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ABSTRACT
We introduce a simple diagnostic test for assessing the overall or partial goodness of !t of a linear causal
model with errors being independent of the covariates. In particular, we consider situations where hidden
confounding is potentially present. We develop a method and discuss its capability to distinguish between
covariates that are confounded with the response by latent variables and those that are not. Thus, we provide
a test and methodology for partial goodness of !t. The test is based on comparing a novel higher-order least
squares principle with ordinary least squares. In spite of its simplicity, the proposed method is extremely
general and is also proven to be valid for high-dimensional settings. Supplementary materials for this article
are available online.

ARTICLE HISTORY
Received November 2021
Accepted November 2022

KEYWORDS
Causal inference; Latent
confounding; Model
misspeci!cation; Nodewise
regression; Structural
equation models

1. Introduction

Linear models are the most commonly used statistical tools to
study the relationship between a response and a set of covariates.
The regression coe!cient corresponding to a particular covari-
ate is usually interpreted as its net e"ect on the response variable
when all else is held #xed. Such an interpretation is essential in
many applications and yet could be rather misleading when the
linear model assumptions are in question, in particular, when
there are hidden confounders.

In this work, we develop a simple but powerful approach
to goodness of #t tests for potentially high-dimensional linear
causal models, including also tests for partial goodness of #t
of single predictor variables. While hidden confounding is the
primary alternative in mind, di"erent nonlinear deviations from
the linear model assumption are also in scope. Tests for good-
ness of #t are essential to statistical modeling (e.g., Lehmann,
Romano, and Casella 2005) and the concept is also very popular
in econometrics where it is referred to as speci#cation tests. For
an overview of such methods; see, for example, Godfrey (1991)
or Maddala and Lahiri (2009).

Another set of related works is Buja et al. (2019a, 2019b),
which elaborately discusses deviations from the (linear) model
and how distributional robustness, that is, robustenss against
shi$s in the covariates’ distribution, links to correctly speci#ed
models. For this, they introduce the de#nition of “well-
speci#ed” statistical functionals. Distributional robustness,
implied by well-speci#cation, is also related to the causal inter-
pretation of a linear model as discussed in Peters, Bühlmann,
and Meinshausen (2016).

We consider here the question when and which causal e"ects
can be inferred from the ordinary least squares estimator or
a debiased Lasso procedure for the high-dimensional setting,
even when there is hidden confounding. We address this by
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partial goodness of #t testing: if the data speaks against a lin-
ear causal model, we are able to specify which components
of the least squares estimator should be rejected to be linear
causal e"ects and which not. In the case of a joint Gaussian
distribution, one cannot detect anything: this corresponds to a
well-known unidenti#ability result in causality (Hyvärinen and
Oja 2000; Peters et al. 2014). But, in certain models, we are
able to identify some causal relations. Of particular importance
are non-Gaussian linear structural equation models, as used in
Shimizu et al. (2006) or Wang and Drton (2020) among others.
The latter constructs the causal graph from observational data
in a stepwise procedure using a test statistic similar to the one
we suggest.

Our strategy has a very di"erent focus than other approaches
which do not rely on the least squares principle any longer to
deal with the issue of hidden confounding. Most prominent,
particularly in econometrics, is the framework of instrumen-
tal variables regression: assuming valid instruments, one can
identify all causal e"ects, see, for example, Angrist, Imbens,
and Rubin (1996) or the books by Bowden and Turkington
(1990) and Imbens and Rubin (2015). The popular Durbin-Wu-
Hausman test (Hausman 1978) for validity of instruments bears
a relation to our methodology, namely that we are also looking
at the di"erence of two estimators to test goodness of #t.

Our automated partial goodness of #t methodology is easy
to be used as it is based on ordinary (or high-dimensional
adaptions of) least squares and its novel higher-order version:
we believe that this simplicity is attractive for statistical practice.

1.1. Our Contribution

We propose a novel method with a corresponding test, called
higher-order least squares (HOLS). The test statistic is based
on the residuals from an ordinary least squares or Lasso #t. In
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that regard, it is related to Shah and Bühlmann (2018) who use
“residual prediction” to test for deviation from the linear model.
However, our approach does neither assume Gaussian errors
nor does it rely on sample splitting, and our novel test statistic
has a

√
n convergence rate (with n denoting the sample size).

In addition to presenting a “global” goodness of #t test for
the entire model, we also develop a local interpretation that
allows detecting which among the covariates are giving evi-
dence for hidden confounding or nonlinear relations. Thus, we
strongly increase the amount of extracted information com-
pared to a global goodness-of-#t test. In particular, in the case
of localized (partial) confounding in linear structural equation
models, we are able to recover the unconfounded regression
parameters for a subset of predictors. This is a setting where
techniques assuming dense (essentially global) confounding, as
in Ćevid, Bühlmann, and Meinshausen (2020) or Guo, Ćevid,
and Bühlmann (2022), fail.

The work by Buja et al. (2019a, 2019b) especially the second
paper, shows how to detect deviations in a linear model using
reweighting of the data. Our HOLS technique can be seen as a
special way of reweighting. In contrast to their work, we provide
a simple test statistic that tests for well-speci#cation without
requiring any resampling. Furthermore, we provide guarantees
for a local interpretation under suitable modeling assumptions
while as their per-covariate view remains rather exploratory.

1.2. Outline

The remainder of this article will be structured as follows. We
conclude this section with the necessary notation. In Section 2,
we present the main idea of HOLS and the according global null
hypothesis. For illustrative purposes, we #rst discuss univari-
ate regression. Then, we consider multivariate regression and
extend our theory to high-dimensional problems incorporating
the (debiased) Lasso. In Section 3, we present the local inter-
pretation when the global null does not hold true alongside
with theoretical guarantees. Models for which this local inter-
pretation is most suitable are discussed in Section 4. Section 5
contains a real data analysis. We conclude with a summarizing
discussion in Section 6.

1.3. Notation

We present some notation that is used throughout this work.
Vectors and matrices are written in boldface, while scalars have
the usual lettering. This holds for both random and #xed quan-
tities. We use upper case letters to denote a random variable, for
example, X or Y . We use lower case letters to denote iid copies
of a random variable, for example, x. If X ∈ Rp, then x ∈ Rn×p.
With a slight abuse of notation, x can either denote the copies
or realizations thereof. We write xj to denote the jth column of
matrix x and x−j to denote all but the jth column. We write H0=
to state that equality holds under H0. With ←, we emphasize
that an equality between random variables is induced by a causal
mechanism. We use & to denote elementwise multiplication of
two vectors, for example, x&y. Similarly, potencies of vectors are
also to be understood in an elementwise fashion, for example,
x2 = x&x. In is the n-dimensional identity matrix. P−j denotes
the orthogonal projection onto x−j and P⊥

−j = In − P−j denotes

the orthogonal projection onto its complement. For some ran-
dom vector X, we have the moment matrix !X := E

[
XX(]

.
Note that this equals the covariance matrix for centered X. We
denote statistical independence by ⊥. We write e to denote a
vector for which every entry is 1 and ej to denote the unit vector
in the direction of the jth coordinate axis.

2. Higher-Order Least Squares (HOLS)

We develop here the main idea of HOLS estimation.

2.1. Univariate Regression as a Motivating Case

It is instructive to begin with the case of simple linear regression
where we have a pair of random variables X and Y . We consider
the causal linear model

Y ← Xβ + E , where X ⊥ E ,
E [E] = 0 and E

[
E2] = σ 2 < ∞. (1)

We formulate a null hypothesis that the model in (1) is correct
and we denote such a hypothesis by H0. This model is of interest
as β describes the e"ect of a unit change if we were to intervene
on covariate X without intervening on the independent E . Such
model, or its multivariate extension, is o$en assumed in causal
discovery, see, for example, Shimizu et al. (2006) or Hoyer
et al. (2008). Therefore, we aim to provide a test for its well-
speci#cation.

Estimation of the regression parameter is typically done by
the least squares principle

βOLS := argmin
b∈R

E
[
(Y − Xb)2] = E [XY]

E
[
X2]

H0= β ,

where we use the superscript OLS to denote ordinary least
squares. Alternatively, we can pre-multiply the linear model (1)
with X: the parameter minimizing the expected squared error
loss is then

βHOLS := argmin
b∈R

E
[(

XY − X2b
)2]

= E
[
X3Y

]

E
[
X4]

H0= E
[
X4β

]

E
[
X4] = β .

More generally, βHOLS = βOLS = β , if E [Y|X] = Xβ . Using
the de#nition from Buja et al. (2019b), this means that the OLS
parameter is well-speci#ed. The estimation principle is called
higher-order least squares, or HOLS for short, as it involves
higher-order moments of X. One could also multiply the linear
model with a factor other than X, which may have implications
on the power to detect deviations from (1). We shall focus here
on the speci#c choice to #x ideas.

The motivation to look at HOLS is when H0 is violated,
in terms of a hidden confounding variable: let H be a hidden
confounder leading to a model

X ← EX + Hρ, Y ← Xβ + Hα + E ,

where EX , H, and E are all independent and α and ρ de#ne
additional model parameters. In particular, we can compute
under such a confounding model that
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βHOLS − βOLS = ρα

(
3E

[
E2

X
]
E

[
H2] + ρ2E

[
H4]

E
[
E4

X
]
+ 6ρ2E

[
E2

X
]
E

[
H2] + ρ4E

[
H4]

− E
[
H2]

E
[
E2

X
]
+ ρ2E

[
H2]

)

. (2)

For simplicity, we assumed here E [EX] = E [H] = E [E] = 0.
In practice, one can get rid of this assumption by including an
intercept in the model. If either α or ρ equals to 0, we see that
the di"erence in (2) is 0. This is not surprising as there is no
confounding e"ect when either X or Y is una"ected. However,
this is not the only possibility how the di"erence can be 0.
Namely,

E
[
H2]

(
E

[
E4

X
]
− 3E

[
E2

X
]2) = ρ2E

[
E2

X
] (

E
[
H4] − 3E

[
H2]2)

⇒ βHOLS − βOLS = 0.

Especially, if neither EX nor H have excess kurtosis, the dif-
ference is 0 for any ρ. This can be intuitively explained as it
corresponds to Gaussian data (up to the moments we consider).
For Gaussian EX and H, one can always write

Y = XβOLS + Ẽ where X ⊥ Ẽ ,

which cannot be distinguished from the null model (1). Or in
other words E [Y|X] = XβOLS, that is, the OLS parameter
is well-speci#ed although it is not the parameter β that we
would like to recover. For other data-generating distributions,
one should be able to distinguish H0 from certain deviations
when hidden confounding is present. We discuss the implica-
tions of this in the general multivariate setting in Section 3.2.
Similar behavior occurs for a violation of H0 in terms of a
nonlinear model Y = f (X, ε) which then (typically) leads to
βHOLS − βOLS += 0.

One can construct a test based on the sample estimates of
βHOLS and βOLS. We consider the centered data

x̃ = x−x̄e, ỹ = y−ȳe and ε̃ = ε−ε̄e =
(

In − 1
n ee(

)
ε,

where we use the upper bar to denote sample means. We can
derive

ỹ = y − ȳe = xβ − x̄eβ + ε − ε̄e = x̃β + ε̃.

We now obtain β̂OLS from regression through the origin of ỹ
versus x̃ with an error term of ε̃ and β̂HOLS from regression
through the origin of x̃& ỹ versus x̃2 with an error term of x̃& ε̃.
More precisely, we de#ne

β̂OLS := x̃(ỹ
x̃(x̃ and β̂HOLS :=

(
x̃2)( (

x̃ & ỹ
)

(
x̃2)( (

x̃2)
=

(
x̃3)( (

ỹ
)

(
x̃2)( (

x̃2)
.

Under H0, one can see that
(
β̂HOLS − β̂OLS

)
given x is some

known linear combination of ε. Assuming further Gaussianity
of ε, it is conditionally Gaussian. We #nd

(
β̂HOLS − β̂OLS

) ∣∣∣x
H0∼

N



0, σ 2





(
x̃3)(

(
In − 1

n ee(
) (

x̃3)

((
x̃2)( (

x̃2)
)2 − 1(

x̃(x̃
)







 . (3)

We can calculate this variance except for σ 2. Further, we can
consistently estimate σ 2, for example, with the standard formula

σ̂ 2 =

∥∥∥ỹ − x̃β̂OLS
∥∥∥

2

2
n − 2

.

Thus, we receive asymptotically valid z-tests for the null-
hypothesis H0 that the model (1) holds. We treat the extension
to non-Gaussian ε in Section 2.2 (for the multivariate case
directly). As discussed above, in the presence of confounding,
we can have that βHOLS += βOLS. In such situations, a test
assuming (3) will have asymptotic power equal to 1 for correctly
rejecting H0 under some conditions. These asymptotic results
are discussed in Sections 3.1 and 3.2.

2.2. Multivariate Regression

We typically want to examine the goodness of #t of a linear
model with p > 1 covariates. We consider p to be #xed in this
section and discuss the case where p is allowed to diverge with
n in Section 2.3.

We consider the causal model

Y ← X(β + E , where X ⊥ E ,
E [E] = 0 and E

[
E2] = σ 2 < ∞ (4)

with X ∈ Rp and β ∈ Rp. Note that E [E] = 0 can always
be enforced by including an intercept in the set of predictors.
We assume the according moment matrix !X to be invertible.
Then, the principal submatrices !X

−j,−j := E
[

X−jX(
−j

]
are

also invertible. We formulate a global null hypothesis that the
model in (4) is correct and we denote it by H0. To make use
of the test described for the univariate case, we consider every
component j ∈ {1, . . . , p} separately and work with partial
regression, see, for example, Belsley, Kuh, and Welsch (2005).
For the population version, we de#ne

Zj := Xj − X(
−jγ j, where (5)

γ j := argmin
b∈Rp−1

E
[(

Xj − X(
−jb

)2
]

=
(
!X

−j,−j

)−1
E

[
X−jXj

]

Wj := Y − X(
−jζ j, where

ζ j := argmin
b∈Rp−1

E
[(

Y − X(
−jb

)2
]

=
(
!X

−j,−j

)−1
E

[
X−jY

]
.

Under H0, it holds that Wj = Zjβj + E .
For βOLS :=

(
!X)−1 E [XY], we #nd

βOLS
j = E

[
ZjWj

]

E
[

Z2
j

] H0= βj.
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The #rst equality is a well-known application of the Frish-
Waugh theorem, see, for example, Greene (2003). We de#ne
the according HOLS parameter by partial regression for every
component j separately, namely

βHOLS
j :=

E
[

Z3
j Wj

]

E
[

Z4
j

] H0= βj.

We de#ne a local, that is, per-covariate null hypothesis H0,j :
βOLS

j = βHOLS
j . The di"erence βOLS

j −βHOLS
j can detect certain

local alternatives from the null hypothesis H0. Here, local refers
to the covariate Xj whose e"ect on Y is potentially confounded
or involves a nonlinearity. Under model (4), H0,j holds true
for every j. We discuss in Sections 3 and 4 some concrete
examples, where it is insightful to consider tests for individual
H0,j.

We turn to sample estimates of the parameters. The residuals
are estimated by

ẑj = xj − P−jxj = P⊥
−jxj and

ŵj = y − P−jy = P⊥
−jy

H0= P⊥
−j (xβ + ε) = ẑjβj + P⊥

−jε.

With ordinary least squares, we receive β̂OLS
j from regression

of ŵj versus ẑj, where the error term is P⊥
−jε. Accordingly, we

calculate β̂HOLS
j from regression of ẑj & ŵj versus ẑ2

j with an
error term ẑj & P⊥

−jε. Thus, we de#ne

β̂OLS
j :=

ẑ(
j ŵj

ẑ(
j ẑj

and β̂HOLS
j :=

(
ẑ2

j

)( (
ẑj & ŵj

)

(
ẑ2

j

)( (
ẑ2

j

) =

(
ẑ3

j

)(
ŵj

(
ẑ3

j

)(
ẑj

.

This is analogous to the univariate case, where we have ỹ
instead of ŵj, x̃ instead of ẑj and

(
In − 1

n ee(
)

instead of P⊥
−j,

and
(

In − 1
n ee(

)
can be thought of as orthogonal projection

onto e’s complement, which completes the analogy. Again, we
see that given x,

(
β̂HOLS

j − β̂OLS
j

)
is some known linear com-

bination of ε, thus, it is conditionally Gaussian for Gaussian ε.
The same holds for

(
β̂

HOLS − β̂
OLS).

Naturally, Gaussian E is an overly strong assumption. There-
fore, we consider additional assumptions such that the central
limit theorem can be invoked.

(A1) The moment matrix !X has positive smallest eigenvalue.

(A2) E
[

X6
j

]
< ∞ and E

[
Z6

j

]
< ∞ ∀j.

Further, let

Z̃3
j := Z3

j − X(
−jγ̃ j, where (6)

γ̃ j := argmin
b∈Rp−1

E
[(

Z3
j − X(

−jb
)2

]
=

(
!X

−j,−j

)−1
E

[
X−jZ3

j

]
.

Note that E
[(

Z̃3
j

)2
]

≤ E
[

Z6
j

]
< ∞.

Theorem 1. Assume that the data follows the model (4) and that
(A1)–(A2) hold. Let p be #xed and n → ∞. Then,

√
n

(
β̂

HOLS − β̂
OLS) D→ N

(
0, σ 2E

[
VV(

])

1
n v̂(v̂ P→ E

[
VV(

]
, where

v̂j =
P⊥

−j
(

ẑ3
j
)

1
n

(
ẑ2

j
)( (

ẑ2
j
) −

ẑj
1
n ẑ(

j ẑj
and

Vj =
Z̃3

j

E
[

Z4
j
] −

Zj

E
[

Z2
j
] .

Note that(
β̂

HOLS − β̂
OLS) H0= 1

n v̂(ε, and, in analogy to (3),

1
n2 v̂(

j v̂j =

(
ẑ3

j

)(
P⊥

−j

(
ẑ3

j

)

((
ẑ2

j

)( (
ẑ2

j

))2 − 1
ẑ(

j ẑj
.

Following Theorem 1, we can test the null hypothesis H0 with
a consistent estimate for σ 2. Such an estimate can be obtained,
for example, using the standard formula

σ̂ 2 =
∥∥y − xβ̂

OLS∥∥2
2

n − p .

We de#ne for later reference
v̂ar

(
β̂HOLS

j − β̂OLS
j

)
:= σ̂ 2 1

n2 v̂(
j v̂j. (7)

To test H0,j, we can compare
(
β̂HOLS

j − β̂OLS
j

)
to the quan-

tiles of the univariate normal distribution with the accord-
ing variance. The joint distribution leads to a global test that
controls the Type I error. Namely, one can look at the max-
imum test statistic T = max

k

∣∣∣β̂HOLS
k − β̂OLS

k

∣∣∣
H0∼ max

k
|Sk|,

where S ∼ N
(
0, σ̂ 2v̂(v̂/n2) can be easily simulated. Fur-

ther, one receives multiplicity corrected individual p-values for
H0,j by comparing each

∣∣∣β̂HOLS
j − β̂OLS

j

∣∣∣ to the distribution
of max

k
|Sk|. This is in analogy to the multiplicity correction

suggested by Bühlmann (2013). Naturally, other multiplicity
correction techniques such as Bonferroni-Holm are valid as
well.

Algorithm 1 summarizes how to #nd both raw and multi-
plicity corrected p-values for each component j corresponding
to the jth covariate, pj and Pj, respectively. Then, one would
reject the global null hypothesis H0 that the model (4) holds if
min

j
Pj ≤ α, and such a decision procedure provides control of

the Type I error at level α. Note that this means that we have
strong control of the FWER for testing all H0,j.

Corollary 1. Assume the conditions of Theorem 1. Consider
the decision rule to reject H0 i" min

j
Pj ≤ α, where Pj is as in

Step 10 of Algorithm 1. Then, the Type I error is asymptoti-
cally controlled at α. Furthermore, the FWER is asymptotically
controlled at level α for testing all local hypotheses {H0,j; j =
1, . . . , p} with the decision rule to reject H0,j i" Pj ≤ α.
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Algorithm 1 HOLS check
1: for j = 1 to p do
2: P⊥

−j = In − x−j
(

x(
−jx−j

)
x(
−j

3: Regress xj versus x−j via least squares,
denote the residual by ẑj = P⊥

−jxj
4: Regress y versus x−j via least squares,

denote the residual by ŵj = P⊥
−jy

5: β̂OLS
j =

ẑ(
j ŵj

ẑ(
j ẑj

, β̂HOLS
j =

(
ẑ3

j

)(
ŵj

ẑ(
j ẑj

and

v̂j =
P⊥

−j

(
ẑ3

j

)

1
n

(
ẑ2

j

)( (
ẑ2

j

) − ẑj
1
n ẑ(

j ẑj

6: σ̂ 2 =
∥∥y − xβ̂

OLS∥∥2
2

n − p
7: Create nsim i.i.d copies of S ∼ N

(
0, σ̂ 2v̂(v̂/n2),

say, s1 to snsim

8: for j = 1 to p do

9: pj = 2



1 − &





∣∣∣β̂HOLS
j − β̂OLS

j

∣∣∣

σ̂
1
n

∥∥v̂j
∥∥

2









10: Pj = 1
nsim

∑nsim
i=1 1

(∣∣∣β̂HOLS
j − β̂OLS

j

∣∣∣ >
∥∥si∥∥

∞
)

We provide simulation results supporting this theory in Section
A of the supplemental materials.

2.3. High-Dimensional Data

We now turn to high-dimensional situations. We assume the
global null hypothesis (4) but allow for p to diverge with and
even exceed n such that ordinary least squares regression is not
applicable. Instead, we apply the debiased Lasso introduced in
Zhang and Zhang (2014) and further discussed in van de Geer
et al. (2014). We denote the estimator again by β̂

OLS since it
converges under certain conditions to the population parameter
βOLS.

From the debiased Lasso, we receive ẑj = xj − x−jγ̂ j, where
γ̂ j is obtained by regressing xj versus x−j using the Lasso, and
ŵj = y − x−jβ̂−j with β̂ coming from the Lasso #t of y
versus x. Since β̂OLS

j = ẑ(
j ŵj/ẑ(

j xj, one might want to use
(

ẑ3
j

)(
ŵj/

(
ẑ3

j

)(
xj for HOLS. However, this leads in general to

an uncontrollable approximation error since E
[

Z3
j X−j

]
+= 0. As

a remedy, we suggest a second level of orthogonalization based
on Z̃3

j and γ̃ j as de#ned in (6). Naturally, we have Z̃3
j = Z3

j i"

E
[

Z3
j X−j

]
= 0 and always E

[
Z̃3

j X−j
]

= 0. To approximate
z̃3

j we use the Lasso for the regression ẑ3
j versus x−j leading to

ˆ̃z3
j = ẑ3

j − x−j ˆ̃γ j. We de#ne β̂
HOLS as

β̂HOLS
j :=

(
ˆ̃z3

j

)(
ŵj

(
ˆ̃z3

j

)(
xj

=

(
ˆ̃z3

j

)( (
y − x−jβ̂−j

)

(
ˆ̃z3

j

)(
xj

H0= βj +

(
ˆ̃z3

j

)(
x−j

(
β−j − β̂−j

)
/n

(
ˆ̃z3

j

)(
xj/n

+

(
ˆ̃z3

j

)(
ε

(
ˆ̃z3

j

)(
xj

.

Finally, we are interested in the di"erence between β̂HOLS
j and

β̂OLS
j . Under suitable assumptions for the sparsity, the moment

matrix, and the tail behavior of X and E , we can derive the
limiting Gaussian distribution of this di"erence allowing for
asymptotically valid tests. W apply Algorithm 2 where we make
use of the (asymptotic) normality of the nonvanishing term in
this di"erence. For non-Gaussian E , a multiplicity correction
method that does not rely on exact Gaussianity of this remainder
might be preferred since the CLT does not apply for dimensions
growing too fast.

Algorithm 2 HOLS check for p > n
1: Regress y versus x via Lasso with a penalty parameter λ,

denote the estimated regression coe!cients by β̂
2: for j = 1 to p do
3: Regress xj versus x−j via Lasso with a penalty parameter

λj, denote the residual by ẑj
4: Regress ẑ3

j versus x−j via Lasso with a penalty parameter
λ̃j, denote the residual by ˆ̃z3

j
5: ŵj = y − x−jβ̂−j

6: β̂OLS
j =

ẑ(
j ŵj

ẑ(
j xj

, β̂HOLS
j =

(
ˆ̃z3

j

)(
ŵj

(
ˆ̃z3

j

)(
xj

and

v̂j =

(
ˆ̃z3

j

)

1
n

(
ˆ̃z3

j

)(
xj

− ẑj
1
n ẑ(

j xj

7: σ̂ 2 =
∥∥y − xβ̂

∥∥2
2

n −
∣∣∣β̂

∣∣∣
0

(or any other reasonable

variance estimator)
8: Create nsim i.i.d copies of S ∼ N

(
0, σ̂ 2 1

n2 v̂(v̂
)

,

say, s1 to snsim

9: for j = 1 to p do

10: pj = 2



1 − &





∣∣∣β̂HOLS
j − β̂OLS

j

∣∣∣

σ̂
1
n

∥∥v̂j
∥∥

2









11: Pj = 1
nsim

∑nsim
i=1 1

(∣∣∣β̂HOLS
j − β̂OLS

j

∣∣∣ >
∥∥si∥∥

∞
)
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We provide here the main result to justify Algorithm 2
invoking additional assumptions on the dimensionality and
sparsity of the problem. We use the de#nitions s := ‖β‖0,
sj :=

∥∥∥γ j

∥∥∥
0

and s̃j :=
∥∥∥γ̃ j

∥∥∥
0

to denote the di"erent levels of
sparsity.

(C1) The design matrix x has iid sub-Gaussian rows. The
moment matrix !X has strictly positive smallest eigenvalue
(2

min satisfying 1/(2
min = O (1) . Also, max

j
!X

j,j = O (1) .

(C2) s = O

(
n1/2

log
(
p
)3

)

.

(C3) ss2
j = O

(
n3/2

log
(
p
)3

)

, ssj = O

(
n

log
(
p
)5/2

)

and

ss1/2
j = O

(
n1/2

log
(
p
)3/2

)

.

(C4) sj = O

(
n3/5

log
(
p
)
)

.
(C5)

√
nsλλ̃j = O (1).

(C6) s̃jλ̃2
j = O (1).

Theorem 2. Assume that the data follows the model (4) with
sub-Gaussian E and that (C1)–(C6) hold (∀j). Let β̂ come from
Lasso regression with λ 1

√
log

(
p
)
/n, ẑj from nodewise Lasso

regression using λj 1
√

log
(
p
)
/n, and ˆ̃z3

j from nodewise Lasso

regression of ẑ3
j versus x−j using λ̃j 1 max

{
log

(
p
)5/2 n−1/2,

s2
j log

(
p
)5/2 n−3/2, sj log

(
p
)2 n−1, √sj log

(
p
)

n−1/2
}

. Let σ̂ be
any consistent estimator for σ . Then,

√
n

(
β̂HOLS

j − β̂OLS
j

)

√
σ̂ 2 1

n v̂(
j v̂j

D→ N (0, 1)

where v̂j =

(
ˆ̃z3

j

)

1
n

(
ˆ̃z3

j

)(
xj

− ẑj
1
n ẑ(

j xj

.

We defer the technical details to Section C of the supplemen-
tal materials. Simulation results concerning high-dimensional
data can be found in Section A of the supplemental materials.

3. The Confounded Case and Local Null Hypotheses

In this section and the following, we mainly exploit confounding
in linear models as the alternative hypothesis since these are
the models where our tests for the local null hypotheses H0,j
are most informative. For a discussion of which interpretations
might carry over to more general data generating distributions,
we refer to Section 4.3.

Note that everything that is discussed in Sections 3 and 4
implicitly applies to high-dimensional data as well under suit-
able assumptions. We refrain from going into detail for the sake

of brevity. Thus, Theorems 3–6 which contain our main asymp-
totic results for the local intepretation are designed explicitly for
the #xed p case.

We look at the causal model
X ← ρH + EX

Y ← X(β + H(α + E ,
(8)

where H ∈ Rd, EX ∈ Rp and E ∈ R are independent and
centered random variables, and α ∈ Rd and ρ ∈ Rp×d are #xed
model parameters. Thus, there exists some hidden confounder
H. For the inner product matrices, it holds that

!X = !EX + ρ!Hρ(.

Furthermore, we have

βOLS =
(
!X)−1 E [XY] =

(
!X)−1 (

!Xβ + ρ!Hα
)

= β +
(
!X)−1

ρ!Hα. (9)

We will generally refer to βOLS
j += βj, where βj is according to

model (8), as confounding bias on βOLS
j . Further, when writing

directly confounded, we mean covariate indices j for which
Xj += EXj .

Note that we can always decompose Y both globally and
locally as follows

Y = X(βOLS + Ẽ , with E
[

XẼ
]

= 0, E
[
Ẽ
]

= 0

but (potentially) X +⊥ Ẽ (10)

Wj = Zjβ
OLS
j + Ẽ , with E

[
ZjẼ

]
= 0, E

[
Ẽ
]

= 0

but (potentially) Zj +⊥ Ẽ (11)

using the de#nitions from (5). We now want to see how βOLS

relates to β in certain models. Especially, we are interested in
whether there is some potential local interpretation in the sense
of distinguishing between “confounded” and “unconfounded”
variables. From (9), we see that this is linked to the structure of
the covariance matrices as well as ρ and α. We de#ne the sets

V =
{

j : βOLS
j = βj

}
and

U =
{

j : βOLS
j = βHOLS

j

}
=

{
j : H0,j is true

}
. (12)

Using the Woodbury matrix identity, we #nd a su!cient condi-
tion

j ∈ V if ρ(
(
!EX

)−1

j
=0 which is implied by

{
k ∈

{
1, . . . , p

}
:

(
!EX

)−1

jk
+= 0

}
∩

{
l ∈

{
1, . . . , p

}
:

∥∥∥e(
l ρ

∥∥∥ > 0
}

=∅. (13)

Thus, if the intersection between covariates that have linear pre-
dictive power for Xj and covariates that are directly confounded
is empty, it must hold that βOLS

j = βj. Therefore, we can indeed
say that for these variables we estimate the true causal e"ect
using ordinary least squares.

To correctly detect V , we would like βHOLS
j = βOLS

j = βj.
As βHOLS

j involves higher-order moments, knowledge of the
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covariance structure is not su!cient to check this. From (11),
we see that E

[
Z3

j Ẽ
]

= 0 is necessary and su!cient to ensure
j ∈ U. In Section 3.2, we discuss the two cases where detection
fails, that is, U \ V += ∅ and V \ U += ∅. We present models
for which we can characterize a set of variables which are in
U ∩ V =

{
j : βHOLS

j = βOLS
j = βj

}
in Section 4.

3.1. Sample Estimates

For a confounded model, the hope is that the global test
min

j
Pj ≤ α, where Pj is the adjusted p-value according to

Step 10 in Algorithm 1, leads to a rejection of H0, that is, the
modeling assumption (4). One could further examine the local
structure and, based on the corrected p-values Pj, distinguish the
predictors for which we have evidence that βHOLS

j += βOLS
j . We

consider in the following this local interpretation, showing that
we asymptotically control the Type-I error and receive power
approaching 1. Implicitly, we assume that U is a useful proxy
for V .

For all asymptotic results in this section, we assume p to be
#xed and n → ∞ as in Theorem 1.

Theorem 3. Assume that the data follows the model (10) and
that (A1)–(A2) hold. Assume further σ 2

Ẽ
= E

[
Ẽ2

]
< ∞. Then,

β̂OLS
j = βOLS

j + Op (1) , β̂HOLS
j = βHOLS

j + Op (1)

and v̂ar
(
β̂HOLS

j − β̂OLS
j

)
= Op

( 1
n

)
,

where v̂ar
(
β̂HOLS

j − β̂OLS
j

)
is according to (7).

Thus, for some #xed alternative
∣∣∣βHOLS

j − βOLS
j

∣∣∣ > 0, the
absolute z-statistics increases as

√
n.

In order to get some local interpretation, the behavior for
variables j ∈ U is of importance. If

∣∣∣βHOLS
j − βOLS

j

∣∣∣ = 0, The-
orem 3 is not su!cient to understand the asymptotic behavior.
We re#ne the results using additional assumptions.

(A3) E
[(

XjẼ
)2

]
< ∞ ∀j

(B1) E
[

Z2
j XkẼ

]
= 0 ∀k += j

(B2) Zj ⊥ Ẽ

(B3) Z̃3
j ⊥ Ẽ

Note that we use di"erent letters for the assumptions to dis-
tinguish between those that are essentially some (mild) moment
conditions and those that truly make nodes unconfounded.
Obviously, (B2) is not necessary for βOLS

j = βHOLS
j , but we

will focus on these variables as these are the ones that are truly
unconfounded in the sense that the projected single variable
model (11) has an independent error term, while as for other
variables it can be rather considered an unwanted artifact of our
method. Furthermore, the derived asymptotic variance results
only hold true when assuming (B2) and (B3) as well. Assump-
tion (A3) implies a further moment condition. Especially, when
considering nonlinearities, there exist cases for which (A3) is

not implied by (A2). We discuss Assumptions (B1)–(B3) for
certain models in Section 4. Condition (B1) seems to be a bit
arti#cial but is invoked in the proofs. We argue in Section 4 that
it is naturally linked to the models in scope.

Theorem 4. Assume that the data follows the model (10)
and that (A1)–(A3) hold. Let j be some covariate with
βOLS

j = βHOLS
j for which (B1)–(B3) hold. Then,

√
n

(
β̂HOLS

j − β̂OLS
j

)

√
v̂ar

(√
n

(
β̂HOLS

j − β̂OLS
j

))
D→ N (0, 1) .

Thus, for these predictors we receive asymptotically valid
tests.

Multiplicity correction. In order not to falsely reject the local
null hypothesis H0,j for any covariate with j ∈ U (with prob-
ability at least 1 − α), we need to invoke some multiplic-
ity correction. Analogously to Section 2.2, one can see that
β̂

HOLS − β̂
OLS = v̂(ε̃/n, which enables the multiplicity cor-

rection as in Algorithm 1.

Theorem 5. Assume that the data follows the model (10) and
that (A1)–(A3) hold. Let U ′ be the set of variables j for which
j ∈ U and (B1)–(B3) hold. Then,

√
n

(
β̂

HOLS
U ′ − β̂

OLS
U ′

) D→ N
(

0, σ 2
ẼE

[
VU ′V(

U ′
])

1
n v̂(

U ′ v̂U ′
P→ E

[
VU ′V(

U ′
]

Corollary 2. Assume the conditions of Theorem 5. Consider the
decision rule to reject H0,j i" Pj ≤ α, where Pj is as in Step 10
of Algorithm 1. Then, the familywise error rate amongst the set
U ′ is asymptotically controlled at α.

3.2. Inferring V from U

Recall the de#nitions in (12). U is the set that we try to infer
with our HOLS check. Naturally, one would rather be interested
in the set V , which consists of the variables for which we can
consistently estimate the true linear causal e"ect according to
(8) through linear regression. We discuss here when using U
as proxy for V might fail and especially analyze how variables
could belong to the di"erence between the sets. For this, recall
our formulation of the model when the global null hypothesis
does not hold true in (10) and (11). Note that j ∈ U is equivalent
to E

[
Z3

j Ẽ
]

= 0.
For any variable j ∈ U \ V , certain modeling assumptions,

that we discuss in the sequel, cannot be ful#lled but they are
not necessary for E

[
Z3

j Ẽ
]

= 0. Especially, the last equality
always holds if both EX and H jointly have Gaussian kurtosis.
If they are even jointly Gaussian, then it is clear that X ⊥ Ẽ
such that the model (10) has independent Gaussian error. Thus,
when using only observational data, it behaves exactly like a
model under the global null hypothesis and, naturally, we cannot
infer the confounding e"ect. Apart from Gaussian kurtosis,
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j ∈ U\V would be mainly due to special constellations implying
cancelation of terms that one does not expect to encounter in
normal circumstances.

For j ∈ V \ U, Zj and Ẽ must not be independent. As
Zj +⊥ Ẽ , the single-covariate model (11) is not a linear causal
model with independent error term as given in (1). Therefore,
from a causal inference perspective, one can argue that rejecting
the local null hypothesis H0,j is the right thing to do in this case.
Furthermore, having variables j ∈ V is usually related to certain
model assumptions except for very speci#c data setups that lead
to cancelation of terms. Under these assumptions, Zj ⊥ Ẽ is then
usually implied. An example where βOLS = β , but (potentially)
X +⊥ Ẽ is data for which ρ!Hα = 0 using the de#nitions from
model (8).

Recovery of U. Based on our asymptotic results when the
global null does not hold true, we would like to construct a
method that perfectly detects the unconfounded variables as
n → ∞. De#ne

Û =
{

j : H0,j not rejected
}

(14)

The question is how and when can we ensure that

lim
n→∞P

[
Û = U

]
= 1.

Suppose that we conduct our local z-tests at level αn, which
varies with the sample size such that αn → 0 as n → ∞. It
will be more convenient to interpret this as a threshold on the
(scaled) absolute z-statistics, say, τn that grows with n, where the
z-statistics is de#ned as

tj =
√

n
(
β̂HOLS

j − β̂OLS
j

)

√
v̂ar

(√
n

(
β̂HOLS

j − β̂OLS
j

)) .

We refrain from calling it zj to avoid confusion. We use an
additional assumption which is a relaxed version of (B3).

(A4) E
[(

Z̃3
j Ẽ

)2
]

< ∞

Theorem 6. Assume that the data follows the model (10) and
that (A1)–(A3) hold. Assume that (B1) and (A4) hold ∀j ∈ U.
Let τn be the threshold on the absolute z-statistics to reject the
according null hypothesis with τn = O

(√
n
)

and 1/τn = O (1).
Then,

lim
n→∞P

[
Û = U

]
= 1.

In other words, we can choose τn to grow at any rate slower
than

√
n.

4. Speci!c Models

In this section, we discuss two types of models where the local
interpretation applies. In these settings, there are variables for
which βj = βOLS

j = βHOLS
j and Assumptions (B1)–(B3) hold

even though the overall data follows the model (8). We note here
#rst that the model of jointly Gaussian EX, for which the method
is suited, is a special case of the model in Section 4.2.

4.1. Block Independence of EX

Assume that the errors EX can be grouped into two or more
independent and disjoint blocks. Denote the block that includes
j by B

(
j
)
. Then, it is clear that

(
!EX

)−1
jk = 0 if B

(
j
)

+= B (k).
If XB(j) = EXB(j) , that is, the confounder has no e"ect onto
XB(j), (13) holds for all covariates in B

(
j
)
. Then, no variable in

XB(j) contributes to the best linear predictor for H(α. Due to
the block independence, this yields XB(j) ⊥ Ẽ and Zj ⊥ Ẽ ,
that is, (B2) is ful#lled. This also ensures E

[
Z3

j Ẽ
]

= 0. We
consider the remaining assumptions: Naturally, the regression
Z3

j versus X−j only involves XB(j)\j and (B3) holds as well. For
(B1), separately consider the case k ∈ B

(
j
)

and k +∈ B
(
j
)
. In

the #rst case, E
[

Z2
j XkẼ

]
= E

[
Z2

j Xk
]

E
[
Ẽ
]

= 0. In the second

case, E
[

Z2
j XkẼ

]
= E

[
Z2

j

]
E

[
XkẼ

]
= 0.

Theorem 7. Assume the data follows the model (8) with errors
EX that can be grouped into independent blocks. Then,

βHOLS
j = βOLS

j = βj ∀j for which XB(j) = EXB(j) . Further,

(B1)–(B3) hold ∀j for which XB(j) = EXB(j) .

In some cases, block independence may be a restrictive
assumption. Testing this assumption is not an easy problem, and
will remain out of the scope of this article. However, the HOLS
check still provides an indirect check of such an assumption
since HOLS would likely reject the local null-hypotheses for all
covariates, at least for large datasets, if there is no block that is
una"ected by the confounding.

4.2. Linear Structural Equation Model

From the previous sections, we know that locally unconfounded
structures, in the sense that βOLS

j = βj, are strongly related to
zeroes in the precision matrix. Thus, the question arises for what
type of models having zeroes in the precision matrix is a usual
thing. Besides block independence, which we have discussed in
Section 4.1, this will mainly be the case if the data follows a linear
structural equation model (SEM). Thus, we will focus on these
linear SEMs for the interpretation of local, that is, by parameter,
null hypotheses.

To start, assume that there are no hidden variables. So, let X
be given by the following linear SEM

Xj ← *j +
∑

k∈PA(j)

θj,kXk j = 1, . . . , p, (15)

where the *1, . . . , *p are independent and centered random
variables. We use the notation PA

(
j
)
, CH

(
j
)

and AN
(
j
)

for j’s
parents, children and ancestors. Further, assume that there exists
a directed acyclic graph (DAG) representing this structure. For
this type of model, we know that a variable’s Markov boundary
consists of its parents, its children, and its children’s other par-
ents. For every other variable k outside of j’s Markov boundary,
we have

(
!X)−1

jk = 0. Thus, these 0 partial correlations are very
usual. In the following, we will analyze how our local tests are
especially applicable to this structure.
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In the context of linear SEMs, hidden linear confounders
can be thought of as unmeasured variables. Therefore, we split
X which contains all possible predictors into two parts. Let
XM be the measured variables and XN the hidden confounder
variables. Let ( =

(
*1, . . . , *p

)( with the according subsets
(M and (N . Then, we can write

X = ω( , XM = ωM,M(M + ωM,N(N , and
XN = ωN,M(M + ωN,N(N

for some suitable ω ∈ Rp×p, where ωk,l = 0 for k += l if l +∈
AN (k) and ωk,k = 1. Note that ωM,M is always invertible since
it can be written as a triangular matrix with ones on the diagonal
if permuted properly. Under model (8), Y can be thought of as
a sink node in (15). To avoid confusion, we call the parameter if
all predictors were observed β∗. This leads to the de#nitions

EX :=ωM,M(M , ρ := ωM,N and H := (N such that
XM =EX + ρH with EX ⊥ H

Y − E =X(β∗ = X(
Mβ∗

M + X(
Nβ∗

N

=X(
M

(
β∗

M +
(
ωN,Mω−1

M,M
)(

β∗
N

)
+

H( (
ωN,N − ωN,Mω−1

M,MωM,N
)(

β∗
N

:=X(
Mβ + H(α. (16)

When only the given subset is observed we are interested in the
parameter β as before. We have βj = β∗

j i"
((

ωN,Mω−1
M,M

)(
β∗

N
)

j = 0.

Theorem 8. Assume that the data follows the model (15) and
(16). Let XM and XN be the observed and hidden variables.
Denote by PAM (k) the closest ancestors of k that are in M.
Consider some j ∈ M.

If + ∃k ∈ N :
(

j ∈ PAM (k) and βk += 0
)

, then βj = β∗
j .

In other words, the causal parameter can only change for
variables that have at least one direct descendant in the hidden
set which is a parent of Y itself. By direct descendant, we
mean that there is a path from j to k that does not pass any
other observed variable. We analyze for which variables we can
reconstruct this causal parameter using ordinary least squares
regression.

Theorem 9. Assume that the data follows the model (15) and
(16). Let XM and XN be the observed and hidden variables.
Then,

βHOLS
j = βOLS

j = βj ∀j ∈ M that are not in the Markov
boundary of any hidden variable.

(B1)–(B3) hold ∀j ∈ M that are not in the Markov
boundary of any hidden variable.

Thus, for those variables, we can (a) correctly retrieve the
causal parameter using ordinary least squares regression and (b)
detect that this is the true parameter by comparing it to βHOLS

j .

Figure 1. DAG of the linear SEM. X3 is assumed to be hidden which is depicted

by the dashed circle. We use the following speci!cations: *1
D= *3

D= *5 ∼
t7/

√
7/5, *2

D= *6
D= *7 ∼ N (0, 1/2), *4 ∼ Unif

[
−√

3/2,
√

3/2
]

and
E ∼ N (0, 1). θ2,1 = θ7,6 = √

1/2, θ4,2 = θ4,3 = θ6,4 = θ6,5 = 0.5 and
β∗

3 = √
5/2.

Simulation example. We assess the performance of our HOLS
method in a linear SEM using a simple example. In Figure 1, we
show the DAG that represents the setup.

For simplicity, the parameters are set such that X1 to X7 all
have unit variance. X3 is the only parent of Y and we apply
the HOLS method using all but X3 as predictors, that is, X3 is
treated as hidden variable. Following Theorem 9, we know that
for variables X1 and X5 to X7 the causal e"ect on Y is consistently
estimated with OLS, while we chose the detailed setup such that
there is a detectable confounding bias on βOLS

2 and βOLS
4 . Thus,

ideally, our local tests reject the null hypothesis for those two
covariates but not for the rest.

For numerical results, we let the sample size grow from 102

to 106. For each sample size, we do 200 simulation runs. On
the le$-hand side of Figure 2, we show the average absolute
z-statistics per predictor for the di"erent sample sizes. For X2
and X4 we see the expected

√
n-growth. For the other variables,

the empirical averages are close to the theoretical mean, which
equals

√
2/π ≈ 0.8, with a minimum of 0.70 and a maximum

of 0.88. Further, we see that the confounding bias on the OLS
parameter for X4, which is a child of the hidden variable, is easier
to detect than the bias onto the parameter for X2, which is a
child’s other parent. The multiplicity corrected p-value for X4 is
rejected at level α = 0.05 in 91.5% of the cases for n = 103, while
as the null hypothesis for X2 is only rejected with a empirical
probability of 3%. For X2, it takes n = 105 samples to reject the
local null hypothesis in 89% of the simulation runs.

Following Section 3.2, we should be able to perfectly recover
the set U (see, Equation (12)) as n → ∞ if we let the threshold
on the absolute z-statistics grow at the right rate. Therefore, we
plot on the right-hand side of Figure 2 the empirical probability
of perfectly recovering U over a range of possible thresholds for
the di"erent sample sizes. For n = 106, we could achieve an
empirical probability of 1. For n = 105 the optimum probability
is 87%, while as for n = 104 it is only 19%.

Naturally, perfectly recovering U is a very ambitious goal for
smaller sample sizes, and one might want to consider di"erent
objectives. In Figure 3, we plot two di"erent performance met-
rics. On the le$-hand side, we plot the empirical probability
of not falsely including any variable in Û against the average
intersection size

∣∣∣Û ∩ U
∣∣∣. The curve is parameterized implicitly

by the threshold on the absolute z-statistics in order to reject the
local null hypothesis for some variable. Thus, the graphic con-
siders the question of how many variables in U can be recovered
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Figure 2. Simulation in a linear SEM corresponding to Figure 1. The results are based on 200 simulation runs. On the left: Average absolute z-statistics per covariate for
di"erent sample sizes. The dotted lines grow as

√
n and are !t to match perfectly at n = 105. On the right: Empirical probability of perfectly recovering U (see, Equation

(12)) for di"erent sample sizes.

Figure 3. Simulation in a linear SEM corresponding to Figure 1. The results are based on 200 simulation runs. On the left: Probability of not falsely including a variable in
Û versus average intersection size

∣∣∣Û ∩ U
∣∣∣ (see, Equation (14)). On the right: average remaining fraction of confounding signal versus average intersection size

∣∣∣Û ∩ U
∣∣∣. It

holds that |U| = 4. Both curves use the threshold on the absolute z-statistics as implicit curve parameter. Note that the legend applies to either plot.

while keeping the probability of not falsely including any low.
For a sample size of 105, we have an average intersection size of
3.97 allowing for a 10% probability of false inclusions. For 104, it
is still 0.995. Thus, we can #nd (almost) one of the four variables
in U on average. As we see in Figure 2, the bias on βOLS

4 is much
easier to detect than the bias on βOLS

2 . Thus, keeping the proba-
bility of including X2 in Û low is still an ambitious task. There-
fore, we analyze on the right-hand side of Figure 3 how many
variables in U we can #nd while removing a certain amount of
confounding signal. We de#ne the remaining fraction as

∥∥∥βOLS
Û − βÛ

∥∥∥
1∥∥βOLS − β

∥∥
1

,

that is, how much of the di"erence βOLS − β persists in terms
of .1 norm.

In this SEM, βOLS
4 caries 2/3 of the confounding signal, βOLS

2
only 1/3. Accepting 1/3 of remaining confounding signal, we
receive an average intersection size of 3.885 for a sample size of
103. For 104, the average is 4. Thus, if we allow for false inclusion
of X2 we can almost perfectly retrieve all of U for sample size 103

already.

What if X includes descendants of Y? So far, we have only
considered the case where X causally a"ects Y , but potentially,
some of Y ’s parents are missing leading to a confounding e"ect.
However, another possibility for βOLS to not denote a causal
e"ect is that there are descendants of Y amongst the predictors.
The two di"erent situations are depicted in Figure 4. The case
with descendants in the set of predictors #ts our theory from
before if interpreted properly. If the model (4) for Y holds true
using only the parents as predictors, Y can be naturally included
in the assumed linear SEM for X in (15). Then, one can also
think of E as an unobserved confounder. The Markov boundary
of E with respect to the observed predictors is the same as the
Markov boundary of Y . Of course, it holds β = β∗, that is,
βj = 0 ∀j +∈ PA (Y). Using Theorem 9, we #nd

βHOLS
j = βOLS

j = βj = 0 ∀j ∈ M that are not in the
Markov boundary of Y .

Thus, for all variables outside Y ’s Markov boundary, one can
correctly detect that they have no causal e"ect onto Y ceteris
paribus. The coe!cients for the variables in the boundary,
which includes all parents, are up to term cancelations all
subject to confounding bias. This can be detected under some
conditions, as discussed in Section 3.2.
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Figure 4. Left: SEM with a hidden confounder. Right: SEM with a descendant of Y .

4.3. Beyond Linearity

We have mainly focused on linear models, that is, the data
is either generated by model (4) or model (8). Naturally, this
assumption might be questionable in practice. Therefore, we
provide some intuition about how HOLS might be applied in
a more general setup. As we only detect misspeci#cation of the
OLS coe!cient without identifying the type of misspeci#cation,
one should not try to over-interpret the e"ect of the regressors
in Ûc =

{
1, . . . , p

}
\ Û (see, Section 3.2). However, the linear

e"ect of the variables in Û can always be interpreted to be well-
speci#ed, meaning that E

[
Wj|Zj

]
= ZjβOLS

j or at least “su!-
ciently” well-speci#ed such that no misspeci#cation is detected
in the data. Generally, we can write

Y = X(βOLS + fnonlinear (X) + E , where
fnonlinear (X) = E [Y|X] − X(βOLS, E [E |X] = 0.

Wj = Zjβ
OLS
j + fnonlinear (X) + E .

Thus, well-speci#cation of βOLS
j implies E

[
fnonlinear (X) |Zj

]
=

0, that is, a$er linearly adjusting for X−j, Xj does not have
any predictive power for fnonlinear (X). If it does not have any
predictive power a$er linear adjustment, it would be a natural
conclusion that it does not have predictive power a$er optimally
adjusting for X−j implying that fnonlinear (X) can be written as
function of X−j only. This would then imply

E
[
Y|Xj = xj + 1, X−j = x−j

]
− E

[
Y|Xj = xj, X−j = x−j

]

= βOLS
j ∀xj, x−j.

Except for Gaussian data, such a linear relationship must be
either causal or due to very pathological data setups. Excluding
such unusual cancelations, the conclusion is that for j ∈ U there
must be a true linear causal e"ect from Xj to Y keeping the other
predictors #xed, which can be consistently estimated using OLS.
Of course, if there are no locally linear structures, it might well
be that U = ∅ such that the local tests are not more informative
than the global test. However, there is also nothing to be lost by
exploiting this local view.

Note that the asymptotic results presented in Sections 3.1 and
3.2 hold for nonlinear data as well since they only assume model
(10)–(11), which is the most general formulation.

5. Real Data Example

We analyze the %ow cytometry dataset presented by Sachs et al.
(2005). It contains cytometry measurements of 11 phosphory-
lated proteins and phospholipids. There is a “ground truth” on
how these quantities a"ect each other, the so-called consensus

Table 1. The working model is taken from the consensus network.

Edge Passing HOLS Signi!cant in linear model Minimum p-value

RAF → MEK 3 2 0
PKA → Akt 3 3 1.5e-120
PKA → Erk 5 5 3.8e-69
PKC → JNK 3 3 5.9e-55
PIP2 → PIP3 1 1 6.5e-40
PIP3 → PLCg 5 1 1.4e-36
PKC → p38 1 1 7.1e-34
PIP3 → PIP2 1 1 9.6e-08
PLCg → PKC 6 0 0.016
PLCg → PIP2 1 0 0.027
PKC → RAF 8 0 0.046
PKC → PIP2 8 0 0.057
PKA → RAF 8 0 0.086
PKA → p38 8 0 0.12
PIP3 → Akt 8 0 0.2
PKA → JNK 8 0 0.21
MEK → Erk 8 0 0.42

NOTE: The second column reports the number of environments in which the edge
passes the HOLS check (among eight possible ones). The third column addition-
ally shows, in how many of these it is also signi!cant in the respective linear
model !t. The p-value is the minimum of the p-values from linear regression in
environments, where the edge passes the HOLS check.

network (Sachs et al. 2005). Data is available from various exper-
imental conditions, some of which are interventional environ-
ments. The dataset has been further analyzed in various projects,
see, for example, Mooij and Heskes (2013), Meinshausen et al.
(2016), and Taeb et al. (2021). Following these works, we con-
sider data from eight di"erent environments, seven of which are
interventional. The sample size per environment ranges from
707 to 913.

In our analysis, we focus on the consensus network from
Sachs et al. (2005). For each node, we go through all envi-
ronments, #t a linear model using all its claimed parents as
predictors, and assess the goodness of #t of the model using our
HOLS check. In the consensus network, there is one bidirected
edge between the variables PIP2 and PIP3. We include it as a
parent for either direction. For each suggested edge, we also
collect the p-values from the linear model #t in all environments,
keeping only those where the edge passes the local HOLS check
at level α = 5% without multiplicity correction. We omit the
multiplicity correction here to lower the tendency to falsely
claim causal detection. In Table 1, we report the minimum p-
value from OLS, over the environments where the HOLS check
is passed, sorted by increasing p-values. Additionally, we show
the number of environments in which the check is passed and
out of these the number where the edge is signi#cant at level
α = 5% in the respective linear model #t (with Bonferroni
correction over all 8 environments and 17 edges, that is, we
require a p-value of at most 0.05/136). Note that there is one
p-value 0 reported corresponding to a t-value of 174, which
exceeds the precision that can be obtained with the standard R-
function lm.

We see that the edge RAF → MEK is the most signi#cant.
Further, every edge of the consensus network passes the HOLS
check in at least one environment. Frequently, we see that edges
pass the HOLS check in certain environments without being sig-
ni#cant in the linear model. Considering our discussion around
linear SEMs, this could easily happen if the alleged predictor
node is not actually in the Markov boundary of the response.
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In fact, there are seven edges that pass the HOLS check in every
environment which are not signi#cant based on the linear model
#ts. This is in agreement with Taeb et al. (2021), where none of
them is reported.

As we cannot guarantee that the data follows a linear SEM as
in Equation (15), we shall not interpret the edges that do not pass
the HOLS check to be subject to hidden confounding. However,
the fact that we still #nd a decent number of suggested edges
that pass the HOLS check, at least in some environments, leads
to evidence that the assumption of some local unconfounded
linear structures is not unrealistic, see also the discussion in
Section 4.3.

We can also analyze our results in the light of invariant causal
prediction, see, for example, Peters, Bühlmann, and Mein-
shausen (2016), where one typically assumes that interventions
do not change the underlying graph except for edges that point
toward the node that is intervened on. This assumption is highly
questionable in practice, and our #ndings, which vary a lot over
di"erent environments, indicate that the assumption is likely
not ful#lled in the given setup.

6. Discussion

We have introduced the so-called HOLS check to assess the
goodness of #t of linear causal models. It is based on the depen-
dence between residuals and predictors in misspeci#ed models,
leading to nonvanishing higher moments. Besides checking
whether the overall model might hold true, the method allows
to detect a set of variable for which linear regression consistently
estimates a true (unconfounded) causal e"ect for certain model
classes.

We extend the HOLS method to high-dimensional datasets
based on the idea of the debiased Lasso (Zhang and Zhang 2014;
van de Geer et al. 2014). This extension comes very naturally
as our HOLS check involves nodewise regression just as the
debiased Lasso.

Of particular interest are linear structural equation mod-
els, for which our method allows for very precise character-
izations regarding which least squares parameters are causal
e"ects. The result requires some non-Gaussianity. We comple-
ment our theory with a simulation study as well as a real data
example.

A drawback of our method is that it does not distinguish
whether a model is misspeci#ed due to confounding or due to
nonlinearities in the model. Therefore, an interesting follow-up
direction would be to extend our methodology and theory from
linear to nonlinear SEM using more %exible regression methods.
This could allow to detect local causal structures in nonlinear
settings as well.

Supplementary Materials

Simulation results as well as proofs and extended theory can be found in
the supplemental material.
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