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Abstract—Radar-based solutions support practical and longi-
tudinal respiration monitoring owing to their non-invasive nature.
Nighttime respiration monitoring at home provides rich and high-
quality data, mostly free of motion disturbances because the user
is quasi-stationary during sleep, and 6-8 hours per day rather
than tens of minutes, promising for longitudinal studies. However,
most existing work was conducted in laboratory environments for
short periods, thus the environment, user motions, and postures
can differ significantly from those in real homes. To understand
how to obtain quality, overnight respiration data in real homes,
we conduct a thorough experimental study with 6 participants of
various sleep postures over 9 nights in 4 real-home testbeds, each
configured with 3—4 sensors around the bed. We first compare the
performance among four typical sensor placements around the
bed to understand which is the optimal location for high quality
data. Then we explore methods to track range bins with high
quality signals as occasional user motions change the distance
thus signal qualities, and different aspects of amplitude and phase
data to further improve the signal quality using metrics of the
periodicity-to-noise ratio (PNR) and end-to-end (e2e) accuracy.
The experiments demonstrate that the sensor placement is a
vital factor, and the bedside is an optimal choice considering
both accuracy and ease of deployment (2.65 bpm error at 80
percentile), also consistent among four typical sleep postures.
We also observe that, a proper range bin selection method can
improve the PNR by 2 dB at 75-percentile, and e2e accuracy by
0.9 bpm at 80-percentile. Both amplitude and phase data have
comparable e2e accuracy, while phase is more sensitive to motions
thus suitable for nighttime movement detection. Based on these
discoveries, we develop a few simple practical guidelines useful
for the community to achieve high quality, longitudinal home-
based overnight respiration monitoring.

Index Terms—Longitudinal Respiration Monitoring, Radar-
based Sensing, Sleep Data, Home-based Deployment

I. INTRODUCTION

Continuous and long-time monitoring of respiration plays a
key role in predicting and tracking many chronic pulmonary
and sleep diseases. Recently radar-based respiration sensing
has shown encouraging results, and its non-invasive nature
is promising for longitudinal monitoring. However, very few
works can be handily applied in real-life scenarios, due to the
following gaps between research and practice. Firstly, human
subjects are typically required to stay stationary and face the
radar [1]-[3] to minimize motion interference and obtain the
strongest reflected signal. Maintaining a single posture for
a prolonged period of time is strenuous and impractical in

This work is supported in part by NSF grants 1951880, 2028952, 2119299.
* Co-primary authors.

real life. Secondly, the majority of research was conducted
in controlled laboratory environments [4], [5] — often clean,
open space, excluding clutters usually present in real homes
and not taking the comfort of human subjects into account.
Finally, most works reported their results only from short
periods of tens of minutes [6], [7], while overnight monitoring
will be 6-8 hours continuously, with occasional wakeups and
movements, and changes of postures.

To support practical and longitudinal monitoring, the best
chances are overnight home-based deployments. The reasons
are threefold: 1) people stay stationary for most of sleep
time, thus minimizing motion interference for high-quality
data; 2) data are collected with the comfort of their own
bedroom, minimizing any stress in labs, thus practical for
longitudinal real-life monitoring; and 3) the average sleep
duration overnight is 6 to 8 hours, which provides sufficient
data for long-term observation.

However, to obtain longitudinal, high quality overnight
respiration data in real homes, many practical questions must
be answered: where are the suitable locations to deploy the
sensors; how to track the human body thus suitable range
bins under wakeups, movements that change the distance thus
signal qualities in bins; and what is the optimal data source
between amplitude and phase to demodulate the physiological
signal from RF signal for respiration monitoring. While these
are critical to data quality and sensing performance, a compre-
hensive and thorough study in real home overnight monitoring
is notably missing.

To answer these questions, we undertake this study in
four real homes, each deployed with three or four sensors at
different locations around the bed, and data are collected from
six volunteers in diverse settings, including nighttime sleep and
short periods of various sleep postures. Specifically, we aim
to answer concrete questions stemming from our preliminary
observations that piqued our curiosity: (1) Periodic pattern data
are produced by sensors at different locations. But which one
exhibits the highest quality data and demonstrates the best
performance? (2) The range bin chosen from the strongest
reflection power does not always coincide with the one that
exhibits the most pronounced periodic patterns in phase data.
How can we continuously identify the optimal range bin with
the best quality data under frequent user wakeups, movements
during sleep? (3) Both amplitude data and phase data show
regular periodicity. How do they compare in contributing to



high-quality data, and tasks such as motion detection?

We start by comparing different sensor placements around
the bed. We installed 4 sensors on the ceiling, the side wall,
underneath the bed, and at the tail of the bed to capture data
simultaneously. We use the periodicity-to-noise ratio (PNR)
metric [8] to assess the signal quality, and beats per minute
(bpm) to measure the error of vital signs estimation against
the ground truth. Our preliminary results demonstrate that the
sensors on the ceiling and on the side of the bed produce higher
accuracy (2.7 and 3.1 bpm error at 80%) than the one under
the bed (3.6 bpm error at 80%) and at the tail of the bed (4.2
bpm error at 80%). Then we explore the range bin selection
method. We come up with a 2-stage selection strategy — first
coarsely anchoring one range bin based on the magnitude data
and then selecting a desired bin among adjacent ones around
the anchor position. The PNRs are improved by 0.9 db to 2db
at 75-percentile for 4 sensors compared to those chosen from
a baseline method. The overall accuracy has up to 0.9 bpm
improvement at 80-percentile accuracy. Finally we compare
the amplitude and phase data in depth. While the amplitude
data is easier to locate the area of desired range bin from
the range-time heatmap, the phase data is more sensitive to
the body movement via the standard deviation distribution.
The optimum amplitude data and phase data can produce
comparable results of 2.6 bpm error under the optimal sensor
location and respective range bin selection methods.

To sum up, we conduct in-depth real-world tests and develop
home-based deployment recommendations that produce high-
quality data for longitudinal nighttime respiration monitoring.

Our contributions are threefold:

o We build testbeds for sleep respiration monitoring in 4
real homes, each configured with 3—4 RF sensors of dif-
ferent placements, to study the impact of sensor locations
and sleep postures in metrics of PNR and e2e accuracy.
With data collected from 6 participants over 9 nights,
we demonstrate that placing RF sensors on the ceiling
or the side of bed gives better and comparable accuracy
(2.6 bpm error and 2.65 bpm error at 80 percentile)
consistently among four typical sleep postures.

o We identify a set of key components in a generic frame-
work of radar-based respiration monitoring, based on
the theoretical signal model of modulating/demodulating
vital signs. We extensively evaluate the effectiveness of
each component, and demonstrate that a carefully devised
range bin selection method can improve the PNR from a
baseline by 2 dB at 75-percentile, and e2e accuracy by
0.9 bpm at 80-percentile. We show that vital signals can
be extracted from both amplitude and phase of RF with
comparable 80-percentile accuracy of 2.6 bpm, while the
phase is more sensitive to body movements thus more
effective for detecting and excluding motion-distorted
data.

o We summarize the discoveries from this study into guide-
lines for practical longitudinal home-based respiration
monitoring: The best place for sensors is on the side of
the bed considering both accuracy and fastening efforts.

Combined with a lightweight method for proper range
bin selection, users can self-administer the installation,
thus scaling longitudinal respiration monitoring to many
homes without intensive manual configuration efforts
from a research team.

II. PRIMER

In this section, we present theoretical modeling of radar-
based respiration sensing, based on which we introduce a
generic framework of respiration monitoring.

A. Signal modeling of radar-based respiration sensing

The intuition of radar-based respiration sensing lies in that
chest wall displacements due to inhaling and exhaling vary the
travel distance of the electromagnetic waves emitted by radar
sensors and can be demodulated from the received signal. To
digitally process and extract the respiratory signal, the received
RF signal is down-converted to the baseband signal B(7),
and sequentially sampled at discrete time 7 = nTf(n =
1,2,3...N) corresponding to signals reflected from different
distances with a sampling interval of T, forming a frame
along the fast time dimension, expressed as:
2d(7)

B(r = nTy) = a(d(7)) As(r Je~d TEEANTE (1)

where « is the scale factor indicating changes in attenuation
of received signals due to the varying distance d(7) between
the radar and the target; As(7 — &((f)) stands for the delayed
version of transmitted radar waveform (e.g., IR-UWB is of
Gaussian pulse envelop [9]) reflected by the target at the
distance of d(7); and 6 denotes the initial phase shift with
phase noise from the local oscillator.

Based on Equ. (1), we can easily find that both the amplitude
and phase of the received signal is modulated by the varying
distance d(7) due to chest wall displacements during exhaling
and inhaling, from which we can extract respiration.

B. Generic framework of respiration monitoring

In this section, we identify a set of design components in a
pipeline corresponding to a sequence of signal processing steps
deriving from the received signal to respiration rate. We show
such a pipeline in a generic framework in Figure 1 disregarding
their specific algorithms but only indicating respective tasks.

Baseband
Processing

Signal
Sanitization

Range Bin
Selection

Respiration
Estimation

Fig. 1: Block diagram of RR monitoring
To capture periodic variations due to respiration, instead
of using a single frame, we stack a sequence of consecutive

frames in a sliding window. Such a sliding window of data is
presented in a signal matrix R:

R(m,n) = B(t = mTs, 7 = nTy), )

where t = mTs(m = 1,2,3...M) is the slow-time dimension
to observe periodic patterns, and 7T is the frame interval.
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Fig. 2: The heatmap of signal matrix in a time window. The
signal’s intensity is represented by a pixel’s brightness. The target’s
location is shown by the bins that have high energy over time. The
interference from the background causes a number of bins to appear
brightness. Only one bar remained after background suppression,
which corresponded to the truth location.

The next step is to eliminate interference from cluttered
environment and make respiratory signals prominent. One
common way to obtain the sanitized signal matrix Z(m,n) is
background removal by subtracting the average of accumulated
consecutive sliding windows from the current time window:

| M
Z(m,n) = R(m,n) — i ZR(i,n) (3)
i=1

Figure 2 shows an example comparing the signal matrix before
and after background removal.

After signal sanitized, the target is to be located by selecting
a proper range bin, from which the respiratory signal can be
reliably demodulated. Finally, the respiration rate is estimated
based on periodic variations.

III. METHODOLOGIES

In this section, we describe methodologies of finding proper
home-based schemes for nighttime sleep respiration monitor-
ing thus high-quality longitudinal data collection. We first
study home-based overnight sensor deployment, where we
specifically use IR-UWB radar sensors in this experimental
study; then we examine the signal processing pipeline of radar-
based respiration monitoring.

A. Home-based overnight sensor deployment

To find the optimal sensor placement, we build real-home
testbeds with sensors deployed in four typical bed-region loca-
tions following the existing work: on the ceiling [6], [10], [11],
on the side and tail of the bed [12], [13], and beneath the bed
on the floor [14]. In addition to comparing performance from
different sensor placements, we also compare performance in
four representative sleep postures: on left/right side, one back
and on stomach. The primary metric to evaluate the difference
is the e2e performance. We also compare the periodicity-to-
noise ratio (PNR) in the frequency domain introduced in our
previous work to indicate the probability of a signal being
detected [8]. A large PNR indicates the periodicity of the vital
signal is strong in the time domain and can be easily detected
in the frequency domain.

B. Signal processing pipeline

1) Range bin selection: While it is critical to select a
proper range bin for reliable vital signs extraction from the
target, no conclusive statement has been made on how to
select the optimal range bin. We aim to explore and fine-
tune the range bin selection specifically for reliable nighttime
respiration monitoring, and compare with a baseline defined
as taking the range bin with the maximum variance of the
magnitude in the range-time heatmap Z(m, n) from Equ. (3)
following the existing work [11], [15].

Although the range bin can be roughly identified based on
the amplitude data, the phase data inside those adjacent range
bins all exhibit periodic patterns. Despite that, the range bin in
which the phase data exhibits the most periodic pattern is not
necessarily the same as the one from the baseline approach,
as is illustrated in Figure 3 by contrasting the first peak of the
auto-correlation coefficients of the phase data from two bins.
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Fig. 3: The range bin from our proposed 2-stage method is different
from the one selected by baseline approach. 2-stage procedure picks
up the range-bin shown a more periodical phase proved by a higher
first peak of auto-correlation coefficient.

We detail the fine-tuned 2-stage method, which combines
the magnitude and the phase together to decide the range
bin: (1) First roughly locates the range bin from the baseline
method (by searching the maximum variance of the magnitude
in the range-time heatmap (Z(m, n)). We take the range-
bin as an anchor. (2) Then, we calculate the auto-correlation
coefficients of the adjacent 7 bins near the anchor bin and pick
up the desired bin which has the highest first peak of auto-
correlation coefficient. The bigger the coefficient is, the more
periodical the phase data shows.

2) Data sources of respiration extraction: According to
Equ. (1), both the amplitude and phase of the received signal
are modulated by chest wall displacements and can be used
for respiration extract. While existing methods individually use
either amplitude or phase to extract the respiration [13], [16],
[17], a thorough understanding is missing about which one is
preferable. We apply head-to-head comparison with both data
sources — amplitude and phase for respiration sensing.

IV. EXPERIMENTS
In this section, we introduce the experiment setup and then
evaluate the performance of the experiments.
A. Experiment Setup

The testbed was illustrated in Figure 4. We installed four
sensors in each participant’s bedroom. One was placed on the



Fig. 4: Experimental setup in a real home. 4 sensors collect data
simultaneously (Due to view limitation, we only indicate that Sensor
1 is under the bed on the floor, but not depicted in the diagram).

floor beneath the bed (named Sensor 1, cannot be displayed
due to view restriction), one was placed on the side of the bed,
one was affixed to the ceiling, and the final sensor was placed
on the bed’s tail. We follow the implementation of an existing
work [18] to build our testbeds. Specifically, we collect data
with the deployment of IR-UWB (X4-XeThru) sensors [19],
which are coin-size, not intrusive to the built environment;
use an existing respiration estimator [18] for respiration data
collection; and use Masimo [20], an FDA-approved vital signs
sensor, for ground truth.

We asked 6 volunteers (3 females, 3 males, ranging in
age from 19 to 31) to contribute data from 4 bedrooms. 3
people provide the controlled dataset, with each session lasting
between 30 and 40 minutes and encompassing 4 postures
(on the left side, on the right side, on the back, and on the
stomach). And the others offer actual nine-night sleep data(1-4
nights per person).

B. Home-based overnight sensor deployment

We assess the e2e performance of 4 sensors to figure out
where we can get the highest quality data. We locate the
rang-bin using the baseline method and use the phase data
as the input for the respiration calculation. First, we analyze
the performance of the sensors in 4 representative postures.
The results are depicted in Figure 5. At the 80th percentile,
sensors 2 and 3 exhibit a higher consistent accuracy of 2-2.5
bpm error across a variety of positions. The outcomes expose
that different sensors have varying performances, while the
same sensor maintains consistent performance over a variety
of postures. We thus infer that the location of the sensor is
a key role to impact the performance and those two sensors
should be the best candidates for nighttime data collection.

Then we test the sensors on all the data. Figure 6 proves
our reasoning that the sensor 2 and sensor 3 have better per-
formance. Their errors are 2.7 bpm and 3.1 bpm respectively
at 80 percentile. This phenomenon can be attributed to the fact
that these two sensors have high PNRs (-4.5 dB).

C. Micro benchmarks

1) Range bin selection: We first examine the distributions
of range bins selected by the baseline method and the proposed
2-stage approach as shown in Figure 7.
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Fig. 5: The performances of sensors on 4 postures. Sensor 2 and 3
display stable and high performance.
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Fig. 6: Sensor 2 and Sensor 3 indicate higher accuracy due to their
better PNRs.

We observed that the devised method always selected the
range bin deviated from the baseline solution which indicated
that the range bin showing the most periodical pattern in the
phase data is not consistent with the one selected by the
amplitude data for 85%. We further inspect the PNR and e2e
performance which are displayed in Figure 8. It illustrates the
2-stage range bin selection can improve performance from a
baseline up by 2 dB of 75-percentile PNR and by 0.9 bpm of
80-percentile e2e accuracy.
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Fig. 7: The range bins differ for 85% of samples between selected
from the baseline method and our fine-tuned method. Each sample
stands for one second.
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Fig. 8: Our proposed range bin selection method (blue color) im-
proves the PNR and e2e performances compared to the baseline
solution (white color).

2) Signal Source Comparison: Figure 2 shows how
background-subtracted amplitude data can be utilized to de-
termine the target location. We are wondering if phase data
can serve the same purpose. Using the same background
suppression technique and time window, we construct two
heatmaps displayed in Figure 9. Phase data, however, could
not be a candidate to directly locate the range bin since it
has multiple interference bright bars which obscure the true
location.
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Fig. 9: Signal matrix heat-maps of amplitude data and phase data
within a 30 senconds time window. The range bin of ground truth
is around bin 15 which can be reflected from the amplitude data
heat-map but can not be distinguished from the phase data heat-map.

Figure 10 shows the distribution of the standard deviation in
a controlled short-term dataset. Individuals are examined in a
total of four distinct postures, with a posture change occurring
roughly every 10 minutes. While the occurrence of peaks in
the phase data indicates the moments of posture change, such
correlations do not exist in amplitude data. This observation
implies that the phase of RF signals is indicative for removing
body motion and generating higher-quality data.

We further examine the e2e performance by using the two
signal sources with their ideal range bin selection methods,
amplitude data with baseline range bin selection and phase
data with 2-stage range bin selection, as input for the RR
estimator. The outcomes are displayed in Figure 11. We
prove that vital signals can be extracted from both amplitude
and phase data with comparable 80-percentile accuracy of
2.6 bpm. Nevertheless, the phase is more sensitive to body
movements thus more effective for detecting and excluding
motion-distorted data.

V. RELATED WORK

Researchers have shown a considerable deal of interest in
radar-based vital sign detection, which shows great promise
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Fig. 10: The standard deviation distributions on a controlled short
term dataset. While the values of the amplitude data coming from
the baseline range bin selection (baseline amp) is very small, the
standard deviations of phase data deriving from both range bin
tracking methods emerge high peaks. The peaks indicate the moments
of body posture change.
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Fig. 11: Both the amplitude data (white box) and phase data (blue
box) yield identical results, indicating that both are comparably
effective for extracting respiration.

[13], [21], [22]. The tendency of reported accomplishments
are based on immobile participants in ideal laboratory cir-
cumstances [23], [24], and short-term collected data [6],
[7]. However, they are not realistic conditions for long-term
monitoring in real-life. We concentrated on home-based sleep
scenario monitoring that can give longitudinal and high-quality
data for practical monitoring.

While researchers have collected sleep datasets from a
variety of sensor locations, including on the ceiling, [6], [10],
[11], on the side wall [12], [13], and under the floor [14],
there is a dearth of evidence demonstrating the ideal site
for obtaining high-quality data. In addition, another factor
about tracking the target in the real-life interference-rich
environment impacts the signal quality as well. The majority
of previous studies employ reflection power-based methods
[11], [15]. Nevertheless, the range bin corresponding to the
strongest reflection does not always provide the most apparent
vital signs patterns in phase data. Moreover, the signal source
for demodulating physiological signal is also a potential factor
to impact the RR performance. Existing works extract the
respiratory rate either by leveraging the amplitude information
or by utilizing the phase data from the received radar signal
reflected from the body [13], [16], [17]. Unfortunately, there
is insufficient discussion over the appropriate approach. We
conduct a thorough experimental study to answer practical



problems regarding home-based deployment towards reliable
nighttime monitoring. We first analyze the performance of four
typical bed-region sensor placements to determine the ideal
site for obtaining high-quality data. We then investigate range
bin tracking algorithms and various amplitude data and phase
data characteristics to further improve the signal quality.

VI. DISCUSSION

In this work, IR-UWB sensors are used to demonstrate
the key settings for in-home monitoring of respiration. The
pipeline of respiration detection is also applicable to other RF
technologies, such as Frequency-Modulated Continuous Wave
(FMCW) radar or WiFi, without sacrificing generality. In the
our nighttime respiration data collected with IR-UWB sensors,
we observe that the intermittent involuntary body motion
accounts for the majority of respiration detection errors. With
further analysis, we find that the standard deviation of phase
data is sensitive for motion detection. In the future, we will
use phase data to detect body motions for improved quality of
the collected data. Last but not least, we build our respiration
monitoring pipeline with classical signal processing algorithm
to achieve interpretability of the whole design space. To further
improve the robustness and accuracy of respiration monitoring,
we will investigate machine learning methods [25] for RF
sensing in future work.

VII. CONCLUSION

In this paper, we focus on finding suitable configurations
for practical radar-based nighttime respiration monitoring at
home. We conduct comparisons among four typical sensor
locations and find the best sensor placement is on the side
of the bed considering both accuracy (2.65 bpm error) and
installation efforts. Along this process, we further discovery
that the range bin tracking is a key factor to the accuracy when
extracting the respiration from the phase, and a customized
range bin selection method improves 80-percentile accuracy
by 0.9 bmp. Besides, we show that amplitude and phase of
RF data have distinct attributes that should be treated and
leveraged separately, while both data sources can produce
comparable e2e accuracy for the respiration estimation: the
amplitude data is easier to locate the rough range of the target
and the phase data is more sensitive to the body movement.
These practical discoveries pave the way for the communities
to develop robust algorithms and achieve high quality data for
long-term sleep monitoring with a lightweight method.
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