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ABSTRACT. The aim of this paper is to provide uniform estimates for the
eigenvalue spacing of one-dimensional semiclassical Schrédinger operators with
singular potentials on the half-line. We introduce a new development of semi-
classical measures related to families of Schrodinger operators that provides a
means of establishing uniform non-concentration estimates within that class
of operators. This dramatically simplifies analysis that would typically require
detailed WKB expansions near the turning point, near the singular point and
several gluing type results to connect various regions in the domain.

1. INTRODUCTION

We consider a (self-adjoint) one-dimensional semiclassical Schrodinger opera-
tor
Py = —h*u" + V(z)u
that is defined on the half-line I = [0,4+00). The potential V' is defined by
x +— x W (z) for some v > 0 and a smooth, positive W. We will be interested
in the eigenvalue equation
Phuh = Ehuh, (1)

for an energy Ej, in a certain regime that is a, possibly h-dependent, compact
interval K;, C R that we call the energy window. If the spectrum of P, is discrete
in K} we define, for F in spec Py,

d(E) < inf{|E — E|, E € spec P,, E # E},
and we aim at giving lower bounds on dj(F) as uniform as possible.

Studying Schrodinger operators is a standard problem in spectral theory and
many results on eigenvalues and eigenfunctions can be extracted from the lit-
erature on Sturm-Liouville problems and semiclassical analysis (Titchmarsch
[Tit46], Olver [Olv74], Hormander [H6r03, Hor05, Hor80, Hor09], Maslov [MAT72],
Helffer-Robert [HR83], Dimassi-Sjostrand [DS99], Zworski [Zwol2]).

The most favorable case is when the energy E' is non-critical i.e. when the
associated energy surface is smooth. In dimension 1, this is equivalent to say
that whenever V' (z) = E then V'(x) # 0. In that setting, Bohr-Sommerfeld rules
for smooth potentials in the semiclassical literature imply that, for a sequence

of eigenvalues (Ej)p~o that converges to a non-critical energy E, > 0 with a
1
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connected energy surface, then the spacing is of order h (see Section 10.5 in
[OB78] or [HMRS87, dV05, Yafl1] for instance).

In most cases, semiclassical techniques allow one to work in any dimension
but, often, only for smooth potentials.

Singular potentials have also been studied (see among others [LR79, Ber82,
Chr15]). Often, the "bottom-of-the well” regime is considered, i.e. when Ej, goes
to 0 at a certain rate. The latter rate can be obtained by a scaling argument
by deciding for which power « the change of variables x < h%x transforms
the problem into a non-semiclassical second order differential equation. It can

2
then be proved that the k-th eigenvalue of P, behaves like a;.chvTV2 in which ay are
constants that typically arise as the k-th eigenvalue of a model problem, and also
coincide with the k-th roots of a transcendental equation. From this asymptotic

behaviour, we infer that the spacing in this regime is also of order hate (see
[F'S09], and also [Sim83] for a much more complete study of the bottom of the
well for quadratic potentials, or [BP19] for even more degenerate situations). We
also advertise the recent paper [GW18] that lays the foundations for a systematic
semiclassical study of a class of singular potentials.

The intermediate regime, which is neither the non-critical energies nor the
bottom of the well is known in the semiclassical literature as semi-excited states
and has been initiated by Sjostrand [Sj692].

Our main result is stated as follows and can be seen as an estimate unifying
all the preceding regimes.

Theorem 1. Assume that v > 0 and W is smooth and positive on [0, +00).
Let V = 29W and P, the Dirichlet or Neumann realization of —h*u” +V on
[0,400). Ifliminf, , . V(z) > 0, there exist M, hy,c > 0 such that

(1) For all h < hg, spec P, N[0, M] is purely discrete,
(2) For any h < hy and any E in spec P, N[0, M],

dy(E) > ch-E' .

Such a theorem is actually equivalent to answering the following question:
consider a sequence (Fj)nso going to some limit Ey as h goes to 0 and study the
behavior of the sequence (dy(Er))n=0. When Ej is non-critical then our result
recovers the usual order h separation. This is completely standard if v is an inte-
ger, for, in that case, the potential is smooth and the full semiclassical machinery
can be used. If v is not an integer, the energy surface is not smooth anymore and
it must be proved that the singularity is not strong enough to perturb the order A
spacing of eigenvalues. This can perhaps be done by rather soft techniques such
as some Dirichlet-Neumann bracketing argument. We have chosen a different,
also well known, technique that relies in estimating how fast the semiclassical
Cauchy datum of the fundamental solution at x = 0 winds around the origin.
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We will observe that this winding is related to non-concentration at the singular
point.

One motivation for studying this kind of potential comes from the adiabatic
ansatz in a stadium-like billiard (see [HM12]). In the latter, the potentials that
come up are of the form z +— 2] W (z) on the half-line [-B,+o0) for B > 0
and the eigenvalue problem can be restated as a gluing problem that involves
the fundamental solution on the half-line that we study here. There are several
other settings in which this kind of semiclassical Schrodinger operators play a
role however, such as effective Hamiltonians in the study of waveguides with
corners [RS95, DR12] or of flat triangles [OB15, HJ11].

We also point out that our assumptions imply that the energy surface is con-
nected so that no tunneling effect has to be taken into account (see [HS84, MRSS]
for the more delicate case involving such tunneling effects and [OB15] in a sin-
gular setting).

Organization of the paper. In Section 2, we will treat the bottom of the well
regime. All the results of this section can be found in the literature but we will
outline a proof so as to make this paper self-contained.

In Section 3, we will first give a general strategy of proof to obtain the eigen-
value spacing for 1D Schrédinger operators. Our assumptions will imply that
the vector space of L? solutions to (P, — F)u = 0 is one-dimensional so that
the eigenvalue spacing will follow from the study of Gp(-; E) which is a conve-
niently normalized solution to this equation. We will in particular observe that
the winding argument that leads to h-spacing in the non-critical case can be
reduced to a concentration estimate. We will also show that, using an energy-
dependent scaling, the latter estimate in the intermediate regime can be obtained
from estimates in the non-critical regime that are uniform with respect to the
potential.

This will lead us to standard problems in semiclassical analysis with the twist
that the potential is not fixed but lives in some set V of functions. In Sections 4.1
and 4.2 we tackle the problems of exponential decay and semiclassical measures
from this point of view and we prove essentially that the usual statements remain
true with constants that are uniform in V provided the latter set exhibits some
compactness. These two sections address the way the function Gy(-; E) may
concentrate in the classically not allowed region and near the turning point so
that the singularity at 0 actually does not play any role. It then remains to
address the classically allowed region and this will be done in Section 4.3 in
which we will combine WKB expansions with a Volterra type approach. We
will need only the first order approximation but we will have to treat the cases
v < 1 and 7 > 1 separately. In the latter case, the first order correction is of
magnitude h and we obtain directly a WKB-approximation for G down to z = 0.
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when v < 1, we will have to perform a matching at * = h and the first order
correction will be of magnitude A”.

In the final section, we will patch all the different regimes to obtain the proof
of Theorem 1.

Acknowledgments. The authors are grateful to Jared Wunsch for helpful con-
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2. BOTTOM OF THE WELL
We recall that we consider the following Schrodinger equation
—h*u" + V(x)u = Eu

on the half-line I = [0, 400) with either Dirichlet or Neumann boundary con-
dition at 0. Before proceeding, we outline the conditions we will place on the
potential V' moving forward.

Assumptions 2.1. The following properties of V' hold:

e The potential V' is smooth on (0, 00) and continuous on .
e /(0) = 0 and there exist v > 0 and W smooth on [0,00) such that
Vo >0, V(z)=2"W(x), W(0)> 0.
e There exists some d > 0 such that
Ve >d, V(z) > V(d),
Va € (0,d], V'(z) > 0.

The latter assumption implies that for any £ < V(d), the energy surface
{(2,6) € I xR, & +V(2) = E}

is compact and connected. It follows that the spectrum of P, that lies below
V(d) consists of eigenvalues of finite multiplicity ([BS12], Ch. 10.6 or [RS78b],
Ch. XIII). Moreover, since the potential is of limit-point type near infinity any
eigenvalue in the preceding regime is necessarily simple (see Titchmarsch [Tit46]

or [RS78a, GZ06, Tes09]).

Proposition 2.1. Under Assumptions 2.1, for any M, there exists ¢ > 0 and
ho > 0 such that

Vh < ho, VE € [0, Mh3¥2] (spec P, du(E) > cha .
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Proof. As this result is somewhat classical, we only outline the proof and refer
the reader to [FS09, Hill8] for complete details.

We use a scaling argument: set a@ = ﬁ and define vy,(y) = up(h®y). The
function vy, is a solution to

—v" + (YW (h*y) —ep)v = 0,

2
where we have put e, = h_w%?Eh.
One can then argue by min-max arguments that ej is close to an eigenvalue
of the operator

A(v) = =" + W(0)z v,

with the same boundary condition. In order to estimate the error term, we can
introduce the point x;, = h®* ¢ for some € > 0, and then use the exponential
decay for x > x;, (see Section 4.1 below).

The eigenvalues of A are spaced at order 1 and this gives the result. O

Remark 2.1. This method yields that the k-th eigenvalue behaves like akh%
when h goes to 0, where a;, is the k-th eigenvalue of the operator A. For v = 2
we recover the approximation by a harmonic oscillator and, for general v, the

eigenvalue problem for A is equivalent to a Bessel equation (see eq. (5.4.11) in
[Leb72] for instance).

3. GENERAL STRATEGY AND SCALING

3.1. Energy spacing and eigenfunction concentration.

It is well-known that the spacing between eigenvalues of a semiclassical 1-D
Schrodinger operator around non-critical energies with a connected energy sur-
face is of order h. This fact is classically derived from the Bohr-Sommerfeld
quantization rules (cf section 10.5 in [OB78] or [dV05, Yafll]). We present here
a strategy that, in the end, relies on a concentration estimate for eigenfunctions.
Showing this estimate uniformly with respect to the potential will be the key to
the spacing in the intermediate regime.

Consider the eigenvalue equation

(P, — E)up, = 0,

in which the potential satisies the same assumptions as before and F is in some
compact set K C (0,V(d)). Since this equation is of limit point type near oo,
we know that

dim {u € C*° N L*(0, +o0), (P, — E)u=0} = 1,
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so that there is a unique solution G(-; F) that satisfies
(Pn — E)Gu(-; E) =0

+oo
/ |Gu(z; E)de = 1,
0
Ve >d, Gp(x; E) > 0.
It is also standard that the mapping E — Gy(-; E) is analytic from (0,V (d))
into L?((0,400)). If we denote by Gj(-; E) the derivative of G}, with respect to
E, then, by differentiating the eigenvalue equation, we obtain
(Ph— E)Gh(-; B) = Gu(:; E). (2)
We define
Zn(E) = Gy(0; E) + ihG(0, E),
which we can write, in polar coordinates, as
Zn(B) = |Zy(E)|e" ™)
in which F +— 6,(F) is analytic.
Remark 3.1. Observe that the analyticity of 8, implies that, when F changes,
the determination of the argument also changes anytime Z;, makes one turn
around the origin. The function 6, is thus uniquely determined by choosing a

particular determination of the argument at one energy only. It is clear that the
following argument does not depend on this choice.

A straightforward computation yields
’Zh(E)‘29h(E) = Im(mZh(E))
= Wo [Gméh} ;
where W is the (semiclassical) Wronskian that is defined by
Wi [f.g] = hf(x)g'(z) = hf'(x)g(x).
The semiclassical Wronskian of G, and G} can also be computed by multi-
plying equation (2) by G, integrating, and making two integration by parts (the

contribution of 400 vanishes since the equation is of limit-point type there and
both functions are L?). We obtain

+OO . .
/ G2 (z; E)dr = R*G}(0; E)GL(0; E) — h*G(0; E)G},(0; E)
0

R [Gh,éh} .

Finally, we obtain

1 [t

| Z(E)?0,(E) = W G2(x; E) dz.
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This identity implies that E — 60,(F) is a smooth diffeomorphism. Inverting
the latter, we can write E as a function of #;, and obtain

dE = h|Zy(E)[*dbh, (3)

since (7}, is normalized.

Being an eigenvalue is equivalent to asking that Gj(-; F) satisfies Dirichlet
or Neumann boundary condition at 0. This implies that E is a Dirichlet (resp.
Neumann) eigenvalue if and only if Z,(FE) lies on the real axis (resp. on the
imaginary axis). In both cases, it follows that between two consecutive eigen-

values / df, = m. We will thus get the spacing of order h provided that there

exists some positive constant ¢ such that
VE € K, |Z,(BE)]* > ¢

One way to obtain this inequality is by using WKB expansions and semiclassi-
cal measures. Indeed, the WKB expansion near 0 will yield that, for some small
a

2B = | Gilws B)ds (@)
0
and a semiclassical measure argument will yield that
a +o0
/ G (z; E)dr < Gi(z; ). (5)
0 0

Both these arguments are standard for a smooth potential for non-critical
energies. In the next section (Section 4), we show that an energy-dependent
scaling allows to get the estimate for the intermediate regime by following the
same method of proof but for families of potentials. The arguments in Section
4 will contain all the details of the WKB and semiclassical analysis required to
establish both bounds (4) and (5), so we hold off on providing more details here.
Showing that the estimates are uniform with respect to both the potential and
the energy will finally yield Theorem 1.

3.2. Energy scaling for the intermediate region.

Choose a sequence (Ej,up)p=o that is a solution to (1) under the standing
assumptions on V. Recall that E}, is in the intermediate regime if neither E}, is
non-critical, nor Ej, is in the bottom of the well regime. Equivalently, this reads
as

_ 2y
E, — 0, and h "2 E), — +00.
h—0 h—0
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We perform a E-dependent scaling on the equation by setting 0 (z) = @, (E) 2).
We obtain
—h2) 4+ (2W(z) — Epiy = 0 —
By

“R2E, T+ (W) ) — =t
Ej,

)on = 0.
Since Fj, is in the intermediate regime :

1
e W(E} ) converges to the constant function W (0) (uniformly on every
compact set),
24+
7 def

o h = hE;? tends to 0.

We may thus take h as a new genuine semiclassical parameter. By construction,
we are now working near the energy 1 which is non-critical. Assuming we have a
1

spacing of order h uniformly for the sequence of potentials z — ZVW(E; z), we
obtain that any eigenvalue Ej # Ej must satisfy

Thus, we obtain the bound
|Eh — Eh| 2 ch - E’WQ*TY2

Consequently, we see that Theorem 1 will follow from the usual semiclassical
estimates at a non-critical energy provided the latter are proven to hold for
singular potential and uniformly. This approach is interesting in its own and we
will develop it after having made the setting precise.

3.3. Global Assumptions. We fix v > 0,0 < b < ¢ < d, K a compact set in
C*°([0, d]; R) equipped with its Fréchet topology and K a compact set in (0, 4+00).
We denote by V the set of potentials such that the following assumptions hold.

Assumptions 3.1.

e The conditions on V' from Assumptions 2.1 hold.
e The restriction of W to [0, d] belongs to K.
e The following estimates hold

V(V,E) eV x K, Yz €[0,b], E—V(x) > 0,
V(V,E) eV x K, Vz € [¢,d], V(z)— E > 0.

Let us observe that these assumptions imply that

VEe€ K, Ve >d, V(z) - E > V(d)— E >0,
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so that the operator P, — FE is of limit-point type near oo which allows us to
define Gy (-; E) for any E € K and V' € V. Observe that the notation does not
reflect the fact that the function G}, also depends on V.

We want to prove the following theorem.

Theorem 2. Under the preceding assumptions, there exists ¢ > 0 and hy > 0
such that for any h < hg, for any V €V and any E, eigenvalue of P,:

E, e K = dy(E,) > ch.
The results in Theorem 2 will follow from the following proposition.
Proposition 3.1. There exist ¢, hg > 0 such that
V(VE)eV x K,Yh < hy, |Zn] = c.
The proof of this proposition is somewhat technical and is the main result

of this section. Hence we postpone it until we have discussed how the proof of
Theorem 2 follows.

Remark 3.2. We have renamed h the semiclassical parameter, although, in the
scaling argument, we use this bound for the rescaled semiclassical parameter h.

Proof of Theorem 2. The same computation as that yielding (3) gives us
h|Zp|%6, = 1.
We recall that, for any (V, F) in V x K,

Zy € GL(0; E) + ihG(0; E) = | Zp|e.

The claim thus follows from Proposition 3.1.
O

The proof of Proposition 3.1 will proceed by estimating G (-; E) in different
regions of the half-line, uniformly with respect to the potential. To this end, we
will need several uniform quantities that we now define.

Remark 3.3. Observe that the order h spacing at non-critical energies follow
from Thm 2 by considering V = {V}.
3.4. Uniform Bounds. For any (V, E) € V x K, the assumptions imply:

e There is a unique solution zg to the equation V(zg) = E (the turning
point).

e [0,0] is in the classically allowed region and (F — V) is uniformly bounded
below on it.

Jky >0, V (V,E) € V x K, Vh < ho,
Ve € [0,0], E—V(x) > K,. (6)

(The o stands for oscillating since, in the classically allowed region, G,
exhibits highly oscillating behaviour).
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e [c,+00) is in the classically not allowed region, and (V' — E) is uniformly
bounded below on it.

Ik >0, ¥ (V,E) €V x K, Yh < ho,
Vo € [c,+00), V(x) — E > K. (7)

(The e stands for exponential).

e The turning point zp always belong to [b, ¢]. Since, on [b,c], V' is uni-
formly bounded below, the turning point is non-degenerate. We also have
the following estimate from below:

Ya < b, 30, >0, V(V,E) € V x K, ¥h < ho,
Va € [a,c], V'(z) = 6,

We will also use the shortcut § % O

e Finally, for any ¢, W is, uniformly on [0,d], bounded above by some
Cy.

o If v is an integer, W can be replaced by V) in the latter statement.

Remark 3.4. The point ¢ should not be confused with the (different) constant
c that appears in the estimates.

4. UNIFORM CONCENTRATION ESTIMATES

In this section we aim at showing that the mass of Gj(-; E) in the classically
allowed region is bounded below uniformly for (V, E) € V x K.

4.1. In the classically not-allowed region. In this section, we prove that the
function G}, is exponentially small in the region x > ¢ with constants that are
uniform with respect to V€ V and £ € K. Such exponential estimates are
well-known for a fixed pair (V, E'). Common ways to obtain the latter estimates
are by using positive commutator methods, or by estimating g (e®u) where g, is
the quadratic form that is associated with the operator and ¢ is a function that
is adapted to the geometrical setting. We present here a slightly different, but
also classical, rudimentary proof that has the advantages of assuming very little
on the potential and of making it very easy to track the constants.

Proposition 4.1. Under the assumptions 3.1 and using the preceding notations,
for any (V,E) € V x K and for any n > 0, we have

Ve,2>0, 2z >z > zp + g, Gr(z) < e‘g(z_x)Gh(x), ()

in which we recall that

§ L inf{V'(x), VeV, zelbd} > 0.
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Proof. First we observe that, for any x € [rp + %,c|, we have, uniformly for
(V.E) eV x K,

Viz)— E = V(z) — V(zg) > 5-3.

Since V' is increasing on [c,d], the same estimate is true on [c,d] and then on
[d, +00) since V() > V(d) on this interval. Finally, we obtain:

Y(V,E) €V x K, Vo > :cE—l—g, V(z)— E > 5'%-

From the equation
—h?G! + (V — BE)Gy =0,
we thus infer
1)
Vo> g + (G2 () > 26G(2)G"(x) > hZG2( z).

We set w = @ and, for any zz + 7 < o < y, we denote by ¢ the solution to
¢" = w?¢ that takes the same Values as G? at x and y. Since G* — ¢ vanishes
at  and y and satisfies (G% — ¢)” > w?(G — ¢), a maximum principle argument
shows that

vz e oyl G2(2) < o(2).
By making ¢ explicit, we find

Vr,y,2, tp+=- < v < z <y,
sinh(w(y — 2)) 5, \sinh(w(z — x))
sinh(w(y — z)) + Gily) sinh(w(y — z))’ ©)

In this inequality, we fix  and z and integrate with respect to y in [z + 1,z + 2],
we find

N3

Gh(2) < Gj(2)

Ve,zxg+—- <z < 2,

G < et [ =y L [ ay

It follows that G%(z) goes to zero when z goes to co. So we may let y go to
+o00 in the estimate (9) and obtain

U
2
w(y

Vo, 2z, :EE—i—g T <z, Gi(z) < G2 (x)e™2),

The claim follows by taking the square root, since, by choice, GG, is positive in
the classically not-allowed region. U

We use this proposition to prove uniform exponential estimates for the mass
of GGj, and for the semiclassical Cauchy data in the classically not-allowed region.
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Lemma 4.2.

Vn>0, 3khg>0, V(V,E)eV x K, ¥V h< hy,

“+oo
/ |Gz B)*de < e/,

E+N

Proof. We start from the estimate

Va,z op+ g <z <z GI2) < G3x)er®2),

in which we recall that w = @. For any = € [xg + 3,25 + 1] we integrate this
equality over z € [z + 1, +00), we find

e—w(:cEJrn—m)G?(I)_

Sl e

+0o0
Ve [IE—i-ﬂ,xE—i-n], / G3(2)dz <
2 zEp+n

We may now integrate this inequality over = € [vp + 2,25 + 2I]. Using that G
is L2 normalized, we obtain

+oo 1w
Q/ G2(2)dz < —e~ 7

4 Joptn w

We obtain finally

+oo 2 4 wn
Gh(2)dz < —e 1.

TE+N nw

533

The claim follows if we set x = == and choose hy small enough so that the
prefactor is bounded by 1. OJ

We now proceed to give an estimate for the semiclassical Cauchy datum in the
classically not-allowed region, using the proposition and the eigenvalue equation
for G.

Proposition 4.3. There exist hy > 0 and a constant k1 such that, for any
(V,E) €V x K and any h < hy, we have

Gul(c) < e,

[hGi(e)] < e

Proof. First we observe that, due to compactness, there exists 77 > 0 such that
V(VEYeV XK, g +<c.

Choosing n = g and h small enough, we may thus make sure that

V(V.E)eVx K, Vh<hy, [c—hc+h]C [c—g,d] C [xp+n,d).
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Using Proposition 4.1, we thus obtain that

3n
‘v’xe[xE—i-na:E—i- Vze[c—hc+h], Giz) < e /G2 (1),

2’ 4 1)
since (z —x) > 7 for this range of values of x and z. Integrating with respect to
x and taking the square-root we find:

4 13
Vz€ele—h,c+h], |Gh(z)| < \/je—mnz/Sh.
Ui

This gives the result if we take kK < ¢ %77% /8 and h small enough so that

\/?e((s%n%@/gh <1
1

M =sup{V(z) - E, (V,E) €V x K, x € [bd]},

which is finite by compactness, and using the eigenvalue equation, we also have

Vz€le—hc+h] |BPGL(2)] <M - \[ n/sh,

Setting

52
Using Taylor-Lagrange expansions, there exist §_ € [c—h, c] and 0 € [c,c+h]
such that
h2
Grle—h) = Gule) —h-Ghle) + 010.),

Gulc+h) = Gulc) +h-Ghle) + h2G”(0+)

By combining these two equations, we obtain

G C—h + G C"’h 1 17 "
Cule Z IR L e, + wiaye)

It then follows from the preceding estimate that there exist some constant C
such that

G ()] <

|hG, (C)] < Ce®2m2 /8,

The claim follows by taking the same x as above and a smaller h; if needed. [

Remark 4.1. Arguing similarly, we could get an estimate replacing ¢ by any
z € [c,d).

A consequence of this estimate is that the Cauchy data of G, at ¢ is exponen-
tially small uniformly for (V, E) € V x K. More precisely, setting Z,(-; E) =
Gn(-; E) + ihG'(-; E), we have

Jho, k>0, ¥ h < ho,

V(V,E)eV x K,
|Zn(c; E)! <

(V

D‘\K

(10)
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The latter estimates allow control of GG, in the classically forbidden region.
We will see that, in the classically allowed region, WKB expansions will also
provide us with enough control. It thus remains to address the turning point.
There are several ways to do so (using a Maslov or a Airy Ansatz for instance
[MAT2, Yaf11]). We have chosen a semiclassical measure approach since we think
it is a nice generalization of the usual theory.

4.2. Semiclassical measures for families of potential. Let (V,, Ej)n=0 be a
family in VV x K. For each smooth observable a that is compactly supported in
(0,d) x R, we define

def

pn(a) = (Opy(a)Gh, Gr),

Opy(a)u(r) = ﬁ //ei(“y)éa <x ; 7 5) u(y)dyds

is for instance the Weyl semiclassical quantization procedure. We will require
the fact that in any quantization we have that the commutator of two operators
is

where

(Op(a), Opy ()] = Op, (fa,5}) + O,

where

{a,b} = 0¢ad,b — 0,a0kb.
is the the Poisson bracket. For our purposes, the choice of quantization makes
very little difference in our results, see [Zwol2], Ch. 4 for a more detailed dis-

cussion. A standard argument shows that, up to extracting a subsequence, there
exists a limiting measure py such that

pn(a) = /a(l‘,ﬁ)duo-

Using compactness, we may extract again and assume that V} converges to 1}
and FEj, converges to FEj.

Remark 4.2. In dimension 1 and for a fixed smooth potential, a very detailed

analysis of the behavior of yj,(a) when h tends to 0 can be found in the appendix
of [HMRS7].

We then have the following proposition that generalizes the known results
when the potential is fixed.

Proposition 4.4. Under the preceding assumptions, the support of the semiclas-
sical measure [y 1s a subset of the energy surface

{€+Vo(x) = Eo, (z,€) € (0,d) x R}.

The measure py s invariant by the Hamiltonian flow of po(z,§) def

&+ Vo(x).
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Remark 4.3. The invariance of the measure p will be obtained by showing that,
for any (compactly supported) symbol a,

/{po, a}du =0,

since, by definition {pg,a} amounts to differentiating in the direction of the
hamiltonian flow of py.

Proof. We follow the standard proofs, for instance Theorems 5.3 and 5.4 in
[Zwo12]. For the support property, we need to show that if a vanishes on a
neighbourhood of the energy surface, then

pn(a) — 0.
We denote by P? the operator
Plu = —h*u" + Vy(2)u.

We write
Mh(a) = <Oph(a)Gh> Gh>

— (Opy(———=)(P — Eo)Gh, Gp) + o(1)
Po — Ey

= (Opy(———) (Vo — Vi + Eo — E)Gn, Gp) + o(1)
po — Ep

— 0,

h—0

where we have used that a vanishes on the energy surface so that pof 7 18 smooth

with compact support, and in the latter stage the fact that (Vo — Vi, + Eg — Ej)
converges to 0 on [0,d] and G, is exponentially small on [d, +00).
For the invariance property, we write

P (Opn ({p0. )G Go) + 0(1)] = ([P, Opy ()G G

(l
= ([Ph, Opy(a)|Gh, Gp)
+ ([Vh = Vo, Opu(a)|Gh, Gi)
h

= = [((OP({Vh = Vo, a})Gi. Ga) + o(1)]).

We now use the fact that the norm of a pseudodifferential operator on L? depends
on the uniform norm of a finite number of derivatives of the symbol and that
{Vi, = Vo, a} and all its derivatives converge uniformly to 0 on the support of
a. 0

The semiclassical measure can be extended to symbols that are not compactly
supported in &, in particular to symbols that only depend on z.
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In dimension 1, pyg is thus determined up to a factor (see [HMR&7] for instance).
More precisely, according to the assumptions we have imposed on the potential,
there exists ¢y defined by

&+ V(6o(€)) = Ep.

Hence, using the corresponding level sets of the operator and using the invariance
of the semiclassical defect measure along the Hamiltonian flow, that can be
parametrized using &, there exists ¢ such that pg = cv where v is defined by

v(a) = / aéol€).€) %

For a smooth function y whose support is a subset of (0,zg,), we have the

alternative expression:
dx
v(x) = X)) ——
(x) /X( ) 0
using instead the parametrization of £ = \/Ey — V().

Using the semiclassical measure, we obtain that the mass of G}, is uniformly
bounded below in the classically allowed region V(z) < E.

Proposition 4.5. There exists positive constants ¢ and hg such that
b
Wh<hy ¥ (V.E)€Vx K, / Gu(z: B)de > c. (11)
0

Proof. The proof is a typical application of using semiclassical measures to prove
(non-)concentration estimates. By contradiction, we assume that the estimate
(11) does not hold. We can thus find a sequence (V},, E},) with h going to 0 such
that

b
/0 Gule: B)Pdz — 0. (12)

Using compactness, we may first extract subsequences and also assume that
(Vi, Ep) tends to a limiting (Vo, Ey). We then extract a subsequence again to
obtain a semiclassical measure py. The preceding argument implies that there
exists A > 0 such that py = Av. Next, we observe that the assumption (12)
implies that A = 0. Indeed, for any non-negative function y that has compact
support in (0,b) and that is bounded above by 1 we have

b b
(Opr(xX)Ch. G = / (@) [Gular; B de < / Ga(: B)da.

It follows that

b dx
)\/0 X(x)E——V(m) =0,

and hence A = 0.



EIGENVALUE SPACING FOR 1D SINGULAR SCHRODINGER OPERATORS 17

By choosing an appropriate symbol, this implies that for any closed interval
[z0, z1] C (0, +00), we have

/ |Gh(z; B)|?dz — 0.
h—0

zo

Setting xy = b, summing and using (12), we obtain that, for any x; > b

/ |Gu(z; E)?dx — 0.
0 h—0

Since Gy, is normalized, this implies that the mass of GG, escapes to +o00 but this
is in contradiction with the estimates in the classically not allowed region. [

4.3. In the classically allowed region. We now work on [0, b]. In this interval,
we know that £/ — V is uniformly bounded from below so that we can perform
WKB approximation of solutions. For the estimate we are looking for only a first
order WKB approximation is needed, but the lack of smoothness at x = 0 creates
small additional complications. In particular, we will first make the assumption
that 7 > 1 and then explain how to modify the proof for v € (0, 1).

Remark 4.4. We actually conjecture that the following full asymptotic expan-
sion for Z; holds:

Zn=Y apa ™"

m,n=0,
m+n=>1

The leading term in that expansion is thus A if v € (0,1) and h if v > 0. This
also explains the two cases. Proving such a uniform expansion will be a topic of
future work and is not required to the proof of the results contained here. It
is not clear whether such an expansion will be strong enough to deal with the
tunneling question since, in the latter, exponentially small quantities typically
appear.

Let (V,E) be in V x K and Gp(-; E) be defined as before. We define the
functions S, a, ¢4 on [0,b] by

S = [ VE=Vdy
0
a(z) = (E=V(2)) 5,
di(z) = a(:t)eiﬁs(‘”).
A straightforward computation yields

—R*¢L 4+ (V= E)ps = h* - 1oy,
"

def
where we have set r = ——.
a
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This computation implies that, on [0,b], ¢+ is a basis of solutions to the
equation
—h*y" + (V- E—h*)y = 0.
Let u be a solution to
—h*u" + (V- E)u = 0.

The classical method consists in saying that w is a solution to the former equation
with an inhomogeneous term that reads —h?ru and then in applying the variation
of constants method. We find that there exists constants a4 such that, for all
z € (0,b], we have

ue) = as0s(s) + a-0-(a) — g [ r)u) [0~ W0 (2) — 6. (0)6- ()] .

21
We define the operator L; by
h b
— 5 [ ) [0~ w6 (@) — 6. 0)6- ()] .
so that the preceding equation rewrites
(d + Li)u] = asy + a g

The operator Ly, is easily seen to be linear from C°([0,b]; C) into itself.
Using the compactness of K and K, there exist C; and C5 such that, for all
(V,E) €V x K and all y € [0, b]:

Lp[u](x)

where p =7y —2ify € (0,2)\ {1} and p=0ify=1or v > 2.

Remark 4.5. In the sequel we will denote by C' a generic constant that is
uniform for (V, F) in V x K. Observe that this constant may change from one
line to the other.

We obtain that, for all (V. E) €V x K,

b
V€ (0,b), |Lyul(z)| < C-h / Yy’ dy - [|ul[coqo -

If v > 1 then the integral on the right is convergent and we obtain that the
operator norm of Ly, is (uniformly w.r.t. (V, E)) bounded by C - h.

Proposition 4.6. Let v > 1 then there exists a constant C' that is uniform with
respect to (V,E) € V x K and hy such that, for any h < hg there exists ay(h)
such that

h7

h.

|Gh — ardr — a—d_||cogoy

) s C
|G, — ayhd!, — a_hd_||cogor) < C
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Proof. According to the previous computation, there exists a, and «_ so that
(id + Lp) [G] = ayoy + a_o¢_,
and a uniform C such that
| Lallzccoqogy) < C-h.

We choose hg so that C'- hg < 1. It follows that id + L, is invertible and
1

(id + L)~ —id < C-h
£(eo (o)

The first estimate on G}, follows. For the second one, we first observe that

G(x) = ardl, () + a_d(2)
-~ / b ()0, () — b1 (1)6_(2)] dy.

The integral is then uniformly bounded since G and h¢/, are bounded in C°
(recall that v > 1) and r is integrable. O

Corollary 4.7. There exist uniform constant my, My, mo, My so that

mi(lay? + a-?) < |Gu(0; E) + ihGy(0; B)|" < MP(Jay* + [a-]?),

b
majas|* + o) < / |Gl E)*de < My(Jor|* + o).
0

Proof. We denote by o = *(a,a_) the (column)-vector in C? and by |2 o

(log |2 + |a_|?)2 its norm. Starting from the expressions in Proposition 4.6, we
first observe that

b d
v +a-o_|lr2qop) = lafe (/0 \/%W + O(h)>

where the O is uniform in V x K. Indeed, using an integration by parts, the
fact that v > 1 and compactness to obtain uniform estimate, we see that the
cross-terms give a O(h) contribution.

Using the triangle inequality then yields

(/ Gl E|2dm) e (/ \/ﬁ >5+0(h)

in which both O are uniform with respect to (V, E) € V x K. Since

N

b
/ |Gh(z; E)*dx > ¢ >0,
0
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and fobd—x > ¢ > 0, both O term can be absorbed and we obtain the

E-V(x)
second line. The first line follows using the approximation on Gj and hGj, and
the fact that a uniform O(h) term can be absorbed by |ay |* + |a_|?. O

b
Combining the two estimates, and the fact that / |Gp(z; E)|? dz is uniformly

0
bounded away from 0, we obtain the proof of Proposition 3.1. It remains to
address the case v € (0, 1).

4.4. When ~ € (0,1). The problem when v € (0,1) is that y — 3772 is no
longer integrable near 0, so we cannot work directly on [0,b]. It is standard in
matching problems that we need to introduce an intermediate point xj; and use
different approximations on [0, z] and on [z, b]. It turns out that we can choose
Th = h.

Remark 4.6. Potentials of the form |(logz)| YW (z) can be analyzed using
similar tools as developed in this section, but the error bounds will be more
delicate.

We define the operator Lj as before. Its operator norm in L£(C([h,b])) is
bounded above (uniformly) by

b
C-h-/ Y2 dy,
h
so that there exists a uniform C' such that
Ll < C- A7
The same proof as above yields the following proposition.

Proposition 4.8. Let v € (0,1) then there exists a constant C' that is uniform
with respect to (V, E) € V x K and hq such that, for any h < hg there exists o
(that depend on h) such that

|Gh — ooy — a—d_lcoqny) < C7,
”hG;L — Oé+h¢/+ — Oé,hgﬁLHCO([hbe < Ch”.
On [0, h], we follow the same strategy but we take as a basis of pseudosolutions

the functions ¢4 defined by

bo(z) = E-ier" e

This is equivalent to treating the term Vu in the equation as some inhomogeneous
term.
By following the same method, we obtain the proposition.
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Proposition 4.9. Let v € (0,1) then there exists a constant C' that is uniform
with respect to (V, E) € V x K and hgy such that, for any h < hgy there exists 5+
(that depend on h) such that

|Gh — Bty — B_Y_|coqony < CR7,
|hG), — Bt — B_h || coqney < Ch.
Using the former proposition we obtain

{ Gu(h) = ai(¢4(h) + O(W)) + a(o-(h) + O(RY)) + O(h7),
hGy(h) = ay(hg (h) + O(h7)) + a_(h¢’(h) + O(h7)) + O(h7)

and using the latter proposition, we obtain

{@W = ay(h) + atp(h) + O(h),
hGy(h) = ayh! (h) + a_hy' (h) + O(RY).

We now observe that
S(h) = h(VE + O(h")), a(h) = E"% + O(k"), ha'(h) = O(K")

so that ¢4 (h) = 14(h) + O(hY) and h¢' (h) = hy!.(h) + O(hY). We compute

vi(h)  Y_(h)

py(h) b (h)

Since this determinant is uniformly bounded away from 0 and the coefficients of
the corresponding matrix are uniformly bounded above, we deduce that

ay = Py + O(R).
We now estimate the norms over [0, h] and [h, b]:
[ h 2 1
Gr(z; E)| 12 = 2 |—=(1+O(n" + O(h"2),
[Gatei BVl = IBles | =1+ 0|+ 0r+)

= —2.

1

N[

+ o(h).

WE dx
Gz B2 = lale | [ —— e 4 O(h
6 Bl = lale | [~ + OB

Adding these two equalities, and using the fact that ar = S+ + O(h?) and that
fob |Gy (x; E)|*dz is uniformly bounded away from 0, we obtain that

[ t6atas BYPds = (sl + o) [ ﬁ + o)

+ O(h").

_(|/3 |2+ |ﬂ |2)/bd—x
ST o JE-V(z)
Remarking that

1Zn|* < (187 + 16-1%)

completes the proof of Proposition 3.1.
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5. PROOF OF THEOREM 1

To prove part (1), let M < liminf, , . V(z), then the part of the spectrum
of P, below M is discrete as follows from the fact that the set

+o0 +oo
{u c H', ||ul|2 <1, h2/0 |u/ (z)|? d + /0 V(z)|u(x)|? de < M||u||%z}

is relatively compact in L2
In order to prove part (2), we argue by contradiction. If the estimate is not
true then we can find two distincts eigenvalues Ej, and Ej such that

du(E) =o(h-E=).
We may suppose that Ej, has a limit E, and we have three cases to study.

e Fy = 0 and there exists M such that Ej < Mh%. We obtain a contra-
diction using Proposition 2.1 in the bottom of the well regime.

e [/p =0 and h_%Eh — 400. We make the energy-dependent scaling as
outlined in Section 3.2 and obtain a contradiction using Theorem 2 in
the intermediate regime.

e [y > 0. We obtain a contradiction with the non-critical energy regime
again following from Theorem 2 without the need for re-scaling.

REFERENCES

[Ber82]  Michael V Berry. Semiclassically weak reflections above analytic and non-analytic
potential barriers. Journal of Physics A: Mathematical and General, 15(12):3693,
1982.

[BP19]  Jean-Francois Bony and Nicolas Popoff. Low-lying eigenvalues of semiclassical
schrodinger operator with degenerate wells. Asymptotic Analysis, 112(1-2):23-36,
2019.

[BS12]  Michael Sh Birman and Michael Z Solomjak. Spectral theory of self-adjoint operators
in Hilbert space, volume 5. Springer Science & Business Media, 2012.

[Chr15] Hans Christianson. Unique continuation for quasimodes on surfaces of revolution:
Rotationally invariant neighbourhoods. In Annales de ’Institut Fourier, volume 65,
pages 1617-1645, 2015.

[DR12] Monique Dauge and Nicolas Raymond. Plane waveguides with corners in the small
angle limit. J. Math. Phys., 53(12):123529, 34, 2012.

[DS99]  Mouez Dimassi and Johannes Sjostrand. Spectral asymptotics in the semi-classical
limit, volume 268 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1999.

[dV05] Y Colin de Verdiere. Bohr-sommerfeld rules to all orders. Ann. Henri Poincaré,
6(5):925-936, 2005.

[FS09]  Leonid Friedlander and Michael Solomyak. On the spectrum of the dirichlet laplacian
in a narrow strip. Israel journal of mathematics, 170(1):337-354, 2009.

[GW18] Oran Gannot and Jared Wunsch. Semiclassical diffraction by conormal potential
singularities. Preprint, arXiv:1806.01813, 2018.



EIGENVALUE SPACING FOR 1D SINGULAR SCHRODINGER OPERATORS 23

[GZ06]

[Hil18)]

[HJ11]
[HM12]
[HMRS7]
[Hor80]

[Ho6r03)

[Ho105]

[Hér09]

[HR83)]
[HS84]

[Leb72]

[LR79]

[MAT72]
[MRSS]
[OB7g]
[OB15]
[Olv74]
[RS784a]

[RS78b)]

Fritz Gesztesy and Maxim Zinchenko. On spectral theory for schrodinger operators
with strongly singular potentials. Mathematische Nachrichten, 279(9-10):1041-1082,
2006.

Luc Hillairet. Two applications of Dirichlet-Neumann bracketing. In Spectral theory
of graphs and of manifolds, CIMPA 2016, Kairouan, Tunisia, volume 32 of Sémin.
Congr., pages 249-261. Soc. Math. France, Paris, 2018.

Luc Hillairet and Chris Judge. Spectral simplicity and asymptotic separation of
variables. Commun. Math. Phys., 302(2):291-344, 2011.

Luc Hillairet and Jeremy Marzuola. Nonconcentration in partially rectangular bil-
liards. Analysis & PDE, 5(4):831-854, 2012.

B. Helffer, A. Martinez, and D. Robert. Ergodicité et limite semi-classique. (Ergod-
icity and semi-classical limit). Commun. Math. Phys., 109:313-326, 1987.

Lars Hérmander. The Analysis of Linear Partial Differential Operators III. Springer,
1980.

Lars Hormander. The analysis of linear partial differential operators. I. Classics
in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier
analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993
(91m:350014a)].

Lars Hormander. The analysis of linear partial differential operators. II. Classics
in Mathematics. Springer-Verlag, Berlin, 2005. Differential operators with constant
coefficients, Reprint of the 1983 original.

Lars Hormander. The analysis of linear partial differential operators. IV. Classics in
Mathematics. Springer-Verlag, Berlin, 2009. Fourier integral operators, Reprint of
the 1994 edition.

Bernard Helffer and Didier Robert. Calcul fonctionnel par la transformation de
mellin et opérateurs admissibles. Journal of functional analysis, 53(3):246-268, 1983.
Bernard Helffer and Johannes Sjostrand. Multiple wells in the semi-classical limit i.
Commaunications in Partial Differential Equations, 9(4):337-408, 1984.

N. N. Lebedev. Special functions and their applications. Rev. engl. ed. Translated
and edited by Richard A. Silverman. New York: Dover Publications, Inc. XI, 308 p.
$ 3.75 (1972)., 1972.

Pham The Lai and D. Robert. Valeurs propres d’une classe d’équations différentielles
singulieres sur une demi-droite. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser.,
6:335-366, 1979.

Viktor Pavlovich Maslov and Vladimir I Arnol’d. Théorie des perturbations et
méthodes asymptotiques. Dunod, 1972.

André Martinez and Michel Rouleux. Effet tunnel entre puits dégénérés. Comm.
Partial Differential Equations, 13(9):1157-1187, 1988.

S Orszag and Carl M Bender. Advanced mathematical methods for scientists and
engineers. McGraw-Hill New York, NY, USA, 1978.

Thomas Ourmieres-Bonafos. Dirichlet eigenvalues of asymptotically flat triangles.
Asymptotic Anal., 92(3-4):279-312, 2015.

Frank W. J. Olver. Asymptotics and Special Functions. Academic Press, New York-
London, 1974.

M Reed and B Simon. Methods in mathematical physics, vol. iv: Analysis of opera-
tors, 1978.

M. Reed and B. Simon. Methods of Modern Mathematical Physics IV. Analysis of
Operators. Academic Press, 1978.



24

[RS95]

[Sim83)

[9j692]
[Tes09]
[Tit46]

[Yafl1]

[Zwo12]

L. HILLAIRET AND J.L. MARZUOLA

Ch Rouvinez and Uzy Smilansky. A scattering approach to the quantization of hamil-
tonians in two dimensions-application to the wedge billiard. Journal of Physics A:
Mathematical and General, 28(1):77, 1995.

Barry Simon. Semiclassical analysis of low lying eigenvalues. i. non-degenerate min-
ima: Asymptotic expansions. In Annales de I’IHP Physique théorique, volume 38,
pages 295-308, 1983.

Johannes Sjostrand. Semi-excited states in nondegenerate potential wells. Asymp-
totic analysis, 6(1):29-43, 1992.

Gerald Teschl. Mathematical methods in quantum mechanics. Graduate Studies in
Mathematics, 99, 2009.

EC Titchmarsh. Eigenfunction expansions associated with second-order differential
equations, vol. 1. clarendon, 1946.

Dimitri Yafaev. The semiclassical limit of eigenfunctions of the schrédinger equation
and the bohr—-sommerfeld quantization condition, revisited. St. Petersburg Mathe-
matical Journal, 22(6):1051-1067, 2011.

Maciej Zworski. Semiclassical analysis, volume 138. American Mathematical Soc.,
2012.

Email address: 1luc.hillairet@univ-orleans.fr

INSTITUT DENIS POISSON, UNIVERSITE D’ORLEANS - UNIVERSITE DE TOURS - CNRS,
UMR 7013, ORLEANS, FRANCE

Email address: marzuola@math.unc.edu

MATHEMATICS DEPARTMENT, UNIVERSITY OF NORTH CAROLINA, CB#3255, PHILLIPS
Harr, CHAPEL HiLL, NC USA



