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Entropy dynamics is a Bayesian inference methodology

that can be used to quantify time-dependent posterior

probability densities that guide development of complex

material models using information theory. Here we ex-

pand its application to non-Gaussian processes to evalu-

ate how fractal structure can influence fractional hypere-

lasticity and viscoelasticity in elastomers. We investigate

how kinematic constraints on fractal polymer network de-

formation influences the form of hyperelastic constitutive

behavior and viscoelasticity in soft materials such as di-

electric elastomers which have applications in the devel-

opment of adaptive structures. The modeling framework

is validated on two dielectric elastomers, VHB 4910 and

4949, over a broad range of stretch rates. It is shown

that local fractal time derivatives are equally effective at

predicting viscoelasticity in these materials in compari-

son to non-local fractional time derivatives under con-

stant stretch rates. We describe the origin of this accu-

racy which has implications for simulating larger scale

problems such as finite element analysis given the differ-

ences in computational efficiency of non-local fractional

derivatives versus local fractal derivatives.

1 INTRODUCTION

Constitutive model development for polymeric mate-

rials traditionally starts with a free energy function that

contains information about the internal energy of the

bonds between atoms and the entropy governing heat

transport and the configurations of the polymer network

as a function of macroscopic deformation [1, 2, 3]. In-

formation about the internal degrees of freedom that span

quantum, molecular, mesoscale, and macroscales remains

extraordinarily difficult to explicitly quantify and there-

fore techniques that use entropy to quantify measures of

uncertainty are important to approximate internal forces

and transport phenomena (e.g., heat transport, chemical

diffusion, photochemistry, etc.) without complete knowl-

edge across all scales. It was rather fortuitous that the

pioneering work by Shannon’s theory of information [4]

was useful in modeling thermodynamic entropy [5, 6].

In this work, we use the tools from information theory to

better understand the nonlinear, rate-dependent mechan-

ics of elastomers that exhibit complexity which we en-

code as fractals or multifractals (random fractals) [7]. We

do this by using entropy dynamics [8] and modifying

the framework to include fractional constraints which re-

stricts multiscale material structure to move along fractal

dimensions. We relate fractal and fractional order opera-

tors to fractal structure to construct models that more ac-

curately predict nonlinear, rate-dependent deformation in

elastomers guided by an entropy dynamic framework.

The field of fractals and fractional order operators to
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materials science is extensive and has grown significantly

in the past several years. Seminal works in the broader

field of fractional calculus [9, 10] and fractal diffusion in

materials [11, 12] have motivated more recent efforts to

understand how both fractal and fractional order opera-

tors provide new insights into complex material behav-

ior [13, 14, 15, 16, 17, 18, 19, 20]. Mandelbrot’s concept

of fractals [21] provides a measure of 1D, 2D, and 3D

geometry or time series characteristics that are otherwise

difficult to quantify on a finite domain. For example, the

circumference of an island can be infinitely long given a

repeated (fractal) structure over all length scales. These

measures are made finite on a fractal domain. In terms of

time scales, fractal behavior manifest in terms of rates of

change of some physical property such as velocity which

may follow a fractal response as the kinetic behavior of

a material is viewed on different time scales. This frac-

tal mathematical property is defined over all length scales

which serves as an approximate model of a material with

finite bounds in space and time. Upper and lower limits of

the fractal domain have been considered to address these

finite length scales [22, 23, 15].

We focus on constitutive relations near equilibrium

while accommodating dissipation characterized by vis-

coelasticity. Elastomers exhibit complexities due to the

vast number of polymer network configurations that result

in nonlinear deformation and thermal dissipation upon

time dependent deformation. These complexities across

molecular to continuum scales remain challenging as er-

ror propagation limits prediction across a broad range of

deformation states and long time periods. In the limit-

ing case of Gaussian processes, approximations can be

made to develop idealized constitutive relations that lead

to the very well known neo-Hookean model of hyperelas-

ticity [2, 3]. Beyond moderate strain levels, elastomers

exhibit nonlinearities characterized by non-Gaussian pro-

cesses. Phenomenological methods can accommodate

these nonlinearities in the stress-stretch behavior such as

the Mooney-Rivlin and Ogden models [2]. However,

these models are limited by their phenomenological na-

ture requiring parameter estimation from data that is not

well informed by the polymer structure. Other model-

ing approaches accommodate polymer structure and mi-

croscopic effects of polymer entanglement, cross-linking

and non-affine deformation [24, 25]. These models make

assumptions on the microscopic volume elements that are

homogenized over a continuum volume. Although these

models have been successful in predicting finite deforma-

tion in certain elastomers, homogenization across contin-

uum scales is based on a limited number of microscopic

factors that often ignore non-Gaussian statistical distribu-

tions, direct relations to multiscale structure, and connec-

tions to viscoelasticity. In many cases, fat-tailed proba-

bility distributions of polymer molecular motion becomes

important and the fractal nature of materials can provide

inputs to more accurately reflect derivative operations in

the continuum scale constitutive model. This can have a

significant influence on macroscale constitutive behavior

as extreme events in the tails of the probability densities

can have a cascading influence on macroscopic thermo-

dynamic and kinetic properties.

West and Grigolini have argued that fractal structure

is often best approximated by fractional calculus opera-

tors [9]. The pervasive nature of fractal structures in na-

ture, including materials, clearly illustrates a unique op-

portunity to understand how to apply these operators to

develop constitutive relations in complex materials. One

striking example is the fractional form of the continuity

equation or fractional conservation of mass [26]. It was

shown that when fluid density can be homogenized as a

power law function in space (e.g., fractal function) the

Caputo fractional Taylor expansion of two terms exactly

represents the density’s power law relation. From a phys-

ical perspective, a power-law density relation can be mo-

tivated by fluids within a porous media [26]. This facili-

tates formulating an exact representation of the continuity

equation by using first order fractional derivatives. This

same power-law density function would otherwise require

an infinite number of integer order derivatives from the

Taylor expansion to obtain the same accuracy as one frac-

tional Caputo derivative. The compactness gained by a

small number of fractional derivatives must be balanced

by the non-local properties of the fractional order oper-

ator which requires an integral calculation for the Ca-

puto or Riemann-Louiville version [27]. In other works,

Mainardi, Luchko and Paginini [13] have given solutions

to space-time fractional order balance equations that fol-

low a stretched exponential under certain limiting condi-

tions in space and time. From a Bayesian perspective, the

problem can be flipped around and cast as an inference of

a probability density from sparse fractal data. In doing so,

we illustrate how fractional order kinematic constraints

lead to a stretched exponential density which contains the

limiting case of a Gaussian density. It is known that a

microscopic field distributed about this stretched expo-

nential leads to the fractal space-time diffusion equation.

The result highlights how collecting sparse information

in space and time can be used to formulate fractal partial

differential equations to identify and simulate this type of

material behaviour. Importantly, such results motivate un-

derstanding the similarities and differences in local fractal

derivatives versus non-local fractional derivatives for ma-

terial modeling. We investigate how these characteristics

inferred from Bayesian statistics are used to guide the ap-
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plication of fractal or fractional order operators used in

developing rate-dependent constitutive equations in elas-

tomers.

Given the subtle but important distinctions between

fractal and fractional order operators in material model-

ing, we evaluate assumptions that constrain elastomeric

materials to follow certain trajectories that are better pre-

dicted by fractal or fractional order operators in space and

time. We apply entropy dynamics [8] to better under-

stand how our assumptions, cast as a set of constraints

about polymer network displacements, provide insights

on appropriate derivative operators. We illustrate how

a fractional (power-law) constraint of particle displace-

ments leads to a stretched exponential in space which,

in turn, suggests a fractal derivative is also ideal to ap-

proximate deformation via a fractal deformation gradi-

ent. Time dependent properties, such as viscoelasticity,

require additional assumptions on the irreversible char-

acteristics of entropy generation. The covariance prop-

erties of particle interactions are introduced in the en-

tropy dynamics framework to provide guidance on time

dependent particle interactions. Under Gaussian approx-

imations, the variance or covariance of particle motion is

linear in time which can be accurately approximated by

integer order time derivatives. If the covariance evolves

over a power-law in time, we show that a fractal time

derivative within the diffusion equation exactly models

such behavior. We compare this relation to fractional or-

der viscoelasticity assumptions through experimental val-

idation on the uniaxial stress-stretch behavior of dielectric

elastomers, VHB 4910 and 4949. We also offer insight on

when fractal and fractional order derivatives will give the

same or different material model predictions.

The entropy dynamics framework quantifies condi-

tional probability densities of future material particle po-

sitions given their original undeformed positions. The

particles are broken down into two different sets. One

set of particles is defined to be observable or control-

lable by an external loading device in a way that parti-

cles move in an affine manner based on boundary condi-

tions. These displacements are typically defined by trans-

formations which map changes on a boundary to the bulk

volume. The set of particles is denoted by their Eule-

rian or deformed position in three dimensional space as

xα(t) for α = 1, . . . , n particles in some representative

volume element (Eulerian frame volume). A second set

of unobservable or uncontrollable particles are denoted

by yα(t) for α = 1, . . . ,m such that the total number

of particles in the material is N = n + m. These un-

observable particles contribute to heat, residual effects,

damage, or other irreversibilities that cannot be controlled

by an external loading device. We apply entropy dynam-

ics to construct a model containing constraints on both

the controllable xα and uncontrollable yα particle posi-

tions and their time dependent properties. These manifest

through quantifying the uncertainty of a continuum ho-

mogenization of the particles as a field mapped onto the

Lagrangian (undeformed) configuration that we denote by

X. This requires first quantifying a Bayesian posterior

density as a joint probability of the continuum homoge-

nized kinematics: x = x(X, t) and y = y(X, t). Once

the Bayesian posterior density is quantified, this naturally

leads to a maximization of the likelihood of future defor-

mation x(X, t) and internal state changes y(X, t) based

on thermodynamic functions that are obtained from the

posterior density. The thermodynamic functions provide

the information required to quantify fractal or fractional

hyperelastic and viscoelastic constitutive relations. We

then extend the kinematic relations to the fractal domain

to accommodate complexities that follow power-law be-

havior in space and time.

In the following section, we first outline how we ap-

ply entropy dynamics to obtain a Bayesian posterior prob-

ability. This is followed by the introduction of conditional

probability constraints on x = x(X, t) and y = y(X, t)
as well as fractional constraints that lead to thermody-

namic potentials and entropy generation expression that

relate fractal elastomer network structure to kinematics

constrained to move along fractal paths. We then nu-

merically evaluate the model and validate it against vis-

coelastic elastomer data. Discussions are then given about

the importance of constraints and its interpretation with

respect to material structure when developing material

models based on fractional order and fractal order deriva-

tives. Conclusions are given in the final section.

2 THEORY

2.1 Preliminaries

We start by considering Shannon’s relative entropy

having the form

S[P,Q] = −
∫

D

P (x,y|X) ln

(
P (x,y|X)

Q(x,y|X)

)
dxdy

(1)

where the unknown posterior density is P (x,y|X) and

the prior density is Q(x,y|X). We will assume the prior

density as flat or uniform with respect to x and y mean-

ing that any location of x and y are equally possible given

its original position X. Note that the integral is over the

representative material volume D in the deformed con-

figuration. This means the probability densities are per

Eulerian volume. In three dimensions, the domain D is
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a volume where we use the notation dx = dx1dx2dx3
and dy = dy1dy2dy3. Also note that we define the en-

tropy here as unitless meaning the probability densities

define the probability of x and y given X over the vol-

ume D. This requires special considerations such that the

total material volume is D = Dx ∪ Dy is disjoint in the

pointwise sense Dx ∩ Dy = 0.

Before describing the details of the model, we first

highlight that if the Shannon entropy is maximized ac-

cording to the variational problem

δS[P,Q] =
∂S

∂P
δP = 0 (2)

it can be shown that the solution for the Bayesian poste-

rior density P that maximizes S[P,Q] is a uniform con-

ditional probability that is inversely proportional to the

volume [28, 29]. As one may expect, this is because we

have assumed the prior is uniform and we have not in-

cluded any constraints when maximizing S[P,Q] except

that P must integrate to one over all x and y. Additional

constraints are added to the model based on interactions

between relative displacements of x and y.

The constraint that we introduce in Section 2.2 is

to minimize the relative positions between neighboring

Lagrangian points: ∆x = x(X + ∆X, t) − X and

∆y = y(X + ∆X, t) − Y where we denote Y as the

undeformed position of the unobservable deformed state

y. If a constraint based on ∆x or ∆y is added to Shan-

non’s entropy, we find that maximizing the Shannon en-

tropy tends to broaden the posterior of possible particle

positions while a constraint on the squared magnitude of

∆x or ∆y narrows the posterior. The posterior becomes

a Gaussian distribution rather than a uniform distribution

and the width of the Gaussian depends on knowledge of

the covariance matrix which is used to constrain the vec-

tor products, ∆x∆x,∆y∆y, and ∆x∆y as described in

the following section. The quantitative form of the Gaus-

sian requires knowledge of covariance matrices that rep-

resent distributions of the self-interactions of ∆x∆x and

∆y∆y and the interactions ∆x∆y. These covariance

matrices may come from theoretical conjectures, sparse

observations from experiments, or high fidelity simula-

tions. Entropy dynamics provides a tool to evaluate the

uncertainties in terms of estimates of the covariance ma-

trix which may include time invariant and time varying

components. This provides advantages in distinguishing

reversible, path independent behavior (time independent

covariance) from irreversible, hysteretic behavior (time

dependent covariance). It also provides a way to connect

information theory and information entropy with ther-

modynamic entropy and constitutive relations for non-

Gaussian processes. This latter effect will be explored us-

ing fractional order constraints, as opposed to a quadratic

constraint, to relate fractal structure to fractional order

properties. This will impact both the reversible hypere-

lastic behavior and irreversible viscoelasticity.

2.2 Quadratic Constraints and neo-Hookean Behav-

ior

To facilitate later development of the fractal and frac-

tional order models, we first present the simpler model

containing a quadratic constraint in the cost function. In

this case, Shannon’s entropy is combined with a quadratic

constraint that limits the relative material displacements

between neighboring points located at X and X + ∆X.

We start by defining the integer order Taylor expansion

of the position vector of each material point that will be

used in the cost function constraint. The neighboring con-

tinuum displacements are described by

x(X+∆X) = X+ ∂x
∂X ·∆X+ · · · ,

y(X+∆X) = Y + ∂y
∂X ·∆X+ · · · .

(3)

We will penalize the relative positions for the observ-

able and unobservable displacement fields. The notation

∆x = x(X+∆X)−X is used for brevity and similarly

for the uncontrollable terms as ∆y = y(X+∆X)−Y.

A quadratic constraint is used to create a cost func-

tion that balances maximizing entropy with penalties of

large relative displacements. This uses the tensor product

∆x∆x, ∆x∆y and ∆y∆y that are constrained to differ-

ent covariance matrices associated with the relative dis-

placement vectors and their coupling. The cost function

is given by

H[P,Q] = S[P,Q]− γ

(∫

D

P (x,y|X)dxdy − 1

)

− Tr

{
Λxx ·

(∫

D

P (x,y|X)(∆x∆x)dxdy −Σxx

)}

− Tr

{
Λxy ·

(∫

D

P (x,y|X)(∆x∆y)dxdy −Σxy

)}

− Tr

{
Λyy ·

(∫

D

P (x,y|X)(∆y∆y)dxdy −Σyy

)}

(4)

where the Lagrange multipliers include γ, Λxx, Λxy and

Λyy . The Shannon relative entropy S[P,Q] is from ( 1)
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and there is a set of covariance matrices Σxx, Σxy and

Σyy (each is 3× 3) which describe the distribution of the

observable (Σxx) and unobservable (Σyy) material mo-

tion and their interactions (Σxy). These covariance matri-

ces may vary spatially and temporally. We have also used

Tr to represent the trace. The quadratic constraint leads to

a Gaussian density of particle displacements fluctuations.

We briefly illustrate how this Gaussian density leads

to a neo-Hookean, viscoelastic constitutive model to high-

light how constraints are used within the information

theoretic approach. Importantly, our selection of the

quadratic constraint restricts the posterior density to ma-

terial displacements that are distributed about a Gaussian

density. This neglects the possibility of nonlinear effects

that may manifest as extreme events such as internal dis-

placements during unraveling of polymer entanglement

and random walks along a fractal polymer network which

are later described in Section 3.1.

We take the Gaussian probability obtained from max-

imizing (4) to construct a entropy function that we use to

develop the rate dependent, stress-stretch constitutive re-

lations. We neglect internal energy (u) changes within

an elastomer and treat the Helmholtz energy density as

ψ = u − TsT ≈ −TsT where T is temperature and

sT is the thermodynamic entropy density. We conduct

the analysis in the limit of infinitesimal relative displace-

ments ∆X → dX from (3) such that we have the con-

ventional deformation gradient as the internal state. This

is described by dx ≃ F · dX where we neglect higher

order terms in (3) and we have defined the deformation

gradient as F = ∂x
∂X . We also include the deformation

gradient associated with the unobservable internal states

as Γ = ∂y
∂X . The key relations associated with predict-

ing material motion of the observable and unobservable

displacement fields are denoted by

dx = F · dX and dy = Γ · dX (5)

F̃ =

[
F 0

0 Γ

]
and Σ =

[
Σxx Σxy

Σyx Σyy

]
(6)

We substitute these deformation gradients into the

posterior probability density that maximizes (4). For

brevity, we let CΣ = 1√
(2π)D|Σ|

, where the covariance

matrix Σ is defined in (6), D = 6, and then the probabil-

ity is

P (x,y|X) = CΣe
− 1

2dX·F̃T ·Σ−1·F̃·dX. (7)

To define the thermodynamic entropy, we apply a

different measure than directly using the Shannon en-

tropy. A rigorous comparison between two different en-

tropy functions (Gibbs HG and Boltzmann HB) has been

discussed elsewhere [30]. These two entropy functions

differ in the following way. The Gibbs energy function

accommodates interactions among neighboring particles

while the Boltzmann version neglects particle correlation

(e.g., ideal gas). The Gibbs entropy function is equivalent

to Shannon’s entropy (excluding the prior). Upon further

analysis given by Jaynes [30], the thermodynamic entropy

can be described more simply by S = k ln(P ) where k is

Boltzmann’s constant. The Boltzmann entropy neglects

explicit material correlations and measures the phase vol-

ume of ªreasonably probableº events. Since our prob-

ability is defined over the continuum of particle motion

by x = x(X, t), we directly use the posterior density of

particle kinematics to define the thermodynamic entropy

using Boltzmann’s form of entropy

ST = k ln [P (x,y|X)]. (8)

This estimate of the thermodynamic entropy ST is the to-

tal entropy of a volume V of interest. The thermodynamic

entropy density must be normalized by an appropriate

representative volume which we denote by Ω0 in the un-

deformed (Lagrangian) volume such that sT = ST /Ω0.

This form of the thermodynamic entropy density is used

to formulate the rate dependent stress-stretch constitutive

relations.

To illustrate, we evaluate the characteristics of an

ideal Gaussian polymer network given the Gaussian pos-

terior that was obtained from the tensor product constraint

in the cost function. Simplifications are made by assum-

ing all material points are observable meaning all mate-

rial points are distributed about Gaussian density and re-

main Gaussian for all deformation states considered. This

means y can be neglected and Σxy and Σyy are irrele-

vant. We note that the assumption of Gaussian behavior

is applicable to all future material displacements relative

to the undeformed state. This is inherent in the fixed con-

straint Σxx within ( 4). It is well known that the Gaus-

sian network neglects significantly large deformation and

is only applicable for stretch ratios before strain harden-

ing occurs [24, 3]. This limitation is addressed in the sub-

sequent section.
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The thermodynamic entropy based on ( 7) gives

sT =
k

Ω0

(
lnCΣ − 1

2

(
dX · FT ·Σ−1

xx · F · dX
))

.

(9)

We make a further assumption that all particles move in-

dependently (zero covariance) and their variance in dis-

placement is equal and homogeneous such that Σxx =
σ2
0I where σ2

0 is the variance and I is the identity matrix.

Under these assumptions, the deformation gradient and

their relative particle distances prior to deformation are

defined to be equivalent for the entire volume Ω0 which

gives

sT =
k

Ω0

(
lnCΣ − 1

2σ2
0

(
dX · FT · F · dX

))
. (10)

The Helmholtz free energy density is then

ψ = −kT
Ω0

(
lnCΣ − 1

2σ2
0

(
dX · FT · F · dX

))
. (11)

As expected, this shares characteristics with the clas-

sic neo-Hookean hyperelastic model that describes finite

deformation of polymers within the regime of Gaussian

network distributions. Note that in this free energy func-

tion, dX, is a set of constants and ψ then depends quadrat-

ically on the deformation gradient.

In the next section, we will change the tensor con-

straint from a quadratic to a fractional constraint to ac-

commodate fat-tail probability distributions of particle

displacements often exhibited by fractal structures. We

will also introduce rate-dependent effects governing vis-

coelasticity. This provides a means to correlate non-

Gaussian polymer network configurations with complex

constitutive relations where rate dependent polymer de-

formation may follow fractal space-time complexities.

3 FRACTAL AND FRACTIONAL ORDER

MODEL

3.1 Fractional Constraints and Non-Gaussian Hy-

perelasticity

Large elastomer deformation can lead to non-

Gaussian polymer network distributions where softening

followed by hardening in the stress-stretch behavior may

be observed as the underlying polymer network deforms

significantly. In this section, we extend the information

theoretic framework that resulted in a neo-Hookean free

energy in Section 2.2 to fractional order deformation con-

straints to accommodate nonlinear stress-stretch behavior

often observed during large elastomer deformation.

We previously described motion of particles over a

Euclidean domain in terms of the integer Taylor expan-

sion in (3). We argue in this section that a fractal mea-

sure of material displacement is a better predictor of ma-

terials exhibiting this form of complexity. This complex-

ity originates in the form of multiscale material structure

that is not perfectly crystalline nor perfectly random. The

goal is to predict the future configurations of such fractal

structure upon irreversible mechanical loading. We pro-

pose to use a fractal metric for the material configuration

and fractal derivative operators to predict future configu-

rations after applying mechanical loading. The choice of

fractal derivatives over fractional derivatives is discussed

later in Section 3.2. We represent the deformation on a

fractal domain using

µ(x+∆x, t) ≃ µ(x, t) +
∂µ

∂xβ
·∆xβ (12)

where the fractal vector of deformed material points is

µ = µ(x, t) as a function of the Eulerian frame coordi-

nates, and β > 0 is the order of fractal derivative. Given

the assumption of fractal material structure which may

produce polymer network displacements that are fractal

or multi-fractal (i.e, random fractals), we use a displace-

ment measure in the fractal domain that is defined by

µ = µ(x(X, t), t). This fractal metric is related to the

Euclidean domain based on a power-law relation often

described by a density of state [15, 22]. We focus on

isotropic densities of state and fractal exponents in this

analysis; more details are given by Tarasov [27]. To

simplify the notation, we include observable (µ(x)) and

unobservable (µ(y)) fractal measures as a single vector

field µ = [µ(x),µ(y)] which are analogous to the Eu-

clidean model from Section 2. The relationship between

the fractal measure in each coordinate direction (µ
(x,y)
i )

and the normalized Cartesian (Eulerian) direction xi for

i = 1, 2, 3 is defined to be

µ
(x)
i = πν/2

2νΓ(ν/2+1) |xi|ν ,

µ
(y)
i = πν/2

2νΓ(ν/2+1) |yi|ν
(13)

where xi =
xi

l0
and yi =

yi
l0

are normalized coordinates

given the characteristic length scale l0 in the Eulerian
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frame and Γ() is the gamma function not to be confused

with the tensor in (5) [31]. The power-law scaling is de-

noted by ν.

To establish translational and rotational invariance,

we restrict the radius of some sphere to a finite set that

we define by the characteristic length l0 which is used to

define a representative continuum volume element of suf-

ficient size to represent the fractal structure. If we assume

that β = ν from (12), this relation becomes

dµ
(x)
i = πν/2

2ν−1l0Γ(ν/2)
FiKdXK ,

dµ
(y)
i = πν/2

2ν−1l0Γ(ν/2)
ΓiKdXK

(14)

such that the fractal deformation gradient scales with the

Euclidean deformation gradient according to

F νiK =
πν/2

2ν−1l0Γ(ν/2)
FiK where, FiK = ∂xi

dXK
for K =

1, 2, 3. Similar scaling applies to the deformation gradient

associated with the unobservable internal states ΓiK =
∂yi
∂XK

. A more detailed discussion on this invariance is

available [31].

The cost function that constrains fractal displace-

ments to a fractional order constraint is proposed to be

H[P,Q] = S[P,Q]− γ

(∫

D

P (µ|X)dµ− 1

)

− Tr

{
Λ ·
(∫

D

P (µ|X)CX

ν
2 dµ−Σ

ν
2

)}

(15)

where the fractional order covariance matrix is Σ is given

in (6) and the corresponding 6 × 6 Lagrange multiplier

matrix is Λ and CX
ν/2 = (dµdµ)

ν/2
. These second or-

der tensors are raised to a power using conventional oper-

ations by rotating the tensors to their eigendirections, ap-

plying the exponents to the eigenvalues, and rotating the

tensors back to their original directions [1]. Moreover,

these measures are positive semi-definite, symmetric and

therefore are real-valued matrices. The fractional power

law exponent ν penalizes fractal displacements relative

to their initial positions. It is expected that this expo-

nent is related to the original fractal structure, however,

the exact relationship between the fractal dimension of a

polymer network and the fractional parameter ν is non-

trivial [1, 32].

The general form of the cost function in the eigendi-

rection is given by

H[P,Q] = S[P,Q]− γ

(∫

D

P (µ̂|X)dµ̂− 1

)

− Tr

{
Λ̂ ·
(∫

D

P (µ̂|X)D
ν
2 dµ̂− Σ̂

ν
2

)}
.

(16)

where Λ̂ is rotated Lagrange multiplier matrix and it is

assumed that CX has the same eigendirections as Λ. The

matrix D is diagonalized matrix with eigenvalues as di-

agonal entries of CX.

Optimizing H with respect to P we get

− ln(Q) + ln(P ) + 1 + γ + Tr
(
Λ̂ ·Dν/2

)
= 0, (17)

The posterior density is

P (µ̂|X) = Qe−(1+γ+Tr(Λ̂·Dν/2). (18)

The Lagrange multiplier γ is re-written in terms of a

partition function Z using the normalization constraint on

the probability density according to

Z =

∫

D

e−(Tr(Λ̂·Dν/2))dµ̂ = Q−1e1+γ (19)

such that the posterior density is

P (µ̂|X) = Z−1e−(Tr(Λ̂·Dν/2)). (20)

We solve for Z and Λ̂ using the constraints and sym-

metry of P about |dµ̂|= 0. Assuming Q is a flat prior,

after solving we get

Z−1 =
ν6

26(Γ(ν−1))
6

( 6∏

i=1

Λ̂ii

) 1
ν

(21)

where Γ(ν−1) is again the gamma function.

The final form of the posterior P is

(22)P (µ|X) = Cνe
−


Γ( ν+1

ν
)

Γ(ν−1)
Tr(Σ−ν/2·Cx

ν/2)



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where Cν = ν6

26(Γ(ν−1))6

(
Γ( ν+1

ν )

Γ(ν−1)

) 6
ν

( det(Σ− ν
2 ))

1
ν .

Note that for ν = 2, substituting (14) into the above

density and using (6) leads to
1√

(2π)6 det(Σ)
exp (− 1

2dX · (F̃β)T ·Σ−1 · F̃β · dX)

which coincides with 6-dimensional multivariate Gaus-

sian distribution as expected.

Following the same derivation from Section 2.2, a

Helmholtz free energy expression can be obtained from

the posterior in (11) which is given here by

(23)
ψν = −kT

Ω0

(
lnCν

−
(
Γ( ν+1

ν )

Γ(ν−1)
Tr
(
Σ−ν/2 · Cx

ν/2
)))

.

Based on (23), the Helmholtz free energy is de-

fined as a function of the fractal deformation gradient,

ψν = ψν(F
β) which can be re-written in terms of the

principal stretches that we define as λβL for the principal

directions L = 1, 2, 3. Furthermore, we denote the ob-

servable stretch as λβ,xL and unobservable stretch as λβ,yL .
Following the procedure that gives (14), a scalar factor

relates the fractal stretch to the observable deformation

gradient according to

λβ,xL =
πβ/2

2β−1l0Γ(β/2)
λL (24)

where l0 is the characteristic length scale and Γ is the

gamma function. An analogous relationship exists for

λβ,yL . In the case where β = 1 and l0 = 1, the fractal

stretch equals the measurable stretch.

We introduce viscoelasticity into this model by ad-

justing the constraints for particle motion as given by

the last term in (16). This constraint on relative particle

motion (dµ) is divided into observable (dµ(x)) and un-

observable (dµ(y)) terms that are independent. The un-

observable relative displacements contribute to the vis-

coelastic effect described in the following section. This

gives three separate constraints in the cost function with

a fractional variance on the observable (Σ
ν
2
xx), unobserv-

able (Σ
ν
2
yy), and their interactions (Σ

ν
2
xy) fractal relative

displacements.

These constraints result in the following Helmholtz

free energy function

(25)
ψν = T

[
f110 (λβ,xL λβ,xL )ν/2

+ 2f120 (λβ,xL λβ,yL )ν/2 + f220 (λβ,yL λβ,yL )ν/2
]

where T is temperature, the principle directions are

L = 1, 2, 3, and the constitutive parameters include one

governing observable stretch f110 , one governing non-

observable stretch f120 , and one coupling term f220 . These

parameters consist of the gamma function and time in-

variant portion of the covariance matrix given in (23); see

[31] for details.

3.2 Fractal and Fractional Order Operators

This section re-visits the integer Taylor series of a

function and then compares it to the fractal Taylor and

fractional series expansions space. To simplify the anal-

ysis, we illustrate its effect in terms of a general scalar

function f(x). Its use is given here to demonstrate the

utility of fractal derivatives in space and time for systems

that follow power-law (fractal relationships). This has

implications on predicting the kinematics of elastomers

upon mechanical loading.

The Taylor expansion of a smooth, infinitely differ-

entiable, function f at x = x0 is the power series given

by

f(x) = f(x0)+f
′(x0)(x−x0)+

f ′′(x0)

2
(x−x0)2+ ....

=

∞∑

n=0

f (n)(x0)

n!
(x− x0)

n

(26)

where f (n)(x0) is the n-th derivative of f evaluated at

x = x0.
It is clear that the first two terms of the series provide

a linear approximation of the function around x = x0. For

nonlinear functions, extrapolation in space and time limits

accuracy, dependent upon the magnitude of the nonlinear-

ity.

3.2.1 Fractal derivative

The fractal derivative of order β > 0 of a function f
is defined by

d

dxβ
f(x) = lim

x0→x

f(x0)− f(x)

x0β − xβ
(27)
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The fractal derivative is related to the ordinary

derivative in the following manner.

(28)

d

dxβ
f(x) = lim

x0→x

f(x0)− f(x)

x0β − xβ

= lim
x0→x

f(x0)− f(x)

x0 − x
· x0 − x

x0β − xβ

=
df(x)

dx
· d

dxβ
(x0 − x)

=
x1−β

β

df(x)

dx

Using the definition of the fractal derivative in (27),

one can construct the fractal Taylor series expansion. One

of the significant differences between the fractal Taylor

expansion and integer-order Taylor expansion is that the

approximation basis consists of powers of xβ unlike the

integer order, which uses polynomials as the basis func-

tions. Thus, the goal is to approximate functions with

(xβ − x0
β)
n

instead of (x− x0)
n

as done in (26). Deriv-

ing the right expansion coefficient bk completes the frac-

tal Taylor series of f around x = x0

(29)

f(x) = b0 + b1(x
β − x0

β) + b2(x
β − x0

β)
2
+ ....

=

∞∑

k=0

bk(x
β − x0

β)k

where b0 = f(x0).
The coefficients bk are obtained using a similar pro-

cedure to finding the coefficients for the integer Taylor

series. As one can infer from the relation between the

regular derivative and fractal derivative (28), the expan-

sion coefficients bk have a similar form to integer Taylor

coefficients. These relations are

bk =
1

k!

(
d

dxβ

)k
f(x = x0) (30)

where ( d
dxβ )

k
f is the k-th fractal derivative of function f

of order β.
We are particularly interested in fractal derivatives

for a given material with an initial fractal structure and the

possibility of displacements that follow fractal paths of

motion in space and time. Since fractals follow a power-

law, accurate approximation of power-law type functions

may improve predictions. The fractal Taylor series is an

excellent estimator of power-law functions. The first two

terms of the fractal Taylor series are exact for power-law

functions as long as we choose the proper fractal order.

For example, consider a power-law function f(x) = xα

for some α ∈ R. Then the first two term approximate of

this function around x = x0, using a fractal Taylor series

of fractal order β, is

(31)

f(x) ≈ f(x0) +
d

dxβ
f(x0)(x

β − xβ0 )

= xα0 +
x1−β

β

dxα

dx
(xβ − xβ0 )

= xα0 +
αx1−β

β
xα−1(xβ − xβ0 )

= xα0 +
α

β
xα−β(xβ − xβ0 )

If α = β, then we recover the original function f(x) =
xα. From the above calculations, it is clear that for power

functions, the two-term fractal Taylor expansion is exact

regardless of the point about which the Taylor expansion

is carried out. This behavior is lacking in the fractional

Taylor series, which we discuss below.

3.2.2 Fractional Caputo Derivative

The general definition for the Caputo fractional

derivative, Dα
x , is given by

Dα
xf(x) =

1

Γ(n− α)

∫ x

0

f (n)(s)

(x− s)α+1−n
ds (32)

for n− 1 < α ≤ n, n ∈ N

where α > 0 is the fractional order of the derivative and

n is the smallest integer greater than α. The gamma func-

tion is given by Γ(n − α) and f (n)(s) represent the nth

integer derivative evaluated at point s. The fractional Tay-

lor expansion based on fractional Caputo derivatives has

been constructed and studied elsewhere [33]. The Caputo

fractional Taylor expansion has the form

(33)

f(x) = f(x0) +Dα
xf(z+)

(x− x0)
α

Γ(α+ 1)

+Dα
xD

α
xf(z+)

(x− x0)
2α

Γ(2α+ 1)
+ ...,
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where f(x+) represents the right hand limit of f at x.

For functions following power law of the form f(x) =
q + (x − x0)

p for some p > 0, Caputo based fractional

two-term Taylor approximation is exact. [26]

One significant difference between the fractal Tay-

lor series and Caputo based fractional Taylor series is

their basis of expansions. As mentioned earlier, frac-

tal series relies on (xα − x0
α) type of basis while the

fractional series uses (x− x0)
α

. This difference in ba-

sis results in a slightly different approximation of func-

tions. More importantly, depending on the functions be-

ing approximated, one method can outperform the other

as shown in Figure 1. For example, two-term fractional

Taylor series is exact for f(x) = q + (x − x0)
p but not

for g(x) = q+xp−x0p (again p > 0) while the opposite

holds true for the fractal two-term Taylor expansion. This

difference in basis and approximation is explored by ap-

plying both operators in time domain to model viscoelas-

ticity.

3.3 Fractal Viscoelasticity

The stretched exponential posterior given by (22)

contains a covariance matrix that is assumed to be time

dependent. This time dependence accommodates non-

conservative behavior which in the case of elastomers is

a consequence of heat generation and elastomer network

configurational losses within the polymer network. In the

limiting case of time invariance, the posterior density and

subsequent forms of Gibbs and Boltzmann entropy re-

sults in a reversible hyperelastic-like function. We de-

lineate the reversible and irreversible components of the

total entropy according to the observable and unobserv-

able internal state variables to model viscoelasticity. This

distinguishes different components of the total Boltzmann

entropy function given by

(34)sT =
k

Ω0
ln (P (µ|X))

where P (µ|X) was previously given by (22) to have time

dependence within the covariance matrix and Ω is the La-

grangian volume element.

The time-varying characteristics within the posterior

are associated with the unobservable relative displace-

ments which we estimate using the deformation gradient

of the internal state Γβ . By expanding terms within the

total entropy, we obtain a superposition of reversible and

irreversible entropy components. The explicit form of this

entropy is

3 4 5 6 7 8 9 10

0

0.5
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1.5
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20

30

40
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Fig. 1: Fractal, fractional and integer order two-term Tay-

lor series approximations of two different basis functions.

(35)sT =
k

Ω0

{(
Fβ ·Σ−ν/2

xx · Fβ
)ν/2

+
(
Fβ ·Σ−ν/2

xy ·Γβ
)ν/2

+
(
Γβ ·Σyy(t)

−ν/2 ·Γβ
)ν/2}

.

where we assume explicit time dependence in Σyy(t).
The entropy generation is taken to be the terms in

(35) which contain the internal state Γβ . We explicitly

define it as

(36)

sg =
k

Ω0

{(
Fβ ·Σ−ν/2

xy · Γβ
)ν/2

+
(
Γβ ·Σyy(t)

−ν/2 · Γβ
)ν/2}

.

To satisfy the second law of thermodynamics, the
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time rate of change of sg must be positive semi-definite,

therefore, we restrict

dsg
dtα

=
∂sg

∂ΓβiK

∂ΓβiK
∂tα

= F (Γ̇
(α)
iK ) ≥ 0 (37)

where F (Γ̇
(α)
iK ) is an unknown function that depends on

the fractal time rate of change of the internal state. We

have also taken the fractal time rate of change of the en-

tropy generation with order 0 < α ≤ 1 as denoted by

Γ̇
(α)
iK . This is motivated by the previous discussion of frac-

tal Taylor series approximations of power law functions.

In the case of entropy generation, we assume a power-

law dependence in time which is governed by the time-

varying properties in the covariance matrix Σyy(t). We

assume this covariance matrix increases in time accord-

ing to the power-law dependence, tα. We also simplify

the analysis by assuming the covariance is isotropic. In

this case we let, Σyy = Σ0(t) = Σ0I(t
α − tα0 ) where

Σ0 is a positive constant and t0 is the initial time. The

order of the time derivative α is unknown but related to

the fractal structure constraint ν. We infer both ν and α
from experiments as detailed in Section 4.

The simplest function that ensures F (Γ̇
(α)
iK ) is posi-

tive definite is

F (Γ̇
(α)
iK ) = ηΓ̇

(α)
iK Γ̇

(α)
iK . (38)

where η is an unknown viscous term. A comparison of

(37) and (38) gives us the viscoelastic relation necessary

to solve for ΓiK which is

ηΓ̇
(α)
iK =

∂sg
∂ΓiK

= QiK (39)

where we have denoted the fractal viscoelastic stress by

QiK in terms of the change in entropy generation with

respect to the internal state ΓiK .

Our assumption of the fractal time derivative model

has assumed that the covariance matrix governing the in-

ternal state increases in time proportional to a special

power law function. In the limiting case, α = 1, we ob-

tain the classical diffusion process that follows a Gaussian

density. We have generalized this to power law relations

with the limiting case of a Gaussian density when the time

order is α = 1 and the spatial order is ν = 2. We give

additional support for using a fractal time derivative by

starting with a stretched exponential probability density in

space and time. It is shown that when the internal state µ

is homogenized over a stretched exponential, fractal time

derivatives in space and time lead to the fractal diffusion

equation. This extends results illustrated by Falconer[34]

for the limiting case of a Gaussian distribution.

To illustrate this relation, we write the homogenized

fractal displacements as

(40)µ(X′, t+ h) = Cν

∫

Ω

G · µ(X, h)dX1dX2dX3

where

(41)G = exp

[
−Γ
(
ν+1
ν

)
|µ(X′, t)− µ(X, t)|ν

Γ(ν−1)Σ
ν
2
0 t
α

]

and the fractal displacement is homogenized over all

neighboring Lagrangian points X relative to X′ where

X′ = X + dX. We have also explicitly re-written (12)

in the reference configuration as dµ = µ(X + dX, t) −
µ(X, t).

Using the definition of the fractal derivatives in space

and time as

∂µi
∂tζ

=
1

ζtζ−1

∂µi
∂t

∂µi

∂Xβ
I

=
1

βXβ−1
I

∂µi
∂XI

(42)

forXI > 0, we can calculate the relationship between the

fractal time rate of change and the second order fractal

displacement gradients.

By substitution of (40) into (42) and assuming ζ = α
and β = ν, it can be shown that

∂µj
∂tα

= Σ0
∂

∂Xν
I

(
∂µj
∂Xν

I

)
= Σ0

∂F βjI
∂Xν

I

. (43)

This result gives a strong indication that if the frac-

tal deformation gradient follows a stretched exponential

in space and time, a fractal diffusion equation can ac-

curately describe its behavior. Importantly, we use this

result to suggest that fractal time derivatives are ideal for

modeling viscoelasticity if the material displacements fol-

low stretched exponential distributions. This is counter to
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prior work that focused on fractional time derivatives to

describe viscoelasticity in elastomers [14]. We support

this argument in the following section by showing that

fractal and fractional order operators give nearly identi-

cal viscoelastic stress predictions in both elastomers VHB

4910 and 4949.

4 EXPERIMENTAL VALIDATION

Stress-stretch experiments on the dielectric elastomer

Very High Bond(VHB) 4910 and 4949 manufactured by

3M are used to validate the model. A series of uniax-

ial cyclic loading/unloading stress/stretch tests were con-

ducted to observe the change in steady-state hysteretic

stress behavior while varying the stretch rate. Details on

the experimental methods can be found elsewhere [35].

These stress/stretch results are used to compare a fractal

order linear viscoelastic model to the fractional order vis-

coelastic model discussed here.

80 120 0.68 0.74

Fractional

Fractal

0.2 0.22 0.24 0.26

f
0

11

-0.22 -0.2 -0.18

f
0

12

0.38 0.4 0.42 0.44

f
0

22

1.64 1.66 1.68 1.7 1.72

Fig. 2: Overlaid posterior densities of the fractional and

fractal order models for VHB 4910 when calibrated a

stretch rate corresponding to 0.67 Hz. The red solid lines

represent the results for the fractional order model and the

blue dotted lines represent the results for the fractal order

model.

We further explain fractional order viscoelasticity us-

ing the Caputo fractional order derivative (32) to clarify

how it is compared to experiments. The integer deriva-

tive of the function was previously given by f (n)(s). In

our case, the integer derivative of the deformation gra-

dient (FiK) or the stretch rate (λ̇I ) replaces the function

(f (n)(s)) and the Caputo fractional order derivative sim-

140 160 180 0.9 1 1.1

0.2 0.25 0.3

f
0

11

-0.35 -0.3 -0.25

f
0

12

0.5 0.6

f
0

22

1.9 2 2.1

Fractional

Fractal

Fig. 3: Overlaid posterior densities of the fractional and

fractal order models for VHB 4949 when calibrated at

0.67 Hz. The red solid lines represent the results for the

fractional order model and the blue dotted lines represent

the results for the fractal order model

plifies to

(Dα
t λI)(t) =

t1−α

1− α

λ̇I
Γ(1− α)

(44)

for 0 < α ≤ 1

where α > 0 is the fractional order of the derivative, λ̇I
is the constant stretch rate, and the Gamma function has

also been given by Γ(n− α).
The fractal derivative, on the other hand, is defined

by

dλI
dtα

=
t1−α

α

dλI(t)

dt
(45)

where α > 0 is the fractal order of the derivative, and
dλI(t)
dt is the integer order derivative of λI(t). In this sim-

ple case, the fractional and fractal deformation gradients

are almost equivalent (aside from a factor of α
(1−α)Γ(1−α) )

and the viscoelastic stress/stretch rate relation looks to

follow power law behavior. However, in computations

dealing with more complicated cases, the solution for the

fractional order derivative may not be numerically effi-

cient to compute making the fractal order derivative a

suitable alternative.
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Fig. 4: Fractional Order Model. Representative set of

calibration plots for the fractional order model describ-

ing the steady-state cyclic stress vs stretch behavior for

VHB 4910 at (a) 6.7×10−5 Hz, and (b) 0.67 Hz.

To describe the total stress, we assume the free en-

ergy function has the form given in (25) plus an incom-

pressibility constraint which involves the additional free

energy component

ψ̂ = ψ − ph(J
β,x − 1) (46)

where Jβ,x = λβ,x1 λβ,x2 λβ,x3 and ph is an unknown hy-

drostatic pressure. We are then able to obtain the total

hyperelastic stress

stotL =
∂ψ̂

∂λβ,xL

= T
[
νf110 (λβ,xL )ν/2−1λβ,xL

+ νf120 (λβ,xL λβ,yL )ν/2−1λβ,yL

]
− ph

∂Jβ,x

∂λβ,xL
.

(47)
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Fig. 5: Fractal Order Model. Representative set of cal-

ibration plots for the fractal order model describing the

steady-state cyclic stress vs stretch behavior of VHB 4910

at (a) 6.7×10−5 Hz and (b) 0.67 Hz.

and solve for the hydrostatic pressure given the zero trans-

verse stress constraint (stot1 = stot2 = 0) and stot3 is the

uniaxial stress to obtain following pressure equation

ph =
T
[
νf110 (I111 )ν/2−1λβ,x1 + νf120 (I121 )ν/2−1λβ,y1

]

λβ,x2 λβ,x3

(48)

where I111 = λβ,xL λβ,xL , I121 = λβ,xL λβ,yL , and I221 =

λβ,yL λβ,yL .

The viscoelastic stress from the unobservable defor-

mation gradient, ΓβiK , can be solved by combining the

first and second laws of thermodynamics to describe the

irreversible deformation processes with negligible ther-
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mal gradients. This results in an entropy generation

sg = − ∂ψ̂

∂ΓβiK
(Dα

t Γ
β
iK)(t) = QiK(Dα

t Γ
β
iK)(t) ≥ 0

(49)

or

sg = − ∂ψ̂

∂ΓβiK

(
dΓβiK
dtα

)
= QiK

(
dΓβiK
dtα

)
≥ 0, (50)

depending on whether the fractional or fractal order

derivative is used, respectively, where Sg is the entropy

generation and irreversibilities are contained in the vis-

coelastic stress relation QiK = − ∂ψ̂

∂Γβ
iK

. A detailed ex-

planation of how fractional viscoelastic stress in (49) is

derived is provided elsewhere [31].

The total stress can then be solved by combining

(47), (48), and either (49) or (50) depending on whether

the fractal or fractional order derivative, respectively, is

being used.

Using Bayesian statistical analysis, the parameter set,

θ = [η, α, f110 , f120 , f220 , ν], for both the fractional and

fractal viscoelastic models can then be inferred where η
and α describe the viscoelastic behavior and f110 , f120 ,

f220 , and ν describe the hyperelastic model. The De-

layed Rejection Adaptive Metropolis (DRAM) algorithm

is employed based upon the Markov Chain Monte Carlo

(MCMC) sampling technique to construct posterior dis-

tributions [36, 37, 38]. All the chains look to have con-

verged to a stable mean with approximately the same sta-

tistical distribution along any point in the sample space

for about 2.5×105 iterations for the fractional and fractal

order models. Figure 2 shows the marginal posterior den-

sities for both the fractional and fractal models for VHB

4910 when calibrated at the fastest stretch rate tested. All

six parameters look to have a Gaussian distribution and

except for η, the parameter distributions overlap almost

completely. The difference in the values for η can be ex-

plained by the difference in (44) and (45). Similar plots

for VHB 4949 are provided in Figure 3.

Mean parameter values can be found in Table 1 for

each tested stretch rate. Overall, each parameter set is

similar to the one previously discussed where all the pa-

rameters except for η have similar values and η is differ-

ent by the previously discussed factor for the fractional

and fractal models.

Using the determined parameter values, a model fit

for the VHB 4910 experimental data at the fastest speed

tested can be seen in Figures 4(b) and 5(b) along with

calculated 95% credible and prediction intervals for the
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Fig. 6: Fractional Order Model. Representative set of

calibration plots for the fractal order model describing

the steady-state cyclic stress vs stretch behavior for VHB

4949 at (a) 0.002 Hz, and (b) 0.67 Hz.

Table 1: Mean parameter values for VHB4910 for both

the fractional and fractal order models at all calibrated

stretch rates.

Model Parameter
Calibrated Rate (1/s)

6.7×10−5 0.047 0.1 0.335 0.5 0.67

Fractional

η 2400 279 194 148 108 108

α 0.430 0.637 0.657 0.681 0.654 0.709

f110 0.059 0.120 0.144 0.194 0.151 0.224

f120 -0.031 -0.072 -0.089 -0.152 -0.129 -0.193

f220 0.106 0.174 0.200 0.339 0.309 0.410

ν 1.89 1.72 1.65 1.71 1.84 1.68

Fractal

η 1180 200 143 112 78.9 84.9

α 0.431 0.637 0.657 0.681 0.654 0.709

f110 0.060 0.121 0.145 0.196 0.153 0.227

f120 -0.032 -0.073 -0.090 -0.154 -0.130 -0.195

f220 0.107 0.176 0.202 0.342 0.312 0.414

ν 1.89 1.72 1.65 1.71 1.84 1.68
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Fig. 7: Fractal Order Model. Representative set of cal-

ibration plots for the fractal order model describing the

steady-state cyclic stress vs stretch behavior for VHB

4949 at (a) 0.002 Hz, and (b) 0.67 Hz.

Table 2: Mean parameter values for VHB 4949 for both

the fractional and fractal order models at all calibrated

stretch rates.

Model Parameter
Calibrated Rate (1/s)

0.002 0.02 0.2 0.4 0.67

Fractional

η 6528 1364 307 182 155

α 0.917 0.965 0.985 0.983 0.995

f110 0.043 0.054 0.148 0.183 0.256

f120 -0.041 -0.057 -0.167 -0.21 -0.3

f220 0.083 0.115 0.312 0.388 0.55

ν 2.366 2.407 2.095 2.047 1.984

Fractal

η 6350 1419 326 190 166

α 0.908 0.971 1.003 0.991 1.026

f110 0.043 0.051 0.144 0.177 0.259

f120 -0.043 -0.056 -0.165 -0.208 -0.308

f220 0.092 0.114 0.308 0.387 0.563

ν 2.32 2.396 2.083 2.032 1.96

fractional and fractal order models, respectively. The

same procedure is then used to obtain separate parame-

ter sets for each tested rate. The calibrated model fits at

6.7×10−5 can be found in Figures 4(a) for the fractional

order model and Figure 5(a) for the fractal order model.

The fits between both models look to be almost identical

at each tested rate. The fractional and fractal model fit

on VHB 4949 data are provided in Figure 6 and Figure 7,

respectively, and mean model parameters for both models

are listed in Table 2.

Table 3: Sum of squares errors (kPa2) between the col-

lected experimental data (VHB 4910) and the model

given the stated calibrated parameter set.

Model
Calibrated Rate (1/s)

6.7×10−5 0.047 0.1 0.335 0.5 0.67

Fractional 9.27 7.39 5.68 15.6 26.4 16.6

Fractal 9.26 7.38 5.68 15.5 26.4 16.6

Table 4: Sum of squares errors (kPa2) between the col-

lected experimental data (VHB 4949) and the model

given the stated calibrated parameter set.

Model
Calibrated Rate (1/s)

0.002 0.02 0.2 0.4 0.67

Fractional 13.09 16.86 20.14 22.32 27.37

Fractal 13.40 16.70 19.76 22.17 26.99

To more accurately assess the fits of the calibrated

plots, a sum-of-squares error between the experimental

data and model using the mean parameter values can be

determined. Table 3 and 4 give the errors for each cal-

ibrated model fit at each stretch rate. Comparing the

fractional and fractal errors, we see that the errors are

within 0.1% of each other with the fractal order model

slightly outperforming the fractional order model 50% of

the time.We also note that the mean estimates for η and α
converge to consistent values at higher stretch rates. This

is because viscoelasticity is more dominant at high stretch

rates. The inferred η and α at higher stretch rates are thus

more representative of viscoelastic behavior. Moreover,
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fixed η and α from higher stretch rates can accurately pre-

dict hysteresis at lower stretch rates; see [14].

5 CONCLUSION

A new modeling framework for polymer mechan-

ics has been developed using entropy dynamics. A cost

functional that combined Shannon informational entropy

with a fractional order constraint of relative particle dis-

placements was introduced to model non-Gaussian defor-

mation processes that often occur in materials that ex-

hibit fractal structure. The fractional order constraint

leads to a Bayesian posterior density that is a function

of observable and unobservable internal state deforma-

tion variables. Through the use of Boltzmann entropy,

we obtain a thermodynamic entropy and entropy gener-

ation function from the time-varying Bayesian posterior

that accommodates nonlinearities associated with fractal

or power-law characteristics in both space and time. The

Bayesian posterior obtained from this cost function has

the form of a stretched exponential which accommodates

non-Gaussian deformation for hyperelastic and viscoelas-

tic behavior. Such fat-tailed probabilities are often seen in

complex systems that are fractal in nature. While materi-

als have finite length scales and may not follow an exact

power-law or fractal structure, Bayesian inference gives

an estimate of uncertainty in the model parameters that

result from the power-law assumption.

The current study applied fractional and fractal or-

der operators to characterize the viscoelastic behavior of

polymers under constant strain rate loading. Under such

loading, local fractal time derivatives and nonlocal frac-

tional order time derivatives were shown to be equivalent

excluding a multiplicative constant. The two viscoelas-

tic models were calibrated to experimental data from two

different polymers and both illustrated equivalent esti-

mates of viscoelasticity over a broad range of deformation

rates, indicating their ability to characterize the materi-

als’ viscoelastic behavior accurately. This new approach

has important implications for providing stronger connec-

tions between complex multifractal structure and power-

law hyperelastic and viscoelastic properties that can be

used to design and optimize polymer-based materials and

structures, as traditional linear viscoelastic models may

not capture their nonlinear behavior. Further research

could explore applying these models to a broader range

of polymers and other loading conditions to assess dis-

tinctions between model predictions of data when using

local fractal or nonlocal fractional order operators. The

study highlights the potential of fractional and fractal or-

der models to advance our understanding of complex ma-

terial behavior.
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