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Abstract. A growing list of diverse biological systems and their equally diverse functionalities
provides realizations of a paradigm of emergent behavior. In each of these biological systems,
pervasive ensembles of weak, short-lived, spatially local interactions act autonomously to
convey functionalities at larger spatial and temporal scales. In this article, a range of diverse
systems and functionalities are presented in a cursory manner with literature citations for further
details. Then two systems and their properties are discussed in more detail: yeast chromosome
biology and human respiratory mucus.



1. Introduction

We present multiple examples across biology where a complex functionality is a consequence of
simplicity -- mixtures of molecular species and their physical and chemical interactions. While
Earth is sufficiently rich to provide the ingredients that make life possible, those ingredients have
to work together without oversight and intervention to endow a complex function. In eukaryotic
organisms, cells manufacture large molecular weight polymers (e.g., chromosomal DNA,
mucins) plus additional molecular species that, without each other, do not convey functionality
(e.g., transcription, a protective barrier). They become powerful and functional by pervasive and
transient /local interactions acting on and between the polymers. The local sources are either
basic monomeric units of polymer chains (e.g., glycosylated brush-like domains within mucins
[12,13] that exhibit transient hydrophobic self-interactions) or third-party proteins that
chemically activate local domains within large molecules (e.g., structural maintenance of
chromosome proteins that transiently crosslink genes within and between chromosomes [14]).
We survey these two biological systems below. In other instances, cells utilize basic principles
of molecular complex formation through transient binding-unbinding interactions and then allow
entropic phase separation to sequester the larger complexes without the need for costly
membranes. Specific molecular complexes or self-organized structures are essential within living
organisms to carry out diverse functions. Some examples at the cellular scale are nuclear
organization, transcription of messenger RNA sequences, protein manufacture, and efficient
searches of damaged DNA for homologous chromosomes for DNA repair. At the tissue and
organ scale examples include protective mucus barriers on organs, e.g., to immobilize pathogens
or toxic species and facilitate removal in the respiratory and reproductive tracts, or to create a pH
barrier in the stomach. Additional instances underlie alternative means of protection, e.g., release
of cytokines post infection that signal immune agents to the site of infection. More details can be
found in the papers referenced for the various biological systems listed below.

Across biology, scale-separated biomolecular players (large polymers or complexes and small
proteins) undergo weak, transient interactions. These physicochemical ingredients autonomously
instill a dazzling array of functionalities: dynamic gene organization to carry out necessary
cellular functions throughout the cell cycle; network structure with rapid response-recovery
properties to accomplish mucus trapping of inhaled insults and clearance by coordinated cilia;
neutralization or immobilization of viruses and bacteria in organ mucus barriers; formation and
sequestering of molecular complex compartments without the need for membranes; and other
functionalities as given in the list of examples below. In each of these systems, applied
mathematicians have teamed with domain experts from chromosome and cellular biology,
biochemistry, biophysics, pulmonary medicine, and pharmacy, working synergistically in the
quest to understand these highly complex systems from first principles. We tell this story through
the lens of the collective collaborations and results of the authors so that the commonality of the
paradigm of the strength of weak binding becomes evident.

It is fair to state that today, domain experts argue that their biological system is too complicated,
and the experimental data too difficult to interpret, without mechanistic modeling based on

chemistry, mathematics, and physics principles. Such model foundations allow formulation and
testing of hypotheses. They also allow the ability to use images, static or dynamic, from various



instruments as truth sets from which numerical sweeps and optimization methods can be
performed at different levels. Such virtual experiments are obviously impossible to perform in
the lab. Through the feedback between in silico and in vivo data and the exploration of sufficient
mechanisms to understand the phenomena of interest, we learn hidden principal mechanistic
components, and estimate weak interaction strengths with confidence intervals bounded by
experimental data. It is a luxury of collaborative science to have domain experts willing to do the
work necessary to build this experimental-modeling partnership. Our predictive, computational,
mathematical platforms are modern, biological analogs of the rich history of applied
mathematics in fluid mechanics, aerodynamics, and diverse engineering applications. Our
modeling platforms incorporate the physics and chemistry specific to the biomolecular players
and their multiscale spatio-temporal interactions. Together with experimental design and data,
our collective aim is to learn how the unobservable ensemble of pervasive, local, weak
interactions leads, autonomously, to the observable coarse-grained, emergent behavior and
functionality. The modeling platform affords flexibility and freedom to explore, and sometimes
learn, system features associated with both optimal and robust functionality, as well as pathways
to recovery from system features associated with dysfunction.

Below is a list of biological systems and functionalities, plus collaborators, that reflect the
paradigm of emergent behavior from many weak interactions. We refer the reader to our
published work for background motivation, experimental and theoretical progress and open
questions, and comprehensive literature citations, for the systems 3-8 listed below, and provide a
brief summary of these aspects of systems 1 and 2 in Sections II, IIL, IV.

1. Spatial and dynamic self-organization of the genome in the nuclei of living cells (MG. Forest,
K. Bloom lab, J. Lawrimore, P.A. Vasquez, D. Adalsteinsson, C. Hult, B. Walker, D. Taylor,
Y. He, K. Newhall, A. Ford, X. Cao, C. Edelmaier, and others).

This system is discussed further in Section I1.

2. Structure, macrorheology, passive and active microrheology to characterize and discern
healthy versus disease-modified respiratory mucus (MG Forest, R. Superfine, D. Hill, R.
Boucher, J. Sheehan, C.W. Davis, M. Rubinstein, S. Mitran, R. Camassa, R. McLaughlin, C.
Hohenegger, S. McKinley, P.A. Vasquez, M. Lysy, N. Pillai, R. Freeman, M. Markovetz, M.
Papanikolas, X. Cao, C. Edelmaier, A. Ford, N. Caughman, and others).

A pan-university initiative at UNC-Chapel Hill brought together researchers from Applied
Mathematics, Physics, Chemistry, and the Cystic Fibrosis Center to form the Virtual Lung
Project. One of the main contributions from the applied math side was to adapt the
rheological instruments and computational polymer hydrodynamics toolbox to characterize
mucus from the human respiratory tract across health and disease. Cystic fibrosis was the
primary disease target, together with asthma and COPD. Twenty-five years later, we
continue to gain new insights into the dramatic distinctions between engineered polymeric
materials and Nature’s polymers — namely, the paradigm of weak, transient interactions
within and between the mucin polymers that comprise respiratory mucus as well as the mucus
barriers throughout the human body. Various aspects of human respiratory mucus,
mathematical models of mucus and its rheological properties (how it responds at different



levels of stress or strain), and the role of mucin-polymer transient interactions in disease
progression of cystic fibrosis are described in Sections II1, IV.

. Immobilization of pathogens (passive and active) in the mucus barriers of the cervicovaginal
and intestinal tract [15-22]; physiology-based viral infection in the human respiratory tract
and COVID-19 (MG Forest, S. Lai lab, R. Freeman lab, R. Boucher, R. Pickles, A. Chen, T.
Wessler, J. Newby, S. McKinley, M. Jensen, J. Pearson, A. Aristotelous, and others) [23-26].

From sexually transmitted diseases, including HIV, to stomach infections, seasonal colds, and
flu, and now COVID-19, the explicit and often leading-order protective roles of the mucus
barrier in the cervicovaginal tract, gut, and respiratory tract were not previously embedded in
mathematical models of within-host infection. Our work has _focused on understanding the
critical roles of organ mucus barriers, and in translation of experimental-modeling insights
into medical and public health solutions.

. Reversible transitions between bleb-like and stretched morphologies of the cell membrane-
cortex couple, (MG Forest, K. Jacobson lab, M. Kapustina, D. Tsygankov, J. Zhao, T.
Wessler, A. Chen, T. Elston, Q. Wang) [27,28].

Led by our dear colleague Ken Jacobson who recently passed away, we were introduced to
several remarkable features of cells that are essential for adaptation to different stimuli and
interfacial conditions, and thereby for survival. Ken and lab partner Maryna Kapustina
focused on aspects of the cell surface membrane and adjoining cortical layer. Transitions
between a stretched and smooth surface morphology while anchored to a substrate and a
rounded morphology with a skewed distribution of bleb-like protrusions occurs too fast for
membrane remodeling, therefore cells are equipped with a significant excess of surface
membrane. What functions do excess surface area allow? How is the membrane-cortex
couple chemically activated for motility and for switching between a smooth morphology on a
substrate versus the highly irregular, bleb-like morphology that oscillates after being released
from the substrate? Our group developed a diversity of mechanistic computational models to
understand the interplay and coupling between chemical signaling, surface physics and
mechanics of the membrane and cortex, and to replicate experimental behavior and
properties.

. Sequestration of cytoplasmic condensates in cells by liquid-liquid phase separation (MG
Forest, A. Gladfelter lab, J. Newby, K. Gasior, J. Zhao, Q. Wang) [29-31].

Amy Gladfelter’s lab explores the physical and chemical processes by which cells create
molecular complexes sustained by transient binding-unbinding kinetics of sub-species of the
complex and sequester the complexes into compartments in order to perform essential cellular
processes. To avoid the cost and limitations of membranes to sequester complexes, cells
routinely exploit liquid-liquid phase separation. Once again, our modeling group borrowed
and extended classical Cahn-Hilliard type phase field models tailored to the molecular
species and complexes within the cytoplasm of multi-nuclear fungi, and to understand how
these organisms use spatial heterogeneity to prevent synchrony of nuclei.



6. Molecular motor transport of cargo along microtubules (MG Forest, J. Newby, K. Patel, S.
Mao, S. Lai) [32].

The applied mathematics community has invested significantly to understand the behavior of
molecular motors that transiently bind, unbind, and travel along microtubules. Similar to how
antibodies co-bind to spikes on viruses and domains on mucin polymers, dynein and kinesin
motors also co-bind, either to transport cargo along microtubules, or to bridge neighboring
microtubules and drive cilia and flagella beat cycles. This project was from undergrad
research by Patel and Mao, using stochastic modeling to show that weak binding of kinesin to
microtubules enhances cargo transport.

7. Drug delivery (MG Forest, Lai lab, Y. Cao, A. Talkington, T. Wessler) [33-38].

Modeling of drug delivery either to tumors or specific organs via the circulatory system has
risen dramatically to assist in clinical trials or animal trials for a variety of benefits: establish
efficacy, improve site-specific targeting, and identify unintended consequences, all leading to
faster approval of efficacious drugs. Our group has developed physiologically based,
pharmacokinetic (PBPK) models to accompany animal experiments and clinical trial data to
address open questions from our colleagues in pharmacy (Cao and Lai). One such question
has arisen from the use of polyethelene glycol (PEG) as a drug delivery solvent to prolong
circulation of the drug, and the strong empirical and subsequent mouse model evidence that
individuals previously exposed to PEG from personal products has led to anti-PEG antibodies
that act to remove the PEGylated drug carriers from the circulatory system. This led to a
cocktail strategy to minimize this effect by introducing a PEG dose to dilute the anti-PEG
antibodies and then follow with the PEGylated drug dosage.

8. Synthetic materials science (Sloan Foundation collaborative group, MG Forest, R. Freeman,
A. Gladfelter, K. Hahn, R. Baker, E. Nazockdast, C. Edelmaier, D. Klotsa) (publications
forthcoming).

The purpose of this Sloan Foundation funding is to first learn how Nature and biology use
biomolecular mixtures to perform functions at the molecular to tissue to organ to organism
scale, and then to engineer materials with life-like properties. A key element of this effort is
understanding how different aspects of the weak binding paradigm can be leveraged.

1. Spatial and dynamic self-organization of the genome in the nuclei of living cells

The Bloom lab at UNC-CH uses budding yeast (Saccharomyces cerevisiae) as a model system to
study the genome of a living organism. The yeast genome has about 14 million base pairs
(fundamental molecular unit) packaged into 16 pairs of chromosomes with around 6 thousand
genes (fundamental functional unit) and was the first eukaryotic genome to be sequenced in 1996
[39]. In comparison to the yeast genome, the human genome has about 6 billion base pairs
packaged into 23 pairs of chromosomes with around 30 thousand protein-coding genes and a
hundred-times more non-coding genes. Remarkably, a complete human genome was only
recently published in 2022 [40]. The yeast genome is simpler, obviously available, free of



ethical concerns, and as such it is widely used to study gene regulation, DNA replication, and
disease. Most importantly it shares many cellular processes with the human genome such as cell
division and DNA replication and repair, among others. Consequently, understanding of a
simpler system such as the yeast cell has led to impactful insights into human diseases [7,41-44].

The Bloom lab specializes in experiments with single living cells in contrast with the more
prevalent approaches using chromatin conformation capture (3C). High-throughput 3C
experiments have been carried out on many eukaryotic organisms, from yeast to humans [45,46].
In this approach, cells are exposed to formaldehyde which render them ‘frozen’ at a given time
in the cell life cycle, then gene-specific tagging reveals gene location across all chromosomes,
giving a matrix of gene-gene interaction of all genes on all chromosomes and providing
important insight into gene-gene dynamics. In this way, population averages over thousands of
dead cells yield inferences about global two-point statistics of genome organization. In sections
11.2.5- 11.2.7 we introduce higher-order statistics of gene organization that optimizes both, based
on spatial proximity and persistence in time [47]; see Figure 8. In contrast, single-cell
experiments use live imaging data from fluorescently tagged domains on specific base pair
sequences, genes, and chromosomes for individual living cells. The data gathered from these
experiments allow for a more direct connection with dynamic simulations and a better
understanding of the intricacies involved in different cellular functions. The advantage of
creating models based on single cell experiments is that it is always possible to scale up results to
be compared with 3C experiments, while averaged data cannot always be used to describe
individual cells nor their dynamics. Indeed, we have shown that time-averaging of spatially
resolved single-cell data obscures structural gene organization into dynamic communities of
genes, see Figure 7 [48].

Nonetheless, both single cell and Hi-C (extensions of 3C) experimental approaches have shown
that chromosomes are not distributed randomly in the nucleus. The organization of the genome
in the nucleus can be studied at different length scales shown in Figure 1 [49,50]. (i) At the lower
scale, between 1 base pair (bp) and several thousand base pairs (kb), the genome adopts a beads-
on-a-string structure, ~11 nm in diameter, formed by nucleosomes and DNA. Above the 11-nm
fiber, the structure is irregular and dynamically samples many conformations and the details of
folding are still uncertain [49]. (b) At length scales on the order of the nuclear domain (micron
scale > 100 Mb or mega base pairs), the genome is divided into chromosomes, each of which
occupies statistically defined territories [51-54]. (c¢) At intermediate and large length scales
(~Mb), organization differs from cell to cell, but it is known that the genome is not randomly
organized and that its spatial organization plays a key role in the execution of a variety of nuclear
functions [55-57]. For a review of different physical and organizational structures inside the
nucleus at this level the reader is referred to [58]. It follows, that understanding the spatial
dynamics of the genome within the nucleus is a crucial step in characterizing how DNA adopts
and transitions between different functional states over the course of the cell cycle, facilitating a
wide range of vital functions. While a great part of our understanding of the physical properties
of chromatin organization and its role in cell functions has come from experimental observations,
it has become clear that a more complete understanding of chromatin as a physical structure
requires an integration between biology and mathematical modeling, in particular models derived
from polymer physics. For instance, there is an ongoing conversation to determine to which
extent the chromosomes are passive fibers whose organization is fully dictated by active
enzymatic-driven processes or if chromosomes are active entities whose intrinsic physical
properties play a primary role in the genome organization. As is often the case in biological



systems, it is likely that both passive and active chromosome-based mechanisms will be found,
depending on the particular process. Single cell experiments in live cells together with the
polymer models discussed below are fitted to better answer these questions.

Close integration of experimental data and computational modeling had already led to significant
insights into some basic principles of the 3D architecture of chromosomes during interphase and
mitosis [52,59-62]. An exhaustive review of these approaches is out of the scope of the present
review. Instead, here we focus on a specific part of the cell cycle —interphase— and a particular
class of models —bead-spring polymeric models. These models are of particular interest since it
has been shown that the spatial architecture and dynamics of yeast chromosomes can be well
understood from the random motions of semiflexible polymer chains tethered at the centromeres
and telomeres [51,54,63—65]. In short, understanding the mechanisms controlling chromosome
behavior requires integration (as advocated in the 4D Nucleome Project

[66] and updated at the time of this writing in [67]) of cell biology, diverse experimental probes
(microscopy of live cells [52,68—72]) together with Hi-C techniques applied to massive numbers
of stationary cells [45,73—-75], coupled with physical principles that govern fluctuating polymer
chains and the small structural proteins that transiently act on them to steer dynamic
organization.

I1.1 Stochastic polymer “bead-spring” models of chromatin

In this approach a chromosome arm is modeled as a polymer chain constrained within a nuclear
envelope and tethered to the boundary, as shown in Figure 2. Following polymer physics, each
chain is represented by a series of N beads connected via nonlinear springs and the equation of
motion for the it" bead is obtained from a force balance in the zero-mass limit,

FP +F; +FV +FY +FE = 0. )

- Drag force, F?
S . . dx; .
As a first approximation, the drag force is assumed to be linear, F? = —( d—t‘, where ( is the

drag coefficient of a bead and X; its position. For simplicity, anisotropic drag, and other
types of hydrodynamic interactions (HIs) are not included. In particular, Hls in bead-spring
models have been shown to be negligible for weak and “crowded” flows [76,77], as is the
case in the nucleus. The relative influence of Hls is an open question, with experimental and
computational evidence of large-scale induced flow [78—80] not captured without Hls.

- Spring force, F f

This force derives from a restoring potential from bead-bead displacements. In the nucleus,
forces affecting DNA interactions are many with some not completely understood. Because
of this lack of complete knowledge of all potentials affecting strains of chromosome chains,
instead of modeling several sources of restoring forces, all forces are clumped into a single
form. In this work we use a worm-like-chain model proposed by Marko and Siggia [81,82],
that describes the non-linear variation in F as a function of DNA extension, and which has
been shown to accurately describe the dynamics of chromatin in vivo [83]:

F} =F;;_1+F; (2)
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Here L,, is the persistence length of the chromatin fiber and Ny s is the number of Kuhn
lengths per spring, which translates to the level of discretization used to define the number of
beads that describe a chromosome chain. kgT is the Boltzmann constant times absolute
temperature. At physiological temperatures for cellular growth, kT = 4.1 pN nm. The
force equation above describes the non-linear variation in F as a function of DNA extension.
The parameter R, controls the maximum extensibility of the spring: as R;; approaches R, the
force rapidly increases preventing the length of the spring from exceeding that value.
Physically, R, is equivalent to the contour length of the chain. This equation accurately
describes the linear elastic response at low extension regimes (Ri i< RO) as it reduces to
Hooke’s law. As R;; approaches R, (Ri ]-~R0), the force rapidly increases due to the
increasing entropic cost of extending covalent bonds within the DNA molecule.

Excluded volume force, F£¥

This force imposes an energy penalty on the overlapping of two beads. Just as was the case
with the spring forces, the model coarse grains all repulsive forces into a single potential. We
use the excluded volume potential introduced by Jendrejack et al. [84],

FEY = —vU}Y, 3)
3/2 N 2
v _ VksT (3 / ol 3R, G2on (2Lp)
‘ 2 \2ns? Plm2sz| TN
i#j

If we consider the limit where this Gaussian potential goes to a 6-function, it can be shown
that the overlapping between two beads has an energy penalty of v keT, where v is the
excluded volume parameter, with kgT defined above.

Interaction with the nuclear wall, FY
This force mimics confinement within the nucleus. However, in our simulations we do not
include an explicit form for the force, instead the position of a bead that has moved between
timesteps from inside to outside the nuclear wall is reflected back inside by
— HM
XPew = xout + AXT™, 4)
AX™ = ApiH (8p)).
Here AX ?M is the displacement vector due to the Heyes-Melrose algorithm [85], Ap; is the

difference from the position of the bead outside the domain boundary, X9, to the nearest
boundary point, and H () is the Heaviside step function.

Brownian force, F?



This force deals with fluctuations due to thermal noise and it is modeled by a normal
distribution with mean zero and standard deviation given by the fluctuation dissipation
theorem,

dW; &)

FlB = W’Z{kBTW'

where each W; = [Wi_x, Wiy, Wi,z] is a 3D Brownian motion with statistics given by a
standard normal distribution, with zero mean and variance satisfying,

<Wi,p(t); VV}q(S)) = 5ij6pq5(t —-5),
where i,j = 1... N (number of particles) and p, q € {x,y, z}.

I1.2 Lessons learned from polymer bead-spring models of chromatin

I1.2.1 Entropic fluctuations, excluded volume, tethering and confinement suffice to create
first-order organization of chromosomes in the nucleus.

Studies of the dynamic behavior of chromatin fiber within the nucleus provide insight into how it
explores nuclear space as well as the spatio-temporal interactions with functional molecules that
are critical to DNA transactions [45,86,87]. Different studies have shown that the polymeric
nature of chromosome arms alone can explain the leading order organization within the nucleus
by generating domains of high intra-chromosomal interactions [62]. Figure 3 shows that adding
attractive potentials to a set of freely diffusing beads results in the formation of chains by giving
rise to sites of preferential intra-chain interactions. On the other hand, the excluded volume
potential, which mimics steric effects, reduces inter-chain interactions. Finally, the tethering of
the chains not only helps to differentiate intra- and inter- chain interactions but also to explain
the formation of chromosome territories as discussed Section 11.2.2.

Modeling has also shown that the resulting contact maps not only depend on the bead-bead
interaction potentials, but as shown in Figure 4, can also be modified by different chain
configurations. In the nucleus the presence of different proteins and enzymes interacting with
chromatin often results in the formation of loops within the fiber. Figure 4 shows that chromosome
interactions are also affected by the configuration of such loops and a direct consequence of this
is that gene-gene interactions are also modified.

I1.2.2 Centromere tethering confines chromosome domains and explains increase of
mobility following DNA damage.

Computational studies in budding yeast have revealed that territorial organization of
chromosomes is partially governed by chromosome tethering [52]. In yeast, the 32 telomeres
(tether attachments of the chromosome ends to the nuclear envelope) from 16 chromosomes are
clustered into four to six loci in the nuclear boundary. Interior locations of all chromosomes, at
specific sites along the chain for each, are commonly tethered at the centromere. These tethering
loci constrain motion within the arm by reducing the degrees of freedom of both arms of each
chromosome arm. Our polymer models and single cell experiments have shown that the



magnitude of motion along each chromosome arm depends on bead position relative to the
tether, either centromere or telomere. This is shown in Figure 5 which indicates that chromosome
motion is constrained not only by the nuclear membrane itself, but also by the tethering of
centromeres and telomeres to components in the membrane. Modeling [52] has further shown
that experimental organization of chromosomes into territories (specific sub-volumes of the
nucleus) can be replicated by tethering the bead-spring chains to the boundary, as shown in
Figure 2(B).

I1.2.3 DNA damage-induced amplification of chromatin mobility

The fact that yeast chromosomes in vivo behave like polymers has allowed many aspects of
chromosome architecture and chromatin movement to be reproduced in silico by bead-spring
modeling. These findings have shed light into the understanding of cellular responses to DNA
damage. In budding yeast, and human cells, after DNA damage an increase in chromatin
mobility has been observed both at the sites where the lesions occur as well as at undamaged
sites [52,71,88-93]. Enhanced motility has been attributed to both release of chromosomal
tethers and histone degradation [52,90,93]. Both cases can be explained from polymer physics
principles. As previously discussed, release of tethering results in an increase of the
configurational degrees of freedom of a chain and as such in an increase of the modes of motion.
Histone degradation can be related to a less-stiff spring constant in the model, and the fact that
the chains are now composed of “floppy” springs results in an increase of the motion.

I1.2.4 Emergent properties in chromatin organization, such as topologically associated
domains (TADs), nuclear bodies, and phase separation of the nucleolus, coupled with
clustering of genes, result from small molecule protein and enzyme “tuning” of
chromosome conformations.

Chromatin structure is highly influenced by the action of Structural Maintenance of
Chromosome (SMC) proteins, in particular condensin and cohesin [70,94,95]. The physical
behavior of these proteins is only now becoming clarified and quantified, performing actions
such as crosslinking within and between chromosomes and loop extrusion within chromosomes.
The polymer model framework of chromatin provides a playground to explore the relationship
between the microscale actions of these proteins and the resulting macroscale dynamic structure
in the nucleus. Crosslinking action can be modeled by adding additional springs between pairs of
beads that stochastically form (when they are within a prescribed distance) and break according
to a prescribed mean timescale 7,,, which dictates the mean duration of a transient bond. To
investigate phase separation in the nucleolus mediated by crosslinking, we added dynamic
crosslinkers to the subset of beads within chromosome XII that comprise the nucleolus. Whether
these crosslinkers are present or not, and whether they are dynamic or fixed, result in different
configurations of the nucleolus, as shown in Figure 6. In addition, even though the springs only
connect pairs of beads, we observe that when t,,, is sufficiently small, such as around 0.1s, this
pairwise action leads to the formation of large, stable clusters of around 20 beads, and a clear
phase separation of the nucleolus, as seen in Figure 7. In contrast, when the timescale is slow,
clusters do not form, and the nucleolus does not achieve the same level of compaction. The
paradigm is again illustrated — weak, local crosslinking within segments of a large molecular
weight polymer induces global emergent behavior, in this case both compaction and frequent,
multi-scale, self-interactions. A subsequent study [47] explored a denser sampling of the



crosslinking timescales, discussed next, whereby clustering within the nucleolus is further tuned
by fast, but not too fast, crosslinking; this tuning of 7,,induces a transition from somewhat rigid
to plastic clustering and mixing of clusters so that genes jump between semi-persistent clusters.

I1.2.5 Complex emergent behavior is modulated by crosslinking dynamics

To paint a more detailed picture of the relationship between crosslinking timescales and
dynamics, we can view the system in terms of waiting times for particular events, a standard
technique in analysis of stochastic systems. We construct two waiting time statistics in terms of
“interactions” of pairs of beads (which will be defined in two ways below). The first statistic
represents the average time between the end of an interaction between a particular pair of beads
and the next time they resume interacting, averaged over all occurrences of a pair of beads
ceasing and then resuming interaction. The second statistic represents the average time between
the beginning of an interaction between a particular pair of beads and the end of the interaction,
averaged over all interacting events. Both statistics are further averaged over all pairs of beads
and all timesteps. Figure 8(A-B) shows both waiting time statistics for 2-point (i.e., bead pair)
statistics, where two beads are defined as interacting whenever their pairwise separation is under
a distance threshold of 100um. Figure 8(C-D) generalizes both waiting times from gene pair
interactions to the scale of clusters or communities computed with dynamic community detection
algorithms [47], where two beads are defined as interacting at any timepoints where they are in
the same community. Remarkably, we see that this first waiting time, which intuitively can be
thought of as measuring the level of cross-communication between genes, at both the 2-point and
community scales, is minimized over an intermediate - fast but not too fast - regime of
crosslinking timescale, corresponding to maximum cross-communication at that timescale. One
therefore finds that the 2-point structure statistics is the tip of the iceberg of a larger gene
community scale organization. Furthermore, this non-monotonic behavior suggests that mixing
in the genome, which is essential for biological processes such as homology search for repair of
damaged chromatin, may be optimized by tuning the timescales of protein crosslinkers.
Furthermore, the optimal timescale must be sufficiently broad, i.e., not a sharp valley, for
biological robustness, which the model reflects in Figure 8.

I1.2.6 Dynamic network community detection tools provide automated identification of
chromosomal structure on the spatial and temporal scales it exists

The development of a rich framework for studying chromatin dynamics and the effect of
crosslinker-mediated interactions on the resulting dynamic structure necessitates corresponding
development of analysis tools to agnostically detect and quantify results of the simulations. In
particular, the emergence of a complex, dynamic clustering structure optimizing different
attributes dependent on crosslinker timescale motivates a tool that can automatically identify
clusters of beads over both space and time. This is challenging due to the requirement of
balancing similarity over both space and time. By mapping the data into a multilayer network,
this can be reframed as a dynamic network community detection problem Specifically, if at a
particular time each pair of beads 7 and j are separated by a distance X;;, we would define an
adjacency matrix as
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Aij =
Here d* is a distance threshold for creating edges, and a is a parameter controlling how quickly
edge weight decays with distance. We perform this process separately for a sequence of time
points t,, leading to a corresponding sequence of adjacency matrices A7;. This sequence of
adjacency matrices then defines a multilayer network, with layer s having adjacency matrix Aj;.
Then, communities are identified using multilayer modularity community detection, which seeks
to optimize the modularity score
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over the community labels ¢, where c;; represents the label of bead i in layer s. Here, k; is the
degree of bead i in layer s, my is the total weight over layer s, Cs = 6(s,7 — 1) + 8(s,r + 1),
6 represents the Kronecker delta function, and 2M is a normalizing factor equal to the total
multilayer edge weight. Intuitively, this metric measures how many more connections occur
within communities in a layer than would be expected by chance, while also prioritizing beads
that remain in the same community across layers. The spatial and temporal scales at which
communities are identified can be tuned through the resolution and coupling parameters y and w,
and structure is considered meaningful when it is robust to variation in these parameters. That
the modularity score is linear in both of these parameters allows efficient identification of
optimal partitions over a wide parameter space [96], and by choosing parameters in highly stable
regions of the parameter space, we are able to use the data to identify the spatial and temporal
scales at which the dynamic clustering structure exists.

The network framework expands the notion of two-point statistics to many-point statistics, by
viewing a particular cluster of beads as an “interacting group or community”. The significance of
identified communities can be verified by confirming that implementing this network definition
of interaction, (Figure 8 C-D), remarkably reproduces the two-point interaction statistic (Figure 8
A-B). Furthermore, the dynamic community detection algorithms identify, automatically, gene
organization at the scale it exists, providing identification of gene organization and mixing
between communities over time [47].

I1.2.7 Quasi-potential theory mathematically confirms that weak linkers create structure
through entropic fluctuation on an “effective energy landscape”

That many high-level behaviors of chromatin can be explained by entropic fluctuations suggests
that the organization under SMC proteins might also behave like entropic fluctuations on an
effective energy landscape, even though the random switching of the crosslinkers means that
there is no true gradient potential of the force [47]. The local minimizers of an energy landscape,
often called energy wells, predict the stable configurations (states) that a biological system is
typically found in. Correspondingly, the heights of energy barriers between these wells predict
how long it will take for a system to transition from one stable configuration to another, such that
a higher energy barrier, or a deeper well, represents a state that the system is less likely to leave.
On an energy landscape with potential energy U (X), the long-time dynamics follow a Boltzmann
distribution, with the probability density in terms of position X as:
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This motivates us to rewrite the dynamics of the beads in terms of a set of coupled Fokker-
Planck equations, which model the time-evolution of the function p,(¥), representing the
probability density that beads are in position X and the crosslinkers are in a bound configuration,
which defines one of the switching states s [97]. These equations take the form
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over m total spatial dimensions (three per bead) and n total switching states. In the above, v}
represents all the forces on bead i in switching state s (i.e. crosslinker forces, effective confining
wall forces), where € is a parameter representing the size of fluctuations in the system and S, is
a continuous-time Markov chain transition matrix representing the rate at which the system
transitions from switching state s to k. Through a WKB-like ansatz in the small € limit, this
leads to an equation defining a quasi-potential W (X) that effectively behaves as a potential
defining a Boltzmann distribution and allows for energy landscape analysis. The gradient of this
quasi-potential is defined as the value allowing for non-trivial solutions to the matrix equation
D(VW) + A(x,VW) + S(x) = 0 where D is a diagonal matrix of the diffusion terms in (9),
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non-diagonal transition matrix. One interesting result from this approach is that randomly
switching crosslinkers combine with Brownian motion to produce an effective energy barrier that
is weaker than would be expected by a simple time average over the switching states, indicating
that the model chromatin arm can more easily change configurations by utilizing the fluctuations
in the switching crosslinkers. This quasi-potential theory can be applied to a variety of systems
modeled by Brownian motion combined with randomly switching forces and poses an exciting
avenue for future analysis of biological systems. The reader is referred to [98] for the details of
this approach as well as additional references for quasi-potential and landscape theory.

III.  Mucus in the Human Body: Modeling, Rheology, and Pathology

In the human body, mucus covers the luminal surface of the gastrointestinal (GI) [98],
respiratory [99], and reproductive [100] tracts; mucus also coats the eyes, the epithelium of the
nose, mouth, and salivary glands and the peritoneal surface of intra-abdominal organs [101]. At
the molecular level the underlying microstructure of all types of mucus is primarily composed of
a “mucin polymer network”. However, each organ-specific mucus barrier consists of distinct
members of the mucin polymer family and are further biochemically tuned for diverse barrier
and flow transport properties. Consequently, disease states are usually associated with a
breakdown in the normal properties of the mucus barrier. While mucus is ubiquitous in the
human body, and therefore fundamental to human health, the links between the molecular
constituents of mucus, the mechanisms by which they are continuously replenished to maintain
their critical functions, and the main microstructural features and variations of mucus throughout
the body, remain active areas of research. Mucus functions as a viscoelastic, dynamic, semi-
permeable barrier that protects organs and epithelial tissue by selectively trapping and discarding
pathogens, toxins, and other particulates, or by maintaining a pH barrier in the intestinal tract
[102]. Remarkably, while obstructing harmful particulates, mucus layers simultaneously allow



the flux of water, gases, and nutrients that are transported through epithelial cells and distributed
inside the body [101,103]. In performing these functions mucus is constantly secreted, shed, and
digested, recycled or discarded. Given the fundamental role of mucus in human health, it is
remarkable that many open questions remain regarding “healthy” organ-specific mucus and the
pathways by which mucus becomes pathological. This knowledge is essential to guide
approaches to treat or reverse pathology and has motivated 25 years of collaboration at UNC by
Forest, Roberto Camassa, Rich McLaughlin, Sorin Mitran and many PhD students and
postdoctoral scholars with a host of interdisciplinary scientists from physics, chemistry, and
medicine.

II1.1 Mucus composition

A typical “healthy” human organ mucus sample consists of 90-98% (by mass) of water, 2-5%
high molecular weight glycoproteins (mucins), 1-2% lipids, 1% salts, and a small % of DNA
fragments and other molecular species [104]. Mucus is generally classified as a physical gel
whose quality derives primarily from mucins plus affinities to low molecular weight proteins that
form a three-dimensional network or gel matrix [105-107]. The interlinking of mucins with other
mucins and biomolecules creates the gel matrix. Among other things, the density and transient
nature of crosslinks controls the characteristics of a gel network. However, other types of
transient inter-molecular interactions of various characteristic time and length scales also
contribute to the formation and strength of the mucus gel network. For comprehensive reviews
on mucus gelation the reader is referred to [106,108—112]. As noted here, all mucus is not alike
since the organs protected require completely different physical and chemical properties. Thus it
is not surprising that the “mucin polymer family” is strikingly diverse and it has been argued that
the mucin family is a misnomer and should be abandoned [113]. In our collaborations at UNC,
we have focused on the mucus barrier in the human respiratory tract with colleagues in the
Marsico Lung Institute and in the female cervicovaginal tract with the lab of Sam Lai on sexually
transmitted viral diseases. The COVID-19 pandemic led us to merge our detailed understanding
of respiratory mucus and antibody protection against mucus-coated epithelial tissue, focusing on
inhaled respiratory viral infection and the essential role of the mucus barrier in the function of
the immune system [23,25,26,114].

II1.2 Mucus Viscoelasticity

In general, mucus secretions are viscoelastic; however, their viscoelastic properties and
responses vary significantly depending on the specific organ and function. For instance, Taylor
et al. [115] showed that, in the stomach, two physically distinct mucus secretions are produced.
One is a shear-resistant gel that forms a protective mechanical barrier and the other is a shear-
compliant secretion, which transforms into a viscous liquid when subjected to even low
mechanical shear stress and acts as a lubricant facilitating the movement of solid matter through
the gut during the digestive processes. Intestinal mucus likewise must create a pH barrier to
protect the epithelial tissue from the acidic environment necessary for food digestion. As is the
case with other viscoelastic materials, the interplay between viscous and elastic properties
directly affects the transport capabilities of mucus. However, other physical properties play an
important role in the function of mucus. For instance, adhesiveness and wettability govern the
properties of the interface between mucus and the epithelial surface [116]. Optimal conditions



for the clearance and lubrication properties of mucus require that both wettability and
adhesiveness are sufficiently high to prevent flow of mucus under body forces (e.g., no
gravitational draining in the respiratory tract) while sufficiently low to propel mucus (e.g., via
coordinated ciliary beating in the respiratory tract).

Although the mucin network primarily governs the rheological characteristics of mucus, other
biochemical and external stimuli affect the properties of mucus by modifying gel formation and
strength. Below we highlight examples where changes in rheological properties of mucus are
induced by mechanisms not related to the self-dynamics of the mucin network.

o Human tears and lipids. Rheological measurements of human tears reveal shear-thinning
viscoelastic properties. Gouveia and Tiffany [117] showed that if the lipids in tears are
removed, the fluid becomes Newtonian (shear-independent). This contrasts with other
types of mucus where the mucin polymers impart non-Newtonian behavior.

e Gastric mucus and pH. Dynamic light scattering and bulk rheology measurements reveal
that gastric mucin solutions undergo a pH-dependent sol-gel transition from a viscoelastic
solution at neutral pH (~7) to a soft viscoelastic gel in acidic conditions (pH<7), with the
transition occurring near a pH of 4 [108,109].

e Airway mucus and salt. Several studies showed that concentration of salts in mucin
solutions changes their rheological properties [109,118,119].

I11.4 Models for the Rheology of Human Bronchial Epithelial Mucus

Significant insight into respiratory mucus has been gained from mucus harvested and
reconstituted from human bronchial epithelial (HBE) cultures and then studied in the linear
response regime by passive particle tracking microrheology [120-126] and in the nonlinear
response regime by active magnetic microbead rheology [127-129]. What we learned about
HBE mucus over the years is that it “yields” at incredibly low stress levels, and typical
rheometers such as a cone-and-plate rheometer are not sensitive enough to impose 10s of
picoNewtons of frequency-dependent shear stress.

Such reconstituted samples from cultures serve as “model systems” for in vivo HBE mucus. The
culture samples are harvested off the culture, dried, and then the solids consisting of mucin
polymers and salts are reconstituted by adding water to a specified percentage by weight of
solids wt%). In this way, we have been able to reconstitute HBE culture mucus to match the
wt% spanning normal ranges from healthy individuals to higher wt% associated with progressive
disease, including cystic fibrosis, asthma, and COPD. The cultures can further be grown from
HBE cells harvested from individuals with cystic fibrosis, a genetic disorder, or from healthy
individuals without known genetic disorders. In early culture protocols for reconstitution of
HBE mucus, the role of by-products of bronchial infection were not included, whereas infection
is increasingly prevalent in progression of cystic fibrosis. The infection-free HBE mucus is a
precursor to additional molecular species arising from infection, in particular much higher
concentrations of DNA fragments, which are highly negatively charged just like mucins, plus
positively charged molecular species. Indeed, these positively charged species provide the
nucleating agents for mucin polymers to phase separate into insoluble, dense structures. In
Section IV.5, we present a glimpse into how molecular dynamics modeling is reinforcing the
experimental insights of mucus pathology [130].



Our early attempts modeled mucus using a 5-mode Upper Convected Maxwell (UCM) model
[131]. The UCM model with one relaxation time has elastic and viscous moduli given by,
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where G’ is the storage modulus, G" the loss modulus and o the frequency. The UCM model for
each relaxation time is described by two parameters: Gy is the plateau modulus, and A is the
relaxation time. The multimode UCM model consists of a linear superposition of single modes,
each with a plateau modulus and relaxation time, and the moduli are given by
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Figure 9 shows fittings to a reconstituted 5 wt% HBE culture sample. The fact that more than
one UCM mode is necessary to fit the data indicates the presence of a spectrum of relaxation
modes, and furthermore there must be some scaling law of the relaxation spectrum that underlies
the power law structure observed. We return to this remarkable property of HBE mucus rheology
below. In addition, the fact that the storage modulus is larger than the loss modulus indicates that
5 wt% HBE mucus is a solid-like “gel” at the experimentally accessible frequencies. This is in
contrast to mucus of lower concentration where typically G" > G', defined as a liquid-like “sol”
phase. The concentration at which the transition from a sol to a gel is called the gel point (GP).
Studies have shown that the GP for reconstituted HBE mucus is in the range of 3-4 wt% [132].

G'(@) = Gy

The power law behavior observed in mucus data is the result of a wide range of microstructural
length and time scales. Another coarse-grained option that has received attention in the stochastic
process community in recent years is the use of fractional calculus in constitutive modeling of
power-law fluids. The main reason is that fractional models can describe simply and elegantly
the complex characteristics of these viscoelastic materials. The simplest class of fractional
models, the fractional element or spring-pot was introduced by Scott Blair [133], its constitutive
equation can be expressed as

d%y (12)
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where V is a material-dependent constant, o is the stress and y represents the strain. It follows
that the dynamic moduli for the spring-pot model both follow a power law in the frequency
domain G'~G''~w?. Fitting of mucus data to a spring-pot model is shown in Figure 9.
However, such models are not rooted in fundamental polymer physics. In a completely different
approach to modeling of power-law complex fluids, in [134] we extended the classical statistical
physics, generalized Langevin equation (GLE) models of Rouse and Zimm, respectively. The
Rouse and Zimm models exhibit transient anomalous diffusion, and exhibit power law scaling of
a =1/2,2/3, respectively, within a wide intermediate range of timescales that encompass
experimental measurement timescales. There is a subtle mathematical correspondence at play
here, explained in [134] and [135], between the ensemble averaged mean-squared displacements
(MSD) of the polymer medium, the MSD of the time series increments of micro-scale passive
particles within the medium, and the remarkable fact that the Fourier transform of a power law
function preserves the power law in the frequency domain. Thus, for each individual tracked
bead, a power law MSD translates to a power law in the dynamic moduli of the medium
surrounding that bead. We return to the relevance of this observation in Section IV.4. In [134],
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we generalized the Rouse and Zimm models to capture any sub-diffusive exponent o between 0
and 1, valid within the timescales of memory of the complex fluid, while beyond the longest
memory timescale the MSD and therefore the dynamic moduli converge to simple viscous
scaling, as with the special Rouse and Zimm kernels. We thereby provided a model basis for all
power-law transient subdiffusive processes to apply to experimental data on respiratory mucus.
Subdiffusive behavior is usually associated with (i) beads or other passive microscale probes
moving through a viscoelastic medium, (ii) binding/unbinding of the beads with other molecules
in the medium and/or (iii) obstructed motion [136]. For viscoelastic materials exhibiting a power
law behavior of the viscous and elastic moduli with respect to time, G”, G'~tP, there is a direct
correlation between subdiffusion within the material and its viscoelastic properties. For other
viscoelastic materials, anomalous diffusion is still linked with viscoelasticity, however the
relation between these two domains is not as straightforward to determine.

1V. Diffusion of Particles in HBE Mucus to Infer Linear Viscoelastic Moduli plus
Molecular Dynamics Simulations: Healthy and Pathological HBE Mucus

The trapping and clearance of inhaled particulates in respiratory mucus layers has been studied
for decades [137]. Above a particle diameter relative to the mucin polymer network, particle
diffusion within the mucus barrier is not a simple process where particles obey Brownian
diffusion laws; the mucin polymers in salt water plus other molecular species create a network
whose fluctuations are both dissipative and elastic. Embedded micron-scale particles are not
simply bombarded by water molecules, instead they exhibit memory in the increments from
thermal fluctuations of the polymer network. Experimental tracking methods have provided a
wealth of data on particles with diameters between tens of nm and several microns, where the
particles not only range in size (hydrodynamic radius) but also in their surface interactions with
the mucin gel network. The study of self-diffusion of nm-to-micron scale particles in mucus is
not only a means to determine the equilibrium viscous and elastic moduli versus frequency, but
furthermore important to determine the movement of toxic particulates within mucus, as well as
for inhaled drug delivery and gene delivery therapies [34,103,138].

The heterogeneous, three-dimensional network formed by mucins in mucus can be viewed as a
physical obstruction to particle diffusion. This effect is modeled as a reduced self-diffusion
coefficient of the particles. We can understand this by considering the ensemble-averaged, mean-
squared displacement (MSD), (Ar?(nt)), of tracked particle position time series, defined as
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here N, is the number of particles, N is the total number of measured increments for each
particle path, n is the number of experimental frames, and t is the experimental lag time between
recorded positions of the microscope. Reported values of MSD in mucus [132,137,139-141]
reveal a sub-diffusive MSD scaling over an intermediate dynamic range of lag times for each
individual tracked particle position X,



MSDy,(n7) ~ D, (n1)¢%, (14)

where 0 < a < 1. The pre-factor D, is a generalized diffusion coefficient, and instead of the
usual units of L? t! for diffusion coefficients, it has fractional units of L? t®. The appearance of
fractional units requires care in analysis since all tracked beads have different @ and therefore
there is no quantitative comparison of multiple beads based on D, which we address below.
When microscopy experiments are performed for sufficiently long times, a transition to linear
scaling of the diffusion constant D, (a = 1) appears, yet only beyond the longest memory
timescale of the medium. We rarely track long enough to see the transition from sub-diffusive to
diffusive scaling, so that all experimental lag times of individual tracked beads exhibit power law
scaling. For direct modeling of tracer particles in a viscoelastic medium, a sufficiently robust
family of stochastic processes is needed that reflects these fundamental MSD signatures of
transient sub-diffusion. Below we summarize two models that have been successfully used to
describe diffusion of particles in mucus; first we recall simple Brownian motion.

IV.1 Brownian Motion

The equation of motion describing the velocity of a particle driven by Brownian motion is given
by the Langevin equation,

dv (15)
mo-= (v + F(t),

where v is the velocity of a Brownian particle with mass m and drag coefficient ¢. The force
F(t) comes from random fluctuations and is assumed to be white noise, i.e.,

(F(t)) =0, (16)
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here kgis the Boltzman constant and 7 the absolute temperature, and (-) gives the ensemble
average. In the zero-mass limit, the particle position can be found as,

dX (17)
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It follows that the MSD of a particle undergoing Brownian motion is (Ar2(7)) ~ 7.

IV.2 Fractional Brownian Motion (fBm)

Fractional Brownian motion (fBm) is a self-similar Gaussian process with stationary increments
and an exact, uniform MSD scaling behavior, for all lag times nt [142]
MSDy(nt) = D, (n1)%, (18)

where D,, is the generalized diffusion coefficient, defined above. The autocorrelation function for
fBm is likewise exactly known, and given by
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where B, (t) is a ‘reduced fractional Brownian motion’ with parameter a. For a more detailed
discussion of B, (t) the reader is referred to [142].

Long-range correlations are given by

(§2(0)5, () = ala — Dt*7?, (20)

where &, is the fractional Gaussian noise, &, (t), which is the appropriately defined derivative of
B, (t), the details of which we refer again to [142] and references therein. Uncorrelated
Brownian motion corresponds to & = 1. For 0 < a < 1 the increments are negatively correlated,
rendering the associated process sub-diffusive. Conversely, when a > 1 the motion is persistent
(positively correlated), resulting in super-diffusion in which successive steps are biased to follow
in the same direction.

The Langevin equation describing fBm can then be written as

dx @1)
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where X represents the bead position.

Fractional Brownian motion has been used to model a wide range of processes including
monomer diffusion in a polymer chain [143], polymer translocation [144], diffusion of
biopolymers inside cells [145], bacteria chromosomal loci [146], diffusion in crowded fluids
[147], and diffusion of passive microbeads in HBE mucus [132].

Related to mucus, Hill et al. [132] found for different reconstituted HBE mucus concentrations
and over experimental time scales (1/60 - 30 sec), that single particle and ensemble MSD data
were remarkably well approximated by a uniform power law, and therefore consistent with a
scaling given by Eqn. (18). Furthermore, as shown in Figure 10, the power law exponent « is
well described by linear function of mucus concentration.

IV.3 fBm as a classifier of particle-tracking data in human bronchial epithelial mucus

In this and the next two subsections we focus on a series of new challenges in passive particle-
tracking microrheology of pathological mucus, marked by extreme heterogeneity, that develops
during progression of cystic fibrosis (CF) [121,148—151]. We summarize highlights from
ongoing, unpublished work to be submitted, [130], without compromising the novelty therein.
We present these highlights to underscore that even after 25 years of the UNC Virtual Lung
Project, new experimental, clinical, and mathematical advances continue to advance our
understanding of lung biology and medicine.

Specifically, mucus undergoes a heterogeneous phase transition: dense, raft-like, structures,
referred to as flakes, self-assemble, and phase separate from the remaining more dilute solution.
In advanced stages of CF [151], up to 50% of the mucin polymers (MUCS5B and MUCS5AC)
comprise the flakes that do not swell nor dissolve in airway surface salt-water solvent. Advanced
CF mucus is thereby, at a coarse scale, a two-phase mixture: a dense phase of mucin flakes and a
more dilute phase of the remaining mucins in solution. Additional heterogeneity potentially
exists, especially the free-volume pore distributions within phase-separated flake structures.



Probes are mixed in the reconstituted HBE samples with flakes and allowed to sit overnight.
When probes enter flakes, their diffusive mobility is low, sometimes sufficiently low to be
indistinguishable from immobile probes tracked by the instrumentation. Heterogeneity, low
bead sample sizes, and unknown sampling efficacy of the heterogeneous domains combine to
impose hard constraints on the form of the Generalized Stokes-Einstein Relation (GSER) one
should use, and to limit inference of rheology due to low realization numbers. Ensemble
averaging of MSDs in the GSER is justified by an ergodicity assumption for homogeneous
materials: ensemble averaging of MSDs in the time domain is equivalent to frequency-domain
averaging of the Fourier-transformed MSDs, further assuming the beads give a sufficient random
sampling of the material. These assumptions are strongly violated for flake-prevalent mucus.

For all data distinguishable from the noise floor, we extract the pure entropic fluctuation signal
using the fractional autoregressive moving average (fARMA) denoising model developed in
Ling et al. [150]. The success of the fARMA denoising procedure is sensitive to the initial value
in the nonlinear optimization procedure, accordingly we introduce a predictor-corrector method
to ensure a stable initial condition in [135]. The predictor-corrector method yields a 2-parameter
classifier of the purely entropic, medium-induced, sub-diffusive MSD over measured timescales.

It is important to emphasize that the statistical classifier for Brownian motion is one-
dimensional, the diffusivity D, whereas for sub-diffusive fractional Brownian motion, the
classifier is two-dimensional, (a, D, ). The power law « reflects the degree of sub-diffusivity of
the medium surrounding each tracked particle. As noted above, the pre-factor D, has a-
dependent units, so that one cannot compare numerical values of different beads unless they
have identical a, nor can one perform arithmetic operations (e.g., averaging) over ensembles of
tracked particles. Moreover, one cannot employ clustering metrics. Therefore, to determine
heterogeneity of each HBE sample from the primitive, measured MSD data of the ensemble, we
use a non-dimensional version of D, which we label D,. In this way each probe is assigned a 2-
parameter, dimensionless metric of mobility, (a, D,). To render the pre-factor dimensionless,
using only experimental scales and a reference fluid relevant to mucus, we define a rescaling of
Dfpm Which depends on the power law a, spatial dimension d , and particle radius r and
normalize with respect to the corresponding diffusivity in water, D,,,,

azle-vp, (22)
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The most common method (cf. [121,132,148]) for estimating the classifier parameters (a, D,) is
via a least-squares (LS) method, which consists of fitting the slope and intercept in the relation

log(MSDX(nT)) = log(2dD,) + a - log(n1). (23)

It is known that the empirical MSD is contaminated by noise at both the smallest and largest
timescales, for this reason only lag-times nt in a restricted bandwidth are often used. This
approach does not remove the noise from the selected bandwidth; it merely assumes that noise
contamination is negligible therein. However, this assumption is violated when the particle’s
mobility (i.e., the signal of interest) is close to the noise floor, the precise low signal-to-noise
regime that arises in pathological “flake-burdened” mucus from progressive cystic fibrosis.



To illustrate this, Figure 11a displays the MSD of fBm contaminated by a noise floor of
magnitude o2, for which the MSD is given by

MSDfpminoise(t) = 2dD - t* + 4 - o2 (24)

LS fitting is done within the 0.1-2 sec bandwidth, and the line of best fit agrees very well with
that of the empirical MSD over the bandwidth. However, this fit is to the MSD consisting of
signal plus noise: Figure 11b shows that the LS fit greatly diverges from the MSD of the pure
signal. In contrast, an extension (introduced next) of the fARMA denoising method of Ling et
al. [150] accurately recovers the pure signal in low signal-to-noise ratio (SNR) data, Figure 11b.

IV.4 The fARMASs Denoising Method for Extracting the Signal in Low SNR Data

For ease of presentation, we describe the method for a one-dimensional particle trajectory X(t).
For extension to d > 1 dimensions, see [150]. The fARMA model assumes that X(t) is fractional
Brownian motion with linear drift, u,

X(t) = ut+ /2D, B,(b). (25)

However, we observe not X (t) but rather Yy, ..., Yy, corresponding to noisy measurements of
X, = X(n- 1), from which we develop a method to back out the pure entropic fluctuation
signal, which we approximate in terms of fBm. This approach to signal extraction was first
proposed by Savin and Doyle [152], who used the measurement model
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where €,, is white noise with representing “static” localization errors, and X,, represents
“dynamic” errors due to motion of the particle during the camera aperture time 7. Static errors
have the effect of raising the MSD of Y relative to that of X at the shortest timescales, whereas
dynamic errors have the opposite effect. While theoretically appealing, Ling et al. [150] found
the Savin-Doyle model lacking in flexibility to account for the complex interactions between
signal and noise from one experimental setup to another. Instead, they propose an ARMA +
noise floor model of the form

Yo= X, + € 27
Xn=0Xy 1+ (1 —60—p)Xy+pXy_y,

where 6 and p are the fitting parameters of ARMA. Specifically, the model of Ling et al. [150]
does not contain the static noise term €,, but in [135] we show this term improves the model fit
for in-flake particles that are distinguishable from the noise floor. We refer to the model (27) as
fARMAS due to the addition of static noise.

Ling et al. [150] provides a computationally efficient method of fitting the fARMA model
parameters @ = (a, Dy, 14, 0, p) using maximum likelihood estimation (MLE). However the
MLE requires numerical optimization of the likelihood function, which as noted above we found
to be highly sensitive to the choice of initial value with low SNR data from particles in flakes.
To address this, we implemented a predictor-corrector algorithm [135]: the predictor step is the
LS estimate of (a, D,), providing stable initial data for FARMA as the corrector, and the addition
of one additional fitting parameter, o, the standard deviation of the static noise €,,.



IV.5 Molecular Dynamics Simulations of Flake-Burdened Mucus

As a gel-forming polymer, it is natural to study mucus via molecular dynamics simulations,
previously in [110,126,130,153], by our group more recently [155] and currently [130]. Our
purpose in [155] was to capture detailed local hydrophobic and electrostatic domain interactions
between polymer domains in order to understand how mucus hydration in progressive cystic
fibrosis might, by itself, create closer proximity between the local hydrophobic and electrostatic
domains. As a result, the charge interactions are effectively amplified by higher mucin
concentrations in dehydrated conditions. In work in preparation [130], we extend the molecular
dynamics framework in [155] based on chemical evidence that the hydrophobic termini of
mucins are more accurately modeled using a Born-Mayer-Huggins (BMH) potential, which has a
shorter interaction range with a deeper potential well than the ‘standard’ Lennard-Jones (LJ)
potential [156] used in [155]. Using the LJ potential in the brush domains and the BMH potential
in the termini domains and the HOOMD molecular dynamics platform [157], larger systems can
be simulated for longer times than in [155].

Briefly, each mucin polymer (5pm long) is comprised of a repeat of mucin monomers (500 nm
long), and as in [155] we use the chemical structure of the primary gel-forming mucin in human
bronchial epithelial mucus, MUCS5B. The end termini of each monomer are highly hydrophobic
with an internal region of glycosylated, brush domains that experience electrostatic interactions,
and cysteine knots that are sparse and do not play a significant role in our simulations. We coarse
grain this structure by choosing a characteristic bead size (o) of 9 nm for the simulation to
approximate both the size of the glycosylated brush and the persistence length of the MUC5B
polymer. Simulations are run at 37 C (1 kT =4.282E-21 J). For the details of converting
between physical and simulation units, refer to the seminal paper by Kremer and Grest [158], or
to [155]. Each mucin polymer then consists of 570 beads to resolve the mean molecular weight
of MUCS5B, with hydrophobic regions where the monomers are attached to each other and
separated regions of cysteine knots and glycan brush regions [155]. Introducing a more realistic
hydrophobic potential requires two new parameters: the depth of the hydrophobic potential, and
the screening length of electrostatic interactions between brush domain beads. The Debye length
(screening length) in mucus is around 1 nm, consistent with the ionic environment. All non-
bonded pairs of beads experience pair-wise interactions depending on their type, with excluded
volume interactions to prevent steric overlap, hydrophobic interactions for the termini, and
electrostatic interactions via a Lennard-Jones potential for the glycosylated brush regions.
Excluded volume interactions between non-bonded pairs are implemented via the Weeks-
Chandler-Andersen (WCA) potential

“[ @@+, “

UMwea = .
0,r = 2s0,

where 7 is the separation between the beads, o is the bead size, and € is the strength of the
potential. This potential is purely repulsive. Hydrophobic interactions are implemented via the
Born-Mayer-Huggins (BMH) potential

U(r)gyy = Ae©@ /P —Cr=¢ + Dr=8,r < 250, (29)



in which p is the screening (Debye) length, and C and D control the Lennard-Jones-like behavior
of the potential (C =1 ksT c° D = 1 kgT c®). Finally, the electrostatic interactions are
implemented via a standard Lennard-Jones (LJ)-like potential

Uy, = {45 [(%)12 ~ (5)6] te L Cose (30)

0,r = 2.50,

where the terms and cutoff are set differently than the WCA potential. Adjacent beads (those that
are bonded to each other in a single polymer chain) are held together with the finitely extensible
nonlinear elastic (FENE) bond potential

r\2 on12  ,0\6 31
— _ 2 (L =) —(=
U(r)rene = —0.5KR2In [1 <R0) ] + 4e [(r) (r) ] ¥ e
in which K =30.0 ksT0?, Ry = 1.50, € = 1 ksT, and o is the characteristic distance of the
system (in this case 9 nm) [158]. The first term (spring-like force) is enforced up to Ro. The last
set of terms is the same as the WCA potential to enforce excluded volume interactions between

1
bonded beads, using the same cutoff r > 2sa. (For this review, we opt not to insert the multiple
conditions on r within equation (31), which will be detailed in a forthcoming study [130].)
Integration is carried out using the Langevin thermostat with unit drag for all particles in the
system to implicitly represent the solvent [159].

HOOMD-blue allows simulations of larger systems for longer times using a GPU architecture.
Aside from having to implement the BMH potential as a HOOMD pair interaction, all other
potentials and configurations of the system were implemented using out-of-the-box HOOMD
and Python. Each simulation was carried out for 500,000 t (roughly 285 ps) in cubes of side
length 200 o (1800 nm). Weight percentage of mucus was derived assuming that mucus/mucin
proteins have the same density as other proteins and are immersed in water.

In [130], we explore a wide range of mucin weight percentage, electrostatic interaction strength,
and hydrophobic interaction strength. In Figure 12, we simply show the results of quasi-
equilibrium structures, visibly resembling experimental micrographs of the flakes discussed
earlier, that arise at 1, 3, 5 wt% MUCS5B “pathological mucus”. Here we have imposed
conditions in the simulations that instantiate the solvent pathology that arises from prevalent lung
infections in cystic fibrosis. Namely, in normal solvent conditions the negatively charged,
glycosylated interior brush domains of MUCS5B experience repulsive electrostatic interactions.
However, positively charged molecular by-products of infection reverse the interactions by
inserting third-party intermediates that co-bind the brush domains. This is modeled in all
simulations in Figure 12 by fixing the electrostatic, Lennard-Jones potential strength at 1 kgT.
Then we further tune the strength of the hydrophobic, BMH potential, at 0.5 kgT (top row) and
0.25 kgT (bottom row), for each of the progressively higher 1, 3, 5 wt% MUC5B.These choices
each yield structures consisting of rope-like entangled MUCSB polymers as the primary
structural component. The 1 wt% structure is a condensed MUCS5B rope, then the 3 wt%
structure forms a network of ropes connected by thinner MUCS5B strings, then the 5 wt%
structure consists of thicker ropes in a connected network. More details of the chemical
constituents that underlie both of these electrostatic and hydrophobic potential strengths are
presented in [130].



V. Conclusion

We have highlighted several examples of a biological paradigm underlying emergent behavior.
In this paradigm, spatially distributed and pervasive local, weak transient interactions, both
within and between typically large molecular weight biological polymers, lead to functionality at
much larger spatial and temporal scales. The multi-scale details of these systems continue to be
studied, both in health and disease, with the aspiration that with sufficient understanding it will
be possible to treat, reverse, or in some cases, prevent pathology. We conclude with a look
forward on the two biological systems we have covered in this review article, chromosomal
DNA and respiratory mucus.

The ability of cells to access genetic information relies in part on the spatial organization of
chromosomes within the nucleus. Major strides in understanding higher-order structures (beyond
nucleosomes) have come from the discovery of loop-extruding and cross-linking properties of
the class of structural maintenance of chromosome proteins. Equally impactful is the realization
that the physical properties of the substrate, i.e., chromatin itself, contribute to the structural
organization. The multiple modes of chromatin modification together with cross-linkers and loop
extrusion capability result in a staggering degree of variation in loop size and distribution. We
are just beginning to realize the power of chromatin loops to dictate biological function. The size
and density of loops are responsible for the ability of cells to use tension-sensing mechanisms to
achieve high-fidelity chromosome segregation [61,70,160]. DNA loops provide the means to
condense chromosomes in mitosis [161] and provide the structural platform for high-throughput
ribosomal gene transcription in the nucleolus [48,162,163]. Through the analysis of how
variations in loops scale with different physical properties of the chromatin and condensin, it is
anticipated that we will soon demystify the heterogeneity and dynamics observed in live cells
across phylogeny.

In cells, how these loops participate in sequestering biochemical activities through their
topological control and/or the spatial proximity of the looped sequences remains to be
determined. The distributions of loops in vivo, unlike the thermal physics-based model presented
here, are decidedly not randomly distributed, but rather exhibit cell-type and cell-cycle-specific
patterns. Together with the major drivers of loop size and distribution (i.e., cross-linking proteins
such as condensin), the stiffness of the chromatin and internal tethers such as entanglements that
anchor regions of chromatin must interact and feedback on one another in biologically relevant
ways. It is likely that all of these dynamic activities are subject to cellular regulation that together
contribute to the complex pattern of loop heterogeneity observed in vivo. It is therefore
imperative to build physical model representations of these features to be able to dissect the
targets of cellular regulation.

Finally, we propose that a major functionality of weak interactions in all eukaryotic cells is that
it is the basis for the remarkable search algorithm that goes on constantly in cells. How does a
sequence-specific binding protein scan 3 billion base pairs that are folded around histone
proteins and compacted into loops? How do gene-sized pieces of DNA (about 1,000 base pairs)
find homology when they need to be repaired following some environmental insult? In the
vernacular of the day, the cell must employ its own well-honed, autonomous, “intelligent”
mechanisms to make evolutionary, informed choices about how to find the relevant sequences or
genomic regions for necessary tasks. The challenge on the current horizon is to more deeply
understand the weak-interaction-induced power of soft cellular systems to simultaneously be



open to self-exploration, especially in response to damage but also to changing environmental
conditions, and yet hard-wired to execute cell-type specific functions.

The role of weak interactions in the functionality of respiratory mucus, indeed all mucus barriers
throughout the human body, is only now coming into focus. An excellent recent “primer” on
mucus is [125]. This article spans the chemical structure of the diverse mucin polymers that
comprise the mucus barrier in tears, ears, the oral cavity, lungs, stomach, intestines, and the
female cervicovaginal tract, and discusses the functionalities of each organ-specific mucus. The
article likewise emphasizes the mysteries that remain in understanding how the ingredients of
each mucus barrier induce its remarkable properties. What we have only recently come to
realize [155] is that the functional properties of respiratory mucus are tuned by pervasive, weak
interactions throughout the MUC5B and MUCSAC entangled polymer complex. And further as
detailed in [130], in disease progression from individuals with cystic fibrosis (CF), significant
modifications of the mucus hydrogel unfold. These modifications derive not only from an
increase in the wt% of mucins due to poor hydration of the epithelial surface [155], but
additionally due to changes in the ratio of MUCS5AC to MUCS5B as well as added by-products of
chronic lung infection. These modifications of the mucus hydrogel lead to the dramatic changes
noted in this review, in particular a progressive phase separation of the mucins into dense,
insoluble raft-like structures called flakes. In the body of this review, we reported two separate
current and unpublished results. The use of passive microbead experiments to probe
synthetically reconstituted flake-prevalent mucus [135], and the use of molecular dynamics
simulations coupled with experimental characterizations to illustrate that three chemical
modifications of CF mucus cooperatively induce a phase separation of the polymeric mucins to
form insoluble, dense flakes [130]. Similar pathologies are associated with abnormal mucus
barriers on all organs, and the analogous molecular and chemical modifications are targets of
intense study.

In our work on respiratory mucus, we foresee two potential outcomes on the near horizon made
possible by the results presented in this review. First, we anticipate that the passive particle
tracking “fractional Brownian motion classifier” can potentially provide a means to detect the
current state of disease progression by performing passive particle tracking on clinical CF patient
samples. Second, we anticipate that the discovery of the phase separation pathway to form
mucus flakes, including the three chemical bases for the pathway, will point to chemical
treatment strategies to reverse the phase separation process. Significant work lies ahead to
realize these outcomes.
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Figure 2
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(A) Coarse grained representation of chromosomes. Top, depiction of a DNA chain (greatest
detail). Middle, DNA coarse grained depiction of thermal (tension) blobs in gray. Bottom,
graphical depiction of the mathematical model where each blob is represented by red beads
connected via springs. (B) Simulation of chromosomes as polymer chains tethered to the
nuclear envelope results in the formation of territories. Left: A single time step from the
bead-spring model. Chromosomes are depicted as chains (colored lines) confined to the
nucleus (nuclear sphere indicated by parallel gray bands). Right: Space filling view of
chromosomes when multiple time steps are visualized to portray chromosome territories
(colored masses) representing the extent of motion of individual chromosomes. (C)
Simulated data can be directly compared with experimental data of individual, live cells.
Left: Cells containing fluorescent labels on a single chromosome. Green: gene repressor
protein (Lacl) fused to green fluorescent protein GFP, bound to its binding site (Lac
operator) integrated into a specific location in a yeast chromosome. Red: site within the
nuclear envelop where the chains are tethered, north pole in panel (B), known as the spindle
pole body. A protein component of spindle pole body is fused to a red fluorescent protein.
Right: Simulated image in which we have computationally added fluorphores (sources of
light) to one of the beads of the chain (green) or the north pole in the model (red). The light
sources are computationally diffused to match the spread of light as it passes through the
point spread function (PSF) of the microscope objective [164]. In this way we can directly
compare simulated images and dynamics to experimental material. Scale Bar = 1 micron.
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Contact maps of averaged distances between beads in a 2D bead-spring model. The analysis of
the distance between beads provides the means to make quantitative conclusions about contact
and interaction dynamics of genes within and between different chromosomes. In the maps on
the top row, the range of interactions represented by averaged separation between beads are
binned according to distance (beige, 0-200 nm (nanometers); black 250-500 nm, etc.). (A) Beads
confined to a circle of radius 1 micron and moving through Brownian motion. We start with the
simplest approximation of 208 beads inside a circular domain (representing the nuclear
envelope) moving via thermal fluctuations. The beads are independent of each other, meaning
the only forces acting on the beads are the confinement force, viscous drag and Brownian forces;
these last two are coupled according to the fluctuation-dissipation principle. Note the uniform
distribution of beads separation (uniform green, 750-1000 nm) across the domain. (B) An
attractive potential (wormlike chain spring law) is added to the same noise history as in (A). The
addition of this potential allows the division of the 208 beads into 4 independent chains. Two
chains (orange and blue) of the four chains are depicted in the cartoon. Comparison between the
contact maps for (A) and (B) reveals the strong preference for each chain to self-associate (the
black diagonal in (B), 250-500 nm separation). (C) Tethering of chains further decrease the
degrees of freedom in the chain movement, causing a decrease in the entropy and further
distinctions between intra- and inter chain interactions. Tethering is implemented through fixing
the position of the end beads onto the boundary (black beads fixed at peripheral positions). This
is a means to capture the biological tethering known to exist through centromere-spindle pole
body interaction and telomere-nuclear envelope interactions. (D) Inter-molecular interactions
are added to the same simulation through an excluded volume potential. This results in lower
inter-chain interactions (off-diagonal blocks) and larger intra-chain interactions (main diagonal
blocks).



Figure 4
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Contact maps for different conformations that include loops and changes in the average distance
between beads. Bead interactions are divided into backbone-to-backbone (orange-to orange),
outer loop-to-outer loop (blue-to-blue) and backbone-to-outer loop (orange-to-blue). Intra-chain
interactions are given by the main diagonal blocks of the contact maps, while inter-chain
interactions correspond to off-diagonal blocks. The four chains are indicated on the x- and y-axes
of the contact maps. The distances are binned according to the color scheme described in Figure
3. (A) Linear, tethered chain conformation. The linear tethered chains are the same for Fig 3D
and Fig. 4A. (B) Loop conformation consisting of eight loops per chain, each loop comprising
six beads. A major change comes from beads in the backbone of the same chain (more black
regions in the main diagonal blocks), since loops in the chain bring backbone beads closer to
each other. In addition, distances between beads in different chains increase (more white in the
off-diagonal blocks). (C) Chains are organized into four loops per chain, each loop with 13
beads. In general, this new loop conformation has the same qualitative effect as the loops in (B):
more smaller intra-chain distances and larger inter-chain distance. The main difference is
observed in the intra-chain interactions as given by the black regions in the main diagonal of the
contact maps. Larger loops in (C) result in a more fragmented intra-chain separation as
compared to (B).
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Experimental measurements of loci motion as a function of distance from centromere (tethering
point). Experimental measurements were taken from yeast cells containing fluorescent foci at
specific locations along a chromosome as shown in Figure 2C and in the schematic (Top right).
In this situation, the chromosome is depicted as a single chain, tethered to nuclear periphery at
two positions (the centromere and telomere). Two positions of the fluorescent markers are
indicated. The orange spot is closer to the centromere 24 kb, while the blue spot is further from
the centromere, 240 kb). Positional information for each spot was obtained over the course of
approximately 10 min. The units on the x- and y-axes are in microns. Positional data was fitted
assuming that each locus was connected to the centromere by a linear spring so that the bars in
the top left represent effective spring constants. In the bottom scatter plots of loci positions are
shown as a function of distance from the centromere from left to right. Closer to the tethering
point (purple) movement is more restrictive, resulting in less variance in motion and higher
(stiffer) spring constant. Farther from the tethering the loci increase its movement (red and blue);
increased variance in motion results in lower (softer) spring constants. Mutant cells with a
detached the centromere show an increase of motion of all loci, including those close to the
centromere (dark green in bar plot, top-left). Figure from [52].



Figure 6.
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In the cell nucleus polymer models have shown that the role of proteins is to guide, stabilize and
sustain cycle- specific genome states. In order to compare the polymer model to experimental
images of live cells, we utilize an experimentally derived point spread function (PSF) to generate
a simulated 3D image from the model. A simulator module takes as input a 3D stack of images
coming from a single fluorescent bead along with the x, y, z coordinates from the simulation and
computes a maximum projection to create a single 2D image (shown above). In the model,
protein interactions with the chromatin are captured via crosslinks and located at specific
chromosome arms and beads to simulate the region within the nucleus (nucleolus) where there is
a high concentration of cross-linkers between highly repeated ribosomal DNA genes in the
nucleolus. Whether the crosslinks are present or not, or whether they are dynamic or static
(uniform) directly affect the final configuration of the ribosomal DNA locus within the
nucleolus. Figure adapted from [48].
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(B) Fast kinetics
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Kinetic timescale of crosslinkers tunes distinct organizational phases in the nucleolus. Upper left:
Contact maps showing a quantitative distribution of bead distances between the 16 chains
(chromosomes) of yeast. The chains from 1 to 16, as indicated, are plotted on the x- and y-axes.
Clustering of beads through cross-linking can be visualized as the dark brown square (shifted
right and slightly below center) representing cross-links between the ribosomal RNA genes on
chromosome 12. The inset (to right of contact map) shows a high magnification view of the
clustered array. The positions of the cross-links are visualized through simulated fluorescence of
the active beads on chromosome 12 (Microscope Simulator). Below the contact map histograms
of bead distances are given. In red are histograms of cross-linking beads. These are active beads
on chromosome 12 indicative of the cluster of ribosomal RNA genes in the nucleolus (labeled
nucleolus to nucleolus distance). In gray are the distance distribution between nucleolar and non-
nucleolar beads. In blue are the non-nucleolar to non-nucleolar bead distance distributions. To
the right of the contact maps are snapshots from the 3D polymer model. The nucleus is shown as
a sphere bounded by green bands. The cross-linkers and active beads are shown as red beads
within the nucleus. The model is projected onto a 2D plane (described in Fig. 6) to simulate an
experimental image. (A) With slow kinetics (mean crosslink duration greater than approximately
2 seconds) the nucleolus appears as a roughly homogeneous group of beads (red histogram),
somewhat more compacted than the rest of the nucleus as visible in contact heatmaps. This
manifests as the uniform distribution of red beads to the right. (B) When the crosslinking




kinetics are fast (mean crosslink duration approximately 0.1 seconds), the beads condense into
large clusters of ~20 beads, causing a much greater degree of compaction than the slower
kinetics, as visible in simulated microscope images. This clustering structure is also reflected in
the bead-to-bead distance histogram within the nucleolus, showing distinctive spikes at
characteristic inter-cluster distances (red histogram). This manifests as discrete clusters of red
beads within the nucleolus shown to the right. Figure adapted from [48].
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The dynamic structure of the nucleolus can be characterized using waiting time statistics.
Defining a two-point interaction as any pair of beads approaching within a distance of 100um,
we compute waiting times between successive interactions (A) and waiting times for interactions
from start to end (B) as functions of the mean persistence time for a bead-bead bond, where pi(s)
in the figures is the same as 7, in the discussion. The waiting time between successive
interactions is minimized in the intermediate crosslinking regime (shaded + arrow), causing
maximal mixing and cross-communication among genetic loci. Generalizing two-point
interactions, we define a network interaction as two beads being in the same network
community. We then compute the network interaction waiting time statistics in (C) and (D). We
see remarkably similar behavior, revealing that two-point interaction metrics and statistics are a
harbinger of a larger network interaction. Figure adapted from [47].
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Fittings of dynamic moduli from experimental data for 5 wt% HBE mucus to three models,
where G'(w) and G"'(w) represent, respectively, the frequency-dependent storage and loss
moduli. Left: Upper Convected Maxwell (UCM) with one relaxation time (Eqn. (10)), middle:
UCM with five relaxation times (Eqn. (11)), and right: spring-pot model (Eqn. (12)). Data

adapted from [132,165].
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Power law representation of the sub-diffusive exponent o versus wt% solids of HBE mucus,
computed from passive particle tracking microrheology. The fittings are obtained by assuming
that the diffusion of probes in the mucus sample has a mean square displacement (MSD) that
follows a power law with respect to experimental lag time (7), MSD~1%. Adapted from [132].
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(A) From selected from experimental data, plots of the empirical (“Estimate” in the figure) and
fitted MSDs using the traditional least-squares method (LS) and the fARMAs method developed
in [135] and explained in the text. (B) From selected simulated data of fractional Brownian
motion with noise, LS and fARMAs estimates of MSD compared to the “true” signal.
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The quasi-equilibrium structure, via molecular dynamics simulations, of 1, 3, and 5 wt% MUC5B
“pathological mucus.” Here we show 2D projections of the final simulation state (at 500,000 timesteps),
with electrostatic beads representing the polymer brush regions in magenta, cysteine knots in cyan, and
hydrophobic termini in yellow. The strength of the electrostatic (Lennard-Jones) potential is set at 1 kT
for all images, while the strength of the hydrophobic (Born-Mayer-Huggins) potential changes along the
y-axis. Simulation box size is 1800 nm on a side.
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