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On Estimating Rank-One Spiked Tensors in the
Presence of Heavy Tailed Errors

Arnab Auddy

Abstract—In this paper, we study the estimation of a rank-one
spiked tensor in the presence of heavy tailed noise. Our results
highlight some of the fundamental similarities and differences
in the tradeoff between statistical and computational efficiencies
under heavy tailed and Gaussian noise. In particular, we show
that, for pth order tensors, the tradeoff manifests in an identical
fashion as the Gaussian case when the noise has finite 4(p — 1)th
moment. The difference in signal strength requirements, with
or without computational constraints, for us to estimate the
singular vectors at the optimal rate, interestingly, narrows for
noise with heavier tails and vanishes when the noise only has
finite fourth moment. Moreover, if the noise has less than
fourth moment, tensor SVD, perhaps the most natural approach,
is suboptimal even though it is computationally intractable. Our
analysis exploits a close connection between estimating the rank-
one spikes and the spectral norm of a random tensor with iid
entries. In particular, we show that the order of the spectral
norm of a random tensor can be precisely characterized by the
moment of its entries, generalizing classical results for random
matrices. In addition to the theoretical guarantees, we propose
estimation procedures for the heavy tailed regime, which are
easy to implement and efficient to run. Numerical experiments
are presented to demonstrate their practical merits.

Index Terms— Tensor PCA, tensor norm, higher order SVD,
robust covariance estimation.

I. INTRODUCTION

INGULAR value decomposition (SVD) and principal

component analysis (PCA) are among the most com-
monly used procedures in multivariate data analysis. See,
e.g., [1], [2]. By seeking low rank approximations to a data
matrix, they allow us to reduce the dimensionality of the data,
and oftentimes serve as a useful first step to capture the essen-
tial features in the data. While both were first developed for the
analysis of data matrices, extensions to higher order tensors
have also been developed in recent years. See, e.g., [3]-[5].
More generally, low rank tensor methods have exploded in
popularity in numerous areas involving high dimensional data
analysis. See [6]-[9] for recent reviews.

To fix ideas, consider a rank-one spiked tensor model
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where the “singular value” A > 0 is a scalar, and “singular
vectors” uys are unit length vectors in R¢, and & € R4 *d»
is a noise tensor whose entries are independent and identically
distributed random variables with zero mean and unit variance.
To fix ideas, we assume in this section that the tensors are
“nearly cubic” in that there exists a constant C' > 0 such
that d/C < dj < Cd for all k, although our main results
are derived and stated for any general di,...,d,. The goal
is to estimate the singular vectors after observing 2~ in a
high dimensional setting where d is large. In particular, the
special case when the noise tensor & consists of independent
standard normal entries has attracted much attention in recent
years, and an intriguing gap in statistical efficiencies with or
without computational constraints is observed. It can be shown
that tensor SVD that seeks the best rank-one approximation
to 2 yields a consistent estimate of the singular vectors
whenever A\ > d!/2. Hereafter, we say an estimate Uj of
uy, is consistent iff sin Z(Uy,u;) — 0 as d — oo where
Z(U,uy) is the angle between two vectors Uy, and uy, taking
value in [0,7/2]. It is worth pointing out that computing
the best rank-one approximation is known to be NP hard in
general (see, e.g., [10], [11]). On the other hand, consistent
yet computationally tractable estimates are only known when
A\ > dP/*. Hereafter a > b means that there is a constant
C independent of d such that a > Cb. More specifically,
it can be achieved by power iteration initialized with higher
order SVD (HOSVD; see, e.g., [3], [12]). While a rigorous
argument remains elusive, it is widely conjectured that d?/4
is the tight algorithmic threshold below which no consistent
estimates can be computed in polynomial time. It is instructive
to consider the case when there are independent Gaussian
errors, and the signal strength A ~ d. These results can then
be summarized by the following diagram. When £ > 1/2, the
tensor SVD estimate U3VP is consistent, and indeed can be
shown to be minimax rate optimal. Meanwhile, we only know
of polynomial time computable estimators that are consistent if
& > p/4. The shaded region between £ = 1/2 and £ = p/4 in
Figure 1 therefore signifies the tradeoff between statistical and
computational efficiencies.

See, e.g., [5], [13]-[16] among many others. These obser-
vations can also be generalized beyond rank-one signals. See,
e.g., [17], [18].

The Gaussian, or more generally subgaussian, assumption
on the noise tensor &, however, could be too restrictive in
practice and neglecting departures from such assumptions
could lead to erroneous results. See [19], [20] for detailed
discussions in this context. For example, [21] showed how
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Fig. 1. Tradeoff between statistical and computational efficiencies
in estimating spiked rank-one tensors under Gaussian noise (when
d/C <di,...,dp < Cd).

using Gaussian model based methods lead to very high false
positive rate in fMRI studies. [22] and [23] observed sim-
ilar phenomena in genomic studies and anomaly detection
respectively. In addition to practical applications, it is also
valuable, from the optimization perspective, to consider errors
beyond the Gaussian model. The tensor SVD problem has
received a lot of attention recently, but most of the existing
work focuses on the Gaussian error model. The analogous
problem is well studied in random matrix theory. Performance
of spectral method for heavy tailed matrices have been stud-
ied in the classical works of [24], [25] and more recently
in [26] and [27].

Unfortunately, very little is known about the fundamental
limit for estimating the rank-one spikes and the effect of com-
putational constraints in the presence of heavy-tailed noise.
A notable exception is the recent work of [28] who developed
polynomial time algorithms to recover the singular vectors
ugs through self avoiding walks and random coloring. They
assume that the singular vectors are randomly sampled and
therefore provide an average case analysis of their algorithms.
More specifically, for third order tensor (p = 3), if the
entries of the error tensor has finite second moment, then
their algorithm produces weak recovery when \ > d3/4.
Moreover, their algorithm yields consistent estimates of the
singular vectors if higher order moment conditions, e.g., finite
12th moment, are satisfied. Our work is inspired by this
earlier development and aims at developing more practical
algorithms for estimating spiked rank-one tensors and precise
characterization of how the tradeoff between computational
and statistical efficiency manifests beyond subgaussian errors.
More specifically, we show that there are polynomial time
computable estimates of uy that are not only consistent but
also rate optimal whenever A\ > dP/* - polylog(d) where
polylog(d) is a certain polynomial of log d.

Our work is thus among the first ones to highlight the
behavior of the tensor SVD optimization problem under inde-
pendent heavy-tailed errors. For example, existing results on
estimation rates might lead one to believe that we require
A > ||&]| and the best possible estimation rate is ||&||/A.
We show that this is not the case and it is indeed possible
to get the improved rate of \/E/ A, provided that A is at
the correct computational threshold. Further, we control the
relevant quantities of the random error tensor that strongly
affect the estimation procedure, and provide ways to reduce
their influence. This leads to a much more tractable algorithm
than the one provided by [28].

The most natural approach to, and a useful benchmark for,
estimating ugs is the tensor SVD. Denote by ﬁ%VDs the tensor
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SVD estimates of ugs. Recall that we make the simplifying
assumption d/C < dj, < Cd for all 1 < k < p. We prove that
if the entries of & have finite ath moment for some o > 4,
then with high probability,

~ d
max sin Z(GVP, ug) = O, vd

1<k<p A 2)

as d — oo, provided that
A2 |2 (10gd) /2 4 d®=D 14 log d)/2]

The above requirement on the signal-to-noise ratio can also
be shown to be optimal, up to the logarithmic factor. More
specifically, if the entries of & do not have finite ath moment,
then

~SVD

sinZ(ap ", ug) —p 1,

for any
A< <d1/2 + d(p*l)/a+1/4) .

A version of this continues to be true for general dimensions
dy,...,d,. See Section II. It is worth noting that the bounds
on \ highlights the intuitive facts that, under the same moment
condition, estimating ugs tends to be harder for higher order
tensors, e.g., larger p; and for tensors of the same order,
estimating uys tends to be easier with higher order moment,
e.g., larger a.

It is, however, well known that the tensor SVD is com-
putationally infeasible in general. A common strategy to
alleviate the computational expenses of the tensor SVD is
through power iteration with spectral initialization. The ratio-
nale behind this is the presumptive optimality of the tensor
SVD. A good initialization may ensure the resulting esti-
mate, computable in polynomial time, inherits such optimality.
We show that this is indeed the case: if A > dP/* (more gener-
ally A 2 max{v/dmax, (di1d2 . .. dp)1/4} when the dimensions
are unequal), then this yields a polynomial time computable
estimate U, such that

max sin Z(Ug, ux) = O, <ﬁ> .

1<k<p A

The signal strength requirement for polynomial time com-
putable methods matches that under Gaussian noise and
is strictly stronger than that for the tensor SVD estimate.
Therefore, the tradeoff between computational and statistical
efficiency remains. In particular, if we consider the case
when A\ ~ df, then our observations can be summarized
by the diagram of Figure 2. The gap between the signal-to-
noise ratio requirement for tensor SVD and polynomial com-
putable estimators is the same as in the Gaussian case when
a > 4(p — 1) but narrows as « decreases to 4.

A more intriguing phenomenon occurs when the entries of
& only has finite ath moment for some 2 < a < 4. In this
situation, we prove that (2) holds if

A>d"s T2 (logd)3/?
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Fig. 2. Tradeoff between statistical and computational efficiencies in
estimating spiked rank-one tensors when the noise has more than fourth
moments (when d/C < di,...,dp < Cd).
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Fig. 3. Tradeoff between statistical and computational efficiencies in

estimating spiked rank-one tensors when the noise does not have fourth
moments (when d/C < di,...,dp < Cd).

and the tensor SVD estimate ﬁ%VD

dicular to uy if

is asymptotically perpen-

A< drle.

This can be summarized by the diagram of Figure 3. We state a
more general result in Section II. Interestingly, the tensor SVD
is actually suboptimal in this case and there is an alternative
estimator that is both computationally tractable and can attain
the optimal rate of convergence whenever

A= dP/*(log d)M/*4,

More generally, we require the singular value to be A 2>
max{v/dmax, (d1 . . . dp)1/4 log(dmax)1/4} when the dimen-
sions are possibly of different magnitude. Due to the sub-
optimality of tensor SVD, it is doubtful if power iteration
would work when « < 4. To this end, we consider a different
estimating strategy. More specifically, our techniques are based
on recent developments in the theory of robust estimation of
the mean in the presence of heavy tailed errors. These works
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derive estimators with subgaussian concentration, inspired
from the pioneering work of [29]. The key idea is to reduce the
adverse effect of heavy tails through an influence function, and
can be extended to matrix estimation. For covariance matrix
estimation, [30] and [31] were some of the first works in
this area, although both these approaches involved optimizing
over a d-dimensional e-net and thus having exponential time
complexity. [32] have similar results with polynomial time,
but they too require an extensive search for tuning parameters.
We will instead use results on spectrum truncated estimators
applied to covariance estimation. [33] described one such
method for robust PCA through smooth truncation, based on
which [34] and [35] provided more tractable procedures and
general results.

Our results are obtained by exploiting close connections
between estimating the rank-one spikes and the spectral norm
of a random tensor of iid entries. We show that the order
of the spectral norm of a random tensor can be precisely
characterized by the moment of its entries, which might be
of independent interest. In particular, our result indicates that,
up to a logarithmic factor, the norm of the random tensor ||&|
is of the order \/d if and only if its entries have finite 4(p—1)th
moment. This can be viewed as a generalization of the classical
results for random matrices ( [24], [36]). In deriving these
bounds, we used techniques developed for random matrices
by [37] and improved moment bounds of random tensors
established earlier by [38].

The rest of the paper is organized as follows. We first
develop probabilistic bounds for the spectral norm of a ran-
dom tensor of iid entries and use these tools to study the
performance of the tensor SVD in Section II. Polynomial
time computable estimation schemes are given in Sections III
and IV for a > 4 and for a > 2 respectively. To corroborate
our theoretical development, Section V provides simulation
studies to further demonstrate the practical merits of the
proposed methods. We conclude with a few remarks on the
implications and future directions in Section VI. All proofs
are given in Section VII.

A. Notation

Alongside the standard notation for vectors, matrices and
tensors, we will use the following special notation. We will
use ® to denote the Kronecker product, and o to denote the
outer product. For d € N, we write [d] to mean the set
{1,...,d}. For dimensions di,...,d, € N, we will denote
d—r = [[,24 dq- Finally we will use the maximum and the
geometric mean

1/p

p
dmax = max{dy,....dp}, do=(][dr] . 3

k=1

II. TENSOR SVD AND SPECTRAL NORM OF RANDOM
TENSORS

The most natural approach to estimating the singular vectors
is via the tensor SVD. In particular, let

(ﬁgVD 11 <k <p)=argmax, .giu,-1(Z,a10---0a,),

“)

ac
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Here S? 1 is the unit sphere in R%. It is well known that the
tensor SVD can be equivalently characterized the best rank-
one apprpoximation to 2" in that

(XSVD’GEVD 1<k< p)
= argmax, cp o csh—1 || 2 —ya10---oayllus,

where || - ||us is the Hilbert-Schmidt or Frobenius norm. See,
e.g., [39]. The performance of these singular vector estimates
is closely related to the spectral norm of the noise tensor:

€)=

max (&,a30---0ap).
akESdk71

For example, it is known that

I€]]

A )
so that u;VPs are consistent whenever A > |[|&]. See,
e.g., [18]. To this end, we shall first study the spectral norm
of a random tensor consisting of independent and identically

distributed entries.

: ~SVD
max sin Z(u}, Uy <
1<k)<p ( k ’ )N

)

A. Norm of Random Tensors

The problem of bounding the spectral norm of a random
tensor is well-studied in the matrix case, i.e., p = 2. In partic-
ular, [36] showed that if & is an iid ensemble, then ||&|| is of
the order v/dp.x if and only if its entries have finite (weak)
fourth moment. In other words, when p = 2 and the entries
of & have finite fourth moment, ﬁgVDs are consistent if and
only if A > +/dmnax. A couple of questions arise naturally.
First, is there similar characterization of ||£’|| for higher order
tensors? And what happens if the entries of & have only ath
moment for 2 < a < 4? The next result aims to settle the first
question.

Theorem 2.1: Let & € R %> be a pth order random
tensor whose entries are independent copies of a random
variable E with mean zero and variance 0. Then there exists
a constant C}, > 0 depending on p only such that for any

a > 4, E|E|* < oo implies that, with probability at least
—a/4+1
]- - max E

i N 1.1 ;
H@@H é Cpg |:d1%ax + (dG) « (dmax)4ia (log dmax)3/2:| .
Conversely, there exists another constant C;, > 0 depending
on p only such that E|F|“ = co implies that
e

1 - 1 1
€] > Cpo [d%ax + (de) (dmax)4a] , almost surely

as dmax — 00. Here dpax = max{dy,...

(f4)

The lower and upper bounds of Theorem 2.1 match up to
the logarithmic factor when 4 < a < 4(p — 1) and match
up to constants whenever & > 4(p — 1). In particular, ||&||
is of the order v/dp.x, if and only if its entries have finite
4(p — 1)th moment. This can be viewed as a generalization
of the classical result for p = 2 from [36]. For higher order
tensors (p > 2), the precise order of ||&|| depends on the value

,dy}, and dg =
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of a for 4 < a < 4(p — 1). Consider, for example, p = 3.
Then ||&|| is of the same order as that of an iid Gaussian
ensemble, up to at most a logarithmic factor, as soon as E has
finite eighth moment. Yet, if £ only has finite ath moment
for 4 < o < 8, then ||&|| depends on the exact value of «,
and decreases as « increases.

The next result complements Theorem 2.1 and deals with
the case when 2 < o < 4.

Theorem 2.2: Let & € R4 % *d» be a pth order random
tensor whose entries are independent copies of a random
variable E with mean zero and variance o2. There exist
constants C;,, C}, > 0 depending on p only such that for any
2 <a <4, E|E|* < oo implies that, with probability at least
1— d—(y/2+1

max 5 o, 11 [
161 < Cpo (dG) @ (dmax) 2™ @ (10g dmax) .
Conversely, if E|F|“ = oo then

/ -2
HgH Z CI/)O- dmax + C;U(dg) a,

as dmax — 00. Here dpmax = max{dy,..

(f14)

Note that there is a gap between the upper bound and lower
bound in Theorem 2.2 beyond the logarithmic factor. While
it is plausible that this is the result of our proof technique,
it remains a possibility that this may point to something more
fundamental.

We want to mention here that for p = 2, i.e., matrices, these
bounds can be compared to the matrix norm bounds from [25].
Our bounds are worse by the (log d)?/? factor.

almost surely

.,dy} and dg =

B. Convergence Rates for Tensor SVD
In light of (5), Theorems 2.1 and 2.2 immediately imply
the consistency of ﬁ%VDs when

A> Aait(d; @)

1

dihax ifa>p
Qe + (d6) * (dmax) ™% (logda)? i 4 <a <5
(d6) " (dmax)® ™ * (108 dina) ? if2<a<4
(6)
where p = 4(p — 1). i
Recall that dmax = max{di,...,dp} and dg =

p 1/[)
<H dk> . In fact, under this condition of the signal-to-
k=1

noise ratio, much stronger statement can be made and in fact,
17 VPs can be shown to be rate optimal:

Theorem 2.3: Let & € R4 %> be a pth order random
tensor whose entries are independent copies of a random
variable E with mean zero, variance one, and finite ath
moment, e.g., E|E|* < co for some « > 2. Then there exist a
numerical constant C' > 0 and another constant C, depending
on p only such that if A > CA.it(d; ), then

V dmax
A )
with probability tending to one as dy,ax increases.

max sin Z(G3VP, ) < G,
1<k<p
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For comparison, under Gaussian noise, 43 "P converges to

uy, at the optimal rate of /dmax/A as soon as A > Cv/dpax
for some constant C' > 0. Theorem 2.3 shows that the same
is true, up to some constant factor, when the entries of & has
finite 4(p—1)th moment. However, when oo < 4(p—1), the rate
Vdmax /A can only be achieved when A is much larger than
that required with Gaussian errors. Nonetheless the following
result shows that when o > 4 these requirements are indeed
optimal, up to a logarithmic factor, and therefore highlight a
fundamental difference in behavior of tensor SVD with heavy
tailed and Gaussian noise.

Theorem 2.4: Assume, without loss of generality, that
dy > -+ >d, and define dpax and dg as in (3). Let & €
R%>*dp pe a pth order random tensor whose entries are
independent copies of a random variable E such that E|E|* =
oo for some 4 < a < 4(p — 1) yet E|E|? < oo for some 3
such that (dyds .. .dp,l)ll/ﬁlg (dods...dy)"* and B > 4.

If\A\<C ((Zg)a (dmax)4~ @ for any constant C' > 0, then
for any constant 0 < Cpy < 1,
i sin /(GSVD >
|min sin (uy"", ) > Co,
with probability tending to one, as d; — oo. Similarly,
suppose that E| E|* = oo for some 2 < a < 4 and E|E|® < oo
for some 3 such that (dads .. .dp_l)l/ﬂ < (dads . ..dp)l/a
and 0 > 2. If A < Cvdmax + (cfg)p/a for any constant
C > 0, then for any constant 0 < Cj < 1,
min sin Z (43P, ug) > Cy
1<k<p
with probability tending to one, as d; — oc.
For concreteness, consider a continuous distribution sym-
metric about O whose survival function is given by

F(z):=1-F(x) =2 °L(z), x>0

where L(z) is slowly varying function at 400 in that

L(tx)
li =1
vt L(z)
For such distributions, « is often referred to as their tail
index. It is clear that for E ~ F, E(|E|9) = oo if and

only if ¢ > «. In light of Theorem 2.4, when o > 4, ﬁ%VD
is inconsistent if A < max {(&G)p/“drlr{fxfl/a, \/dmax}; on
the other hand, when 2 < a < 4, U}VP is inconsistent
if A\ < max {V/dmax, (dg)P/*}. Conversely as a result of
Theorem 2.3, ﬁ% converges to uj at the optimal rate if
A 2 Aerit(d; o — €) for any € > 0.

Interestingly, perhaps also surprisingly at the first sight, the
inferior signal strength requirement for estimating the singular
vectors under heavy-tailed noise is only a limitation of the
tensor SVD and not a fundamental barrier in general. We now
show that it is possible to improve the tensor SVD via a
different estimation strategy at least when the signal-to-noise
ratio is sufficiently high.

L(z) >0 and t>0.

III. POWER ITERATION WITH SPECTRAL INITIATION

One of the chief challenges with the tensor SVD is the
computational cost. It is well known that computing the best
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rank-one approximation (4) is NP hard (e.g. [10], [11]) so that
it is infeasible to compute 4}VPs for large dy. A common
strategy to overcome this difficulty is to apply power iteration
with spectral initialization, which has been shown to yield
an estimator that is both polynomial time computable and
rate optimal in the presence of Gaussian error. See, e.g., [5],
[13]. We shall now show that this strategy continues to work
whenever o > 4.

Recall that the first order condition yields that GEVDS
satisfies

VD SVD

%Xj#kﬁjs- xup’”, 1<k<p.
Motivated by this property, we shall consider estimating uy

through power iteration:

; @)

with initial estimates x[-O }s. For this to work, we first need

J
to be able to find a “reasonably good” initial estimate Xg_o]
that can be efficiently computed. This is usually done through
HOSVD.

More specifically, denote by Maty, : R4 X Xdp — RkXd—k
the operator that collapses all indices other than the kth one
of a pth order tensor and therefore converts it into a di X d_y,

matrix. Here we use the notation d—x =[], d4. Write
T =Aujo---ouy,.

It is not hard to see that

Maty(7) = (W1 ® - @ U1 QU @ -+ @ up) ',

where ® stands for the Kronecker product so that we can
estimate uy by the leading left singular vector, denoted by
uMat, of Maty(2°). Observe that

E [Math(%)Math(%)T] = /\Quk, oug + d_gly,,

and UMt is the leading eigenvector of the matrix

Maty, (2 )Maty(2) " — d_zly,. By Davis-Kahan Theorem,
we have

sin Z(uy, )

2
gﬁHMatk(g)Matk,(éa)T —d_i I+

+ Matk(ﬂ)Matk(cg’)T + Matk(cg’)Matk(ﬂ)TH
< 2|\Matk(§)Matk(§)T — d—k’I[dk H
=< 2
4{|Maty (7 )Matx (&) ||
+ .
22
Following Bai-Yin’s law, we then have
Proposition 3.1: Let & € R4 *dv be a pth order random
tensor whose entries are independent copies of a random
variable E with mean zero, variance one and E|E|* < oo
for some o > 4. Then

_ /2
di + (da)?' " + \/d
Mat’uk) Op< k ( G) k>’

sin Z(uy, 2

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 09,2023 at 15:20:50 UTC from IEEE Xplore. Restrictions apply.



8058

as dmax — 00, for 1 < k < p. Here dmax and dg are as
defined in (3).
Proposition 3.1 indicates that u}!®*

as A > drln/fx (Jg)p/ * Itis worth comparing this requirement

with that of ﬁ%VDs: A > dxln/a2x + dxln/;lx_l/a (Jc)p/a. See
Theorem 2.4. The former is more restrictive since o« > 4.
As in the Gaussian noise case, this gap is likely a display of
the tradeoff between computational and statistical efficiencies:
uMat is computationally tractable yet U3V in general is not.
On the other hand, the convergence rate for ﬁ}yat is inferior to
that of GEVD. However, we can improve upon u}'s by using
ﬁ;wats in place of xgo]s in (7) to get an updated estimate.
To see how this works, write
t
xh = /1= p2u; + v,
where v; is a unit length vector perpendicular to u;. Then
(t]

J

=)\ H,/l—p? uy,

S are consistent as soon

4 Xj£k X

J#k
D N (| R |
Ac([p\{k}) \7€A J¢AU{k}

& Xjea W) Xjgaufk} Vj-

Note that the second term on the righthand side can be
bounded by, up to a constant, ||£||. In light of Proposition 3.1,
this implies that, if p; are uniformly bounded away from 1,

then
: t41 €1l
sin £ (xgﬁ },uk) =0, (T .

In particular, in the case of Gaussian errors, ||&] =
Op(V/dmax) so that we can conclude that

&
sin / (xg],uk,) =0, (”—)\”>

suggesting that a single iteration with XE:,)] = ul*t (k =
1,...,p) leads to rate optimal estimates of ug. The same

technique can be applied whenever « > 4(p — 1) thanks to
Theorem 2.1. The argument, however, breaks down when o <
4(p—1) and a single iteration no longer suffices. Nonetheless,
a more careful analysis shows that the performance keeps
improving with more iterations and O(log dax) number of
iterations can yield a rate optimal of uys.

Proposition 3.2: Let & € R4 *dv be a pth order random
tensor whose entries are independent copies of a random
variable E with mean zero, variance one and E|E|* < oo
for some « > 4. There exist constants C,Co > 0 such that
it A > CrdiZ + Ci (de)”" and plf) < 1, then

& d
A < el 1o, (),

A A

where

p%] = sin é(xg] ,ug).
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In light of Propositions 3.1 and 3.2, we can estimate uy by
running power iterations (7) with initialization

[0}—ﬁkMat, k=1,...,p.

Xk’ =
And
7w = 0, (\/ﬁ

sin Z(x;, ', ug —) , asd— oo,

A
forl1 <k<pandT Z log (Jg) provided that \ > Cdlil/fx

C (dg)" " for a sufficiently large constant C' > 0. This proves
that

Theorem 3.3: Assume that the entries of & are independent
and identically distributed with zero mean, unit variance and
finite ath moment for some o > 4. There exist constants
C1,Cy > 0 such that if A > C1dX2 +Cy (&G)p/‘l, then there
is a polynomial time computable estimator Uy (k= 1,...,p)
obeying

Co/dy

sin Z(Ug, ug) < ——,

A

with probability at least 1 — d,:l for 1 < k < p. Here dpmax
and dg are as defined in (3).

For this strategy to work we need A > |[|&|. However,
in light of Theorem 2.2, this would require a higher signal-to-
noise ratio than (dL/2. + (Jg)p/4) when « < 4. It turns out
that while the vanilla power iteration may not work for smaller
as, it is possible to attain both statistical and computational

efficiencies as long as \ > (drln/fx (&G)p/‘l) for any @ > 2.

IV. TRACTABLE ESTIMATION FOR ALL o > 2

As indicated in Theorem 3.3, HOSVD and power iteration
yields a consistent estimator under the signal strength require-
ment \ > (di/2 (de)” /Y only if the entries of & have
finite fourth moment. This can no longer be successful when
A~ (dM2 (Jc)p / 4) and o < 4, even without computa-
tional considerations, as shown by Theorem 2.4. To resolve
this issue, we need to modify both the initialization and
the power iteration steps. We first describe a new way for
initialization.

A. Initialization by Robust HOSVD

The rationale behind the spectral initialization is that
Maty, (2 )Maty(2) " is an unbiased estimate of A\*uy, o u.
However, this incurs bounding ||Maty(&)Maty (&) T —d_iI||
which requires finite fourth moment of the entries of &.
To relax this condition, we shall now proceed to estimate
A%uy o uy via a more robust approach that works as long
as the entries of & have finite variance.

In particular, we shall adopt a method first developed
by [29] for estimating univariate mean, and later extended
by [34] for estimating matrices. It is based on an M-estimation
framework where we estimate the common mean M from
some independent, but not necessarily identically distributed,
samples S;,2=1,...,n by

n
S = argminy, trz V(O(S; —M)) | ,
j=1
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and 6 is a tuning parameter to be specified later. Here, for a
function f : R — R and symmetric matrix M with spectral
decomposition M = UAUT,

In particular, we shall take a ¥ so that its first derivative ¢ =
U’ is operator Lipschitz and obeys

—log(1 — x + 22/2) < (x) <log(l + z + 22 /2).

See [29] and [34] for further discussions and various examples.
Recall that

Math(%)Math(%)T = Z Xi,kX;r_k
i_p€ld] -k
where Z',k = (2'1,...,ik,1,1k+1,...,2'p), [d,k] =

[di] x ... [drk=1] X [dk+1]...[dp] and X;_, is the kth mode
fiber of 2~ with all indices except for the kth one fixed. Note
that

E(Xi—kxlk) = /\2w127kuk) ouy + 1,
where

ka = H ulil-

I#k
It is tempting to apply the aforementioned strategy directly to
{X;_ X[, iy €[d_g]} to estimate \?uy, o uy. There are,
however, a coupAle of obstacles in doing so. Firstly, bounding
the variation of S incurs the second moment of S;s which can
be translated into a requirement on the fourth moment of 2.
This is exactly what we try to avoid. To this end, we shall
instead consider estimating
Vk = /\2 [uk oug — diag(uk, o uk)] .
Note that
HVk — )\2uk o ukH = )\QHukH%w

By Davis-Kahan Theorem, we know that

sin Z(v,uy) <

Therefore, by assuming that 4[ug||7_ < 7, a “good” estimate
of the leading eigenvector of V may yield an initial value
satisfying the requirement of Proposition 4.2.

Another difficulty is that

Y, , =X, X[ —dagX; X[ )

have different means. To this end, we randomly partition [d_ ]
into n groups, denoted by Iy,...,I,. This sampling is done
through ds . . . d), samples of Multinomial (n; %, e %) . Let

~ 1 <&
Vi = E;w(eij

where

Si= > Yi,. ®)

i,kefj

\Afk can be viewed as a one-step gradient descent for comput-
ing S with initial value 0.

8059

Denote by
o= max wiel,  and - pp = max fluclle.,.

And write vy, the leading eigenvector of \A/';C Then we have
the following theorem.

Th€107'€m 4.1: {p\ssume }hat the parameters satisfy A >
c (d?nax + (&G)Z) (log(de)) and iy < C—*(logdy,)~ for
a sufficiently large constant C' > 0. If

0 — 810g(c?g)
SN @+ ()P

/32logd
sin Z(Vi, ug) < 2u3 + 32logdy
n

(Wi + (de)"?)\/Blog dg

22
for 1 < k < p with probability at least 1 — C'd, * log(dg) —
nexp(—1/Cnu?). Here dy,ax and dg are as defined in (3).

The algorithm above effectively does a truncation around 0.
It is natural that this causes significant bias and leads to a larger
deviation term. With more gradient iterations, \A/',(:) becomes
an increasingly better approximation to Vy, and reduces the
second term of the deviation exponentially fast. We omit
details since we intend to use this only for initialization and
the performance guarantee given by Theorem 4.1 is sufficient
for our purpose.

The theoretical choice of the truncation parameter 6 as given
above, requires some knowledge of \. If we instead have some
preliminary bounds on A, we define §; as follows by the so-
called Lepski method. Let £ = {l € N : Ay < N =
2\ in < 2A/\max}. For each ); the corresponding truncated
estimators V ;) are defined as above. Then,

then

+

81ochG
0= 1 2 7P
)‘l /n + dmax + (dG)

and
l*—min{léﬁ:Vkéﬁ,k‘>l,

Ap/n 4 (da)P + d2,,,
12n ’

Using results from [34], it can be shown that this scheme
provides estimates that differ from Theorem 4.1 only by a con-
stant. Notice that in our case we can get a crude upper bound
for )\ using the Frobenius norm of one of the tensor pieces.
On the other hand, we can take Ay, = dil2 (Jg)p / ‘)
which has to be smaller than the actual A in order to make a
successful recovery. We —implicitly assume A < poly(dg).
Otherwise, if A is exponentially large, we can detect that
through the Frobenius norm of the tensor and the problem
is simplified. Writing the tensor as a d; ...d, dimensional
vector and estimating the mean is enough for this case. Thus
we need to take at most Cplog(dmax) values of . Finally, our
simulation results show that a fixed upper bound for A\ often
suffices and we do not need to estimate it.

IVay = Vi ll <
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B. One Step Power Iteration With Sample Splitting
In light of Theorem 4.1, if A ~ d1/2 (Jg)pM)

max

(logdg)'/*, then we can ensure that sin Z(Vy,uy) < 7 for
some constant 17 < 1 by we take n = C'log d. We shall now
consider using them in the power iteration. As suggested by
Proposition 3.2, for the accuracy to improve from iteration
to iteration, it is important that we have A 2 ||&||. In light
dilae + (da)"")
cannot ensure that is the case when v < 4. It turns out that this
requirement is a mere consequence of the complicated nonlin-
ear relationship between the singular vectors and & induced
by the iterations. If the initial values XECO]S are independent of
2, then running the power iteration (7) once would result in
a rate optimal estimate.

Proposition 4.2: Assume that XE:,)]
and satisfy

of Theorem 2.2, the requirement that A\ ~ (

s are independent of 2~

. [0]
max Sin Z(xX u <
1<he ( k o k) =7

for some constant 7 < 1. Then for any 0 < § < 1,

. 1 . C\/ﬁ/él/a
sin 20 ) < min { £ VRO

for 1 < k < p with probability at least 1 — J.

Proposition 4.2 immediately suggests a simple strategy to
estimate uis when we observe, in addjtion to 2", another
independent copy of it, denoted by 2": first apply robust
tensor SVD to 27, and then update the estimated singular
vectors using (7). As a direct consequence of Theorem 4.1
and Proposition 4.2, the resulting estimate us satisfy:

11;1}3;{}) sin Z(ag, ug) Sp @ 9)
if A\ > C(dg)?*log(dg) for a sufficiently large
constant C' > 0.

Of course, we do not have another copy of 2". To over-
come this obstacle, we randomly partition the tensor into
two halves along its k-th mode. Denote the two halves of
indices by Ji and Jo. We use the tensor 27, with indices
[di]x...[dk—1]x J1 x[dg+1]x[dp] for nontrivial initialization,
and 25 with indices Ji, replaced by Jy for iteration. It can
be derived from the scaled Chernoff bound that

P (Z up; > 0.25) < exp (—1/1643) .

ey
See, e.g., Theorems 1, 2 and the subsequent remarks of [40].
Note that we can write
Uy, J,
[, ][+ oy
The last two equations imply that 27 has a signal strength
of at least

0.51 > C (dif2 + (dg)"") (log de)/*,

21 = Mug, g, lugo---oup_g 0 +&.

max

Thus we can use Theorem 4.1, assuming all the incoherence
conditions are satisfied, to get estimates v such that

max sin Z (Vg, ug) <17, (10)

1<k<p—1
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for some constant < 1. Notice that vj are independent of
Z5. Following (7), we can use XLO] = v}, with the second
tensor 25 to yield an improved estimate of uy, denoted by .

In light of Theorem 4.1 and Proposition 4.2, we get the
following theorem.

Theorem 4.3: Assume that the entries of & are inde-
pendent and identically distributed with zero mean, unit
variance and E|E|* < oo for some « > 2. There

exist constants Ci,C5,C3 > 0 such that if A >
Ch (dlln/fx + (JG)p/4) (logdg)*/* and maxi<k<p [k, <

Co(logdg) ™", then there is a polynomial time computable

estimate Uy (k= 1,...,p) obeying
~ Cs+/dy,
P{Sinz(uk,uk,)g 3At k for1§kgp} > 11—t

for any 0 < ¢t < 1. Here dp,ax and dg are as defined in (3).

Note that the additional requirement of
maxj<p<p [uklle. < Ca(logdg)™! ensures that the
singular vectors are not too concentrated on a few coordinates
and therefore allows us to capture the signal even after the
sample splitting.

In the event that this is not the case, we provide some
heuristic justification about how our task can be effectively
reduced to a problem of lower order. To see this, assume,
without loss of generality, that u1; = |Juy|ls. = (logdg) ™ .
Denote by 2 the jth slice of 2" along its first mode. It is
clear that

t/g{.l:XuQO"'Ou[)“_éala

A= \upp > (drln/fx + (Jg)p/4) polylog(dg),

by assumption. Note that the signal strengths A and \ are of
the same order up to the logarithmic factor. However, 2 is a
pth order tensor and .27 is of order (p — 1).

We can then proceed to decompose the (p— 1) order tensor.
If the maximum entry |lug|e. for k& > 2, is smaller than
(logdg), we can apply Theorem 4.1 to obtain estimates.
If not, we repeat the procedure described above, now with us,
to get a (p — 2) order tensor. Since the tensor order decreases
at each step, estimating the singular vectors could become
successively easier because of the relative higher signal-to-
noise ratio.

Finally, notice that the robust estimation method of the
present section does not depend on «, provided o > 2. This
allows the user to apply this method without any prior knowl-
edge about the error distribution. The numerical experiments
of Section 5 also support this claim. When the signal strength
condition is satisfied, the performance of the robust estimators
does not depend on the number of moments of the errors.

V. NUMERICAL EXPERIMENTS

To complement the theoretical developments, we also con-
ducted several sets of numerical experiments. In all the sim-
ulations, we set d; = do = dsz := d. In the first set, we take
d =400, Z = Auj ouy o uz + &, where A = 3d*/* and
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Fig. 4. Comparison of the methods for Pareto(r) errors across different
values of v. For each v, the black bar on the left corresponds to the niive
estimate based on HOSVD, the gray bar on the right refers to the robust tensor
SVD.

uj, ug, uz were sampled uniformly from the unit sphere. The
elements of & are independently simulated from symmetrized
and appropriately scaled Pareto distributions. More specifi-
cally, we generated F,j;, = PjxRijx/\/v/(v —2), where
P;ji ~ Pareto(v) and R;;s are i.i.d. Rademacher random
variables. The rescaling was done to ensure the errors have
unit variance. Note that Fjj;, has finite ath moment if and
only if v > «a. We therefore varied v to simulate noises
satisfying different moment conditions. We ran the algorithm
in Section IV with an initial guess of 3000 for A. Even though
this is a huge overestimate, it does not affect the final results.
For comparison, we also computed the naive estimate based on
HOSVD. The results from 1000 simulation runs for each value
of v are summarized in Figure 4. It can be observed that the
robust method provides an estimate that is strongly correlated
with the true vector uy, irrespective of v. On the other hand,
the naive estimate is almost orthogonal to the signal direction
for smaller values of v, but its performance improves as v
approaches 4, as predicted by Proposition 3.1.

We next provide a numerical experiment to corroborate
the signal strength requirements for consistent estimation.
The setup is similar to before and we fixed » = 2.1 and
varied d from 250 to 500. We took A = 3d¢ for ¢
0.6,0.75,...,1.2 to correspond to different signal strength.
The result, again summarized from 1000 simulation runs,
is presented in Figure 5. It indicates that & 3/4 is
indeed the correct computational threshold. When ¢ < 0.75,
neither of the methods is successful. However, as soon as
& reaches 0.75, the robust SVD method from Section IV is
able to provide nontrivial estimates. The accuracy improves
as ¢ increases further. On the other hand, the naive estimator
performs poorly for £ as large as 1.05, where it has a very large
variance, before transitioning to a better estimate at £ = 1.2.

To investigate the possible effect of different error distribu-
tions or lack thereof, we also considered a simulation setting
similar to the one used by [28]. We fixed d = 400 and
set 7 = Auj ougous+ &, where \ = 1.5d%/* and
uj, Ug, uz are sampled uniformly from the unit sphere. The
errors are independently distributed as R;;, X;;, where R;jis
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Fig. 5. Comparison of the methods for Pareto(2.1) errors across dimension.
In each panel, for each value of log A\/logd, the black bar on the left
corresponds to the naive estimate based on HOSVD, the gray bar on the
right corresponds to the robust tensor SVD.
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Fig. 6. Comparison of methods for mixture distributed errors across a tail
parameter v.

. . d—v
are Rademacher random variables while X;;, = —
v

with probability g and X5, = 1/% with probability
— UV

v T . . .
1 — —. The distribution becomes lighter tailed as v increases.

The robust method still has better performance than the naive
one, even for much lighter tailed errors. We arbitrarily fixed
the truncation parameter # = 0.2 and used a single robust
iteration with no sample splitting. As shown by [28], this
error distribution can worsen the performance of elementwise
truncation, however our experiment results, summarized from
1000 simulations in Figure 6, confirms that this has no effect
on the spectrum truncated estimators that we proposed.

We also examined the effect of signal strength for this noise
distribution. We fixed the mixture parameter » = 0.1 and vary
the dimension d from 200 to 450, while setting A = 1.5 ds.
The results summarized from 1000 simulations is given in
Figure 7. The observation is similar to before: the robust SVD
method is successful whenever £ > 0.75. The naive estimator
is almost orthogonal to the signal till ¢ = 0.8, then goes
through a high variance phase at £ = 0.85, finally providing
a nontrivial estimate when £ = 0.9.
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Fig. 7. Comparison of the methods for mixture distributed errors across
dimension. In each panel, for each value of log A/ log d, the black bar on the
left corresponds to the naive estimate based on HOSVD, the gray bar on the
right corresponds to the robust tensor SVD.

VI. CONCLUDING REMARKS

In this paper, we study the problem of estimating the rank-
one spikes in the presence of heavy tailed noises. Our contri-
butions are three-fold. First, we investigate the performance of
estimates from tensor SVD, perhaps the most natural approach
especially if we neglect the computational cost. Our results
identify the signal strength requirement for the tensor SVD to
yield rate-optimal estimates. (Nearly) matching lower bounds
are also given to show that these requirements are optimal in
the sense that the tensor SVD is necessarily inconsistent if the
signal strength is below them.

Our analysis of the tensor SVD exploits its close connection
with the spectral norm of random tensors, and our second
contribution is to establish upper bounds and (nearly) matching
lower bounds for a tensor consisting of independent mean
zero random variables. Our bounds pinpoint the connection
between spectral norm of a random tensor and the moment
condition for its entries.

Finally, we develop procedures for estimating the singular
vectors under heavy tailed noises that are tractable in that
they are polynomial time computable, practical in that they
are easy to implement, and yields estimates that converge to
the true parameter at the optimal rate. In particular, we show
that similar to the case with Gaussian noise, a single power
iteration with spectral initialization suffices if the entries of the
noise have finite 4(p — 1)th moment. If the entries have finite
fourth moment but infinite 4(p—1)th moment, then we need to
do O(log dyayx) number of power iterations. If the entries do
not have finite fourth moment, we need a different strategy.
This new procedure combines robust matrix estimation and
sample splitting, and can be shown as both tractable and rate
optimal.

Our work also points to a number of interesting directions
that warrant further investigation. For example, one may
consider the effect of heavy tail noise beyond the rank one
case. The rank-one spike model we considered here can be
generalized along two directions: the Tucker decomposition
framework (see e.g., [17]), or through orthogonally decompos-
able tensors (see e.g., [18]). It is immediate that our results
continue to hold in both these frameworks when the rank is at
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most a constant, i.e., does not grow with dy,;,. A more careful
inspection shows that the matricization/power iteration esti-
mator considered in Section III, will still succeed for Tucker
decomposition for any sequence of multiranks if the errors
have finite fourth moments. The case where 2 < a < 4 is
more nuanced. When all the spikes are of different magnitude,
we can adapt a successive rank one method to compute the
leading singular vector at each level. However, more inter-
estingly, such low rank tensors have a unique decomposition
even when there are » > 1 orthogonal spikes of the same
magnitude. See, e.g., [18] for further discussion. It is plausible
that a more sophisticated truncation strategy would be required
to recover the unique decomposition in that case, especially
when r/d — ¢ > 0. We leave this intriguing question for
future study.

Finally, our numerical experiments suggest that it is possible
that there are sharper bounds on the critical value of A, depend-
ing on specific error distributions. For example, in Figure 4,
while the moment dependent error bounds are sharp in the
end cases where the moment parameters are v = 2 and v = 4,
the naive matricization estimator seems to pass through a high
variance phase at v = 3. A Monte Carlo calculation shows that
in that case, the error is smaller than the specified signal value
(and hence the naive estimator is successful) with a nontrivial
probability. Deriving more precise bounds in this subcritical
regime is of clear interest.

VII. PROOFS

Throughout this section we will write C' to mean a constant
that may differ from line to line. Similarly we write C), to
refer to a constant that depends on the tensor order p.

A. Moment Bounds for Random Tensors

The proof of Theorems 2.1 and 2.2 uses Talagrand’s con-
centration inequality for convex Lipschitz functions combined
with estimates of higher order moments via Khintchine and
Rosenthal inequalities. In particular, it relies on the following
moment bound for random tensors which may be of indepen-
dent interest.

Theorem 7.1: Let & € R4 *d» be a pth order random
tensor whose entries are independent such that EF;, ; =

0 and IEE?IWZ-T) = 02-21“@. Then for any » > 1, there is a
constant C}, depending only on p such that
1
E[&1)

< CpU V dmax

1 3
+ Cpo2 (log dmax) 4 X

1
r\ r
P dy, 4
X deE - max Z(Eimip—oil Z—p)
1 i €[dy],l#k =1
+ Cp(log dmax) X
1
» d r/2\ r
2 2
X E max Z E: . —o0f .
: i €ld;]l#k | ; ( et “"'z”) ’
ip=1 ip=1

where 0 = max;, .., Ufl...ip'
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We want to point out that this theorem is a stronger version
of the results derived by [38]. In particular, we reduce the
log dmax factor in all cases, to the point that it does not
depend on p, the order of the tensor. More importantly, the
leading term in our error bound is free of the log dy,ax factor.
This allows us to derive bounds differing only by a constant,
whenever o > 4(p — 1), a conclusion which is in tune with
the corresponding results for matrices. The same conclusion
cannot be drawn from Theorem 2 and Corollary 2 of [38].

We want to mention here that for p = 2, i.e., matrices, these
bounds can be compared to the matrix norm bounds from [25].
Our bounds are worse only by the (log dmax) factors.

Note that we do not assume that the entries of & are iden-
tically distributed in Theorem 7.1. In fact, it follows directly
that the upper bounds in Theorems 2.1 and 2.2 continue to
hold if we have independent, but not necessarily identically
distributed errors, as long as the moment conditions are satis-
fied. We opt for the current version of Theorems 2.1 and 2.2
for ease of exposition.

It is not hard to see that

dy
&|| > max max E? .
i1 e, (322

This immediately suggests that

1/2

=
ol

E[E1)T 2

dy,
E E? .

The lower bound above matches the upper bound in
Theorem 7.1 up to the logd terms for any fixed p. Indeed,
a close inspection of the proof of Theorem 7.1 indicates
that the logd terms in the upper bound may be removed
altogether with some stronger moment assumptions. The proof
of Theorem 7.1 relies on a scheme developed earlier by [41]
and is similar in spirit to that from [38].

Proof of Theorem 7.1: By the standard symmetrization
argument and conditioning (see, e.g., Lemma 5 of [38]),

r T r 1/r
E(I€1))"" < VarEs (B (1] €))7, an
where 7 is a dy x --- X d), tensor with entries H; . ;, =
Ei . i, Ziy. ips Ziy iy o N(0,1). Leto, ;, =EE? , and
0'2 = ma,X 0'2

11 P

We will first show that for any fixed tensor &, 7 defined
above satisfies the following inequality.

E|l2|")M"
<C POV dmax

3
+C, 02 (log dmax) 4 X

Zd ( max
7,[6(1[] l#k

+ Cp(log dmax) X

1/r
dg.

Z (Ei...ip_ai...ip)
p=1

8063
p dy r/2\ /T
X max E2 . —5% .
i €[di],1#k Z( ti-tp 11...zp)
=1 =1
(12)

To this end, we shall use an e-net argument.

For any integer L, write S;, = {0,1,...,27%}. It follows
from Lemma 3 that the set Ng) ={xeR%: x| <122 €
Sy} forms a (1/2)-net for S%a~1, 1 < g < p by taking L, =
logd, + ¢o for some constant cy. Now, for x € R% define
the projections I1;(x), I1;(x) € R s.t.

(M (x)); = ;1 (xf =27")
(Mar(x))i = z;l(zf > 271
for 1 < i <dg. Let L :=
N9 = HZ(N&)) and N9 = TI;(N >) for 1 <1< L.
We have, for any x € Né‘i) ,

L
x = Z IT;(x)
=1

Note that if L, < L for some 1 < ¢ < p, we have II;(x) =

Oforall L; <l < Landall xe N quq) Expanding the sum
for each vector x, € R, we get

maxi<q<p Lg. Let us also define

and

Z IT,,(x

m<l

) =T (x).

H ><2X2"' Xpo
= Z Z KXo My, (x2) - X g, (%p)
=1 lp=1
P L
= Z Z Z H ) le(XQ) o Xp Hlp(xp)
k=21,=11;<l
7;£k
p L
= Z Z H Xo Z II;, (x2) k (I0,, (xx))
k=21r=1 12§lk
Xk+1"'xp ZHZP(XP)

lpglk

P L
= ZZ% Xo ey(x2) -+ Xp—1 g (xp—1) ¥ I (xx)

k=2 1=1
XkJrl cee Xp H<l(xp).
By triangle inequality,
2 2
|A2|" = sup [ X2 X2+ Xp X
xq€8% 1, 2<q<p
<272 max || Xaxg-- X%
x4 €N 2<q<p
S 22p72><
P L
X max [Z Z% Xo Mep(x2) -+ X1 My (Xp—1)
xeNy) L5 13
2<q<p

X I (xk) X g1 xp Ty (xp)

]2

*Let I, = maxlq, then we take k = min{l < ¢ <p:lg =1}
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< 227 %px
P
X Z max Z% X9 H<l(X2) c Xk—1 H<1(Xk,1)
k— 2xq€N
z<q<p
2
Xk Hl(Xk) Xk+41 """ XpH<l(Xp) (13)
Without loss of generality, we assume dy > d3 > -+ > d,.

Because of symmetry, we shall focus on k£ = 2 without loss
of generality. To simplify notation, let us denote

Tl(Xl, .. .,Xp) = X9 Hl(Xg) X3 H<1(X3) e Xyp H<1(Xp).
For any fixed x2,...,x,, we have
I 2
ZTI(XQ, CeXp)
=
L
= I Tz, 3)|?
1=1
22 Ty(xa,..,%p)) Tu(Xa,. .., %)
<
dy
:Z (Tl(x27 7X;D))121+
=1 1i,=1
L dl
+ Z (Tl(x2a 7X;D))i1 (Ul (X27 . axp))h (14)
I=1i1=1
where we define Uj(xa,...,%x,) = > o, Tr(x2,...,%p).
We bound the sum of squares term first. To reduce notation,
here onward we will refer to T (x2,...,%p), Uj(x2,...,%,)

as T;(x), U;(x) or simply T;, U, respectively when there is
no scope of confusion.

Note that conditional on &, one can show that
T, ~ N (0,diag(7},...,72,)) , where
da dp
=Y > Bl T(xa)g . Ta(xp)] . (15)

12=1 ip=1

In particular, the co-ordinates of T, given &, are independent,
(T[)“ ~ N(O, ,L l) for 1 S ’L'1 é dl.

Conditional on &, we use the Bernstein inequality for
sub-exponential random variables (see, e.g., Theorem 2.8.1
of [42]), to obtain

dy
P Z ((Tl)f1 —Til) >C /tz —|—CtmaXTll|£’
i1=1 i1

< exp(—t).

Here onward, all probability statements are conditional
on &, unless otherwise mentioned. For notational conve-
nience, we avoid repeating this statement. By Lemma 4, for
l<qg<p,

ING| < IN9| < exp(C2'(1 + L —1)).
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An application of the union bound yields

2
U
xq€N 2<q<p

>Z 1l+c\/

—12 L+ L= +1t)> 7
i1=1 i1

+C((p=1)2'(1+ L= 1) +t) maxr,

with probability at most exp(—t). Summing over [ for each
fixed x;, and by union bound over [,
L

U N e

xqu(LQ) ,2<q<p 1—1

>ZZ 1ljucz: —1211+L—Z+tzm

1=1141=1 i1

+CZ

with probablhty at most L exp(—t).

The cross-product term can be bounded similarly. Note that
U, ~ N(0, diag(v?, ... ,’ygl)) where '7i21l = El’>l7—i211’ for
1 <43 < dy. Once again, (T;);, (U;);, are independent and
satisfy

E(T:)i, (Ur)i, =0, [[(T1)i, (U1)iy lyy < TintVints

where || - ||y, is the subexponential norm. Then similarly
using Bernstein inequality followed by a union bound over
the special e-net, we have, just as in (16), that

L

U P vl of

xqug” 12<q<p

>CZ

1+L—l)+t)max72[ (16)

p—12(01+L—1)+1) Z 22,

i

+CZ 1+L—l)+t)maxnll'y“l (17)
with probablhty at most L exp(—t).
We bound the “sum of expectations” term in (16) as
DD T
=1 il 1
L
<33 it X TTnaco (322 )
=1 12=1 i3...0p j=3 i1=1
dy
< 33 e max Y B,
=1 is=1 et
dy L
<
< wnfla’)ch Z Z Zﬂl(xz
io=11=1
do
2
< lfla,)fp Z 1oy Z X2,
ia=1
< - 18
< gy Z 9
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It remains to bound the deviation terms in both (16) and (17).
To that end, notice that, for any fixed i1 € [d1], by (15), since
[ITI<;(x4)|| <1 we have

%211
— Z 2
">l
© Y et XY i,

03,..0lp J=3 U'>lia=1

< o SRR,
ot z'>112 1
<27 jmax Z 1(I1y (x2)i, # O for some ' > 1)
17';0 :
< 2! o .
< 0% 27! max z [ =)
1(Ty (x2)s, # 0 for some I' > l)]
19)
where we use the definition 0 := max O’%lmip and
Z 1(I0y (x2)4, # O for some I > 1) < Z 9l — 91,
i >l

We similarly have

da
<27 max Y E} , 1(IL(x2)i, # 0)
b3:tp 12=1

IA

o? +27 maxz iy 41

13...1p !
12— 1

i) LI (x2)i, # 0).
(20

and the following inequality.

2
E Tivl

< 3 TTma} X3 moat Yot
i3...4p j=3 U'>lix=1
di da
< 27" max ZZ p Hl X2)zz7é0)
13’ ’Zpil 112 1
< d10'2
da
e [0 ot S s, £0)
i i 1o=1

21

We define t; = 27't/(p — 1). The I terms in the “sub-
Gaussian” deviation term in (16) and (17) can now be bounded

8065
as
(Ut L1 1) Y 72 maxfrd 720}
i1
(1+L—l+tl)maxmax{’y“l, le}z
i1
21+ L —1+1t)dyo*
d2
_ 2, 2 52
+(]‘+L l)dla i1,Ii1;>lxz~l~X~77;p 1,;(E11"'7‘p O—““‘zp)
1+L—-1+1) j
HOF L=t t)o! max Z
ds 2
+(1+L—-1 +tl)i max. Z(Efl,,.i,, - 01-21...%)
15%3..45lp 12:1
dy 2
_ R

where we use the AM-GM inequality ab < (a?+b?) in the last
step. In the above we have used the facts that ||*|| II<;(x;) <
1 and Xo = ZHl(XQ)-

For the other terms we will use the facts that va +b <
Va+ /b for a,b > 0, and moreover

S 2P+ L—1+1< ZQWHL )+—\[

1
l
< 2L/2 +Vt/(p—1).

The first part here follows from Lemma 2 with a = 1/2. We
can also bound

D VI+L—l+t <Yy VIvL-l

l l

+D_ 2V V-1
l

< L3? + OVt

With the above inequalities, one obtains

L
Z 21(1+L—l"'tZ)ZTilmaX{’YilvTil}
=1 i1

L
<o?d Y 22/ (IT+L-T+1t)
=1

da

Z(Eizl...z'p_gi...i,,)

ig=1

+ o\/dy (L**+CVt) max

i1, 7,3....,1;.

d1
2 2
E (Eil...z'p - Uil...z'p)
i1:1
da
2 2
E (Eil...ip - Uil...ip)
10=1
dq

Z(Eizl...ip - U?I...ip)

i1=1

o(L*? + OVt) max

12,13;--+52p

+(L?+CVE)  max

11,235--+52p

+ (L3?4+CVt) max

12,23, +lp
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< Co?\/di (2% + OVt

d 1/2
+o\/dy(L? + CVt) max Z(Ei...i,,_ai...z'p)
i113...0p ]
d2
+(L¥?+CVt) max Z(Ei...ip—ai...ip)
B P
dy
+ (L3 +CV) , hax Z(Ei...z'p - Ui21...i,,) - (22)
SRR P

Finally we bound the

and (20), we have

M=

21(1 + L — 1+ t;) max max{7i,17Vi,1, Til}
(23

Il
—

ﬁ%h

2'1+L-1) +tl)maxmax{( Till +%11)/27Tm}

I
-

21+L—1+1t)0>

-

LI e

+

max E Jip

1113.. ’Lp i

(1+L—1+t) {

=1
<o?-C(2" +t/(p-1))

+ (L +t/(p—1) {

max E

91%3...1p ;

(23)
once again using y,2/(1 + L — I) < C - 2% (which follows
from Lemma 2 with a = 1) and Y, 4, = >, 27 /(p— 1) <

t/(p—1). Plugging in the bounds (18), (22) and (23) into (16)
and (17), we have

ZHTzH

quN(Q) 2<q<p =1

d
< max Z Ez‘21...ip + 02C(dmax + Vd1dmax +t + \/d_ﬁ)
et
+ Co\/di((log dmax) ' + V1) x
s 1/2
x max |3 (B}, —oh )
in=1 .
+ C((log dmax)® +1) max Z (EZ . —o} i)
kst | £
d
+ C((log dma)c)2 +1t) max Z (Egl...ip - Ji...z‘p) .
B o]

with probability at least 1 — L exp(—t). The same bound holds
L

for U E TlTUl as well. In the above, we have
x,EN{? 2<q<p =]

used the fact that L := max L, < logdmnax + co for some
constant ¢ > 0.

“sub-exponential” deviation term
in (16) and (17) as follows. Once again using equations (19)
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Integrating over ¢, one obtains, by (14), for » > 1,

T
E sup E Ti(x2,...,Xp) ‘g’
x, €N :2<q<p [|1=1
2
é Cp(O' dmax)r/
27 \% &
+ Cp(O' d1)4(10g dmax) 4 X
T
ds 4
2 2
X max E (B iy — Oiyiy)
1,83,eeuslp | 4
7,2:1
+ Cp (10g dmax)r X
d2
2 2
X max E (Eil...ip - Uil...ip)
11,03,.00y0p | 4
ig=1
ds r/2
+ ma (E? -0} )
X iv.ip  Tiy.ip :
12,1350 ,0p |
7,1:1

Summing over all terms in (13), we have then proved (12).
Now taking expectation in (11) finishes the proof. g

B. Norm of Random Tensors

We are now in a position to prove Theorems 2.1 and 2.2.
Without loss of generality, we take o = 1.
Proof of Theorem 2.1: We w}ll use the definition of the
P L/p
geometric mean dg = <H dk> . We begin with the upper

k=1
bound.

Upper Bound: For any t > d, and k € [p], E|[x| E* =

K < 00,
P (E2 . —1) >t
<u el[leﬁ Tk %: ete

/2
B>, (B i, —1)
< gdz : 1a/2
Cprdy T o
< ta/zl;ék

by Khintchine and Rosenthal inequalities respectively. This
means

dy
E| max E2 . _ 1) <o.d/*e g, 217/&.
W 22 iy = 1| S Gt (do)

By Theorem 7.1 with r = 2, and o2

. =1, we have
1--:2p

E|&|
<Gy m-i—c logdmax)3/4d3/8 1/2a(d ) p/20
+ CP(IOgdmax)dl/4 1/ (J );D/O(.

max
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Notice that we can get a constant C' > 0 such that

P (max |Eiy .| > Cdf e (de )p/a)

(H dk) E |« £/ (Cad&/ai ! Hdk>
k

o

1—-=

— 4
- dmax .

IA

It is well known that the function f : R* — R given by
f(vec(&)) = ||&]| is convex and 1-Lipschitz. Now using Tala-
grand’s concentration inequality for convex Lipschitz functions
(see, e.g., Equation 1.4 of [43]) we obtain

P(an—EmﬂM>ca¢¢m;

+ Cp(log dmax)3/2drln/;lx71/a (JG)p/a >

and thus the upper bound now follows. In the last step, we use
AM-GM inequality to remove the middle term. In general, this
inequality is not sharp and leads to an extra y/log d factor in
the third term, but we keep this version for better presentation.
Now consider the lower bound.
Lower Bound: Suppose, without loss of generality, we have
that dy > ds > ...d). It is clear that

617 > s

22,
Thus, for any constant C' > 0,

B (I61% > di + C? (de) ™ dimt

> P <121T1ax Z iy

2p 1 2
—dy >t (dg) a d2..° io.
ylp
dy
Notice that Z(E2

=, —1) is a sum of independent mean
1---1p

i1=1
zero random variables. Since ]E}Eilujp = o0, Corollary 2
of [41] along with Khintchine inequalities imply that for any
finite d, the random variables

E 1112

|a/2

- 1)/Vd

i1=1
satisfy
E|Xi,.i,|*/? < max{1, d; */*(E|EZ,, , —1])*/*} = 0.
For k=1,2,..., let
By, = {ig, ... ip: 2871 <ig <28 1 <iig,... i, < 2}

By Borel Cantelli theorem, it is enough to show that

Z]P’<there exist is,...,%, € By

S.t. |Xi2...ip| >(C- 22k’(p—1)/a) = oQ.

8067
In other words, we need

Z{l—]P’OX

k(p—1)
ol <0 2n/a)” /1_w.

k
Again since E| X, ;, |(y/2 = 00, we have P(|X;, ;| > 1) 2
t=/2 for large enough ¢, and hence
o0
Zz’f@—l)ﬂ)( iy | > C 22K W@) — 0. (24)
We also use the well known implication
Z[l—(l—ak)b’“] < oo = Zakbk<oo (25)

k k

for ay € [0,1], by > 0.

Notice that if we define dg := (do... dp)l/(pfl) = 2% then
equations (24) and (25) together imply that for any constant
C > 0, tensors & of dimension d; X da X --- x d), satisfy

2(p—1)

for infinitely many Jg>

Note that by assumption, the dimensions satisfy the relation
dy = diax > dg = (dy . .. dp)""™Y . Thus,

p 2/a
P(&)° > di +CVdy (H dk> io. | =1.
k=2

Since di = dpax, the proof is now completed for the case
where, for example, dy,d2s — oo. If only d; — oo and
da,...,d, remain fixed, we can follow the same route, only

the maximum over all possible choices of 4, ...,%, is only a
finite maximum. In particular, we will have that

P(|]]* > Cdy) =
Since in this case Cdy > Cdy/2 + Cv/dy (dao .dp)Q/“, for

sufficiently large d;, the proof also follows in this case. [
The proof of Theorem 2.2 follows a similar strategy.
Proof of Theorem 2.2:
Upper Bound: Recall that E ||| E* = k < co. By Markov
inequality,

dy,
P max E2 . >t
<il€[dl],l7$k ikzz:l i1...0p )
dy, a/2
: Hdl E Z Ei21...ip

/t(y/Q.
£k in=1
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By Khintchine’s inequality, for independent Rademacher ran-
dom variables R;,,

dy 3
B> EL
ikzl
dy, @
< C-E|Y Ry Ei i,
ikil
dy. 2\ 2 N
< C-max{ (B> R Ei ., ,dvE|E| 2
ip=1
= Cd?,
where the second step is by Rosenthal’s inequality.
Consequently
max i, >t <C di | d? t%,
(e, 2 o) = (I ) 4
and thus
dk Cy
E max E? <O, (dg) > d, 7.
i,,e[dl],l;éqi; oty < G (da) © dy

Similar to before, by Theorem 7.1 with ¢ = 2 and U%...ip =1,

_ b .
E(|&]| < C/dmax + Cp (da) @ d/* ™ (log d)3/2..

Moreover, we can get a constant C' > 0 such that
<H dk> E|E[*/C* (cadg,{fx ! H dk> -
k k=1

Again, using Talagrand’s concentration inequality for convex
Lipschitz functions we obtain

P(\wu - Eugn\ > O

) _ Pk
+ Cp(log drrlax)3/2drlr1/a2x71/a (dG) ) )

P (max |Ei1...'ip‘ > Cpdy/2 71 (CZG)E)

o
Ho|Q

o

17_
2
< dmax 5

and the upper bound now follows.
Lower Bound: We will show that for any constant C' > 0,

P (||g|\2 > C (dg) ™" i.o.) = 1.

Clearly,
€1 > ilrf}%JEil...ip\.
For k=1,2,..., let
=iy, nyip 2P <y <2801 <, d, < 2F)
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By Borel Cantelli theorem, it is enough to show that

ZP(there exist iq,...,%p € Ay
k

S.t. ‘E“zp‘ >(C- ka/a) = Q.

As before, we need

Z [1 —-P (‘Eil...ip‘ <C- Qkp/a)Qkp/Q] = 00.

k
Notice now that
E|E7,11p
< C*+) E(|Ei .,

k

Thus,

D 2trp(C -2k <
k=1
since E|E;, i, |(y = oo. Plugging in dg = 2, the conclusion
now follows from equation (25). Finally, we also have

’L]E[d]] l;ék Z ip

> max

‘ «

‘ 0%

).

‘Eil...ip| <C- 2(k+1)p/a) —

1112 > Cdy,

almost surely for all 1 < k < p, and thus ||&]| > Cv/dmax
following the proof for the lower bound in Theorem 2.1. This
completes the proof. 0

C. Bounds for Tensor SVD

We now turn our attention to bounds for the tensor SVD
and prove Theorems 2.3 and 2.4. The cases when a > 4 and
2 < « < 4 can be treated in an identical fashion and we shall
focus on the case when o > 4 for brevity.

Proof: [Proof of Theorem 2.3]

Note that
A= 2 G0, 6P
> 2 Xxiup---Xpuy
= )\+<§’><1u1~~><up
> dmax (26)

with probability at least 1 — Cd,,L,.

Write
ufvPh = \/1—7@“3' +pjv;
where ||v;|| = 1 and v; L uy, for 1 < j < p. Let p :=

max; |p;j|. Using the upper bounds from Theorem 2.1 for k >
2, we can derive that

T =SVD =SVD
A=Z XUy’ X, Uy

P
=\ H \/1—7p?-|-
j=1
+ D

AC[p],A#D

jgA ke A

(& Xjga vy Xpea Vi)
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We bound the two terms in the sum separately. First,

p
A 1—p2 ] <A1 —p?
EV 7=

A
< 52— %) <A1 - 2)2)
For the second term, we have two cases.
Case 1: |A| =1:
> [T yt=r2 1105 | € xjgawy xreavi
AC[pl,|Al=1 \j¢A keA
<p Y € xgan]
AC[p],|Al=1

< CP V dmax

with probability at least 1 — d}

max- Here we use Chebyshev
inequality in the last line.

Case 2: |A| > 2:
>\ I yi-43 <H Pj) & XjgA W) Xkea Vi
Aclp] \jgA keA
[A]>2

< Y T Vi=22) [ I ei | I#1€ xjeany
Aclpl|A[>2 \jea i¢A

p
<Gy ) rlI€]
k=2

<Cpp? (Vs + LA (d0) (18 o) ?)

with probability at least 1 — d}ngi/ 4 using the upper bounds
from Theorem 2.1 in the last step. Combining all the terms,
we have

A < A+ Cp/dinax
4 [V + i1 (36) 7 o8 ) 2] 7
—A\p?/2
(27)
with probability at least 1 — dfnéx — d%ﬂ_ai/ 1 Note that |& x4
up - Xp Up| < Cydmax and moreover ||€ Xpz; ug| <
C/dyax With probability at least 1 — d,l., using Chebychev
inequalities.
We can get a sufficiently large constant C}, > 0, such that
if
N> Cy (Vi + AL (d6) ™ (log dmas)/2)

max

and p2 > Vdmax/A, the last line of (27) is at most
A — 2v/dmax, thus contradicting (26). We thus have

P2 < V dmax/>\-

It is also clear from (27) that h\ < A+ CpvVdmax, Which
combined with (26) yields

X = Al < Cpv/drmax.

(28)

8069

We will derive an improved upper bound on p by using the first
order condition on @VP. In particular, (U7VP, ..., a3vP) is
a local minimum of the function

P

F('Yaalv--'aap): ||%_'Yalo"'oap”%ls

fory e R, a; € S9!, Setting the derivative of the Lagrangian
to zero, we have

X g WP = XGVP for 1< 5 <p.
For j =1,
INGTYP — )|
= |(A=NTYP + (ATfYP - Awy) ||
< A=A+ 1T +6) s TP = |
<CpaifE+ 1M V1= = 1)+ 16 i BV

k#1
(29)

Since p? = max; p? < Vdmax/A by (28), it is not hard to
check that

[Iyi-r-1

k£1

<1—(1—=pHP /2 < Cpv/dmax/ M\

On the other hand, following the steps of (27), we have

1€ X1 VP
= > <H\/1—p§> IT »i ]
AC([p\{1}) \keA k¢ AU{1}

(6 Xjea uj Xpgaugy Vi) H

S NN )

Ac([p\{1}) \keA

IT »i )€ xjean]
k¢ AU{1}

p—1

< Cp vV dmax + Cpp V dmax+cp Z pk”gH
k=2

< Cp V max

4 Cpp? (Ve + A7 (d) ' (08 di)*?)

< Cp V dmax

\% dm X i1
2\ = ( dmax + dr%laxa

[S][9V)

_ 1
+ Cp . (dG) o (log dmax)

Scp V dmaxv

with probability at least 1 —dil_ai/ %, once again using the upper
bounds from Theorem 2.1. The last line uses the facts p2 <
V/dmax /A and our assumption that A\ > CAerit (dimax, dg; @)
for a sufficiently large constant C' > 0.

Plugging the last two bounds into (29) above implies

N N CpVdmax

sin Z(a$VP, uy) < \/§||u§VD —w < pf.
The bounds for 57 = 2,...,p follow by an analogous
argument. |
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Proof: [Proof of Theorem 2.4] Consider for some constant
0 < Cp < 1, a set of vectors

S(Co) = {xl,...,xp xj = /1= piu; + pivy,
Vill = 1wy L los] < Go .

By assumption, d; >
E|Ei1...ip|ﬁ < oo forall iy...4) €

p—1 1/8 p 1/«
i) (i)
k=2 k=2

- > dyp. There exists a 3 such that
[d] and 5 > 4,

Following the steps of (27), for any x1,...,x, € S(Co),
EX1X1 XpXp
= H\/l—P] <Hpk>ng¢Auj XkeA Vi
AC[p JjE€A keA
(30)

p
NPT CYLE
Case 1: k < 1: We bound the corresponding terms by

& x1u1 ... up| +pné?xpj €6 Xk k|l < OV dmax
J

1 — d-t

max?

with probability at least using Chebychev
inequalities.

Case 2: 2 < k < p — 1: For any set A C [p], note that
& X jg¢auyis a k order tensor with dimensions {d : k € A}.

We will then use Theorem 2.1 to write

16 % jga |
1/p
<C \/ max T C maXd1/4 /8 (H dk) (1Og dmax)3/2
keA

p—1 1/8
<Cy\/dy + Cpd)* (H dk> (log dy)>/?
k=2

1-3/4

max

with probability at least 1 —
Then,

,since di > dp -+ > dp.

) (1) e

k=2

< Cp\/dy + C,,Z (i)c{;\/a
k=2

1
3
+ Cpd} (Hdk> (logdy)2

with probability at least 1 — dmgﬁ/ ,as dy > do >

On the other hand, E|E|a = oo for some value
a < 4(p — 1). Then by the lower bounds in Theorems 2.1,
for any constant C' > 0,

(€19

> d,

1
D a
1€ > CV/dy + Cdy/? <H dk>
k=2
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almost surely. Plugging in the upper bounds into (30), we have

sup A2 X1X1- XpXp
x;€8(Co)
< sup T X1X1cXpXp+  sup E X1Xpco- XpXp

x;€8(Co) x;€8(Co)

p—1 B
DA+ Cp/di + Cpdy* <H dk> (logd1)*? + CF (|
k=2

1
P «
DA+ Cp/di + Cpdy? <H dk> (logd1)*? + CF ||

k=2

p a
<Cp\/di+Cpdy* (Hdk> (log d1)*/*+CF [|€]|—2A
k=2

<[]l = 2A, (32)
p—1 1/p P 1/a
since (H dk> < (H dk) and the signal value \ <
k=2 k=2
1/4 p L .
Cp/di + Cpdy ™ (TT5 o di) @ Again,
X x4 uSVD x5 i ASVD X - ><p AIS)VD
= sup 9f><1x1- xp > ||*[| & — A,

X100, Xp €891

with probability tending to one, as dpya.x — 00, by The-
orem 2.1. Thus when compared to (32) shows that the

global maximizer (@§VP, ..., u3VP) ¢ S(Cy). In particular,
[a5VP — uy|| > Co with probability at least 1 — dima* for
any Cp < 1.

The same proof goes through for the case a > 4(p — 1)
provided there is a small enough constant C' such that A <
C'v/dmax. Similarly, the case where 2 < v < 4 can be proved
through the upper and lower bounds from Theorem 2.2. ®

D. Bounds for Spectral Initialization and Power Iteration
We now consider polynomial time computable estimates
when o > 4 by establishing bounds for spectral initialization
and power iterations.
Proof: [Proof of Proposition 3.1.] Define d_j := H dyg.

qFk
Notice that Maty (&) is a dj x d_j matrix of ii.d. random

variables with mean O and variance 1. Also,
Matk(ﬁ)Matk (g)T

:)\uk(E’)T

U1 ®U1 ®- - ® up)TMatk(@@‘)T

where E’ is a dj length vector with independent random
variables EE, = 0, E(E/)? = 1 and E(E})* = £ < 0.
Then

P (||ue ()T > 20V/d)
—Pp ((Z EP - 1)2 > 4Cd§>

< CAE((B)Y)/dj, < d;*.
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1/2
By Bai-Yin’s law, Apax(Matg(&)) = (H#k dq) +

Vi, + o(v/dg) when di/d_) — ¢ € [0,1]. See, e.g.,
Theorem 2 of [44] and Theorem 5.31 of [45]. Note that
the aspect ratio condition on dy/d_j is satisfied whenever
di. < dmax and also if dy, = dyax but di/d_ — c € [0, 1].

If di, = dimax and di,/d_ — ¢ > 1, by Theorem 2 of [37],
we have that

[Mat (&)[| < Cv/ dmax

for large enough dpax. Combining the two cases, we thus
have, regardless of the aspect ratio dy/d_p, that

HMatk(cg’)Matk(@‘”‘)T — dfchdk ||
= Amax(Maty(6)) = [ ] dq
q#k

» 1/2
< C'max <H dq> ,dp
q=1

almost surely as dyax — 00.
Now using Davis-Kahan theorem,

- 2 HMatk(cg’)Matk(@‘”‘)T — dfchdk H

sin Z (W), uy)

)\2
4\ ||Matk(§)Matk(<§’)T||
+ 2
1/2
Cdy + (Hf;:1 dq) + O,
<
= AQ .

with probability at least 1 — d,;l. The proof for other modes
follows similarly. u

Proof: [Proof of Proposition 3.2] The proof is by induction
on t. The basis step holds by some nontrivial initialization,
for example through the matricization estimator of Proposi-
tion 3.1. We now assume that the induction hypothesis holds
for some ¢ > 0 and prove the induction step for ¢ + 1.

As before, we write

t /
xg] =4/1-— p?uj + pjv;

where v; is a unit length vector perpendicular to u;.
Then

VA X j#k Xj
=M I V1—02 ] w
J#k
+ > (IIyr-22 II »i)
Ac([p\{k}) \jeA 1¢ AU{k}

X (é{) XjeA W5 Xig Au{k} Vl) . (33)
Notice that the entries of E' = & x4, u; are i.i.d. copies of
a random variable E” with E(E”) = 0, Var(E”) = 1 and

IE‘E" |4 = Kk < oo. By Chebyshev’s inequality, for any

8071

1<k<p,
P (16 xjon wi| > €/
_p ((Z E? - 1)2 > 40di>
< dyE((E))*)/Cd} < d*.
Notice also that

>, (14

Ac([p\{k}), \jeA
lAl<p—2

II Pi | %

¢ AU{k)
(€ Xjea w; Xigauey Vi)
p—1
P\, 1t
<> (Z)(Pm)lIé”‘II < Cp(p™M2)4]l.
1=2

The last two inequalities together imply that

et

>

AcC([p\{F})

Ay

II

II Pj | %
JjEA JgAU{k}

(€ Xjeawj X gauiry Vi) ’
<C\dx + Cy(p!)?)|&]).

By the nontrivial initialization and the induction hypothesis,
we have a constant p* < 1 such that pl) < p, < 1. We then
have

(34)

sin Z(XE:] , ug)

(1]

_ “u %X]‘#k Xj X W
t
Iwli=1wlu, |2 X#kxg]ﬂ
t
& X j#k Xg] Xk W

su [
[[wl]=1,wLug H‘%/‘ X £k Xj ||

e <o)

<

A (M 1= 12) = 18116
- CVdi + Cyp(p)?|1 €]
TAL = p2)PmN/2 = CVdmax — Cp(pl1)?]| &
Vd &
A A
with probability at least 1 — d,lfa/ *
We use (33) and (34) for the first and second inequal-
ities respectively. The last line follows if A > C||&] for
a sufficiently large constant C' > 0. Since we have A >

1/4
Cdi2 +C (H dk) and a > 4, this condition is satisfied

with probability at least 1 — pdrln?f / 4 using the upper bounds

from Theorem 2.1. |

E. Bounds for Robust Tensor SVD

Proof: [Proof of Theorem 4.1.] Let us fix £ = 1 as the
other modes follow by symmetry.
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We will denote the partition of [d_
(I,...,I,). Let us also define

1] into n groups as I :=

1 n
2 E 2
j=

Then conditional on I, we apply Theorem 3.2 of [34] with

21og(2d1/8)/n

g

to obtain

S 1 21og(2d; /6)
P Vl—E;E(sju) J\/TI <.

(35)

We need to calculate [E | S;

I ) and o2. We have the following

lemma, which is proved in section .

Lemma 1: E(S;|I) = Z w? | Vi and
7;71613'
2
1 1
o2 = EZIE(S?H) <\ EZ > owi,
Jj=1 J=1 \i-1€l;
di
= ZIII
1€1,
(36)

To complete the proof, we now use the multinomial sample
splitting scheme to get high probability bounds on the above
quantities. We write G; = Z Wi2_1' By our sampling

i_1€l;
scheme, 1(i_; € I;) ~ Bernoulli() so that EG; = 1.
Then, the scaled Chernoff bound (see, e.g., Theorems 1 and 2
and the subsequent remark of [40]) along with the definition
of py yields,

2
P ( max G; > —)
1<5<n n

G, — EG EG
< nP |G1 — EGq| 1 _
max [[w;_,[* ~ max |[w;_,|
i_1€l i_1€l
1/n
<nexp|——5 . (37)
K1
By the sample partition scheme
n D n )
Dl=1lde and Y > wi, =|lw|*=
j=1 k=2 j=1li_1€l;
Using (36) and (37) we then have
201 )\2d1 1
o2
<S5+ H (38)
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1
with probability at least 1 — 2nexp <_ﬁ) . Notice also
n

. - H1
that the signal matrix is

1 — 1
EZE(SHU ==
7j=1

/\2
= (ukuk - dlag(ukuk ))-

2. 2 v,

Jj i-1€l;

Now applying (35) with § = 1/dmax, together with the noise
bound from (38) and using Davis-Kahan theorem, we have

sin Z(V, ug)

n 20 [2logdmax
A2 /n n
1
)2 /
n

21 max AMd d 1 dmax
< oy 1 4y DB | OV (I 1))V ToB e
n A
with probability at least 1 — 2n exp <—

1 1 -
2nu? Amax
Proof: [Proof of Proposition 4.2]
Since XECO] are unit vectors that are independent of &, E =

E X stk x[ I is a dj x 1 vector whose entries are independent
random Varlables with EE; = 0 and IEE2 = 1. Moreover,
E|E;|“ < oo by Rosenthal inequality. Thus

sup & X j;ekx

IP’( o ><kv>C\/_/51/o‘>
Jv=1]]
< P(IIB| > CV/di/5'")

L CEE32
= 2
cdy? /s
where we use Rosenthal inequalities in the last step Therefore

sin Z (xgﬁ,l],uk) = [1] V)l

< 2f|ulZ,,

N |=

A

sup | (xl
viv]|=1,vLluy

(0]

gX]‘?gkX XV

s e o]
vilvil=t viue [ 27 X g ;||

& X j#k X[- ] H
<
AT e, |—‘F X XkUkH
i#k
C\/_/51/a

SNA—B) V2 = Va5t

- C\/_k/51/a

A1 = p2)p-1/27
with probability at least 1 — &, provided (1 — 7?)®=1/2 >
2V a6 . m

Proof: [Proof of Theorem 4.3] To obtain estimates for the
k-th mode vector ug, we split the tensor into two halves along
the k-th mode, as described in Section IV. From the first half,
we obtain initial estimators v, for all ¢ # k.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 09,2023 at 15:20:50 UTC from IEEE Xplore. Restrictions apply.



AUDDY AND YUAN: ON ESTIMATING RANK-ONE SPIKED TENSORS IN THE PRESENCE OF HEAVY TAILED ERRORS

Note that the vector uy, s, is the k-th mode of Z5. By the
scaled Chernoff bounds (see, e.g., Theorems 1, 2 and subse-
quent remark of [40]),

1
P (Il < 3)

& 1l 1
— . 2 . = - — —
=P < ;:1 ((ug):)” 1(B; =0) 5 > 4>
< exp L/16 < Cdyt

max (ue),)

so that ||ug, s,|| > 0.5 with high probability. By Theorem 4.1
we have initializations v, independent of 25, satisfying (10)
for some constant n < 1.

We immediately have from proposition 4.2 that

. Cv/dg

P (Slnl(uk,Jwuk7J2/||uk,J2|) Sy )21t
Finally, initializing with 25 and using 27 for optimal esti-
mation, we also have Uy j, that is a rate optimal estimator
of uy,j,. Concatenating the two estimators to get Uy =

T

(uk?J1 ukJQ) , we get

P (Sin Z(ug, uk) <

OV > 1 — 2t
At = '

We now show that it is possible to have improved estimators by
splitting the tensor only once (say along the pth mode), if the
signal strength is higher. Suppose d; > dy > --- > d,, and
A > Cdi/ 2d[1)/ “. Note that this is satisfied by the initialization
condition \ > C' (CZG)”/“ (logdg)'/*, for example when d; <
Cdy and p > 4.

We consider the first mode u;. Since the unit initialization
vectors Vi are independent of 25 for k = 2,...,p — 1 the

matrix Eo = & X9 Vi--- Xp_1 Vp_1 satisfies E;; are
independent, EE;; = 0, EE% = 1. By Rosenthal inequalities,
E|Eij|a < 00

Moreover wo = Eu, j,/||u, s,|| again has independent

entries with the same properties.
Suppose d; > d,, without loss of generality. By Theorem 7.1
and Talagrand’s concentration inequality, we have

1,1
P <|E|| > cdp st /t) <o

Under this event,

sup Eo X1V Xa Vo Xp_1 Vp_1 Xp Up J,

v:|v]|=1,vLu®)
< [E(ap,z,/lup, 2 DI + [[El[[Gp,7, —

N

>\

d2 da]l(a<4)

(.75 /[, 7, Dl

< [lwa + [[E[|-

<CVd 2+ C- \/;T” < C/dy/t.

with probability at least 1 —¢*. The second last inequality uses
the upper bounds on ||w|| and ||E||. The last inequality now
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1 1
follows since A > Cd2dS" <% . Hence for any 6 > 0,

gg X1V XoVa--- Xy 1Vp_1 XpUyp J,

su — = =
v:||vH=1,vau<1> |22 X2 Vo Xp_1Vp_1 Xp Up, ||
. OV _OV@
T My, g [[(1 = p?2)PmD/2 — C\/_/t At

with probability at least 1 — t*. The proof for the rest of
the modes follows similarly. Finally, initializing with 25 and
using £ for optimal estimation, we also have u,, , that is a
rate optimal estimator of u,, ;,. This finishes the proof.  H

APPENDIX

Proof: [Proof of Lemma 1] We write w = (uz ® us ...
® up). By definition

Sj: Z (Xi—lx’zr_l

i_lefj

— diag(X:_, X[,)).

Notice that

E(X, , X )= \w}

z,lul oux +Iv

which implies

E(S;|I) =

> Nwi

i1€1;

_ § : 2
= Wi

i71€IJ

(ug ouy — diag(u; ouy))

Next, for any i_q € I; and s,t € [d1], s # ¢

2
E [(X“XZTI - diag(XiIXiTl))St]

=E Z(Xifl)s(xifl)t(xi—l)%
l#s,t
:E(Xiil)sE(Xifl)t Z IE()(W*I)Z2
l#s,t

:)\2wi271 (u1)s(ur)y Z ()‘2“'1271 (u

l#s,t
=Mwi (un)s(u)e (1= (r)? = (w)7)

+ )\2 (dl — 2)W,L2_1 (ul)s(ul)t.

DEF1)

On the other hand,

SS

2
E [(X“XZTI —diag(XLlel)) }

=E Z(Xz‘fl)i(xi—l)%

l#s
=i () +1) Y (WPwi (w)f +1)
l#s
=Mw (a)?(1— (w)?)
+ W] (L4 (d —2)(w)?) +di — 1.
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Collecting all the terms,

2
E[(Xi X[, — diag(X;_,X] )]
=w] VI+X*w? (di—2)uju/

+[(di —1)+ /\wa_l]ﬂdl-

Similarly for i_1 1 #i_1,2 € I;, and indices s,t € [d1],
E|: (Xi—l,lxzjr_l)l - dia’g(xi—l,lx;r_lyl))

(Xi—1,2XzT,1,2 - diag(Xi—lzsz,l,z)) :|
= Xwi o owi () (w)e(1 = (w)?

— (w)71(s # 1))

st

meaning

diag(X'L’_LleT 1,1 >)

P11

E|: (Xi—l,le
(Xi—1,2Xz—'r_1,2 - diag(xi_1’2xll'2)) ]
= W?_l,lw'?—lﬂv%

Adding the terms above,

E(S3|1)
2
= Z wi | Vi+A(d —2)uuf Z wi
i_1€1; i-1€1;
+ D7 (d = 1) + AW L,
i_1€1;
2
= > wi,| Vi+(d -1,
i_1€l;
+ )\2 [(dl — 2)11111]— —|—I[d1} Z W?ﬁl.
i€l
Consequently, conditional on I,
1 n
0% = - > E(S3|D)
j=1
2
1K 2 2
= 2 ) v
j=1 i1€1;
+ A2 [(dy — 2wy +14,] Y wE
i€l
(= 1
2
RN 2
Ao Z Wi
j=1 \i_1€l;
)\le n . n
PRI e
j=li_1€l; =1
This finishes the proof. [ ]
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L
Lemma 2: There exist a constant C, such that Z gat
1=0
(1+L—1)<C, -2 for a > 0.
Proof: Note that the function f(I) = 2% (1 + L —1) is
increasing when 0 <[ < L. Thus we can bound

L

> 21+ L -1

=0

L exp(L)
g/ 2°M (1 + L —1)dl :/ t*18271(1 4 [, —logt)dt
0 1

1 eaL log 2
alog?2 /1

log(u)du
[exp(aLlog?2)(aLlog?2) — exp(aLlog2) + 1]

(1+ L)[exp(aLlog?2) — 1] —

= (1+ L)[exp(aLlog2) — 1]

alog?2
(aLlog2)—1— L+ 1 (aLlog?2) L
=exp(allo —-1- exp(aLlo -
P & alog?2 b & alog?2
1
<(1 20k,
< +alog2>
We have used the substitutions ¢ = ¢! and u = t*1°82, |

Lemma 3: For any integer L, write S;, = {0,1,...,27%}.
Then the set Ng) ={x € R% :|x|| <1,2? € S} forms a
(1/2)-net for S%—1, 1 < ¢ < p by taking L, = log d,+ ¢ for
some constant cj.

Proof: The result follows from Lemma 10 of [38] plug-
ging in A\ = 1/d. ]

Lemma 4: |Nl(q)| < |Nl(q)| <exp(C2Y(1 + L —1)).

Proof: The proof follows from Lemma 4 of [37]. In the
notation of the proof of Lemma 4 from [37], we have
that Niql) = V" where | < n and n = log(d,)/log(2).
Then one has the required statement using the bound on
log #V;" from the proof of Lemma 4 and by noting that
n < C'log(dmax) = CL. [ |
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