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ABSTRACT. We consider a quasilinear Schrédinger equation on

R for which the dispersive effects degenerate when the solution
vanishes. We first prove local well-posedness for sufficiently smooth,
spatially localized, degenerate initial data. As a corollary in the fo-
cusing case we obtain a short time stability result for the energy-
minimizing compact breather.

1. INTRODUCTION

We consider solutions u: Ry X Ry — C of the quasilinear Schrodinger equation

(QLS)

iUy = (uuy)x + plul?u,
u(0,x) = up(x),

where € {-1,0,1}. Our interest in the model (QLS) originated with the article
[7], where the authors reduce the study of norm growth for the defocusing NLS
on T? to a discrete toy model. The equation (QLS) (with u = 1) then arises as a
formal continuum limit of this toy model (see [8]).

The equation (QLS) is the Hamiltonian flow of

Hlu] := J Uy |?dx — % J lu|® dx,

with respect to the Poisson structure

([ 6F 6H OF 6H
W HY =1 S sa ~ saou
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Solutions of (QLS) also (formally) conserve the mass

M[u] := J |u|? dx,
and momentum

Plu] :=Im J U dX.

In this article we are primarily interested in the local well-posedness of (QLS).
Taking w = du, the linearization of the equation (QLS) about a solution © may
be written as

i(w: + vwy) = (pwy)x + lower order terms,
where the density p and velocity' v are defined by
(1.1) p:=lul?, v:=2Im(uity).

In particular, the linearized problem is dispersive whenever p(t,x) 2 1. On
sufficiently short time intervals we expect that p(t,x) ~ p(0,x) = |uo(x)|?, so
the dispersive nature of the problem is determined by the initial data. If the initial
data ug is non-degenerate (i.e., |[uo(x)| 2 1), local well-posedness then follows
from, for example, [34,42,43]. Unfortunately, these techniques break down when
Uy is allowed to degenerate.

We will focus on the case where the initial data 1( is smooth and non-zero
on the interval I := (-x9,x¢) C R and supported on the closed interval I=
[—x0, X0], with sufficient decay at the endpoints to ensure that

(1.2) 1 1 (=x0,00) ULL((0, x0)).
[uol

A particular example to keep in mind is the case that |u¢| has asymptotic behavior
(1.3) [ug(x)| ~ cx dist(x, +x0) 7% asx — (+x0)7,

for positive constants c= > 0 and non-negative constants &+ > 0. We refer to
the case &+ = 0 as linear endpoint decay and . > 0 as sublinear? endpoint
decay. Heuristically, we expect linear endpoint decay to be sharp in the sense that
linear and sublinear endpoint decay will lead to local well-posedness in suitable

IStrictly speaking, v is twice the momentum density. However, a peculiarity of (QLS) is that the
mass p is transported by v, which motivates us to refer to it as the velocity.

2Since we are considering compact regions, our notion of sublinear and superlinear is reversed from
behavior considered as x — co.
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spaces, whereas superlinear («+ < 0) endpoint decay will lead to ill-posedness in
any reasonable space of distributions. These heuristics are derived by linearizing
the equation (QLS) about the initial data and considering the Hamiltonian flow
of the corresponding principal symbol (see the discussion in [15], e.g.).

While preparing this article, the authors learned of a complementary preprint
by Jeong and Oh [31] in which they prove ill-posedness in standard Sobolev spaces
of a related quasilinear Schrodinger equation appearing in [26, 27], though the
techniques apply as well to show the ill-posedness of (QLS) in standard Sobolev
spaces. This result uses ideas from their previous result [32], in which they are
able to exploit the aforementioned heuristic to rigorously prove ill-posedness of
degenerate solutions of the Hall-MHD and electron-MHD equations. The same
authors are also working to develop an alternative approach to local well-posedess
using function spaces suited to the degeneracy of the initial data [30]. Ill-posedness
of a related degenerate model was also considered in [3].

For sublinear endpoint decay one may obtain local well-posedness using poly-
nomially weighted spaces as in [15]. Thus, our main concern in this article will be
the problem of linear endpoint decay: the sharp decay rate we expect to be well-
posed in any reasonable sense. Our motivation for considering data satisfying
conditions of this type is due to the following result from [16].

Theorem 1.1. [10] If u = 1 there exists a unique (up to translation) non-negative
minimizer Q = Q of the Hamiltonian H| @] for fixed mass M[@] = V21w > 0
given by

(1.4) P(x):= V2w cos (%) 1;(x),

where the interval I = (—1t//2,1//2).

One may construct compact breather’ solutions of (QLS) from the minimizer
@ forany 0 € R by

(1.5) ut,x) = e tw+i9gp (x).

Compact breathers and compactons (the corresponding analogue for KdV-type
equations) are an important feature of (focusing) degenerate dispersive equations.
There has been a substantial volume of work on the existence and properties of
compact solutions of this type for a variety of problems, in particular, the work
of Rosenau and collaborators (e.g., [45-55, 61-63]). We refer the reader to the
primer [56] for a review of the current state of affairs.

The main result of this article is local well-posedness of the equation (QLS)
in a space that contains the solution (1.5).

3We adopt the terminology of [56, Section 9.2.2] and refer to these solutions as “breathers”. One
might also refer to these solutions as “standing waves”.
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Theorem 1.2 (Local well-posedness of (QLS)). Letxo > 0 andI = (—xo, Xo).
Then, there exists a set S C L? of functions that are non-zero and smooth on 1, sup-
ported on I, and satisfy (1.2) so that for any wy € S there exists a time T > 0 and
a unique w € C([0,T1;L?) that satisfies (QLS) in the sense of distributions with
u € C([0,T] x R) and ux, (3u?)xx € C([0,T;L®). Forallt € [0,T] the
solution w(t) is non-zero and smooth on I, supported on I, and conserves its mass,
momentum, and energy. Further, for all t € [0, T] the solution map uo — u(t) is
Lipschitz continuous with respect to the L>-topology.

As far as we are aware, this is the first proof of local well-posedness for a
degenerate quasilinear Schrédinger equation. A key innovation in this article is
that, unlike in the case of the KdV equation considered in [15], we are able to
handle the critical (linear) endpoint decay rate.

Critical endpoint decay rates were previously considered in the setting of the
shoreline problem for a model of shallow water waves in [40]. In this case, the
finite speed of propagation allows the authors to work with a finite number of
(weighted) derivatives, as in the subcritical endpoint decay rates considered in
[15]. In the Schrédinger case, where the speed of propagation is infinite, we
are no longer able to work with a finite number of weighted derivatives, which
significantly complicates the analysis.

The set S, which will be described in detail Section 2, essentially consists of
solutions that are analytic with respect to the weighted derivative |ug| dx. This
set is extremely “small” in any reasonable sense (e.g., every element of S must be
analytic on the open interval I) and is certainly far from optimal in the case of
sublinear endpoint decay. However, the set S does contain the compact breather
(1.5) and reasonable perturbations thereof (see Proposition 2.6). This motivates
us to consider its stability. As a corollary to Theorems 1.1, 1.2, we may apply the
method of [6] to obtain the following stability result, which we prove in Section 7.

Theorem 1.3 (Stability of the energy-minimizing breather). Let p = 1,
w > 0, and € > 0. Then, there exists some & > 0 so that for any Wy € S satisfying

inf |lug(- + h)? — 02 |l < 6,
0,heR

we have the estimate

. h)2 _ e*Zitw+2i9

sup ( inf |lu(t, @2l am) < &,

tG[O,T] e,hER
where T > 0 is the lifespan of the solution w obtained in Theorem 1.2.

Remark 1.4. Somewhat unusually, the stability in Theorem 1.3 is obtained
in terms of u? instead of u. This topology arises naturally from the observation
that, for g := u? and p = 1, the mass and energy may be written as

M=J|q|dx and H = %quxlzdx—%qulzdx.
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Remark 1.5. The proof of Theorem 1.3 applies to any interval [0, T] on
which the solution u of (QLS) conserves both the mass and energy, and where
u? € C([0,T]; L' n H'). Theorem 1.2 guarantees this timescale is at least non-
trivial, but it is currently far from clear whether or not one expects to be able to
take arbitrarily large T. Indeed, in the corresponding KdV case, it has been proved
in [15,63] that the support of the solution cannot remain constant on arbitrar-
ily long timescales, which suggests a possible finite time breakdown of regularity.
Whether or not such a phenomenon holds for (QLS) and whether or not this can
violate orbital stability on sufficiently long timescales remains an interesting open
problem.

Remark 1.6. In [16], the authors also construct traveling compactons as so-
lutions to (QLS); however, these states arise at the expense of a highly singular
phase, and hence significantly complicate the regularity and boundary conditions
considered. As a result, at present we leave stability of these states as an open

problem.

Outline of the proof. In our previous work [15] on the KdV analogue of
(QLS), we use the hydrodynamic formulation of the problem (see (1.6) below) to
switch to Lagrangian coordinates, which has the effect of freezing the degeneracy
at the initial time t = 0. We then make a change of independent variable to flatten
the degeneracy and reduce the problem to a non-degenerate quasilinear equation,
which can be solved using the energy method. These changes of variable were
inspired by similar approaches in related degenerate problems (e.g., [10, 11, 17,
19,29,36-41]).

While a similar approach formed the basis of our original investigation of
(QLS), a key difficulty was encountered due to the need to work in spaces of
analytic functions. If the initial data has linear endpoint decay, after changing the
independent variable, we are required to propagate exponential decay of the initial
data to the solution. Even in the case of a constant coefficient linear Schrédinger
equation, propagation of exponential decay of the data requires controlling the
solution in spaces of analytic functions. However, as the approach of [15] requires
working with a quasilinear Schrédinger equation, one must bound the solution in
spaces of exponentially weighted analytic data adapted to a variable metric.

To circumvent this difficulty, we introduce two key new ideas in this article.
The first is a change of independent variable that prioritizes flattening the de-
generacy and reduces (QLS) to a derivative semilinear Schrédinger equation. This
significantly simplifies the problem of controlling our solution in spaces of analytic
functions. The second is to couple (QLS) with an equation for w := fiux/|ul,
which controls the decay of the solution u. Indeed, by controlling this function
pointwise we will be able to work in translation-invariant (with respect to the new
independent variable) spaces. This not only simplifies the nonlinear estimates
considerably, but also allows us to replace the asymptotic assumption (1.3), with
the far less prescriptive assumption (1.2).
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Our motivation for considering the function w is most readily understood by
writing the equation (QLS) in the form

iur = (Jul 0x)?u + idmw) (Jul 0x)u + plul*u.

After making our change of independent variable, which maps |u|dx — 0, con-
trolling the sub-principle term requires controlling Imw. To do this, we must
consider the complex-valued function w rather than just its imaginary part. In-
deed, we may compute that w satisfies the Schrédinger equation,

iw; = (|u] 0x)*w + lower order terms.
The variable w also arises naturally from the hydrodynamic formulation of (QLS)

pr+ (Wp)x =0,

(1.6) 1
Vp + VUx + (v2 — PPxx + Epi - N02> -0,
X

where p, v are defined as in (1.1). We may then compute that

Px . v

w= —i—.
20 2P

Unfortunately, at least in the case of linear endpoint decay, the semilinear
equation we obtain for w in our new coordinate system fails the Takeuchi-Mizohata
condition [44, 57] for well-posedness of linear Schrédinger equations in Sobolev
spaces (see also [1-3, 28]). To address this issue, as we have already alluded
to, we work in spaces of analytic functions. By allowing the radius of analytic-
ity to shrink linearly in time, we obtain a global smoothing effect that is suffi-
cient to control the problematic terms. We comment that similar analytic spaces
and estimates have a long history of application to PDEs (and even ODEs),
and have previously appeared in several works on Schrédinger equations (e.g.,
[4,5,12,18,21-25,33, 35]).

Another difficulty we encounter with our semilinear equations for u,w is
a transport term with unbounded velocity. This prevents us from using a con-
traction mapping argument, so instead our proof of existence relies on an energy
method: we construct solutions as weak limits of regularized equations. We com-
ment that the fact we are unable to use a contraction mapping argument is un-
surprising, given that the original equation (QLS) is quasilinear. This unbounded
velocity term also prevents us from comparing two solutions in our new coor-
dinate system. To prove uniqueness and continuity we instead use the original
equation (QLS).

While the function w significantly simplifies some of the analysis, it has the
disadvantage that we do not expect it will decay at spatial infinity in our new
coordinates (at least in the case of linear endpoint decay). To handle this, we
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bound low frequencies in L* and high frequencies in Sobolev spaces. This enables
us to treat non-decaying data, while still using energy estimates to control the high
frequency contributions.

The remainder of the paper is structured as follows. In Section 2 we discuss
the change of variables and define the set S of initial data. We provide additional
details for some of the more involved computations appearing in this section in
Appendix A. In Section 3 we prove several preliminary estimates for our spaces
of analytic functions. Our main nonlinear estimates are stated in Proposition 3.6
but, as they are standard albeit technical, we delay the proof until Appendix B.

We begin our proof of existence of solutions to (QLS) with & priori estimates
for model linear equations in Section 4. We then apply these in Section 5 to obtain
a solution of the semilinear equations described above. Once we have solved the
semilinear problems to obtain u,w in our new coordinate system, it remains to
verify that the solution we construct has sufficient regularity to invert the change
of coordinates and obtain a solution to the original equation (QLS). This is the
main task in Section 6, where we complete the proof of Theorem 1.2.

Finally, in Section 7 we prove our stability result, Theorem 1.3.

2. REFORMULATION OF THE PROBLEM

In this section we introduce the various changes of variable required to prove
Theorem 1.2 and define the set S of initial data.

2.1. Changes of variable. Motivated by the linearization of (QLS), we in-
troduce the independent variable

X 1
@1) e = | g
where c(t) is a real-valued, continuously differentiable function satisfying ¢ (0) =
0. As we are assuming U is non-zero on I as well as (1.2), the map x — (0, x)
is readily seen to be a diffeomorphism from I onto R. The integrand is designed
precisely to flatten the degeneracy, whereas the time-dependent constant ¢ (t) will
be chosen shortly to provide a helpful cancellation. The freedom to choose ¢ (t)
is due to the gauge-invariance of this change of variables: we have total freedom
to decide the value of y(t,0).
Using this change of variable, we define

dC +c(t) forx el,

U, y(t,x)) :=ul(t,x),
. _u(t, x)ux(t,x)
Wi(t,y(t,x)) :=w(t,x) = —Iu(t,x)l

The variable W will be used to control the decay of U, and is related to U by the
identity

au,
(2~2) W= |U|2 '
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We denote the real and imaginary parts of W by
(2.3) o:=ReW and B:=ImW,

and use the functions «, B to fix our gauge by taking c(t) to solve the equation

c(t)
(2.4) {Ct“) = Bt cl)) - 3L a(t, D)B(t,T) dL,
c(0) =0,

so that the equation (QLS) can be written as
(2.5) i(Us + bU,) = Uyy +2iBU,, + u|U|*U,

where the real-valued coefficient
y
(2.6) b(t,y) = —3]0 a(t, C)B(L, T) dT

satisfies
ye(t,x) =b(t,y(t,x)) — B(t,y(t,x)).

As discussed in the 1585, in order to solve the equation (2.5) we will also need to
control W, which we compute satisfies the equation

27) AW+ bWy) = Wy + (2W2 - %|W|2> T 3iaBW + 2u|U P
y

For the reader’s convenience, we outline these computations in Appendix A.
We conclude our discussion of the change of variables by performing these
computations in the special case of the compact breather, as follows.

Example 2.1 (The compact breather in y-coordinates). Let 0 € R and
u(t,x) = e tw+i9qp (x) beasin (1.5). Then, for x € I = (=11/~/2,11//2) we
have

X 1
y(tx) = Jo V2w cos(L/+/2)

X X
tan — + sec — | ,

1
1€ = in (tan 75 v see %

where we note that Imw = 0 and hence ¢ = 0. As a consequence, we have

U(t,y) = e t@+19 2 sech(vwy),
W(t,y) = —/w tanh(vVwy).
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2.2. Function spaces. It is natural to bound the solution U in Sobolev-type
spaces. Given s > 0 we define the Sobolev space H* with norm

11 = [ =17 @1,
where (€) = /1 + |€|2, and the Fourier transform

y ._L —-ix&
f(E).—me(x)e dx.

In the case of linear endpoint decay, it is clear from Example 2.1 that we
should not expect W to decay as || — co. This motivates us to introduce the

space Z* with norm
Il zs o= [1f s + 1Sy e

The space Z° is often referred to as the Zhidkov space due to its original ap-
pearance in [59, 60], and has been applied to study the NLS with non-vanishing
boundary conditions, for example, [14,20].

In order to control the subprinciple terms in the equations for U and W we
will need our solution to be analytic. Given a function m: R — C we define the
Fourier multiplier

m(Dy) f(x) := % jm@f@e“‘f dE.

Given T > 0 and a Banach space X of tempered distributions on R with norm
| - lx we define the subspace AX; of X to consist of f € X with finite norm

I fllax, = 11(e™> f,e"™> f)|Ix,
where, for concreteness, we make the convention that if g = (g1,92,...,9n),
then
n
lglx = > llgjlx.
j=1

In particular, the space AH3 coincides with the definition of the analytic Gevrey
spaces appearing in [13,33].

Before turning to the definition of the set S of initial data and stating the
existence part of Theorem 1.2 in U, W coordinates, it will be useful to introduce
a little more notation.

Given T > 0 and a Banach space X of tempered distributions we define the
space C([0,T];X) to consist of continuous functions f: [0,T] — X and be en-
dowed with the supremum norm. Because of the presence of a complex trans-
port term in the equation for W, we will need the radius of analyticity T to
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be time-dependent. As a consequence, given T > 0 and a continuous function
T:[0,T] — (0, %), we say that f € C([0, T]; AX¢) if the vector-valued function
(e™y f,e"™Py f) € C([0,T]; X).

In a similar fashion, we say that

fELP((0,T);AX7) if (™ f,e”™Pr f) € LP ((0,T); X),

and denote

T T
Ay = | PO dE 11y, = | @I,

with the obvious modification when p = oo.

Finally, if X has a predual, we write f € Cy ([0, T];AX7) if we have f €
L®((0,T); AX;) and (e™ f,e~™0v f)(t) = (e™» f,e ™> f)(s) in X as t — s
fort,s € [0, T].

2.3. Existence for U,W. To prove existence for (QLS), we will prove ex-
istence of a solution to the equation (2.5). Here, it will be useful to treat the
equations (2.5) and (2.7) as a system, where the initial data is not necessarily re-
lated via the identity (2.2). We then have the following theorem:

Theorem 2.2. Let 0 < s < 3 and let 0 < To < 1. Then, given any
Uy € AH3, and Wy € AZ3,, there exists some T > 0, a non-increasing, continu-
ously differentiable function T: [0,T] — (0, c0) so that T(0) = Ty, and a solution
UeCy([0,TI;AHS), W € Cy ([0, T1; AZ3) of the system (2.5), (2.7) with initial
data U(0) = Uy and W(0) = W,,.

Further, we have the estimates

(2.8) N1UNs ans = 100l ams, »

(2.9) WLz azs < 1Uollans, + IWollazs,

and the lower bound

1

(2.10) 2 —— —
U0z, + [[Wollaz,

Remark 2.3. The solutions we construct will be obtained by taking a weak
limit of a regularized system of equations. Thus,  priori, our solution is a distri-
butional solution of (2.5), (2.7). However, for any n > 0 the space of bounded
C" functions is (locally compactly) embedded in both AH3 and AZ3, so the cor-
responding U, W are smooth classical solutions of the equations (2.5), (2.7).

Remark 2.4. The assumptions that 0 < s < 1 and 0 < Ty < 1 are solely
for technical convenience and can be replaced by s > 0 and 19 > 0 by making
suitable modifications to the various estimates.
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2.4. The initial data set S. From the statement of Theorem 2.2 we obtain
the following definition for the data set S.

Definition 2.5 (The data set S ). Let S be the set of g € L2 that are non-zero
and smooth on I, supported on I, and satisfy (1.2), so that if we define

yo(x)=j Lz and Up(3o(x)) 1= uo(x),

0 luo(2)l

then there exists some 0 < s < % and 0 < Tg < 1 so that

UO UO y

Up€ AHz, and 7

€ AZ3,.

Because of the implicit nature of the definition of S, it is not immediately
clear what a typical element looks like. Example 2.1 shows that for any w > 0
the compact breather @, € S. Further, given |&] < 1 we have (1 + &)@, =
P(1+e)2w € S. To obtain a slightly larger class of examples to which Theorem
1.3 may be applied, we conclude this section with an explicit construction of an
admissible perturbation of the compact breather solution.

Proposition 2.6 (An admissible perturbation of the compact breather). Let
u=1,w >0, and the interval I = (—1t//2,7/2). Let M,C > 1 and f: 1 — R
be a smooth function so that for any n = 0 we have

(2.11) |02 f(x)| < MC™.
Then,
(2.12) uy = e, 8.

Proof. First, we observe that if there exist constants K, B > 0 so that for all
n = 0 we have

1

(2.13) EHa;fHLZ < KB",

then taking 0 < T9 < 1/B we have f € AHJ for any s € R. Similarly, if
1

(2.14) m”aﬁfﬂm < KB",

then taking 0 < To < 1/B we have f € ALS.
Second, we observe that if we have the pointwise bound

1
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for constants B;j > 0 and functions Kj = Kj(y) > 0, then

(2.15) OB (A] = (n+ DKiKy max{B], BY,

m+2)(n+1)

5 K1K,K3 max{B}, BY, B}}.

1
@16) 1)l <

By induction on 7, using that sech” () = sechy — 3sech’ y and the inequality
(2.16), we may then bound

(2.17) %Iagfsechyl < 2"sechy,
and similarly, using that tanh” () = 2 tanh® y — 2tanh v,
i|a"t nhy| <2"
Oy @ARYE= S

Next, we compute that

Wo(¥) = —vw tanh(Vwy) + iF (¥)v2w sech(vVwy),

where

F(y) = f'(\2arctan(sinh(vw y))).
Using that

%(ﬁarctan(sinh(mw)) — Us(»)| = V200 sech(v@),

we may apply the Faa di Bruno formula to obtain
n
ONF = > oK1 f(\2arctan(sinh(v/w))) - Bk (IUol, 8y Usl, ..., 00 ¥ Us)),
k=1

where By, i is the partial Bell polynomial. Using the estimate (2.17), the hypothesis
(2.11), and properties of the Bell polynomials (see, e.g., [9]), we may bound

%IB;FI < MCB"™ where B = 2/w max{C,v2w}.

Applying (2.13), (2.14), and (2.15), we may then choose 0 < Tp < 1 suf-
ficiently small to ensure that Wy € AZ; for any s € R. Finally, we observe
that Up, = UpWo, and hence we may apply (2.13) and (2.15) to conclude that
Uy € AH3, forany s € R. O
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Remark 2.7. We may use the numerical methods presented in [16] to explore
perturbations of the compacton of the form in Proposition 2.6. In Figure 2.1,
we present a time sequence of plots for solutions to (QLS) of the form (2.12),
demonstrating that numerical stability is observed in a reasonable fashion on short
time scales as the perturbation spreads towards the endpoints.

s
0 005 01 0I5 02 025 03 035 04 045 05

FIGURE 2.1. (Top) Time slices of the absolute value of numer-
ical solutions to (QLS) at t = 0,T/4,T/2,3T /4, T with initial
data of the form (2.12). Here, we have taken 28 spatial grid

points, T = .5, f = .1e72**, (Bottom) Tracking the conserved
Mass and Energy curves for the simulation.

3. SOME PRELIMINARY ESTIMATES

Given T > 0, we define the Fourier multipliers
Cr := cosh(TDy), S¢:=isinh(TD,), 7T+ :=itanh(D,).
We observe that these multipliers map real-valued functions to real-valued func-

tions and that Cr is symmetric whereas Sr, 77 are skew-symmetric. Further, we
have the product rules

(3-1) C-r(fg) = CTf ' CTg - STf ' sTg! ST(fg) = S‘rf ) C‘rg + CTf ) S‘rgy
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which follow (for sufficiently smooth functions) from taking the Fourier transform
and applying hyperbolic trigonometric identities.
Using Plancherel’s theorem, we have the following lemma.

Lemma 3.1 (An equivalent norm). We have the estimate

3.2) lLf lams = ICx fllms,
uniformly in s, T.

Proof: Using that Cr = 3e™> + e~ P, we have

1
ICrfllms < §||f||AH$-

Conversely, we observe that e*™P» = (1 ¥ i77)Cr, and by Plancherel’s theorem
we have
11 FiTo)lps—ms < |11 + tanh(:) |z~ < 2.

Consequently, we may bound

I laps < 411Cx fllns- O

We take @ € CZ to be an even function, identically 1 on [—1, 1], and sup-
ported in (—2,2). We define the Littlewood-Paley projection Py = @ (D,), and
for j = 1 we define Pj = cp(2‘ij) - (p(21_ij). We then have the following
Sobolev-type estimate.

Lemma 3.2. If's > 0 we have the estimate
IfllLe s 1Pof L + ILfy llms-1e,

and identical bounds hold with L, HS~V/2 replaced by ALY, Hy "%, uniformly in
T.

Proof- We decompose by frequency and then apply Bernstein’s inequality to
bound

*® ©
If s < 2P fllee s IPoSflles + D, 271IP; fy llps-in2
Jj=0 j=1
S I1PofllLe + lfy llgs-s.

Replacing f by e*™P» f, we obtain the corresponding bound with L, HS~1/2
replaced by ALY, AH; /%, respectively. O

Lemma 3.3. Forany T > 0 and 1 < p < o we have the estimate

(3.3) ICz p—rr < 1.
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Proof. We compute that the kernel of C;! is given by

K(y) = —Tsech (%) ,

and hence ||K||L1y =1.
The estimate (3.3) then follows from Young’s inequality. O

We will also require the following technical estimate.
Lemma 3.4. We have the estimate

(3.4) ICef = flles = Tl fyllacsy,

uniformly for 0 < T < 1.
Proof. Let J = | —InT|. For high frequencies we bound

IPs;Crfllts < D 27 IPiCrfyllts < Tl fyllars.
Jj>J

Further, from the estimate (3.3) we have
IPsjflle= S [IPsjCrfllre S Tl fyllars.

For low frequencies, we observe that K'(y) is the kernel of the operator
(C:' = 1)P<; where

<P(2_J<“§)eiyg dg

K(y) = 1 J’ sech(TE)

is a Schwartz function satisfying [|K ||z < T. Consequently, we may apply Young’s
inequality to obtain the estimate

IP<jCrf — P<jfllie S TICtfylle= < Tl fyllars.

Combining these bounds we obtain the estimate (3.4). O

Our linear estimates will take advantage of the smoothing effect gained from
allowing the radius of analyrticity to shrink. Observing that

d .
ECT = =T ayST,

we are motivated to prove the following result.
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Lemma 3.5. We have the estimate

635 ICefline = ~Re(dySef,Cof) + LlIC Il

uniformly for 0 < T < 1.

Proof. Using Plancherel’s theorem, we have

~Re (3 S0£,Crf) = [ Etanh(E)l cosh(TE)F (B E.

The estimate (3.5) then follows from the fact that

(€) < Etanh(TE) +
where the constant can be chosen independently of T. O
We define the low-high and high-high paraproduct operators to be

Trg:= » P<jaf -Pjg, N[f,gl:=fg—-Trg—Tyuf.
j=4

We then have the following nonlinear estimates, whose proof is delayed to Appen-
dix B.

Proposition 3.6. We have the following estimates:
(1) Symmetric product bounds: If's > 0 then

(3.6) 1fgyllas < 1flli=lgylas + 1fy lasllgllie-,
(3.7) 1fgllzs = IfllL=lglizs + 1 f Nl zs g lle=.

(2) Asymmetric product bounds:

(3.8) ITrgyllgs-12 S 1 fllee lgy lgs-12,  if s € R,
3.9) Ifgy — Trgylus S I flwre lgllas, ifo<s=<1,
. 1
(3.10) I fgyllus—12 S W fllzo Gy llgs12. if0<s < 5
(3) Trilinear bounds: If’s = 0 then
3.11) Ifghlias < Iflgsarz lglme IRl + 1 Tgve 1g i TRl s
+ I flle2 gl sz 1Rl g2,
(3.12) lfghlias < 1flasarz gl hls + 1 f 2 1gllgsae 1Rl ps

+ 1f 2 g llez [Ty llps-



A Quasilinear Schridinger Equation with Degenerate Dispersion 1601

(4) Commutator bounds /f —% <s<landjz=4then
(3.13) [|[(Dy)*, flgy ]z < I fyllzo lgllms,
(3.14) I[P<j, fF1gyllps = Ifyllz= gL

In all cases, identical bounds hold with H* replaced by AH3, and so on, uniformly
mT.

4. LINEAR ESTIMATES

In this section we prove a priori estimates for model equations that will subse-
quently be applied to obtain bounds for U and W.

We first consider estimates for solutions z: [0, T] xR — C of the (regularized)
linear Schrédinger equation

(4.1) i(z¢ + P<j(bz<jy)) = P<jz<jyy + f + 4,

where we write z<j = P<;z and assume the coeflicient b is real valued (and not
necessarily defined by (2.6)). We then have the following proposition.

Proposition 4.1. Let —5 < s < 1 and 0 < § < 1 be a sufficiently small
constant. Given0 < 7o <1, M > 0, and 0 < T < 6/(2M), define

(4.2) T(t) = To(l—%t> forO<t=<T.

Suppose that for almost every t € (0, T) the function b(t) € L™ satisfies
(4.3) b(t,00 =0 and [[by(t)llaz0 <M.

Lerz € C([0, T1; AH3); suppose for almost every t € (0, T) we have z¢, z,,, € AHy
and z satisfies (4.1) with initial data z(0) = zo. Then, we have the a priori estimate

(4.4) sup 1zl ams +MTollZll 2 ypgeero

te[0,T]

1
S ||ZO||AH%0 + ”f”LlTAH%' + \/TTOHQHL%AH;I/Z,

where the implicit constant depends only on J, s.

Remark 4.2. The a priori estimate of Proposition 4.1 (and Proposition 4.5
below) will be applied as part of a bootstrap estimate to prove Theorem 2.2. To
clarify the role of each constant in its application to the proof of Theorem 2.2
and explain why the quantifiers appear in the order above, we briefly explain how
each constant arises. We first note that s, To will be provided by the hypothesis of
Theorem 2.2, and the constant M will be determined by s, T¢, and the initial data.
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The constant 6, which depends only on s, arises from the proof of Proposition 4.1,
and ensures that the linear decay of the function T gives us control the second term
on LHS (4.4). The timescale T will be given to us as part of the bootstrap, but
the upper bound of §/(2M) is chosen to ensure that for all t € [0, T] we have
T(t) = To, uniformly in all other parameters.

Remark 4.3. The second term on LHS (4.4) provides a global smoothing
estimate for the equation (4.1). We comment that this estimate is distinct from
the local smoothing effect of linear Schrodinger operators, although we expect
that solutions of (4.1) do indeed exhibit some form of local smoothing (see, e.g.,

[34,42]).

Proof- We first consider the case that s = 0 and j = o, with the convention
that P, = 1. Using the product rule (3.1) and integration by parts, we compute

Mt
||CT 122 - TO Re(0y S+z,Cr2)

= 5 Re{Ctby - Crz,Crz) + Re(S1h - Sr2y,Cr2)
+ Im(C+f,Crz) + Im(Crg, C+Z).

(4.5) dt 5

We comment that in order to justify the integration by parts we use (3.4) to bound
IC+blle < [Iblls + Tlbyllary <

for almost every t € (0, T). This is the only place in the proof we use that b is
bounded and hence the estimate (4.4) is independent of the size of || b~
For the smoothing term on LHS (4.5) we apply the estimate (3.5) to bound

MT() MT ()

5 Re(0yS+z,Crz) + — ||CTz||L2,

—CliCezllipn = -

where we have used that T = 1.
For the first term on RHS (4.5) we use the hypothesis (4.3) to bound

(Crby - Crz,Cr2)| < [|Ceby 1= ||Crz]|f = M||Cr2][].
For the second term on RHS (4.5) we decompose using paraproducts to write
(4.6) Re(Stb - Stzy,Crz) = Re(Ts,pS1zy, Cr2)
+ Re(S+b - Stzy — Ts.pSv2zy,Crz).

Further, applying Bernstein’s inequality with the fact that Sz = 1(e™> — e~ ™P»)
and T = 79, we may bound
ISzbllL= = TUIP<1/rbyllary + IP>1/xbyy ll yy-12) S ToM,
[Stbylle = 1Dy llary = M.
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Consequently, the first term in (4.6) may be bounded by applying the estimate
(3.8) with the fact that || T+ ||;2—12 < 1 (which follows from Plancherel’s theorem)

to obtain
(Ts,bS72y, Cr2)| < [S+bllr= IS+zy 12 |CrZ |12 S ToM||Crz] |12,
whereas the second term in (4.6) may be bounded by applying (3.9) to obtain
[(Sb - Szzy — Ts,pSr2y,Cr2)| S IScbllwie (S22 1Cr 212
< MJ|Cx 2|12
For the remaining terms on RHS (4.5) we use duality to bound

(Crf,Cz2)| < ICr fllr2 [1C72lI12,
{Crg, Cz2)| < ICrgllgg-12 |Crzll .

Combining these estimates we obtain

MT()
1)

< g||CTz||f2 + ToM||Cr 21

orl ezl + =5 lICr 2l

+ 1Ce flir2 1Crzll2 + ICxgllg-12 I1Cr 2l o2

Taking C > 0 to be a sufficiently large (absolute) constant to absorb the first term
on the righthand side, we then obtain

My
o
< e CMIS (1oM||Cr 2|l + ICef Nz ICr2llz + 1Ce gl ICo 2l prir2).

6t(e s ||e, 2|y + MT0 [* g-comis|ic. | d(r,)
0

We then integrate, using that TM /6 < 5, to obtain

Mo
5

sup ||CTZ||i2 + ||CTZ||i2TH1/2

te[0,T]
2 2
< ||ICxy20llz2 + ToM||Cr 2|12 412
+ ||CTf||L1TL2 ||CTZ||L%°L2 + ||CTg||L2H71/2 ||CTZ||L2TH1/2

MT
SIICTOZOIIiz+5( sup [|Crz[7: + 5°IICTzllizTHm)
te[0,T]

1 2 )
+ 5 (lleesf e + g lICesllipn )
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so provided 0 < 6 < 1 is sufficiently small, independently of all other parameters,
we may apply the estimate (3.2) to obtain the estimate (4.4).

To handle the case s # 0 we simply apply (D, )* to the equation (4.1) and
apply the commutator estimate (3.13) to obtain

||[(Dy>s,b]zy||AL$ p ||by||Az$ ||Z||AH$,

where we note that we have used that —% < s < 1. The estimate (4.4) then follows
from possibly shrinking the size of 6, depending on s. Finally, to handle the case
that j < o0, we simply replace z by z-; on the righthand side of (4.5) and use that

lz<jllamz < 1Zllaps. O

The second model we consider is the (regularized) transport-type equation
(4.7) e+ Poj(bzejy) = f.

This will be applied to bound the low frequencies of W.
In order to prove a priori bounds for (4.7), it will be useful to first record the
following consequence of the Picard-Lindelof theorem.

Lemma 4.4. Let T > 0 andb: [0,T]XR — R be a continuous function so that
for some constant C = 0 we have |b(t,0)| < C and by, € L¥([0,T] X R). Then,
for each y € R, there exists a unique solution Y € C'([0,T]) of the ODE

(4.8) {Yt(t,y) =b(t,Y(t,»)),

Y(0,y) =y.
Further, for each y € R the derivative Y, € CY([0,TY), and we have the estimate
(4.9) e—THbyHLi’r"L“’ < 1Yy llpge < eTIIbyHLi.gLW’

and hence the map vy — Y is a diffeomorphism.

Proof. Our hypotheses ensure that b(t,y) is continuous in t and Lipschitz
continuous in y, with uniform Lipschitz constant ||b, || z~. For fixed 3 € R,
the Picard-Lindelof theorem then guarantees local existence for (4.8). However,
using the estimate

Ib(t,Y(t,¥)| < C+ [IbyllLyr~ 1Y (£, 2)],

and Gronwall’s inequality, the solution can be extended to the entire time interval
[0, T]. It remains to prove (4.9). However, this readily follows from the observa-
tion that

%(long(t,y)) = by (L, Y (L, 7). O
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We may then prove our main & priori estimate for solutions of (4.7), as follows.

Proposition 4.5. Let 0 < 6 < 1 be a sufficiently small constant and j = 8.
Given0 < 790 < 1, M > 0, and 0 < T < 6/(2M), define T € C'([0,T1) as in
(4.2) and suppose that b: [0, T] x R — R is a continuous function satisfying (4.3).
Then, if z € C([0,TI; ALY) such that for almost every t € (0,T) we have that
Zt,2y € ALY and z is a solution of (4.7) with initial data z(0) = zo, we have the
estimate

(4.10) sup [[Pozllary < IPozollacy, + IP>ozllLgary + IPof gy ary,
te[0,T]

where the implicit constant depends only on S.

Proof. Applying Py to the equation (4.7) and using that for j > 8 we have
PyP-j = PyP4 = Py, and P—4P-; = 0, we obtain

Pozy + bPozy = =[Py, b]zy + Po[P<4, b]z5jy + Pof,

where z.j = P, jz.
From (3.3) and (4.3) we have ||by 121~ S |Cebyllrzr~ < M. Applying the
estimates (3.14) and (3.3), we may then bound
||[Po, b]zy||L1TL°° + [|Po[P<4, b]z>j,y||L1TL°° + ||P0f||L1TL°°
S Tlbyllgr= Nzliegrs + 1Pof Il e

s ollzlicpary + IPofllptars-

Applying Lemma 4.4 we may find a solution Y of (4.8) so that themap y — Y
is a diffeomorphsim. Writing (z oY) (t,y) = z(t,Y(t,)), and so on, we obtain

0t ((Poz) oY) = (=[Po,blzy + Po[P<4,b]zjy + Pof) o Y.
As a consequence, we may bound

sup IPozlli~ < llzoll= + [|[Po, b1z [y 1
te[0,T]

+ ||PO[P54;b]Z>j,y||L1TLw + ||P0f||L‘TL°°

S lzollegary + 6llzllLgacy + IPof I pyars-
Using that e*™P» P4 is bounded on L* and P4Py = P, we may then bound

sup IPozllary S sup [IPozllr~.
telo,T] te[0,T]

Finally, we split
Izllare < 1Pozllare + IPsozllaLy

s0, by choosing 0 < § < 1 sufficiently small, we obtain the estimate (4.10). O
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5. PROOF OF THEOREM 2.2

In this section we prove the existence of a solution (U, W) of the system (2.5), (2.7)
by taking the (weak) limit of a sequence of solutions to a sequence of regularized
systems. In our proof of existence we will consider U, W to be independently
defined functions, that is, not necessarily satisfying the identity (2.2). Once we
have proved the existence of a solution to the system (2.5), (2.7), it is clear that if
the initial data satisfies (2.2) then the corresponding solution must also satisfy this
identity.
Our regularization of the system (2.5), (2.7) is the following:

(513) lUt = PS_][ - lBUgJ‘y + USJ’yy +2lBSJUSJ,y +H|USJ|2USJ]’

. . 1
(5.1b) iWy = ng[ —iBW<jy +Wejyy + (2(W§j)2 - §|W§j|2)y

+ 3i0‘sststj + 2U|Usj|20(sj];

where we denote f<; = P<;f, take &, B to be the real and imaginary parts of W
as in (2.3), and define the regularized velocity

i ¥
B(t,y: ) = —3sech(2-7y) JO ot (8, C) B (8, C) L.

We note that the velocity b is expected to have linear (in y) growth as || — oo.
In the regularized version B we introduce an additional spatial weight to ensure
that the velocity is bounded, albeit with a bound that depends on j.

We first prove the existence of a solution to the regularized system (5.1), as
follows.

Lemma 5.1. Given 0 < s < 3,0 < Tg < 1, and (Up, Wy) € AH3, x AZ3,
there exists a time Ty > 0 and a solution (U,W) € C'([0,Tol; AHj, X AZ3) of
(5.1) with initial data (U, W) (0) = (Uy, Wy).

Proof. We first bound the velocity B by
1Bl s 2 llets;llze 1Bl < 27||W] 7.
Next, we apply Bernstein’s inequality followed by the estimate (3.3) to bound

IRHS (5.12) | aps,
< €™ 259 [ 227||WI[7 U2 + 22Uz + 27 IW s U2 + 27| U3 |

Srong (141U W) g, xazs, )N U W) g, sazs, »



A Quasilinear Schridinger Equation with Degenerate Dispersion 1607

I RHS (5.1b) | az,
< ™ [29||W[e + 22 (Wil + 27| W[Te + W17~ + 27U W1l |

Srog (11U W) lLaggs, xazs,)IQU W) DL aggs, azs,

19y RHS (5.1b) [l g7s-112
< e™? [22j||W||L°° Wyl + 227 Wy D2 + 27 [ Wl L= [ Wiy |l 2
WL 1Wy e + 20291 W L (U7 |

S (141U W) gz, xazs, )N U W) g, xazs, -

Applying these bounds, and identical bounds for the difference of two solutions,
we see that RHS (5.1) is Lipschitz continuous as a map from AH3 X AZ3 to itself.
The proof is then completed by applying the Picard-Lindelof theorem. O

We now turn to the proof of Theorem 2.2. Our goal here is to prove uniform
(in j) estimates for solutions of (5.1). These uniform bounds show the following:

(1) The solution of (5.1) can be extended to a j-independent time T > 0.
(2) We may pass to a (weak) limit as j — oo to obtain a solution of the system

(2.5), (2.7).

As is standard in such arguments, our proof of these uniform bounds takes the
form of a bootstrap estimate, relying on the local existence provided by Lemma 5.1.

Proof of Theorem 2.2. Assume j = 8 and choose a sufficiently small constant
0 <6 = 0(s) < 1, independent of j, as in the hypotheses of Propositions 4.1,
4.5. Next, we choose K = K(5,5,Tg) = 1 and M = M(K, 6, s, Tg, Uy, Wp) = 1
to be sufficiently large constants. Given these constants, we set Ty = 6/(2M) and
T € CI([0,T]) as in (4.2). We will subsequently ignore the dependence of the
bounds on §, s, which we can assume have been fixed.

We make the bootstrap assumption that for some 0 < T < T we have

(5.2) sup [1Ullags + MTollUIl 2 g2
tel0,T]
vM
+ sup [Wllazg +MTollWyllpz a2 < ——.
te[0,T] K

Our goal will be to prove that if the solution of (5.1) satisfies (5.2), then in
fact it must satisfy (5.2) with RHS (5.2) replaced by /M /(10K). By applying
Lemma 5.1, our solution may then be extended until time T = T and satisfies
the estimate (5.2). We comment that this application of Lemma 5.1 uses that, if
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we are given 0 < t; < t; < Ty, we have

153
[ ARy e = om0 sup (11,
tl tE[tl,tz] !

In particular, this motivates the difference between the pointwise-in-time and L*-
in-time regularities in (5.2).

We first consider estimates for the coefficient B. Here, it will be useful to
denote

FO(y) = =3sech(277y),
FP(y) = 3tanh(277y) sech(277y)

so that
, ¥ , By
By = f“)asjﬁstrZ_*’f(Z)PmJ X<jB<j dC+2_°’f(2)PoJ x<jf<jdC.
—_— 0 o 0 ,

I ~ -

I Iz

For € = 1,2 the functions £ () are analyticon the strip {y : [Imy| <1} = C,
and hence eiTDyf(ﬁ) (y) = f“)) (¥ ¥ iT). In particular, using the embedding
L* n H' c Z° we may use the explicit expressions for e*™P» f() to obtain the
J, T-independent bounds

IF DN aze =1, 1{y)ex™Pr f D)5 < 27,

Applying the product estimate (3.7) with the fact that

|

we may then bound

y
P>oj fxg'ﬂg'dCH < llejBejll e
0 J J AZ-(,)— J JIWWAZT»

||Il||Az$ + ”IZHAZQ 5 ||0‘sstj||Azg 5 ||W||AL-°F° ||W||A22;
uniformly in j. For the remaining term we first write
y z
e*™0y p, JO X<jB<jdC = JKt (v -2) ( JO X<jP<; d;) dz,

where K. is the kernel of e*™P»Py. As the functions K. are Schwartz, we may

bound

y
0Py [ 0By 48| 5 (et e IBsilim = OIIW s

%
2
‘aye”—'TDyPo Jo X<iB<j dC' S ezl 1B<jllze S [[W][4ge-
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Again using the embedding L* n H' < Z° with the fact that (y)~! € L? yields
the estimate

1 Y 2
—eiTDyP J K< <'d H S ||W 0,
[y |, ooyt < W
from which we obtain the j-independent bound [II3] 40 < ||W||iL%°' Combining
these bounds, we obtain

M
ﬁ .
In particular, provided K > 1 is sufficiently large (independently of all other
parameters), we see that for all t € [0, T] we have ||B,, lazo < M, and hence the
hypothesis (4.3) of Proposition 4.1 is satisfied (with b replaced by B).

Next, consider bounds for U, which we obtain by applying Proposition 4.1.
Applying the estimate (3.10) and the bootstrap assumption (5.2), we may bound

(5.3) 1Byl aze < IWllars W4z <

||3sjUsj,y||L2TAH;‘-1/2 = ”W”L%"AZ? ||U||L2TAH§+”2

VM

3 7||U||L2TAH§+1/2,

uniformly in j. Using the trilinear estimate (3.11) and the bootstrap assumption
(5.2), we estimate

A

|||Ugj|2Usj||L1TAH§ IUlILg arz WU 2 gpgie NUN 2 gpgse2

VM

K> /T

uniformly in j. Applying Proposition 4.1, we may then bound
sup [[Ullapms + \/MT0||U||L2TAH§+1/2

te[0,T]

1 1 I
S ||U0||AH3,-O + (KTO\/M + K2T0) MTOHUHLgrAHf_H/Z,

uniformly in j. Provided K is sufficiently large (depending only on 6, s, 7)), we
obtain the estimate

(5.4) sup Ullams +MTollUll 2 gys+12 Sk 1Uollams,»
te[0,T]

A

” U||L2TAH§“/2’

uniformly in M = 1 and j. In particular, provided M > 1 is sufficiently large
(depending on Uy, K, 6, s, Tg), we have

VM
Ullams + MTollU < -,
tes[lél,)r] U A ollUN 2 ap 20K

which closes the first part of the bootstrap.
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Next, we consider bounds for W,,, which will once again be proved by using
Proposition 4.1. Differentiating (5.1b), we obtain the equation

i(Wty + st(BWsj,yy))
1. 1 -
= PojWe iy +Pej [ 4Wo Wej — SW=iWsjy =5 W=iWsjy +201Us;j o | N
+ lPSJ [3O(SJ,_',VBSJWSJ + 3O(SJBSJ,}/WSJ + 30(SJBSJng‘y - B_’)/WSJ,_’)/]

Applying the estimate (3.6) we may bound
1. 1 -
<4Wsj Wejy = 5WeiWejy 5 WeiWsjy
2 2 )

VM

5 ||W||L°T°AL$° ”Wy”LzTAHi b 7||Wy||L2TAH§:

L3 AHY™!

uniformly in j. Similarly, using that T < 1/M, with (3.7), (3.10) we obtain
loe<iB<jyWsj + &<jyB<jW<j + O(Sjﬁgjwsj,y”LITAHi-l/Z
1
STIWllzzare IWlleaze IWyllps aps12 = ﬁHWyHLeToAH;l/z,
and using the estimate (5.3) with (3.10), we also have

||BJ’WSJ'J’”L‘TAH$'”2 s T”By”L%"AZ(% “WJ’”L"T“AHi_”Z
1
s ﬁHWyHLoToAHg—I/Z,

where both estimates are again uniform in j. Finally, applying estimate (3.12), we
may bound
I(1U<j120t<)y gz ams

2
S ”U”LZTAHi“/Z ”U”L"T"AL% ||W||L°T°AL$° + ||U||L°T°AL$ ”Wy”LZTAHi
M
s F(HU”LZTAH?’”Z + Wy llr2 ams)s

uniformly in j. Applying Proposition 4.1, we then obtain

tel0,T]

1 1
s ”WOJ’”AHig”Z + <m + K2T0> MTolIWy Il 12 aps

1 1
+ EHWS’”L;"Hi’”Z + KZ—TOVMTO”U”LZTH%
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uniformly in j. Provided K > 1 is sufficiently large (depending only on 6, s, To),
we may then apply the estimate (5.4) to yield

(5.5) sup Wyl ypgs-r2 +\MTollWyll 3 4125

te[0,T]
Sk Uollamz, + 1Woy Il ypr-1r2,

uniformly in M > 1 and j. In particular, provided M > 1 is sufficiently large
(depending on Uy, Wy, K, 9, S, Tp), we may ensure that

[ VM
sup ”WJ’”AHi’”z + MTOHW}’”LZTAL%— < 40—K,
tel0,T]

which closes the next part of the bootstrap.

For the final part of the bootstrap, we first apply Bernstein’s inequality and
(5.5) to bound

(5.6) sup [[PsoWllary = sup [[Wyll zys-12
te[0,T] te[0,T]
Sk WUollamz, + IWoyll -2,
provided K > 1 is sufficiently large, uniformly in M > 1 and j. It remains to

bound the low frequencies, for which we will use Proposition 4.5. We first apply
Bernstein’s inequality, the estimate (5.5), and the fact that T 5 1/M to bound

||P0stWsj,yy||L‘TAL.°,° S T”Wy”L"T"AHi'”Z

1
Sk 37 UUollars, + Woy ll 4prs102),

provided K > 1 is sufficiently large, uniformly in M > 1 and j. Similarly, we may
bound

3 1
||P0(‘ijstWsj)||L1TAL$° ) T||W||L‘;AL$ s EHW”L;’?AL%",

1 1 2
Po<2W§j—§|Wsj|2> S MHWHAL? 5

1
——|IWllrears
yllLiary KM TaLT?

2
||P0(|U£j|2asj)||LlTAL.‘}° S |||U|20‘||L1TAL1T S TIU|[igarz Wy ars

1
s EHWHI_";AL%
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where all the estimates are uniform in j. Applying these bounds, Proposition 4.5,
and the estimates (5.4) and (5.6), we obtain

sup [Wllarz < sup [[PoWllare + sup [IPsoWllare
tel0,T] te[0,T] te[0,T]

S Wollare + C(K) (0o llamz, + 1Woy Il gpy5-12)
1 1
+ K\/M + ﬁ ||W||L§~°AL-T—°J

uniformly in j, where C(K) is a constant depending only on K, 6,5, To. Once
again, provided K > 1 is sufficiently large (depending only on 6, s, T¢), we obtain
the estimate

(5.7) sup [IWllary <k Uollams, + IWollazs,
te[0,T]

uniformly in M > 1 and j. Consequently, provided M > 1 is sufficiently large
(depending only on Uy, Wy, K, s, 6, To), we obtain the bound

VM
sup [Wllare <,
te[0,T] 40K

which sufhices to close the bootstrap.

With the bootstrap closed, the estimate (2.8) for solutions of (5.1a) follows
from (5.4) and the estimate (2.9) for solutions of (5.1b), from (5.5) and (5.7),
where both estimates are uniform in j. Passing to a subsequence as j — o, we may
extract a weak* limit U € Cy ([0, T]; AH3) and W € Cy ([0, T]; AZ$) satisfying
the equations (2.5), (2.7), and the estimates (2.8), (2.9). Finally, the estimate
(2.10) follows from observing that for a suitable (very large) implicit constant,
independent of Uy, Wy, we may take

2 2
M = [[Uol[ams, + |[Wollaz, - O

6. PROOF OF THEOREM 1.2

We now turn to the proof of Theorem 1.2. Because the existence of a solution to
the system (2.5), (2.7) was proved in Theorem 2.2, our main tasks in this section
will first be to invert the change of variables (2.1) and then to understand the
regularity of our solution at the endpoints +x¢ of the interval I.

6.1. Existence. Given initial data uy € S satisfying our hypotheses, we
denote the initial change of variables by

Yo(x) =JX !

o Tuo@] %
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which we recall is a well-defined diffeomorphism from I onto R. We then define
the functions Uy, Wy: R — C by

U0 (X)Ugx (X)

Up(vo(x)) = ug(x) and Wy(yo(x)) = 20|

As ug € S, there exists some 0 < s < % and 0 < Ty < 1 so that Uy € AH3 and
Wy € AZ3 . We may then apply Theorem 2.2 to obtain a solution of the system
(2.5), (2.7) on some time interval [0, T].

A priori, the solution (U, W) constructed in Theorem 2.2 is a distributional
solution of the system (2.5), (2.7). However, by Sobolev embedding, for any
n=0andt € [0, T] the spaces AH; and AZ; are both embedded in the space of
bounded C" functions. In particular, for any multi-index k € N2, the functions
Vf’yU, Vf’yW are continuous and bounded on [0, T] X R; for any t € [0, T] the
functions Vf,yU, Vf’y 0y W vanish as || — oo; and U, W are classical solutions
of (2.5), (2.7) on [0, T] X R.

Applying Lemma 4.4, for any )y € R we may find a solution of the ODE

{Yt(t;y) =Db(t,Y(t,»)) - B(t,Y(t,y)),
Y(0,y) =y,

and by differentiating, it is clear that Y: [0, T] X R — R is smooth. In particular,
c(t) = Y (t,0) is a solution of (2.4).

As U is smooth, |U| is Lipschitz. Further, as U solves (2.5), we may compute
that

6.1) (IUNDe + (b= B)IUD)y = 0.

In particular,
o (Yy (t, MIU(L, Y (L, ¥))]) = 0.

Using the estimate (4.9) and that Uy ()| > 0 for every ¥ € R, we obtain
(6.2) [U(t,»)| >0 forevery (t,y) €[0,T] xR,

and consequently |U| is smooth. Further, as [U(t, )| — 0 as || — oo, we may
use the equations (6.1), (2.4) to obtain

d (® d c(t)
E C(f)|U(t’€)|d§:0:EJ,oo |U(t,§)|d§_

From the definition of U (0, ), we then have

c(

t)
|U(t,T)|dC.

(6.3) |, Jowola-x - |
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Next, we define

y
x(t,y) = L(t) U(t,2)dg,

and from (6.2), (6.3) we see that for any t € [0,T] the map y — x(t,y) is
a smooth diffeomorphsim from R onto I. Further, by construction, the map
v — x(0,y) is the inverse of yy. We then take

Wt ) = Ut,y) ifx=x(ty) el,

o ifx & 1.

As the map (t,y) — x(t,y) is smooth as a map from [0,T] xR — I and U
is a smooth solution of (2.5), the function u is a smooth solution of (QLS) on
[0, T] x I and satisfies u (0, x) = ug(x).

It remains to verify u is sufficiently well-behaved at the endpoints +£x¢ to
solve (QLS) on [0, T] x R. Note first that as |U| — 0 as |’| — o we have that
u € C([0,T] x R) is smooth away from x = +xq. Further, for x = x(t,y) we
have

U 1 U?
- —w —2> = ——Q2W? - aW + W,).
Uy i and (2u » |U|2( W + Wy)
In particular, Uy, (%uz)xx € C([0,T];L*(R)) are smooth away from x = +xq.
This suffices to show that u solves (QLS), where both sides of the equation make
sense as continuous functions on [0, T] X R.

6.2. Conservation laws. By construction, the solution u conserves its sup-
port. To prove it also conserves its mass, momentum, and energy it suffices to
show that our solution has sufficient regularity to justify the integrations by parts.

For the conservation of mass we only require that u € C([0, T] x R) is sup-
ported on I, and that uy, (%uz)xx € C([0,T];L*(R)).

For conservation of momentum and energy, we also require that

(39 ], =ctnmon

However, this follows from the observation that for x = x(t, ) we have

6.3. Uniqueness and continuity of the solution map. Finally, we consider
the problem of uniqueness and continuity of the solution map in L2. This follows
from a straightforward energy estimate, as follows.
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Lemma 6.1. Suppose that for some T > 0 and some j = 1,2 the functions
ul) € C([0,T] x R) are solutions of (QLS) with initial data w')(0) = g thar
are non-zero and smooth on I, supported on I, and such that

w [%(um)z] e C([0, T]; L™ (R)).

Then, we have the estimate

1 2
(6.4) sup lu® —u@ s luf” — uf? .
te[0,T]

Proof. We first note that under our hypotheses on u/) we may justify the
integration by parts

Gy u®) = —%<[<u<f>)2]x, W Pu®)) + p(@)?, uPu®),

Consequently, taking w = ul — 4@ and using the conservation of mass, we
obtain the identity

d 1
EHwHiz =~ Im{axy, (w)x) + pIm(a, w?),

where
a= (u(l))l + (u(Z))Z.

Using that ax € C([0,T] X R) and axx € C([0,T];L*(R)), we may integrate
by parts to obtain the estimate

d
wllE: = lalwes [wllz,

and the estimate (6.4) then follows from Gronwall’s inequality. O

This completes the proof of Theorem 1.2.

7. STABILITY OF THE COMPACT BREATHER

In this section we prove Theorem 1.3. We explore the concentration compactness
approach from Cazenave-Lions [6] in the context of compacton stability. Rather
than working with the variable u it will be useful to instead work with g := u?.
By a slight abuse of notation, in this section we will denote the Hamiltonian and
mass in terms of g instead of u, that is,

Hlq] = %j laxl? dx — %J al2dx, Mlq] = j Il dx.
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For simplicity let us take w = 1 and @ = @ from (1.4). We denote the orbit of
the square of the compacton by E := {e?®p(- — h)?: 0, h € R}. The following
result follows from the analysis of [16].

Proposition 7.1.

(1) Ifg € L' n H' is a solution of the minimization problem
(7.1) minH[g] subject to M[q] = v2m,

thenq € E.

(2) Given any sequence {q™} c L' n H! such that M[q™] — V21 and
such that H{[q™] — H[@?2], there exists a sequence (h(M} < R so that the
sequence @™ +hM)} s relatively compact in L' N0 H!.

Proof- The proof of (1) follows from the remark at the beginning of Sec-
tion 3.2 in [16]. The proof of (2) follows by a slight adaptation of the proof
of Theorem 2.7 in [16]. O

Proof of Theorem 1.3. We proceed by contradiction. In particular, assume our

orbital stability result does not hold. Then, there are € > 0 and a sequence of ini-
tial data {u{™} < § so that after applying Theorem 1.2 we obtain correspondmg
solutions ™ defined on the time interval [0, Ty, ], such that, with q (u (n)y2

and g™ = (u™)2, we have M[q(()")] — /21T and H[q(()")] — H[@?2], and times
0 <ty < Ty so that

qi}ré)fg 14" (tn, ) = @llpam = €.

As g™ (ty, ) is a minimizing sequence for the constrained minimization prob-
lem (7.1), and using the fact that the solution q™ conserves the mass and energy,
we may apply Proposition 7.1 to obtain a contradiction. O

APPENDIX A. CHANGES OF VARIABLE

In this section we outline the computations leading to the equations (2.5) for U
and (2.7) for W.

We first observe that (|u|?); = 2Im(|ul?*@uy)x. Differentiating the expres-
sion (2.1) and using the equation (2.4) to replace c¢;, we obtain

itx) =3 [ ThRe (M€ 1m (€ g - J (%) az + ¢, (1)

o lul lul [ul

y(t,x)
_ —3j L AL DBEDIAL + BlL,en) - BL, (LX) + crl)
=b(t,y(t,x)) - B,y (L, x)).
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Consequently,
olU(t,y(t,x))] = [Ut + (b - BU,yI(t, ¥ (t,x)).
The equation (2.5) then follows from the observation that
1
wa(t,3) = | Uy | (€0,
(8,30 = | 75 Wy = o) | 1 (E)).

To derive the equation (2.7) we first compute that

(T u o u 77, J
l( |1/L|X) B m(U(UUX)x + H|U|2u)x - —x(u(uu")x + ululzu)
t

lul
_ iuu;‘ Im <|u|3%> .
lul lul /x
Changing variables and using that U,, = WU, we obtain

; y 2
W+ (b -BW,) = |[[]]|2 (|g| <|UU|W) +u|U|2U>
y

y

U u (0% _
——=W | |==W| +ulUP*0
K (|U|<|U| )y Hvl )

|U|3 (1UIPB)y.
The equation (2.7) then follows from the fact that U, = UW and (|U|), = «|U].
APPENDIX B. MULTILINEAR ESTIMATES

In this section we prove Proposition 3.6. We will rely on the following lemma (the
proof of which may be found in, for example, [58, Chapter 3 and Appendix D]).

Lemma B.1. Fors € R, 0 = 0 and any integer k = 0, we have the estimates

(B.1) ||Ta§,fg||HS nallras ||a gllus,

(B.2) ITp,yorgllas S I1f1lE2 KDy )* 7 gllsmo,

(B.3) O[S, g1l e < 11{Dy) 5 fllpmo 1G]l o+s.
Proof of Proposition 3.6.

PROOF OF (3.6). We decompose the product

fgy =Trgy + Tgyf +II[f, gy1,
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and then apply the estimates (B.1), (B.3).
PROOF OF (3.7). We first bound

1fglle= < Ifllc= [1gllLe.
Next, we decompose the product
J9=Trg + Tgf +1ILf, Pog] + IILf, P>og].

For the low-high interactions we apply the estimate (B.1) to bound

10y Tegllms—12 S If ML= 1y ls-1r2,
10y Tg fllus-1i2 = I fy llms-1i2 Gl

For the first high-high interaction, we observe that
H[flpog] = PS]GH[PSSf’P()g],
so we may apply (B.3) to bound

10y TILS, Pog | ys-12 < [T P<s fy, Pogll] 2 + |ITI[P<s f, Pogy 1|12
S I1P<sfylliz lgliee + I1f le= 1Pogy Il 12
S Wy lase lgliee + 11F s 1gy s

For the second high-high interaction, we again apply (B.3) to bound

10y TILS, P>ogll|gs-12 S 11 f L IPsogllse1n S ILf s Il gy lps1rn.

PROOF OF (3.8). We simply apply the estimate (B.1).
PROOF OF (3.9). We decompose

fgy -Trgy = Tgyf + H[f:gy]-

For the low-high interactions we apply the estimate (B.2), using that s < 1, to
obtain

ITg, fllas = 1{Dy) fllBmo |Gy lEs-1 < 1f lwres 115
For the high-high interactions we apply the estimate (B.3), using that s > 0, to

obtain

I[TILf, gy lgs = KDy ) fllsmo gy ls—1 S L llwre 1G]l ars-
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PROOF OF (3.10). Again, we decompose

f9y =Trgy + Tg, f + TP f,gy] + T[Psof, gyl
Applying (B.1), we may bound
ITrgyllus-12 s 1 f e gy sz,
and applying (B.2), using that s < 1, we may bound
ITg, fllas—12 S ILflIBMO 1y N Hs-12 S I f Il 11gy Tms-1r2.

For the first high-high interaction we use that
II[Pof,gy] = P<i6I1[Po f, P<sgy]

and apply (B.3) to bound

||H[P0f:gy]||H371/2 < ||H[P0f,gy]||L2 < N fllpe ”PngyHLZ
S 1l 11gy lgs-1e.

For the second high-high interaction we apply Bernstein’s inequality at the output
frequency followed by the Cauchy-Schwarz inequality to obtain

||H[P>Of,gy]||Hsfl/2 s Z 2Sj||PjH[P>0f;gy]||Ll
j=0

s > QUPKIPPLofll) RCTVDUPygy 12)
|k—L| <4

S NPsof e gy lus-12 S L fy la-12 |Gy ls-1r2,

where we have used the fact that s > 0.

PROOF OF (3.11). Here, it will be convenient to argue by duality. Consequently,
we take a test function @ € H™* and decompose by frequency to obtain

(fgh, @)= > (P;f-Ppg-Pih Pj).
J1,J2,J3,J4=0

By symmetry, we may assume j; < j, < j3 and then observe that the sum vanishes
unless

| max{j2, j4} — j3l < 8.

If j4 = j, then |j3 — js| < 8. We estimate the two lowest frequency terms in L%
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and the two highest frequency terms in L? and then apply Bernstein’s inequality
to bound

[(Pj.f - Pj,g - Pj;h, Pj,@)|
S Pj fliz= IPj gl 1P Rl 1Py, @llz2
< 2WDG=B Py, flliz 1P, gl 1Pyl gsee 1Pyl .

If j4 < j2 then | j2 — j3| < 8 we proceed similarly, applying Bernstein’s inequality
to estimate

|(lef : szg : Pj3h’Pj4(p>|
< 1Py, flle I1Pj, gl 1P Rl 1Pyl
< 2(s+1/2)(J'4-J'3)+(1/2)(j1—J'z)||pj1f||L2 ||szg||H1/2
X |[Pj;hll s+ |1Pj, @l -5

The estimate (3.11) then follows from several applications of the Cauchy-
Schwarz inequality, first summing over the lowest frequency, then the second low-
est frequency, and finally the highest two (comparable) frequencies.

PROOF OF (3.12). Again taking @ € H™* and decomposing by frequency, it
suffices to bound

[(Pj.f - Ppg - h, Py, @),
where, by symmetry, we may assume that j; < j,. We then divide into 3 cases:
Case I: j, < js. For the low frequency part of h, we apply Bernstein’s inequality
to bound
[(Pj.f - Pj.g - P<jyh, Py )|
S Py flle= 1Py, gllr2 IP<j, i~ 1Py, @Il 12
< 2WRGRP fllie 1PLgllsaie IP<j il 1P @,

where we have used that | j, — j4| < 8. For the high frequency part we decompose
by frequency j3 > j» and bound

|(lef ' sz-g ' Pjahipj4q9)|
S I1Pj, flle 1P, gllL= [IPj;hll2 |1Pj @l 2
< 20U DG Py flze 1Paglis 1Py e 1Py @i,

where we have used that j3 > 0 and |j3 — j4| < 8.
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Case 2: ji < js < jo. Here, we proceed similarly, bounding the low frequency
part of h by

|<lef ’ sz-g ' PSJ4h’Pj4(p>|
S 1Pj, fll= IPj, gl [IP<j bz 1Py, @l L2
< 2WDG=2)| Py fll2 1Py, gl s ||1P<j bl 1Py @l p-s,

and the high frequency part, where j3 > j4, by

I(Pj.f - Pj,g - Pj;h, Pj,@)|
S N Pj fllz= I1Pj,gllz2 1P Al 1Py, @l
< 202U H 2G| By f1a 1Py, g 12 I1Pj,hy s 1Py, ll-s,

Case 3: js < ji. Proceeding as in the previous two cases, we bound
(Pj,.f - Pj,g - P<j,h, Pj,@)]|

S 1P fll2 1Py, gl [1P<j bl |IPj, @l
< 26D Py fll 2 1P, gl s | P<jhlls 1Py @lla-s,

and for j3 > ji,
[Pj.f - Pj,g - Pj;h, Pj,@)|
S 1Py fli= 1Py, g2 1Py hlir2 [Py, @Il L
< 26U WD G0 | Py 2 1Py,glle 1P Ry s 1P @ ll-s.

PROOF OF (3.13). We decompose the commutator as

[(Dy>5,f]gy
= [(Dy)*, Trlgy + ((Dy)*T[Pof,gy] —T[Pof,{Dy)°gy])
+ <Dy>STgyf - T(Dy>sgyf + <Dy>SH[P>0f, gy] - H[P>0f! <Dy>sgy]-

For the first term, we write
[(Dy>S|st—4f]Pjgy = [(Dy>Sst+4|st—4f]Pjgy

= JKj(y —2)(P<j-4f(¥) — P<j4f(2))Pjg-(z) dz,
where K is the kernel of (D, )*P<j,4. We then apply Young’s inequality to bound

(D)%, P<j—af1Pigyllr2 = IKj) Yl IP<j-afylirs IPjgylli2
S Iyl IPiglas,
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where we have used that
IK; ()l < 268714,
The second term is bounded similarly, using that

<Dy>SH[P0f!gy] - H[POf! <Dy>5gy]
= (Dy)*P<i6II[Pof, P<ggy] — I[Py f, (D) P<16P<sgy],
to obtain

[{Dy)*T[Pof, gyl —T[Pof, (Dy) gy || 12
S Il 1P<sglirz < Il fylire 11g s

For the remaining terms, we first apply the estimate (B.2), with the fact that
s <1, to obtain

D) Ty, fllz + 1o, p5g, Flliz S Ify s gl

Next, we apply the estimate (B.3) to bound
ITI[Ps0.f, (Dy) gy 12 = Lfy Nl lglms-

For the remaining term, if s > 0, we again apply the estimate (B.3) to bound
KDy Y TI[Pso.f, gy lllr2 < Ifylls lglins,

whereas, if —% < s < 0, we argue as in the proof of (3.10) to bound

KDy TIP-o f, gy 12 < Wfyy -1 Ilglms.

Proof of (3.14). We first observe that
[st,f]st—4gy = [st,P>j—4f]st—4gy,

and hence we may bound
[[[P<j, f1P<j—4Gy || S IPsj4f L= lIP<j-sgy L= S I fyllL= gl
For the remaining term, we proceed as in the proof of (3.13) and write
[P S1P- -4 = [ Kj = 2)(F ) = F@)P2 4022 dz,

where K is the kernel of P;.
The estimate then follows from Young’s inequality. O



A Quasilinear Schridinger Equation with Degenerate Dispersion 1623

Acknowledgement. This project was started as a collaboration with Pierre
Germain, to whom the authors are extremely grateful for many fruitful discussions
and several invaluable contributions towards understanding the structure of the
problem. The authors also wish to thank Sung-Jin Oh for several enlightening
discussions about degenerate dispersive equations. Finally, the authors would like
to thank the anonymous referee for the careful reading of the manuscript and
several insightful comments and suggestions.

The second author was supported in part by the US National Science Foun-
dation (grant nos. DMS-1312874 and DMS-1352353).

REFERENCES

[1]1 T. AKHUNOV, A sharp condition for the well-posedness of the linear KdV-type equation,
Proc. Amer. Math. Soc. 142 (2014), no. 12, 4207—4220. http://dx.doi.org/10.1090/
S0002-9939-2014-12136-8. MR3266990

[2] D.M. AMBROSE and J. D. WRIGHT, Dispersion vs. anti-diffusion: Well-posedness in variable
coefficient and quasilinear equations of KdV type, Indiana Univ. Math. J. 62 (2013), no. 4, 1237-
1281. http://dx.doi.org/10.1512/iumj.2013.62.5049. MR3179690

[3] D. M. AMBROSE, G. SIMPSON, J. D. WRIGHT, and D. G. YANG, [l[-posedness of degenerate
dispersive equations, Nonlinearity 25 (2012), no. 9, 2655-2680. http://dx.doi.org/10.1088/
0951-7715/25/9/2655. MR2967120

[4] J.L.BONA, Z. GRUJIC, and H. KALISCH, Global solutions of the derivative Schridinger equation
in a class of functions analytic in a strip, J. Differential Equations 229 (2006), no. 1, 186-203.
http://dx.doi.org/10.1016/j.jde.2006.04.013. MR2265624

[5] R. CARLES and C. GALLO, WKB analysis of generalized derivative nonlinear Schrodinger equations
without hyperbolicity, Math. Models Methods Appl. Sci. 27 (2017), no. 9, 1727-1742. http://
dx.doi.org/10.1142/50218202517500300. MR3669837

[6] T. CAZENAVE and P-L. LIONS, Orbital stability of standing waves for some nonlinear Schridinger
equations, Comm. Math. Phys. 85 (1982), no. 4, 549-561. http://dx.doi.org/10.1007/
BF01403504. MR677997

[7] J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, and T. TAO, Transfer of energy to
high frequencies in the cubic defocusing nonlinear Schridinger equation, Invent. Math. 181 (2010),
no. 1, 39-113. http://dx.doi.org/10.1007/500222-010-0242-2. MR2651381

[8] J. E. COLLIANDER,J. L. MARZUOLA, T. OH, and G. SIMPSON, Behavior of a model dynamical
system with applications to weak turbulence, Exp. Math. 22 (2013), no. 3, 250-264. http://dx.
doi.org/10.1080/10586458.2013.793110. MR3171091

[9]1 L. COMTET, Advanced Combinatorics: The art of Finite and Infinite Expansions, Revised and
enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. MR0460128

[10] D. COUTAND and S SHKOLLER, Well-posedness in smooth function spaces for moving-boundary
1-D compressible Euler equations in physical vacuum, Comm. Pure Appl. Math. 64 (2011), no. 3,
328-366. http://dx.doi.org/10.1002/cpa.20344. MR2779087

[11] P D’ANCONA and R. MANFRIN, 4 class of locally solvable semilinear equations of weakly hy-
perbolic type, Ann. Mat. Pura Appl. (4) 168 (1995), 355-372. http://dx.doi.org/10.1007/
BF01759266. MR1378250

[12] A. DE BOUARD, N. HAYASHI, and K. KATO, Gevrey regularizing effect for the (generalized)
Korteweg-de Vries equation and nonlinear Schrodinger equations, Ann. Inst. H. Poincaré Anal. Non
Linéaire 12 (1995), no. 6, 673-725 (English, with English and French summaries). http://dx.
doi.org/10.1016/S0294-1449(16)30148-2. MR1360541

[13] C. FoIAS and R. TEMAM, Gevrey class regularity for the solutions of the Navier-Stokes
equations, ]. Funct. Anal. 87 (1989), no. 2, 359-369. http://dx.doi.org/10.1016/
0022-1236(89)90015-3. MR1026858


http://dx.doi.org/10.1090/S0002-9939-2014-12136-8
http://dx.doi.org/10.1090/S0002-9939-2014-12136-8
http://www.ams.org/mathscinet-getitem?mr=3266990
http://dx.doi.org/10.1512/iumj.2013.62.5049
http://www.ams.org/mathscinet-getitem?mr=3179690
http://dx.doi.org/10.1088/0951-7715/25/9/2655
http://dx.doi.org/10.1088/0951-7715/25/9/2655
http://www.ams.org/mathscinet-getitem?mr=2967120
http://dx.doi.org/10.1016/j.jde.2006.04.013
http://www.ams.org/mathscinet-getitem?mr=2265624
http://dx.doi.org/10.1142/S0218202517500300
http://dx.doi.org/10.1142/S0218202517500300
http://www.ams.org/mathscinet-getitem?mr=3669837
http://dx.doi.org/10.1007/BF01403504
http://dx.doi.org/10.1007/BF01403504
http://www.ams.org/mathscinet-getitem?mr=677997
http://dx.doi.org/10.1007/s00222-010-0242-2
http://www.ams.org/mathscinet-getitem?mr=2651381
http://dx.doi.org/10.1080/10586458.2013.793110
http://dx.doi.org/10.1080/10586458.2013.793110
http://www.ams.org/mathscinet-getitem?mr=3171091
http://www.ams.org/mathscinet-getitem?mr=0460128
http://dx.doi.org/10.1002/cpa.20344
http://www.ams.org/mathscinet-getitem?mr=2779087
http://dx.doi.org/10.1007/BF01759266
http://dx.doi.org/10.1007/BF01759266
http://www.ams.org/mathscinet-getitem?mr=1378250
http://dx.doi.org/10.1016/S0294-1449(16)30148-2
http://dx.doi.org/10.1016/S0294-1449(16)30148-2
http://www.ams.org/mathscinet-getitem?mr=1378250
http://dx.doi.org/10.1016/0022-1236(89)90015-3
http://dx.doi.org/10.1016/0022-1236(89)90015-3
http://www.ams.org/mathscinet-getitem?mr=1026858

1624 BENJAMIN HARROP-GRIFFITHS ¢ JEREMY MARZUOLA

(14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

(24]

[25]

[26]

(271

[28]
[29]
[30]
[31]

[32]

C. GALLO, Schridinger group on Zhidkov spaces, Adv. Differential Equations 9 (2004), no. 5-6,
509-538. MR2099970

P. GERMAIN, B. HARROP-GRIFFITHS, and J. L. MARZUOLA, Existence and uniqueness of so-
lutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math. 72
(2019), no. 11, 2449-2484. http://dx.doi.org/10.1002/cpa.21828. MR4011864

, Compactons and their variational properties for degenerate KDV and NLS in dimen-
sion 1, Quart. Appl. Math. 78 (2020), no. 1, 1-32. http://dx.doi.org/10.1090/qam/
1538. MR4042218

L. GIACOMELLI, M. V. GNANN, H. KNUPFER, and E OTTO, Well-posedness for the Navier-
slip thin-film equation in the case of complete wetting, J. Differential Equations 257 (2014), no. 1,
15-81. http://dx.doi.org/10.1016/j . jde.2014.03.010. MR3197240

J. GINIBRE and G. VELO, Long range scattering and modified wave operators for some Hartree
type equations I1I: Gevrey spaces and low dimensions, ]. Differential Equations 175 (2001), no. 2,
415-501. http://dx.doi.org/10.1006/jdeq.2000.3969. MR1855975

M. V. GNANN, On the regularity for the Navier-slip thin-film equation in the perfect wetting
regime, Arch. Ration. Mech. Anal. 222 (2016), no. 3, 1285-1337. http://dx.doi.org/10.
1007/s00205-016-1022-y. MR3544328

O. GOUBET, Two remarks on solutions of Gross-Pitacvskii equations on Zhidkov
spaces, Monatsh. Math. 151 (2007), no. 1, 39-44. http://dx.doi.org/10.1007/
s00605-006-0441-5. MR2317389

Z. GRUJIC and H. KALISCH, The derivative nonlinear Schridinger equation in analytic classes, J.
Nonlinear Math. Phys. 10 (2003), no. suppl. 1, 62-71. http://dx.doi.org/10.2991/jnmp.
2003.10.s1.5. MR2063545

N. HAYASHI, Global existence of small analytic solutions ro nonlinear Schridinger equa-
tions, Duke Math. J. 60 (1990), no. 3, 717-727. http://dx.doi.org/10.1215/
S0012-7094-90-06029-6. MR1054532

N. HAYASHI, P. I. NAUMKIN, and P-N. PIPOLO, Analytic smoothing effects for some derivative
nonlinear Schridinger equations, Tsukuba J. Math. 24 (2000), no. 1, 21-34. http://dx.doi.
org/10.21099/tkbjm/1496164043. MR1791328

N. HAYASHI and T. OZAWA, On the derivative nonlinear Schridinger equa-
tion, Phys. D 55 (1992), no. 1-2, 14-36. http://dx.doi.org/10.1016/
0167-2789(92)90185-P. MR1152001

N. HAYASHI and S. SAITOH, Analyticity and global existence of small solutions to some nonlinear
Schridinger equations, Comm. Math. Phys. 129 (1990), no. 1, 27—41. http://dx.doi.org/10.
1007/BF02096777. MR1046275

J. K. HUNTER, Asymprotic equations for nonlinear hyperbolic waves, Surveys in Applied Mathe-
matics, Vol. 2, Surveys Appl. Math., vol. 2, Plenum, New York, 1995, pp. 167-276. http://
dx.doi.org/10.1007/978-1-4615-1991-1_3. MR1387617

J. K. HUNTER and E. B. SMOTHERS, On the resonant reflection of weak, nonlinear sound waves
off an entropy wave, Stud. Appl. Math. 143 (2019), no. 2, 157-175. http://dx.doi.org/10.
1111/sapm.12271. MR3994381

W. ICHINOSE, Some remarks on the Cauchy problem for Schridinger type equations, Osaka J. Math.
21 (1984), no. 3, 565-581. MR759481

J. JANG and N. MASMOUDI, Well-posedness for compressible Euler equations with physical vacuum
singularity, Comm. Pure Appl. Math. 62 (2009), no. 10, 1327-1385. http://dx.doi.org/10.
1002/cpa.20285. MR2547977

L.-J. JEONG and S.-]. OH, personal communication.

, Strong ill-posedness in high Sobolev spaces for a class of degenerare Schridinger equations, in
preparation.

» On the Cauchy problem for the Hall and electron magnetohydrodynamic equations without
resistivity I Illposedness near degenerate stationary solutions, Ann. PDE 8 (2022), no. 2, Paper
No. 15. https://doi.org/10.1007/s40818-022-00134-5. MR4456288



http://www.ams.org/mathscinet-getitem?mr=2099970
http://dx.doi.org/10.1002/cpa.21828
http://www.ams.org/mathscinet-getitem?mr=4011864
http://dx.doi.org/10.1090/qam/1538
http://dx.doi.org/10.1090/qam/1538
http://www.ams.org/mathscinet-getitem?mr=4042218
http://dx.doi.org/10.1016/j.jde.2014.03.010
http://www.ams.org/mathscinet-getitem?mr=3197240
http://dx.doi.org/10.1006/jdeq.2000.3969
http://www.ams.org/mathscinet-getitem?mr=1855975
http://dx.doi.org/10.1007/s00205-016-1022-y
http://dx.doi.org/10.1007/s00205-016-1022-y
http://www.ams.org/mathscinet-getitem?mr=3544328
http://dx.doi.org/10.1007/s00605-006-0441-5
http://dx.doi.org/10.1007/s00605-006-0441-5
http://www.ams.org/mathscinet-getitem?mr=2317389
http://dx.doi.org/10.2991/jnmp.2003.10.s1.5
http://dx.doi.org/10.2991/jnmp.2003.10.s1.5
http://www.ams.org/mathscinet-getitem?mr=2063545
http://dx.doi.org/10.1215/S0012-7094-90-06029-6
http://dx.doi.org/10.1215/S0012-7094-90-06029-6
http://www.ams.org/mathscinet-getitem?mr=1054532
http://dx.doi.org/10.21099/tkbjm/1496164043
http://dx.doi.org/10.21099/tkbjm/1496164043
http://www.ams.org/mathscinet-getitem?mr=1791328
http://dx.doi.org/10.1016/0167-2789(92)90185-P
http://dx.doi.org/10.1016/0167-2789(92)90185-P
http://www.ams.org/mathscinet-getitem?mr=1152001
http://dx.doi.org/10.1007/BF02096777
http://dx.doi.org/10.1007/BF02096777
http://www.ams.org/mathscinet-getitem?mr=1046275
http://dx.doi.org/10.1007/978-1-4615-1991-1_3
http://dx.doi.org/10.1007/978-1-4615-1991-1_3
http://www.ams.org/mathscinet-getitem?mr=1387617
http://dx.doi.org/10.1111/sapm.12271
http://dx.doi.org/10.1111/sapm.12271
http://www.ams.org/mathscinet-getitem?mr=3994381
http://www.ams.org/mathscinet-getitem?mr=759481
http://dx.doi.org/10.1002/cpa.20285
http://dx.doi.org/10.1002/cpa.20285
http://www.ams.org/mathscinet-getitem?mr=2547977
https://doi.org/10.1007/s40818-022-00134-5
http://www.ams.org/mathscinet-getitem?mr=4456288

[33]

[34]

[35]

[36]

(371

[38]

[39]

(40]

(41]

[42]

(43]

(44]

A Quasilinear Schridinger Equation with Degenerate Dispersion 1625

T. KATO and K. MASUDA, Nonlinear evolution equations and analyticizy. I, Ann. Inst.
H. Poincaré Anal. Non Linéaire 3 (1986), no. 6, 455-467 (English, with French sum-
mary). MR870865

C.E. KENIG, G. PONCE, and L. VEGA, The Cauchy problem for quasi-linear Schridinger
equations, Invent. Math. 158 (2004), no. 2, 343-388. http://dx.doi.org/10.1007/
s00222-004-0373-4. MR2096797

N. KISHIMOTO and Y. TSUTSUMI, [ll-posedness of the third order NLS equation with Raman
scattering term, Math. Res. Lett. 25 (2018), no. 5, 1447-1484. http://dx.doi.org/10.4310/
MRL.2018.v25.n5.a5. MR3917735

H. KNUPFER, Well-posedness for the Navier slip thin-film equation in the case of partial wetting,
Comm. Pure Appl. Math. 64 (2011), no. 9, 1263-1296. http://dx.doi.org/10.1002/cpa.
20376. MR2839301

» Well-posedness for a class of thin-film equations with general mobility in the regime of partial
wetting, Arch. Ration. Mech. Anal. 218 (2015), no. 2, 1083-1130. http://dx.doi.org/10.
1007/500205-015-0882-x. MR3375546

H. KNUPFER and N. MASMOUDI, Darcys flow with prescribed contact angle: well-posedness and
lubrication approximation, Arch. Ration. Mech. Anal. 218 (2015), no. 2, 589-646. http://dx.
doi.org/10.1007/s00205-015-0868-8. MR3375536

H. KOCH, Non-Euclidean singular integrals and the porous medium equation, Habilitation Thesis,
Ruprecht-Karls-Universitit, Heidelberg, 1999.

D. LANNES and G. METIVIER, The shoreline problem for the one-dimensional shallow warer and
Green-Naghdi equations, ]. Ec. polytech. Math. 5 (2018), 455-518 (English, with English and
French summaries). http://dx.doi.org/10.5802/jep.76. MR3817287

R. MANFRIN, Well posedness in the C% class for uyy = a(u)Au, Nonlinear Anal.
36 (1999), no. 2, Ser. A: Theory Methods, 177-212. http://dx.doi.org/10.1016/
S0362-546X(97)00703-7. MR1668860

J.L. MARZUOLA, J. METCALFE, and D. TATARU, Quasilinear Schridinger equations I. Small
data and quadyatic interactions, Adv. Math. 231 (2012), no. 2, 1151-1172. http://dx.doi.
org/10.1016/j.aim.2012.06.010. MR2955206

» Quasilinear Schridinger equations III: Large Data and Short Time (2020), preprint, avail-
able at http://arxiv.org/abs/arXiv:2001.01014.

S. MIZOHATA, On the Cauchy Problem, Notes and Reports in Mathematics in Science
and Engineering, vol. 3, Academic Press, Inc., Orlando, FL; Science Press Beijing, Beijing,
1985. MR860041

[45] A. PIKOVSKY and P ROSENAU, Phase compactons, Phys. D 218 (2006), no. 1, 56-69. http://

[46]
(471
(48]

(49]

[50]
[51]

[52]

dx.doi.org/10.1016/j.physd.2006.04.015. MR2234209

P. ROSENAU, Nonlinear dispersion and compact structures, Phys. Rev. Lett. 73 (1994), no. 13,
1737-1741. http://dx.doi.org/10.1103/PhysRevLett.73.1737.

, What is...a compacton?, Notices Amer. Math. Soc. 52 (2005), no. 7, 738-
739. MR2159688

, On a model equation of traveling and stationary compactons, Phys. Lett. A 356 (2006),
no. 1, 44-50. http://dx.doi.org/10.1016/j.physleta.2006.03.033. MR1377202

, Compact breathers in a quasi-linear Klein-Gordon equation, Phys. Lett. A
374 (2010), no. 15-16, 1663-1667. http://dx.doi.org/10.1016/j.physleta.2010.01.
065. MR2601818

P. ROSENAU and J. M. HYMAN, Compactons: Solitons with finite wavelength, Phys. Rev. Lett. 70
(1993), no. 5, 564. http://dx.doi.org/10.1103/PhysRevLett.70.564.

P ROSENAU and A. PIKOVSKY, Phase compactons in chains of dispersively coupled oscillators,
Phys. Rev. Lett. 94 (2005), no. 17, 174102. http://dx.doi.org/10.1103/PhysRevLlett.94.
174102.

, Breathers in strongly anharmonic lattices, Phys. Rev. E 89 (2014), no. 2, 022924. http://
dx.doi.org/10.1103/PhysRevE.89.022924.



http://www.ams.org/mathscinet-getitem?mr=870865
http://dx.doi.org/10.1007/s00222-004-0373-4
http://dx.doi.org/10.1007/s00222-004-0373-4
http://www.ams.org/mathscinet-getitem?mr=2096797
http://dx.doi.org/10.4310/MRL.2018.v25.n5.a5
http://dx.doi.org/10.4310/MRL.2018.v25.n5.a5
http://www.ams.org/mathscinet-getitem?mr=3917735
http://dx.doi.org/10.1002/cpa.20376
http://dx.doi.org/10.1002/cpa.20376
http://www.ams.org/mathscinet-getitem?mr=2839301
http://dx.doi.org/10.1007/s00205-015-0882-x
http://dx.doi.org/10.1007/s00205-015-0882-x
http://www.ams.org/mathscinet-getitem?mr=3375546
http://dx.doi.org/10.1007/s00205-015-0868-8
http://dx.doi.org/10.1007/s00205-015-0868-8
http://www.ams.org/mathscinet-getitem?mr=3375536
http://dx.doi.org/10.5802/jep.76
http://www.ams.org/mathscinet-getitem?mr=3817287
http://dx.doi.org/10.1016/S0362-546X(97)00703-7
http://dx.doi.org/10.1016/S0362-546X(97)00703-7
http://www.ams.org/mathscinet-getitem?mr=1668860
http://dx.doi.org/10.1016/j.aim.2012.06.010
http://dx.doi.org/10.1016/j.aim.2012.06.010
http://www.ams.org/mathscinet-getitem?mr=2955206
http://arxiv.org/abs/arXiv:2001.01014
http://www.ams.org/mathscinet-getitem?mr=860041
http://dx.doi.org/10.1016/j.physd.2006.04.015
http://dx.doi.org/10.1016/j.physd.2006.04.015
http://www.ams.org/mathscinet-getitem?mr=2234209
http://dx.doi.org/10.1103/PhysRevLett.73.1737
http://www.ams.org/mathscinet-getitem?mr=2159688
http://dx.doi.org/10.1016/j.physleta.2006.03.033
http://www.ams.org/mathscinet-getitem?mr=1377202
http://dx.doi.org/10.1016/j.physleta.2010.01.065
http://dx.doi.org/10.1016/j.physleta.2010.01.065
http://www.ams.org/mathscinet-getitem?mr=2601818
http://dx.doi.org/10.1103/PhysRevLett.70.564
http://dx.doi.org/10.1103/PhysRevLett.94.174102
http://dx.doi.org/10.1103/PhysRevLett.94.174102
http://dx.doi.org/10.1103/PhysRevE.89.022924
http://dx.doi.org/10.1103/PhysRevE.89.022924

1626 BENJAMIN HARROP-GRIFFITHS ¢ JEREMY MARZUOLA

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
(61]
(62]

(63]

P ROSENAU and S. SCHOCHET, Almost compact breathers in anharmonic lattices near the
continuum limit, Phys. Rev. Lett. 94 (2005), no. 4, 045503. http://dx.doi.org/10.1103/
PhysRevLett.94.045503.

, Compact and almost compact breathers: A bridge between an anharmonic lattice and
its continuum limit, Chaos 15 (2005), no. 1, 015111, 18. http://dx.doi.org/10.1063/1.
1852292. MR2133462

P. ROSENAU and A. ZILBURG, On a strictly compact discrete breathers in a Klein-Gordon model,
Phys. Lett. A 379 (2015), no. 43—44, 2811-2816. http://dx.doi.org/10.1016/j.physleta.
2015.09.012. MR3402749

, Compactons, J. Phys. A 51 (2018), no. 34, 343001, 136. http://dx.doi.org/10.
1088/1751-8121/aabff5. MR3829411

J. TAKEUCHL, On the Cauchy problem for some non-Kowalewskian equations with distinct charac-
teristic roots, J. Math. Kyoto Univ. 20 (1980), no. 1, 105-124. http://dx.doi.org/10.1215/
kjm/1250522323. MR564671

M. E. TAYLOR, Pseudodifferential Operators and Nonlinear PDE, Progress in Mathemat-
ics, vol. 100, Birkhiuser Boston, Inc., Boston, MA, 1991. http://dx.doi.org/10.1007/
978-1-4612-0431-2. MR1121019

P.E. ZHIDKOV, Zadacha Koshi dlya nelinei nogo uravneniya Shredingera [7he Cauchy
problem for the nonlinear Schridinger equation], Soobshcheniya Ob’’edinennogo Instituta
Yadernykh Issledovanii, Dubna [Communications of the Joint Institute for Nuclear Research,
Dubna], R5-87-373, Joint Inst. Nuclear Res., Dubna, 1987 (Russian). Russian, with an English
summary. MR906067

P. E. ZHIDKOV, Korteweg-de Vries and Nonlinear Schrodinger Equations: Qualitative Theory, Lec-
ture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. MR1831831

A. ZILBURG and P. ROSENAU, On solitary patterns in Lotka-Volterra chains, ]. Phys. A 49 (2016),
no. 9, 095101, 21. http://dx.doi.org/10.1088/1751-8113/49/9/095101. MR3462314

, On Hamiltonian formulations of the C1(m, a, b) equations, Phys. Lett. A 381 (2017),
no. 18, 1557-1562. http://dx.doi.org/10.1016/j.physleta.2017.03.009. MR3628993
A. ZILBURG and P ROSENAU, Loss of regularity in the K(m,n) equations, Nonlinearity 31
(2018), no. 6, 2651-2665. http://dx.doi.org/10.1088/1361-6544/aab58b. MR3816735

BENJAMIN HARROP-GRIFFITHS:
Department of Mathematics, UCLA

520 Portola Plaza

Los Angeles, CA 90095, USA

E-MAIL: harropgriffiths@math.ucla.edu

JEREMY L. MARZUOLA:
Mathematics Department
University of North Carolina
Phillips Hall

Chapel Hill, NC 27599, USA
E-MAIL: marzuola@math.unc.edu

Received: April 8, 2020.


http://dx.doi.org/10.1103/PhysRevLett.94.045503
http://dx.doi.org/10.1103/PhysRevLett.94.045503
http://dx.doi.org/10.1063/1.1852292
http://dx.doi.org/10.1063/1.1852292
http://www.ams.org/mathscinet-getitem?mr=2133462
http://dx.doi.org/10.1016/j.physleta.2015.09.012
http://dx.doi.org/10.1016/j.physleta.2015.09.012
http://www.ams.org/mathscinet-getitem?mr=3402749
http://dx.doi.org/10.1088/1751-8121/aabff5
http://dx.doi.org/10.1088/1751-8121/aabff5
http://www.ams.org/mathscinet-getitem?mr=3829411
http://dx.doi.org/10.1215/kjm/1250522323
http://dx.doi.org/10.1215/kjm/1250522323
http://www.ams.org/mathscinet-getitem?mr=564671
http://dx.doi.org/10.1007/978-1-4612-0431-2
http://dx.doi.org/10.1007/978-1-4612-0431-2
http://www.ams.org/mathscinet-getitem?mr=1121019
http://www.ams.org/mathscinet-getitem?mr=906067
http://www.ams.org/mathscinet-getitem?mr=1831831
http://dx.doi.org/10.1088/1751-8113/49/9/095101
http://www.ams.org/mathscinet-getitem?mr=3462314
http://dx.doi.org/10.1016/j.physleta.2017.03.009
http://www.ams.org/mathscinet-getitem?mr=3628993
http://dx.doi.org/10.1088/1361-6544/aab58b
http://www.ams.org/mathscinet-getitem?mr=3816735

