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Abstract
Dual process theories of creativity suggest that creative thought is supported by both a generation
phase, where unconstrained ideas are generated and combined in novel ways, and an evaluation
phase, where those ideas are filtered for usefulness in context. Neurocognitively, both the default
mode network (DMN) and the executive control network (ECN) have been implicated in
generation and evaluation, respectively. Importantly, generating and evaluating ideas implies that
the same information, reflected in patterns of neural activity, must be present in both phases,
suggesting that information should be ‘reinstated’ (i.e. multidimensional patterns must reappear)
within and/or between network nodes. In the present study, we used representational similarity
analysis (RSA) to investigate the extent to which nodes of the DMN and ECN reinstate
information between a generation phase, in which participants generated novel or appropriate
word associations to single nouns, and an evaluation phase, where we presented the associations
back to participants to evaluate them. We showed strong evidence for reinstatement within the
ECN dorsal lateral prefrontal cortex during the novel association task, and within the DMN
medial prefrontal cortex during the appropriate association task. We additionally showed
between network reinstatement between the ECN dorsal lateral prefrontal cortex and the DMN
posterior parietal cortex during the novelty task. These results demonstrate the importance of
both within- and between-informational reinstatement for generating and evaluating ideas, and
implicate both the DMN and ECN in dual process models of creativity.
Keywords: default mode network, executive control network; reinstatement; representational

similarity analysis; creativity,



Running Head: REINSTATING REPRESENTATIONS 3

1.1. Representing creative thought: A representational similarity analysis of creative idea
generation and evaluation
The human mind is a generative mind. While other species can categorize objects and use
tools to achieve behavioural outcomes, humans have a remarkable ability to generate potentially
infinite categories of varying abstractness and to use tools in potentially infinite ways to identify,
characterize, and solve problems. Rather than being a psychological capacity that exists in only a
few individuals, creative capacities are apparent in the behaviour of species in general and
therefore reflect a basic feature of human cognition; thus, to understand how creativity works is
to understand human cognition in the world (Barsalou and Prinz, 1997; Prinz and Barsalou,
2002). Creative thinking is often considered a two-stage process of idea generation (where
candidate ideas are initially produced) and idea evaluation (where those candidates are
scrutinized for their utility; Sowden et al., 2015). Prior studies have linked idea generation and
idea evaluation to the brain’s Default Mode Network (DMN) and Executive Control Network
(ECN; Kleinmintz et al., 2019), respectively, but the exact nature of this link remains unclear. In
the present study, we use representational similarity analysis (RSA) to examine the extent to
which neural patterns within DMN and ECN during idea generation are “reinstated” during idea
evaluation, providing insight into how the brain represents and transforms information when
thinking creatively.
1.2. Neurocognitive Models of Creativity and the Functions of the DMN and ECN
Researchers have long recognized two phases that are crucial to creative output:

generation and evaluation (Snowden et al., 2015 for an overview). It is thought that during the
generation phase previously learned knowledge is activated and novel combinations of that

knowledge are produced (Beaty et al., 2015; Benedek et al., 2014; Benedek et al., 2018; Ellamil
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et al., 2012); during the evaluation phase, a subset of novel combinations are expressed usefully
in context (Beaty et al., 2015; Ellamil et al., 2012; Mayseless et al., 2014). For instance, some
models (Campbell, 1960) posit that generation is characterized by the activations of a wide
collection of representations of the environment and possible manipulations of it, only some of
which are retained when certain criteria are met. Such proposals have garnered support from a
variety of sources (see Simonton, 1999; 2011). Relatedly, ‘simulation’ theories (those that adopt
a predictive coding framework or more general embodied/grounded cognition frameworks, e.g.,
Dietrich & Haider, 2015; Prinz and Barsalou, 2002; Matheson & Kenett, 2020) suggest that
creativity, at least in part, requires the activation of action possibilities and their intero- and
extero-ceptive consequences before ultimately executing one of them (in terms of overt
manipulation or linguistic output). All of these approaches are in line with major neuroscientific
theories of brain function and organization that have been developed to address human
categorization and conceptualization (e.g. Edelman, 1989; Parr, Pezzulo, & Friston, 2022).
Importantly, common to all of these approaches is the idea that creativity is supported by the
dynamics of these phases.

Neuroimaging research has investigated the neural correlates of idea generation and idea
evaluation (e.g., Mayseless et al., 2014). Two functional brain networks (i.e., intrinsic
connectivity networks)—the DMN and ECN—have been associated with creative tasks that
emphasize generation vs. evaluation (Kleinmintz et al., 2019). One possibility is that the DMN
may be important in the generation phase given its role in processes that entail activating
knowledge from experience (i.e., past and future mental simulation; see Zabelina and Andrews-
Hanna, 2016); conversely, the ECN may act as the filter during the evaluation phase, given its

role in executive control tasks that require immediate action (Chrysikou et al., 2014; Miller &
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Cohen, 2001; see Beaty et al., 2016 for details). This hypothesis reflects a prominent debate
within the creativity literature about the relative importance of uncontrolled/associative processes
vs. controlled/executive processes in creativity, with mixed evidence for the relative importance
of both processes (see Barr, 2018; Beaty et al., 2014).

Under this view, if the DMN and ECN are engaged in dissociable functions, DMN and
ECN activity should reflect the dynamics of creativity, specifically the iterative shifting of
generation and evaluation phases (Beaty et al., 2015). Some research has explored this issue by
directly manipulating the generation and evaluation of ideas. For instance, in a seminal fMRI
investigation, Ellamil et al. (2012) had participants perform an iterative creativity task, shifting
between periods of idea generation (sketching book cover illustrations) and idea evaluation
(assessing their sketches). They showed that subregions of the ECN were more active during
evaluation than generation phases while the DMN showed heightened activity in both phases
(and the medial temporal lobe was particularly active in the generation phase). Similarly, Liu et
al (2015) had participants generate and revise poems. During the generation of poems, a DMN
hub (medial prefrontal cortex) showed increased activity, whereas an ECN hub (dorsolateral
prefrontal cortex) showed decreased activity; conversely, during revision of poems, the ECN hub
increased activity. Additionally, DMN and ECN show functional connectivity during divergent
thinking (e.g., producing unusual uses for objects; Beaty et al. 2015) and the strength of DMN-
ECN connectivity predicts person-level creativity (Beaty et al., 2018). Finally, recent results
show that the ECN and DMN contribute uniquely to creative thinking, especially early in the
process (Loyd-Cox, Chen, & Beaty, 2022). Thus, consistent with general proposals about the
role of the DMN and the ECN in creativity, these networks show evidence of dynamically

interacting to support the generation and evaluation of ideas.
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Importantly, DMN and ECN nodes are considered heteromodal association areas (i.e.,
neural ‘hubs’) that track associations and control information flow contained in the distributed
cortical representations of sensorimotor and interoceptive experience (Bressler and Menon,
2010). Thus, in a very important sense, creativity stems from the activity of the same hierarchical
neural systems that support the representation and use of knowledge in other cognitive domains
(e.g., recognition and semantic memory; see Meyer and Damasio, 2009; Baraslou 1999; Lambon
Ralph et al., 2017; Nastase and Haxby, 2017; Yee et al., 2014). From this perspective, DMN and
ECN activation reflects the type of information they are involved in coordinating as neural hubs
(see also Kenett et al., 2018), which will be determined by where they sit in distributed neural
hierarchies (see especially Margulies et al., 2016).

Some authors have suggested that the DMN nodes sit at the very top of a sensorimotor-
to-herteromodal gradient and integrate sensorimotor information in a way that abstracts across
experience, making their information less relevant to the here and now. Because it abstracts
across multiple modalities, the DMN tends to be involved in tasks that are more ‘internally’
directed like mind wandering; conversely, the nodes of ECN, which may sit at a slightly lower
point in cortical hierarchies, integrate sensorimotor information (especially motor information
and action plans) that is relevant for organizing behaviour in the here-and-now. Thus, the
position of the ECN may account for its involvement in tasks that are more ‘externally’ directed
(see Huntenburg, Bazin, & Margulies, 2018; Smallwood et al, 2021). Interestingly, person-level
creativity (measured from divergent thinking performance) predicts how segregated the DMN is
from sensorimotor cortex (the visual cortex specifically; see Huo, et al., 2022). Thus, because
generating and evaluating ideas requires the activation of previous knowledge (sensorimotor

information, past and possible future actions, and associated interoceptive experiences) and
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predicting the consequences of the creative ideas (in terms of their short and long term
sensorimotor and interoceptive effects in novel context of the here and now), we might expect
both of these networks to be implicated in generating and evaluating ideas in complex ways.

Critically, the notion of evaluating creative ideas implies that previously generated
cortical information must be active during its evaluation. This suggests that nodes within these
networks must ‘reinstate’ information during creative tasks (see also Jung et al., 2013). Further,
what information is reinstated should depend on the informational requirements of a tasks. For
instance, generating a creative idea requires more novel information to be evaluated for the here
and now, while generating a common idea requires information that has previously been learned,
abstracted across experience. Which (if any) cortical nodes reinstate information remains
unknown. The research to date on the involvement of the DMN and ECN in creativity has
focused on the magnitude of their activity or the functional connectivity between them. While
this approach usefully characterizes whether these networks are involved in creative thinking, it
does not allow characterizing how these networks coordinate information during idea generation
and evaluation. Investigating how these networks coordinate information during generation and
evaluation will allow advancing and elaborating on neurocognitive models of creativity.
1.3. Representational Similarity Analysis and Informational Reinstatement

To advance the study of idea generation and evaluation, techniques that directly
characterize the information reflected in cortical activity are required. Representational similarity
analysis (RSA) is an analytical technique that quantifies the relationships between patterns of
brain activity to create abstract maps of the ‘representational geometry’ of cortical regions, i.e.,
the multivariate shape of neural activity patterns rather than their univariate signal strength (see

Kreikeskorte et al., 2008). One compelling application of RSA has been in the study of neural
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reinstatement during memory encoding and retrieval, allowing for a direct test of whether the
information activated during an encoding phase is active during the retrieval phase (see Danker
& Anderson, 2010 for an extensive review of evidence).

For instance, Stawarczyk et al. (2020) had participants watch complex movies of an actor
engaging in various actions. On a subsequent day, participants viewed the start of the movies and
were then asked to describe the subsequent events of the movies in a retrieval phase. Using RSA,
the researchers characterized the representational geometry of activity patterns within the medial
temporal lobe and posterior medial regions of the DMN during the initial encoding phase and
during the subsequent retrieval phase and then measured the strength of the similarity between
them. With this approach, higher similarity between representational geometries indicates
stronger reinstatement of the represented information. They showed that neural patterns were
reinstated during the retrieval phase and that the strength of the reinstatement predicted
performance (particularly reinstatement in the posterior midline regions associated with the
DMN; see also Oedekoven et al., 2017; Staresina et al., 2012; Wing et al., 2015; Xiao et al.,
2020). This application shows that RSA is a powerful technique for characterizing neural
reinstatement.

1.4. The Present Study

RSA characterizes the representational geometry of cortical regions, providing insight
into how information is represented in cortical activity. In the present study, we provide an
extension of this approach to examine reinstatement during the generation and evaluation of
ideas in the context of a creativity task. Specifically, we used RSA to investigate the
informational reinstatement between and within nodes of the DMN and the ECN that occur

during the generation and evaluation of ideas.
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To study reinstatement during idea generation and evaluation, we used a simple word-
association task in which participants were presented with a concrete noun (Prabhakaran et al.,
2014). In the generation phase, they were asked to generate a single word association to the
noun. In the evaluation phase, their associates were presented back to them, and they were asked
to evaluate the novelty or appropriateness of their responses. On some trials, participants were
instructed to generate an ‘appropriate’ association (e.g., if the cue was ‘belt’, ‘pants’ is an
appropriate association); on other trials, participants were instructed to generate an ‘novel’
association (e.g., if the cue was ‘belt’, ‘stars’ would be a novel association). This approach
allows us to assess reinstatement in a more creative context, which stresses novelty, and a less
creative context, which stresses previously learned associations (Lloyd-Cox et al., 2022).
Importantly, performance on this type of word association task has been shown to be predictive
of person-level creativity (i.e., performance on other tasks of creative thinking as well as real-
world creative achievement; Prabhakaran et al., 2014), supporting its validity and utility for
investigating creativity more generally.

Information that is activated during generation should be reinstated during the evaluation
phase between DMN and ECN hubs. Further, nodes within the DMN and ECN may reinstate
information within themselves, pointing to their importance as coordinators of relevant
information in a task-specific manner. Finally, we anticipate that the strength of reinstatement
within particular hubs (or between hubs) predicts the quality of creative output (assessed
computationally using distributional models of semantic distance; Beaty & Johnson, 2021).
Overall, this study allows us to further characterize the role of these critical networks during idea
generation and evaluation.

2.1. Methods
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2.2. Participants

A total of 35 young adults participated in the study. Participants received cash payment
for their involvement. All participants were right-handed with normal or corrected-to-normal
vision and reported no history of neurological disorder. One participant was excluded who failed
to complete the task (24 females; mean age: 20; age range: 18-31). The study was approved by
the Penn State Institutional Review Board. Informed consent was obtained prior to participation.
2.3. Word Association Task and Stimuli Selection

Participants completed a word association task in the scanner (see Procedure). They were
presented with a series of 60 nouns during an idea generation phase (12 trials per run; 5 runs
total). Stimuli were selected from a database of 1,716 nouns that appeared in several publicly
available databases of psycholinguistic norms (Balota et al., 2007; Brysbaert et al., 2014;
Cortese, 2004; Hoffman et al, 2013; Kuperman, 2012; Nelson et al., 2004; Schock et al, 2012;
Warriner et al., 2013). This list was further reduced using the six following criteria: word
frequency (below 400 occurrences per million), concreteness (below 4), imageability (below 5),
valence (1.25 stds above and below the mean), semantic diversity (1.25 SD above and below the
mean), and cue set size (QSS; 1.25 SD above and below the mean). This yielded a reduced list of
298 words, which was further reduced by manually removing all animate words (humans,
animals, professions, body parts), resulting in 160 words. From these, we selected random lists
of 30 words (1 list for the novel condition, 1 list for the appropriate condition), until there were
no significant differences on any of the six word features (according to #-test analyses; see Table
1). The two lists, and their corresponding psycholinguistic features, are presented in the
Appendix.

Table 1
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Psycholinguistic features of nouns used in the word association task

Mean Listl Mean List2 Mean Difference ¢ p  Cohens D

Semantic Diversity 1.59 1.60 .00 -.08 .937 .02
Imageability 6.35 6.28 .07 .80 426 21
Concreteness 4.79 4.78 .02 43 667 A1
Frequency 1666.57 1463.83 202.73 57 573 15
QSS 14.60 14.87 27 -33 .746 .08
Valence 5.75 5.69 .06 35 724 .09

Note. QSS = cue set size.

2.4. Procedure

To study reinstatement during idea generation and evaluation, we used a simple single

word-association task (see Figure 1).

Figure 1.

Schematic of task and trial procedure.
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Note. In the Idea Generation phase, an instruction was given to participants to generate
‘appropriate’ or ‘novel’ associations. Participants were then shown a stimulus (noun) and
generated associations to the nouns. The associations were verbalized and recorded by
the experimenter who then created a new stimulus list combining the nouns and the
participant’s responses. Immediately following this, in the Idea Evaluation phase,
participants were cued to evaluate the ‘novelty’ or ‘appropriateness’ of their associations.
On each trial, the participant’s response (and the associated noun) were re-presented back

to them and participants evaluated the quality of the association on a 3 point scale.

In the generation phase, the participant was instructed to generate an ‘appropriate’
association (e.g., if the noun was ‘belt’, ‘pants’ is an appropriate association); on other trials,
participants were instructed to generate a ‘novel’ association (e.g., if the noun was ‘belt’, ‘stars’
would be a novel association). Participants were asked to generate associations that were
concrete nouns. The association instruction lasted 5s and appeared after a 5s pre-instruction
fixation. Following a 4-6s jittered fixation cross presentation, a noun from the trial list appeared
on the screen for 1s. Participants were then given 5s to generate an association, which was
immediately followed by a 3s window to orally provide their response. If a participant could not
think of an association, they were instructed to say “none.” All responses were recorded by a
research assistant and inputted into a separate experiment script for the evaluation phase.

The idea evaluation phase occurred immediately after the generation phase (and a
structural scan). Participants were asked to evaluate the novelty or appropriateness of their
responses, based on the condition for each association (novel or appropriate). Similar to the

generation phase, the association instruction lasted 5s and appeared after a 5s pre-instruction
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fixation. Following a 4-6s jittered fixation cross presentation, participants viewed the noun
paired with their response on the screen for 1s. To accomplish this, an experimenter listened to
participants, who spoke their responses into a microphone; the experimenter entered responses
into a pre-formatted text file, which was uploaded into the E-Prime script for evaluation; the
structural scan was done in between generation and evaluation to allow the experimenter time to
update the E-Prime files for evaluation. Participants were then given 5s to evaluate their
association, which was immediately followed by a 3s window to orally provide their evaluation
using a 3-point scale. The scale differed on whether the participant was instructed to evaluate
appropriateness (1 = not at all appropriate; 2 = somewhat appropriate; and 3 = very
appropriate) or novelty (1 = not at all novel; 2 = somewhat novel; 3 = very novel). Participants
spoke their evaluations to equate the response modality across the two phases.

Participants completed six practice trials per phase (six for appropriateness, six for
novelty). All trials were presented in white text on a black background via E-Prime 3 software on
a PC laptop computer. Text and fixation crosses were presented in the center of the screen.
Images were projected from the computer to a screen in clear view of participants lying supine in
the MRI scanner and looking directly ahead at a mirror attached to the head coil. See Appendix
A for exact instructions.

2.5. Semantic Distance

To assess the creative quality of word associations, we used the SemDis platform (Beaty
and Johnson, 2021). SemDis is an open-access web application developed to automate scoring of
verbal creativity (semdis.wlu.psu.edu). Semantic distance is increasingly used in creativity
research to objectively quantify conceptual distance on verbal tasks (including word association

tasks) by computing the inverse of the cosine similarity between word vectors in high-
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dimensional semantic space (Hass, 2017a; 2017b; Kenett, 2019). Several studies have found that
semantic distance values correlate strongly and positively with human judgements of novelty
(Heinen & Johnson, 2018; Dumas & Dunbar, 2014) and creativity (Orwig et al., 2021; Beaty &
Johnson, 2021), as well as established measures of creativity (e.g., creative achievement),
supporting the construct validity of this approach (Beaty et al., 2021; Gray et al., 2019).

Here, SemDis was used to compute the distance between each cue word (e.g., belt) and its
associative response (e.g., stars). SemDis generated a composite score from the average scores
calculated from five different semantic spaces, mitigating the effects of a single semantic model
and text corpus (e.g., textbooks vs. movie subtitles; Beaty & Johnson, 2021; Kenett, 2019).
Three of these spaces are built upon continuous bag of words (CBOW) prediction models
(cbowukwacsubtitle, cbowsubtitle, and cbowBNCwikiukwac) and two are built upon count
models (GloVe and TASA). The CBOW models use a neural network architecture (Mandera,
Keuleers, & Brysbaert, 2017) that predicts a given word from surrounding context words within
a given text corpus. In this instance, the three CBOW models used 1) a concatenation of the
ukwac web crawling corpus (~ 2 billion words) and the English subtitle corpus (~ 385 million
words; cbowukwacsubtitle); 2) only the English subtitle corpus (cbowsubtitle); 3) a
concatenation of the British National Corpus (~ 2 billion words), ukwac corpus, and the 2009
Wikipedia dump (~ 800 million words; cbowBNCwikiukwac). The two count models, which
count the co-occurrence of words within text corpora, include 1) the global vectors (GloVe;
Pennington, Socher, & Manning, 2014) model, which is trained on ~ 6 billion tokens across a
concatenation of the 2014 Wikipedia dump and the Gigaword corpus (news publications from
2009-2010); and 2) the Touchstone Applied Science Associates (TASA) model, which uses LSA

to compute co-occurrences across a text corpus of documents, textbooks, and literary words.
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2.6. fMRI Acquisition

Structural and functional images were acquired using a Siemans 3T scanner equipped
with a 20-channel head coil. Structural images were acquired with a 2300 ms TR, 2.28 ms TE,
256 mm field of view (FOV), 192 axial slices, and 1 mm slice thickness. Echo-planar functional
images were acquired using an interleaved acquisition, 2500 ms TR, 35 ms TE, 240 mm FOV,
90° flip angle, 42 axial slices with 3 mm slice thickness resulting in 3 mm isotropic voxels.
fMRI preprocessing

Data preprocessing was conducted offline using the fMRIB software library version 6

(FSL; Jenkinson et al., 2012; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). First, for each participant, we

used the Brain Extraction Tool (BET; Smith, 2002) to eliminate voxels of non-interest (e.g. the
skull). Adequate brain extraction was confirmed visually for each subject. We performed motion
correction with a linear registration using the MCFLIRT tool (Jenkinson et al., 2002). Data were
not spatially smoothed. Additionally, the functional data were temporally filtered with a highpass
filter (100 second cut-ofY).
2.7. Data analysis

The fMRI Expert Analysis Tool (FEAT) was used to model BOLD responses in each run
within each condition. For the first level analysis, each run was analyzed separately. Within each
of the 5 runs in each condition, we created one predictor (i.e. explanatory variable (EV) for the
generation/evaluation phase (i.e., the 5 second period after the word) within each condition (i.e.,
appropriate vs. novel). The fixation, stimulus, and response fixation periods were used as
baseline, to account for incidental visual stimulation and vocal preparation. This resulted in one
contrast of parameter estimate (COPE) for each generation/evaluation phase (for each voxel).

These estimates were used as patterns for the RSA analysis. Images were registered in two steps.


http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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First, functional images were registered using FLIRT (FMRIB’s Linear Image Registration Tool;
Jenkinson et al, 2001, 2002) by first aligning the functional data with the participant’s high-
resolution anatomical brain image. We then used a linear search with 12 degrees of freedom to
align the participant’s anatomical to the standard MNI-152 2mm atlas.

To conduct RSA, we used functions from the CoOSMoMVPA toolbox (Oosterhof &
Connolly, 2012) as it is implemented in MATLAB (Mathworks, Inc) and additional custom
scripting. For each participant, we combined data from all runs to create four sets of brain
patterns, corresponding to each of the four phases in our paradigm: generate-appropriate,
generate-novel, evaluate-appropriate, and evaluate-novel. We then masked each of these data
sets using large-scale network masks from the CONN toolbox (derived from independent
components analysis of fMRI data from the Human Connectome Project, N =497 Little et al.,
2018; Whitfield-Gabrieli & Nieto-Castankon, 2012), focusing on nodes within the DMN and the
ECN. The DMN nodes included the left lateral parietal (ILP), right lateral parietal (rLP), medial
prefrontal (MPFC), and the posterior cingulate cortices (PCC). The ECN nodes included the left
lateral prefrontal (ILPFC), the right lateral prefrontal (rLPFC), the left posterior parietal (IPPC),
and the right posterior parietal cortices (rPPC). Once masked, we then created neural
dissimilarity matrices for individual participants within each condition X ROI combination,
where the patterns from one generate/evaluate period was correlated with patterns from every
other generate/evaluate period (and 1 - correlation was used for dissimilarity). An example of a
dissimilarity matrix from one participant in one ROI and one condition is shown in Figure 2.

Figure 2.

Representational geometry (i.e., dissimilarity matrix) of ILPFC node from one participant

during the generate-novel condition
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Note. The ILPFC node is shown on the left. Activity patterns within this node were
recorded in response to each noun or noun-response pair in the experiment, in both the
generate and evaluate phases. Shown on the right is an example dissimilarity matrix (of
one participant) from the generate phase. Nouns (stimuli) from the novel condition are
shown on the x and y axes, and each cell of the matrix codes the dissimilarity of patterns
between the pairs of nouns (e.g. pattern dissimilarity of ‘rock’ compared to ‘coin’). The
color scale represents the magnitude of the dissimilarity values (1 — correlation) between
patterns. Blue indicates higher similarity and yellow indicates higher dissimilarity. Thus,

this matrix captures the ‘representational geometry’ of the ILPFC for this participant

within this condition.

These neural dissimilarity matrices reflect the ‘representational geometry’ of each ROI

during each condition. Note that neural patterns within runs are more strongly correlated than
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neural patterns between runs due to uninteresting features of the scanning environment and that
these correlations can artificially inflate reinstatement values when looking across tasks
(Dimsdale-Zucker and Ranganath, 2018). Thus, to eliminate the effects of within-run
correlations on our reinstatement estimates, we nullified every within-run correlation within each
neural dissimilarity matrix (dark blue regions along the diagonal of Figure 2).

For every participant, we then performed pairwise correlations between the
representational geometries (Figure 3), such that the 8 neural dissimilarity matrices in the
generation phase and the 8 neural dissimilarity matrices in the evaluation phase were pairwise
correlated, resulting in a 16 X 16 correlation matrix for every participant. The off-diagonal
correlations in this matrix reflect the extent to which the representational geometry of one
condition/ROI is correlated with another (i.e., reinstatement). Higher correlations indicate higher
second-order similarity in the representational geometries of the conditions/ROls being
compared. We would expect within-task reinstatement values to be high, as all nodes are
engaged in the same task during each phase (i.e. generating or evaluating). Thus, these

comparisons act as a type of statistical check on the validity of the RSA method we used here.
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Figure 3.

Schematic of the pairwise comparisons procedure used for RSA.

Generate

5 9
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Note. Representational geometry (i.e., dissimilarity matrix) of each node within the DMN
(blue ROIs) and ECN (red ROIs) networks were pairwise correlated with every other
node both within each phase and between phases (generation = green; evaluation =
orange). Each black line is associated with one mean correlation value. Separate sets of

pairwise comparisons were made within the novel and appropriate tasks.
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To make inferences on the reinstatement (i.e., correlation between dissimilarity matrices)
values, we performed Bayesian ¢-test analyses with default JSZ priors (Krekelberg, 2021),
generating a Bayes Factor (BF) in favour of the hypothesis that the mean correlation across
participants is different from 0 compared to the ‘null’ hypothesis that the mean is 0. The use of
BFs has a number of advantages over traditional approaches (e.g. 7-test). First, it obviates the
need to make dichotomous decisions about whether an ROI shows reinstatement based on a p-
value. Importantly, the BF reflects the magnitude of evidence and can be interpreted as how
many more times favorable one hypothesis is over another (i.e., how much we should favour the
belief that the mean correlation is different from 0). Thus, in our analysis, the magnitude of the
BF reflects how strong our belief is that particular patterns of reinstatement occur. As a
guideline, we interpret BFs of ~10 to be strong evidence, and our confidence increases with
increases in the size of the BF > 10; thus, we emphasize those BFs approximately equal to or
greater than 10 and for interest report any BF greater than 5 (Note, a BF of 3 is often observed
when a traditional frequentist #-test is calculated on the same data and reveals a p <.05; see
Dienes, 2014 for discussion of interpretation of BFs). A second advantage of the use of BFs is
that it helps us address concerns relating to the effects of multiple comparisons of long run
probability estimates of p-values because we do not make inferences based on long term
probabilities. Instead, the use of JSZ priors assumes rather strongly that there is little to no
reinstatement (i.e., that the null hypothesis is likely) and therefore the BF tends to underestimate
the confidence of the alternative hypothesis when available evidence is ambiguous, effectively
punishing ambiguous data.

Finally, we analyzed whether person-level creativity (i.e., semantic distance) predicted

the strength of neural reinstatement. To do so, we first calculated the mean SemDis score of each
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item for every participant and used this as an index of person-level creativity. For every cell
within our 16 X 16 pairwise matrix, we correlated person-level creativity with the reinstatement
score from that cell for that participant. Again, we calculated the BF for the correlation
(assessing evidence in favor of a correlation greater than 1 vs. a correlation of 0) within each
cell.

3.1. Results

Our main interest was the reinstatement of neural patterns between the generation phase
evaluation phase both within and between the DMN and ECN networks. That is, we were
interested in whether the dissimilarity matrix of each node (independent variable) predicted the
dissimilarity matrices in other nodes or within or between phases (dependent variable), on
average. To assess this, dissimilarity matrices were correlated with each other in a pairwise
manner, resulting in 7 values for each participant X node X condition. The average r value for
each comparison was tested against 0 using a one-sample #-test. For each pairwise comparison,
we interpret evidence of a correlation as an index of reinstatement. For simplicity, we adopt the
convention of describing these correlations between dissimilarity matrices as instances of
reinstatement. Thus, one node may reinstate information with another node, either within or
between phases, or it can reinstate information within itself between phases.

We found several patterns of reinstatement. In the novel association task, the dissimilarity
matrices of ECN left lateral prefrontal cortex during generation predicted (i.e. > 0 correlations)
dissimilarity matrices of three other nodes during evaluation (BFs > 10). First, the ECN left
lateral prefrontal cortex showed reinstatement within itself during evaluation, » = .06, BFo =

17.8. Second, it showed reinstatement within the ECN right lateral prefrontal cortex during
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evaluation, » = .08, BFo= 131.0. Third, it showed reinstatement within the DMN left lateral
parietal node during evaluation, » =.07, BFio =17.3.

In the appropriate association task, two nodes showed reinstatement with themselves
between generation and evaluation. First, the medial prefrontal cortex of the DMN during
generation showed strong reinstatement with itself during evaluation, » = .08, BFio=52.1.
Second, the posterior cingulate cortex also showed reinstatement within itself, » = .04, BF10=
33.0.

Overall, we found strong evidence for within-ECN (specifically, the dorsal lateral
prefrontal cortex) reinstatement during the generation and evaluation of novel associations, and
within-DMN (specifically, the medial prefrontal cortex) reinstatement during the generation and
evaluation of appropriate associations. Additionally, in the novel association task, we found both
between- and within- network reinstatement. Specifically, we found between-network
reinstatement involving the ECN lateral prefrontal cortex and the DMN left lateral parietal cortex

between the two phases (see Figure 4).
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Figure 4.
Schematic representation of pairwise comparisons that show the reinstatement of

representational geometries in the novel (top) and appropriate (bottom) conditions.
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Note. Schematic of the main results. Representational geometry (i.e., dissimilarity matrix)
of each node within the DMN (blue ROIs) and ECN (red ROIs) networks were pairwise

correlated with every other node both within each phase and between phases (generation

= green; evaluation = orange). Separate sets of pairwise comparisons were made within
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the novel and appropriate tasks. Each comparison is reflected by a line connecting one
node to another. Bold lines indicate strong evidence for an average correlation between

dissimilarity matrices (i.e. instance of reinstatement) with a BFi10> 10.

There were several cases of moderate evidence (BF >5 and < 10) of reinstatement
between networks and phases. Within the novel association task, the ECN left lateral prefrontal
cortex during generation showed evidence of reinstatement within the DMN medial prefrontal
cortex during evaluation , » = .07, BF1o = 5.2. The ECN right lateral prefrontal cortex showed
reinstatement with itself across phases, » = .05, BF1o = 6.0. Finally, the DMN medial prefrontal
cortex during generation showed reinstatement within itself during evaluation, » = .07, BFo =
9.4.

In the appropriate association task, the DMN right lateral parietal cortex during
generation was reinstated in the ECN right lateral prefrontal cortex during evaluation, » = .04,
BF10 = 7.3. Further, the ECN left lateral prefrontal cortex during generation was reinstated within
the ECN right lateral prefrontal cortex during evaluation, » = .05, BF1o = 5.1.

In all other cases we found no evidence or only weak evidence (BF ~=<15) of
reinstatement across generation and evaluation. Importantly, as anticipated, the within-task
correlations between nodes (i.e., during the generation task and during the evaluation task) were
high with extremely strong evidence in favor of representational stability within tasks, » = .2 -
.61, BF10 > 1000. For full pairwise comparison results, see Tables 1 and 2.

Finally, contrary to our predictions, we found no evidence that person-level creativity
(i.e., mean semantic distance of associations) predicted reinstatement values (i.e. none showed

BFs >5).



Running Head: REINSTATING REPRESENTATIONS 25

Table 1. Pairwise correlation matrix from the novel association task.

Generate

Evaluate
DMN ECN DMN ECN
P g MPFC PCC ILPFC LPFC 1PPC PPC ILP P MPFC PCC ILPFC LPFC IPPC PPC
Generate DMN 1P 1.00
iLp 0.50%%* 1.00
MPFC 0.21%%% 0.22%%% 1.00
PCC 0.55%%% 0.50%%* 0.20%%* 1.00
ECN ILPFC 0.27%%% 0.22%%% 0.47%%% 0287+ 1.00
LPFC 0.23%%% 0.25%%% 0.53%%% 0297+ 0,647+ 1.00
IPPC 0.50%%% 0.39%%% 0.26%%* 0497+ 0367+ 0320 1.00
PPC 0.34%%% 0.60%%* 0.25%%% 047%%* 0.26%** 036%** 0.50%+* 1.00
Evaluate DMN 1P 0.03 0.02 004 002 0.07%% 004 002 002 100
P 0.03 0.02 0.04 001 0.04 002 002 002 0.55%%% 1.00
MPFC 0.00 001 0.07* -0.01 0.07% 005 0.04 0.00 0.30%%* 0310 1.00
PCC 0.02 0.02 0.04 003 005 0.02 003 0.00 0.54%%% 0527+ 0297+ 1.00
ECN ILPFC 0.02 001 004 0.00 0.06%* 005 002 0.00 0.34%%% 0277+ 0467+ 0347+ 1.00
LPFC 0.02 0.02 005 002 0.08%* 0.05% 004 0.00 0.32%%% 033w+ 0.49%++ 0387+ 0.65%%* 1.00
IPPC 0.01 001 004 002 0.04 001 003 002 0.50%%* 0367+ 0307+ 0507+ 0.48%%* 0.43%%% 1.00
PPC 0.01 001 003 001 002 0.00 0.00 0.01 0.38%%% 0.56%+ 0327k 050"+ 0.35%%% 0.48%%% 0.49%%* 1.00
**% BFo > 1000; ** BF o > 10; *BF;o ~> 5; all other vales BF (<5
Table 2. Pairwise correlation matrix from the appropriate association task.
Generate Evaluate
DMN ECN DMN ECN
ILP g MPFC PCC ILPFC [LPFC IPPC PPC ILP P MPFC PCC ILPFC TLPFC IPPC PPC
Generate DMN 1P 1.00
P 0.52%%% 1.00
MPFC 0.22%%% 0.23%%% 1.00
PCC 0.55%%% 0.53%%% 0.22%%% 1.00
ECN ILPFC 0.20%%% 0.21%%% 043% 0.20%%% 1.00
1LPEC 026 026 0.51%%% 033 0.60%* 1.00
1PPC 0.54 042 0.23%%% 0.54 0.40%%* 0335 1.00
PPC 039 0.60 0.21%%% 0.53%%% 025 037%%% 0.50%+* 1.00
Evalua DMN ILP 0.01 0.03 0.04 0.0 0.0 0.0 0.01 0.02 1.00
0.01 0.02 0.04 0.00 0.02 0.02 001 0.01 0.55%%% 1.00
MPFC 003 0.02 0.08%* 0.02 0.04 0.03 0.02 0.02 026% 027%4% 1.00
pcc 003 003 0.02 0.04%* 0.03 001 0.02 0.02 0.56%%* 0.52%%% 0.27%%* 1.00
ECN ILPFC 003 003 003 0.03 0.04 0.02 0.03 0.03 03350 0.28%*% 0.46%%* 034%%% 1.00
rLPFC 003 0.04* 0.04 0.03 0.05* 0.02 0.02 0.03 030%%* 032%%% 0.51%%* 039%%% 0.63%%* 1.00
IPPC 0.02 003 0.04 0.04 0.04 0.03 0.03 0.02 0.53%%* 039%%% 0.26%%* 0.50%*% 0.47%%* 0.40%%* 1.00
PPC 0.01 0.02 0.02 0.02 002 001 0.02 001 0.41%#% 0.56%** 0.24%*% 0.47%** 0.36%** 0.44%** 0.50%** 1.00

Fkk BFm > 1000, *x BF]() > 10, *BF](] ~> 5, all other Vales BF10< 5

4.1. Discussion

Current approaches to studying creative thought suggest two critical processes supporting
creativity: idea generation and idea evaluation. Idea generation entails activating knowledge and
combining it in novel ways while idea evaluation is thought to involve selecting novel
combinations for their usefulness in a given context. Previous research has implicated the DMN
and ECN in these processes (Kleinmintz et al., 2019). Here, reasoning that evaluating ideas
requires reactivation of the same information that has been previously generated, we investigated
the reinstatement of activity patterns within and between nodes of the DMN and ECN during
idea generation and evaluation. Participants generated novel or appropriate noun-noun
associations in a generation phase and then evaluated their own associations in an evaluation

phase. Using RSA, we reveal the patterns of neural informational reinstatement within and
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between DMN and ECN that support these cognitive processes. We focus our discussion on
cases of strong evidence for reinstatement as determined by BFs.

First, in the novel association task, the left lateral prefrontal cortex showed reinstatement
within itself of both hemispheres across the two phases. In general, the prefrontal cortex is
implicated in a wide variety of creativity tasks (see Gonen-Yaacovi et al., 2013 for a meta
analysis; Zhang et al., 2020) and the specific regions we investigated here (more rostral and
dorsal regions) are thought to reflect some of the highest regions in the cortical hierarchies that
integrate information from lower-order regions in the service of organizing goal-directed
behaviour (Badre and D'esposito, 2009; Badre and Nee, 2018). The dorsal lateral prefrontal
cortex in particular has been implicated in activating/inhibiting task relevant information shaped
by goals of the task (see Chrysikou, 2019; Weinberger et al., 2017); further, this region has been
directly implicated in verbal tasks, like ours, that require overcoming or emphasizing prepotent
associations between words (e.g., Kenett et al., 2021; Zmigrod, Colzato, & Hommel, 2015).
Given this, we can speculate about the role of the lateral prefrontal cortex in the current study. In
our novel association task, participants had to generate and evaluate the novelty of their noun
associates, perhaps requiring the selective activation/inhibition of common associates during
generation and evaluation. Thus, our results suggest that the neural patterns necessary for
coordinating the active/inhibited information during generating and evaluating creative ideas is
reinstated within this node throughout both phases of the creative process, a finding consistent
with its role in producing task-relevant behaviour in other domains. Note, because this node sits
atop of an action planning hierarchy and may contribute relatively abstract action plans to the
organization of behaviour, we can further speculate that this process is especially important when

generating novel ideas (but less so for appropriate ones). This is consistent with the idea that
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these nodes of the ECN are particularly important for managing ongoing task demands based on
available stimuli (rather than on learned associations; see Smallwood et al., 2021). While
previous research has implicated the ECN in evaluation in particular, we can speculate that
reinstating abstract action information for use in the here-and-now is a critical component of
generating and evaluating creative ideas.

The lateral prefrontal cortex also showed between network reinstatement within the
DMN lateral parietal cortex across generation and evaluation. This finding is important for two
reasons. First, it demonstrates that generation and evaluation is supported by nodes within both
the DMN and ECN and, second, it demonstrates that different nodes of the ECN and DMN need
to reinstate similar informational content to support creative thought. We speculate that the
reinstatement of ECN information within the DMN may reflect the need to ‘check’ information
relevant to the novel context (i.e. here and now) that is under control of the lateral prefrontal
cortex against previously learned associations and the semantic content of the lateral parietal
cortex. This finding is consistent with results showing the importance of posterior cortical
regions in the generation of creative ideas, which requires the activation of relevant
perceptual/semantic content (Chrysikou and Thompson-Schill, 2013; see Matheson et al., 2017
for parietal involvement specifically). This informational reinstatement between nodes also gives
support to the core ideas of dual process models of creativity (Ward, Smith, and Finke, 1995),
and suggests that generating and evaluating creative thought requires informational sharing
between these networks.

During the appropriate association task, the DMN medial prefrontal cortex showed
reinstatement within itself between generation and evaluation, thus implicating MPFC in the

coordination of common associations. In general, the medial prefrontal cortex is known for its
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involvement in ‘self referential’ (Gusnard et al., 2001), or perhaps more generally ‘self relevant’
(Abraham, 2013) tasks. We can speculate that information characteristic of periods of episodic
simulation, supported by the diffuse activation of a wide variety of sensorimotor and
interoceptive experience, is useful in accessing and assessing known associations that stem from
experience. The medial prefrontal hub is also widely implicated in predicting the value or
outcome of learned behaviors is based on long term knowledge (Euston, Gruber, and
McNaughton, 2012), which likely accounts for its role in reinstating information when
generating and evaluating previously learned associations between nouns; that is, finding
appropriate associations requires finding associations that have been previously valued and
rewarded (e.g. belts go with pants). Further, if nodes of the DMN sit at the very top of distributed
neural hierarchies and integrate information from all sensorimotor regions, they are best suited to
coordinate information related to self and previous experience. Thus, when the task emphasizes
responses that rely on previously learned information, the DMN medial prefrontal cortex appears
to reinstate critical information for generating and evaluating ideas.

Additionally, within the appropriate task, the DMN posterior cingulate cortex' showed
reinstatement within itself across generation and evaluation, in another instance of within
network reinstatement. As a part of the DMN, the PCC has also been implicated in ‘self
referential’ processes associated with mind wandering and the valuation of outcomes. Similarly
to our speculation above, one intriguing possibility is that the reinstatement of information
related to previously learned knowledge is ‘checked’ against likely value in the PCC. One final
consideration is that hubs of the DMN are not only involved in episodic tasks but also semantic

tasks, and drawing on known associations is clearly a semantic task (see Kim, 2016; Krieger-

! Note that this node also includes the precuneus cortex.
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Redwood et al., 2022); thus, reinstatement within these DMN hubs strongly implicate the
reinstatement of both types of information.

Overall, our results show that the generation and evaluation phases of the creative process
can be characterized by the reinstatement of information both between and within nodes of the
ECN and DMN. Importantly these results elaborate on the picture of the DMN as a network
important for generation and the ECN as a network for evaluation, and strongly suggest—based
on the strength of Bayesian evidence—that within-network reinstatement is important for
generating and evaluating ideas. We can make sense of this dynamic by considering the roles of
network nodes that coordinate information across different sensorimotor and interoceptive
modalities (see also Mok, 2014). To the extent that these nodes integrate different types of
information then, their roles in generating and evaluating ideas will be shaped by whether
novelty or appropriateness is the goal; specifically, ECN prefrontal cortical nodes operate on
information that is necessary for novelty and the DMN cortical nodes operate on information
necessary for appropriate associations. We can speculate about what the critical information may
be in each task. For instance, in the novel task, within-ECN reinstatement may support the need
to generate and evaluate abstract action plans in the here and now; when associations are less
creative, within-DMN reinstatement is appears crucial, perhaps due to the role of previously
learned, self-relevant, episodic and semantic information.

4.2. Limitations

There are a number of important limitations of our present analysis. First, we focused on
a subset of cortical regions defined by intrinsic connectivity. Thus, our study does not exhaust
the possible contributions of nodes outside the ECN and DMN that may be critical in evaluating

and generating ideas. While we focused on the ECN and DMN because they have been
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previously implicated in idea generation and evaluation, note that only a subset of the nodes
studied here are implicated in informational reinstatement in our task. This suggests that there
are differential contributions of nodes within the ECN and DMN to idea generation and
evaluation, and not simply that the cortex shows stable (i.e., repeated) patterns over phases; that
is, it does not appear that RSA detects unchanging pattern similarity between the generation and
evaluation phases across the cortex more generally, which would be expected if the technique
was insensitive to task changes or informational content.

Second, we did not find evidence that the strength of reinstatement predicted the
creativity of associations that participants generated (i.e., SemDis scores). While this is not
surprising in the appropriate task (where participants are generating common associates), we did
anticipate that reinstatement would predict creativity in the novel task. There may be a number of
explanations for this, including that we had inadequate statistical power to detect such a
relationship. However, it may be the strength of reinstatement within the nodes we studied here
is not a reliable predictor of semantic distance. If so, this would suggest that the patterns of
reinstatement in the DMN and ECN are important for attempting to generate and evaluate
creative ideas, though it may not be important for determining the success of these process.
Another related possibility is that reinstatement in nodes outside of the network nodes studied
here are more important for determining the quality of responses. Finally, we restricted the
generation phase to 5 seconds and only a single response. However, in situations where creative
output is not time restricted and multiple responses are given creativity tends to increase later in
the response period (i.e. the serial order effect in divergent thinking tasks; Christensen, Guilford,
& Wilson, 1957; Beaty & Silvia, 2012). While we did show that SemDis was higher under the

novelty instruction, these constraining features of our task likely limited the originality of the
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responses given. If reinstatement is more important for truly original responses, then we would
fail to detect a relationship between SemDis and reinstatement?. Future research should
investigate the contributions of reinstatement outside of the DMN and ECN or use more
unconstrained tasks.

Third, like other fMRI studies of idea generation and evaluation, we explicitly
manipulated the phases of the creative process. However, it is clear that these processes are
integrated dynamically during ecological creative thinking, and while there are advantages to
explicitly manipulating the goals of a task, it is unclear whether these stages can be properly
dissociated from each other at a neural level (see Zamani et al., 2022). In this way, our study
allows us to make inferences about the reinstatement of neural information under different task
demands but we are limited in our ability to target the more integrated dynamics that are
occurring in both the generation and the evaluation phases used in the present study.

4.3. Conclusion

Overall, across generating and evaluating ideas, the ECN lateral prefrontal cortex and the
DMN medial prefrontal cortex are most widely implicated in reinstating information, either
within themselves or with other nodes. While the LPFC reinstatement is strongest in the novel
association task, and the MPFC reinstatement is strongest in the appropriate association task,
these two nodes show evidence of reinstatement in both tasks, suggesting a critical role of both
networks in idea generation and evaluation. Given that RSA captures informational content of
cortical patterns, our results suggest that accounts of creative thought need to extend beyond

accounting for the dual processes of generating and evaluation, to considering the relevant

2 We thank an anonymous reviewer for this suggestion.
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information that those processes rely on, and point to the critical role of both networks in the

general human capacity for creative thought.

32
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5. Appendix
Word lists and psychologistic features for the word association task

List 1

Word Semantic Diversity Imageability Concreteness Frequency QSS Valence

coin 1.66 6.5 4.89 497 12 6.55
hat 1.65 6.7 4.88 3273 12 5.69
statue 1.46 6.5 4.93 540 17 5.95
alley 1.51 6.4 4.82 831 18 4.17
subway 1.48 6.7 4.86 546 17 5.44
sword 1.33 6.8 4.93 1335 18 5.27
rock 1.49 6.4 491 4394 13 5.72
plant 1.56 6.3 4.76 1408 14 7.05
palace 1.46 6.5 4.57 979 14 6.1

branch 1.82 6 4.9 514 11 5.15
bath 1.7 6 4.85 1587 10 7

plane 1.58 6.8 4.92 4872 12 5.72
seat 1.74 6.2 4.78 4018 10 5.22
match 1.71 5.1 4.14 2521 18 5.61
log 1.66 6.3 4.96 610 9 4.94
church 1.56 6.7 49 3553 15 5.21
rocket 1.63 6.4 4.73 604 18 5.8
pet 1.39 6.4 4.71 1029 11 7.05
purse 1.81 6.5 49 1008 12 5.95
leather 1.55 6.5 4.82 693 20 5.84
ladder 1.76 6.4 5 472 14 5.32
robot 1.45 6.6 4.65 621 15 6.18
brass 1.62 5.8 4.7 618 19 5.05
shell 1.76 6 4.8 674 17 6.05
mail 1.7 6.3 4.69 1879 15 6.28
dock 1.55 6.1 4.64 497 10 5.05
coat 1.58 6.7 4.97 2146 17 5.29
pocket 1.64 6 4.68 1821 18 5.67
screen 1.51 6.2 4.6 1193 16 5.55
hotel 1.51 6.7 4.93 5264 16 6.6

Notes. QSS = cue set size (Nelson et al., 2004).
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List 2

Word
bench
train
steam
page
sink
fence
belt
tea

net
earth
tray
barn
wheel
drill
carpet
circus
costume
gym
rain
bar
engine
grass
shadow
glove
bucket
gum
sea
map
pole
drum

Notes. QSS = cue set size (Nelson et al., 2004).

Semantic Diversity Imageability Concreteness

1.79
1.57
1.4
1.81
1.67
1.63
1.78
1.56
1.65
1.72
1.43
1.38
1.49
1.38
1.49
1.77
1.48
1.5
1.57
1.66
1.33
1.56
1.78
1.69
1.59
1.68
1.67
1.65
1.69
1.54

6.5
6.3
5.6
59
54
6.6
6.5
6.4
59
6.5
5.8
6.9
6.5
6
6.4
6.5
6.5
6.5
6.3
6.1
6.3
6.9
6.5
6.2
6.4
6.4
6.4
59
5.8
6.4

4.87
4.79
4.5
4.9
4.74
4.82
4.9
4.69
4.53
4.8
4.74
4.79
4.86
4.4
4.96
4.43
4.57
4.83
4.97
4.67
4.86
4.93
4.54
4.97
4.96
4.89
4.79
4.93
4.66
4.96

34

Frequency QSS Valence

493
4848
686
1912
863
819
1242
2990
793
5074
410
693
1380
701
594
870
721
927
2494
4385
1626
856
1080
515
511
683
3052
1623
642
432

14
19
18
10
18
20
11
11
14
12
19
13
14
19
17
13
18
17
18
13
16
14
18
9
11
9
15
16
14
16

5.5
6.36
5.4
6.09
4.62
5.05
4.44
6.56
5
6.83
5.14
6.16
5.9
4.73
5.95
5.85
6.05
5.84
6.58
5
5.48
6.47
5.07
6.11
4.55
5.89
6.56
5.81
5.6
6.05
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Appendix A
GENERATION INSTRUCTIONS

In Phase 1, you will see a common noun on the screen (e.g., desk) and be asked to think of
another noun that can be associated with it. You will come up with two types of noun
associations: APPROPRIATE and NOVEL.

APPROPRIATE nouns are clearly related to the noun on the screen. APPROPRIATE
associations would probably come to most everyone’s mind when they read the noun. For
example, an appropriate association to “desk” could be “chair.”

Your associations should only be concrete nouns, i.e., things that exist physically and can be
touched, seen, smelled, etc. Your associations should *not* be proper nouns (e.g. people’s
names), verbs, or other parts of speech. Also, your association should only be *one word*.

It is important for you to try to think of the *most appropriate* noun that you can.

For example, other nouns could be considered appropriate when associated with “desk™ (such as
“computer”). Your task is to think of the *most appropriate* noun that you can.

You will also be asked to think of NOVEL associations.

NOVEL associations are *not* usually related to the noun on the screen. NOVEL associations
are unusual, meaning that they are unrelated to the noun. NOVEL associations would probably
not come to anyone else’s mind when they read the noun. For example, a novel association to
“book” could be “cloud.”

Your associations should only be concrete nouns, i.e., things that exist physically and can be
touched, seen, smelled, etc. Your associations should *not* be proper nouns (e.g. people’s
names), verbs, or other parts of speech. Also, your association should only be *one word*.

It is important for you to try to think of the *most novel* noun that you can. For example, other
nouns could be considered novel when associated with “book™ (such as “tire”). Your task is to
think of the *most novel* noun that you can.

EVALUATION INSTRUCTIONS

In Phase 2, you will evaluate your associations from Phase 1. You will see the nouns and your
associations and evaluate them on either NOVELTY or APPROPRIATENESS.

To recap, APPROPRIATE associations are clearly related to the noun on the screen.
APPROPRIATE associations would probably come to most everyone’s mind when they read the
noun. Your task is to evaluate the appropriateness of your association in relation to this noun.
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When evaluating the appropriateness of your association, it is important that you consider
whether it is the *most appropriate* possible noun. Some of your associations will be more
appropriate than others.

You will evaluate the appropriateness of your associations using a 3-point scale: 1 = not at all
appropriate, 2 = somewhat appropriate, and 3 = very appropriate.

You will also be asked to evaluate the NOVELTY of your associations.

To recap, NOVEL associations are *not* usually related to the noun on the screen. NOVEL
associations are unusual, meaning they are unrelated to the noun. NOVEL associations would
probably not come to anyone else’s mind when they read the noun. Your task is to evaluate the
novelty of your association in relation to this noun.

When evaluating the novelty of your association, it is important that you consider whether it is
the *most novel* possible noun. Some of your associations will be more novel than others.

You will evaluate the novelty of your associations using a 3-point scale: 1 = not at all novel, 2 =
somewhat novel, and 3 = very novel.



