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ABSTRACT. We consider a quasilinear Schrödinger equation on
R for which the dispersive effects degenerate when the solution
vanishes. We first prove local well-posedness for sufficiently smooth,
spatially localized, degenerate initial data. As a corollary in the fo-
cusing case we obtain a short time stability result for the energy-
minimizing compact breather.

1. INTRODUCTION

We consider solutions u : Rt ×Rx → C of the quasilinear Schrödinger equation

(QLS)

{
iut = ū(uux)x + µ|u|2u,
u(0, x) = u0(x),

where µ ∈ {−1,0,1}. Our interest in the model (QLS) originated with the article
[7], where the authors reduce the study of norm growth for the defocusing NLS
on T2 to a discrete toy model. The equation (QLS) (with µ = 1) then arises as a
formal continuum limit of this toy model (see [8]).

The equation (QLS) is the Hamiltonian flow of

H[u] :=
∫
|uux|2 dx − µ2

∫
|u|4 dx,

with respect to the Poisson structure

{F,H} := i
∫
δF

δu

δH

δū
− δF
δū

δH

δu
dx.
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Solutions of (QLS) also (formally) conserve the mass

M[u] :=
∫
|u|2 dx,

and momentum

P[u] := Im
∫
uūx dx.

In this article we are primarily interested in the local well-posedness of (QLS).
Taking w = du, the linearization of the equation (QLS) about a solution u may
be written as

i(wt + vwx) = (ρwx)x + lower order terms,

where the density ρ and velocity1 v are defined by

(1.1) ρ := |u|2, v := 2 Im(uūx).

In particular, the linearized problem is dispersive whenever ρ(t, x) ≳ 1. On
sufficiently short time intervals we expect that ρ(t, x) ≈ ρ(0, x) = |u0(x)|2, so
the dispersive nature of the problem is determined by the initial data. If the initial
data u0 is non-degenerate (i.e., |u0(x)| ≳ 1), local well-posedness then follows
from, for example, [34,42,43]. Unfortunately, these techniques break down when
u0 is allowed to degenerate.

We will focus on the case where the initial data u0 is smooth and non-zero
on the interval I := (−x0, x0) ⊂ R and supported on the closed interval Ī =
[−x0, x0], with sufficient decay at the endpoints to ensure that

(1.2)
1
|u0|

6∈ L1((−x0,0))∪ L1((0, x0)).

A particular example to keep in mind is the case that |u0| has asymptotic behavior

(1.3) |u0(x)| ∼ c± dist(x,±x0)
1+α± as x → (±x0)

∓,

for positive constants c± > 0 and non-negative constants α± ≥ 0. We refer to
the case α± = 0 as linear endpoint decay and α± > 0 as sublinear2 endpoint
decay. Heuristically, we expect linear endpoint decay to be sharp in the sense that
linear and sublinear endpoint decay will lead to local well-posedness in suitable

1Strictly speaking, v is twice the momentum density. However, a peculiarity of (QLS) is that the
mass ρ is transported by v, which motivates us to refer to it as the velocity.

2Since we are considering compact regions, our notion of sublinear and superlinear is reversed from
behavior considered as x →∞.
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spaces, whereas superlinear (α± < 0) endpoint decay will lead to ill-posedness in
any reasonable space of distributions. These heuristics are derived by linearizing
the equation (QLS) about the initial data and considering the Hamiltonian flow
of the corresponding principal symbol (see the discussion in [15], e.g.).

While preparing this article, the authors learned of a complementary preprint
by Jeong and Oh [31] in which they prove ill-posedness in standard Sobolev spaces
of a related quasilinear Schrödinger equation appearing in [26, 27], though the
techniques apply as well to show the ill-posedness of (QLS) in standard Sobolev
spaces. This result uses ideas from their previous result [32], in which they are
able to exploit the aforementioned heuristic to rigorously prove ill-posedness of
degenerate solutions of the Hall-MHD and electron-MHD equations. The same
authors are also working to develop an alternative approach to local well-posedess
using function spaces suited to the degeneracy of the initial data [30]. Ill-posedness
of a related degenerate model was also considered in [3].

For sublinear endpoint decay one may obtain local well-posedness using poly-
nomially weighted spaces as in [15]. Thus, our main concern in this article will be
the problem of linear endpoint decay: the sharp decay rate we expect to be well-
posed in any reasonable sense. Our motivation for considering data satisfying
conditions of this type is due to the following result from [16].

Theorem 1.1. [16] If µ = 1 there exists a unique (up to translation) non-negative
minimizer ϕ = ϕω of the Hamiltonian H[ϕ] for fixed mass M[ϕ] = √2πω > 0
given by

(1.4) ϕω(x) :=
√

2ω cos
(
x√
2

)
1I(x),

where the interval I = (−π/√2, π/
√

2).

One may construct compact breather3 solutions of (QLS) from the minimizer
ϕω for any θ ∈ R by

(1.5) u(t,x) = e−itω+iθϕω(x).

Compact breathers and compactons (the corresponding analogue for KdV-type
equations) are an important feature of (focusing) degenerate dispersive equations.
There has been a substantial volume of work on the existence and properties of
compact solutions of this type for a variety of problems, in particular, the work
of Rosenau and collaborators (e.g., [45–55, 61–63]). We refer the reader to the
primer [56] for a review of the current state of affairs.

The main result of this article is local well-posedness of the equation (QLS)
in a space that contains the solution (1.5).

3We adopt the terminology of [56, Section 9.2.2] and refer to these solutions as “breathers”. One
might also refer to these solutions as “standing waves”.
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Theorem 1.2 (Local well-posedness of (QLS)). Let x0 > 0 and I = (−x0, x0).
Then, there exists a set S ⊂ L2 of functions that are non-zero and smooth on I, sup-
ported on Ī, and satisfy (1.2) so that for any u0 ∈ S there exists a time T > 0 and
a unique u ∈ C([0, T];L2) that satisfies (QLS) in the sense of distributions with
u ∈ C([0, T] × R) and ux, (

1
2u

2)xx ∈ C([0, T];L∞). For all t ∈ [0, T] the
solution u(t) is non-zero and smooth on I, supported on Ī, and conserves its mass,
momentum, and energy. Further, for all t ∈ [0, T] the solution map u0 ֏ u(t) is
Lipschitz continuous with respect to the L2-topology.

As far as we are aware, this is the first proof of local well-posedness for a
degenerate quasilinear Schrödinger equation. A key innovation in this article is
that, unlike in the case of the KdV equation considered in [15], we are able to
handle the critical (linear) endpoint decay rate.

Critical endpoint decay rates were previously considered in the setting of the
shoreline problem for a model of shallow water waves in [40]. In this case, the
finite speed of propagation allows the authors to work with a finite number of
(weighted) derivatives, as in the subcritical endpoint decay rates considered in
[15]. In the Schrödinger case, where the speed of propagation is infinite, we
are no longer able to work with a finite number of weighted derivatives, which
significantly complicates the analysis.

The set S, which will be described in detail Section 2, essentially consists of
solutions that are analytic with respect to the weighted derivative |u0| ∂x . This
set is extremely “small” in any reasonable sense (e.g., every element of S must be
analytic on the open interval I) and is certainly far from optimal in the case of
sublinear endpoint decay. However, the set S does contain the compact breather
(1.5) and reasonable perturbations thereof (see Proposition 2.6). This motivates
us to consider its stability. As a corollary to Theorems 1.1, 1.2, we may apply the
method of [6] to obtain the following stability result, which we prove in Section 7.

Theorem 1.3 (Stability of the energy-minimizing breather). Let µ = 1,
ω > 0, and ε > 0. Then, there exists some δ > 0 so that for any u0 ∈ S satisfying

inf
θ,h∈R

‖u0(· + h)2 − e2iθϕ2
ω‖L1∩Ḣ1 ≤ δ,

we have the estimate

sup
t∈[0,T]

( inf
θ,h∈R

‖u(t, · + h)2 − e−2itω+2iθϕ2
ω‖L1∩Ḣ1) ≤ ε,

where T > 0 is the lifespan of the solution u obtained in Theorem 1.2.
Remark 1.4. Somewhat unusually, the stability in Theorem 1.3 is obtained

in terms of u2 instead of u. This topology arises naturally from the observation
that, for q := u2 and µ = 1, the mass and energy may be written as

M =
∫
|q|dx and H = 1

4

∫
|qx|2 dx − 1

2

∫
|q|2 dx.
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Remark 1.5. The proof of Theorem 1.3 applies to any interval [0, T] on
which the solution u of (QLS) conserves both the mass and energy, and where
u2 ∈ C([0, T]; L1 ∩ Ḣ1). Theorem 1.2 guarantees this timescale is at least non-
trivial, but it is currently far from clear whether or not one expects to be able to
take arbitrarily large T . Indeed, in the corresponding KdV case, it has been proved
in [15, 63] that the support of the solution cannot remain constant on arbitrar-
ily long timescales, which suggests a possible finite time breakdown of regularity.
Whether or not such a phenomenon holds for (QLS) and whether or not this can
violate orbital stability on sufficiently long timescales remains an interesting open
problem.

Remark 1.6. In [16], the authors also construct traveling compactons as so-
lutions to (QLS); however, these states arise at the expense of a highly singular
phase, and hence significantly complicate the regularity and boundary conditions
considered. As a result, at present we leave stability of these states as an open
problem.

Outline of the proof. In our previous work [15] on the KdV analogue of
(QLS), we use the hydrodynamic formulation of the problem (see (1.6) below) to
switch to Lagrangian coordinates, which has the effect of freezing the degeneracy
at the initial time t = 0. We then make a change of independent variable to flatten
the degeneracy and reduce the problem to a non-degenerate quasilinear equation,
which can be solved using the energy method. These changes of variable were
inspired by similar approaches in related degenerate problems (e.g., [10, 11, 17,
19, 29, 36–41]).

While a similar approach formed the basis of our original investigation of
(QLS), a key difficulty was encountered due to the need to work in spaces of
analytic functions. If the initial data has linear endpoint decay, after changing the
independent variable, we are required to propagate exponential decay of the initial
data to the solution. Even in the case of a constant coefficient linear Schrödinger
equation, propagation of exponential decay of the data requires controlling the
solution in spaces of analytic functions. However, as the approach of [15] requires
working with a quasilinear Schrödinger equation, one must bound the solution in
spaces of exponentially weighted analytic data adapted to a variable metric.

To circumvent this difficulty, we introduce two key new ideas in this article.
The first is a change of independent variable that prioritizes flattening the de-
generacy and reduces (QLS) to a derivative semilinear Schrödinger equation. This
significantly simplifies the problem of controlling our solution in spaces of analytic
functions. The second is to couple (QLS) with an equation for w := ūux/|u|,
which controls the decay of the solution u. Indeed, by controlling this function
pointwise we will be able to work in translation-invariant (with respect to the new
independent variable) spaces. This not only simplifies the nonlinear estimates
considerably, but also allows us to replace the asymptotic assumption (1.3), with
the far less prescriptive assumption (1.2).
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Our motivation for considering the functionw is most readily understood by
writing the equation (QLS) in the form

iut = (|u| ∂x)2u+ i(Imw)(|u| ∂x)u+ µ|u|2u.

After making our change of independent variable, which maps |u| ∂x ֏ ∂y , con-
trolling the sub-principle term requires controlling Imw. To do this, we must
consider the complex-valued function w rather than just its imaginary part. In-
deed, we may compute that w satisfies the Schrödinger equation,

iwt = (|u| ∂x)2w + lower order terms.

The variablew also arises naturally from the hydrodynamic formulation of (QLS)

(1.6)





ρt + (vρ)x = 0,

vt + vvx +
(
v2 − ρρxx +

1
2
ρ2
x − µρ2

)

x
= 0,

where ρ,v are defined as in (1.1). We may then compute that

w = ρx
2
√
ρ
− i v

2
√
ρ
.

Unfortunately, at least in the case of linear endpoint decay, the semilinear
equation we obtain forw in our new coordinate system fails the Takeuchi-Mizohata
condition [44, 57] for well-posedness of linear Schrödinger equations in Sobolev
spaces (see also [1–3, 28]). To address this issue, as we have already alluded
to, we work in spaces of analytic functions. By allowing the radius of analytic-
ity to shrink linearly in time, we obtain a global smoothing effect that is suffi-
cient to control the problematic terms. We comment that similar analytic spaces
and estimates have a long history of application to PDEs (and even ODEs),
and have previously appeared in several works on Schrödinger equations (e.g.,
[4, 5, 12, 18, 21–25, 33, 35]).

Another difficulty we encounter with our semilinear equations for u,w is
a transport term with unbounded velocity. This prevents us from using a con-
traction mapping argument, so instead our proof of existence relies on an energy
method: we construct solutions as weak limits of regularized equations. We com-
ment that the fact we are unable to use a contraction mapping argument is un-
surprising, given that the original equation (QLS) is quasilinear. This unbounded
velocity term also prevents us from comparing two solutions in our new coor-
dinate system. To prove uniqueness and continuity we instead use the original
equation (QLS).

While the function w significantly simplifies some of the analysis, it has the
disadvantage that we do not expect it will decay at spatial infinity in our new
coordinates (at least in the case of linear endpoint decay). To handle this, we
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bound low frequencies in L∞ and high frequencies in Sobolev spaces. This enables
us to treat non-decaying data, while still using energy estimates to control the high
frequency contributions.

The remainder of the paper is structured as follows. In Section 2 we discuss
the change of variables and define the set S of initial data. We provide additional
details for some of the more involved computations appearing in this section in
Appendix A. In Section 3 we prove several preliminary estimates for our spaces
of analytic functions. Our main nonlinear estimates are stated in Proposition 3.6
but, as they are standard albeit technical, we delay the proof until Appendix B.

We begin our proof of existence of solutions to (QLS) with a priori estimates
for model linear equations in Section 4. We then apply these in Section 5 to obtain
a solution of the semilinear equations described above. Once we have solved the
semilinear problems to obtain u,w in our new coordinate system, it remains to
verify that the solution we construct has sufficient regularity to invert the change
of coordinates and obtain a solution to the original equation (QLS). This is the
main task in Section 6, where we complete the proof of Theorem 1.2.

Finally, in Section 7 we prove our stability result, Theorem 1.3.

2. REFORMULATION OF THE PROBLEM

In this section we introduce the various changes of variable required to prove
Theorem 1.2 and define the set S of initial data.

2.1. Changes of variable. Motivated by the linearization of (QLS), we in-
troduce the independent variable

(2.1) y(t,x) =
∫ x

0

1
|u(t, ζ)| dζ + c(t) for x ∈ I,

where c(t) is a real-valued, continuously differentiable function satisfying c(0) =
0. As we are assuming u0 is non-zero on I as well as (1.2), the map x ֏ y(0, x)
is readily seen to be a diffeomorphism from I onto R. The integrand is designed
precisely to flatten the degeneracy, whereas the time-dependent constant c(t) will
be chosen shortly to provide a helpful cancellation. The freedom to choose c(t)
is due to the gauge-invariance of this change of variables: we have total freedom
to decide the value of y(t,0).

Using this change of variable, we define

U(t,y(t, x)) := u(t,x),

W(t,y(t, x)) := w(t,x) = ū(t, x)ux(t, x)

|u(t,x)| .

The variable W will be used to control the decay of U , and is related to U by the
identity

(2.2) W = ŪUy
|U|2 .
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We denote the real and imaginary parts of W by

(2.3) α := ReW and β := ImW,

and use the functions α,β to fix our gauge by taking c(t) to solve the equation

(2.4)




ct(t) = −β(t, c(t))− 3

∫ c(t)

0
α(t, ζ)β(t, ζ)dζ,

c(0) = 0,

so that the equation (QLS) can be written as

(2.5) i(Ut + bUy) = Uyy + 2iβUy + µ|U|2U,

where the real-valued coefficient

(2.6) b(t,y) := −3
∫ y

0
α(t, ζ)β(t, ζ)dζ

satisfies

yt(t, x) = b(t,y(t, x))− β(t,y(t, x)).

As discussed in the 1585, in order to solve the equation (2.5) we will also need to
control W , which we compute satisfies the equation

(2.7) i(Wt + bWy) = Wyy +
(

2W 2 − 1
2
|W |2

)

y
+ 3iαβW + 2µ|U|2α.

For the reader’s convenience, we outline these computations in Appendix A.
We conclude our discussion of the change of variables by performing these

computations in the special case of the compact breather, as follows.

Example 2.1 (The compact breather in y-coordinates). Let θ ∈ R and
u(t,x) = e−itω+iθϕω(x) be as in (1.5). Then, for x ∈ I = (−π/√2, π/

√
2) we

have

y(t,x) =
∫ x

0

1√
2ω cos(ζ/

√
2)

dζ = 1√
ω

ln
(

tan
x√
2
+ sec

x√
2

)
,

where we note that Imw = 0 and hence c ≡ 0. As a consequence, we have

U(t,y) = e−itω+iθ
√

2ω sech(
√
ωy),

W(t,y) = −√ω tanh(
√
ωy).
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2.2. Function spaces. It is natural to bound the solution U in Sobolev-type
spaces. Given s ≥ 0 we define the Sobolev space Hs with norm

∥∥f
∥∥2
Hs :=

∫
〈ξ〉2s|f̂ (ξ)|2 dξ,

where 〈ξ〉 =
√

1+ |ξ|2, and the Fourier transform

f̂ (ξ) := 1√
2π

∫
f(x)e−ixξ dx.

In the case of linear endpoint decay, it is clear from Example 2.1 that we
should not expect W to decay as |y| → ∞. This motivates us to introduce the
space Zs with norm

‖f‖Zs := ‖f‖L∞ + ‖fy‖Hs−1/2 .

The space Zs is often referred to as the Zhidkov space due to its original ap-
pearance in [59, 60], and has been applied to study the NLS with non-vanishing
boundary conditions, for example, [14, 20].

In order to control the subprinciple terms in the equations for U and W we
will need our solution to be analytic. Given a function m : R → C we define the
Fourier multiplier

m(Dy)f (x) := 1√
2π

∫
m(ξ)f̂ (ξ)eixξ dξ.

Given τ > 0 and a Banach space X of tempered distributions on R with norm
‖ · ‖X we define the subspace AXτ of X to consist of f ∈ X with finite norm

‖f‖AXτ := ‖(eτDyf , e−τDyf)‖X ,

where, for concreteness, we make the convention that if g = (g1, g2, . . . , gn),
then

‖g‖X =
n∑

j=1

‖gj‖X .

In particular, the space AHsτ coincides with the definition of the analytic Gevrey
spaces appearing in [13, 33].

Before turning to the definition of the set S of initial data and stating the
existence part of Theorem 1.2 in U,W coordinates, it will be useful to introduce
a little more notation.

Given T > 0 and a Banach space X of tempered distributions we define the
space C([0, T];X) to consist of continuous functions f : [0, T] → X and be en-
dowed with the supremum norm. Because of the presence of a complex trans-
port term in the equation for W , we will need the radius of analyticity τ to
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be time-dependent. As a consequence, given T > 0 and a continuous function
τ : [0, T] → (0,∞), we say that f ∈ C([0, T];AXτ) if the vector-valued function
(eτDyf , e−τDyf) ∈ C([0, T];X).

In a similar fashion, we say that

f ∈ Lp((0, T);AXτ) if (eτDyf , e−τDyf) ∈ Lp((0, T);X),

and denote

∥∥f
∥∥p
L
p
TX
=
∫ T

0

∥∥f(t)
∥∥p
X dt,

∥∥f
∥∥p
L
p
TAXτ

=
∫ T

0

∥∥f(t)
∥∥p
AXτ dt,

with the obvious modification when p = ∞.
Finally, if X has a predual, we write f ∈ Cw([0, T];AXτ) if we have f ∈

L∞((0, T);AXτ) and (eτDyf , e−τDyf)(t)
∗
⇀ (eτDyf , e−τDyf)(s) in X as t → s

for t, s ∈ [0, T].
2.3. Existence for U,W . To prove existence for (QLS), we will prove ex-

istence of a solution to the equation (2.5). Here, it will be useful to treat the
equations (2.5) and (2.7) as a system, where the initial data is not necessarily re-
lated via the identity (2.2). We then have the following theorem:

Theorem 2.2. Let 0 < s ≤ 1
2 and let 0 < τ0 ≤ 1. Then, given any

U0 ∈ AHsτ0
and W0 ∈ AZsτ0

, there exists some T > 0, a non-increasing, continu-
ously differentiable function τ : [0, T] → (0,∞) so that τ(0) = τ0, and a solution
U ∈ Cw([0, T];AHsτ), W ∈ Cw([0, T];AZsτ) of the system (2.5), (2.7) with initial
data U(0) = U0 and W(0) = W0.

Further, we have the estimates

‖U‖L∞T AHsτ ≲ ‖U0‖AHsτ0
,(2.8)

‖W‖L∞T AZsτ ≲ ‖U0‖AHsτ0
+ ‖W0‖AZsτ0

,(2.9)

and the lower bound

(2.10) T ≳ 1
∥∥U0

∥∥2
AHsτ0

+
∥∥W0

∥∥2
AZsτ0

.

Remark 2.3. The solutions we construct will be obtained by taking a weak
limit of a regularized system of equations. Thus, a priori, our solution is a distri-
butional solution of (2.5), (2.7). However, for any n ≥ 0 the space of bounded
Cn functions is (locally compactly) embedded in both AHsτ and AZsτ , so the cor-
responding U,W are smooth classical solutions of the equations (2.5), (2.7).

Remark 2.4. The assumptions that 0 < s ≤ 1
2 and 0 < τ0 ≤ 1 are solely

for technical convenience and can be replaced by s > 0 and τ0 > 0 by making
suitable modifications to the various estimates.
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2.4. The initial data set S. From the statement of Theorem 2.2 we obtain
the following definition for the data set S.

Definition 2.5 (The data set S). Let S be the set of u0 ∈ L2 that are non-zero
and smooth on I, supported on Ī, and satisfy (1.2), so that if we define

y0(x) =
∫ x

0

1
|u0(ζ)|

dζ and U0(y0(x)) := u0(x),

then there exists some 0 < s ≤ 1
2 and 0 < τ0 ≤ 1 so that

U0 ∈ AHsτ0
and

Ū0U0y

|U0|2
∈ AZsτ0

.

Because of the implicit nature of the definition of S, it is not immediately
clear what a typical element looks like. Example 2.1 shows that for any ω > 0
the compact breather ϕω ∈ S. Further, given |ε| < 1 we have (1 + ε)ϕω =
ϕ(1+ε)2ω ∈ S. To obtain a slightly larger class of examples to which Theorem
1.3 may be applied, we conclude this section with an explicit construction of an
admissible perturbation of the compact breather solution.

Proposition 2.6 (An admissible perturbation of the compact breather). Let
µ = 1, ω > 0, and the interval I = (−π/√2, π/

√
2). Let M,C ≥ 1 and f : I → R

be a smooth function so that for any n ≥ 0 we have

|∂nxf(x)| ≤ MCn.(2.11)

Then,

u0 = eifϕω ∈ S.(2.12)

Proof. First, we observe that if there exist constants K,B > 0 so that for all
n ≥ 0 we have

1
n!
‖∂nyf‖L2 ≤ KBn,(2.13)

then taking 0 < τ0 < 1/B we have f ∈ AHsτ0
for any s ∈ R. Similarly, if

1
n!
‖∂nyf‖L∞ ≤ KBn,(2.14)

then taking 0 < τ0 < 1/B we have f ∈ AL∞τ0
.

Second, we observe that if we have the pointwise bound

1
n!
|∂nyfj| ≤ KjBnj ,
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for constants Bj > 0 and functions Kj = Kj(y) > 0, then

1
n!
|∂ny(f1f2)| ≤ (n+ 1)K1K2 max{Bn1 , Bn2 },(2.15)

1
n!
|∂ny(f1f2f3)| ≤ (n+ 2)(n+ 1)

2
K1K2K3 max{Bn1 , Bn2 , Bn3 }.(2.16)

By induction on n, using that sech′′(y) = sechy − 3 sech3y and the inequality
(2.16), we may then bound

1
n!
|∂ny sechy| ≤ 2n sechy,(2.17)

and similarly, using that tanh′′(y) = 2 tanh3y − 2 tanhy ,

1
n!
|∂ny tanhy| ≤ 2n.

Next, we compute that

W0(y) = −
√
ω tanh(

√
ωy)+ iF(y)

√
2ω sech(

√
ωy),

where
F(y) = f ′(

√
2 arctan(sinh(

√
ωy))).

Using that

d

dy
(
√

2 arctan(sinh(
√
ωy))) = |U0(y)| =

√
2ω sech(

√
ωy),

we may apply the Faà di Bruno formula to obtain

∂nyF =
n∑

k=1

∂k+1
x f(

√
2 arctan(sinh(

√
ωy))) · Bn,k(|U0|, ∂y |U0|, . . . , ∂n−ky |U0|),

where Bn,k is the partial Bell polynomial. Using the estimate (2.17), the hypothesis
(2.11), and properties of the Bell polynomials (see, e.g., [9]), we may bound

1
n!
|∂nyF| ≤ MCBn where B = 2

√
ωmax{C,

√
2ω}.

Applying (2.13), (2.14), and (2.15), we may then choose 0 < τ0 ≪ 1 suf-
ficiently small to ensure that W0 ∈ AZsτ for any s ∈ R. Finally, we observe
that U0y = U0W0, and hence we may apply (2.13) and (2.15) to conclude that
U0 ∈ AHsτ0

for any s ∈ R. ❐
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Remark 2.7. We may use the numerical methods presented in [16] to explore
perturbations of the compacton of the form in Proposition 2.6. In Figure 2.1,
we present a time sequence of plots for solutions to (QLS) of the form (2.12),
demonstrating that numerical stability is observed in a reasonable fashion on short
time scales as the perturbation spreads towards the endpoints.

0 2 4 6 8 10 12 14 16
x

0

0.5

1

1.5

Q
LS

 D
yn

am
ic

s N
ea

r C
om

pa
ct

on

t=0

0 2 4 6 8 10 12 14 16
x

0

0.5

1

1.5

Q
LS

 D
yn

am
ic

s N
ea

r C
om

pa
ct

on

t=T/4

0 2 4 6 8 10 12 14 16
x

0

0.5

1

1.5

Q
LS

 D
yn

am
ic

s N
ea

r C
om

pa
ct

on

t=T/2

0 2 4 6 8 10 12 14 16
x

0

0.5

1

1.5

Q
LS

 D
yn

am
ic

s N
ea

r C
om

pa
ct

on

t=3T/4

0 2 4 6 8 10 12 14 16
x

0

0.5

1

1.5

Q
LS

 D
yn

am
ic

s N
ea

r C
om

pa
ct

on

t=T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Conserved Mass
Conserved Energy

FIGURE 2.1. (Top) Time slices of the absolute value of numer-
ical solutions to (QLS) at t = 0, T/4, T/2,3T/4, T with initial
data of the form (2.12). Here, we have taken 28 spatial grid
points, T = .5, f = .1e−20x2

. (Bottom) Tracking the conserved
Mass and Energy curves for the simulation.

3. SOME PRELIMINARY ESTIMATES

Given τ > 0, we define the Fourier multipliers

Cτ := cosh(τDy), Sτ := i sinh(τDy), Tτ := i tanh(Dy).

We observe that these multipliers map real-valued functions to real-valued func-
tions and that Cτ is symmetric whereas Sτ ,Tτ are skew-symmetric. Further, we
have the product rules

(3.1) Cτ(fg) = Cτf · Cτg − Sτf · Sτg, Sτ(fg) = Sτf · Cτg +Cτf · Sτg,
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which follow (for sufficiently smooth functions) from taking the Fourier transform
and applying hyperbolic trigonometric identities.

Using Plancherel’s theorem, we have the following lemma.

Lemma 3.1 (An equivalent norm). We have the estimate

(3.2) ‖f‖AHsτ ≈ ‖Cτf‖Hs ,

uniformly in s, τ.

Proof. Using that Cτ = 1
2e
τDy + 1

2e
−τDy , we have

‖Cτf‖Hs ≤ 1
2
‖f‖AHsτ .

Conversely, we observe that e±τDy = (1 ∓ iTτ)Cτ , and by Plancherel’s theorem
we have

‖(1∓ iTτ)‖Hs→Hs ≤ ‖1± tanh(·)‖L∞ ≤ 2.

Consequently, we may bound

‖f‖AHs ≤ 4‖Cτf‖Hs . ❐

We take ϕ ∈ C∞c to be an even function, identically 1 on [−1,1], and sup-
ported in (−2,2). We define the Littlewood-Paley projection P0 = ϕ(Dy), and
for j ≥ 1 we define Pj = ϕ(2−jDy) −ϕ(21−jDy). We then have the following
Sobolev-type estimate.

Lemma 3.2. If s > 0 we have the estimate

‖f‖L∞ ≲ ‖P0f‖L∞ + ‖fy‖Hs−1/2 ,

and identical bounds hold with L∞, Hs−1/2 replaced by AL∞τ , Hs−1/2
τ , uniformly in

τ.

Proof. We decompose by frequency and then apply Bernstein’s inequality to
bound

‖f‖L∞ ≤
∞∑

j=0

‖Pjf‖L∞ ≲ ‖P0f‖L∞ +
∞∑

j=1

2−sj‖Pjfy‖Hs−1/2

≲ ‖P0f‖L∞ + ‖fy‖Hs−1/2 .

Replacing f by e±τDyf , we obtain the corresponding bound with L∞, Hs−1/2

replaced by AL∞τ , AHs−1/2
τ , respectively. ❐

Lemma 3.3. For any τ > 0 and 1 ≤ p ≤ ∞ we have the estimate

(3.3) ‖C−1
τ ‖Lp→Lp ≤ 1.
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Proof. We compute that the kernel of C−1
τ is given by

K(y) = 1
2τ

sech
(
πy

2τ

)
,

and hence ‖K‖L1
y
= 1.

The estimate (3.3) then follows from Young’s inequality. ❐

We will also require the following technical estimate.

Lemma 3.4. We have the estimate

(3.4) ‖Cτf − f‖L∞ ≲ τ‖fy‖AL∞τ ,

uniformly for 0 < τ ≤ 1.

Proof. Let J = ⌊− lnτ⌋. For high frequencies we bound

‖P>JCτf‖L∞ ≲
∑

j>J

2−j‖PjCτfy‖L∞ ≲ τ‖fy‖AL∞τ .

Further, from the estimate (3.3) we have

‖P>Jf‖L∞ ≲ ‖P>JCτf‖L∞ ≲ τ‖fy‖AL∞τ .

For low frequencies, we observe that K′(y) is the kernel of the operator
(C−1

τ − 1)P≤J where

K(y) = 1
2π

∫
sech(τξ)− 1

iξ
ϕ(2−Jξ)eiyξ dξ

is a Schwartz function satisfying ‖K‖L1 ≲ τ. Consequently, we may apply Young’s
inequality to obtain the estimate

‖P≤JCτf − P≤Jf‖L∞ ≲ τ‖Cτfy‖L∞ ≲ τ‖fy‖AL∞τ .

Combining these bounds we obtain the estimate (3.4). ❐

Our linear estimates will take advantage of the smoothing effect gained from
allowing the radius of analyticity to shrink. Observing that

d

dt
Cτ = −τ̇ ∂ySτ ,

we are motivated to prove the following result.
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Lemma 3.5. We have the estimate

(3.5)
∥∥Cτf

∥∥2
H1/2 ≲ −Re〈∂ySτf ,Cτf 〉 + 1

τ

∥∥Cτf
∥∥2
L2 ,

uniformly for 0 < τ ≤ 1.

Proof. Using Plancherel’s theorem, we have

−Re
〈
∂ySτf ,Cτf

〉
=
∫
ξ tanh(τξ)| cosh(τξ)f̂ (ξ)|2 dξ.

The estimate (3.5) then follows from the fact that

〈ξ〉 ≲ ξ tanh(τξ)+ 1
τ
,

where the constant can be chosen independently of τ. ❐

We define the low-high and high-high paraproduct operators to be

Tfg :=
∑

j≥4

P≤j−4f · Pjg, Π[f , g] := fg − Tfg − Tgf .

We then have the following nonlinear estimates, whose proof is delayed to Appen-
dix B.

Proposition 3.6. We have the following estimates:
(1) Symmetric product bounds: If s ≥ 0 then

‖fgy‖Hs ≲ ‖f‖L∞‖gy‖Hs + ‖fy‖Hs‖g‖L∞ ,(3.6)

‖fg‖Zs ≲ ‖f‖L∞‖g‖Zs + ‖f‖Zs‖g‖L∞ .(3.7)

(2) Asymmetric product bounds:

‖Tfgy‖Hs−1/2 ≲ ‖f‖L∞ ‖gy‖Hs−1/2 , if s ∈ R,(3.8)

‖fgy − Tfgy‖Hs ≲ ‖f‖W 1,∞ ‖g‖Hs , if 0 ≤ s ≤ 1,(3.9)

‖fgy‖Hs−1/2 ≲ ‖f‖Z0 ‖gy‖Hs−1/2 . if 0 < s ≤ 1
2
.(3.10)

(3) Trilinear bounds: If s ≥ 0 then

‖fgh‖Hs ≲ ‖f‖Hs+1/2 ‖g‖H1/2 ‖h‖L2 + ‖f‖H1/2 ‖g‖L2 ‖h‖Hs+1/2(3.11)

+ ‖f‖L2 ‖g‖Hs+1/2 ‖h‖H1/2 ,

‖fgh‖Hs ≲ ‖f‖Hs+1/2 ‖g‖L2 ‖h‖L∞ + ‖f‖L2 ‖g‖Hs+1/2 ‖h‖L∞(3.12)

+ ‖f‖L2 ‖g‖L2 ‖hy‖Hs .
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(4) Commutator bounds If − 1
2 < s ≤ 1 and j ≥ 4 then

∥∥[〈Dy〉s , f ]gy
∥∥
L2 ≲ ‖fy‖Z0 ‖g‖Hs ,(3.13)

∥∥[P≤j , f ]gy
∥∥
L∞ ≲ ‖fy‖L∞ ‖g‖L∞ .(3.14)

In all cases, identical bounds hold with Hs replaced by AHsτ , and so on, uniformly
in τ.

4. LINEAR ESTIMATES

In this section we prove a priori estimates for model equations that will subse-
quently be applied to obtain bounds for U and W .

We first consider estimates for solutions z : [0, T]×R → C of the (regularized)
linear Schrödinger equation

(4.1) i(zt + P≤j(bz≤j,y)) = P≤jz≤j,yy + f + g,

where we write z≤j = P≤jz and assume the coefficient b is real valued (and not
necessarily defined by (2.6)). We then have the following proposition.

Proposition 4.1. Let − 1
2 < s ≤ 1 and 0 < δ ≪ 1 be a sufficiently small

constant. Given 0 < τ0 ≤ 1, M > 0, and 0 < T ≤ δ/(2M), define

(4.2) τ(t) := τ0

(
1− M

δ
t

)
for 0 ≤ t ≤ T.

Suppose that for almost every t ∈ (0, T) the function b(t) ∈ L∞ satisfies

b(t,0) = 0 and ‖by(t)‖AZ0
τ
≤ M.(4.3)

Let z ∈ C([0, T];AHsτ); suppose for almost every t ∈ (0, T)we have zt, zyy ∈ AHsτ
and z satisfies (4.1) with initial data z(0) = z0. Then, we have the a priori estimate

sup
t∈[0,T]

‖z‖AHsτ +
√
Mτ0‖z‖L2

TAH
s+1/2
τ

(4.4)

≲ ‖z0‖AHsτ0
+ ‖f‖L1

TAH
s
τ
+ 1√

Mτ0
‖g‖L2

TAH
s−1/2
τ

,

where the implicit constant depends only on δ, s.
Remark 4.2. The a priori estimate of Proposition 4.1 (and Proposition 4.5

below) will be applied as part of a bootstrap estimate to prove Theorem 2.2. To
clarify the role of each constant in its application to the proof of Theorem 2.2
and explain why the quantifiers appear in the order above, we briefly explain how
each constant arises. We first note that s, τ0 will be provided by the hypothesis of
Theorem 2.2, and the constantM will be determined by s, τ0, and the initial data.
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The constant δ, which depends only on s, arises from the proof of Proposition 4.1,
and ensures that the linear decay of the function τ gives us control the second term
on LHS (4.4). The timescale T will be given to us as part of the bootstrap, but
the upper bound of δ/(2M) is chosen to ensure that for all t ∈ [0, T] we have
τ(t) ≈ τ0, uniformly in all other parameters.

Remark 4.3. The second term on LHS (4.4) provides a global smoothing
estimate for the equation (4.1). We comment that this estimate is distinct from
the local smoothing effect of linear Schrödinger operators, although we expect
that solutions of (4.1) do indeed exhibit some form of local smoothing (see, e.g.,
[34, 42]).

Proof. We first consider the case that s = 0 and j = ∞, with the convention
that P≤∞ = 1. Using the product rule (3.1) and integration by parts, we compute

d

dt

1
2

∥∥Cτz
∥∥2
L2 − Mτ0

δ
Re〈∂ySτz,Cτz〉(4.5)

= 1
2

Re〈Cτby · Cτz,Cτz〉 +Re〈Sτb · Sτzy ,Cτz〉
+ Im〈Cτf ,Cτz〉 + Im〈Cτg,Cτz〉.

We comment that in order to justify the integration by parts we use (3.4) to bound

‖Cτb‖L∞ ≲ ‖b‖L∞ + τ‖by‖AL∞τ < ∞
for almost every t ∈ (0, T). This is the only place in the proof we use that b is
bounded and hence the estimate (4.4) is independent of the size of ‖b‖L∞ .

For the smoothing term on LHS (4.5) we apply the estimate (3.5) to bound

Mτ0

δ

∥∥Cτz
∥∥2
H1/2 ≲ −Mτ0

δ
Re〈∂ySτz,Cτz〉 + M

δ

∥∥Cτz
∥∥2
L2 ,

where we have used that τ ≈ τ0.
For the first term on RHS (4.5) we use the hypothesis (4.3) to bound

|〈Cτby · Cτz,Cτz〉| ≤ ‖Cτby‖L∞
∥∥Cτz

∥∥2
L2 ≲ M

∥∥Cτz
∥∥2
L2 .

For the second term on RHS (4.5) we decompose using paraproducts to write

Re〈Sτb · Sτzy ,Cτz〉 = Re〈TSτbSτzy ,Cτz〉(4.6)

+ Re〈Sτb · Sτzy − TSτbSτzy ,Cτz〉.

Further, applying Bernstein’s inequality with the fact that Sτ = 1
2(e

τDy − e−τDy )
and τ ≈ τ0, we may bound

‖Sτb‖L∞ ≲ τ(‖P≤1/τby‖AL∞τ + ‖P>1/τbyy‖AH−1/2
τ
) ≲ τ0M,

‖Sτby‖L∞ ≲ ‖by‖AL∞τ ≲ M.
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Consequently, the first term in (4.6) may be bounded by applying the estimate
(3.8) with the fact that ‖Tτ‖L2→L2 ≤ 1 (which follows from Plancherel’s theorem)
to obtain

|〈TSτbSτzy ,Cτz〉| ≲ ‖Sτb‖L∞ ‖Sτzy‖H−1/2 ‖Cτz‖H1/2 ≲ τ0M
∥∥Cτz

∥∥2
H1/2 ,

whereas the second term in (4.6) may be bounded by applying (3.9) to obtain

|〈Sτb · Sτzy − TSτbSτzy ,Cτz〉| ≲ ‖Sτb‖W 1,∞ ‖Sτz‖L2 ‖Cτz‖L2

≲ M
∥∥Cτz

∥∥2
L2 .

For the remaining terms on RHS (4.5) we use duality to bound

|〈Cτf ,Cτz〉| ≤ ‖Cτf‖L2 ‖Cτz‖L2 ,

|〈Cτg,Cτz〉| ≤ ‖Cτg‖H−1/2 ‖Cτz‖H1/2 .

Combining these estimates we obtain

∂t
∥∥Cτz

∥∥2
L2 + Mτ0

δ

∥∥Cτz
∥∥2
H1/2

≲ M

δ

∥∥Cτz
∥∥2
L2 + τ0M

∥∥Cτz
∥∥2
H1/2

+ ‖Cτf‖L2 ‖Cτz‖L2 + ‖Cτg‖H−1/2 ‖Cτz‖H1/2 .

Taking C > 0 to be a sufficiently large (absolute) constant to absorb the first term
on the righthand side, we then obtain

∂t

(
e−CtM/δ

∥∥Cτz
∥∥2
L2 + Mτ0

δ

∫ t

0
e−CσM/δ

∥∥Cτz
∥∥2
H1/2 dσ,

)

≲ e−CtM/δ(τ0M
∥∥Cτz

∥∥2
H1/2 + ‖Cτf‖L2 ‖Cτz‖L2 + ‖Cτg‖H−1/2 ‖Cτz‖H1/2

)
.

We then integrate, using that TM/δ ≤ 1
2 , to obtain

sup
t∈[0,T]

∥∥Cτz
∥∥2
L2 + Mτ0

δ

∥∥Cτz
∥∥2
L2
TH

1/2

≲
∥∥Cτ0z0

∥∥2
L2 + τ0M

∥∥Cτz
∥∥2
L2
TH

1/2

+ ‖Cτf‖L1
TL

2 ‖Cτz‖L∞T L2 + ‖Cτg‖L2
TH

−1/2 ‖Cτz‖L2
TH

1/2

≲
∥∥Cτ0z0

∥∥2
L2 + δ


 sup
t∈[0,T]

∥∥Cτz
∥∥2
L2 + Mτ0

δ

∥∥Cτz
∥∥2
L2
TH

1/2




+ 1
δ

(∥∥Cτf
∥∥2
L1
TL

2 + δ

Mτ0

∥∥Cτg
∥∥2
L2
TH

−1/2

)
,
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so provided 0 < δ≪ 1 is sufficiently small, independently of all other parameters,
we may apply the estimate (3.2) to obtain the estimate (4.4).

To handle the case s ≠ 0 we simply apply 〈Dy〉s to the equation (4.1) and
apply the commutator estimate (3.13) to obtain

∥∥[〈Dy〉s , b]zy
∥∥
AL2

τ
≲ ‖by‖AZ0

τ
‖z‖AHsτ ,

where we note that we have used that − 1
2 < s ≤ 1. The estimate (4.4) then follows

from possibly shrinking the size of δ, depending on s. Finally, to handle the case
that j <∞, we simply replace z by z≤j on the righthand side of (4.5) and use that
‖z≤j‖AHsτ ≤ ‖z‖AHsτ . ❐

The second model we consider is the (regularized) transport-type equation

(4.7) zt + P≤j(bz≤j,y) = f .

This will be applied to bound the low frequencies of W .
In order to prove a priori bounds for (4.7), it will be useful to first record the

following consequence of the Picard-Lindelöf theorem.

Lemma 4.4. Let T > 0 and b : [0, T]×R → R be a continuous function so that
for some constant C ≥ 0 we have |b(t,0)| ≤ C and by ∈ L∞([0, T] × R). Then,
for each y ∈ R, there exists a unique solution Y ∈ C1([0, T]) of the ODE

(4.8)

{
Yt(t,y) = b(t, Y (t,y)),
Y (0, y) = y.

Further, for each y ∈ R the derivative Yy ∈ C1([0, T]), and we have the estimate

(4.9) e
−T‖by‖L∞T L∞ ≤ ‖Yy‖L∞T L∞ ≤ e

T‖by‖L∞T L∞ ,

and hence the map y → Y is a diffeomorphism.

Proof. Our hypotheses ensure that b(t,y) is continuous in t and Lipschitz
continuous in y , with uniform Lipschitz constant ‖by‖L∞T L∞ . For fixed y ∈ R,
the Picard-Lindelöf theorem then guarantees local existence for (4.8). However,
using the estimate

|b(t, Y (t,y)| ≤ C + ‖by‖L∞T L∞ |Y(t,y)|,

and Gronwall’s inequality, the solution can be extended to the entire time interval
[0, T]. It remains to prove (4.9). However, this readily follows from the observa-
tion that

d

dt
(logYy(t,y)) = by(t, Y (t,y)). ❐
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We may then prove our main a priori estimate for solutions of (4.7), as follows.

Proposition 4.5. Let 0 < δ ≪ 1 be a sufficiently small constant and j ≥ 8.
Given 0 < τ0 ≤ 1, M > 0, and 0 < T ≤ δ/(2M), define τ ∈ C1([0, T]) as in
(4.2) and suppose that b : [0, T] × R → R is a continuous function satisfying (4.3).
Then, if z ∈ C([0, T];AL∞τ ) such that for almost every t ∈ (0, T) we have that
zt , zy ∈ AL∞τ and z is a solution of (4.7) with initial data z(0) = z0, we have the
estimate

(4.10) sup
t∈[0,T]

‖P0z‖AL∞τ ≲ ‖P0z0‖AL∞τ0
+ ‖P>0z‖L∞T AL∞τ + ‖P0f‖L1

TAL
∞
τ
,

where the implicit constant depends only on δ.

Proof. Applying P0 to the equation (4.7) and using that for j ≥ 8 we have
P0P≤j = P0P≤4 = P0, and P≤4P>j = 0, we obtain

P0zt + bP0zy = −[P0, b]zy + P0[P≤4, b]z>j,y + P0f ,

where z>j = P>jz.
From (3.3) and (4.3) we have ‖by‖L∞T L∞ ≲ ‖Cτby‖L∞T L∞ ≲ M. Applying the

estimates (3.14) and (3.3), we may then bound
∥∥[P0, b]zy

∥∥
L1
TL

∞ +
∥∥P0[P≤4, b]z>j,y

∥∥
L1
TL

∞ + ‖P0f‖L1
TL

∞

≲ T‖by‖L∞T L∞ ‖z‖L∞T L∞ + ‖P0f‖L1
TL

∞

≲ δ‖z‖L∞T AL∞τ + ‖P0f‖L1
TAL

∞
τ
.

Applying Lemma 4.4 we may find a solution Y of (4.8) so that the map y → Y
is a diffeomorphsim. Writing (z ◦Y)(t,y) = z(t, Y (t,y)), and so on, we obtain

∂t((P0z) ◦ Y) = (−[P0, b]zy + P0[P≤4, b]z>j,y + P0f) ◦ Y .

As a consequence, we may bound

sup
t∈[0,T]

‖P0z‖L∞ ≲ ‖z0‖L∞ +
∥∥[P0, b]zy

∥∥
L1
TL

∞

+
∥∥P0[P≤4, b]z>j,y

∥∥
L1
TL

∞ + ‖P0f‖L1
TL

∞

≲ ‖z0‖L∞T AL∞τ + δ‖z‖L∞T AL∞τ + ‖P0f‖L1
TAL

∞
τ
.

Using that e±τDyP≤4 is bounded on L∞ and P≤4P0 = P0, we may then bound

sup
t∈[0,T]

‖P0z‖AL∞τ ≲ sup
t∈[0,T]

‖P0z‖L∞ .

Finally, we split
‖z‖AL∞τ ≤ ‖P0z‖AL∞τ + ‖P>0z‖AL∞τ

so, by choosing 0 < δ≪ 1 sufficiently small, we obtain the estimate (4.10). ❐
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5. PROOF OF THEOREM 2.2

In this section we prove the existence of a solution (U,W) of the system (2.5), (2.7)
by taking the (weak) limit of a sequence of solutions to a sequence of regularized
systems. In our proof of existence we will consider U,W to be independently
defined functions, that is, not necessarily satisfying the identity (2.2). Once we
have proved the existence of a solution to the system (2.5), (2.7), it is clear that if
the initial data satisfies (2.2) then the corresponding solution must also satisfy this
identity.

Our regularization of the system (2.5), (2.7) is the following:

iUt = P≤j
[− iBU≤j,y +U≤j,yy + 2iβ≤jU≤j,y + µ|U≤j|2U≤j

]
,(5.1a)

iWt = P≤j
[
− iBW≤j,y +W≤j,yy +

(
2(W≤j)2 − 1

2
|W≤j|2

)

y
(5.1b)

+ 3iα≤jβ≤jW≤j + 2µ|U≤j|2α≤j
]
,

where we denote f≤j = P≤jf , take α,β to be the real and imaginary parts of W
as in (2.3), and define the regularized velocity

B(t,y ; j) = −3 sech(2−jy)
∫ y

0
α≤j(t, ζ)β≤j(t, ζ)dζ.

We note that the velocity b is expected to have linear (in y) growth as |y| → ∞.
In the regularized version B we introduce an additional spatial weight to ensure
that the velocity is bounded, albeit with a bound that depends on j.

We first prove the existence of a solution to the regularized system (5.1), as
follows.

Lemma 5.1. Given 0 < s ≤ 1
2 , 0 < τ0 ≤ 1, and (U0,W0) ∈ AHsτ0

× AZsτ0

there exists a time T0 > 0 and a solution (U,W) ∈ C1([0, T0];AHsτ0
× AZsτ0

) of
(5.1) with initial data (U,W)(0) = (U0,W0).

Proof. We first bound the velocity B by

‖B‖L∞ ≲ 2j‖α≤j‖L∞‖β≤j‖L∞ ≲ 2j
∥∥W

∥∥2
L∞ .

Next, we apply Bernstein’s inequality followed by the estimate (3.3) to bound

‖RHS (5.1a)‖AHsτ0

≲ eτ02j2sj
[
22j
∥∥W

∥∥2
L∞ ‖U‖L2 + 22j‖U‖L2 + 2j‖W‖L∞ ‖U‖L2 + 2j

∥∥U
∥∥3
L2

]

≲τ0,j
(
1+ ‖(U,W)‖AHsτ0×AZsτ0

)2‖(U,W)‖AHsτ0×AZsτ0
,
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‖RHS (5.1b)‖AL∞τ0

≲ eτ02j
[
22j
∥∥W

∥∥3
L∞ + 22j‖W‖L∞ + 2j

∥∥W
∥∥2
L∞ +

∥∥W
∥∥3
L∞ + 2j

∥∥U
∥∥2
L2 ‖W‖L∞

]

≲τ0,j

(
1+ ‖(U,W)‖AHsτ0×AZsτ0

)2‖(U,W)‖AHsτ0×AZsτ0
,

‖∂y RHS (5.1b)‖Hs−1/2

≲ eτ02j
[
22j‖W‖L∞ ‖Wy‖L2 + 22j‖Wy‖L2 + 2j‖W‖L∞‖Wy‖L2

+
∥∥W

∥∥2
L∞ ‖Wy‖L2 + 2(3/2)j‖W‖L∞

∥∥U
∥∥2
L2

]

≲τ0,j

(
1+ ‖(U,W)‖AHsτ0×AZsτ0

)2‖(U,W)‖AHsτ0×AZsτ0
.

Applying these bounds, and identical bounds for the difference of two solutions,
we see that RHS (5.1) is Lipschitz continuous as a map from AHsτ0

×AZsτ0
to itself.

The proof is then completed by applying the Picard-Lindelöf theorem. ❐

We now turn to the proof of Theorem 2.2. Our goal here is to prove uniform
(in j) estimates for solutions of (5.1). These uniform bounds show the following:

(1) The solution of (5.1) can be extended to a j-independent time T > 0.
(2) We may pass to a (weak) limit as j →∞ to obtain a solution of the system

(2.5), (2.7).

As is standard in such arguments, our proof of these uniform bounds takes the
form of a bootstrap estimate, relying on the local existence provided by Lemma 5.1.

Proof of Theorem 2.2. Assume j ≥ 8 and choose a sufficiently small constant
0 < δ = δ(s) ≪ 1, independent of j, as in the hypotheses of Propositions 4.1,
4.5. Next, we choose K = K(δ, s, τ0) ≥ 1 and M = M(K,δ, s, τ0, U0,W0) ≥ 1
to be sufficiently large constants. Given these constants, we set T∗ = δ/(2M) and
τ ∈ C1([0, T]) as in (4.2). We will subsequently ignore the dependence of the
bounds on δ, s, which we can assume have been fixed.

We make the bootstrap assumption that for some 0 < T ≤ T∗ we have

sup
t∈[0,T]

‖U‖AHsτ +
√
Mτ0‖U‖L2

TAH
1/2
τ

(5.2)

+ sup
t∈[0,T]

‖W‖AZsτ +
√
Mτ0‖Wy‖L2

TAL
2
τ
≤
√
M

K
.

Our goal will be to prove that if the solution of (5.1) satisfies (5.2), then in
fact it must satisfy (5.2) with RHS (5.2) replaced by

√
M/(10K). By applying

Lemma 5.1, our solution may then be extended until time T = T∗ and satisfies
the estimate (5.2). We comment that this application of Lemma 5.1 uses that, if
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we are given 0 ≤ t1 < t2 ≤ T∗, we have

∫ t2

t1

∥∥f
∥∥2
AH1/2

τ
dt ≲ (τ0M)

2s−1(t2 − t1)2s sup
t∈[t1,t2]

∥∥f
∥∥2
AHsτ(t1)

.

In particular, this motivates the difference between the pointwise-in-time and L2-
in-time regularities in (5.2).

We first consider estimates for the coefficient B. Here, it will be useful to
denote

f (1)(y) = −3 sech(2−jy),

f (2)(y) = 3 tanh(2−jy) sech(2−jy)

so that

By = f (1)α≤jβ≤j︸ ︷︷ ︸
I1

+2−jf (2)P>0

∫ y

0
α≤jβ≤j dζ

︸ ︷︷ ︸
I2

+2−jf (2)P0

∫ y

0
α≤jβ≤j dζ

︸ ︷︷ ︸
I3

.

For ℓ = 1,2 the functions f (ℓ)(y) are analytic on the strip {y : | Imy| ≤ 1} ⊆ C,
and hence e±τDyf (ℓ)(y) = f (ℓ)(y ∓ iτ). In particular, using the embedding
L∞ ∩ Ḣ1 ⊆ Z0, we may use the explicit expressions for e±τDyf (ℓ) to obtain the
j, τ-independent bounds

‖f (ℓ)‖AZ0
τ
≲ 1, ‖〈y〉e±τDyf (ℓ)‖Z0 ≲ 2j .

Applying the product estimate (3.7) with the fact that
∥∥∥∥P>0

∫ y

0
α≤jβ≤j dζ

∥∥∥∥
AZ0

τ

≲ ‖α≤jβ≤j‖AZ0
τ
,

we may then bound

‖I1‖AZ0
τ
+ ‖I2‖AZ0

τ
≲ ‖α≤jβ≤j‖AZ0

τ
≲ ‖W‖AL∞τ ‖W‖AZ0

τ
,

uniformly in j. For the remaining term we first write

e±τDyP0

∫ y

0
α≤jβ≤j dζ =

∫
K±(y − z)

(∫ z

0
α≤jβ≤j dζ

)
dz,

where K± is the kernel of e±τDyP0. As the functions K± are Schwartz, we may
bound

∣∣∣∣e±τDyP0

∫ y

0
α≤jβ≤j dζ

∣∣∣∣ ≲ 〈y〉‖α≤j‖L∞ ‖β≤j‖L∞ ≲ 〈y〉
∥∥W

∥∥2
AL∞τ

∣∣∣∣∂ye±τDyP0

∫ y

0
α≤jβ≤j dζ

∣∣∣∣ ≲ ‖α≤j‖L∞ ‖β≤j‖L∞ ≲
∥∥W

∥∥2
AL∞τ .
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Again using the embedding L∞ ∩ Ḣ1 ⊆ Z0 with the fact that 〈y〉−1 ∈ L2 yields
the estimate ∥∥∥∥

1
〈y〉e

±τDyP0

∫ y

0
α≤jβ≤j dζ

∥∥∥∥
Z0
≲
∥∥W

∥∥2
AL∞τ ,

from which we obtain the j-independent bound ‖I3‖AZ0
τ
≲
∥∥W

∥∥2
AL∞τ . Combining

these bounds, we obtain

(5.3) ‖By‖AZ0
τ
≲ ‖W‖AL∞τ ‖W‖AZ0

τ
≲ M

K2
.

In particular, provided K ≫ 1 is sufficiently large (independently of all other
parameters), we see that for all t ∈ [0, T] we have ‖By‖AZ0

τ
≤ M, and hence the

hypothesis (4.3) of Proposition 4.1 is satisfied (with b replaced by B).
Next, consider bounds for U , which we obtain by applying Proposition 4.1.

Applying the estimate (3.10) and the bootstrap assumption (5.2), we may bound

‖β≤jU≤j,y‖L2
TAH

s−1/2
τ

≲ ‖W‖L∞T AZ0
τ
‖U‖L2

TAH
s+1/2
τ

≲
√
M

K
‖U‖L2

TAH
s+1/2
τ

,

uniformly in j. Using the trilinear estimate (3.11) and the bootstrap assumption
(5.2), we estimate

∥∥|U≤j|2U≤j
∥∥
L1
TAH

s
τ
≲ ‖U‖L∞T AL2

τ
‖U‖L2

TAH
1/2
τ
‖U‖L2

TAH
s+1/2
τ

≲
√
M

K2√τ0
‖U‖L2

TAH
s+1/2
τ

,

uniformly in j. Applying Proposition 4.1, we may then bound

sup
t∈[0,T]

‖U‖AHsτ +
√
Mτ0‖U‖L2

TAH
s+1/2
τ

≲ ‖U0‖AHsτ0
+
(

1

Kτ0
√
M
+ 1
K2τ0

)√
Mτ0‖U‖L2

TAH
s+1/2
τ

,

uniformly in j. Provided K is sufficiently large (depending only on δ, s, τ0), we
obtain the estimate

(5.4) sup
t∈[0,T]

‖U‖AHsτ +
√
Mτ0‖U‖L2

TAH
s+1/2
τ

≲K ‖U0‖AHsτ0
,

uniformly in M ≥ 1 and j. In particular, provided M ≫ 1 is sufficiently large
(depending on U0, K, δ, s, τ0), we have

sup
t∈[0,T]

‖U‖AHsτ +
√
Mτ0‖U‖L2

TAH
1/2
τ
≤
√
M

20K
,

which closes the first part of the bootstrap.
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Next, we consider bounds for Wy , which will once again be proved by using
Proposition 4.1. Differentiating (5.1b), we obtain the equation

i(Wty + P≤j(BW≤j,yy))

= P≤jW≤j,yyy+P≤j
[
4W≤jW≤j,y− 1

2
W̄≤jW≤j,y− 1

2
W≤jW̄≤j,y+2µ|U≤j|2α≤j

]
y

+ iP≤j
[
3α≤j,yβ≤jW≤j + 3α≤jβ≤j,yW≤j + 3α≤jβ≤jW≤j,y − ByW≤j,y

]
.

Applying the estimate (3.6) we may bound
∥∥∥∥∥

(
4W≤jW≤j,y − 1

2
W̄≤jW≤j,y

1
2
W≤jW̄≤j,y

)

y

∥∥∥∥∥
L2
TAH

s−1
τ

≲ ‖W‖L∞T AL∞τ ‖Wy‖L2
TAH

s
τ
≲
√
M

K
‖Wy‖L2

TAH
s
τ
,

uniformly in j. Similarly, using that T ≲ 1/M, with (3.7), (3.10) we obtain

‖α≤jβ≤j,yW≤j +α≤j,yβ≤jW≤j +α≤jβ≤jW≤j,y‖L1
TAH

s−1/2
τ

≲ T‖W‖L∞T AL∞τ ‖W‖L∞T AZ0
τ
‖Wy‖L∞T AHs−1/2

τ
≲ 1
K2
‖Wy‖L∞T AHs−1/2

τ
,

and using the estimate (5.3) with (3.10), we also have

‖ByW≤j,y‖L1
TAH

s−1/2
τ

≲ T‖By‖L∞T AZ0
τ
‖Wy‖L∞T AHs−1/2

τ

≲ 1
K2
‖Wy‖L∞T AHs−1/2

τ
,

where both estimates are again uniform in j. Finally, applying estimate (3.12), we
may bound

‖(|U≤j|2α≤j)y‖L2
TAH

s−1
τ

≲ ‖U‖L2
TAH

s+1/2
τ

‖U‖L∞T AL2
τ
‖W‖L∞T AL∞τ +

∥∥U
∥∥2
L∞T AL

2
τ
‖Wy‖L2

TAH
s
τ

≲ M

K2
(‖U‖L2

TAH
s+1/2
τ

+ ‖Wy‖L2
TAH

s
τ
),

uniformly in j. Applying Proposition 4.1, we then obtain

sup
t∈[0,T]

‖Wy‖AHs−1/2
τ

+
√
Mτ0‖Wy‖L2

TAH
s
τ

≲ ‖W0y‖AHs−1/2
τ0

+
(

1

Kτ0
√
M
+ 1
K2τ0

)√
Mτ0‖Wy‖L2

TAH
s
τ

+ 1
K2
‖Wy‖L∞T Hs−1/2

τ
+ 1
K2τ0

√
Mτ0‖U‖L2

TH
s
τ
,
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uniformly in j. Provided K ≫ 1 is sufficiently large (depending only on δ, s, τ0),
we may then apply the estimate (5.4) to yield

sup
t∈[0,T]

‖Wy‖AHs−1/2
τ

+
√
Mτ0‖Wy‖L2

TAH
s
τ

(5.5)

≲K ‖U0‖AHsτ0
+ ‖W0y‖AHs−1/2

τ0
,

uniformly in M ≥ 1 and j. In particular, provided M ≫ 1 is sufficiently large
(depending on U0,W0, K, δ, s, τ0), we may ensure that

sup
t∈[0,T]

‖Wy‖AHs−1/2
τ

+
√
Mτ0‖Wy‖L2

TAL
2
τ
≤
√
M

40K
,

which closes the next part of the bootstrap.
For the final part of the bootstrap, we first apply Bernstein’s inequality and

(5.5) to bound

sup
t∈[0,T]

‖P>0W‖AL∞τ ≲ sup
t∈[0,T]

‖Wy‖AHs−1/2
τ

(5.6)

≲K ‖U0‖AHsτ0
+ ‖W0y‖AHs−1/2

τ0
,

provided K ≫ 1 is sufficiently large, uniformly in M ≥ 1 and j. It remains to
bound the low frequencies, for which we will use Proposition 4.5. We first apply
Bernstein’s inequality, the estimate (5.5), and the fact that T ≲ 1/M to bound

‖P0P≤jW≤j,yy‖L1
TAL

∞
τ
≲ T‖Wy‖L∞T AHs−1/2

τ

≲K 1
M
(‖U0‖ALsτ0

+ ‖W0y‖AHs−1/2
τ0

),

provided K≫ 1 is sufficiently large, uniformly in M ≥ 1 and j. Similarly, we may
bound

∥∥∥∥P0

(
2W 2

≤j −
1
2
|W≤j|2

)

y

∥∥∥∥
L1
TAL

∞
τ

≲ 1
M

∥∥W
∥∥2
AL∞τ ≲

1

K
√
M
‖W‖L∞T AL∞τ ,

‖P0(α≤jβ≤jW≤j)‖L1
TAL

∞
τ
≲ T

∥∥W
∥∥3
L∞T AL

∞
τ
≲ 1
K2
‖W‖L∞T AL∞τ ,

∥∥P0(|U≤j|2α≤j)
∥∥
L1
TAL

∞
τ
≲
∥∥|U|2α

∥∥
L1
TAL

1
τ
≲ T

∥∥U
∥∥2
L∞T AL

2
τ
‖W‖L∞T AL∞τ

≲ 1
K2
‖W‖L∞T AL∞τ ,
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where all the estimates are uniform in j. Applying these bounds, Proposition 4.5,
and the estimates (5.4) and (5.6), we obtain

sup
t∈[0,T]

‖W‖AL∞τ ≲ sup
t∈[0,T]

‖P0W‖AL∞τ + sup
t∈[0,T]

‖P>0W‖AL∞τ

≲ ‖W0‖AL∞τ + C(K)(‖U0‖AHsτ0
+ ‖W0y‖AHs−1/2

τ0
)

+
(

1

K
√
M
+ 1
K2

)
‖W‖L∞T AL∞τ ,

uniformly in j, where C(K) is a constant depending only on K,δ, s, τ0. Once
again, provided K≫ 1 is sufficiently large (depending only on δ, s, τ0), we obtain
the estimate

(5.7) sup
t∈[0,T]

‖W‖AL∞τ ≲K ‖U0‖AHsτ0
+ ‖W0‖AZsτ0

,

uniformly in M ≥ 1 and j. Consequently, provided M ≫ 1 is sufficiently large
(depending only on U0,W0, K, s, δ, τ0), we obtain the bound

sup
t∈[0,T]

‖W‖AL∞τ ≤
√
M

40K
,

which suffices to close the bootstrap.
With the bootstrap closed, the estimate (2.8) for solutions of (5.1a) follows

from (5.4) and the estimate (2.9) for solutions of (5.1b), from (5.5) and (5.7),
where both estimates are uniform in j. Passing to a subsequence as j →∞, we may
extract a weak* limit U ∈ Cw([0, T];AHsτ) and W ∈ Cw([0, T];AZsτ) satisfying
the equations (2.5), (2.7), and the estimates (2.8), (2.9). Finally, the estimate
(2.10) follows from observing that for a suitable (very large) implicit constant,
independent of U0,W0, we may take

M ≲
∥∥U0

∥∥2
AHsτ0

+
∥∥W0

∥∥2
AZsτ0

. ❐

6. PROOF OF THEOREM 1.2

We now turn to the proof of Theorem 1.2. Because the existence of a solution to
the system (2.5), (2.7) was proved in Theorem 2.2, our main tasks in this section
will first be to invert the change of variables (2.1) and then to understand the
regularity of our solution at the endpoints ±x0 of the interval I.

6.1. Existence. Given initial data u0 ∈ S satisfying our hypotheses, we
denote the initial change of variables by

y0(x) =
∫ x

0

1
|u0(ζ)|

dζ,
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which we recall is a well-defined diffeomorphism from I onto R. We then define
the functions U0,W0 : R→ C by

U0(y0(x)) = u0(x) and W0(y0(x)) =
ū0(x)u0x(x)

|u0(x)|
.

As u0 ∈ S, there exists some 0 < s ≤ 1
2 and 0 < τ0 ≤ 1 so that U0 ∈ AHsτ0

and
W0 ∈ AZsτ0

. We may then apply Theorem 2.2 to obtain a solution of the system
(2.5), (2.7) on some time interval [0, T].

A priori, the solution (U,W) constructed in Theorem 2.2 is a distributional
solution of the system (2.5), (2.7). However, by Sobolev embedding, for any
n ≥ 0 and t ∈ [0, T] the spaces AHsτ and AZsτ are both embedded in the space of
bounded Cn functions. In particular, for any multi-index κ ∈ N2, the functions
∇κt,yU,∇κt,yW are continuous and bounded on [0, T]×R; for any t ∈ [0, T] the
functions ∇κt,yU,∇κt,y ∂yW vanish as |y| → ∞; and U,W are classical solutions
of (2.5), (2.7) on [0, T]×R.

Applying Lemma 4.4, for any y ∈ R we may find a solution of the ODE

{
Yt(t,y) = b(t, Y (t,y))− β(t, Y (t,y)),
Y (0, y) = y,

and by differentiating, it is clear that Y : [0, T]×R → R is smooth. In particular,
c(t) = Y(t,0) is a solution of (2.4).

As U is smooth, |U| is Lipschitz. Further, as U solves (2.5), we may compute
that

(6.1) (|U|)t + ((b − β)|U|)y = 0.

In particular,
∂t(Yy(t,y)|U(t, Y (t,y))|) = 0.

Using the estimate (4.9) and that |U0(y)| > 0 for every y ∈ R, we obtain

(6.2) |U(t,y)| > 0 for every (t,y) ∈ [0, T]×R,

and consequently |U| is smooth. Further, as |U(t,y)| → 0 as |y| → ∞, we may
use the equations (6.1), (2.4) to obtain

d

dt

∫∞

c(t)
|U(t, ζ)|dζ = 0 = d

dt

∫ c(t)

−∞
|U(t, ζ)|dζ.

From the definition of U(0, y), we then have

(6.3)
∫∞

c(t)
|U(t, ζ)|dζ = x0 =

∫ c(t)

−∞
|U(t, ζ)|dζ.
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Next, we define

x(t,y) :=
∫ y

c(t)
|U(t, ζ)|dζ,

and from (6.2), (6.3) we see that for any t ∈ [0, T] the map y ֏ x(t,y) is
a smooth diffeomorphsim from R onto I. Further, by construction, the map
y ֏ x(0, y) is the inverse of y0. We then take

u(t,x) :=
{
U(t,y) if x = x(t,y) ∈ I,
0 if x 6∈ I.

As the map (t,y) ֏ x(t,y) is smooth as a map from [0, T] × R → I and U
is a smooth solution of (2.5), the function u is a smooth solution of (QLS) on
[0, T]× I and satisfies u(0, x) = u0(x).

It remains to verify u is sufficiently well-behaved at the endpoints ±x0 to
solve (QLS) on [0, T] × R. Note first that as |U| → 0 as |y| → ∞ we have that
u ∈ C([0, T] × R) is smooth away from x = ±x0. Further, for x = x(t,y) we
have

ux =
U

|U|W and
(

1
2
u2
)

xx
= U2

|U|2 (2W
2 −αW +Wy).

In particular, ux , (
1
2u

2)xx ∈ C([0, T];L∞(R)) are smooth away from x = ±x0.
This suffices to show that u solves (QLS), where both sides of the equation make
sense as continuous functions on [0, T]×R.

6.2. Conservation laws. By construction, the solution u conserves its sup-
port. To prove it also conserves its mass, momentum, and energy it suffices to
show that our solution has sufficient regularity to justify the integrations by parts.

For the conservation of mass we only require that u ∈ C([0, T] × R) is sup-
ported on Ī, and that ux, (

1
2u

2)xx ∈ C([0, T];L∞(R)).
For conservation of momentum and energy, we also require that

[
ū

(
1
2
u2
)

xx

]

x
∈ C([0, T];L∞(R)).

However, this follows from the observation that for x = x(t,y) we have

[
ū

(
1
2
u2
)

xx

]

x
= U

|U|(4WWy −αWy −αyW +Wyy + 2W 3).

6.3. Uniqueness and continuity of the solution map. Finally, we consider
the problem of uniqueness and continuity of the solution map in L2. This follows
from a straightforward energy estimate, as follows.
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Lemma 6.1. Suppose that for some T > 0 and some j = 1,2 the functions

u(j) ∈ C([0, T] ×R) are solutions of (QLS) with initial data u(j)(0) = u(j)0 that
are non-zero and smooth on I, supported on Ī, and such that

u
(j)
x ,

[
1
2
(u(j))2

]

xx
∈ C([0, T];L∞(R)).

Then, we have the estimate

(6.4) sup
t∈[0,T]

‖u(1) −u(2)‖L2 ≲ ‖u(1)0 −u(2)0 ‖L2 .

Proof. We first note that under our hypotheses on u(j) we may justify the
integration by parts

〈iu(j)t , u(k)〉 = −
1
2
〈[(u(j))2]x , (u

(j)u(k))x〉 + µ〈(u(j))2, u(j)u(k)〉.

Consequently, taking w = u(1) − u(2) and using the conservation of mass, we
obtain the identity

d

dt

∥∥w
∥∥2
L2 = −1

2
Im〈ax , (w2)x〉 + µ Im〈a,w2〉,

where
a = (u(1))2 + (u(2))2.

Using that ax ∈ C([0, T] × R) and axx ∈ C([0, T];L∞(R)), we may integrate
by parts to obtain the estimate

d

dt

∥∥w
∥∥2
L2 ≲ ‖a‖W 2,∞

∥∥w
∥∥2
L2 ,

and the estimate (6.4) then follows from Gronwall’s inequality. ❐

This completes the proof of Theorem 1.2.

7. STABILITY OF THE COMPACT BREATHER

In this section we prove Theorem 1.3. We explore the concentration compactness
approach from Cazenave-Lions [6] in the context of compacton stability. Rather
than working with the variable u it will be useful to instead work with q := u2.
By a slight abuse of notation, in this section we will denote the Hamiltonian and
mass in terms of q instead of u, that is,

H[q] = 1
4

∫
|qx|2 dx − 1

2

∫
|q|2 dx, M[q] =

∫
|q|dx.
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For simplicity let us take ω = 1 and ϕ = ϕ1 from (1.4). We denote the orbit of
the square of the compacton by E := {e2iθϕ(· − h)2 : θ, h ∈ R}. The following
result follows from the analysis of [16].

Proposition 7.1.

(1) If q ∈ L1 ∩ Ḣ1 is a solution of the minimization problem

(7.1) minH[q] subject to M[q] =
√

2π,

then q ∈ E.
(2) Given any sequence {q(n)} ⊂ L1 ∩ Ḣ1 such that M[q(n)] → √

2π and
such that H[q(n)] → H[ϕ2], there exists a sequence {h(n)} ⊆ R so that the
sequence {q(n)(· + h(n))} is relatively compact in L1 ∩ Ḣ1.

Proof. The proof of (1) follows from the remark at the beginning of Sec-
tion 3.2 in [16]. The proof of (2) follows by a slight adaptation of the proof
of Theorem 2.7 in [16]. ❐

Proof of Theorem 1.3. We proceed by contradiction. In particular, assume our
orbital stability result does not hold. Then, there are ε > 0 and a sequence of ini-

tial data {u(n)0 } ⊆ S so that after applying Theorem 1.2 we obtain corresponding

solutions u(n) defined on the time interval [0, Tn], such that, with q(n)0 = (u(n)0 )2

and q(n) = (u(n))2, we have M[q(n)0 ] → √
2π and H[q(n)0 ] → H[ϕ2], and times

0 ≤ tn ≤ Tn so that

inf
ψ∈E

‖q(n)(tn, ·)−ψ‖L1∩Ḣ1 ≥ ε.

As q(n)(tn, ·) is a minimizing sequence for the constrained minimization prob-
lem (7.1), and using the fact that the solution q(n) conserves the mass and energy,
we may apply Proposition 7.1 to obtain a contradiction. ❐

APPENDIX A. CHANGES OF VARIABLE

In this section we outline the computations leading to the equations (2.5) for U
and (2.7) for W .

We first observe that (|u|2)t = 2 Im(|u|2ūux)x . Differentiating the expres-
sion (2.1) and using the equation (2.4) to replace ct , we obtain

yt(t, x) = −3
∫ x

0

1
|u| Re

(
ūuζ
|u|

)
Im
(
ūuζ
|u|

)
dζ −

∫ x

0
Im
(
ūuζ
|u|

)

ζ
dζ + ct(t)

= −3
∫ y(t,x)

c(t)
α(t, ζ)β(t, ζ)dζ + β(t, c(t))− β(t,y(t, x))+ ct(t)

= b(t,y(t, x))− β(t,y(t, x)).
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Consequently,

∂t[U(t,y(t, x))] = [Ut + (b − β)Uy](t,y(t, x)).

The equation (2.5) then follows from the observation that

ux(t, x) =
[

1
|U|Uy

]
(t,y(t, x)),

uxx(t, x) =
[

1
|U|2 (Uyy −αUy)

]
(t,y(t, x)).

To derive the equation (2.7) we first compute that

i

(
ūux
|u|

)

t
= ū

|u|(ū(uux)x + µ|u|
2u)x − ux

|u|(u(ūūx)x + µ|u|
2ū)

− i ūux|u|3 Im
(
|u|3 ūux|u|

)

x
.

Changing variables and using that Uy = WU , we obtain

i(Wt + (b − β)Wy) = Ū

|U|2


 Ū

|U|

(
U2

|U|W
)

y

+ µ|U|2U


y

− U

|U|2W

 U

|U|

(
Ū2

|U|W̄
)

y

+ µ|U|2Ū



− i W|U|3 (|U|
3β)y .

The equation (2.7) then follows from the fact that Uy = UW and (|U|)y = α|U|.

APPENDIX B. MULTILINEAR ESTIMATES

In this section we prove Proposition 3.6. We will rely on the following lemma (the
proof of which may be found in, for example, [58, Chapter 3 and Appendix D]).

Lemma B.1. For s ∈ R, σ ≥ 0 and any integer k ≥ 0, we have the estimates

‖T∂kyfg‖Hs ≲ ‖f‖L∞ ‖∂kyg‖Hs ,(B.1)

‖T〈Dy 〉σfg‖Hs ≲ ‖f‖L2 ‖〈Dy〉s+σg‖BMO,(B.2)
∥∥Π[f , g]

∥∥
Hσ ≲ ‖〈Dy〉−sf‖BMO ‖g‖Hσ+s .(B.3)

Proof of Proposition 3.6.
PROOF OF (3.6). We decompose the product

fgy = Tfgy + Tgyf +Π[f , gy],
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and then apply the estimates (B.1), (B.3).

PROOF OF (3.7). We first bound

‖fg‖L∞ ≤ ‖f‖L∞ ‖g‖L∞ .

Next, we decompose the product

fg = Tfg + Tgf +Π[f , P0g]+Π[f , P>0g].

For the low-high interactions we apply the estimate (B.1) to bound

‖∂yTfg‖Hs−1/2 ≲ ‖f‖L∞ ‖gy‖Hs−1/2 ,

‖∂yTgf‖Hs−1/2 ≲ ‖fy‖Hs−1/2 ‖g‖L∞ .

For the first high-high interaction, we observe that

Π[f , P0g] = P≤16Π[P≤8f , P0g],

so we may apply (B.3) to bound

∥∥∂yΠ[f , P0g]
∥∥
Hs−1/2 ≲

∥∥Π[P≤8fy , P0g]
∥∥
L2 +

∥∥Π[P≤8f , P0gy]
∥∥
L2

≲ ‖P≤8fy‖L2 ‖g‖L∞ + ‖f‖L∞ ‖P0gy‖L2

≲ ‖fy‖Hs−1/2 ‖g‖L∞ + ‖f‖L∞ ‖gy‖Hs−1/2 .

For the second high-high interaction, we again apply (B.3) to bound

∥∥∂yΠ[f , P>0g]
∥∥
Hs−1/2 ≲ ‖f‖L∞ ‖P>0g‖Hs+1/2 ≲ ‖f‖L∞ ‖gy‖Hs−1/2 .

PROOF OF (3.8). We simply apply the estimate (B.1).

PROOF OF (3.9). We decompose

fgy − Tfgy = Tgyf +Π[f , gy].

For the low-high interactions we apply the estimate (B.2), using that s ≤ 1, to
obtain

‖Tgyf‖Hs ≲ ‖〈Dy〉f‖BMO ‖gy‖Hs−1 ≲ ‖f‖W 1,∞ ‖g‖Hs .

For the high-high interactions we apply the estimate (B.3), using that s ≥ 0, to
obtain

∥∥Π[f , gy]
∥∥
Hs ≲ ‖〈Dy〉f‖BMO ‖gy‖Hs−1 ≲ ‖f‖W 1,∞ ‖g‖Hs .
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PROOF OF (3.10). Again, we decompose

fgy = Tfgy + Tgyf +Π[P0f , gy]+Π[P>0f , gy].

Applying (B.1), we may bound

‖Tfgy‖Hs−1/2 ≲ ‖f‖L∞ ‖gy‖Hs−1/2 ,

and applying (B.2), using that s ≤ 1
2 , we may bound

‖Tgyf‖Hs−1/2 ≲ ‖f‖BMO ‖gy‖Hs−1/2 ≲ ‖f‖L∞ ‖gy‖Hs−1/2 .

For the first high-high interaction we use that

Π[P0f , gy] = P≤16Π[P0f , P≤8gy]

and apply (B.3) to bound

∥∥Π[P0f , gy]
∥∥
Hs−1/2 ≲

∥∥Π[P0f , gy]
∥∥
L2 ≲ ‖f‖L∞ ‖P≤8gy‖L2

≲ ‖f‖L∞ ‖gy‖Hs−1/2 .

For the second high-high interaction we apply Bernstein’s inequality at the output
frequency followed by the Cauchy-Schwarz inequality to obtain

∥∥Π[P>0f , gy]
∥∥
Hs−1/2 ≲

∑

j≥0

2sj
∥∥PjΠ[P>0f , gy]

∥∥
L1

≲
∑

|k−ℓ|<4

(2(1/2)k‖PkP>0f‖L2)(2(s−1/2)ℓ‖Pℓgy‖L2)

≲ ‖P>0f‖H1/2 ‖gy‖Hs−1/2 ≲ ‖fy‖H−1/2 ‖gy‖Hs−1/2 ,

where we have used the fact that s > 0.

PROOF OF (3.11). Here, it will be convenient to argue by duality. Consequently,
we take a test function ϕ ∈ H−s and decompose by frequency to obtain

〈fgh,ϕ〉 =
∑

j1,j2,j3,j4≥0

〈Pj1f · Pj2g · Pj3h, Pj4ϕ〉.

By symmetry, we may assume j1 ≤ j2 ≤ j3 and then observe that the sum vanishes
unless

|max{j2, j4} − j3| ≤ 8.

If j4 ≥ j2 then |j3 − j4| ≤ 8. We estimate the two lowest frequency terms in L∞
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and the two highest frequency terms in L2 and then apply Bernstein’s inequality
to bound

|〈Pj1f · Pj2g · Pj3h, Pj4ϕ〉|
≲ ‖Pj1f‖L∞ ‖Pj2g‖L∞ ‖Pj3h‖L2 ‖Pj4ϕ‖L2

≲ 2(1/2)(j1−j3)‖Pj1f‖L2 ‖Pj2g‖H1/2 ‖Pj3h‖Hs+1/2 ‖Pj4ϕ‖H−s .

If j4 < j2 then |j2 − j3| ≤ 8 we proceed similarly, applying Bernstein’s inequality
to estimate

|〈Pj1f · Pj2g · Pj3h, Pj4ϕ〉|
≲ ‖Pj1f‖L∞ ‖Pj2g‖L2 ‖Pj3h‖L2 ‖Pj4ϕ‖L∞
≲ 2(s+1/2)(j4−j3)+(1/2)(j1−j2)‖Pj1f‖L2 ‖Pj2g‖H1/2

× ‖Pj3h‖Hs+1/2 ‖Pj4ϕ‖H−s .

The estimate (3.11) then follows from several applications of the Cauchy-
Schwarz inequality, first summing over the lowest frequency, then the second low-
est frequency, and finally the highest two (comparable) frequencies.

PROOF OF (3.12). Again taking ϕ ∈ H−s and decomposing by frequency, it
suffices to bound

|〈Pj1f · Pj2g · h, Pj4ϕ〉|,

where, by symmetry, we may assume that j1 ≤ j2. We then divide into 3 cases:

Case 1: j2 ≤ j4. For the low frequency part of h, we apply Bernstein’s inequality
to bound

|〈Pj1f · Pj2g · P≤j2h, Pj4ϕ〉|
≲ ‖Pj1f‖L∞ ‖Pj2g‖L2 ‖P≤j2h‖L∞ ‖Pj3ϕ‖L2

≲ 2(1/2)(j1−j2)‖Pj1f‖L2 ‖Pj2g‖Hs+1/2 ‖P≤j2h‖L∞ ‖Pj4ϕ‖H−s ,

where we have used that |j2− j4| ≤ 8. For the high frequency part we decompose
by frequency j3 > j2 and bound

|〈Pj1f · Pj2g · Pj3h, Pj4ϕ〉|
≲ ‖Pj1f‖L∞ ‖Pj2g‖L∞ ‖Pj3h‖L2 ‖Pj4ϕ‖L2

≲ 2(1/2)(j1−j3)+(1/2)(j2−j3)‖Pj1f‖L2 ‖Pj2g‖L2 ‖Pj3hy‖Hs ‖Pj4ϕ‖H−s ,

where we have used that j3 > 0 and |j3 − j4| ≤ 8.
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Case 2: j1 ≤ j4 < j2. Here, we proceed similarly, bounding the low frequency
part of h by

|〈Pj1f · Pj2g · P≤j4h, Pj4ϕ〉|
≲ ‖Pj1f‖L∞ ‖Pj2g‖L2 ‖P≤j4h‖L∞ ‖Pj4ϕ‖L2

≲ 2(1/2)(j1−j2)‖Pj1f‖L2 ‖Pj2g‖Hs+1/2 ‖P≤j4h‖L∞ ‖Pj4ϕ‖H−s ,

and the high frequency part, where j3 > j4, by

|〈Pj1f · Pj2g · Pj3h, Pj4ϕ〉|
≲ ‖Pj1f‖L∞ ‖Pj2g‖L2 ‖Pj3h‖L2 ‖Pj4ϕ‖L∞
≲ 2(1/2)(j1−j3)+(s+1/2)(j4−j3)‖Pj1f‖L2 ‖Pj2g‖L2 ‖Pj3hy‖Hs ‖Pj4ϕ‖H−s ,

Case 3: j4 < j1. Proceeding as in the previous two cases, we bound

〈Pj1f · Pj2g · P≤j1h, Pj4ϕ〉|
≲ ‖Pj1f‖L2 ‖Pj2g‖L2 ‖P≤j1h‖L∞ ‖Pj4ϕ‖L∞
≲ 2(s+1/2)(j4−j2)‖Pj1f‖L2 ‖Pj2g‖Hs+1/2 ‖P≤j4h‖L∞ ‖Pj4ϕ‖H−s ,

and for j3 > j1,

|〈Pj1f · Pj2g · Pj3h, Pj4ϕ〉|
≲ ‖Pj1f‖L∞ ‖Pj2g‖L2 ‖Pj3h‖L2 ‖Pj4ϕ‖L∞
≲ 2(s+1/2)(j4−j3)+(1/2)(j1−j3)‖Pj1f‖L2 ‖Pj2g‖L2 ‖Pj3hy‖Hs ‖Pj4ϕ‖H−s .

PROOF OF (3.13). We decompose the commutator as

[〈Dy〉s , f ]gy
= [〈Dy〉s ,Tf ]gy + (〈Dy〉sΠ[P0f , gy]−Π[P0f , 〈Dy〉sgy])

+ 〈Dy〉sTgyf − T〈Dy 〉sgyf + 〈Dy〉sΠ[P>0f , gy]−Π[P>0f , 〈Dy〉sgy].

For the first term, we write

[〈Dy〉s , P≤j−4f]Pjgy = [〈Dy〉sP≤j+4, P≤j−4f]Pjgy

=
∫
Kj(y − z)(P≤j−4f(y)− P≤j−4f(z))Pjgz(z)dz,

where Kj is the kernel of 〈Dy〉sP≤j+4. We then apply Young’s inequality to bound

∥∥[〈Dy〉s , P≤j−4f]Pjgy
∥∥
L2 ≲ ‖Kj(y)y‖L1 ‖P≤j−4fy‖L∞ ‖Pjgy‖L2

≲ ‖fy‖L∞ ‖Pjg‖Hs ,
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where we have used that

‖Kj(y)y‖L1 ≲ 2(s−1)j .

The second term is bounded similarly, using that

〈Dy〉sΠ[P0f , gy]−Π[P0f , 〈Dy〉sgy]
= 〈Dy〉sP≤16Π[P0f , P≤8gy]−Π[P0f , 〈Dy〉sP≤16P≤8gy],

to obtain∥∥〈Dy〉sΠ[P0f , gy]−Π[P0f , 〈Dy〉sgy]
∥∥
L2

≲ ‖fy‖L∞ ‖P≤8g‖L2 ≲ ‖fy‖L∞ ‖g‖Hs .

For the remaining terms, we first apply the estimate (B.2), with the fact that
s ≤ 1, to obtain

‖〈Dy〉sTgyf‖L2 + ‖T〈Dy 〉sgyf‖L2 ≲ ‖fy‖L∞ ‖g‖Hs .

Next, we apply the estimate (B.3) to bound

∥∥Π[P>0f , 〈Dy〉sgy]
∥∥
L2 ≲ ‖fy‖L∞ ‖g‖Hs .

For the remaining term, if s > 0, we again apply the estimate (B.3) to bound

∥∥〈Dy〉sΠ[P>0f , gy]
∥∥
L2 ≲ ‖fy‖L∞ ‖g‖Hs ,

whereas, if − 1
2 < s < 0, we argue as in the proof of (3.10) to bound

∥∥〈Dy〉sΠ[P>0f , gy]
∥∥
L2 ≲ ‖fyy‖H−1/2 ‖g‖Hs .

Proof of (3.14). We first observe that

[P≤j , f ]P≤j−4gy = [P≤j , P>j−4f]P≤j−4gy ,

and hence we may bound

∥∥[P≤j , f ]P≤j−4gy
∥∥
L∞ ≲ ‖P>j−4f‖L∞ ‖P≤j−4gy‖L∞ ≲ ‖fy‖L∞ ‖g‖L∞ .

For the remaining term, we proceed as in the proof of (3.13) and write

[P≤j , f ]P>j−4gy =
∫
Kj(y − z)(f (y)− f(z))P>j−4gz(z)dz,

where Kj is the kernel of P≤j .
The estimate then follows from Young’s inequality. ❐
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