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Abstract. The aim of this paper is to provide uniform estimates for the
eigenvalue spacing of one-dimensional semiclassical Schrödinger operators with
singular potentials on the half-line. We introduce a new development of semi-
classical measures related to families of Schrödinger operators that provides a
means of establishing uniform non-concentration estimates within that class
of operators. This dramatically simplifies analysis that would typically require
detailed WKB expansions near the turning point, near the singular point and
several gluing type results to connect various regions in the domain.

1. Introduction

We consider a (self-adjoint) one-dimensional semiclassical Schrödinger opera-
tor

Phu = −h2u′′ + V (x)u

that is defined on the half-line I = [0,+∞). The potential V is defined by
x 7→ xγ+W (x) for some γ > 0 and a smooth, positive W . We will be interested
in the eigenvalue equation

Phuh = Ehuh, (1)

for an energy Eh in a certain regime that is a, possibly h-dependent, compact
interval Kh ⊂ R that we call the energy window. If the spectrum of Ph is discrete
in Kh we define, for E in specPh,

dh(E)
def
= inf{|E − Ẽ|, Ẽ ∈ specPh, Ẽ 6= E},

and we aim at giving lower bounds on dh(E) as uniform as possible.
Studying Schrödinger operators is a standard problem in spectral theory and

many results on eigenvalues and eigenfunctions can be extracted from the lit-
erature on Sturm-Liouville problems and semiclassical analysis (Titchmarsch
[Tit46], Olver [Olv74], Hörmander [Hör03, Hör05, Hör80, Hör09], Maslov [MA72],
Helffer-Robert [HR83], Dimassi-Sjöstrand [DS99], Zworski [Zwo12]).

The most favorable case is when the energy E is non-critical i.e. when the
associated energy surface is smooth. In dimension 1, this is equivalent to say
that whenever V (x) = E then V ′(x) 6= 0. In that setting, Bohr-Sommerfeld rules
for smooth potentials in the semiclassical literature imply that, for a sequence
of eigenvalues (Eh)h>0 that converges to a non-critical energy E0 > 0 with a
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connected energy surface, then the spacing is of order h (see Section 10.5 in
[OB78] or [HMR87, dV05, Yaf11] for instance).

In most cases, semiclassical techniques allow one to work in any dimension
but, often, only for smooth potentials.

Singular potentials have also been studied (see among others [LR79, Ber82,
Chr15]). Often, the ”bottom-of-the well” regime is considered, i.e. when Eh goes
to 0 at a certain rate. The latter rate can be obtained by a scaling argument
by deciding for which power α the change of variables x ← hαx transforms
the problem into a non-semiclassical second order differential equation. It can

then be proved that the k-th eigenvalue of Ph behaves like akh
2γ
γ+2 in which ak are

constants that typically arise as the k-th eigenvalue of a model problem, and also
coincide with the k-th roots of a transcendental equation. From this asymptotic

behaviour, we infer that the spacing in this regime is also of order h
2γ
γ+2 (see

[FS09], and also [Sim83] for a much more complete study of the bottom of the
well for quadratic potentials, or [BP19] for even more degenerate situations). We
also advertise the recent paper [GW18] that lays the foundations for a systematic
semiclassical study of a class of singular potentials.

The intermediate regime, which is neither the non-critical energies nor the
bottom of the well is known in the semiclassical literature as semi-excited states
and has been initiated by Sjöstrand [Sjö92].

Our main result is stated as follows and can be seen as an estimate unifying
all the preceding regimes.

Theorem 1. Assume that γ > 0 and W is smooth and positive on [0,+∞).
Let V = xγW and Ph the Dirichlet or Neumann realization of −h2u′′ + V on
[0,+∞). If lim infx→+∞ V (x) > 0, there exist M,h0, c > 0 such that

(1) For all h 6 h0, specPh ∩ [0,M ] is purely discrete,
(2) For any h 6 h0 and any E in specPh ∩ [0,M ],

dh(E) > ch · E
γ−2
2γ .

Such a theorem is actually equivalent to answering the following question:
consider a sequence (Eh)h>0 going to some limit E0 as h goes to 0 and study the
behavior of the sequence (dh(Eh))h>0. When E0 is non-critical then our result
recovers the usual order h separation. This is completely standard if γ is an inte-
ger, for, in that case, the potential is smooth and the full semiclassical machinery
can be used. If γ is not an integer, the energy surface is not smooth anymore and
it must be proved that the singularity is not strong enough to perturb the order h
spacing of eigenvalues. This can perhaps be done by rather soft techniques such
as some Dirichlet-Neumann bracketing argument. We have chosen a different,
also well known, technique that relies in estimating how fast the semiclassical
Cauchy datum of the fundamental solution at x = 0 winds around the origin.
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We will observe that this winding is related to non-concentration at the singular
point.

One motivation for studying this kind of potential comes from the adiabatic
ansatz in a stadium-like billiard (see [HM12]). In the latter, the potentials that
come up are of the form x 7→ xγ+W (x) on the half-line [−B,+∞) for B > 0
and the eigenvalue problem can be restated as a gluing problem that involves
the fundamental solution on the half-line that we study here. There are several
other settings in which this kind of semiclassical Schrödinger operators play a
role however, such as effective Hamiltonians in the study of waveguides with
corners [RS95, DR12] or of flat triangles [OB15, HJ11].

We also point out that our assumptions imply that the energy surface is con-
nected so that no tunneling effect has to be taken into account (see [HS84, MR88]
for the more delicate case involving such tunneling effects and [OB15] in a sin-
gular setting).

Organization of the paper. In Section 2, we will treat the bottom of the well
regime. All the results of this section can be found in the literature but we will
outline a proof so as to make this paper self-contained.

In Section 3, we will first give a general strategy of proof to obtain the eigen-
value spacing for 1D Schrödinger operators. Our assumptions will imply that
the vector space of L2 solutions to (Ph − E)u = 0 is one-dimensional so that
the eigenvalue spacing will follow from the study of Gh(· ; E) which is a conve-
niently normalized solution to this equation. We will in particular observe that
the winding argument that leads to h-spacing in the non-critical case can be
reduced to a concentration estimate. We will also show that, using an energy-
dependent scaling, the latter estimate in the intermediate regime can be obtained
from estimates in the non-critical regime that are uniform with respect to the
potential.

This will lead us to standard problems in semiclassical analysis with the twist
that the potential is not fixed but lives in some set V of functions. In Sections 4.1
and 4.2 we tackle the problems of exponential decay and semiclassical measures
from this point of view and we prove essentially that the usual statements remain
true with constants that are uniform in V provided the latter set exhibits some
compactness. These two sections address the way the function Gh(· ; E) may
concentrate in the classically not allowed region and near the turning point so
that the singularity at 0 actually does not play any role. It then remains to
address the classically allowed region and this will be done in Section 4.3 in
which we will combine WKB expansions with a Volterra type approach. We
will need only the first order approximation but we will have to treat the cases
γ < 1 and γ > 1 separately. In the latter case, the first order correction is of
magnitude h and we obtain directly a WKB-approximation for G down to x = 0.
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when γ < 1, we will have to perform a matching at x = h and the first order
correction will be of magnitude hγ.

In the final section, we will patch all the different regimes to obtain the proof
of Theorem 1.

Acknowledgments. The authors are grateful to Jared Wunsch for helpful con-
versations. This work initiated when the second author visited the first for an
extended stay as a professeur invité at the Université d’Orléans and also ben-
efited from the invitation of the first author to the UNC at Chapel Hill. The
authors thank both institutions. J.L.M. acknowledges supports from the NSF
through NSF CAREER Grant DMS-1352353 and NSF Grant DMS-1909035, and
L.H. acknowledges the support of the projet région APR-IA THESPEGE.

2. Bottom of the well

We recall that we consider the following Schrödinger equation

−h2u′′ + V (x)u = Eu

on the half-line I = [0,+∞) with either Dirichlet or Neumann boundary con-
dition at 0. Before proceeding, we outline the conditions we will place on the
potential V moving forward.

Assumptions 2.1. The following properties of V hold:

• The potential V is smooth on (0,∞) and continuous on I.
• V (0) = 0 and there exist γ > 0 and W smooth on [0,∞) such that
∀x > 0, V (x) = xγW (x), W (0) > 0.
• There exists some d > 0 such that

∀x > d, V (x) > V (d),

∀x ∈ (0, d], V ′(x) > 0.

The latter assumption implies that for any E < V (d), the energy surface{
(x, ξ) ∈ I × R, ξ2 + V (x) = E

}
is compact and connected. It follows that the spectrum of Ph that lies below
V (d) consists of eigenvalues of finite multiplicity ([BS12], Ch. 10.6 or [RS78b],
Ch. XIII). Moreover, since the potential is of limit-point type near infinity any
eigenvalue in the preceding regime is necessarily simple (see Titchmarsch [Tit46]
or [RS78a, GZ06, Tes09]).

Proposition 2.1. Under Assumptions 2.1, for any M , there exists c > 0 and
h0 > 0 such that

∀h 6 h0, ∀E ∈ [0,Mh
2γ
γ+2 ] ∩ specPh, dh(E) > ch

2γ
γ+2 .
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Proof. As this result is somewhat classical, we only outline the proof and refer
the reader to [FS09, Hil18] for complete details.

We use a scaling argument: set α = 2
γ+2

and define vh(y) = uh(h
αy). The

function vh is a solution to

−v′′ + (yγW (hαy)− eh) v = 0,

where we have put eh = h−
2γ
γ+2Eh.

One can then argue by min-max arguments that eh is close to an eigenvalue
of the operator

A(v) = −v′′ +W (0)xγv,

with the same boundary condition. In order to estimate the error term, we can
introduce the point xh = hα−ε for some ε > 0, and then use the exponential
decay for x > xh (see Section 4.1 below).

The eigenvalues of A are spaced at order 1 and this gives the result. �

Remark 2.1. This method yields that the k-th eigenvalue behaves like akh
2γ
γ+2

when h goes to 0, where ak is the k-th eigenvalue of the operator A. For γ = 2
we recover the approximation by a harmonic oscillator and, for general γ, the
eigenvalue problem for A is equivalent to a Bessel equation (see eq. (5.4.11) in
[Leb72] for instance).

3. General strategy and scaling

3.1. Energy spacing and eigenfunction concentration.
It is well-known that the spacing between eigenvalues of a semiclassical 1-D
Schrödinger operator around non-critical energies with a connected energy sur-
face is of order h. This fact is classically derived from the Bohr-Sommerfeld
quantization rules (cf section 10.5 in [OB78] or [dV05, Yaf11]). We present here
a strategy that, in the end, relies on a concentration estimate for eigenfunctions.
Showing this estimate uniformly with respect to the potential will be the key to
the spacing in the intermediate regime.

Consider the eigenvalue equation

(Ph − E)uh = 0,

in which the potential satisies the same assumptions as before and E is in some
compact set K ⊂ (0, V (d)). Since this equation is of limit point type near ∞,
we know that

dim
{
u ∈ C∞ ∩ L2(0,+∞), (Ph − E)u = 0

}
= 1,
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so that there is a unique solution Gh(· ; E) that satisfies

(Ph − E)Gh(· ; E) = 0∫ +∞

0

|Gh(x ; E)|2 dx = 1,

∀x > d, Gh(x ; E) > 0.

It is also standard that the mapping E 7→ Gh(· ; E) is analytic from (0, V (d))
into L2((0,+∞)). If we denote by Ġh(·;E) the derivative of Gh with respect to
E, then, by differentiating the eigenvalue equation, we obtain

(Ph − E)Ġh(· ; E) = Gh(· ; E). (2)

We define
Zh(E) = Gh(0 ; E) + ihG′h(0, E),

which we can write, in polar coordinates, as

Zh(E) = |Zh(E)|eiθh(E)

in which E 7→ θh(E) is analytic.

Remark 3.1. Observe that the analyticity of θh implies that, when E changes,
the determination of the argument also changes anytime Zh makes one turn
around the origin. The function θh is thus uniquely determined by choosing a
particular determination of the argument at one energy only. It is clear that the
following argument does not depend on this choice.

A straightforward computation yields

|Zh(E)|2 θ̇h(E) = Im(Zh(E)Żh(E))

= W0

[
Gh, Ġh

]
,

where W is the (semiclassical) Wronskian that is defined by

Wx [f, g] = hf(x)g′(x)− hf ′(x)g(x).

The semiclassical Wronskian of Gh and Ġh can also be computed by multi-
plying equation (2) by G, integrating, and making two integration by parts (the
contribution of +∞ vanishes since the equation is of limit-point type there and
both functions are L2). We obtain∫ +∞

0

G2
h(x ; E) dx = h2Ġ′h(0 ; E)Gh(0 ; E)− h2Ġh(0 ; E)G′h(0 ; E)

= hW0

[
Gh, Ġh

]
.

Finally, we obtain

|Zh(E)|2 θ̇h(E) =
1

h

∫ +∞

0

G2
h(x ; E) dx.
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This identity implies that E 7→ θh(E) is a smooth diffeomorphism. Inverting
the latter, we can write E as a function of θh and obtain

dE = h|Zh(E)|2dθh, (3)

since Gh is normalized.
Being an eigenvalue is equivalent to asking that Gh(· ; E) satisfies Dirichlet

or Neumann boundary condition at 0. This implies that E is a Dirichlet (resp.
Neumann) eigenvalue if and only if Zh(E) lies on the real axis (resp. on the
imaginary axis). In both cases, it follows that between two consecutive eigen-

values

∫
dθh = π. We will thus get the spacing of order h provided that there

exists some positive constant c such that

∀E ∈ K, |Zh(E)|2 > c.

One way to obtain this inequality is by using WKB expansions and semiclassi-
cal measures. Indeed, the WKB expansion near 0 will yield that, for some small
a

|Zh(E)|2 �
∫ a

0

G2
h(x ; E) dx (4)

and a semiclassical measure argument will yield that∫ a

0

G2
h(x ; E) dx �

∫ +∞

0

G2
h(x ; E). (5)

Both these arguments are standard for a smooth potential for non-critical
energies. In the next section (Section 4), we show that an energy-dependent
scaling allows to get the estimate for the intermediate regime by following the
same method of proof but for families of potentials. The arguments in Section
4 will contain all the details of the WKB and semiclassical analysis required to
establish both bounds (4) and (5), so we hold off on providing more details here.
Showing that the estimates are uniform with respect to both the potential and
the energy will finally yield Theorem 1.

3.2. Energy scaling for the intermediate region.
Choose a sequence (Eh, uh)h>0 that is a solution to (1) under the standing

assumptions on V . Recall that Eh is in the intermediate regime if neither Eh is
non-critical, nor Eh is in the bottom of the well regime. Equivalently, this reads
as

Eh −→
h→0

0, and h−
2γ
γ+2Eh −→

h→0
+∞.
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We perform a E-dependent scaling on the equation by setting ṽh(z) = ũh(E
1
γ

h z).
We obtain

−h2ũ′′h + (xγW (x)− Ẽh)ũh = 0 ⇐⇒

−h2E
−1− 2

γ

h ṽ′′h + (zγW (E
1
γ

h z)− Ẽh
Eh

)ṽh = 0.

Since Eh is in the intermediate regime :

• W (E
1
γ

h ·) converges to the constant function W (0) (uniformly on every
compact set),

• h̄ def
= hE

− 2+γ
2γ

h tends to 0.

We may thus take h̄ as a new genuine semiclassical parameter. By construction,
we are now working near the energy 1 which is non-critical. Assuming we have a

spacing of order h̄ uniformly for the sequence of potentials z 7→ zγW (E
1
γ

h z), we

obtain that any eigenvalue Ẽh 6= Eh must satisfy

|Ẽh
Eh
− 1| > ch̄.

Thus, we obtain the bound

|Ẽh − Eh| > ch · E
γ−2
2γ .

Consequently, we see that Theorem 1 will follow from the usual semiclassical
estimates at a non-critical energy provided the latter are proven to hold for
singular potential and uniformly. This approach is interesting in its own and we
will develop it after having made the setting precise.

3.3. Global Assumptions. We fix γ > 0, 0 < b < c < d, K a compact set in
C∞([0, d];R) equipped with its Fréchet topology and K a compact set in (0,+∞).
We denote by V the set of potentials such that the following assumptions hold.

Assumptions 3.1.

• The conditions on V from Assumptions 2.1 hold.
• The restriction of W to [0, d] belongs to K.
• The following estimates hold

∀(V,E) ∈ V ×K, ∀x ∈ [0, b], E − V (x) > 0,

∀(V,E) ∈ V ×K, ∀x ∈ [c, d], V (x)− E > 0.

Let us observe that these assumptions imply that

∀E ∈ K, ∀x > d, V (x)− E > V (d)− E > 0,
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so that the operator Ph − E is of limit-point type near ∞ which allows us to
define Gh(· ; E) for any E ∈ K and V ∈ V . Observe that the notation does not
reflect the fact that the function Gh also depends on V .

We want to prove the following theorem.

Theorem 2. Under the preceding assumptions, there exists c > 0 and h0 > 0
such that for any h 6 h0, for any V ∈ V and any Eh eigenvalue of Ph:

Eh ∈ K =⇒ dh(Eh) > ch.

The results in Theorem 2 will follow from the following proposition.

Proposition 3.1. There exist c, h0 > 0 such that

∀ (V,E) ∈ V ×K, ∀h 6 h0, |Zh| > c.

The proof of this proposition is somewhat technical and is the main result
of this section. Hence we postpone it until we have discussed how the proof of
Theorem 2 follows.

Remark 3.2. We have renamed h the semiclassical parameter, although, in the
scaling argument, we use this bound for the rescaled semiclassical parameter h̄.

Proof of Theorem 2. The same computation as that yielding (3) gives us

h|Zh|2θ̇h = 1.

We recall that, for any (V,E) in V ×K,

Zh
def
= Gh(0 ; E) + ihG′h(0 ; E) = |Zh|eiθh .

The claim thus follows from Proposition 3.1.
�

The proof of Proposition 3.1 will proceed by estimating Gh(· ; E) in different
regions of the half-line, uniformly with respect to the potential. To this end, we
will need several uniform quantities that we now define.

Remark 3.3. Observe that the order h spacing at non-critical energies follow
from Thm 2 by considering V = {V }.
3.4. Uniform Bounds. For any (V,E) ∈ V ×K, the assumptions imply:

• There is a unique solution xE to the equation V (xE) = E (the turning
point).
• [0, b] is in the classically allowed region and (E−V ) is uniformly bounded

below on it.

∃κo > 0, ∀ (V,E) ∈ V ×K, ∀h 6 h0,

∀x ∈ [0, b], E − V (x) > κo. (6)

(The o stands for oscillating since, in the classically allowed region, Gh

exhibits highly oscillating behaviour).
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• [c,+∞) is in the classically not allowed region, and (V −E) is uniformly
bounded below on it.

∃κe > 0, ∀ (V,E) ∈ V ×K, ∀h 6 h0,

∀x ∈ [c,+∞), V (x)− E > κe. (7)

(The e stands for exponential).
• The turning point xE always belong to [b, c]. Since, on [b, c], V ′ is uni-

formly bounded below, the turning point is non-degenerate. We also have
the following estimate from below:

∀a 6 b, ∃δa > 0, ∀(V,E) ∈ V ×K, ∀h 6 h0,

∀x ∈ [a, c], V ′(x) > δa.

We will also use the shortcut δ
def
= δa.

• Finally, for any `, W (`) is, uniformly on [0, d], bounded above by some
C`.
• If γ is an integer, W (`) can be replaced by V (`) in the latter statement.

Remark 3.4. The point c should not be confused with the (different) constant
c that appears in the estimates.

4. Uniform concentration estimates

In this section we aim at showing that the mass of Gh(· ; E) in the classically
allowed region is bounded below uniformly for (V,E) ∈ V ×K.

4.1. In the classically not-allowed region. In this section, we prove that the
function Gh is exponentially small in the region x > c with constants that are
uniform with respect to V ∈ V and E ∈ K. Such exponential estimates are
well-known for a fixed pair (V,E). Common ways to obtain the latter estimates
are by using positive commutator methods, or by estimating qh(e

φu) where qh is
the quadratic form that is associated with the operator and φ is a function that
is adapted to the geometrical setting. We present here a slightly different, but
also classical, rudimentary proof that has the advantages of assuming very little
on the potential and of making it very easy to track the constants.

Proposition 4.1. Under the assumptions 3.1 and using the preceding notations,
for any (V,E) ∈ V ×K and for any η > 0, we have

∀x, z > 0, z > x > xE +
η

2
, Gh(z) 6 e−

√
δη

2h
(z−x)Gh(x), (8)

in which we recall that

δ
def
= inf{V ′(x), V ∈ V , x ∈ [b, c]} > 0.
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Proof. First we observe that, for any x ∈ [xE + η
2
, c], we have, uniformly for

(V,E) ∈ V ×K,

V (x)− E = V (x)− V (xE) > δ · η
2
.

Since V is increasing on [c, d], the same estimate is true on [c, d] and then on
[d,+∞) since V (x) > V (d) on this interval. Finally, we obtain:

∀(V,E) ∈ V ×K, ∀x > xE +
η

2
, V (x)− E > δ · η

2
.

From the equation

−h2G′′h + (V − E)Gh = 0,

we thus infer

∀x > xE +
η

2
, (G2)′′(x) > 2G(x)G′′(x) >

δη

h2
G2(x).

We set ω =
√
δη
h

and, for any xE + η
2
6 x < y, we denote by φ the solution to

φ′′ = ω2φ that takes the same values as G2 at x and y. Since G2 − φ vanishes
at x and y and satisfies (G2 − φ)′′ > ω2(G− φ), a maximum principle argument
shows that

∀z ∈ [x, y], G2
h(z) 6 φ(z).

By making φ explicit, we find

∀ x, y, z, xE +
η

2
6 x < z < y,

G2
h(z) 6 G2

h(x)
sinh(ω(y − z))

sinh(ω(y − x))
+ G2

h(y)
sinh(ω(z − x))

sinh(ω(y − x))
. (9)

In this inequality, we fix x and z and integrate with respect to y in [z+ 1, z+ 2],
we find

∀ x, z xE +
η

2
6 x < z,

G2
h(z) 6 G2

h(x)

∫ z+2

z+1

sinh(ω(y − z))

sinh(ω(y − x))
dy +

∫ z+2

z+1

G2
h(y) dy.

It follows that G2
h(z) goes to zero when z goes to ∞. So we may let y go to

+∞ in the estimate (9) and obtain

∀ x, z, xE +
η

2
6 x < z, G2

h(z) 6 G2
h(x)eω(x−z).

The claim follows by taking the square root, since, by choice, Gh is positive in
the classically not-allowed region. �

We use this proposition to prove uniform exponential estimates for the mass
of Gh and for the semiclassical Cauchy data in the classically not-allowed region.



12 L. HILLAIRET AND J.L. MARZUOLA

Lemma 4.2.

∀ η > 0, ∃ κ, h0 > 0, ∀ (V,E) ∈ V ×K, ∀ h 6 h0,∫ +∞

xE+η

|Gh(x ; E)|2 dx 6 e−κ/h.

Proof. We start from the estimate

∀ x, z, xE +
η

2
6 x < z, G2

h(z) 6 G2
h(x)eω(x−z),

in which we recall that ω =
√
δη
h

. For any x ∈ [xE + η
2
, xE + η] we integrate this

equality over z ∈ [xE + η,+∞), we find

∀ x ∈ [xE +
η

2
, xE + η],

∫ +∞

xE+η

G2
h(z) dz 6

1

ω
e−ω(xE+η−x)G2(x).

We may now integrate this inequality over x ∈ [xE + η
2
, xE + 3η

4
]. Using that G

is L2 normalized, we obtain

η

4

∫ +∞

xE+η

G2
h(z) dz 6

1

ω
e−

ωη
4 .

We obtain finally ∫ +∞

xE+η

G2
h(z) dz 6

4

ηω
e−

ωη
4 .

The claim follows if we set κ = δ
1
2 ·η

3
2

4
and choose h0 small enough so that the

prefactor is bounded by 1. �

We now proceed to give an estimate for the semiclassical Cauchy datum in the
classically not-allowed region, using the proposition and the eigenvalue equation
for G.

Proposition 4.3. There exist h1 > 0 and a constant κ1 such that, for any
(V,E) ∈ V ×K and any h 6 h1, we have

Gh(c) 6 e−
κ1
h ,

|hG′h(c)| 6 e−
κ1
h .

Proof. First we observe that, due to compactness, there exists η̄ > 0 such that

∀ (V,E) ∈ V ×K, xE + η̄ < c.

Choosing η = η̄
2

and h small enough, we may thus make sure that

∀ (V,E) ∈ V ×K, ∀ h 6 h1, [c− h, c+ h] ⊂ [c− η̄

2
, d] ⊂ [xE + η, d].
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Using Proposition 4.1, we thus obtain that

∀ x ∈ [xE +
η

2
, xE +

3η

4
], ∀ z ∈ [c− h, c+ h], G2

h(z) 6 e−δ
1
2 η

3
2 /4hG2

h(x),

since (z − x) > η
4

for this range of values of x and z. Integrating with respect to
x and taking the square-root we find:

∀ z ∈ [c− h, c+ h], |Gh(z)| 6
√

4

η
e−δ

1
2 η

3
2 /8h.

This gives the result if we take κ < δ
1
2η

3
2/8 and h small enough so that√

4

η
e−(δ

1
2 η

3
2−κ)/8h 6 1.

Setting
M = sup{V (x)− E, (V,E) ∈ V ×K, x ∈ [b, d]},

which is finite by compactness, and using the eigenvalue equation, we also have

∀ z ∈ [c− h, c+ h], |h2G′′h(z)| 6M ·
√

4

η
e−δ

1
2 η

3
2 /8h.

Using Taylor-Lagrange expansions, there exist θ− ∈ [c−h, c] and θ+ ∈ [c, c+h]
such that

Gh(c− h) = Gh(c) − h ·G′h(c) +
h2

2
G′′h(θ−),

Gh(c+ h) = Gh(c) + h ·G′h(c) +
h2

2
G′′h(θ+).

By combining these two equations, we obtain

|hG′h(c)| 6
|Gh(c− h)|+ |Gh(c+ h)|

2
+

1

4
(h2|G′′h(θ+)|+ h2|G′′h(θ−)|).

It then follows from the preceding estimate that there exist some constant C
such that

|hG′h(C)| 6 Ce−δ
1
2 η

3
2 /8h.

The claim follows by taking the same κ as above and a smaller h1 if needed. �

Remark 4.1. Arguing similarly, we could get an estimate replacing c by any
x ∈ [c, d).

A consequence of this estimate is that the Cauchy data of Gh at c is exponen-
tially small uniformly for (V,E) ∈ V × K. More precisely, setting Zh(· ; E) =
Gh(· ; E) + ihG′(· ; E), we have

∃ h0, κ > 0, ∀ h 6 h0, ∀ (V,E) ∈ V ×K,
|Zh(c ; E)| 6 e−

κ
h . (10)
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The latter estimates allow control of Gh in the classically forbidden region.
We will see that, in the classically allowed region, WKB expansions will also
provide us with enough control. It thus remains to address the turning point.
There are several ways to do so (using a Maslov or a Airy Ansatz for instance
[MA72, Yaf11]). We have chosen a semiclassical measure approach since we think
it is a nice generalization of the usual theory.

4.2. Semiclassical measures for families of potential. Let (Vh, Eh)h>0 be a
family in V ×K. For each smooth observable a that is compactly supported in
(0, d)× R, we define

µh(a)
def
= 〈Oph(a)Gh, Gh〉,

where

Oph(a)u(x) =
1

2πh

∫ ∫
e
i
h

(x−y)ξa

(
x+ y

2
, ξ

)
u(y)dydξ

is for instance the Weyl semiclassical quantization procedure. We will require
the fact that in any quantization we have that the commutator of two operators
is

[Oph(a),Oph(b)] =
h

i
Oph({a, b}) +O(h2),

where

{a, b} = ∂ξa∂xb− ∂xa∂ξb.
is the the Poisson bracket. For our purposes, the choice of quantization makes
very little difference in our results, see [Zwo12], Ch. 4 for a more detailed dis-
cussion. A standard argument shows that, up to extracting a subsequence, there
exists a limiting measure µ0 such that

µh(a)→
∫
a(x, ξ)dµ0.

Using compactness, we may extract again and assume that Vh converges to V0

and Eh converges to E0.

Remark 4.2. In dimension 1 and for a fixed smooth potential, a very detailed
analysis of the behavior of µh(a) when h tends to 0 can be found in the appendix
of [HMR87].

We then have the following proposition that generalizes the known results
when the potential is fixed.

Proposition 4.4. Under the preceding assumptions, the support of the semiclas-
sical measure µ0 is a subset of the energy surface{

ξ2 + V0(x) = E0, (x, ξ) ∈ (0, d)× R
}
.

The measure µ0 is invariant by the Hamiltonian flow of p0(x, ξ)
def
= ξ2 + V0(x).
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Remark 4.3. The invariance of the measure µ will be obtained by showing that,
for any (compactly supported) symbol a,∫

{p0, a} dµ = 0,

since, by definition {p0, a} amounts to differentiating in the direction of the
hamiltonian flow of p0.

Proof. We follow the standard proofs, for instance Theorems 5.3 and 5.4 in
[Zwo12]. For the support property, we need to show that if a vanishes on a
neighbourhood of the energy surface, then

µh(a) −→
h→0

0.

We denote by P 0
h the operator

P 0
hu = −h2u′′ + V0(x)u.

We write

µh(a) = 〈Oph(a)Gh, Gh〉

= 〈Oph(
a

p0 − E0

)(P 0
h − E0)Gh, Gh〉+ o(1)

= 〈Oph(
a

p0 − E0

)(V0 − Vh + E0 − Eh)Gh, Gh〉+ o(1)

−→
h→0

0,

where we have used that a vanishes on the energy surface so that a
p0−E0

is smooth

with compact support, and in the latter stage the fact that (V0 − Vh +E0 −Eh)
converges to 0 on [0, d] and Gh is exponentially small on [d,+∞).

For the invariance property, we write

h

i

[
(〈Oph({p0, a})Gh, Gh〉+ o(1)

]
= 〈[P 0

h ,Oph(a)]Gh, Gh〉

= 〈[Ph,Oph(a)]Gh, Gh〉
+ 〈[Vh − V0,Oph(a)]Gh, Gh〉

=
h

i

[
(〈Oph({Vh − V0, a})Gh, Gh〉 + o(1)

]
).

We now use the fact that the norm of a pseudodifferential operator on L2 depends
on the uniform norm of a finite number of derivatives of the symbol and that
{Vh − V0, a} and all its derivatives converge uniformly to 0 on the support of
a. �

The semiclassical measure can be extended to symbols that are not compactly
supported in ξ, in particular to symbols that only depend on x.
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In dimension 1, µ0 is thus determined up to a factor (see [HMR87] for instance).
More precisely, according to the assumptions we have imposed on the potential,
there exists φ0 defined by

ξ2 + V (φ0(ξ)) = E0.

Hence, using the corresponding level sets of the operator and using the invariance
of the semiclassical defect measure along the Hamiltonian flow, that can be
parametrized using ξ, there exists c such that µ0 = cν where ν is defined by

ν(a) =

∫
a(φ0(ξ), ξ)

dξ

V ′0(φ0(ξ))
.

For a smooth function χ whose support is a subset of (0, xE0), we have the
alternative expression:

ν(χ) =

∫
χ(x)

dx√
E0 − V (x)

using instead the parametrization of ξ =
√
E0 − V (x).

Using the semiclassical measure, we obtain that the mass of Gh is uniformly
bounded below in the classically allowed region V (x) 6 E.

Proposition 4.5. There exists positive constants c and h0 such that

∀ h 6 h0, ∀ (V,E) ∈ V ×K,
∫ b

0

|Gh(x ; E)|2 dx > c. (11)

Proof. The proof is a typical application of using semiclassical measures to prove
(non-)concentration estimates. By contradiction, we assume that the estimate
(11) does not hold. We can thus find a sequence (Vh, Eh) with h going to 0 such
that ∫ b

0

|Gh(x ; E)|2 dx −→
h→0

0. (12)

Using compactness, we may first extract subsequences and also assume that
(Vh, Eh) tends to a limiting (V0, E0). We then extract a subsequence again to
obtain a semiclassical measure µ0. The preceding argument implies that there
exists λ > 0 such that µ0 = λν. Next, we observe that the assumption (12)
implies that λ = 0. Indeed, for any non-negative function χ that has compact
support in (0, b) and that is bounded above by 1 we have

〈Oph(χ)Gh, Gh〉 =

∫ b

0

χ(x) |Gh(x ; E)|2 dx 6
∫ b

0

|Gh(x ; E)|2 dx.

It follows that

λ

∫ b

0

χ(x)
dx√

E − V (x)
= 0,

and hence λ = 0.
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By choosing an appropriate symbol, this implies that for any closed interval
[x0, x1] ⊂ (0,+∞), we have∫ x1

x0

|Gh(x ; E)|2 dx −→
h→0

0.

Setting x0 = b, summing and using (12), we obtain that, for any x1 > b∫ x1

0

|Gh(x ; E)|2 dx −→
h→0

0.

Since Gh is normalized, this implies that the mass of Gh escapes to +∞ but this
is in contradiction with the estimates in the classically not allowed region. �

4.3. In the classically allowed region. We now work on [0, b]. In this interval,
we know that E − V is uniformly bounded from below so that we can perform
WKB approximation of solutions. For the estimate we are looking for only a first
order WKB approximation is needed, but the lack of smoothness at x = 0 creates
small additional complications. In particular, we will first make the assumption
that γ > 1 and then explain how to modify the proof for γ ∈ (0, 1).

Remark 4.4. We actually conjecture that the following full asymptotic expan-
sion for Zh holds:

Zh =
∑
m,n>0,
m+n>1

am,nh
mγ+n.

The leading term in that expansion is thus hγ if γ ∈ (0, 1) and h if γ > 0. This
also explains the two cases. Proving such a uniform expansion will be a topic of
future work and is not required to the proof of the results contained here. It
is not clear whether such an expansion will be strong enough to deal with the
tunneling question since, in the latter, exponentially small quantities typically
appear.

Let (V,E) be in V × K and Gh(· ; E) be defined as before. We define the
functions S, a, φ± on [0, b] by

S(x) =

∫ x

0

√
E − V (y) dy,

a(x) = (E − V (x))−
1
4 ,

φ±(x) = a(x)e±
i
h
S(x).

A straightforward computation yields

−h2φ′′± + (V − E)φ± = h2 · rφ±,

where we have set r
def
= −a

′′

a
.
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This computation implies that, on [0, b], φ± is a basis of solutions to the
equation

−h2y′′ + (V − E − h2r)y = 0.

Let u be a solution to

−h2u′′ + (V − E)u = 0.

The classical method consists in saying that u is a solution to the former equation
with an inhomogeneous term that reads −h2ru and then in applying the variation
of constants method. We find that there exists constants α± such that, for all
x ∈ (0, b], we have

u(x) = α+φ+(x) + α−φ−(x) − h

2i

∫ b

x

r(y)u(y) [φ−(y)φ+(x)− φ+(y)φ−(x)] dy.

We define the operator Lh by

Lh[u](x) =
h

2i

∫ b

x

r(y)u(y) [φ−(y)φ+(x)− φ+(y)φ−(x)] dy.

so that the preceding equation rewrites

(id + Lh) [u] = α+φ+ + α−φ−.

The operator Lh is easily seen to be linear from C0([0, b];C) into itself.
Using the compactness of K and K, there exist C1 and C2 such that, for all

(V,E) ∈ V ×K and all y ∈ [O, b]:

|r(y)| 6 C1y
ρ,

|a(y)| 6 C2,

where ρ = γ − 2 if γ ∈ (0, 2) \ {1} and ρ = 0 if γ = 1 or γ > 2.

Remark 4.5. In the sequel we will denote by C a generic constant that is
uniform for (V,E) in V ×K. Observe that this constant may change from one
line to the other.

We obtain that, for all (V,E) ∈ V ×K,

∀ x ∈ (0, b), |Lh[u](x)| 6 C · h ·
∫ b

x

yρ dy · ‖u‖C0([0,b]).

If γ > 1 then the integral on the right is convergent and we obtain that the
operator norm of Lh is (uniformly w.r.t. (V,E)) bounded by C · h.

Proposition 4.6. Let γ > 1 then there exists a constant C that is uniform with
respect to (V,E) ∈ V ×K and h0 such that, for any h 6 h0 there exists α±(h)
such that

‖Gh − α+φ+ − α−φ−‖C0([0,b]) 6 Ch,

‖hG′h − α+hφ
′
+ − α−hφ′−‖C0([0,b]) 6 Ch.
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Proof. According to the previous computation, there exists α+ and α− so that

(id + Lh) [G] = α+φ+ + α−φ−,

and a uniform C such that

‖Lh‖L(C0([0,b])) 6 C · h.
We choose h0 so that C · h0 < 1. It follows that id + Lh is invertible and∥∥∥(id + Lh

)−1 − id
∥∥∥
L(C0([0,b]))

6 C · h.

The first estimate on Gh follows. For the second one, we first observe that

G′h(x) = α+φ
′
+(x) + α−φ

′
−(x)

− h

2i

∫ b

x

r(y)Gh(y)
[
φ−(y)φ′+(x)− φ+(y)φ′−(x)

]
dy.

The integral is then uniformly bounded since G and hφ′± are bounded in C0

(recall that γ > 1) and r is integrable. �

Corollary 4.7. There exist uniform constant m1,M1,m2,M2 so that

m1(|α+|2 + |α−|2) 6
∣∣Gh(0 ; E) + ihG′h(0 ; E)

∣∣2 6 M2
1 (|α+|2 + |α−|2),

m2(|α+|2 + |α−|2) 6
∫ b

0

|Gh(x ; E)|2 dx 6 M2
2 (|α+|2 + |α−|2).

Proof. We denote by α = t(α+, α−) the (column)-vector in C2 and by |α|C2
def
=

(|α+|2 + |α−|2)
1
2 its norm. Starting from the expressions in Proposition 4.6, we

first observe that

‖α+φ+ + α−φ−‖L2([0,b]) = |α|C2

(∫ b

0

dx√
E − V (x)

+ O(h)

) 1
2

,

where the O is uniform in V × K. Indeed, using an integration by parts, the
fact that γ > 1 and compactness to obtain uniform estimate, we see that the
cross-terms give a O(h) contribution.

Using the triangle inequality then yields(∫ b

0

|Gh(x ; E)|2 dx
) 1

2

= |α|C2

(∫ b

0

dx√
E − V (x)

+ O(h)

) 1
2

+ O(h)

in which both O are uniform with respect to (V,E) ∈ V ×K. Since∫ b

0

|Gh(x ; E)|2 dx > c > 0,
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and
∫ b

0
dx√

E−V (x)
> c′ > 0, both O term can be absorbed and we obtain the

second line. The first line follows using the approximation on Gh and hG′h and
the fact that a uniform O(h) term can be absorbed by |α+|2 + |α−|2. �

Combining the two estimates, and the fact that

∫ b

0

|Gh(x ; E)|2 dx is uniformly

bounded away from 0, we obtain the proof of Proposition 3.1. It remains to
address the case γ ∈ (0, 1).

4.4. When γ ∈ (0, 1). The problem when γ ∈ (0, 1) is that y 7→ yγ−2 is no
longer integrable near 0, so we cannot work directly on [0, b]. It is standard in
matching problems that we need to introduce an intermediate point xh and use
different approximations on [0, xh] and on [xh, b]. It turns out that we can choose
xh = h.

Remark 4.6. Potentials of the form |(log x)|−γW (x) can be analyzed using
similar tools as developed in this section, but the error bounds will be more
delicate.

We define the operator Lh as before. Its operator norm in L(C0([h, b])) is
bounded above (uniformly) by

C · h ·
∫ b

h

yγ−2 dy,

so that there exists a uniform C such that

‖Lh‖ 6 C · hγ.

The same proof as above yields the following proposition.

Proposition 4.8. Let γ ∈ (0, 1) then there exists a constant C that is uniform
with respect to (V,E) ∈ V ×K and h0 such that, for any h 6 h0 there exists α±
(that depend on h) such that

‖Gh − α+φ+ − α−φ−‖C0([h,b]) 6 Chγ,

‖hG′h − α+hφ
′
+ − α−hφ′−‖C0([h,b]) 6 Chγ.

On [0, h], we follow the same strategy but we take as a basis of pseudosolutions
the functions ψ± defined by

ψ±(x) = E−
1
4 e±

i
√
E
h
x.

This is equivalent to treating the term V u in the equation as some inhomogeneous
term.

By following the same method, we obtain the proposition.
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Proposition 4.9. Let γ ∈ (0, 1) then there exists a constant C that is uniform
with respect to (V,E) ∈ V ×K and h0 such that, for any h 6 h0 there exists β±
(that depend on h) such that

‖Gh − β+ψ+ − β−ψ−‖C0([0,h]) 6 Chγ,

‖hG′h − β+ψ
′
+ − β−hψ′−‖C0([h,b]) 6 Chγ.

Using the former proposition we obtain{
Gh(h) = α+(φ+(h) + O(hγ)) + α−(φ−(h) + O(hγ)) + O(hγ),
hG′h(h) = α+(hφ′+(h) + O(hγ)) + α−(hφ′−(h) + O(hγ)) + O(hγ)

and using the latter proposition, we obtain{
Gh(h) = α+ψ+(h) + α−ψ−(h) + O(hγ),
hG′h(h) = α+hψ

′
+(h) + α−hψ

′
−(h) + O(hγ).

We now observe that

S(h) = h(
√
E + O(hγ)), a(h) = E−

1
4 + O(hγ), ha′(h) = O(hγ)

so that φ±(h) = ψ±(h) +O(hγ) and hφ′±(h) = hψ′±(h) +O(hγ). We compute∣∣∣∣ ψ+(h) ψ−(h)
hψ′+(h) hψ−(h)

∣∣∣∣ = −2i.

Since this determinant is uniformly bounded away from 0 and the coefficients of
the corresponding matrix are uniformly bounded above, we deduce that

α± = β± + O(hγ).

We now estimate the norms over [0, h] and [h, b]:

‖Gh(x ; E)‖L2([0,h]) = |β|C2

[
h√
E

(1 +O(hγ))

] 1
2

+ O(hγ+ 1
2 ),

‖Gh(x ; E)‖L2([h,b]) = |α|C2

[∫ b

h

dx√
E − V (x)

+ O(h)

] 1
2

+ O(hγ).

Adding these two equalities, and using the fact that α± = β± + O(hγ) and that∫ b
0
|Gh(x ; E)|2dx is uniformly bounded away from 0, we obtain that∫ b

0

|Gh(x ; E)|2dx =
(
|α+|2 + |α−|2

) ∫ b

0

dx√
E − V (x)

+ O(hγ)

=
(
|β+|2 + |β−|2

) ∫ b

0

dx√
E − V (x)

+ O(hγ).

Remarking that
|Zh|2 �

(
|β+|2 + |β−|2

)
completes the proof of Proposition 3.1.
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5. Proof of Theorem 1

To prove part (1), let M < lim infx→+∞ V (x), then the part of the spectrum
of Ph below M is discrete as follows from the fact that the set{
u ∈ H1, ‖u‖L2 6 1, h2

∫ +∞

0

|u′(x)|2 dx +

∫ +∞

0

V (x)|u(x)|2 dx 6M‖u‖2
L2

}
is relatively compact in L2.

In order to prove part (2), we argue by contradiction. If the estimate is not
true then we can find two distincts eigenvalues Eh and Ẽh such that

dh(E) = o(h · E
γ−2
2γ ).

We may suppose that Eh has a limit E0 and we have three cases to study.

• E0 = 0 and there exists M such that Eh 6 Mh
2γ
γ+2 . We obtain a contra-

diction using Proposition 2.1 in the bottom of the well regime.

• E0 = 0 and h−
2γ
γ+2Eh → +∞. We make the energy-dependent scaling as

outlined in Section 3.2 and obtain a contradiction using Theorem 2 in
the intermediate regime.
• E0 > 0. We obtain a contradiction with the non-critical energy regime

again following from Theorem 2 without the need for re-scaling.
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[Hör03] Lars Hörmander. The analysis of linear partial differential operators. I. Classics
in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier
analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993
(91m:35001a)].
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