of all, we observe that the

energy functional in (1.1) can be related to the fractional perimeter introduced in [1].

Indeed, writing, for any given F , ! � R
n,

Pers.F; !/ WD Is.F!; F c!/ C Is.F!; F c!c/ C Is.F!c ; F c!/;
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for every E � ! we have that

Cs;� .E; !/ D Pers.E; !/ C .� � 1/ Is.E; !c/:

It is also useful to define, for all F � H and all R > 0,

(2.1) Pers;� .F; BR/ WD Pers.F; BRH/ C .� � 1/ Is.FBR; H c/:

In this setting, we can state the local minimality condition in (1.2) in terms of the fractional

perimeter as follows:

Lemma 2.1. A set E � H is a local minimizer in H if and only if, for every R > 0, we

have that Pers.E; BRH/ < C1 and

Pers;� .E; BR/ � Pers;� .F; BR/

for every F � H such that F n BR D E n BR.

Proof. If F � H ,

Pers.F; BRH/ C .� � 1/ Is.FBR; H c/

D Is.FBRH; F cBRH/ C Is.FBRH; F cBc
RH/ C Is.FBRH; F cH c/

C Is.FBc
RH; F cBRH/ C Is.FH c ; F cBRH/ C .� � 1/ Is.FBR; H c/

D Is.FBR; F cBRH/ C Is.FBR; F cBc
RH/ C Is.FBR; H c/

C Is.FBc
R; F cBRH/ C .� � 1/ Is.FBR; H c/

D Is.FBR; F cH/ C Is.FBc
R; F cBRH/ C �Is.FBR; H c/:

From this, (1.2) and (2.1), the desired result plainly follows.

3. Extension problems and proof of Proposition 1.1

In this section, we analyze the equivalent extension problem stated in Proposition 1.1 and

give a proof of it.

Proof of Proposition 1.1. First of all, we observe that, by (1.3) and (2.1), if V WRnC1
C ! R

is such that V.x; 0/ D �L.x/, with L � H , and � � R
nC1 satisfies (1.5),

Pers;� .L; BR/ � Fs;� .V; �/

D Pers.L; BRH/ C .� � 1/ Is.LBR; H c/

�

Z

�C

t1�sjrV.X/j2 dX � .� � 1/

“

BR�H c

�L.x/

jx � yjnCs
dx dy

D Pers.L; BRH/ �

Z

�C

t1�sjrV.X/j2 dX:

(3.1)
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We also remark that, if F � H , then

Pers.F; BR/ � Pers.F; BRH/

D Is.FBR; F c/CIs.FBc
R; F cBR/�Is.FBRH; F c/�Is.F.BRH/c ; F cBRH/

D Is.FBRH; F c/ C Is.FBc
R; F cBR/ � Is.FBRH; F c/ � Is.FBc

R; F cBRH/

D Is.FBc
R; F cBRH/ C Is.FBc

R; F cBRH c/ � Is.FBc
R; F cBRH/

D Is.FBc
R; F cBRH c/ D Is.FBc

R; BRH c/:(3.2)

We will also exploit Lemma 7.2 of [1], according to which (up to normalizing constants

that we omit), given L, M , ! � R
n with Pers.L;!/, Pers.M;!/ < C1 and L Q!c D M Q!c ,

for Q! b !, then

(3.3) inf

Z

�C

t1�s
�

jrV.X/j2 � jrEM .X/j2
�

dX D Pers.L; !/ � Pers.M; !/;

where the infimum is taken among all bounded Lipschitz domains � � R
nC1 with � \

¹t D 0º b ! and among all functions V W R
nC1
C ! R such that V � EM is compactly

supported in �, and V.x; 0/ D �L.x/.

Now, assume that E is a local minimizer in H , and let R, �, �, U and F be as in the

assumptions of Proposition 1.1 (ii). In the notation of (1.4), we consider the set

Q� WD
°

X 2 � such that dist.X; @�/ �
�

2

±

D � n .@�/�=2:

By the assumptions of Proposition 1.1 (ii), we know that U � EE is compactly supported

in Q�. Moreover Q� \ ¹t D 0º b � \ ¹t D 0º D BR. Therefore, we can exploit (3.3) with �

there replaced by Q� and ! chosen to be BR, thus obtaining
Z

�C

t1�s
�

jrU.X/j2 � jrEE .X/j2
�

dX D

Z

Q�C

t1�s
�

jrU.X/j2 � jrEE .X/j2
�

dX

� Pers.F; BR/ � Pers.E; BR/:

This and (3.1) give that

Fs;� .EE ; �/�Fs;� .U; �/ D Pers;� .E; BR/�Pers.E; BRH/ C

Z

�C

t1�sjrEE .X/j2 dX

� Pers;� .F; BR/CPers.F; BRH/ �

Z

�C

t1�sjrU.X/j2 dX

� Pers;� .E; BR/ � Pers;� .F; BR/ C Pers.F; BRH/

� Pers.E; BRH/ � Pers.F; BR/ C Pers.E; BR/:

Consequently, recalling (3.2) and the fact that E and F coincide outside BR,

Fs;� .EE ; �/ � Fs;� .U; �/

� Pers;� .E; BR/ � Pers;� .F; BR/ � Is.FBc
R; BRH c/ C Is.EBc

R; BRH c/

D Pers;� .E; BR/ � Pers;� .F; BR/:

The locally minimizing property of E and Lemma 2.1 thereby imply that Fs;� .EE ; �/ �

Fs;� .U; �/ � 0, that is (1.6), as desired.
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Let us now suppose that, viceversa, the claim in (1.6) holds true. Our objective is now

to check that E is a local minimizer. To this end, let F � H such that F n BR D E n BR.

Also, fixed ı > 0, recalling (3.3), we take a bounded Lipschitz domain �.ı/ � R
nC1

with �.ı/ \ ¹t D 0º b BRC1 and a function V .ı/W R
nC1
C ! R such that V .ı/ � EE is

compactly supported in �.ı/, and V .ı/.x; 0/ D �F .x/, with �.ı/ and V .ı/ attaining the

infimum in (3.3) with ! WD BRC1 up to an error ı, that is,
Z

.�.ı//C

t1�s
�

jrV .ı/.X/j2 � jrEE .X/j2
�

dX � ı(3.4)

� Pers.F; BRC1/ � Pers.E; BRC1/:

Let

�0 WD sup
x2�.ı/\¹tD0º

jxj and � WD max¹R; �0º:

By construction, we have that �0 2 Œ0; R C 1/, and thus � 2 ŒR; R C 1/. Let also �.ı;�/ WD

�.ı/ [ B�. Then, we have that

(3.5) �.ı;�/ \ ¹t D 0º D B�:

Furthermore, since V .ı/ D EE in �.ı;�/ n �.ı/, we have that
Z

.�.ı;�//C

t1�s
�

jrV .ı/.X/j2 � jrEE .X/j2
�

dX

D

Z

.�.ı//C

t1�s
�

jrV .ı/.X/j2 � jrEE .X/j2
�

dX:

Therefore, recalling (3.4),
Z

.�.ı;�//C

t1�s
�

jrV .ı/.X/j2 � jrEE .X/j2
�

dX � ı(3.6)

� Pers.F; BRC1/ � Pers.E; BRC1/:

Moreover, in view of (3.5), we are in the position of using (1.6) (with � replaced by �.ı;�/

and R replaced by �). In this way, we find that

Fs;� .EE ; �.ı;�// � Fs;� .V .ı/; �.ı;�//:

Consequently, exploiting (1.3), (3.5) and (3.6),

Pers.E; BRC1/ � Pers.F; BRC1/

�

Z

.�.ı;�//C

t1�s
�

jrEE .X/j2 � jrV .ı/.X/j2
�

dX C ı

D Fs;� .EE ; �.ı;�// � Fs;� .V .ı/; �.ı;�//

� .� � 1/

“

B��H c

�E .x/

jx � yjnCs
dx dy C .� � 1/

“

B��H c

�F .x/

jx � yjnCs
dx dy C ı

� �.� � 1/
�

“

BR�H c

�E .x/

jx � yjnCs
dx dy �

“

BR�H c

�F .x/

jx � yjnCs
dx dy

�

C ı

D �.� � 1/
�

Is.EBR; H c/ � Is.FBR; H c/
�

C ı:
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Hence, since

�

Pers.E; BRC1/ � Pers.F; BRC1/
�

�
�

Pers.E; BR/ � Pers.F; BR/
�

D Is.EBRC1Bc
R; EcBc

RC1/ C Is.EBc
R; EcBRC1Bc

R/

� Is.FBRC1Bc
R; F cBc

RC1/ � Is.FBc
R; F cBRC1Bc

R/

D 0;

we find that

Pers.E; BR/ � Pers.F; BR/ � �.� � 1/
�

Is.EBR; H c/ � Is.FBR; H c/
�

C ı:

Then, by (2.1) and (3.2),

Pers;� .E; BR/ � Pers;� .F; BR/

D Pers.E; BRH/ � Pers.F; BRH/ C .� � 1/
�

Is.EBR; H c/ � Is.FBR; H c/
�

� ı C Pers.E; BRH/ � Pers.E; BR/ C Pers.F; BR/ � Pers.F; BRH/

D ı � Is.EBc
R; BRH c/ C Is.FBc

R; BRH c/ D ı:

Sending ı & 0, we thereby conclude that Pers;� .E;BR/ � Pers;� .F;BR/. This, combined

with Lemma 2.1, gives that E is a locally minimizer, as desired.

4. Monotonicity formula and proof of Theorem 1.2

The goal of this section is proving Theorem 1.2.

Proof of Theorem 1.2. Let

CE WD
°

x 2 R
n n ¹0º such that

x

jxj
2 E

±

:

Given " > 0, we define

E."/ WD
��

.1 � "/E
�

\ B1�"

�

[
�

CE \
�

B1 n B1�"

��

[ .E n B1/ ;

see Figure 1, and

U".X/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

EE

�

X
1�"

�

if X 2 BC
1�";

EE

�

X
jX j

�

if X 2 BC
1 n BC

1�";

EE .X/ if X 2 R
nC1
C n B1:

We remark that

U".x; 0/ D

8

ˆ

<

ˆ

:

�E

�

x
1�"

�

if x 2 B1�";

�E

�

x
jxj

�

if x 2 B1 n B1�";

�E .x/ if x 2 R
n n B1;

9

>

=

>

;

D �E ."/.x/:
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E E."/

11 � "0
@H

Figure 1. The construction used in the proof of Theorem 1.2. The parts of the boundary of E."/ due

to CE \ .B1 n B1�"/ are depicted by bold lines.

We also claim that

(4.1) E."/ � H:

Indeed, let x 2 E."/. If x 2 B1�", we have that x 2 .1 � "/E, and thus x=.1 � "/ 2 E.

Since E � H , we deduce that xn=.1 � "/ � 0, and consequently xn � 0, which gives

that x 2 H in this case.

If instead x 2 B1 n B1�", we have that x 2 CE , and hence x=jxj 2 E. In this case,

since E � H , we find that xn=jxj � 0, and again x 2 H . Finally, if x 2 Bc
1 , we have

that x 2 E � H , which completes the proof of (4.1).

We also observe that U" D EE outside B1. Then, in view of (4.1), we can fix � > 0

and exploit Proposition 1.1 with

� WD B1C�; R WD 1 C �; U WD U" and F WD E."/:

In this way, we conclude that

0 � Fs;� .U"; B1C�/ � Fs;� .EE ; B1C�/

D

Z

B
C
1C�

t1�s
�

jrU".X/j2 � jrEE .X/j2
�

dX

C .� � 1/
�

“

B1C��H c

�E ."/.x/

jx � yjnCs
dx dy �

“

B1C��H c

�E .x/

jx � yjnCs
dx dy

�

D

Z

B
C
1

t1�s
�

jrU".X/j2 � jrEE .X/j2
�

dX

C .� � 1/
�

Is.B1E."/; H c/ � Is.B1E; H c/
�

:

(4.2)

We set

G.r/ WD rs�n

Z

B
C
r

t1�sjrEE .X/j2 dX;
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and, using the change of variable Y D .y; �/ WD X=.1 � "/, we observe that

Z

B
C
1

t1�sjrU".X/j2 dX

D
1

.1 � "/2

Z

B
C
1�"

t1�s
ˇ

ˇ

ˇ
rEE

� X

1 � "

�ˇ

ˇ

ˇ

2

dX

C

Z

B
C
1 nB

C
1�"

t1�s

jX j2

�
ˇ

ˇ

ˇ
rEE

� X

jX j

�
ˇ

ˇ

ˇ

2

�
ˇ

ˇ

ˇ

X

jX j
� rEE

� X

jX j

�
ˇ

ˇ

ˇ

2�

dX

D .1 � "/n�s

Z

B
C
1

�1�sjrEE .Y /j2 dY

C "

Z

.@B1/\¹t>0º

t1�s
�

jrEE .X/j2 � jX � rEE .X/j2
�

dH n
X C o."/

D .1 � "/n�sG.1/ C "

Z

.@B1/\¹t>0º

t1�sjr� EE .X/j2 dH n
X C o."/;

where r� denotes the tangential gradient along @B1.

Similarly,

Z

B
C
1

t1�sjrEE .X/j2 dX

D

Z

B
C
1�"

t1�sjrEE .X/j2 dX C "

Z

.@B1/\¹t>0º

t1�sjrEE .X/j2 dH n
X C o."/

D .1 � "/n�s G.1 � "/ C "

Z

.@B1/\¹t>0º

t1�sjrEE .X/j2 dH n
X C o."/;

and accordingly,

Z

B
C
1

t1�s
�

jrU".X/j2 � jrEE .X/j2
�

dX

D .1 � "/n�sG.1/ � .1 � "/n�sG.1 � "/

C "
�

Z

.@B1/\¹t>0º

t1�sjr� EE .X/j2 dH n
X �

Z

.@B1/\¹t>0º

t1�sjrEE .X/j2 dH n
X

�

Co."/

D .1 � .n � s/"/ .G.1/ � G.1 � "// � "

Z

.@B1/\¹t>0º

t1�sjr� EE .X/j2 dH n
X C o."/;

(4.3)

where r� denotes the (exterior) normal gradient along @B1.

Furthermore, setting

J.r/ WD rs�nIs.BrE; H c/;



S. Dipierro, F. Maggi and E. Valdinoci 646

using the substitutions Nx WD x=.1 � "/ and Ny WD y=.1 � "/, and noticing that CE \ .@B1/

D E \ .@B1/, we have that

Is.B1E."/; H c/ � Is.B1E; H c/

D Is

�

B1�"

�

.1 � "/E
�

; H c
�

� Is.B1�"E; H c/

C Is.B1Bc
1�"CE ; H c/ � Is.B1Bc

1�"E; H c/

D

“

B1�"..1�"/E/�H c

dx dy

jx � yjnCs
� .1 � "/n�sJ.1 � "/

C "
�

“

.@B1/�H c

�CE
.x/ dH n�1

x dy

jx � yjnCs
�

“

.@B1/�H c

�E .x/ dH n�1
x dy

jx � yjnCs

�

C o."/

D .1 � "/n�s

“

B1E�H c

d Nx d Ny

j Nx � NyjnCs
� .1 � "/n�sJ.1 � "/ C o."/

D .1 � "/n�s
�

J.1/ � J.1 � "/
�

C o."/

D .1 � .n � s/"/ .J.1/ � J.1 � "// C o."/:

Then, plugging this information and (4.3) into (4.2), and noticing that ˆE .r/ D G.r/ C

.� � 1/J.r/, we conclude that

0 � .1 � .n � s/"/ .G.1/ � G.1 � "// � "

Z

.@B1/\¹t>0º

t1�sjr� EE .X/j2 dH n
X

C .� � 1/ .1 � .n � s/"/ .J.1/ � J.1 � "// C o."/

D .1 � .n � s/"/ .ˆE .1/ � ˆE .1 � "//

� "

Z

.@B1/\¹t>0º

t1�s jr� EE .X/j2 dH n
X C o."/

D " ˆ0
E .1/ � "

Z

.@B1/\¹t>0º

t1�s jr� EE .X/j2 dH n
X C o."/:

Therefore, dividing by " and sending " & 0, we see that

(4.4) ˆ0
E .1/ �

Z

.@B1/\¹t>0º

t1�s jr� EE .X/j2 dH n
X :

On the other hand, in light of (1.7), we know that

(4.5) ˆE�
.r/ D ˆE�r=�

.�/;

for all r , �, � > 0, and thus, choosing � WD �r ,

ˆE�
.r/ D ˆE .�r/:

As a consequence, taking � WD R and r WD 1 C h, and � WD R and r WD 1, we see that, for

all R > 0,

ˆ0
E .R/ D lim

h!0

ˆE .R.1 C h// � ˆE .R/

Rh
D lim

h!0

ˆER
.1 C h/ � ˆER

.1/

Rh
D

ˆ0
ER

.1/

R
�
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Combining this and (4.4) (used here on the set ER), we obtain that

ˆ0
E .R/ �

1

R

Z

.@B1/\¹t>0º

t1�s jr� EER
.X/j2 dH n

X

D R

Z

.@B1/\¹t>0º

t1�s jr� EE .RX/j2 dH n
X

D Rs�n

Z

.@BR/\¹t>0º

t1�s jr� EE .X/j2 dH n
X ;

that is (1.9), as desired.

Now, if E is a cone, from (1.7) we have that ˆE .r/ D ˆE .�/ for any r , � > 0, and

therefore ˆE is constant.

Viceversa, if ˆE is constant, we deduce from (1.9) that

Z

.@Br /\¹t>0º

t1�s jr� EE .X/j2 dH n
X D 0

for all r > 0, and therefore X � rEE .X/ D 0 for all X 2 R
nC1
C . By Euler’s formula, this

gives that EE is homogeneous of degree zero, and consequently, for any � > 0,

�E .�x/ D EE .�x; 0/ D EE .x; 0/ D �E .x/;

and hence E is a cone.

5. Homogeneous structure of the blow-up limits and proof of

Corollary 1.3

In this section, we analyze the structure of the blow-up limit of local minimizers and we

prove Corollary 1.3. To this end, we need the forthcoming auxiliary result which can be

seen as the counterpart of Proposition 9.1 in [1] in our setting.

Lemma 5.1. Let E � H be a local minimizer in H . Let Ek � H be a sequence of local

minimizers in H and suppose that Ek ! E in L1
loc.R

n/ as k ! C1.

Then,

lim
k!C1

ˆEk
.r/ D ˆE .r/ for all r > 0:

Proof. We note that

rn�sˆEk
.r/ D Fs;� .EEk

; Br /

D

Z

B
C
r

t1�sjrEEk
.X/j2 dX C .� � 1/

“

.Br H/�H c

�Ek
.x/

jx � yjnCs
dx dy:(5.1)

By the dominated convergence theorem, we have that

(5.2) lim
k!C1

“

.Br H/�H c

�Ek
.x/

jx � yjnCs
dx dy D

“

.Br H/�H c

�E .x/

jx � yjnCs
dx dy:
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By this and (5.1) we see that, to prove the desired result, it suffices to show that

(5.3) lim
k!C1

Z

B
C
r

t1�s jrEEk
.X/j2 dX D

Z

B
C
r

t1�s jrEE .X/j2 dX:

To this end, we use formula (7.2) in Proposition 7.1 in [1] and we write that, given r ,

ı > 0,
Z

B
C
r

t1�s jr.EEk
� EE /.X/j2 dX D

Z

B
C
r

t1�s jrE�Ek
��E

.X/j2 dX

� Cr;ı

Z

Qr;ı

j.�Ek
� �E /.x/ � .�Ek

� �E /.y/j2

jx � yjnCs
dx dy;

for some Cr;ı > 0, where

Qr;ı WD R
2n n .Bc

rCı � Bc
rCı/:

Consequently, the claim in (5.3) is established once we show that

(5.4) lim
k!C1

Z

Qr;ı

j.�Ek
� �E /.x/ � .�Ek

� �E /.y/j2

jx � yjnCs
dx dy D 0:

It is convenient to define

fk.x; y/ WD
�Ek

.x/ � �Ek
.y/

jx � yj.nCs/=2
and f .x; y/ WD

�E .x/ � �E .y/

jx � yj.nCs/=2
�

In this way, claim (5.4) can be written as

(5.5) lim
k!C1

kfk � f kL2.Qr;ı / D 0:

We now use ‰ as a short notation for �
Qr;ı

.x;y/dxdy=jx � yjnCs and set B WD BrCı .

We point out that

kfkk2
L2.Qr;ı /

2
D

“

Ek�Ec
k

‰ D

“

.EkB/�Ec
k

‰ C

“

.EkBc/�Ec
k

‰

D

“

.EkB/�.Ec
k

H/

‰ C

“

.EkB/�.Ec
k

H c/

‰

C

“

.EkBc/�.Ec
k

H/

‰ C

“

.EkBc/�.Ec
k

H c/

‰

D Is.EkB; Ec
kH/ C Is.EkB; Ec

kH c/

C Is.EkBc ; Ec
kBH/ C Is.EkBc ; Ec

kBH c/;

(5.6)

and therefore,

kfkk2
L2.Qr;ı /

2
� Is.EkB; Ec

kH/CIs.EkB; Ec
kBH c/CIs.EkBc; Ec

kBH/C2Is.B; Bc/

� Is.EkB; Ec
kH/ C Is.EkBc ; Ec

kBH/ C 2Is.B; Bc/ C Is.BH; BH c/

D Is.EkB; Ec
kH/ C Is.EkBc ; Ec

kBH/ C Cr;ı ;
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with Cr;ı independent of k. Hence, using the local minimizing property of Ek in (1.2),

and taking Fk WD EkBc ,

kfkk2
L2.Qr;ı /

2

� Is.FkB; F c
k H/ C Is.FkBc ; F c

k BH/ C �
�

Is.FkB; H c/ � Is.EkB; H c/
�

C Cr;ı

� 0 C Is.Bc ; B/ C �
�

0 � Is.EkB; H c/
�

C Cr;ı � 2Cr;ı :

This and Fatou’s lemma yield that

kf k2
L2.Qr;ı /

� 4Cr;ı :

Now we remark that to prove (5.5) it suffices to show that

(5.7) lim
k!C1

kfkkL2.Qr;ı / D kf kL2.Qr;ı /:

Indeed, suppose that (5.7) holds true and notice that fk converges to f pointwise. Let ' 2

C 1
0 .Qr;ı/ and observe that

jfk.x; y/ '.x; y/j �
j'.x; y/j

jx � yj.nCs/=2
2 L1.Qr;ı/:

Hence, by the dominated convergence theorem,

lim
k!C1

Z

Qr;ı

fk ' D

Z

Qr;ı

f ':

By density, given " > 0, we can pick '" 2 C 1
0 .Qr;ı/ such that k'" � f kL2.Qr;ı // � ". In

this way, we find that

lim sup
k!C1

ˇ

ˇ

ˇ

Z

Qr;ı

fkf �

Z

Qr;ı

f 2
ˇ

ˇ

ˇ
� lim sup

k!C1

ˇ

ˇ

ˇ

Z

Qr;ı

fk '" �

Z

Qr;ı

f 2
ˇ

ˇ

ˇ
C

Z

Qr;ı

fkjf � '"j

�
ˇ

ˇ

ˇ

Z

Qr;ı

f '" �

Z

Qr;ı

f 2
ˇ

ˇ

ˇ
C lim sup

k!C1

kfkkL2.Qr;ı //k'" � f kL2.Qr;ı //

� lim sup
k!C1

�

kf kL2.Qr;ı // C kfkkL2.Qr;ı //

�

k'" � f kL2.Qr;ı // � 4"
p

Cr;ı :

Hence, since " can be taken arbitrarily small,

lim
k!C1

Z

Qr;ı

fkf D

Z

Qr;ı

f 2:

As a result, if (5.7) holds true, we obtain that

lim
k!C1

kfk � f k2
L2.Qr;ı /

D lim
k!C1

kfkk2
L2.Qr;ı /

C kf k2
L2.Qr;ı /

� 2

Z

Qr;ı

fkf D 0;

that is (5.5).
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In view of this observation, to complete the proof of Lemma 5.1, we are left with

proving (5.7). As a matter of fact, by Fatou’s lemma, to prove (5.7) it suffices to check

that

(5.8) lim sup
k!C1

kfkkL2.Qr;ı / � kf kL2.Qr;ı /;

and therefore the remaining part of this proof is devoted to show this inequality. To this

end, we let Dk be the symmetric difference of Ek and E, and we define

Gk WD .EB/ [ .EkBc/:

The local minimizing property of Ek as stated in (1.2) yields that

Is .EkB; Ec
kH/ C Is.EkBc ; Ec

kBH/ C �Is.EkB; H c/

� Is.GkB; Gc
kH/ C Is.GkBc ; Gc

kBH/ C �Is.GkB; H c/

D Is.EB; Gc
kH/ C Is.EkBc ; EcBH/ C �Is.EB; H c/

D Is.EB; EcBH/ C Is.EB; Ec
kBcH/ C Is.EkBc ; EcBH/ C �Is.EB; H c/

� Is.EB; EcBH/ C Is.EB; EcBcH/ C Is.EBc ; EcBH/ C �Is.EB; H c/

C Is.EB; DkBcH/ C Is.DkBc ; EcBH/

� Is.EB; EcH/ C Is.EBc ; EcBH/ C �Is.EB; H c/ C 2Is.B; DkBc/:

By [1] (see in particular the proof of Theorem 3.3 there), we know that

lim
k!C1

Is.B; DkBc/ D 0;

and accordingly we can write that

lim sup
k!C1

Is.EkB; Ec
kH/ C Is.EkBc ; Ec

kBH/ C �Is.EkB; H c/

� Is.EB; EcH/ C Is.EBc ; EcBH/ C �Is.EB; H c/:

Hence, recalling (5.2),

lim sup
k!C1

Is.EkB; Ec
kH/ C Is.EkBc ; Ec

kBH/

� Is.EB; EcH/ C Is.EBc ; EcBH/:

(5.9)

Besides, from (5.6),

kfkk2
L2.Qr;ı /

2
D Is.EkB; Ec

kH/ C Is.EkB; Ec
kH c/

C Is.EkBc ; Ec
kBH/ C Is.EkBc ; Ec

kBH c/;

and a similar formula holds true by replacing fk by f and Ek by E.
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In this way, exploiting again the dominated convergence theorem, we deduce that

lim sup
k!C1

1

2

�

kfkk2
L2.Qr;ı /

� kf k2
L2.Qr;ı /

�

D lim sup
k!C1

Is.EkB; Ec
kH/CIs.EkB; Ec

kH c/CIs.EkBc; Ec
kBH/CIs.EkBc; Ec

kBH c/

� Is.EB; EcH/ � Is.EB; EcH c/ � Is.EBc ; EcBH/ � Is.EBc ; EcBH c/

D lim sup
k!C1

Is.EkB; Ec
kH/ C Is.EkBc ; Ec

kBH/ � Is.EB; EcH/ � Is.EBc ; EcBH/:

From this and (5.9) we obtain (5.8), as desired.

With this preliminary work, we can now complete the proof of Corollary 1.3 by

arguing as follows.

Proof of Corollary 1.3. The proof is based on a double blow-up procedure, combined with

the monotonicity formula in Theorem 1.2. The advantage of a double blow-up with respect

to a single blow-up is that the first blow-up reduces the container ! to a half-space, thus

allowing us to use Lemma 5.1 in the second blow-up.

Here are the details of the proof. First of all, we consider the sequence of sets E1=k ,

with k 2 N. By Theorem A.2 in [9], up to a subsequence, we know that �E1=k
converges

in L1
loc.R

n/ to �E? as k ! C1, for a suitable E? contained in a half-space H ?, with E?

locally minimizing in H ?. Up to a rigid motion, we can suppose that H ? D H .

Now we consider the sequence E?
1=h

, with h 2 N. Using again Theorem A.2 in [9],

up to a subsequence, we see that �E?
1=h

converges as h ! C1 in L1
loc.R

n/ to �E0
, for a

suitable E0 � H which is locally minimizing in H . Also, thanks to Lemma 5.1, we have

that

(5.10) lim
h!C1

ˆE?
1=h

.r/ D ˆE0.r/:

Then, Corollary 1.3 will be established once we prove the following claims:

(5.11) E0 is a cone

and

there exists an infinitesimal sequence rj > 0 such that

�Erj
converges to �E0

in L1
loc.R

n/ as j ! C1.

(5.12)

To prove (5.11), we exploit (4.5) with � WD 1=h and � WD �r , by writing

ˆE?
1=h

.r/ D ˆE?

� r

h

�

:

Hence, in light of (5.10),

(5.13) ˆE0.r/ D lim
h!C1

ˆE?
1=h

.r/ D lim
h!C1

ˆE?

� r

h

�

D lim
ı&0

ˆE?.ı/:
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Notice that the last limit exists, due to the monotonicity of the function proved in The-

orem 1.2. Furthermore, the identity in (5.13) says that ˆE0 is constant and then, by

Theorem 1.2, E0 must necessarily be a cone, which proves (5.11).

Now we prove (5.12). For this, let R > 0. By the convergence of E?
1=h

, we know that,

given " > 0, there exists h0.R; "/ 2 N such that, for all h � h0.R; "/,

(5.14)

Z

BR

j�E?
1=h

.x/ � �E0
.x/j dx � ":

On the other hand, by the convergence of E1=k , there exists k0.R; h; "/ 2 N such that, for

all k � k0.R; h; "/,
Z

BR=h

j�E1=k
.x/ � �E?.x/j dx �

"

hn
�

Scaling back, and using (5.11), this gives that, for all k � k0.R; h; "/,

Z

BR

j�E1=.hk/
.x/ � �E?

1=h
.x/j dx � ":

Combining this with (5.14), we find that, for all k � k?.R; "/ WD k0.R; h0.R; "/; "/,

Z

BR

j�E1=.h0.R;"/k/
.x/ � �E0

.x/j dx

�

Z

BR

j�E1=.h0.R;"/k/
.x/ � �E?

1=h0.R;"/
.x/j dx C

Z

BR

j�E?
1=h0.R;"/

.x/ � �E0
.x/j dx � 2":

This establishes (5.12), as desired.

6. Locally minimizing cones in the plane and proof of Theorem 1.4

In this section, we take n D 2, and we classify locally minimizing cones, thus proving

Theorem 1.4.

Proof of Theorem 1.4. Let ‰ 2 C 1
0 .B9=10; Œ0; 1�/ be a radially decreasing function with

with ‰.X/ D 1 for all X 2 B1=2. Given R > 2, to be taken as large as we wish in the

following, we consider the transformation

(6.1) R
3 3 X 7! Y WD X C ‰

�X

R

�

e1;

where e1 WD .1;0;0/. Denoting this map by Y.X/ (see Figure 2), we see that it is invertible,

and we denote its inverse by X.Y /. We also let

(6.2) U WD EE ;

and

U C
R .Y / WD U.X.Y //:
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@BR

@B.R=2/C1

.R=2/ C 1

Y.S/

0

R=2 R1

@H

S

@BR

@BR=2

0

R1

Figure 2. Depicting the action of the map Y defined in (6.1) on a set S . Notice that S \ BR=2 is

translated by e1, while S n BR is left unchanged. Since ‰ is radially decreasing, the slices S \ @B�

corresponding to � 2 .1; R/ are translated by multiples �.�/ e1 of e1, where �.�/ decreases from

� D 1 when � D R=2, to � D 0 when � � .9=10/R.

We also denote U �
R a similar function, in which ‰ is replaced by �‰. In addition, we

set u.x/ WD U.x; 0/, uC
R.y/ WD U C

R .y; 0/ and u�
R.y/ WD U �

R .y; 0/.

We use coordinates X D .X1;X2;X3/ D .x; t/2R
2 � .0;C1/. We remark that Y3.X/

D X3, hence X3.Y / D Y3, and accordingly X3.y; 0/ D 0. This gives that

(6.3) uC
R.y/ D U.X.y; 0// D U.x.y; 0/; 0/ D �E .x.y; 0//:

Then, in the notation of (1.3), we claim that

(6.4)
ˇ

ˇFs;� .U C
R ; BR/ C Fs;� .U �

R ; BR/ � 2Fs;� .U; BR/
ˇ

ˇ �
C

Rs
;

for some C > 0. To prove this, we let

JR.U / WD

Z

B
C
R

t1�sjrU.X/j2 dX and TR.u/ WD

“

BR�H c

u.x/

jx � zj2Cs
dx dz:

A direct computation (see Lemma 1 in [11]) shows that

(6.5)
ˇ

ˇJR.U C
R / C JR.U �

R / � 2JR.U /
ˇ

ˇ �
C

Rs
;

for some C > 0.

We introduce the following notation: from now on, we denote by } any quantity or

bounded function, possibly different from line to line, which changes sign if ‰ is replaced

by �‰. We stress that it is not necessary that } has a sign itself, what matters in this

notation is that its pointwise value changes sign if ‰ is replaced by �‰.

Now, we want to use the change of variable Qy WD x.y; 0/ and Qz WD x.y; 0/ � y C z.

In this way, we have that

Qy � Qz D y � z:

We also observe that, if z 2 H c , then Qz2 D x2.y; 0/ � y2 C z2 D z2 � 0, and thus Qz 2 H c .
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Furthermore, for all i , j 2 ¹1; 2; 3º,

DXi
Yj .X/ D ıij C

ı1j

R
@i ‰

�X

R

�

D ıij C
}

R
�

Therefore, we can write that

dy dz D
�

1 C
}

R
C O

� 1

R2

��

d Qy d Qz:

We also point out that

(6.6) if y 2 BR, then x.y; 0/ 2 BR.

Indeed, if jyj � 99R=100, then

jx.y; 0/j D
ˇ

ˇ

ˇ
y � ‰

�x.y; 0/

R

�

e1

ˇ

ˇ

ˇ
�

99 R

100
C 1 < R;

as long as R is large enough.

If instead jyj > 99R=100, it follows that

jx.y; 0/j D
ˇ

ˇ

ˇ
y � ‰

�x.y; 0/

R

�

e1

ˇ

ˇ

ˇ
� jyj � 1 >

99 R

100
� 1 >

9 R

10
;

and consequently ‰.x.y; 0/=R/ D 0, whence x.y; 0/ D y in this case.

These considerations prove (6.6). Hence, recalling (6.3),

TR.uC
R/ D

“

BR�H c

uC
R.y/

jy � zj2Cs
dy dz D

“

BR�H c

�E .x.y; 0//

jy � zj2Cs
dy dz

D

“

BR�H c

�E . Qy/

j Qy � Qzj2Cs

�

1 C
}

R
C O

� 1

R2

��

d Qy d Qz:

Given our notation related to }, this also says that

TR.u�
R/ D

“

BR�H c

�E . Qy/

j Qy � Qzj2Cs

�

1 �
}

R
C O

� 1

R2

��

d Qy d Qz:

As a consequence,

ˇ

ˇTR.uC
R/ C TR.u�

R/ � 2TR.u/
ˇ

ˇ � O
� 1

R2

�

“

BR�H c

�E . Qy/

j Qy � Qzj2Cs
d Qy d Qz

� O
� 1

R2

�

“

BRH�H c

d Qy d Qz

j Qy � Qzj2Cs
� O

� 1

R2

�

Is.BRH; .BRH/c/ D O
� 1

Rs

�

:

From this, (1.3) and (6.5), we obtain (6.4), up to renaming C > 0, as desired.

Moreover, from (1.6), we can write that

Fs;� .U; BR/ � Fs;� .U �
R ; BR/:
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Using this and (6.4), we conclude that

Fs;� .U C
R ; BR/ � Fs;� .U; BR/ � Fs;� .U C

R ; BR/ C Fs;� .U �
R ; BR/ � 2Fs;� .U; BR/

�
C

Rs
�(6.7)

Now we claim that

U is monotone in the direction e1,

namely either U.X C �e1/ � U.X/ or U.X C �e1/ � U.X/, for every � > 0.

(6.8)

To prove this, we argue by contradiction, supposing that there exist NX 2 R
3
C and N�1, N�2 > 0

such that

(6.9) U. NX C N�1e1/ > U. NX/ and U. NX C N�2 e1/ < U. NX/:

Since E is a cone, we have that U is homogeneous of degree zero, and therefore, letting

P WD N��1
1

NX and Q WD N��1
2

NX;

we can write (6.9) as

U.P C e1/ D U. N��1
1

NX C e1/ D U. NX C N�1e1/ > U. NX/ D U. N��1
1

NX/ D U.P /;

U.Q C e1/ D U. N��1
2

NX C e1/ D U. NX C N�2e1/ < U. NX/ D U. N��1
2

NX/ D U.Q/:

(6.10)

We can suppose that

(6.11) R=2 > M WD 2 C jQj C jP j;

and we set

VR.X/ WD min¹U.X/; U C
R .X/º and WR.X/ WD max¹U.X/; U C

R .X/º:

We remark that

(6.12) Fs;� .VR; BR/ C Fs;� .WR; BR/ D Fs;� .U; BR/ C Fs;� .U C
R ; BR/:

In addition, by (1.6),

Fs;� .U; BR/ � Fs;� .VR; BR/:

Combining this and (6.12), we find that

(6.13) Fs;� .WR; BR/ � Fs;� .U C
R ; BR/:

Now, we denote by W? the minimizer of JM .W / among all the competitors W with W D

WR on @BC
M D

�

.@BM / \ ¹t > 0º
�

[
�

BM � ¹0º
�

.

We remark that the minimization of the functional leads to the equation

(6.14) div .t1�srW?/ D 0 in BC
M :

Also, the same equation is fulfilled by U , in view of (6.2).
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We claim that

(6.15) W? ¤ WR:

Indeed, suppose by contradiction that W? D WR. Then, since U � WR D W?, we deduce

by the strong maximum principle for the equation in (6.14) (see e.g. Corollary 2.3.10

in [7]) that

(6.16) either U < WR or U D WR in BC
M .

On the other hand, by (6.11), we have that

Y.P / D P C ‰
�P

R

�

e1 D P C e1 and Y.Q/ D Q C ‰
�Q

R

�

e1 D Q C e1:

Consequently, by (6.10),

U C
R .Y.P // D U.P / < U.P C e1/ D U.Y.P //

and U C
R .Y.Q// D U.Q/ > U.Q C e1/ D U.Y.Q//:

Therefore, we see that

WR.Y.P // D U.Y.P // and WR.Y.Q// D U C
R .Y.Q// > U.Y.Q//;

and these observations say that none of the two possibilities in (6.16) can be fulfilled.

This contradiction proves (6.15). Then, from (6.15), we obtain that there exists ı0 > 0

such that

JM .W?/ C ı0 � JM .WR/:

We stress that this ı0 is independent of R, because WR in BM does not depend on R,

being

WR.X/ D max¹U.X/; U.X � e1/º for all X 2 BC
M ;

thanks to (6.11).

Furthermore, if we extend W? to be equal to WR outside BC
M , we have that

(6.17) JR.WR/ � JR.W?/ D JM .WR/ � JM .W?/ � ı0:

Since, by construction w?.x/ WD W?.x;0/ D WR.x;0/ DW wR.x/, we have that TR.w?/ D

TR.wR/. This and (6.17) give that

Fs;� .WR; BR/ � Fs;� .W?; BR/ � ı0:

As a consequence, in light of (6.13),

(6.18) Fs;� .U C
R ; BR/ � Fs;� .W?; BR/ � ı0:

On the other hand, using again (1.6),

Fs;� .U; BR/ � Fs;� .W?; BR/:
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Comparing this and (6.18), we see that

Fs;� .U C
R ; BR/ � Fs;� .U; BR/ � ı0:

Hence, recalling (6.7),
C

Rs
� ı0:

We can now send R ! C1 and find that 0 � ı0 > 0. This contradiction proves the validity

of (6.8).

As a consequence of (6.8), we have that u is monotone in the direction e1, hence the

cone E is made of only one component.

From this and Theorem 1.4 in [9], one also obtains (1.10).
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