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Abstract

While neural networks are used for classification tasks across domains, a long-standing open problem
in machine learning is determining whether neural networks trained using standard procedures are opti-
mal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary
data distributions. In this work, we identify and construct an explicit set of neural network classifiers
that achieve optimality. Since effective neural networks in practice are typically both wide and deep,
we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connec-
tion between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation
functions that can be used to construct networks that achieve optimality. Interestingly, these activation
functions are simple and easy to implement, yet differ from commonly used activations such as ReLU
or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that
these models implement one of three well-known classifiers depending on the activation function used:
(1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2)
majority vote (model predictions are given by the label of the class with greatest representation in the
training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality).
Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression
tasks, where excessive depth is harmful.

1 Introduction

Deep learning has produced state-of-the-art results across several application domains including computer
vision [14], natural language processing [5], and biology [34]. Despite these empirical successes, our under-
standing of basic theoretical properties of deep networks is far from satisfactory. In fact, for the fundamental
problem of classification it has not been established whether neural networks trained with standard opti-
mization methods can achieve optimality, i.e., whether they minimize the probability of misclassification
for arbitrary data distributions (a property referred to as Bayes optimality or consistency in the statistics
literature).

There is a vast literature on the optimality of statistical machine learning methods; in particular, given the
modern practice of using models that can interpolate (i.e., fit the training data exactly), recent works analyzed
the optimality of interpolating machine learning models including weighted nearest neighbor methods and
kernel smoothers (also known as Nadaraya-Watson estimators) [3, 4, 6, 9, 30]. However, little is known about
deep neural networks. Classical work [10] analyzing the optimality of neural networks utilizes the results of
Cybenko [7] and Hornik [15] to show that the optimal classifier can be approximated by a neural network
that is sufficiently wide; i.e., these prior results are concerned with the existence of networks that achieve
optimality and do not present computationally feasible algorithms for finding such networks.
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Figure 1: Behavior of infinitely wide and deep neural networks trained with gradient descent. (a) Taxonomy
of infinitely wide and deep networks. Depending on the choice of the activation function, ¢(-), these models
implement majority vote (blue), 1-nearest neighbor (red), or singular kernel classifiers (green), a subset
of which achieve optimality. (b) Regression versus classification using infinitely wide and deep networks.
While these models are not effective in the regression setting, since their predictions are near zero almost
everywhere, they can achieve optimality for classification, where only the sign of the prediction matters. (c)
Tllustration of the different behaviors of infinitely wide and deep networks for varying activation functions.
Depending on the activation function, infinitely wide and deep networks implement majority vote (blue),
1-nearest neighbor (red), or singular kernel classifiers that can achieve optimality (green). Singular kernels
that grow too slowly are akin to majority vote classifiers (dashed blue), whereas those that grow too quickly
are akin to weighted nearest neighbor classifiers (dashed red).

By establishing a connection between interpolating kernel smoothers and deep neural networks, we iden-
tify and construct an explicit class of neural networks that, when trained with gradient descent, achieve
optimality for classification problems. Our results utilize the recent Neural Tangent Kernel (NTK) con-
nection between training wide neural networks and using kernel methods. Several works [17, 20, 22, 23]
established conditions under which using a kernel method with the NTK is equivalent to training neural net-
works, as network width approaches infinity. Given the conceptual simplicity of kernel methods, the NTK has
been widely used as a tool for understanding the theoretical properties of neural networks [16, 20, 23, 29, 36].
Since neural networks in practice are often both wide and deep, we consider the natural extension of networks
that are both infinitely wide and deep.

In particular, we focus on infinitely wide and deep networks in the classification setting and show that
they have markedly different behavior than in the regression setting. Indeed, prior work [13, 16] showed that
in the regression setting, infinitely wide and deep neural networks simply predict near-zero values at all test
samples and thus, are far from optimal (see Fig. 1b). As a consequence, these models were dismissed as an
approach for explaining the strong performance of deep networks in practice. In stark contrast to regression,
we show that the sign of the predictor can be informative even when the its numerical output is arbitrarily
close to zero (see Fig. 1b for an illustration). In fact, as we show in this work, this is exactly how infinitely
wide and deep neural networks can achieve optimal classification accuracy even though the output of the
network approaches zero.

To characterize the behavior of infinitely wide and deep classifiers, we establish a taxonomy of such
models, and we prove that it includes networks that achieve optimality (see Fig. 1la). More precisely, we
prove that infinitely wide and deep neural network classifiers implement one of the following three well-known
classifiers depending on the choice of activation function:

1. 1-nearest neighbor (1-NN) classifiers: the prediction on a new sample is the label of the nearest sample
(under Euclidean distance) in the training set.



2. Majority vote classifiers: the prediction on a new sample is the label of the class with greater repre-
sentation in the training set.

3. Singular kernel classifiers: the prediction on a new sample is obtained by using the kernel K(x, %) =
R(|lz—Z]))

[EXER

classification, the prediction, m(z), on a new sample = given training data {(z(,y®)}7_, is

where o > 0 is the order of the singularity.! As is standard when using kernel smoothers for

m(zx) = sign (i: y DK (2, JJ)) (1)

As a corollary of a result in [9] it follows that singular kernel classifiers achieve optimality when « is
the dimension of the data, d (see Supplementary Information C). Hence our taxonomy and in particular
Theorem 2 of this work provide exact conditions when infinitely wide and deep neural network classifiers
achieve optimality for any given data dimension. Notably, we identify a simple class of activation functions
that yield singular kernel classifiers with o = d, and we thus identify concrete examples of neural networks
that achieve optimality. For example, for d = 2, the infinitely wide and deep classifier with activation function
o(z) = (3 4+ (V6 — 3)2)/v/12 achieves optimality. Interestingly, the popular rectified linear unit (ReLU)
activation ¢(z) = max(z,0) leads to an infinitely wide and deep classifier that implements the majority vote
classifier and is thus not optimal. Similarly, the activation function ¢(z) = (2 —1)/+/2 leads to an infinitely
wide and deep classifier that implements the 1-NN classifier and is thus also not optimal.

We note that singular kernels provide a natural transition between 1-NN and majority vote classifiers.
Namely, as discussed in [9], for o > d, singular kernel classifiers behave akin to weighted nearest neighbor
classifiers since ||x — Z||* is extremely small for & near z. Similarly, for @ < d, singular kernel classifiers
behave akin to majority vote classifiers since || — Z||* is no longer small for Z far from xz. We visualize this
transition between the three classes established in our taxonomy in Fig. 1c.

2 Taxonomy of Infinitely Wide and Deep Neural Networks

In the following, we construct a taxonomy of classifiers implemented by infinitely wide and deep neural
networks. Our construction relies on the recent connection between infinitely wide neural networks and
kernel methods [17]. In particular, this connection involves utilizing a kernel method known as a kernel
machine, which is related to the kernel smoother described in Eq. (1). In contrast to the kernel smoother, a
kernel machine with kernel K is given by:

sign (y(K,) 'K(X,z)), (2)

where X = [z(M[z?)]...[2(M] € R¥" denotes the training data, y = [y, y@,...y™] € {~1,1}1*" the
labels, K, € R™ " satisfies (K,);; = K(z(V,20)) and K(X,z) € R" satisfies (K(X,)), = K(2¥, ).
Both kernel methods can be used as prediction schemes for classification [31]. Note that while both algo-
rithms produce predictors with the same functional form, their predictions are generally different. Indeed,
understanding the relation between kernel smoothers and kernel machines will be critical to our proof of
optimality.

Under certain conditions, training a neural network as width approaches infinity is equivalent? to using
a kernel machine with a specific kernel known as the Neural Tangent Kernel [17], which is defined below.

Definition 1. Let f(&) (x; W) denote a fully connected network® with L hidden layers with parameters W
operating on data x € R?. For z,% € R?, the Neural Tangent Kernel (NTK) is given by:

KB (2, 5) = (Vw P (2 W), Vi f 5 (2; W)) .

LFor this order to be well-defined, R(-) is non-negative and satisfies Iir\lf R(u) > 0 and |R(u)| < C for some €,C > 0.
ul<e

2This equivalence requires a particular initialization scheme on the weights known as the NTK initialization scheme [17].
Formally, this equivalence holds when an offset term corresponding to the predictions of the neural network at initialization are
added to those given by the using a kernel machine with the NTK [17]. Like in prior works (e.g. [1, 13, 16, 19, 29]), we will
analyze the NTK without such offset. This model corresponds to averaging the predictions of infinitely many infinite width
neural networks [27].

3Throughout this work, we consider fully connected networks that have no bias terms.




To work with a simple closed form for the NTK and to avoid symmetries arising from the activation
function, we will consider training data with density on Sﬁ, where Sfﬁ is the intersection of the unit sphere
S%in d + 1 dimensions and the non-negative orthant.*

In this work, we analyze the behavior of infinitely wide and deep networks by analyzing the kernel machine
in Eq. (2), as depth, L, goes to infinity. To perform our analysis, we utilize the recursive formula for the
NTK of a deep network originally presented in [17]. Namely, K (L) can be expressed as a function of K(X—1)
and the network activation function, ¢(-), yielding a discrete dynamical system indexed by L. The exact
formula can be found in Eq. (5), and additional relevant results from prior works that are used in our proofs
are referenced in Supplementary Information A.

Remarkably, the properties of the resulting dynamical system as L — oo are governed by the mean of ¢(z)
and its derivative, ¢'(2), for z ~ N(0,1). For simplicity, we will assume throughout that E[¢(2)?] < oo and
similarly E[¢/(2)?] < oo, an assumption that holds for many activation functions used in practice including
ReLU, leaky ReLU, sigmoid, sinusoids, and polynomials. By defining A = E[¢(z)] and A’ = E[¢'(2)], we
break down our analysis into the following three cases:

Case 1: A=0, A #0,
Case2: A=0, A =0,
Case 3: A#0.

Under cases 1 and 2, 0 is the unique fixed point attractor of the recurrence for K %) and thus K (%) (x,2) =
0 as L — oo for x # Z. As a consequence, cases 1 and 2 lead to infinitely wide and deep neural networks that
predict 0 almost everywhere. Thus, these networks are far from optimal in the regression setting and were
thus dismissed as an approach for explaining the strong performance of deep networks. On the other hand,
case 3 yields nonzero values for any pair of examples and thus, prior works that analyzed the regression
setting [13, 16] focused on activation functions satisfying case 3.

In stark contrast to the regression setting, we will show that infinitely wide and deep networks with
activation functions satisfying case 1 are effective for classification, with a subset achieving optimality. In
particular, we will show that networks in case 1 implement singular kernel classifiers while those in case 2
implement 1-NN classifiers. Notably, we will identify conditions and provide explicit examples of activation
functions in case 1 that guarantee optimality. We will then show that infinitely wide and deep classifiers with
activations satisfying case 3 generally correspond to majority vote classifiers. A summary of our taxonomy
is presented in Fig. la, and we will now discuss each of the three cases in more depth.

Case 1 (A = 0,A” # 0) networks implement singular kernel classifiers and can
achieve optimality.

We establish conditions on the activation function under which an infinitely wide and deep network imple-
ments a singular kernel classifier (Theorem 1). We then utilize results of [9] to show that this set of classifiers
contains those that achieve optimality for any given data dimension. Lastly, we will present explicit activa-
tion functions that lead to infinitely wide and deep classifiers that achieve optimality. We begin with the
following theorem, which establishes conditions under which the infinite depth limit of the NTK is a singular
kernel.

Theorem 1. Let K denote the NTK of a fully connected neural network with L hidden layers and
activation function ¢(-). For z ~ N(0,1), define A = E[¢(z)], A’ = E[¢(2)], and B' = E[¢'(2)?]. If A=0
and A’ # 0, then for z,& € 8¢ :

i K@@ R(llz - 2])
L=oo (ANE(L +1) |z —z[|*

where a = —QIE)gg((’g?)) and R(-) is non-negative, bounded from above, and bounded away from 0 around 0.

4For example, min-max scaling followed by projection onto the sphere results in the data lying in this region.



The full proof is presented in Supplementary Information B, and we outline its key steps in Section
3. Theorem 2 below characterizes the activation functions for which the infinitely wide and deep network
achieves optimality. In particular, we establish the optimality of the classifier, m,(-), given by taking the
limit as L — oo of the kernel machine in Eq. (2) with K = K(F) i.e.

my(x) = Lli_r}r;O sign (y(KT(LL))_lK(L)(X, x)) (3)

Theorem 2. Let m,, denote the classifier in FEq. (3) corresponding to training an infinitely wide and deep
network with activation function ¢(-) on n training examples. For z ~ N(0,1), define A = E[p(z)], A’ =
E[¢'(2)], and B' = E[¢'(2)?]. If

log(A?) d

_ ! _ _¢
A=0 and A" #0 and g (B) ~ 2’

then this classifier is Bayes optimal.®

While the full proof of Theorem 2 is presented in Supplementary Information B and C, we outline its key
steps in Section 3. In particular, the proof follows by using Theorem 1 above, proving that m,, is a singular
kernel classifier, and then using the results of [9], which establish conditions under which singular kernel
estimators achieve optimality. The following corollary (proof in Supplementary Information D) presents a
concrete class of activation functions that satisfy the conditions of Theorem 2 for any given data dimension
d.

Corollary 1. Let m,, denote the classifier in Eq. (3) corresponding to training an infinitely wide and deep

network with activation function

1 1 if d =

o(a) = | VAT T Ja=t
3 2 .

e (5) + 1 - 7 (57) + e W22

where h7(z) is the T probabilist’s Hermite polynomial.® Then the classifier m,, is Bayes optimal.

We note the remarkable simplicity of the above activation functions yielding infinitely wide and deep
networks that achieve optimality. In particular, for d > 2, these activations are simply cubic polynomials.

Case 2 (A =0,A =0) networks implement 1-NN.

We now identify conditions on the activation function under which infinitely wide and deep networks imple-
ment the 1-NN classifier.

Theorem 3. Let m,, denote the classifier in Eq. (3) corresponding to training an infinitely wide and deep
network with activation function ¢(-) on n training examples. For z ~ N(0,1), define A = E[p(2)] and
A =E[¢/(2)]. If A= A" =0, then m,(x) implements 1-NN classification on S¢.

The proof of Theorem 3 is provided in Supplementary Information E. The proof strategy is to show that
the value of the kernel between a test example and its nearest training example dominates the prediction as
L — oo. In particular, assuming without loss of generality that z7z(") > 2720) for j € {2,3,...,n}, we
prove that:

K@) (4)
lim (2, 277)

L—oo KD (z, (1)) =0

As a result, after re-scaling by K (z,2(1)), we obtain that m,,(z) = sign(y(!)). We note that this proof
is analogous to the standard proof that the Gaussian kernel K (z,%) = exp (—7|lz — Z||?) converges to the
1-NN classifier as v — oc.

5Formally, this classifier satisfies that for almost all € Si and for any € > 0,

>e>:0.

27 —212°+1052° +(12v/35—105)x
1270 :

lim Px | |mn(z) — argmax P (y = g|z)

6For d = 1, this activation function can be written in closed form as



Case 3 (A # 0) networks implement majority vote classifiers.

We now analyze infinitely wide and deep networks when the activation functon satisfies E[¢(z)] # 0 for
z ~ N(0,1). In this setting, we establish conditions under which the infinitely wide and deep network
implements majority vote classification, i.e., the prediction on test samples is simply the label of the class with
greatest representation in the training set. More precisely, the following proposition (proof in Supplementary
Information F) implies that when the infinite depth NTK is a constant non-zero value for any two non-equal
inputs, the resulting classifier is the majority vote classifier.

Proposition 1. Let m,, denote the classifier in Eq. (3) corresponding to training an infinitely wide and deep
network with activation function ¢(-) on n training examples. For any x,T € S_‘f_ with x # %, if the NTK
K@) satisfies

_ KD(z,7) KB (z, 1) . KB (z,z)
72 BN S/ R gl 7 W

with C1 > 0 and 0 < C(L) < oo for any L, then m,, implements the majority vote classifier, i.e.,

my,(x) = sign (i: y(i)) .
i=1

We now analyze which activation functions satisfy Eq. (4). As described in [12, 18, 28, 37], under case 3,
the value of B’ = E[¢/(2)?] for z ~ N(0,1) determines the fixed point attractors of K (%) as L — co. Thus,
the infinite depth behavior under case 3 can be broken down into three cases based on the value of B’. Using
the terminology from [28], these cases are:

(i) B' > 1 (Chaotic Phase), (ii) B’ <1 (Ordered Phase), (iii) B’ =1 (Edge of Chaos).

In Lemma 6 in Supplementary Information G, we demonstrate that in the chaotic phase, the resulting infinite
depth NTK satisfies the conditions of Proposition 1 and thus implements the majority vote classifier. In
Lemma 7 in Supplementary Information G, we similarly show that in the ordered phase the infinite depth
NTK also corresponds to the majority vote classifier.” The remaining case known as "edge of chaos" has
been analyzed in prior works for specific activation functions; for example, the NTK for networks with ReLLU
activation satisfies Eq. (4) with Cy = § and C(L) = L+1 [13, 16]. Hence by Proposition 1, the corresponding
infinite depth classifier for ReLU networks corresponds to the majority vote classifier.

3 Outline of Proof Strategy for Theorems 1 and 2
In the following, we outline the proof strategy for our main results. This involves analyzing infinitely wide
and deep networks via the limiting NTK kernel given by K(%) as the number of hidden layers L — co. As

shown in [17], K (L) can be written recursively in terms of KX~ and the so-called dual activation function,
which was introduced in [8].

Definition 2. Let ¢ : R — R be an activation function satisfying E,a0,1)[¢(2)?] < co. Its dual activa-

1 =z
zl.

While all quantities in our theorems are stated in terms of activation functions, these can be restated in
terms of dual activations as follows:

tion function ¢ : [—1,1] — R is given by

3(2) = E(umyan(o,n) [0(w)p(v)],  where A =

A2 =§(0) and (A)2=¢/(0) and B =¢(1).

"More precisely, we consider the behavior of the infinite depth classifier under ridge-regularization, as the regularization term
approaches 0.



Assuming that ¢ is normalized such that (5(1) = 1,% the recursive formula for the NTK of a deep fully
connected network for data on the unit sphere was described in [11, 17] in terms of dual activation functions
as follows.

Recursive Formula for the NTK. Let f)(x; W) denote a fully connected neural network with L hidden
layers and activation ¢(-). For z,% € 8%, let z = 27#. Then K is radial, i.e. K" (z,%) = K(F)(z), with

K0 (z) = 30 () + KED () (35D (2)) and KO (z) = 2, (5)

where ¢(F)(2) = ¢(d L1 (2)) with ¢(©)(2) = ¢(z) and ¢'(-) denotes the derivative of @(-).

We utilize the dynamical system in Eq. (5) to analyze the behavior of K(*)(-) as L — oco. Theorem 1
implies that upon normalization by (L4 1)¢’(0)%, this dynamical system converges to a singular kernel with
singularity of order « = —log (qﬁ’ (O)) / log ((f;’ (1)) We now present a sketch of the proof of this result.

We first derive the order of the singularity upon iteration of ¢, since as we show in Supplementary
Information B, the order of the singularity of the infinite depth NTK is the same as that of the iterated ¢.
Since we consider data in S, ¢(-) is a function defined on the unit interval [0, 1]. Hence, understanding the
properties of infinitely wide and deep networks reduces to understanding the properties of iterating a function
on the unit interval. To provide intuition around how the iteration of a function on the unit interval can
give rise to a function with a singularity, we discuss iterating a piecewise linear function as an illuminating
example; see Fig. 2 for a visualization.

Lemma 1. ForO<a<1landb>1,let f:[0,1] = R andc:g:—; such that

fla) = ax if x € [0, c]
1-b(1—2) ifze(cl]]
Then,
o P R@)
Lo ab (1 —z) logpa’

where R(x) is non-negative, bounded from above and bounded away from 0 around x = 1.

Proof. For any x € [0, ¢|, we necessarily have:

(L) L
lim Fo(z) = lim #
L—oo a L—oco @

Now for fixed x € (¢, 1), since = 0 is an attractive fixed-point of f, let Ly denote the smallest integer such
that f(0)(z) < c. Hence, since f(F0)(z) € [0, ¢], we obtain:

FO@) R @) 1

; _ — f(Lo) —Lo
Lh—>néo a L—oo al—Lo alo S @)aes ©)
We next solve for Ly by analyzing the iteration of g(x) := 1 — b(1 — ). In particular, we observe that

g (z) =1 —b%(1 — ), and thus Ly is given by:

—log, a —log, a —log, a
1- ’ 1-— vt 1 - b
1-bo(1—2)<c = Ly=|log, < — a ¢ ¢ = ¢ .
1-c 1—-=z a\l—=z

Hence, by Eq. (6) we conclude that for z € (¢, 1), it holds that

(L)
o FP@) _ R@)
Looe  al (1 —a) loge

where R(z) is non-negative, bounded from above and bounded away from 0 around x = 1, which completes
the proof. O
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Figure 2: Iteration of a piecewise linear function on a unit interval leads to a function with a singularity
at © = 1, upon appropriate normalization. (a) We consider the piecewise linear function f(z) given by
1—b(1—z) on (c,1] and az on [0, ¢}, where a = .5,b = 1.5 and ¢ = 2=L. (b) We observe that upon iterating
f(-) numerically to the limit of machine precision, the resulting function strongly agrees with the theoretical

limit of Lemma 1 given by a function with singularity of order —log, a ~ 1.7.

In Supplementary Information B, we extend this analysis to the iteration of dual activations on the unit
interval, thereby establishing the order of a singularity obtained by iterating dual activation functions. We
then show that this order equals the order of the singularity given by the infinite depth NTK.

Next, we discuss the proof strategy for Theorem 2, which establishes conditions on the activation function
under which infinitely wide and deep networks achieve optimality in the classification setting. The proof
builds on results in [9] characterizing the optimality of singular kernel smoothers of the form

B Z:;l y DK (2@, )

1
g(ﬂf) - Z;LZI K(:c(l), 1_) P

lz — 2@

where K (29, z) =

In particular, it is shown that if & = d, then g(z) achieves optimality. Since Theorem 1 establishes conditions
under which the infinite depth NTK implements a singular kernel, to complete the proof we show that
infinitely wide and deep classifiers achieve optimality by (1) showing that the classifier m,, implements a
singular kernel smoother, and (2) selecting ¢ such that o = d for the corresponding singular kernel.

4 Discussion

In this work, we identified and constructed explicit neural networks that achieve optimality for classification
when trained using standard procedures. Furthermore, we provided a taxonomy characterizing the behavior
of infinitely wide and deep neural network classifiers. Namely, we showed that these models implement one
of the following three well-known types of classifiers: (1) 1-NN (test predictions are given by the label of
the nearest training example) ; (2) majority vote (test predictions are given by the label of the class with
greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing
those that achieve optimality). We conclude by discussing implications of our work and future extensions.

Benefit of Depth in Neural Networks. An emerging trend in machine learning is that larger neural
networks capable of interpolating (i.e., perfectly fitting) the training data, can generalize to test data [2, 25,
38]. While the size of neural networks can be increased through width or depth, works such as [2, 25| primarily
identified a benefit to increasing network width. Indeed, it remained unclear whether there was any benefit
to using extremely deep networks. For example, recent works [26, 35, 36] empirically demonstrated that
drastically increasing depth in networks with ReLLU or tanh activation could lead to worse performance. In
this work, we established a remarkable benefit of very deep networks by proving that they achieve optimality
with a careful choice of activation function. In line with previous empirical findings, we proved that deep
networks with activations such as ReLLU or tanh do not achieve optimality.

8Such normalization is always possible for any activation function satisfying E[¢(2)?] < oo for z ~ A(0,1) and has been
used in various works before including [11, 12, 13, 16, 21, 36].



Regression versus Classification. Our results demonstrate the benefit of using infinitely wide and
deep networks for classification tasks. We note that this in stark contrast to the regression setting, where
infinitely deep and wide neural networks are far from optimal, as they simply predict a non-negative constant
almost everywhere [13, 16]. Thus, our work provides concrete examples of neural networks that are effective
for classification but not regression.

Edge of Chaos Regime. An interesting class of models that are only partially characterized by our
taxonomy corresponds to networks with activations in the edge of chaos regime, i.e., when the activation
function, ¢(-) satisfies E[¢(2)] # 0 and E[¢/(2)?] = 1 for z ~ N'(0,1). We proved that all activations in this
class that have been described so far [13, 16|, including the popular ReLU activation, give rise to infinitely
wide and deep networks that implement the majority vote classifier. While it appears that all activations
in this class lead to the majority vote classifier, it remains open to understand whether there exist other
activations in this regime that implement alternative classifiers.

Finite vs. Infinite Neural Networks. In this work, we identified and constructed infinitely wide and
deep classifiers that achieve optimality. An important next question is to understand whether interpolating
neural networks that are finitely wide and deep can achieve optimality for classification and provide specific
activation functions to do so. We also note that Bayes optimality considers the setting when the number of
training examples approaches infinity. Another natural next step is to characterize the number of training ex-
amples needed for infinitely wide and deep classifiers to reasonably approximate the Bayes optimal classifier.
Recent work [24] identified a slow (logarithmic) rate of convergence for singular kernel classifiers, thereby
implying that many training examples are needed for these models to be effective in practice. An important
open direction of future work is thus to determine not only whether finitely wide and deep networks are
optimal for classification but also whether these models require fewer samples to perform well in practice.
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Supplementary Information

A Preliminaries on NTK and Dual Activations

In this section, we briefly review properties of dual activations that we will use to prove our main results. In
order to analyze the behavior of the iterated dual activation, we reference the following result of [8], which
implies that the dual activation is analytic around 0 on the interval [—1,1].

Analyticity of Dual Activations. Let ¢(-) be an activation function such that E,xr0,1)[¢(2)?] = 1, and
let ¢ : [~1,1] — R denote the dual activation. Then, for z € [—1,1],

o) = S aieh, (7)
=0

where a; > 0 for all 7 € N.

As proven in [8, Lemma 11], several key properties are implied by Eq. (7). Those utilized in this work
are: (1) ¢ is increasing on [0,1], and (2) non-negativity of ¢(-) on [0,1]. Eq. (7) also implies the following
property of dual activations that we will use to construct our taxonomy of infinitely wide and deep neural
network classifiers.

Lemma 2. Let ¢ : [-1,1] = R be a dual activation such that $(0) = 0, ¢(1) = 1, and ¢(z) # z. Then,
0<¢(0)<1.

Proof. By Eq. (7), we need only show that 0 < a; < 1. Since ¢(1) = 1, we obtain that > ;= a; = 1. Since
a; > 0 for all i € N, we conclude that 0 < a; < 1. Now if a; = 1, then a; = 0 for i > 2, which implies that
¢(z) = z. Hence, we conclude that 0 < a; < 1, which completes the proof. O

B Proofs of Theorem 1 and Theorem 2

We first prove Theorem 1, which is expressed below in terms of the dual activation function.

Theorem. Let KI) denote the NTK of a fully connected neural network with L hidden layers and activation
function ¢(-). For z,& € 8%, let z = x7%. If the dual activation function ¢(-) satisfies

1) $(0) =0, ¢(1) =1,
2) 0<@(0) <1 and @ (1) < oo,

then:
lim KW (z,7)  R(27%)
L=oo ¢(0)E(L+1) o -z’
where o = —2711:::((212)3 and R(u) > 0 is bounded for u € [0,1] and bounded away from 0 around u = 1.

In order to prove this theorem, we first prove that the iterated, normalized NTK converges to a singular
kernel without explicitly identifying the order of the singularity.

Lemma 3. Let K denote the NTK of a depth L fully connected network with normalized activation
function ¢. Assuming ¢ satisfies the conditions of Theorem 1, then for any x,T € Sjir it holds that

(L) 5
lim K, 7)

_ T3
Jim ) = e,

where ¥ : [0,1] = R can be written as a power series with non-negative coefficients with a singularity at 1.
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Proof. We utilize the form of the NTK given in [1] and utilize the radial form of the kernel in Eq. (5).
Namely, for z € [0, 1], we have:

KOs XL: i H¢<¢(J) ) (8)

=0

where ¢(*) denotes the iteration of J) i times. By Eq. (7) and since ¢(0) = 0, we have that ¢(z) = >_o°, a;2°
for all z € [0,1].° Now, we bound é by quadratic functions in z and bound ¢ by linear functions in z. In
particular, using the conditions ¢(1) = 1 and ¢'(1) = C < oo, we obtain the upper bounds:

(ﬁ(z)zal <Z+ZZ2i> <a <z+§2132> =a (z—s—(all—l)w)7
¢ (1—1—;1&1 )<a1<1+;(ljiz>:a1<1+<aol—1>z).

Similarly, we obtain the lower bounds:
~ s a; i a9 2
qb(z) “ <Z+,_ alz)_(h <Z+a12>7
2
(;5 1+E z P zal(l+a22>2a1<1+a22>.
— a” a1 a1

Now, substituting the above lower and upper bounds into the recursion for ¢(?), we obtain
i—1 a i—1 1
i 22 50) 5(2) i = ()
11 (1+259)) <806 < =11 (1+(2-1)09). 0

Lastly, since C' > 1, substituting Eq.(9) and the bounds on ¢ into Eq. (8) for K%, we obtain

(L+1 alsz:(H“%@( )) <KW (2) <(L+1) alzjl_[:(l-i- (01—1) 9 (= ))

Hence, to prove that ¥(z) := hm % is finite for z € [0,1), we need to show that
L—oo

ﬁ(lmm () <0

for all z € [0,1) and any constant C. By the Cauchy criterion [32, Ch.5|, the above infinite product converges
if and only if the following sum converges:

This sum converges by the ratio test. In particular,

5(3) h
lim M = lim $(2) =a; <1,
j—00 ¢(J*1)(z) 20 2z

where we used the contractive mapping theorem [33] to establish the first equality, since 0 is a fixed point
attractor of ¢. As a consequence, ¥(z) < oo for z € [0,1). Now according to Eq. (8), ¥(z) can be written as

9Note that the sum starts from a; since $(0) =0 = ag = 0.
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a convergent power series with non-negative coefficients for z € [0,1). To establish the singularity of 1(z) at
z = 1, we show that for any constant R > 0, there exists zo such that ¥(z) > R for z > z,. In particular,
note that for any fixed Ly,

Lo—1
m BUE s ] (H?jé(”(z))

I =
150 aF(L+ 1) =

L
The right-hand side is a continuous function with maximum value (1 + Z—f) . Hence, by selecting Ly such

L
that (1 + g—f) "> R, we can then pick zg such that ¢(z) > R for all z > z;. Hence, we conclude that

K@) (2)
lim ———~ = ¢¥(?),
L—o0 a{“ (L+1) v(z)
where 1(z) can be written as a convergent power series with non-negative coefficients on [0,1) with a
singularity at z = 1, which completes the proof. O

We will now prove Theorem 1 by establishing the order of the singularity of ¢ from Lemma 3. To
characterize the order of this singularity, we will generally characterize the order of the singularity arising
from iterating functions on the interval [0,1]. In particular, we begin by establishing the order of the
singularity of the normalized iteration of a function that is linear around x = 1.

Lemma 4. Let

f(2) = g(z) if z €[0,d] ,
1-b(1—2) if z€(d,1]

with d < 1 such that f(z) is strictly monotonically increasing and g(z) can be written as a convergent power
series with non-negative coefficients with g(0) =0, ¢’(0) = a < 1, and b > 1. Then for z € (d, 1], it holds

that o
i 10 R
LS00 a (1 _ z)flogba

where R(z) is non-negative for z € [0,1], bounded from above, and bounded away from 0 around z = 1.

Proof. We first visualize the curve f(z) in Fig. 3a. For any z € (d,1], let Lo(z) denote the smallest number
of iterations until f()(z) = 2’ < d. Then for z € (d, 1), we have that

f(L)(z) ) f(L—Lo(Z))(Z/)

lim ——~ = lim =" q Lo(),
L= a L=oo  ab—Lo(2)

Now by the proof of Lemma 3, we know that

) f(L—Lo(Z))(Z’) _ ,
A e = R,

—Lo(z

with f%(z’ ) > 2’. Thus, we need only analyze the term a ) to determine the pole order. In particular,

we have that Lg(z) is the least integer that satisfies:

1—pPo@ (1 —2) < d
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(@) (b)

1-56(1-2)

[y R e

[ SR -

Figure 3: A visualization of the four functions bounding ¢E(z) that are used to prove Theorem 1.

Hence, Lo(z) is given by:

zo(2) = [tog, (12 |

As a consequence,

Thus we conclude that for z € (d, 1):

(L)
i PG RE)
L—oo a (]. — Z)_ log, a

where R(z) is non-negative for z € [0, 1], bounded from above, and bounded away from 0 around z = 1,

which concludes the proof.

We will now utilize Lemma 4 to prove Theorem 1.

15

O



Proof. Let ¢(2) = 3.°0, a;2*. We will lower bound the dual activation ¢ and its derivative by the piecewise
functions:

a1z if z € 0,€) a1 if z € [0,¢€)

fe(z) =4 and h.(z) =19 _
o(z) if z € [e,1] @' (z) if z € [e,1]

The function fc(z) is visualized in Fig. 3b. Now consider the function kgL)(z) defined as follows:
kP (2) = KD (R (57D (2) + £5(2),

By definition, we have that K (z) > kéL)(z) for all z € [0,1]. We will now show that for any €, we can
select k. such that

KD (2) - kP (2)
li €. 10
ST Ty (10)

To prove Eq. (10), we first consider the updates for L > Ly where Lj is the largest integer such that
ko) (2) = KWo) (), he( E(LOH)(Z)) = aj, and fE(LO)(z) = ¢Lo) (). We will first prove inductively that for
TeN:

P (z) — fET(2) < G (Z BotT +) (11)

where C1(z) is a term independent of T. We begin with the base case of T = 1. Namely, we have for

€ (e,1):

FE(z) — () £ 3 a (609)()) - g0 (2)

NE

1

-
Il

w (600) (sinee 100(z) = 3090 (2))

) i HL(2)\
<a"Ci(2) (1 - ar) <Where @)= <hm — )) )

L—oo ay

o

N
I|
N

= Cl( ) 2LO;

which concludes the base case. Now assume the statement is true for T = Ty. Then for T' = Ty + 1, we have:

¢E(L0+To+1)<z) _ fE(L0+TO+1)(Z) — iai (é(Lo-ﬁ‘To)(z))i _ ale(Lo-i-To)(Z)

i=1

To—1 ;
< Ci(z (Z a2L0+Tg+z> + Z <¢(L0+T0) ))

To—1
< Cl (02 a2L0+Tg+l> + C ( ) 2Lo+2To
=0

To
Z) (Z a%Lo-i-To-‘ri) ,
i=0
which concludes the proof by induction. We will next prove inductively that for 7" € N:

T-1 T-2

K@Eo+D) () — EotT) (5) < Oy (2) (Z(T - i)a§L0+T—1+i> + Cy(2) (Z(Lo +i+2)a 2L0+T+Z> . (12)

1=0 1=0

16



where C1(z), C2(z) are terms independent of 7. We begin with the base case of T = 1. Namely, we have for

€ (1):

Kot (z) — kPt (2) < [KE(2) @ (910 (2)) — kO (2)he (f50(2))] + [0 (2) — LotV (2)]
— q{)(L0+1)(Z) _ f6(L0+1)(Z

)
< Ci(z)ai™  (by Eq. (11)),
which concludes the base case. Now, assume that Eq. (12) holds for T'= Ty. Then for T'= Ty + 1, we have:

TN (5) — Rt TorD (2) < (KT ()¢ (30T (2) — KT () he(fL0HT0) (2))]
+ [pLoFToF D) (5) — flLotTot1)(4)]

_[ (L0+To) Zza (L0+To) )) 1—a1k£L°+TO)(2)]

{qg (Lo+To+1) () _ fe(Lo+T0+1)(Z):| .

Next we simplify each term in brackets via the inductive hypothesis. Let

i=1

Sy = lK(L0+To) Zza ¢(L0+To)( )) alk(Lo-i'To)( )] .
Then, given ¢/(1) = C' < oo, for

(L) A(L)
Co(2) = (C —ar) lim o B) gy 9702
L=oo al(L+1) Lo af

which is finite by Lemma 3, we have:

To—1 Ty—2
S =Giz) (Z (To - i>a§LO+TO+i> + Ca(2) (Z (Lo+i+ 2)afL0+To+1+z'>
=0 i=0
+ K (Lo+To) (2) Z iai(gZ)(L0+T0)(z))i_1
i=2
Tol To—2
< Ci(2) (Z (Th — 1) 2L0+T0+Z> + Cs(2) (Z (Lo+i+2) 2L0+To+1+z>
=0 i=0

+ Co(2)ar* ™ (Lo + T + 1)af® ™™

< Ci(2) (i (To — i) 2L0+To+z> + Cs(2) (i (Lo +i+2) 2L0+To+1+z> .

i=0 =0
Next, let:

Sa = [T (z) - [T (),

Then, we have by Eq. (11) that
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Therefore, combining the bounds on S, .S2, we conclude that

K(FotTot1) () _ p(LotTotl) (1) < &) 4 &,

To—1
< Cl (Z a2L0+To+Z> + Cl( ) (Z (TO . ’L) 2L0+To+1>
=0

=0

To—1
+Cal2) (Z (Lo+i+2) 2L°+T°+1+’>

=0
T To—1
=C - 2Lo+To+1 R 2Lo+To+1+1
=Ci(2) | D _(To+1—i)a] +Co(2) | Y (Lo+i+2)aj ,
i=0 i=0

which concludes the proof by induction and establishes Eq. (12). Next, Eq. (12) implies:

Lo+T

alot (Lo + T+ 1) T+L +1M “T+Lo+1 “
1
17&1 '

< (cl< >afﬂ '+ Calz)al?)
Hence, since the right-hand side does not depend on T', we conclude that

1

7(1,1.

KB (2) =k (2)
lim T
L—oo aj (L + 1)

< (Ca()af ™" + Calz)af?) 5

Lastly, note that by selecting e small enough, we can make L(z) arbitrarily large. Hence, for any fixed
z € 10, 1], we conclude that

K®(2) — kP (2)

lg%nggo ab(L+1) =0,
and as a consequence that
(L) L) () — L) (L)
lim 7[( (2) = lim li K7(2) — ke “(2) + lim lim 714;5 (2)
Lo a%(L+1) e—0 [—00 a{/(L+1) e—0 L—o00 alL(LJrl)
k(L)
= lim lim (2) (13)

e—0L—o00 ay (L + 1)

By uniformly bounding the right-hand side over ¢, we will establish an upper bound on the pole order for
the iterated, normalized NTK. To do this, we first show that the iterated, normalized k. and f. are equal for

€ (e,1). Let a(z) = kEL”(Z))(z) and B(z) = fE(LO(Z))(z) for z € (¢,1). We prove by induction for T > 0 that
kD (2) = af [a(z) + TH(2))- (14)
The base case for T" = 1 follows by
EEo @+ (2) = ayo(2)] + a18(2).
Proceeding inductively, we assume that Eq. (14) holds for time T. Then at time T + 1, we have
BT (o) = aykEo AT 4 EobTH ()

T+1[a(z) +TB(2)] + 0:1T+1ﬂ(2)
= a"a(z) + (T + 1)B(2)),
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which concludes the proof by induction. Thus, we obtain that

kéL)(Z) . kéL—Lo(z))(a(z)) (L — Lo(z) + 1> a_Lo(z)

lim —— L —
Do af(L+1) Lo aF (L - Lo(2) + 1) L+1 !

A IO RS VIO e
T—o0 ay (T + 1)

= B(z)ay *?
L
)

L—oo a%

Next, we will uniformly bound the iterated, normalized f.. In particular, since ¢ > f. and the two
functions have the same normalizing constant, we obtain

O o (2)
. € < . .
T ST

Now, we have that for any €, ¢ is upper bounded by the function:

Ge(2) = o(2) vif z€[0,¢) 7
1—(¢'(1) =) (1 —2) if z €c,1]

where z = ¢ is the intersection of the secant line 1 — (¢(1) — €)(1 — z) and ¢. We visualize je(z) in Fig. 3c.
By Lemma 4, we know that for z € (¢, 1):
MO Re(2)

lim = y
Looo af (1 —z)"lgrw-e?'(0)

where Re(z) is non-negative for z € [0, 1], bounded from above, and bounded away from 0 around z = 1.
Since ¢ is arbitrary, we conclude that for some €, for z € (¢”,1):

(L) (L)
i 200 990 R
L—oo ay L—oo ay (1 _ Z)—10g43/(1) #’(0)

(15)

where R;(z) is non-negative for z € [0, 1], bounded from above, and bounded away from 0 around z = 1. By
substituting back the above inequalities into Eq. (13), we conclude that

K K@) (z) — kP i)
im Li(z) = lim lim (LZ) ke (2) + lim lim f (2) < i (2) —.
L—oo ay (L + 1) e—0 L—o00 aj (L + 1) =0 L—oo aj (L + 1) (1 _ Z)*logg)/(l) ¢’ (0)

(16)

To conclude the proof, we need to establish a similar lower bound on the above limit. We will construct
the lower bound by first establishing the order of the singularity of the iteration of ¢ and then showing that
this order is a lower bound on the order of the singularity for the iterated, normalized NTK. Note that we
have already established an upper bound on the order of the singularity of the iteration of ¢ in Eq. (15).
Now, we alternatively lower bound ¢ via the following function:

2) = a1z vifxe[(),c) 7
1-¢'(1)(1—2) ifx € c1]

where z = ¢ corresponds to the intersection of the tangent lines of ¢ at z = 0 and z = 1. We visualize f (2)
in Fig. 3d. By Lemma 4, we have that for z € (¢, 1):

e L TP QL)

lim —
L—oo  aj L—oo  aj (1—2)" logg/(1y ¢(0)
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where Q(z) is non-negative for z € [0,1], bounded from above, and bounded away from 0 around z = 1.
Hence, we conclude that:

S R
s (1- z)flOgdS'(l) ¢'(0)”

lim
L—oo a

where Rs(z) is non-negative for z € [0, 1], bounded from above, and bounded away from 0 around z = 1.
Lastly, we utilize Eq. (8) to show that:

H(L) (L)
0E) KOG
1

I — &
v 1500 ab (L + 1)

L—oo a

In particular, Eq. (8) states that
L L1
KB(2) =300 [ (60)).
i=0 k=i

We next write ¢()(z) as a product and substitute the computed product back into Eq. (8). Namely, using
the power series representation for ¢ and unrolling the iteration, we obtain:

59 =Yy (30

Jj=1

— 4,30 9560 4))
wd ) {1+ 30 (341)

i—1 o) .
e ][ (122 (696)
k=0 j=2 1

We similarly use the power series for ¢/(z) to conclude that

3 (59 = S ias (69))

j=1
>3 (69)
j=1
9 (G0) !
> a 14—Z:a1 (¢ (z))
j=2
[ee]
a5 (5(k) i (k)
> a 1—|—jz:;a1 (¢ (z)) (ab(b (z)<1)
Therefore, we can simplify Eq. (8) as follows:
L L—1
KB(z) =3 a0 [ ¢ (692)
i=0 k=i
L i—1 e’} .\ L-—1 e8]
> ajz 14+ 3% (50()Y o [1+3° % (500z))
STt 0 (V) | T [ 120 0 (50)
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and conclude that

KOG )

al(L+1) = aF
As a consequence,
K@) H(L)
o KOG 06 m .
L—oo ay(L+1) ~ L—oo  af (1— Z)—logg,/(l) #(0)

Lastly, we combine Eq. (16) and (17) to conclude that there exists some e such that for z € (e, 1):

(L)
BE) g KOG RE)
(1- Z)—logd;/(l) ¢ (0) = L—oo af (L +1) (1-— z)_l"gé’u) ¢'(0)

Thus, we conclude that

lim KW (z) R(z)
L—oco ab (L +1) o (1- Z)*logqs'u) ¢'(0)’

where R(z) is non-negative for z € [0, 1], bounded from above, and bounded away from 0 around z = 1. This
concludes the proof of Theorem 1. O

To prove Theorem 2, we will use the result of Theorem 1 and that of [9], which analyzes the optimality
of singular kernel smoothers. To connect infinitely wide and deep networks with kernel smoothers, we next
prove that the infinite depth limit of the NTK corresponds to a kernel smoother under the conditions of
Theorem 1.

lim K2 G)
L—oc0 af (L+1)

mn(z) = sign (Z y(i)¢(xTx(i))> ’
=1

Lemma 5. Let ¢¥(z) = . Then under the setting of Theorem 2,

assuming | > yDy(aTz@)| > 0 for almost all v € ST
i=1

Proof. Let mil (z) be defined as follows:

-1
mP) (x) = sign (y(KT(LL)) KW@ (X,m)) .

We first note that multiplying the argument to the sign function by a positive constant does not affect the
value. Hence, we have:

—1K(L)(X,a:)> .

lim m(")(z) = lim sign (y(Kﬁ”) L1
© 1

L—oo

Now we compare the argument of the sign function above to the corresponding kernel smoother. Namely,
we have:

KW(X,x)
aF(L+1)

( (L))_lK(L)(Xaaj)i K(L)(va)
Y\ B aF(L+1) yaf(L—i—l)

—1
< e | (2) " -1

)
2 2

where the inequality follows from the Cauchy-Schwarz inequality and [|Av|[2 < [[All2[[v][2 for A € R™*", v €
R™. Now since 0 is an attractor for ¢, then for any h > 0, there exists L; such that for L > L;, the
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. -1
spectrum of K1) is contained in [1 — hn?, 1+ hn?] by Weyl’s inequalities. Hence, the spectrum of (KﬁL))

is contained in [ Thus, we conclude that

1
< | ——-1).
2_(1_h”2 )

Hence by selecting h appropriately small, we conclude that for any €;, there exists L; such that for L > L,

_1 1
1+hn2’ 1—hn2 |*

[CONS

)~ : L KD ) T, (i)
(Kn ) —I|| < €1. Next, since Lhm BTy Pzt W), for any €3, we can select Ly such that for
9 —00
L > Lo,
KW(X,z)

(2) T (1
yaLL—i-l Zy

Next under the assumption in the lemma, we may thus select €1, €2 small enough such that the argument of
mle)(ac) is not exactly 0 for L > max(Lj, L2). Thus we can interchange the limit and the sign function. As

a consequence, for any = # x(¥) for i € {1,2,...,n} satisfying "1,y (272() #£ 0, we obtain that

< €9.

. . “1KE(X,
lim my? () = Jim sign (y(Kﬁ“) (L<+1)>>

L—oo
1K) (X, x)
=si li (K(L>) —
sign <L;H;oy ") GEL )

—blgn<2y 2Tz®) )

Lastly, if z = () for some i € {1,2,...,n}, then since 9(z) has a singularity at z = 1,

1, , .
i (0 = sy 3 0007 ) sy,

L—oo

which completes the proof. O

We lastly utilize Theorem 1, Lemma 5, and the result of [9] to prove Theorem 2 (expressed below in
terms of dual activations), which identifies infinitely wide and deep classifiers that achieve optimality.

Theorem. Let m,, denote the classifier in Eq. (3) corresponding to training an infinitely wide and deep
network with activation function ¢ on n training points. Let m denote the Bayes optimal classifier, i.e.
m(z) = argmax P (y = g|z). If the dual activation, ¢ satisfies:

ge{-1,1}

1) $(0) =0, ¢(1) =
2) 0< @ (0) <1 and @ (1) < oo,
§) —los@©) _ g

log(¢'(1)) — 27

then m,, satisfies lim Px (|m,(x) — m(z)| > €) =0 for almost all v € S¢ and for any € > 0.
n— oo

Proof. Thus far, we proved that under the conditions of Theorem 1, the classifier m,, corresponds to taking

the sign of a kernel smoother using a singular kernel with singularity of order —%. For data with

density in R?, kernel smoothers with singular kernels of the form Kj(z,%) = ﬁ (i.e., the Hilbert
estimate) converge to the Bayes optimal classifier in probability for almost all samples as n — oo [9]. We
note that multiplying K, (z,Z) by a non-negative function that is bounded away from 0 around 1 and

bounded from above such that the kernel is still monotonically increasing also yields optimality in the same
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sense (see Supplementary Information C). Returning to our setting, for any =, & € Sﬁf, we can re-write the
kernel Kj(z, %) as

1 1

o —Z[|4 25 (1 — 27%)

Kh(l‘, i‘) = 4"
2
The constant — again does not affect the sign function. Lastly, assumption 3 selects the order of the

22
singularity such that the limiting kernel from Theorem 1 can be written up to constant factors as a Hilbert
estimate, which concludes the proof of Theorem 2. O

C Extension of Hilbert estimate optimality from [9]

We utilize the following extension of the result from [9] to prove Theorem 2. In this section, we follow the
notation from [9] in our statements and proofs.

Corollary. For x € 8¢, let m(z) denote the Bayes optimal regressor. For z,& € 8¢, let K(27%) =

T ~
%, where R(z) > 0 for z € [0,1] is bounded from above, bounded away from 0 around z = 1, and
2 —xix)2

K () is monotonically increasing in [0,1]. Given a dataset {X;,Y;}1; C S¢ x R, let

_ Z;L:l YiK(xTXi)
Y K(TX)

Let X have any density f on 8¢ and let Y be bounded. Then, at almost all x with f(z) > 0, m,(x) — m(z)
in probability as n — oco.

Proof. The proof closely follows that of the theorem in [9] with the differences that (1) we map from densities
on 8¢ to densities on R?, and (2) we simply verify that the function R(z) does not change the asymptotic
analyses of the original proof. We begin by noting that the kernel K involves chordal distances on the sphere,
ie.,

R («7%)
K(2T3) = —~—2.

[l — |4

We first define the random variable W := || P(x) — P(X)||%Vy, where Vj is the volume of the unit sphere in d
dimensions and P : S* — R? is the stereographic projection such that Sff maps to a bounded region. We let
fp denote the density of the points P(z) for = € S_‘f_. We note that Euclidean distances after stereographic
projection can be related to chordal distances, ||z — X||, via the following formula (up to isometries of the
sphere):

1P (z) — P(X)|J?

x— X2 = )
le=XI"= T PP+ PP

Since we select the projection such that ||P(z)|| < oo for z € 8¢, we have that (1 + || P(2)]|?)(1 + [|[P(X)]?)
is bounded and nonzero, i.e., it is again a factor that simply scales the kernel function. We thus define

d
2

Qx,&) = R &)(1+ | P(2)[*)2 (1 + | P(#)]*)%,

which is bounded away from zero for some € > 0 and x,# such that 7% > 1 —e. Letting W; := Vy||P(x) —
P(X;)||%, the regressor m,,(z) is given by

> i Y,%

>ic1 W;

my ()
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Hence, we can utilize the proof strategy of [9] for points P(z) in R?. Namely as in [9], we analyze the term:

P(Y; —m(X)) e " m(X;) — m(X))| Q@X)
iz (X3)) +EHI (Xi) —m (X)) Il

[mn(x) —m(z)] < .
Q(z,Xs) n Qz,X)
Zi:l zT, Zi:l IT1

To simplify notation, we let Q; = Q(z, X;) and we let %l’) denote the i order statistic ordered such that

Way < Wigy... < Wy, Now, the proof strategy of [9] is to show that the terms I and IT respectively
converge to 0 in probability for almost all  as n — oco. To prove that I converges in this manner, following
the proof of [9], we have that:

1 1
Wa Wa)

IO Ry A (O N
Z’? Qy — 221? 1
J=1 Wi =1 W)

where k such that W, > V;6¢ for small 6, and Cp,Cy > 0 are constants since {Q(j)}?zl are non-negative
and bounded away from 0. Hence, the convergence of I follows directly from the proof of [9]. To establish
the convergence of I, we follow the proof of [9] and first establish that

Qi
ZiSGn W((.L))
S, g
in probability as n — oo, for all 8 fixed in (0,1). Let x denote the indicator function, and following the

notation of [9], let U(;) denote uniform order statistics. The work of [9] establishes that for any fixed e € (0,1)
there exists 0 such that for all W;) < V6%

(1 =€) fp(P(x)Wau < Uy < (14 ¢€) fp(P(x))Wy.

E[P{X}] < Gy

b

A, =

Hence, we consider the event B = [W|g,) < V46%), and then as in the proof of [9], we obtain

nCs n
2 Wion) S 2¢ _ o Wion)
5 = 1
Lte fp(P@) Ticon o Lre fp(P) Xicon 75

AnXB 2 1

where C3,Cy > 0 are constants since Q(;) is bounded and positive for i < [6n]. The convergence of A,, then
follows by continuing the proof from [9]. Next, again following the proof of [9], for any ¢ > 0, we also select

6 such that:
Jsp  Im(y) —m(@)|fr(y)dy
sup ¢
r<é fsp(m)m fP(y)dy

z),r

<€

where Sp(,),, denotes the closed ball in R? of radius r centered at P(x). Then as in [9], select A = {y :
m(y) —m(x) > e} and select § € (0,1) small enough such that P(||P(X(|gn})) — P(z)|| > ) — 0 as n — oo.
Then, we have:

N

i Im(Xa) —m())|

7 = | i
S
; Qi
Z- 0 % Zi:P(Xi)GS 2).6NA W;
< 2T 42X P(X o)) Pla) 58 + €+ 5

LW i W
=V+Vo+V3+V,.
Now as in [9], we have that V3 — 0 in probability, as we showed A,, — 1 in probability above. Then, V5 — 0

in probability and V3 can be made as small as possible by the choice of e. Lastly, V4 — 0 since, following
the proof of [9]:

> # :
i:P(Xi)ESP(w) sNA W; W)
: <2 —_—
Zf% Qi <2 +Cs n Qu’
=1 W; i=1 W(i)



where C5 > 0 is a constant. The above term goes to 0 in probability by the analysis of part I and the
arbitrary choice of e. This concludes the proof of this extension of the result of [9]. O

D Proof of Corollary 1

For ease of reading, we repeat Corollary 1 below.

Corollary. Let m,, denote the classifier in Eq. (3) corresponding to training an infinitely wide and deep
network with activation function

1 1 . _

= 5_ay ' ] )
2%/(@;% 1—23/2<ﬁ1)+2ﬁx ifd>2

where hy(z) is the 7" probabilist’s Hermite polynomial.'® Then the classifier m,, is Bayes optimal.

Proof. We need only check that ¢(z) satisfies the conditions of Theorem 2. We first consider the case d > 2.
In particular, since “"j/gl is the 2nd normalized probabilist’s Hermite polynomial and ””3;\/6396 is the third

normalized probabilist’s Hermite polynomial, we have by [8, Lemma 11] that

y 1 4 2 9 1
z2)=—72"+|(1-——F |2+ =
o) =5t < 2d> 2%

s a

We thus have by direct computation that
J= g+ (2-5p)t5r =2 FO= 5
and so, the result follows from Theorem 2 since
—loggi ) é’(O) = log22% = g

Now for the case of d = 1, we have again by [8, Lemma 11] that

-

z

By direct computation,

Hence, the result follows from Theorem 2 since

_IquE’(l) QB/(O) = 5 =

E Proof of Theorem 3

We repeat Theorem 3 below in terms of dual activations.

Theorem. Let m,, denote the classifier in Eq. (3) corresponding to training an inﬁnitely wide and deep
network with activation function ¢(-) on n training examples. If the dual activation, ¢, satisfies:

7 o145 3 /35
10For d = 1, this activation function can be written in closed form as £ 21z +10512\;%12 35-105)z
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1) 6(0) =0, ¢(1) =
2) ¢(0) =0, ¢'(1) < oo,
then my,(x) is the 1-NN classifier for v € S¢.

Proof. Let m(L)( ) be defined as follows:

~1
mP) (x) = sign (y(KﬁP) K®) (X,z)) .

By the proof of Lemma 5, we analogously have that the Gram matrix converges to the identity matrix as

depth approaches infinity, i.e. limy_, KﬁLL) =1. For x,7 € Sj‘f_, let z = 7% and consider the radial kernel

KD (z2) = KB (z,7). Let d(z) = 5o, a;2" for a; > 0, as given by Eq. (7). Without loss of generality, we
assume ag > 0. The proof will follow by using induction to establish:

QVS(L)(z) = Z2LhL(z) and K(L)(z) = zQLgL(z), (18)

where hy, gy are positive, increasing functions on (0,1]. The base case follows for L = 0 since ¢(©)(2) =
K©(z) = 2. Hence, we assume the statement is true for L = T — 1 and prove the statement for L = T.
have

00 =6 (3700) = S (370) = (57 00)” S (9700 .

and hence using the inductive hypothesis, we can conclude that

QB(T)(,Z) _ ZQThT,l(z)Q [Z a; (é(T—l)(z>)i2] _ ZgThT(Z)7

=2

where hr is positive and increasing since hp_; and the term in brackets are positive and increasing. We
proceed similarly for K(T). Namely, we have:

KM (z) = KTV (2)¢' (87 V(2)) + 07 (=)

22 gT 1 [Zm ( (T 1) )i—1
ZZTflé(T 1) 2)gr_1( lzm (¢(T 1) )
27 <hT_1(Z)gT—1(Z) [Z ia; (g{,(T—l)(Z)y_

=2

2T

+ 2% hr(2)

22" hr(2)

+ hT(Z)>

where gr(z) is positive and increasing since hp,hp_1,gr—1 and the term in brackets are positive and in-
creasing, which completes the induction argument.

Now let z; = 2Tz for i € {1,2,...,n}. Without loss of generality assume that z; > z; for all j # 1. To
show that limy,_, mﬁlL) (z) is equivalent to the 1-NN classifier, we need only show that lim, mglL)(x) =
y. By Eq. (18) for j # 1, we have that

T
=22 gr(2),

L
i KOG o 5 9n)
L—oco K(L)( ) L—oo Z%LgL(Zl)
22
< Lh—>H;c % (since z; < z1 and gy, are positive and increasing)
1
=0.
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As a consequence, since K(%)(z;) > 0, we obtain that

L—oo

—1 K(L)(X,.'L') ) )
=y,

lim m{")(z) = Lh_r}r;O sign (y(Kn ) KO0, 2)

which establishes that limy_, m%L)(a:) converges to the 1-NN classifier, thereby completing the proof. [

F Proof of Proposition 1

We repeat Proposition 1 below for ease of reading.

Proposition. Let m,, denote the classifier in Eq. (3) corresponding to training an infinitely wide and deep
network with activation function ¢(-) on n training examples. For x,& € Si with x # %, if the NTK K
satisfies

LY (o 7 D)z, 7 (L)
lim K (@,2) and  lim K (,2) # lim K@ z)

ey O ST T i T o) (19)

with C; > 0 and 0 < C(L) < oo for any L, then m,, implements the majority vote classifier, i.e.,

my(z) = sign (i y(i)) .

Proof. Let Co = limy,_.o % We consider two cases: (1) when Cy = 0o, and (2) when Cy < co. When

Cy = 00, we have:

lim m{(z) = Llim sign (y(K(L))_lK(L) (X, x))
—00

n
L—oo

_ kP T EW(X, )
TP\ KO (e ) (L)

= sign (Z y(i)C&)
i=1
n

= sign (Z y(i)> ,
i=1

which corresponds to the majority vote classifier. When Cy < 0o, we use the Sherman-Morrison formula to
(L)

compute the inverse of the Gram matrix limz .. (K ’)~!. In particular, since the inverse is a continuous
map on invertible matrices,
1 Cy

lim (K()~! = I— J
A (K (C—C1)"  (Ca—C1)(Ca—ChL+Cin)”

where I is the identity matrix and J is the all-ones matrix. Hence, we have that for z # z(9) for i €
{1,2,...,n}:

K®(X,z) 1 C
li K12 o) < I— ! J)C 1
Ay C(L) Y\(Cr—C) " (Ca—C)(Cy—Cr+Cin)” ) 1

_ 9 (i)
o Cg—Cl—l—Clnzy ’

i=1
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where 1 € R" is the all-ones vector. Assuming that > , y( #£ 0, we can swap the limit and sign function
to conclude that:

lim m")(2) = sign (Llim y(KEY 1K (X, x))
— 00

L—oo
s Cl = (i)
= sign <02 — +szy

i=1
n .
= sign (Z y(l)> 3
i=1

which completes the proof. O

G Proofs for when Infinitely Wide and Deep Networks are Majority
Vote Classifiers

The following lemma implies that any activation function satisfying ¢(0) > 0 and ¢’(1) > 1 yields a NTK
satisfying Eq. (19) and thus, the infinite depth classifier is the majority vote classifier by Proposition 1.

Lemma 6. Let m,, denote the classifier in Eq. (3) corresponding to training an infinitely wide and deep
network with activation function ¢(-) on n training examples. If ¢ satisfies:

1) $(0) >0, ¢(1) =1,
2) 1< ¢ (1) < oo,
then m,, is the majority vote classifier.

Proof. We show that the limiting kernel satisfies the properties of Proposition 1 with Cy = co. Note that
we must have ¢(0) < 1 by Lemma 2. Now, since ¢(0) < 1 and ¢(1) = 1, by the intermediate value theorem,
there exists some ¢ € (0,1) such that ¢(c) = c.

We claim that ¢(c) < 1. Suppose for the sake of contradiction that ¢'(c) > 1. Then, since ¢(z) can
be written as a convergent power series with non-negative coefficients, we have that ¢(z) > z for z € (c, 1].
Hence either ¢(z) = z on some subset of (c,1] or ¢(z) > z for z € (¢,1]. In the former case, analytic
continuation implies that ¢(z) = z on [0, 1], and in the latter case, ¢(1) > 1. Thus, in either case we reach a
contradiction and thus we can conclude that ¢’(c) < 1. Therefore,it follows that ¢ is the unique fixed point
attractor of ¢(z).

Lastly, since ¢ € (0,1), we can conclude that the infinite depth NTK solves the equilibrium equation
corresponding to the recursive formula for the NTK in Eq. (5). Namely, for any z € (0,1) and K*(z) :=
limy, oo K (2):

. c
K*(2)=K*(2)¢'(c) +c = K*(2) = —————.
() = K* (00 O=1"53
Hence, for any z € (0,1), it holds that limy_,., K (z) = 175,(6). Lastly, letting a = ¢/(1), for z = 1, we
have that
L
K(L)(1> _ a” —1
a—1"

and so limy_ oo K(L)(l) = 0o. Thus, limy_,. K& (z,Z) satisfies the conditions of Proposition 1, which
concludes the proof of the lemma. O

We next show that if ¢ falls under case 3 with ¢’ (1) < 1, then under ridge regularization, the corresponding
infinitely wide and deep classifier also implements majority vote classification.
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Lemma 7. Let meL))\ denote the ridge-reqularized kernel machine with reqularization term X\ and with the

NTK of a fully connected network with L hidden layers and activation function ¢ on n training points. If ¢
satisfies:

1) $(0) >0, §(1) =
2) ¢(1) <1
L)

then lim lim m x) 1s the majority vote classifier.
A—0t L—oo "’A() J 4 ﬁ

Proof. The proof follows that of Proposition 1. Since @ (1) <1, z =1 is the unique fixed point attractor of
é. Then as in the proof of Lemma 6, for all z,# € S?, it holds that

1
lim KW (z,7) = —————.
L—oo 1-— (;S’(l)
. _ 1 .
Letting ¢ = Ty We obtain that
Llim m L = sign (y KD 4 antRW(X, ac))
—00

n(y [tim (5 A0~ [ lim K3 (X, )] )

L—)oo L—oo

A m——

where J € R™*"™ is the all-ones matrix, 1 € R" is the all-ones vector, and the third equality follows from the
Sherman-Morrison formula. Hence, Proposition 1 implies that lim+ lim m( )( ) is again the majority vote
A—0t L—oco

classifier, thereby completing the proof. O
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