
Offering Data Science Coursework to Non-Computing Majors
Xumin Liu
xmlics@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Erik Golen
efgics@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Rajendra K. Raj
rkr@cs.rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Kimberly Fluet
kfluet@warner.rochester.edu

University of Rochester
Rochester, NY, USA

ABSTRACT
Data science courses offered by computing departments tend to
be inappropriate for non-computing majors due to the emphasis
on coding and a long chain of prerequisite courses in computer
science and mathematics or statistics. Moreover, courses designed
for computingmajors by computing faculty do not alwaysmatch the
backgrounds and interests of students majoring in other disciplines.
This paper discusses the motivation and challenges of offering
an entry-level data science course for students in non-computing
disciplines with limited coding experience. Experiences with the
teaching of this course at the Rochester Institute of Technology are
discussed. Preliminary assessment results have shown this approach
to be useful.

KEYWORDS
Data science, computer science principles, non-computing majors,
data science learning platform
ACM Reference Format:
Xumin Liu, Erik Golen, Rajendra K. Raj, and Kimberly Fluet. 2023. Offering
Data Science Coursework to Non-Computing Majors . In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Data science (DS) has rapidly gained tremendous popularity and
broad adoption across the spectrum of application domains, from
science to the arts, engineering to business, and so on. The potential
for efficiently discovering valuable knowledge from large amounts
of data gathered in these areas has created an increasing workforce
demand for data science expertise within their own disciplines. As
a result, DS curricula have been called for in many disciplines over
the past few years [5, 7, 16].

DS education is increasingly viewed as being founded on three
pillars: computing, statistics/mathematics, and domain knowledge [10].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The latest report on DS curricular competencies defined by the
ACM Data Science Task Force appears to be targeted at computing
majors with computing-heavy knowledge areas: “artificial intelli-
gence; big data systems; computing and computer fundamentals;
data acquisition, management, and governance; data mining; data
privacy, security, integrity, and analysis for security; machine learn-
ing; programming, data structures, and algorithms; and software
development and maintenance” [9]. It also requires competencies
in “calculus, discrete structures, probability theory, elementary
statistics, advanced topics in statistics, and linear algebra, among
others” [9]. Therefore, many DS courses are offered for computing
majors and often have prerequisite requirements on programming
(such as Python) and mathematics (such as Linear Algebra and Sta-
tistics). They are usually offered in the late years of college or at the
graduate level. Such programming-focused, advanced-level courses
are not suitable for those having limited or no computing back-
grounds, such as elementary to high students or non-computing
majors. First, those students may not be ready to take these courses
due to the required prerequisites. Second, the courses may not serve
their needs of learning DS properly due to the focus on the pro-
gramming part. Therefore, current DS courses may not cover the
education demands of students in non-computing majors.

Some non-computing academic programs, e.g., business and
biology, have started to offer courses that cover data analytics topics.
However, many other programs lack instructor-related resources
and other support to provide DS education to their students. It is
also recognized that, just like computing skills, DS concepts should
be introduced to students as early as possible to equip them with
useful data handling and analytic skills, inspire their interests, and
even prepare them to take advanced DS courses. As we are all living
in this data era, how data is collected, handled, and used, could
make a tremendous impact on our daily lives. Students need to be
aware of data ethics challenges and learn how to properly share and
handle data, regardless of the career path they will follow. All of
these considerations call for an entry-level course that is designed
for non-computing majors who will learn important data ethical
topics and apply DS techniques to sciences, engineering, business,
the humanities, or perhaps others as general education.

The remainder of this paper is organized as follows. We discuss
several key challenges of offering an entry DS coursework to non-
computing majors and ensuring the success of students in the
classroom in Section 2. In Section 3, we describe the design and
setting of an entry-level DS course with the incorporation of a web-
based learning platform. In Section 4, we describe the deployment

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Liu et al.

and results of the course. In Section 5, we discuss some related
work. We conclude this paper in Section 6.

2 WHAT ARE THE CHALLENGES?
In this section, we discuss several common challenges an instructor
may face when offering such an entry-level DS course for non-
computing majors.

Achieve desirable learning outcomes. TeachingDS to non-computing
students introduces the challenge of potentially limited learning
outcomes due to the little or no prerequisite knowledge in com-
puting. Besides the high requirement on statistics and probabilistic
knowledge to understand data patterns and the rationale of choos-
ing different machine learning models, coding is one of the impor-
tant components in DS, which is intensively needed for hands-on
exercises of using current DS packages in R or Python (e.g., pandas,
numpy, and scikit-learn). For students that do not have sufficient
background in coding and computational thinking, the instructors
need to allocate enough class time to the coding part, potentially
leaving less room for DS-specific topics in the class. Other courses
described in Section 5, such as the one offered at the University
of Sydney [6] and the one offered at the Boston University [17],
often cover more programming than our proposed course but might
have missed several DS topics that we considered important. As an
alternative, the instructors can put less emphasis on implementa-
tion details and teach the topics on a purely conceptual level. In a
nutshell, due to the tight linkage between hands-on experience and
coding assignments, standard convention assumes that students
may have limited, or no, chances of applying the knowledge to solve
real-world problems, but this does not need to be the case [19].

Solve problems in various domains. Students should not only learn
DS skills but also be exposed to problems in various application
domains to understand how these newfound skills can be applied
in different contexts [15]. A high-quality design and delivery of the
course materials usually go beyond the expertise level of individual
instructors and require collaboration among a group of faculty with
diverse backgrounds that are complementary to each other. For ex-
ample, instructors from non-computing disciplines can contribute
their domain knowledge to design course projects and case studies
as well as give guest lectures to explain the general background
and the customary data collection process, provide guidelines on
understanding the data, interpret the analysis results, and more. In-
structors from computing disciplines can teach students to perform
those tasks in computational ways while not having to tenuously
include domain-specific content that they may not be comfortable
with.

Set up accessible lab environments. Hands-on practice is a major
component of DS education, where students learn how to apply
concepts and techniques to real-world data problems. It is also
an effective way to engage students and improve their learning
experience. In many DS courses, students are required to use ei-
ther R or Python to implement certain DS tasks, such as exploring
or cleaning data. Students may be given instructions on setting
up the lab environment, including downloading, installing, and
configuring an IDE to write and run code. For those who have

little or no programming background, students can easily be over-
whelmed by those steps and issues they may come across, such as
the inconsistency between Python versions and the lack of required
plugins. Students can also be confused by the instructions if they
use different OSs or have different system settings than the ones
specified in the document. Some online IDEs, such as Google Colab
and myBinder, have gained popularity as a tool to support class
demos and hands-on exercises since they allow students to run
their Python code without the need of a local Python IDE. But still,
the use of languages to code and debug errors or unexpected results
can also go beyond the grasp of non-computing majors. Some tools,
such as Rattle R, RapidMiner, and Weka, provide different levels
of convenience through graphical user interfaces for data analysis
and visualization while sacrificing some functionality. However,
they are still mainly meant for computing students. Moreover, user
interfaces and documentation for these tools are not always friendly
to users with a limited background. Non-computing majors often
struggle with proper usage of these tools, for example, choosing
the right menus and options, providing appropriate input, tuning
parameters, understanding and utilizing intermediate results to
decide on the next steps, interpreting the final result, and so on.

3 DSP COURSE DESIGN
In this section, we describe the design of the Data Science Principles
course, including its overall coverage, a tentative teaching schedule,
the hands-on component, and the expected learning outcomes.

3.1 Course coverage and Learning Outcome
The DSP course is meant to provide students, who have completed
the AP-CSP (Advanced Placement Computer Science Principles) [8],
a high-school course designed for US high school students inter-
ested in taking college-level coursework in computing, with addi-
tional coursework in computing with data. With the proper support,
the course need not be coding intensive. Instead, students are ex-
posed to all the important techniques in the data lifecycle, including
data acquisition, preparation and integration, model development
and deployment, visualization, and storytelling. Students gain in-
ferential thinking skills with common statistical and data mining
techniques as they analyze real-world datasets. It also includes data
security and privacy, as well as fairness and biases in data and
algorithms. The course learning outcomes are:

(1) Solve a variety of data-oriented problems by exploring dif-
ferent phases of the DS lifecycle.

(2) Communicate the results of data analysis visually or using
storytelling;

(3) Explain social, legal, and/or ethical implications of datasets
and algorithms used to address problems and challenges;

(4) Reflect on DS concepts and inferential thinking skills learned
throughout the term.

3.2 Course topics and teaching schedule
The tentative topic sequence of the course offered in a typical
14-week semester setting is described in Table 1. They cover the
complete list of tasks that are commensurate with the standard
data to knowledge pipeline [18]. The lecture slides of this course

Offering Data Science Coursework to Non-Computing Majors Conference’17, July 2017, Washington, DC, USA

have been included in OpenDS4All [3], an open-source project that
provides DS curricular materials for the public.

The design of the two-phase case studies provides students with
intensive hands-on experience after they have learned a set of
interrelated DS topics; one set for preliminary investigation and
another for in-depth analysis of data. Students will be given several
questions to answer through analyzing data and will be encouraged
to come up with their own questions and stories from the data.
The questions will be designed with different difficulty levels while
sufficiently covering the learned topics. As these case studies will
be conducted in class, students will get instant support from the
instructor when they face coding challenges or other issues.

Table 1: Principles of the Data Science Topic Sequence

Week Topics
1 Introduction to Data Science: Students will learn the definition,

motivation, and applications of data science; data fairness, privacy,
and ethics.
Basic data types: Students will learn String, integer, float, boolean,
list, array, dictionary, and others used in a typical data file.

2 Getting started with data: Students will learn how to load data
from formatted files such as CSV, understand a data summary, and
perform basic queries on data.
Data cleaning: Students will learn about data quality issues and
their causes, as well as the techniques to address them.

3 Data exploration and visualization: Students will learn about
summary statistics, probability theory, and basic visualization tech-
niques such as histograms, bar charts, line graphs, and scatter plots.

4-5 Case Studies-Phase I: Students will work individually on datasets
from two different domains, such as COVID data and US census
data. For each domain, students will learn how to apply what they
have learned in Weeks 1-3 to perform a preliminary investigation
of the data.

6-7 Feature selection and engineering: Students will learn the basic
idea of data sampling and aggregation, basic techniques for feature
engineering, such as attribute renaming and retyping, data trans-
formation, data standardization, data re-scaling, feature selection
through correlation analysis, and PCA.

8-11 Data analytical models: Students will be exposed to several ma-
chine learning models for data analysis, such as data clustering,
classification, and regression. Instead of learning the algorithms and
theories behind the models, students will focus on how to use the
models and interpret the result of applying the models. They will
also learn how to evaluate the quality of a model, data imbalance,
and modeling overfitting issues.

12-
13

Case studies - Phase II & Guest Lecture: Students will continue
working with datasets they used in Weeks 4-5 and learn how to
apply what they have learned in Weeks 6-11 to discover interest-
ing patterns/knowledge from the data for storytelling. They will
learn the impact of choosing different techniques in feature selec-
tion/engineering and data analysis on model learning. They will
learn how to interpret the learning result to tell a story of the data.
A Guest lecture will be conducted by an instructor from a non-
computing discipline to describe their specific DS problems, how
the data is handled and analyzed, and how the analysis results can
help generate knowledge and make decisions.

14 Data ethics: Students will reinforce and strengthen their knowledge
of data fairness, privacy, and ethical challenges in each step of the
data-to-knowledge pipeline they have learned in the previous weeks.
They will wrap up their storytelling by discussing data ethics in the
selected domains.

3.3 Hands-on Component
Hands-on practice is essential to DS education as it is an effective
way to reinforce student learning and train their skills in applying
knowledge to solve real-world problems. However, as we discussed
earlier, it is challenging to provide in-depth hands-on practice to
non-computing majors, given their limited computing background.
To address this, we have developed a web-based Data Science Learn-
ing Platform (DSLP) [2, 14], which works as a middleware between
users (i.e., students or instructors) and existing DS libraries to create
an accessible lab environment (note: the platform will be free to
use and the URL will be released in the final version of the paper).
This is inspired by the success of Scratch, a project of the Lifelong
Kindergarten Group at the MIT Media Lab [13], and Brockly, a
JavaScript library for building visual programming editors devel-
oped by Google for Education [11] for teaching kids computational
thinking through an interactive framework instead of teaching
them how to write code.

Following the same idea, we have developed the DSLP that sup-
ports students to focus on the high-level workflow of processing and
analyzing data without the need for writing code. DSLP works as a
middleware between users (i.e., students or instructors) and Python
DS libraries (e.g., Scikit-Learn, Pandas, Matplotlib, and NumPy)
due to their great popularity and comprehensive support for data
science tasks. It is web-based so it can be accessed through web
browsers from computers, tablets, and smartphones.

With the DSLP, students can perform various data science tasks
with different levels of coding efforts, including writing the code
from scratch using an in-house sandbox, revising a code template
for a similar task automatically generated by the DSLP, and writing
no code but only using the DSLP interface to perform the tasks.
This makes the platform suitable for students with different coding
skills and learning expectations. As shown in Figure 1, students
can use the interface to specify the variables, the target, and the
techniques used to perform a feature selection task. The DSLP then
generates the selection result and the corresponding Python code
for students if they want to further work on the task.

Hands-on learning consists of in-class demos and take-home
assignments. The instructors can use the provided in-class demos
to teach students computational thinking and coding skills. Students
will be introduced to Python and DS modules, such as Pandas and
Matplotlib. Meanwhile, students will be given detailed instructions
on how to directly use the DSLP to perform the same task, which
allows them to proceed without the need to write code. Students
will strengthen their understanding of what they have learned from
classes through take-home assignments. The assignments cover
both coding, where Google Colab is used as the IDE, and the use of
the DSLP.

3.4 Course Grading
Students in the course are evaluated through traditional grading
methods, such as in-class exercises, take-home assignments, quizzes,
in-class discussions, midterm/final exams, project presentations,
and reports. Students work in groups on a term project, where
students choose the dataset that is appropriate for the course and
matches their interests. Through the project, students can practice
what they have learned from the course in real-world data analysis

Conference’17, July 2017, Washington, DC, USA Liu et al.

Figure 1: Using the DSLP to Perform Feature Selection Task for Titanic Dataset

problems. They are allowed to use Python, the DSLP platform, or
both to implement the DS tasks. An example of such a project is to
study the impact of mandated sexual education and other factors on
teenage abortion rates. In this project, students collected the data
offered by Guttmacher Institute, cleaned the data such as removing
those incomplete records and irrelevant columns, filtered the data
to focus on several years, visualized the patterns related to different
factors such as predominant political parties of states, pregnancy
rates, and age groups, preprocessed the data such as correcting
data types and normalizing data, engineered some features such as
converting numerical values to categorical ones, selected relevant
features based on variances and correlations, generated a regression
model to learn the impacts, and discussed the data ethical issues
related to data privacy and biased models. In the end of the semester,
students presented their work in class and discussed the results with
other students. The exams focus on whether students can answer
questions and solve a problem specific to data science in an open
book/open notes setting, to narrow their coding skills gap and avoid
the need for pure memorization. In the final exam, with or without
giving a concrete problem, students are asked questions such as
what features do we tend to remove through feature selection, or list
the information needs to be determined before performing KMeans
clustering.

4 COURSE DEPLOYMENT AND RESULTS
The DSP course described above was taught to non-computing
majors in the Fall of 2021, the Spring of 2022, and the Fall of 2022
at Rochester Institute of Technology with a total enrollment of 34.
26 students who consented to include their data in the research.

4.1 Student Background
Student demographics are as follows: 81% of the participants were
male, while 19% were female. When asked to mark all that apply,

24% identified as Asian, 6% as African-American/Black, 3% Ameri-
can Indian or Alaskan Native, 62% as white, 3% as Native Hawaiian
or other Pacific Islander, and 3% as other. Hard-of-hearing students
constituted 4% of student respondents, while 96% identified as hear-
ing. Student majors ranged from Accounting to Film Production to
Political Science and History. Management Information Systems
was the most common major, identified by 5 of the 26 students. The
course was required by the majors of only 4 of the 26 students. None
of the students were first-year students. Second-year students were
16% of participants, 24% of students were third-year students, leav-
ing 60% of students as fourth- or fifth-year students. When asked
to identify all of their past experiences in programming, 4% had no
prior experience with programming, 36% had informal experiences
before college, and 40% had informal experiences during college.
The percentage of participants with formal programming classes
before college was 37% while 64% of students had other computing
classes in college before this course offering. In terms of proficiency
in programming languages, 4 students self-described as not profi-
cient in any language leaving 22 students indicating proficiency
in programming languages, in order of most to least mentioned:
python, C++, MATLAB, Java, C, SQL, HTML, CSS, Arduino, and R.

4.2 Student Perceptions and Feedback
An end-of-course survey was administered to students to collect:
student demographics, and past experiences with programming,
and to assess the DSLP modules (lectures and exercises), the Google
CoLab exercises, the perceived effectiveness of the DSLP as the
course learning platform, and participants interested in additional
DS courses. Likert-type questions and open-ended prompts were
provided for each course component. The Likert-type questions
included a 5-point Likert scale: for “easy to follow,” “impact on the
understanding of DS,” “increase of interest in DS,” and “impact on
belief in abilities to perform similar DS tasks.” Below we report
the results from the student surveys, which were encouraging.

Offering Data Science Coursework to Non-Computing Majors Conference’17, July 2017, Washington, DC, USA

Examples of survey questions include I felt the DSLP Assignments
were easy to follow and The Google Colab Assignments improved my
understanding of Data Science.

Lectures. At the end of the course, students rated the lectures
associated with the modules easy to follow with 56% indicating
Agree or Strongly Agree (A+SA), 24% indicating Neutral, and 20%
Disagree or Strongly Disagree (D+SD). Results for the lectures as
improving students’ understanding of DSwere 64% indicating A+SA
and 32% Neutral, while 4% indicated D+SD. Lectures were rated
as increasing interest in DS by 40% (A+SA) of students, while 36%
of respondents marked Neutral and 24% indicated D+SD. When
asked if students believed they could perform similar DS tasks to
those in the lectures 67% indicated A+SA, 33% were Neutral, with
4% indicated D+SD.

DSLP exercises and Google CoLab exercises. In terms of the DSLP
exercises, a large majority of students felt that the DSLP exercises
were easy to follow (84% A+SA, 8% Neutral, 8% D+SD). They also
rated the DSLP exercises as improving their understanding of DS
and increasing their ability to perform similar DS tasks equivalently:
68% A+SA, 24% Neutral, 8% D+SD, which are very encouraging re-
sults. In terms of the DSLP exercises’ impact on their interest in DS
students indicated 44% A+SA, 40% Neutral, and 16% D+SD. Alterna-
tively, students rated Google CoLab exercises as easy to follow with
60% A+SA, 32% Neutral, and 8% D+SD. For both improvements in
DS understanding and ability to perform similar DS tasks students
rated Google CoLab as 68%A+SA, 24%Neutral, and 8%D+SD. Lastly,
for Google CoLab’s increasing interest in DS, students indicated
48% A+SA, 32% Neutral, and 20% D+SD.

DSLP Learning Platform. Students were also asked to rate the
DSLP as a learning platform for ease of use, whether they liked
using the DSLP to explore DS if the DSLP improved their under-
standing of DS, and if it improved their confidence in conducting DS
inquiries and analytical tasks. Encouragingly, 68% and 72% of stu-
dents rated A+SA, respectively, for ease of use and liking the DSLP
to explore DS. Similarly, 68% and 64% rated A+SA, respectively, for
the DSLP improving their understanding of DS and for the DSLP
improving their confidence in similar DS inquiries and analytical
tasks. Students were also asked about their use of the, which was
voluntary since using the DSLP for the course project was optional.
32% of students used the DSLP to help with the code involved in
their project, 12% used it for hints, and 56% didn’t use it at all. Of
those that used it, 52% found it Very Helpful or Somewhat Helpful
to complete their project, 32% were Neutral about its helpfulness,
and 16% found it not helpful at all.

Lastly, we assessed the perceived impact of the course on stu-
dents’ interest in future DS courses and student feedback for the
course and DSLP improvements. There were strong results in in-
terest in taking a future DS course: 72% Definitely or Probably
Interested, 4% Might or Might Not Be Interested, and 24% Probably
Not or Definitely Not Interested. In terms of feedback from students,
students reported they found some bugs in the DSLP distracting
and at times frustrating. Other students wanted more instruction
in coding in Python. This indicates that the quality of the support
for hands-on exercises impacts students’ learning and interest in
data science. Regardless of some complaints about the DSLP bugs,
students explicitly pointed out the positive impact of the course
and the DSLP on their learning, “I feel I got most of my learning

done through these [DSLP exercises], and the DSLP platform was
extremely useful” [Student 2] and, “Really nice intro course to data
science, made taking the Business Intelligence class alongside it
more manageable” [Student 9].

5 RELATEDWORK
Sullivan [17] describes an introductory data-centric computing
course at Boston University for non-computing majors. The course
covers the topic of data management, Python programming, data
visualization, and data mining. Anderson et al. [4] describe an
introductory programming course at four different institutions,
which teaches entry-level undergraduate students, including non-
computing majors and non-traditional students (e.g., older adult
students), basic programming and computing concepts through
processing and analyzing real-world datasets. Burridge et al. [6] dis-
cuss a similar introductory programming course at the University
of Sydney, teaching students in data science and non-computing
majors how to write code to perform fundamental data exploration
and analysis tasks. Krishnamurthi et al. [12] propose to integrate
data science components into an introductory computing course to
make it accessible for students with diverse backgrounds. While
still covering traditional programming concepts, such as data types
and recursion, the course introduces some important data-related
concepts, such as data frames and visualization. The UC Berkeley
Data Science 8 course has been a well-known effort for teaching
basic DS topics to entry-level undergraduate students [21]. The
course teaches students computational and inferential thinking,
focusing on the programming aspects of DS. It covers various DS
topics, such as classification and clustering. Mine Çetinkaya-Rundel
et al. describe an entry-level DS course for non-computing majors,
covering R programming for the entire DS pipeline, at Duke Univer-
sity [1, 22]. Compared to these courses, our course further reduces
the focus on programming concepts but exposes students to ad-
ditional DS topics, especially those related to data preprocessing,
feature engineering and selection, and data analytics. With the use
of the DSLP, we believe it can better serve students with diverse
backgrounds and interests as students can learn and practice DS
concepts without worrying about the programming details.

CODAP (Common Online Data Analysis Platform) is a free on-
line platform that provides a convenient way to browse, visualize,
analyze, and simulate data without the need for writing code [20].
It has been a great success in terms of allowing students with no
coding background, especially those in middle or high schools, to
explore and analyze real-world datasets. Our DSLP targets college
students and coversmore in-depth DSmethods such as those related
to feature selection and machine learning models. It also teaches
students computational thinking through code exemplification and
sandbox.

6 CONCLUSION
We presented the motivation, challenges, and design of an entry-
level Data Science Principle course to non-computing majors. The
assessment results indicate the success of the course and the effec-
tiveness of using the DSLP platform to break the coding barrier for
students to learn DS topics.

Conference’17, July 2017, Washington, DC, USA Liu et al.

ACKNOWLEDGEMENT
This material is based upon work supported by the National Science
Foundation under Award IUSE 2021287. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the National Science Foundation. The authors also thank the
anonymous reviewers for their feedback.

REFERENCES
[1] . [n.d.]. Data Science Course in a Box. https://codap.concord.org/.
[2] . [n.d.]. Data Science Learning Platform. http://dslp.cs.rit.edu:8000/.
[3] [n.d.]. OpenDS4All. https://github.com/odpi/OpenDS4All.
[4] Ruth E. Anderson, Michael D. Ernst, Robert Ordonez, Paul Pham, and Ben Tribel-

horn. 2015. A Data Programming CS1 Course. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (SIGCSE ’15). 150–155.

[5] Austin Cory Bart, Dennis G. Kafura, Clifford A. Shaffer, and Eli Tilevich. 2018.
Reconciling the Promise and Pragmatics of Enhancing Computing Pedagogy with
Data Science. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, SIGCSE 2018, Baltimore, MD, USA, February 21-24, 2018, Tiffany
Barnes, Daniel D. Garcia, Elizabeth K. Hawthorne, andManuel A. Pérez-Quiñones
(Eds.). ACM, 1029–1034. https://doi.org/10.1145/3159450.3159465

[6] Joshua Burridge and Alan Fekete. 2022. Teaching Programming for First-Year
Data Science. In ITiCSE ’22: Proceedings of the 27th ACM Conference on Innovation
and Technology in Computer Science Education, Vol. 1. 297–303.

[7] Lillian N. Cassel, Michael Posner, Darina Dicheva, Don Goelman, Heikki Topi,
and Christo Dichev. 2017. Advancing Data Science for Students of All Majors
(Abstract Only). In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education, Seattle, WA, USA, March 8-11, 2017, Michael E.
Caspersen, Stephen H. Edwards, Tiffany Barnes, and Daniel D. Garcia (Eds.).
ACM, 722. https://doi.org/10.1145/3017680.3022362

[8] College Board. 2023. AP Computer Science Principles.
https://apcentral.collegeboard.org/courses/ap-computer-science-
principles/course.

[9] Andrea Danyluk, Paul Leidig, Scott Buck, Lillian Cassel, Maureen Doyle, Keegan
Hines, Tin Kam Ho, Andrew McGettrick, Suzanne McIntosh, Jian Pei, Wein-
ing Qian, Karl Schmitt, Christian Servin, and Hongzhi Wang. 2021. Com-
puting Competencies for Undergraduate Data Science Curricula. Technical Re-
port. ACM. https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/dstf_ccdsc2021.pdf ACM Data Science Task Force.

[10] AndreaDanyluk, Paul Leidig, Lillian Cassel, and Christian Servin. 2019. ACMTask
Force on Data Science Education: Draft Report and Opportunity for Feedback. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(Minneapolis, MN, USA) (SIGCSE ’19). ACM, New York, NY, USA, 496–497. https:
//doi.org/10.1145/3287324.3287522

[11] Google for Education. [n.d.]. Blockly: A JavaScript library for building visual
programming editors. https://developers.google.com/blockly/.

[12] Shriram Krishnamurthi and Kathi Fisler. 2020. Data-centricity: a challenge and
opportunity for computing education. In Communications of the ACM, Vol. 63.
24–26.

[13] MIT Media Lab. [n.d.]. Scratch. https://scratch.mit.edu/.
[14] Xumin Liu, Erik Golen, and Rajendra K. Raj. 2022. DSLP: A Web-based Data

Science Learning Platform to Support DS Education for Non-Computing Ma-
jors. In SIGCSE 2022: The 53rd ACM Technical Symposium on Computer Science
Education, Providence, RI, USA, March 3-5, 2022, Volume 2, Larry Merkle, Mau-
reen Doyle, Judithe Sheard, Leen-Kiat Soh, and Brian Dorn (Eds.). ACM, 1181.
https://doi.org/10.1145/3478432.3499255

[15] Jeffrey Oliver and Torbet McNeil. 2021. Undergraduate data science degrees
emphasize computer science and statistics but fall short in ethics training and
domain-specific context. PeerJ Computer Science 7 (03 2021), e441. https://doi.
org/10.7717/peerj-cs.441

[16] Jeffrey S. Saltz, Neil I. Dewar, and Robert Heckman. 2018. Key Concepts for a Data
Science Ethics Curriculum. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, SIGCSE 2018, Baltimore, MD, USA, February 21-24,
2018. 952–957. https://doi.org/10.1145/3159450.3159483

[17] David G. Sullivan. 2013. A data-centric introduction to computer science for
non-majors. In SIGCSE ’13: Proceeding of the 44th ACM technical symposium on
Computer science education. 71–76.

[18] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2016. Introduction to data
mining. Pearson Education India.

[19] Matti Tedre, Peter Denning, and Tapani Toivonen. 2021. CT 2.0. In Proceedings of
the 21st Koli Calling International Conference on Computing Education Research
(Joensuu, Finland) (Koli Calling ’21). Association for Computing Machinery, New
York, NY, USA, Article 3, 8 pages. https://doi.org/10.1145/3488042.3488053

[20] The Concord Consortium. [n.d.]. Common Online Data Analysis Platform (CO-
DAP). https://codap.concord.org/.

[21] UC Berkeley. [n.d.]. Data 8: Foundations of Data Science: A Data Science Course
for Everyone. https://data.berkeley.edu/education/courses/data-8.

[22] Mine Çetinkaya Rundel and Victoria Ellison. 2021. A Fresh Look at In-
troductory Data Science. Journal of Statistics and Data Science Education
29, sup1 (2021), S16–S26. https://doi.org/10.1080/10691898.2020.1804497
arXiv:https://doi.org/10.1080/10691898.2020.1804497

https://doi.org/10.1145/3159450.3159465
https://doi.org/10.1145/3017680.3022362
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/dstf_ccdsc2021.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/dstf_ccdsc2021.pdf
https://doi.org/10.1145/3287324.3287522
https://doi.org/10.1145/3287324.3287522
https://doi.org/10.1145/3478432.3499255
https://doi.org/10.7717/peerj-cs.441
https://doi.org/10.7717/peerj-cs.441
https://doi.org/10.1145/3159450.3159483
https://doi.org/10.1145/3488042.3488053
https://doi.org/10.1080/10691898.2020.1804497
https://arxiv.org/abs/https://doi.org/10.1080/10691898.2020.1804497

	Abstract
	1 Introduction
	2 What are the challenges?
	3 DSP Course Design
	3.1 Course coverage and Learning Outcome
	3.2 Course topics and teaching schedule
	3.3 Hands-on Component
	3.4 Course Grading

	4 Course Deployment and Results
	4.1 Student Background
	4.2 Student Perceptions and Feedback

	5 Related Work
	6 Conclusion
	References

