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Abstract 

Dual process theories of creativity suggest that creative thought is supported by both a generation 

phase, where unconstrained ideas are generated and combined in novel ways, and an evaluation 

phase, where those ideas are filtered for usefulness in context. Neurocognitively, both the default 

mode network (DMN) and the executive control network (ECN) have been implicated in 

generation and evaluation, respectively. Importantly, generating and evaluating ideas implies that 

the same information, reflected in patterns of neural activity, must be present in both phases, 

suggesting that information should be ‘reinstated’ (i.e. multidimensional patterns must reappear) 

within and/or between network nodes. In the present study, we used representational similarity 

analysis (RSA) to investigate the extent to which nodes of the DMN and ECN reinstate 

information between a generation phase, in which participants generated novel or appropriate 

word associations to single nouns, and an evaluation phase, where we presented the associations 

back to participants to evaluate them. We showed strong evidence for reinstatement within the 

ECN dorsal lateral prefrontal cortex during the novel association task, and within the DMN 

medial prefrontal cortex during the appropriate association task. We additionally showed 

between network reinstatement between the ECN dorsal lateral prefrontal cortex and the DMN 

posterior parietal cortex during the novelty task. These results demonstrate the importance of 

both within- and between-informational reinstatement for generating and evaluating ideas, and 

implicate both the DMN and ECN in dual process models of creativity.  

Keywords: default mode network; executive control network; reinstatement; representational 

similarity analysis; creativity;   
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1.1. Representing creative thought: A representational similarity analysis of creative idea 

generation and evaluation 

The human mind is a generative mind. While other species can categorize objects and use 

tools to achieve behavioural outcomes, humans have a remarkable ability to generate potentially 

infinite categories of varying abstractness and to use tools in potentially infinite ways to identify, 

characterize, and solve problems. Rather than being a psychological capacity that exists in only a 

few individuals, creative capacities are apparent in the behaviour of species in general and 

therefore reflect a basic feature of human cognition; thus, to understand how creativity works is 

to understand human cognition in the world (Barsalou and Prinz, 1997; Prinz and Barsalou, 

2002). Creative thinking is often considered a two-stage process of idea generation (where 

candidate ideas are initially produced) and idea evaluation (where those candidates are 

scrutinized for their utility; Sowden et al., 2015). Prior studies have linked idea generation and 

idea evaluation to the brain’s Default Mode Network (DMN) and Executive Control Network 

(ECN; Kleinmintz et al., 2019), respectively, but the exact nature of this link remains unclear. In 

the present study, we use representational similarity analysis (RSA) to examine the extent to 

which neural patterns within DMN and ECN during idea generation are “reinstated” during idea 

evaluation, providing insight into how the brain represents and transforms information when 

thinking creatively.       

1.2. Neurocognitive Models of Creativity and the Functions of the DMN and ECN 

 Researchers have long recognized two phases that are crucial to creative output: 

generation and evaluation (Snowden et al., 2015 for an overview). It is thought that during the 

generation phase previously learned knowledge is activated and novel combinations of that 

knowledge are produced (Beaty et al., 2015; Benedek et al., 2014; Benedek et al., 2018; Ellamil 
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et al., 2012); during the evaluation phase, a subset of novel combinations are expressed usefully 

in context (Beaty et al., 2015; Ellamil et al., 2012; Mayseless et al., 2014). For instance, some 

models (Campbell, 1960) posit that generation is characterized by the activations of a wide 

collection of representations of the environment and possible manipulations of it, only some of 

which are retained when certain criteria are met. Such proposals have garnered support from a 

variety of sources (see Simonton, 1999; 2011). Relatedly, ‘simulation’ theories (those that adopt 

a predictive coding framework or more general embodied/grounded cognition frameworks, e.g., 

Dietrich & Haider, 2015; Prinz and Barsalou, 2002; Matheson & Kenett, 2020) suggest that 

creativity, at least in part, requires the activation of action possibilities and their intero- and 

extero-ceptive consequences before ultimately executing one of them (in terms of overt 

manipulation or linguistic output). All of these approaches are in line with major neuroscientific 

theories of brain function and organization that have been developed to address human 

categorization and conceptualization (e.g. Edelman, 1989; Parr, Pezzulo, & Friston, 2022). 

Importantly, common to all of these approaches is the idea that creativity is supported by the 

dynamics of these phases. 

Neuroimaging research has investigated the neural correlates of idea generation and idea 

evaluation (e.g., Mayseless et al., 2014). Two functional brain networks (i.e., intrinsic 

connectivity networks)—the DMN and ECN—have been associated with creative tasks that 

emphasize generation vs. evaluation (Kleinmintz et al., 2019). One possibility is that the DMN 

may be important in the generation phase given its role in processes that entail activating 

knowledge from experience (i.e., past and future mental simulation; see Zabelina and Andrews-

Hanna, 2016); conversely, the ECN may act as the filter during the evaluation phase, given its 

role in executive control tasks that require immediate action (Chrysikou et al., 2014; Miller & 
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Cohen, 2001; see Beaty et al., 2016 for details). This hypothesis reflects a prominent debate 

within the creativity literature about the relative importance of uncontrolled/associative processes 

vs. controlled/executive processes in creativity, with mixed evidence for the relative importance 

of both processes (see Barr, 2018; Beaty et al., 2014). 

Under this view, if the DMN and ECN are engaged in dissociable functions, DMN and 

ECN activity should reflect the dynamics of creativity, specifically the iterative shifting of 

generation and evaluation phases (Beaty et al., 2015). Some research has explored this issue by 

directly manipulating the generation and evaluation of ideas. For instance, in a seminal fMRI 

investigation, Ellamil et al. (2012) had participants perform an iterative creativity task, shifting 

between periods of idea generation (sketching book cover illustrations) and idea evaluation 

(assessing their sketches). They showed that subregions of the ECN were more active during 

evaluation than generation phases while the DMN showed heightened activity in both phases 

(and the medial temporal lobe was particularly active in the generation phase). Similarly, Liu et 

al (2015) had participants generate and revise poems. During the generation of poems, a DMN 

hub (medial prefrontal cortex) showed increased activity, whereas an ECN hub (dorsolateral 

prefrontal cortex) showed decreased activity; conversely, during revision of poems, the ECN hub 

increased activity. Additionally, DMN and ECN show functional connectivity during divergent 

thinking (e.g., producing unusual uses for objects; Beaty et al. 2015) and the strength of DMN-

ECN connectivity predicts person-level creativity (Beaty et al., 2018). Finally, recent results 

show that the ECN and DMN contribute uniquely to creative thinking, especially early in the 

process (Loyd-Cox, Chen, & Beaty, 2022). Thus, consistent with general proposals about the 

role of the DMN and the ECN in creativity, these networks show evidence of dynamically 

interacting to support the generation and evaluation of ideas.  
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 Importantly, DMN and ECN nodes are considered heteromodal association areas (i.e., 

neural ‘hubs’) that track associations and control information flow contained in the distributed 

cortical representations of sensorimotor and interoceptive experience (Bressler and Menon, 

2010). Thus, in a very important sense, creativity stems from the activity of the same hierarchical 

neural systems that support the representation and use of knowledge in other cognitive domains 

(e.g., recognition and semantic memory; see Meyer and Damasio, 2009; Baraslou 1999; Lambon 

Ralph et al., 2017; Nastase and Haxby, 2017; Yee et al., 2014). From this perspective, DMN and 

ECN activation reflects the type of information they are involved in coordinating as neural hubs 

(see also Kenett et al., 2018), which will be determined by where they sit in distributed neural 

hierarchies (see especially Margulies et al., 2016).  

Some authors have suggested that the DMN nodes sit at the very top of a sensorimotor-

to-herteromodal gradient and integrate sensorimotor information in a way that abstracts across 

experience, making their information less relevant to the here and now. Because it abstracts 

across multiple modalities, the DMN tends to be involved in tasks that are more ‘internally’ 

directed like mind wandering; conversely, the nodes of ECN, which may sit at a slightly lower 

point in cortical hierarchies, integrate sensorimotor information (especially motor information 

and action plans) that is relevant for organizing behaviour in the here-and-now. Thus, the 

position of the ECN may account for its involvement in tasks that are more ‘externally’ directed 

(see Huntenburg, Bazin, & Margulies, 2018; Smallwood et al, 2021). Interestingly, person-level 

creativity (measured from divergent thinking performance) predicts how segregated the DMN is 

from sensorimotor cortex (the visual cortex specifically; see Huo, et al., 2022). Thus, because 

generating and evaluating ideas requires the activation of previous knowledge (sensorimotor 

information, past and possible future actions, and associated interoceptive experiences) and 
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predicting the consequences of the creative ideas (in terms of their short and long term 

sensorimotor and interoceptive effects in novel context of the here and now), we might expect 

both of these networks to be implicated in generating and evaluating ideas in complex ways.  

Critically, the notion of evaluating creative ideas implies that previously generated 

cortical information must be active during its evaluation. This suggests that nodes within these 

networks must ‘reinstate’ information during creative tasks (see also Jung et al., 2013). Further, 

what information is reinstated should depend on the informational requirements of a tasks. For 

instance, generating a creative idea requires more novel information to be evaluated for the here 

and now, while generating a common idea requires information that has previously been learned, 

abstracted across experience. Which (if any) cortical nodes reinstate information remains 

unknown. The research to date on the involvement of the DMN and ECN in creativity has 

focused on the magnitude of their activity or the functional connectivity between them. While 

this approach usefully characterizes whether these networks are involved in creative thinking, it 

does not allow characterizing how these networks coordinate information during idea generation 

and evaluation. Investigating how these networks coordinate information during generation and 

evaluation will allow advancing and elaborating on neurocognitive models of creativity.   

1.3. Representational Similarity Analysis and Informational Reinstatement 

 To advance the study of idea generation and evaluation, techniques that directly 

characterize the information reflected in cortical activity are required. Representational similarity 

analysis (RSA) is an analytical technique that quantifies the relationships between patterns of 

brain activity to create abstract maps of the ‘representational geometry’ of cortical regions, i.e., 

the multivariate shape of neural activity patterns rather than their univariate signal strength (see 

Kreikeskorte et al., 2008). One compelling application of RSA has been in the study of neural 
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reinstatement during memory encoding and retrieval, allowing for a direct test of whether the 

information activated during an encoding phase is active during the retrieval phase (see Danker 

& Anderson, 2010 for an extensive review of evidence).  

For instance, Stawarczyk et al. (2020) had participants watch complex movies of an actor 

engaging in various actions. On a subsequent day, participants viewed the start of the movies and 

were then asked to describe the subsequent events of the movies in a retrieval phase. Using RSA, 

the researchers characterized the representational geometry of activity patterns within the medial 

temporal lobe and posterior medial regions of the DMN during the initial encoding phase and 

during the subsequent retrieval phase and then measured the strength of the similarity between 

them. With this approach, higher similarity between representational geometries indicates 

stronger reinstatement of the represented information. They showed that neural patterns were 

reinstated during the retrieval phase and that the strength of the reinstatement predicted 

performance (particularly reinstatement in the posterior midline regions associated with the 

DMN; see also Oedekoven et al., 2017; Staresina et al., 2012; Wing et al., 2015; Xiao et al., 

2020). This application shows that RSA is a powerful technique for characterizing neural 

reinstatement. 

1.4. The Present Study 

 RSA characterizes the representational geometry of cortical regions, providing insight 

into how information is represented in cortical activity. In the present study, we provide an 

extension of this approach to examine reinstatement during the generation and evaluation of 

ideas in the context of a creativity task. Specifically, we used RSA to investigate the 

informational reinstatement between and within nodes of the DMN and the ECN that occur 

during the generation and evaluation of ideas.   
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To study reinstatement during idea generation and evaluation, we used a simple word-

association task in which participants were presented with a concrete noun (Prabhakaran et al., 

2014). In the generation phase, they were asked to generate a single word association to the 

noun. In the evaluation phase, their associates were presented back to them, and they were asked 

to evaluate the novelty or appropriateness of their responses. On some trials, participants were 

instructed to generate an ‘appropriate’ association (e.g., if the cue was ‘belt’, ‘pants’ is an 

appropriate association); on other trials, participants were instructed to generate an ‘novel’ 

association (e.g., if the cue was ‘belt’, ‘stars’ would be a novel association). This approach 

allows us to assess reinstatement in a more creative context, which stresses novelty, and a less 

creative context, which stresses previously learned associations (Lloyd-Cox et al., 2022). 

Importantly, performance on this type of word association task has been shown to be predictive 

of person-level creativity (i.e., performance on other tasks of creative thinking as well as real-

world creative achievement; Prabhakaran et al., 2014), supporting its validity and utility for 

investigating creativity more generally.  

Information that is activated during generation should be reinstated during the evaluation 

phase between DMN and ECN hubs. Further, nodes within the DMN and ECN may reinstate 

information within themselves, pointing to their importance as coordinators of relevant 

information in a task-specific manner. Finally, we anticipate that the strength of reinstatement 

within particular hubs (or between hubs) predicts the quality of creative output (assessed 

computationally using distributional models of semantic distance; Beaty & Johnson, 2021). 

Overall, this study allows us to further characterize the role of these critical networks during idea 

generation and evaluation.  

2.1. Methods 



Running Head: REINSTATING REPRESENTATIONS  

  

10 

2.2. Participants 

A total of 35 young adults participated in the study. Participants received cash payment 

for their involvement. All participants were right-handed with normal or corrected-to-normal 

vision and reported no history of neurological disorder. One participant was excluded who failed 

to complete the task (24 females; mean age: 20; age range: 18-31). The study was approved by 

the Penn State Institutional Review Board. Informed consent was obtained prior to participation. 

2.3. Word Association Task and Stimuli Selection  

Participants completed a word association task in the scanner (see Procedure). They were 

presented with a series of 60 nouns during an idea generation phase (12 trials per run; 5 runs 

total). Stimuli were selected from a database of 1,716 nouns that appeared in several publicly 

available databases of psycholinguistic norms (Balota et al., 2007; Brysbaert et al., 2014; 

Cortese, 2004; Hoffman et al, 2013; Kuperman, 2012; Nelson et al., 2004; Schock et al, 2012; 

Warriner et al., 2013). This list was further reduced using the six following criteria: word 

frequency (below 400 occurrences per million), concreteness (below 4), imageability (below 5), 

valence (1.25 stds above and below the mean), semantic diversity (1.25 SD above and below the 

mean), and cue set size (QSS; 1.25 SD above and below the mean). This yielded a reduced list of 

298 words, which was further reduced by manually removing all animate words (humans, 

animals, professions, body parts), resulting in 160 words. From these, we selected random lists 

of 30 words (1 list for the novel condition, 1 list for the appropriate condition), until there were 

no significant differences on any of the six word features (according to t-test analyses; see Table 

1). The two lists, and their corresponding psycholinguistic features, are presented in the 

Appendix.  

Table 1  
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Psycholinguistic features of nouns used in the word association task 

 
Mean List1 Mean List2 Mean Difference t p Cohens D 

Semantic Diversity 1.59 1.60 .00 -.08 .937 .02 

Imageability 6.35 6.28 .07 .80 .426 .21 

Concreteness 4.79 4.78 .02 .43 .667 .11 

Frequency 1666.57 1463.83 202.73 .57 .573 .15 

QSS 14.60 14.87 .27 -.33 .746 .08 

Valence 5.75 5.69 .06 .35 .724 .09 

Note. QSS = cue set size. 

 

2.4. Procedure  

To study reinstatement during idea generation and evaluation, we used a simple single 

word-association task (see Figure 1). 

 

 

 

Figure 1.  

Schematic of task and trial procedure.  
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Note. In the Idea Generation phase, an instruction was given to participants to generate 

‘appropriate’ or ‘novel’ associations. Participants were then shown a stimulus (noun) and 

generated associations to the nouns. The associations were verbalized and recorded by 

the experimenter who then created a new stimulus list combining the nouns and the 

participant’s responses. Immediately following this, in the Idea Evaluation phase, 

participants were cued to evaluate the ‘novelty’ or ‘appropriateness’ of their associations. 

On each trial, the participant’s response (and the associated noun) were re-presented back 

to them and participants evaluated the quality of the association on a 3 point scale.  

 

In the generation phase, the participant was instructed to generate an ‘appropriate’ 

association (e.g., if the noun was ‘belt’, ‘pants’ is an appropriate association); on other trials, 

participants were instructed to generate a ‘novel’ association (e.g., if the noun was ‘belt’, ‘stars’ 

would be a novel association). Participants were asked to generate associations that were 

concrete nouns. The association instruction lasted 5s and appeared after a 5s pre-instruction 

fixation. Following a 4-6s jittered fixation cross presentation, a noun from the trial list appeared 

on the screen for 1s. Participants were then given 5s to generate an association, which was 

immediately followed by a 3s window to orally provide their response. If a participant could not 

think of an association, they were instructed to say “none.” All responses were recorded by a 

research assistant and inputted into a separate experiment script for the evaluation phase. 

The idea evaluation phase occurred immediately after the generation phase (and a 

structural scan). Participants were asked to evaluate the novelty or appropriateness of their 

responses, based on the condition for each association (novel or appropriate). Similar to the 

generation phase, the association instruction lasted 5s and appeared after a 5s pre-instruction 
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fixation. Following a 4-6s jittered fixation cross presentation, participants viewed the noun 

paired with their response on the screen for 1s. To accomplish this, an experimenter listened to 

participants, who spoke their responses into a microphone; the experimenter entered responses 

into a pre-formatted text file, which was uploaded into the E-Prime script for evaluation; the 

structural scan was done in between generation and evaluation to allow the experimenter time to 

update the E-Prime files for evaluation. Participants were then given 5s to evaluate their 

association, which was immediately followed by a 3s window to orally provide their evaluation 

using a 3-point scale. The scale differed on whether the participant was instructed to evaluate 

appropriateness (1 = not at all appropriate; 2 = somewhat appropriate; and 3 = very 

appropriate) or novelty (1 = not at all novel; 2 = somewhat novel; 3 = very novel). Participants 

spoke their evaluations to equate the response modality across the two phases.  

 Participants completed six practice trials per phase (six for appropriateness, six for 

novelty). All trials were presented in white text on a black background via E-Prime 3 software on 

a PC laptop computer. Text and fixation crosses were presented in the center of the screen. 

Images were projected from the computer to a screen in clear view of participants lying supine in 

the MRI scanner and looking directly ahead at a mirror attached to the head coil. See Appendix 

A for exact instructions.  

2.5. Semantic Distance  

To assess the creative quality of word associations, we used the SemDis platform (Beaty 

and Johnson, 2021). SemDis is an open-access web application developed to automate scoring of 

verbal creativity (semdis.wlu.psu.edu). Semantic distance is increasingly used in creativity 

research to objectively quantify conceptual distance on verbal tasks (including word association 

tasks) by computing the inverse of the cosine similarity between word vectors in high-
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dimensional semantic space (Hass, 2017a; 2017b; Kenett, 2019). Several studies have found that 

semantic distance values correlate strongly and positively with human judgements of novelty 

(Heinen & Johnson, 2018; Dumas & Dunbar, 2014) and creativity (Orwig et al., 2021; Beaty & 

Johnson, 2021), as well as established measures of creativity (e.g., creative achievement), 

supporting the construct validity of this approach (Beaty et al., 2021; Gray et al., 2019). 

Here, SemDis was used to compute the distance between each cue word (e.g., belt) and its 

associative response (e.g., stars). SemDis generated a composite score from the average scores 

calculated from five different semantic spaces, mitigating the effects of a single semantic model 

and text corpus (e.g., textbooks vs. movie subtitles; Beaty & Johnson, 2021; Kenett, 2019). 

Three of these spaces are built upon continuous bag of words (CBOW) prediction models 

(cbowukwacsubtitle, cbowsubtitle, and cbowBNCwikiukwac) and two are built upon count 

models (GloVe and TASA). The CBOW models use a neural network architecture (Mandera, 

Keuleers, & Brysbaert, 2017) that predicts a given word from surrounding context words within 

a given text corpus. In this instance, the three CBOW models used 1) a concatenation of the 

ukwac web crawling corpus (~ 2 billion words) and the English subtitle corpus (~ 385 million 

words; cbowukwacsubtitle); 2) only the English subtitle corpus (cbowsubtitle); 3) a 

concatenation of the British National Corpus (~ 2 billion words), ukwac corpus, and the 2009 

Wikipedia dump (~ 800 million words; cbowBNCwikiukwac). The two count models, which 

count the co-occurrence of words within text corpora, include 1) the global vectors (GloVe; 

Pennington, Socher, & Manning, 2014) model, which is trained on ~ 6 billion tokens across a 

concatenation of the 2014 Wikipedia dump and the Gigaword corpus (news publications from 

2009-2010); and 2) the Touchstone Applied Science Associates (TASA) model, which uses LSA 

to compute co-occurrences across a text corpus of documents, textbooks, and literary words.  
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2.6. fMRI Acquisition 

Structural and functional images were acquired using a Siemans 3T scanner equipped 

with a 20-channel head coil. Structural images were acquired with a 2300 ms TR, 2.28 ms TE, 

256 mm field of view (FOV), 192 axial slices, and 1 mm slice thickness. Echo-planar functional 

images were acquired using an interleaved acquisition, 2500 ms TR, 35 ms TE, 240 mm FOV, 

90° flip angle, 42 axial slices with 3 mm slice thickness resulting in 3 mm isotropic voxels. 

fMRI preprocessing 

 Data preprocessing was conducted offline using the fMRIB software library version 6 

(FSL; Jenkinson et al., 2012; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). First, for each participant, we 

used the Brain Extraction Tool (BET; Smith, 2002) to eliminate voxels of non-interest (e.g. the 

skull). Adequate brain extraction was confirmed visually for each subject. We performed motion 

correction with a linear registration using the MCFLIRT tool (Jenkinson et al., 2002). Data were 

not spatially smoothed. Additionally, the functional data were temporally filtered with a highpass 

filter (100 second cut-off). 

2.7. Data analysis 

 The fMRI Expert Analysis Tool (FEAT) was used to model BOLD responses in each run 

within each condition. For the first level analysis, each run was analyzed separately. Within each 

of the 5 runs in each condition, we created one predictor (i.e. explanatory variable (EV) for the 

generation/evaluation phase (i.e., the 5 second period after the word) within each condition (i.e., 

appropriate vs. novel). The fixation, stimulus, and response fixation periods were used as 

baseline, to account for incidental visual stimulation and vocal preparation. This resulted in one 

contrast of parameter estimate (COPE) for each generation/evaluation phase (for each voxel). 

These estimates were used as patterns for the RSA analysis. Images were registered in two steps. 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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First, functional images were registered using FLIRT (FMRIB’s Linear Image Registration Tool; 

Jenkinson et al, 2001, 2002) by first aligning the functional data with the participant’s high-

resolution anatomical brain image. We then used a linear search with 12 degrees of freedom to 

align the participant’s anatomical to the standard MNI-152 2mm atlas.  

 To conduct RSA, we used functions from the CoSMoMVPA toolbox (Oosterhof & 

Connolly, 2012) as it is implemented in MATLAB (Mathworks, Inc) and additional custom 

scripting. For each participant, we combined data from all runs to create four sets of brain 

patterns, corresponding to each of the four phases in our paradigm: generate-appropriate, 

generate-novel, evaluate-appropriate, and evaluate-novel. We then masked each of these data 

sets using large-scale network masks from the CONN toolbox (derived from independent 

components analysis of fMRI data from the Human Connectome Project, N = 497; Little et al., 

2018; Whitfield-Gabrieli & Nieto-Castankon, 2012), focusing on nodes within the DMN and the 

ECN. The DMN nodes included the left lateral parietal (lLP), right lateral parietal (rLP), medial 

prefrontal (MPFC), and the posterior cingulate cortices (PCC). The ECN nodes included the left 

lateral prefrontal (lLPFC), the right lateral prefrontal (rLPFC), the left posterior parietal (lPPC), 

and the right posterior parietal cortices (rPPC). Once masked, we then created neural 

dissimilarity matrices for individual participants within each condition × ROI combination, 

where the patterns from one generate/evaluate period was correlated with patterns from every 

other generate/evaluate period (and 1 – correlation was used for dissimilarity). An example of a 

dissimilarity matrix from one participant in one ROI and one condition is shown in Figure 2. 

 Figure 2.  

Representational geometry (i.e., dissimilarity matrix) of lLPFC node from one participant 

during the generate-novel condition 



Running Head: REINSTATING REPRESENTATIONS  

  

17 

 

Note. The lLPFC node is shown on the left. Activity patterns within this node were 

recorded in response to each noun or noun-response pair in the experiment, in both the 

generate and evaluate phases. Shown on the right is an example dissimilarity matrix (of 

one participant) from the generate phase. Nouns (stimuli) from the novel condition are 

shown on the x and y axes, and each cell of the matrix codes the dissimilarity of patterns 

between the pairs of nouns (e.g. pattern dissimilarity of ‘rock’ compared to ‘coin’). The 

color scale represents the magnitude of the dissimilarity values (1 – correlation) between 

patterns. Blue indicates higher similarity and yellow indicates higher dissimilarity. Thus, 

this matrix captures the ‘representational geometry’ of the lLPFC for this participant 

within this condition.  

 

 These neural dissimilarity matrices reflect the ‘representational geometry’ of each ROI 

during each condition. Note that neural patterns within runs are more strongly correlated than 
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neural patterns between runs due to uninteresting features of the scanning environment and that 

these correlations can artificially inflate reinstatement values when looking across tasks 

(Dimsdale-Zucker and Ranganath, 2018). Thus, to eliminate the effects of within-run 

correlations on our reinstatement estimates, we nullified every within-run correlation within each 

neural dissimilarity matrix (dark blue regions along the diagonal of Figure 2).  

 For every participant, we then performed pairwise correlations between the 

representational geometries (Figure 3), such that the 8 neural dissimilarity matrices in the 

generation phase and the 8 neural dissimilarity matrices in the evaluation phase were pairwise 

correlated, resulting in a 16 × 16 correlation matrix for every participant. The off-diagonal 

correlations in this matrix reflect the extent to which the representational geometry of one 

condition/ROI is correlated with another (i.e., reinstatement). Higher correlations indicate higher 

second-order similarity in the representational geometries of the conditions/ROIs being 

compared. We would expect within-task reinstatement values to be high, as all nodes are 

engaged in the same task during each phase (i.e. generating or evaluating). Thus, these 

comparisons act as a type of statistical check on the validity of the RSA method we used here.  
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Figure 3.  

 Schematic of the pairwise comparisons procedure used for RSA. 

 

Note. Representational geometry (i.e., dissimilarity matrix) of each node within the DMN 

(blue ROIs) and ECN (red ROIs) networks were pairwise correlated with every other 

node both within each phase and between phases (generation = green; evaluation = 

orange). Each black line is associated with one mean correlation value. Separate sets of 

pairwise comparisons were made within the novel and appropriate tasks.  

Generate

Evaluate
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 To make inferences on the reinstatement (i.e., correlation between dissimilarity matrices) 

values, we performed Bayesian t-test analyses with default JSZ priors (Krekelberg, 2021), 

generating a Bayes Factor (BF) in favour of the hypothesis that the mean correlation across 

participants is different from 0 compared to the ‘null’ hypothesis that the mean is 0. The use of 

BFs has a number of advantages over traditional approaches (e.g. t-test). First, it obviates the 

need to make dichotomous decisions about whether an ROI shows reinstatement based on a p-

value. Importantly, the BF reflects the magnitude of evidence and can be interpreted as how 

many more times favorable one hypothesis is over another (i.e., how much we should favour the 

belief that the mean correlation is different from 0). Thus, in our analysis, the magnitude of the 

BF reflects how strong our belief is that particular patterns of reinstatement occur. As a 

guideline, we interpret BFs of ~10 to be strong evidence, and our confidence increases with 

increases in the size of the BF > 10; thus, we emphasize those BFs approximately equal to or 

greater than 10 and for interest report any BF greater than 5 (Note, a BF of 3 is often observed 

when a traditional frequentist t-test is calculated on the same data and reveals a p < .05; see 

Dienes, 2014 for discussion of interpretation of BFs). A second advantage of the use of BFs is 

that it helps us address concerns relating to the effects of multiple comparisons of long run 

probability estimates of p-values because we do not make inferences based on long term 

probabilities. Instead, the use of JSZ priors assumes rather strongly that there is little to no 

reinstatement (i.e., that the null hypothesis is likely) and therefore the BF tends to underestimate 

the confidence of the alternative hypothesis when available evidence is ambiguous, effectively 

punishing ambiguous data.  

 Finally, we analyzed whether person-level creativity (i.e., semantic distance) predicted 

the strength of neural reinstatement. To do so, we first calculated the mean SemDis score of each 
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item for every participant and used this as an index of person-level creativity. For every cell 

within our 16 × 16 pairwise matrix, we correlated person-level creativity with the reinstatement 

score from that cell for that participant. Again, we calculated the BF for the correlation 

(assessing evidence in favor of a correlation greater than 1 vs. a correlation of 0) within each 

cell.  

3.1. Results 

 Our main interest was the reinstatement of neural patterns between the generation phase 

evaluation phase both within and between the DMN and ECN networks. That is, we were 

interested in whether the dissimilarity matrix of each node (independent variable) predicted the 

dissimilarity matrices in other nodes or within or between phases (dependent variable), on 

average. To assess this, dissimilarity matrices were correlated with each other in a pairwise 

manner, resulting in r values for each participant × node × condition. The average r value for 

each comparison was tested against 0 using a one-sample t-test. For each pairwise comparison, 

we interpret evidence of a correlation as an index of reinstatement. For simplicity, we adopt the 

convention of describing these correlations between dissimilarity matrices as instances of 

reinstatement. Thus, one node may reinstate information with another node, either within or 

between phases, or it can reinstate information within itself between phases.  

We found several patterns of reinstatement. In the novel association task, the dissimilarity 

matrices of ECN left lateral prefrontal cortex during generation predicted (i.e. > 0 correlations) 

dissimilarity matrices of three other nodes during evaluation (BFs > 10). First, the ECN left 

lateral prefrontal cortex showed reinstatement within itself during evaluation, r = .06, BF10 = 

17.8. Second, it showed reinstatement within the ECN right lateral prefrontal cortex during 
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evaluation, r = .08, BF10 = 131.0. Third, it showed reinstatement within the DMN left lateral 

parietal node during evaluation, r = .07, BF10  = 17.3.  

In the appropriate association task, two nodes showed reinstatement with themselves 

between generation and evaluation. First, the medial prefrontal cortex of the DMN during 

generation showed strong reinstatement with itself during evaluation, r = .08, BF10 = 52.1. 

Second, the posterior cingulate cortex also showed reinstatement within itself, r = .04, BF10 = 

33.0.  

Overall, we found strong evidence for within-ECN (specifically, the dorsal lateral 

prefrontal cortex) reinstatement during the generation and evaluation of novel associations, and 

within-DMN (specifically, the medial prefrontal cortex) reinstatement during the generation and 

evaluation of appropriate associations. Additionally, in the novel association task, we found both 

between- and within- network reinstatement. Specifically, we found between-network 

reinstatement involving the ECN lateral prefrontal cortex and the DMN left lateral parietal cortex 

between the two phases (see Figure 4).  
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Figure 4. 

Schematic representation of pairwise comparisons that show the reinstatement of 

representational geometries in the novel (top) and appropriate (bottom) conditions. 

 

Note. Schematic of the main results. Representational geometry (i.e., dissimilarity matrix) 

of each node within the DMN (blue ROIs) and ECN (red ROIs) networks were pairwise 

correlated with every other node both within each phase and between phases (generation 

= green; evaluation = orange). Separate sets of pairwise comparisons were made within 
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the novel and appropriate tasks. Each comparison is reflected by a line connecting one 

node to another. Bold lines indicate strong evidence for an average correlation between 

dissimilarity matrices (i.e. instance of reinstatement) with a BF10 > 10.  

 

 There were several cases of moderate evidence (BF >5 and < 10) of reinstatement 

between networks and phases. Within the novel association task, the ECN left lateral prefrontal 

cortex during generation showed evidence of reinstatement within the DMN medial prefrontal 

cortex during evaluation , r = .07, BF10 = 5.2. The ECN right lateral prefrontal cortex showed 

reinstatement with itself across phases, r = .05, BF10 = 6.0. Finally, the DMN medial prefrontal 

cortex during generation showed reinstatement within itself during evaluation, r = .07, BF10 = 

9.4.  

In the appropriate association task, the DMN right lateral parietal cortex during 

generation was reinstated in the ECN right lateral prefrontal cortex during evaluation, r = .04, 

BF10 = 7.3. Further, the ECN left lateral prefrontal cortex during generation was reinstated within 

the ECN right lateral prefrontal cortex during evaluation, r = .05, BF10 = 5.1. 

In all other cases we found no evidence or only weak evidence (BF ~ = < 5) of 

reinstatement across generation and evaluation. Importantly, as anticipated, the within-task 

correlations between nodes (i.e., during the generation task and during the evaluation task) were 

high with extremely strong evidence in favor of representational stability within tasks, r = .2 - 

.61, BF10 > 1000. For full pairwise comparison results, see Tables 1 and 2.  

Finally, contrary to our predictions, we found no evidence that person-level creativity 

(i.e., mean semantic distance of associations) predicted reinstatement values (i.e. none showed 

BFs > 5). 



Running Head: REINSTATING REPRESENTATIONS  

  

25 

Table 1. Pairwise correlation matrix from the novel association task.  

  
   Generate       Evaluate       

   DMN    ECN    DMN    ECN    

   lLP rLP MPFC PCC lLPFC rLPFC lPPC rPPC lLP rLP MPFC PCC lLPFC rLPFC lPPC rPPC 

Generate DMN lLP 1.00                

  rLP 0.50*** 1.00               

  MPFC 0.21*** 0.22*** 1.00              

  PCC 0.55*** 0.50*** 0.20*** 1.00             

 ECN lLPFC 0.27*** 0.22*** 0.47*** 0.28*** 1.00            

  rLPFC 0.23*** 0.25*** 0.53*** 0.29*** 0.64*** 1.00           

  lPPC 0.50*** 0.39*** 0.26*** 0.49*** 0.36*** 0.32*** 1.00          

  rPPC 0.34*** 0.60*** 0.25*** 0.47*** 0.26*** 0.36*** 0.50*** 1.00         

Evaluate DMN lLP 0.03 0.02 0.04 0.02 0.07** 0.04 0.02 0.02 1.00        

  rLP 0.03 0.02 0.04 0.01 0.04 0.02 0.02 0.02 0.55*** 1.00       

  MPFC 0.00 -0.01 0.07* -0.01 0.07* 0.05 0.04 0.00 0.30*** 0.31*** 1.00      

  PCC 0.02 -0.02 0.04 0.03 0.05 0.02 0.03 0.00 0.54*** 0.52*** 0.29*** 1.00     

 ECN lLPFC 0.02 -0.01 0.04 0.00 0.06** 0.05 0.02 0.00 0.34*** 0.27*** 0.46*** 0.34*** 1.00    

  rLPFC 0.02 -0.02 0.05 0.02 0.08** 0.05* 0.04 0.00 0.32*** 0.33*** 0.49*** 0.38*** 0.65*** 1.00   

  lPPC 0.01 -0.01 0.04 0.02 0.04 0.01 0.03 0.02 0.50*** 0.36*** 0.30*** 0.50*** 0.48*** 0.43*** 1.00  

  rPPC 0.01 -0.01 0.03 0.01 0.02 0.00 0.00 0.01 0.38*** 0.56*** 0.32*** 0.50*** 0.35*** 0.48*** 0.49*** 1.00 

*** BF10 > 1000; ** BF10  > 10; *BF10  ~> 5; all other vales BF10 < 5 
 

 

Table 2. Pairwise correlation matrix from the appropriate association task. 

   Generate       Evaluate       

   DMN    ECN    DMN    ECN    

   lLP rLP MPFC PCC lLPFC rLPFC lPPC rPPC lLP rLP MPFC PCC lLPFC rLPFC lPPC rPPC 

Generate DMN lLP 1.00                

  rLP 0.52*** 1.00               

  MPFC 0.22*** 0.23*** 1.00              

  PCC 0.55*** 0.53*** 0.22*** 1.00             

 ECN lLPFC 0.29*** 0.21*** 0.43*** 0.29*** 1.00            

  rLPFC 0.26*** 0.26*** 0.51*** 0.33*** 0.60*** 1.00           

  lPPC 0.54*** 0.42*** 0.23*** 0.54*** 0.40*** 0.33*** 1.00          

  rPPC 0.39*** 0.60*** 0.21*** 0.53*** 0.25*** 0.37*** 0.50*** 1.00         

Evaluate DMN lLP 0.01 0.03 0.04 0.02 0.03 0.02 0.01 0.02 1.00        

  rLP 0.01 0.02 0.04 0.00 0.02 0.02 0.01 0.01 0.55*** 1.00       

  MPFC 0.03 0.02 0.08** 0.02 0.04 0.03 0.02 0.02 0.26*** 0.27*** 1.00      

  PCC 0.03 0.03 0.02 0.04** 0.03 0.01 0.02 0.02 0.56*** 0.52*** 0.27*** 1.00     

 ECN lLPFC 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.33*** 0.28*** 0.46*** 0.34*** 1.00    

  rLPFC 0.03 0.04* 0.04 0.03 0.05* 0.02 0.02 0.03 0.30*** 0.32*** 0.51*** 0.39*** 0.63*** 1.00   

  lPPC 0.02 0.03 0.04 0.04 0.04 0.03 0.03 0.02 0.53*** 0.39*** 0.26*** 0.50*** 0.47*** 0.40*** 1.00  

  rPPC 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.41*** 0.56*** 0.24*** 0.47*** 0.36*** 0.44*** 0.50*** 1.00 

*** BF10 > 1000; ** BF10  > 10; *BF10  ~> 5; all other vales BF10 < 5 

 

4.1. Discussion 

 Current approaches to studying creative thought suggest two critical processes supporting 

creativity: idea generation and idea evaluation. Idea generation entails activating knowledge and 

combining it in novel ways while idea evaluation is thought to involve selecting novel 

combinations for their usefulness in a given context. Previous research has implicated the DMN 

and ECN in these processes (Kleinmintz et al., 2019). Here, reasoning that evaluating ideas 

requires reactivation of the same information that has been previously generated, we investigated 

the reinstatement of activity patterns within and between nodes of the DMN and ECN during 

idea generation and evaluation. Participants generated novel or appropriate noun-noun 

associations in a generation phase and then evaluated their own associations in an evaluation 

phase. Using RSA, we reveal the patterns of neural informational reinstatement within and 
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between DMN and ECN that support these cognitive processes. We focus our discussion on 

cases of strong evidence for reinstatement as determined by BFs. 

 First, in the novel association task, the left lateral prefrontal cortex showed reinstatement 

within itself of both hemispheres across the two phases. In general, the prefrontal cortex is 

implicated in a wide variety of creativity tasks (see Gonen-Yaacovi et al., 2013 for a meta 

analysis; Zhang et al., 2020) and the specific regions we investigated here (more rostral and 

dorsal regions) are thought to reflect some of the highest regions in the cortical hierarchies that 

integrate information from lower-order regions in the service of organizing goal-directed 

behaviour (Badre and D'esposito, 2009; Badre and Nee, 2018). The dorsal lateral prefrontal 

cortex in particular has been implicated in activating/inhibiting task relevant information shaped 

by goals of the task (see Chrysikou, 2019; Weinberger et al., 2017); further, this region has been 

directly implicated in verbal tasks, like ours, that require overcoming or emphasizing prepotent 

associations between words (e.g., Kenett et al., 2021; Zmigrod, Colzato, & Hommel, 2015). 

Given this, we can speculate about the role of the lateral prefrontal cortex in the current study. In 

our novel association task, participants had to generate and evaluate the novelty of their noun 

associates, perhaps requiring the selective activation/inhibition of common associates during 

generation and evaluation. Thus, our results suggest that the neural patterns necessary for 

coordinating the active/inhibited information during generating and evaluating creative ideas is 

reinstated within this node throughout both phases of the creative process, a finding consistent 

with its role in producing task-relevant behaviour in other domains. Note, because this node sits 

atop of an action planning hierarchy and may contribute relatively abstract action plans to the 

organization of behaviour, we can further speculate that this process is especially important when 

generating novel ideas (but less so for appropriate ones). This is consistent with the idea that 
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these nodes of the ECN are particularly important for managing ongoing task demands based on 

available stimuli (rather than on learned associations; see Smallwood et al., 2021). While 

previous research has implicated the ECN in evaluation in particular, we can speculate that 

reinstating abstract action information for use in the here-and-now is a critical component of 

generating and evaluating creative ideas.  

 The lateral prefrontal cortex also showed between network reinstatement within the 

DMN lateral parietal cortex across generation and evaluation. This finding is important for two 

reasons. First, it demonstrates that generation and evaluation is supported by nodes within both 

the DMN and ECN and, second, it demonstrates that different nodes of the ECN and DMN need 

to reinstate similar informational content to support creative thought. We speculate that the 

reinstatement of ECN information within the DMN may reflect the need to ‘check’ information 

relevant to the novel context (i.e. here and now) that is under control of the lateral prefrontal 

cortex against previously learned associations and the semantic content of the lateral parietal 

cortex. This finding is consistent with results showing the importance of posterior cortical 

regions in the generation of creative ideas, which requires the activation of relevant 

perceptual/semantic content (Chrysikou and Thompson-Schill, 2013; see Matheson et al., 2017 

for parietal involvement specifically). This informational reinstatement between nodes also gives 

support to the core ideas of dual process models of creativity (Ward, Smith, and Finke, 1995), 

and suggests that generating and evaluating creative thought requires informational sharing 

between these networks. 

 During the appropriate association task, the DMN medial prefrontal cortex showed 

reinstatement within itself between generation and evaluation, thus implicating MPFC in the 

coordination of common associations. In general, the medial prefrontal cortex is known for its 



Running Head: REINSTATING REPRESENTATIONS  

  

28 

involvement in ‘self referential’ (Gusnard et al., 2001), or perhaps more generally ‘self relevant’ 

(Abraham, 2013) tasks. We can speculate that information characteristic of periods of episodic 

simulation, supported by the diffuse activation of a wide variety of sensorimotor and 

interoceptive experience, is useful in accessing and assessing known associations that stem from 

experience. The medial prefrontal hub is also widely implicated in predicting the value or 

outcome of learned behaviors is based on long term knowledge (Euston, Gruber, and 

McNaughton, 2012), which likely accounts for its role in reinstating information when 

generating and evaluating previously learned associations between nouns; that is, finding 

appropriate associations requires finding associations that have been previously valued and 

rewarded (e.g. belts go with pants). Further, if nodes of the DMN sit at the very top of distributed 

neural hierarchies and integrate information from all sensorimotor regions, they are best suited to 

coordinate information related to self and previous experience. Thus, when the task emphasizes 

responses that rely on previously learned information, the DMN medial prefrontal cortex appears 

to reinstate critical information for generating and evaluating ideas.   

 Additionally, within the appropriate task, the DMN posterior cingulate cortex1 showed 

reinstatement within itself across generation and evaluation, in another instance of within 

network reinstatement. As a part of the DMN, the PCC has also been implicated in ‘self 

referential’ processes associated with mind wandering and the valuation of outcomes. Similarly 

to our speculation above, one intriguing possibility is that the reinstatement of information 

related to previously learned knowledge is ‘checked’ against likely value in the PCC. One final 

consideration is that hubs of the DMN are not only involved in episodic tasks but also semantic 

tasks, and drawing on known associations is clearly a semantic task (see Kim, 2016; Krieger-

 
1 Note that this node also includes the precuneus cortex. 
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Redwood et al., 2022); thus, reinstatement within these DMN hubs strongly implicate the 

reinstatement of both types of information.  

 Overall, our results show that the generation and evaluation phases of the creative process 

can be characterized by the reinstatement of information both between and within nodes of the 

ECN and DMN. Importantly these results elaborate on the picture of the DMN as a network 

important for generation and the ECN as a network for evaluation, and strongly suggest—based 

on the strength of Bayesian evidence—that within-network reinstatement is important for 

generating and evaluating ideas. We can make sense of this dynamic by considering the roles of 

network nodes that coordinate information across different sensorimotor and interoceptive 

modalities (see also Mok, 2014). To the extent that these nodes integrate different types of 

information then, their roles in generating and evaluating ideas will be shaped by whether 

novelty or appropriateness is the goal; specifically, ECN prefrontal cortical nodes operate on 

information that is necessary for novelty and the DMN cortical nodes operate on information 

necessary for appropriate associations. We can speculate about what the critical information may 

be in each task. For instance, in the novel task, within-ECN reinstatement may support the need 

to generate and evaluate abstract action plans in the here and now; when associations are less 

creative, within-DMN reinstatement is appears crucial, perhaps due to the role of previously 

learned, self-relevant, episodic and semantic information.  

4.2. Limitations  

There are a number of important limitations of our present analysis. First, we focused on 

a subset of cortical regions defined by intrinsic connectivity. Thus, our study does not exhaust 

the possible contributions of nodes outside the ECN and DMN that may be critical in evaluating 

and generating ideas. While we focused on the ECN and DMN because they have been 
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previously implicated in idea generation and evaluation, note that only a subset of the nodes 

studied here are implicated in informational reinstatement in our task. This suggests that there 

are differential contributions of nodes within the ECN and DMN to idea generation and 

evaluation, and not simply that the cortex shows stable (i.e., repeated) patterns over phases; that 

is, it does not appear that RSA detects unchanging pattern similarity between the generation and 

evaluation phases across the cortex more generally, which would be expected if the technique 

was insensitive to task changes or informational content.  

Second, we did not find evidence that the strength of reinstatement predicted the 

creativity of associations that participants generated (i.e., SemDis scores). While this is not 

surprising in the appropriate task (where participants are generating common associates), we did 

anticipate that reinstatement would predict creativity in the novel task. There may be a number of 

explanations for this, including that we had inadequate statistical power to detect such a 

relationship. However, it may be the strength of reinstatement within the nodes we studied here 

is not a reliable predictor of semantic distance. If so, this would suggest that the patterns of 

reinstatement in the DMN and ECN are important for attempting to generate and evaluate 

creative ideas, though it may not be important for determining the success of these process. 

Another related possibility is that reinstatement in nodes outside of the network nodes studied 

here are more important for determining the quality of responses. Finally, we restricted the 

generation phase to 5 seconds and only a single response. However, in situations where creative 

output is not time restricted and multiple responses are given creativity tends to increase later in 

the response period (i.e. the serial order effect in divergent thinking tasks; Christensen, Guilford, 

& Wilson, 1957; Beaty & Silvia, 2012). While we did show that SemDis was higher under the 

novelty instruction, these constraining features of our task likely limited the originality of the 
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responses given. If reinstatement is more important for truly original responses, then we would 

fail to detect a relationship between SemDis and reinstatement2. Future research should 

investigate the contributions of reinstatement outside of the DMN and ECN or use more 

unconstrained tasks.   

Third, like other fMRI studies of idea generation and evaluation, we explicitly 

manipulated the phases of the creative process. However, it is clear that these processes are 

integrated dynamically during ecological creative thinking, and while there are advantages to 

explicitly manipulating the goals of a task, it is unclear whether these stages can be properly 

dissociated from each other at a neural level (see Zamani et al., 2022). In this way, our study 

allows us to make inferences about the reinstatement of neural information under different task 

demands but we are limited in our ability to target the more integrated dynamics that are 

occurring in both the generation and the evaluation phases used in the present study. 

4.3. Conclusion 

Overall, across generating and evaluating ideas, the ECN lateral prefrontal cortex and the 

DMN medial prefrontal cortex are most widely implicated in reinstating information, either 

within themselves or with other nodes. While the LPFC reinstatement is strongest in the novel 

association task, and the MPFC reinstatement is strongest in the appropriate association task, 

these two nodes show evidence of reinstatement in both tasks, suggesting a critical role of both 

networks in idea generation and evaluation. Given that RSA captures informational content of 

cortical patterns, our results suggest that accounts of creative thought need to extend beyond 

accounting for the dual processes of generating and evaluation, to considering the relevant 

 
2 We thank an anonymous reviewer for this suggestion.  
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information that those processes rely on, and point to the critical role of both networks in the 

general human capacity for creative thought. 
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5. Appendix 

Word lists and psychologistic features for the word association task 

 

List 1 

 

Word Semantic Diversity Imageability Concreteness Frequency QSS Valence 

coin 1.66 6.5 4.89 497 12 6.55 

hat 1.65 6.7 4.88 3273 12 5.69 

statue 1.46 6.5 4.93 540 17 5.95 

alley 1.51 6.4 4.82 831 18 4.17 

subway 1.48 6.7 4.86 546 17 5.44 

sword 1.33 6.8 4.93 1335 18 5.27 

rock 1.49 6.4 4.91 4394 13 5.72 

plant 1.56 6.3 4.76 1408 14 7.05 

palace 1.46 6.5 4.57 979 14 6.1 

branch 1.82 6 4.9 514 11 5.15 

bath 1.7 6 4.85 1587 10 7 

plane 1.58 6.8 4.92 4872 12 5.72 

seat 1.74 6.2 4.78 4018 10 5.22 

match 1.71 5.1 4.14 2521 18 5.61 

log 1.66 6.3 4.96 610 9 4.94 

church 1.56 6.7 4.9 3553 15 5.21 

rocket 1.63 6.4 4.73 604 18 5.8 

pet 1.39 6.4 4.71 1029 11 7.05 

purse 1.81 6.5 4.9 1008 12 5.95 

leather 1.55 6.5 4.82 693 20 5.84 

ladder 1.76 6.4 5 472 14 5.32 

robot 1.45 6.6 4.65 621 15 6.18 

brass 1.62 5.8 4.7 618 19 5.05 

shell 1.76 6 4.8 674 17 6.05 

mail 1.7 6.3 4.69 1879 15 6.28 

dock 1.55 6.1 4.64 497 10 5.05 

coat 1.58 6.7 4.97 2146 17 5.29 

pocket 1.64 6 4.68 1821 18 5.67 

screen 1.51 6.2 4.6 1193 16 5.55 

hotel 1.51 6.7 4.93 5264 16 6.6 

 

 

Notes. QSS = cue set size (Nelson et al., 2004). 
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List 2 

 

Word Semantic Diversity Imageability Concreteness Frequency QSS Valence 

bench 1.79 6.5 4.87 493 14 5.5 

train 1.57 6.3 4.79 4848 19 6.36 

steam 1.4 5.6 4.5 686 18 5.4 

page 1.81 5.9 4.9 1912 10 6.09 

sink 1.67 5.4 4.74 863 18 4.62 

fence 1.63 6.6 4.82 819 20 5.05 

belt 1.78 6.5 4.9 1242 11 4.44 

tea 1.56 6.4 4.69 2990 11 6.56 

net 1.65 5.9 4.53 793 14 5 

earth 1.72 6.5 4.8 5074 12 6.83 

tray 1.43 5.8 4.74 410 19 5.14 

barn 1.38 6.9 4.79 693 13 6.16 

wheel 1.49 6.5 4.86 1380 14 5.9 

drill 1.38 6 4.4 701 19 4.73 

carpet 1.49 6.4 4.96 594 17 5.95 

circus 1.77 6.5 4.43 870 13 5.85 

costume 1.48 6.5 4.57 721 18 6.05 

gym 1.5 6.5 4.83 927 17 5.84 

rain 1.57 6.3 4.97 2494 18 6.58 

bar 1.66 6.1 4.67 4385 13 5 

engine 1.33 6.3 4.86 1626 16 5.48 

grass 1.56 6.9 4.93 856 14 6.47 

shadow 1.78 6.5 4.54 1080 18 5.07 

glove 1.69 6.2 4.97 515 9 6.11 

bucket 1.59 6.4 4.96 511 11 4.55 

gum 1.68 6.4 4.89 683 9 5.89 

sea 1.67 6.4 4.79 3052 15 6.56 

map 1.65 5.9 4.93 1623 16 5.81 

pole 1.69 5.8 4.66 642 14 5.6 

drum 1.54 6.4 4.96 432 16 6.05 

 

Notes. QSS = cue set size (Nelson et al., 2004). 
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Appendix A 

 

GENERATION INSTRUCTIONS 

 

In Phase 1, you will see a common noun on the screen (e.g., desk) and be asked to think of 

another noun that can be associated with it. You will come up with two types of noun 

associations: APPROPRIATE and NOVEL. 

 

APPROPRIATE nouns are clearly related to the noun on the screen. APPROPRIATE 

associations would probably come to most everyone’s mind when they read the noun. For 

example, an appropriate association to “desk” could be “chair.” 

 

Your associations should only be concrete nouns, i.e., things that exist physically and can be 

touched, seen, smelled, etc. Your associations should *not* be proper nouns (e.g. people’s 

names), verbs, or other parts of speech. Also, your association should only be *one word*. 

 

It is important for you to try to think of the *most appropriate* noun that you can. 

 

For example, other nouns could be considered appropriate when associated with “desk” (such as 

“computer”). Your task is to think of the *most appropriate* noun that you can. 

 

You will also be asked to think of NOVEL associations. 

 

NOVEL associations are *not* usually related to the noun on the screen. NOVEL associations 

are unusual, meaning that they are unrelated to the noun. NOVEL associations would probably 

not come to anyone else’s mind when they read the noun. For example, a novel association to 

“book” could be “cloud.” 

 

Your associations should only be concrete nouns, i.e., things that exist physically and can be 

touched, seen, smelled, etc. Your associations should *not* be proper nouns (e.g. people’s 

names), verbs, or other parts of speech. Also, your association should only be *one word*. 

 

It is important for you to try to think of the *most novel* noun that you can. For example, other 

nouns could be considered novel when associated with “book” (such as “tire”). Your task is to 

think of the *most novel* noun that you can. 

 

 

 

EVALUATION INSTRUCTIONS 

 

In Phase 2, you will evaluate your associations from Phase 1. You will see the nouns and your 

associations and evaluate them on either NOVELTY or APPROPRIATENESS. 

 

To recap, APPROPRIATE associations are clearly related to the noun on the screen. 

APPROPRIATE associations would probably come to most everyone’s mind when they read the 

noun. Your task is to evaluate the appropriateness of your association in relation to this noun. 
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When evaluating the appropriateness of your association, it is important that you consider 

whether it is the *most appropriate* possible noun. Some of your associations will be more 

appropriate than others. 

 

You will evaluate the appropriateness of your associations using a 3-point scale: 1 = not at all 

appropriate, 2 = somewhat appropriate, and 3 = very appropriate. 

 

You will also be asked to evaluate the NOVELTY of your associations. 

 

To recap, NOVEL associations are *not* usually related to the noun on the screen. NOVEL 

associations are unusual, meaning they are unrelated to the noun. NOVEL associations would 

probably not come to anyone else’s mind when they read the noun. Your task is to evaluate the 

novelty of your association in relation to this noun. 

 

When evaluating the novelty of your association, it is important that you consider whether it is 

the *most novel* possible noun. Some of your associations will be more novel than others. 

 

You will evaluate the novelty of your associations using a 3-point scale: 1 = not at all novel, 2 = 

somewhat novel, and 3 = very novel. 


