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Entropy dynamics is a Bayesian inference methodology
that can be used to quantify time-dependent posterior
probability densities that guide development of complex
material models using information theory. Here we ex-
pand its application to non-Gaussian processes to evalu-
ate how fractal structure can influence fractional hypere-
lasticity and viscoelasticity in elastomers. We investigate
how kinematic constraints on fractal polymer network de-
formation influences the form of hyperelastic constitutive
behavior and viscoelasticity in soft materials such as di-
electric elastomers which have applications in the devel-
opment of adaptive structures. The modeling framework
is validated on two dielectric elastomers, VHB 4910 and
4949, over a broad range of stretch rates. It is shown
that local fractal time derivatives are equally effective at
predicting viscoelasticity in these materials in compari-
son to non-local fractional time derivatives under con-
stant stretch rates. We describe the origin of this accu-
racy which has implications for simulating larger scale
problems such as finite element analysis given the differ-
ences in computational efficiency of non-local fractional
derivatives versus local fractal derivatives.

1 INTRODUCTION
Constitutive model development for polymeric mate-
rials traditionally starts with a free energy function that

Eugenia Stanisauskis
Department of Materials Science
Florida State University
Tallahassee, FL 32306

Email: estanisauskis@fsu.edu

William Oates
Department of Mechanical Engineering
Florida A&M University and Florida State University
Tallahassee, FL 32310
Email: woates@eng.famu.fsu.edu

contains information about the internal energy of the
bonds between atoms and the entropy governing heat
transport and the configurations of the polymer network
as a function of macroscopic deformation [I, 2, 3]. In-
formation about the internal degrees of freedom that span
quantum, molecular, mesoscale, and macroscales remains
extraordinarily difficult to explicitly quantify and there-
fore techniques that use entropy to quantify measures of
uncertainty are important to approximate internal forces
and transport phenomena (e.g., heat transport, chemical
diffusion, photochemistry, etc.) without complete knowl-
edge across all scales. It was rather fortuitous that the
pioneering work by Shannon’s theory of information [4]
was useful in modeling thermodynamic entropy [5, 6].
In this work, we use the tools from information theory to
better understand the nonlinear, rate-dependent mechan-
ics of elastomers that exhibit complexity which we en-
code as fractals or multifractals (random fractals) [7]. We
do this by using entropy dynamics [8] and modifying
the framework to include fractional constraints which re-
stricts multiscale material structure to move along fractal
dimensions. We relate fractal and fractional order opera-
tors to fractal structure to construct models that more ac-
curately predict nonlinear, rate-dependent deformation in
elastomers guided by an entropy dynamic framework.

The field of fractals and fractional order operators to
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materials science is extensive and has grown significantly
in the past several years. Seminal works in the broader
field of fractional calculus [9, 10] and fractal diffusion in
materials [11, 12] have motivated more recent efforts to
understand how both fractal and fractional order opera-
tors provide new insights into complex material behav-
ior [13, 14, 15, 16, 17, 18, 19, 20]. Mandelbrot’s concept
of fractals [21] provides a measure of 1D, 2D, and 3D
geometry or time series characteristics that are otherwise
difficult to quantify on a finite domain. For example, the
circumference of an island can be infinitely long given a
repeated (fractal) structure over all length scales. These
measures are made finite on a fractal domain. In terms of
time scales, fractal behavior manifest in terms of rates of
change of some physical property such as velocity which
may follow a fractal response as the kinetic behavior of
a material is viewed on different time scales. This frac-
tal mathematical property is defined over all length scales
which serves as an approximate model of a material with
finite bounds in space and time. Upper and lower limits of
the fractal domain have been considered to address these
finite length scales [22, 23, 15].

We focus on constitutive relations near equilibrium
while accommodating dissipation characterized by vis-
coelasticity. Elastomers exhibit complexities due to the
vast number of polymer network configurations that result
in nonlinear deformation and thermal dissipation upon
time dependent deformation. These complexities across
molecular to continuum scales remain challenging as er-
ror propagation limits prediction across a broad range of
deformation states and long time periods. In the limit-
ing case of Gaussian processes, approximations can be
made to develop idealized constitutive relations that lead
to the very well known neo-Hookean model of hyperelas-
ticity [2, 3]. Beyond moderate strain levels, elastomers
exhibit nonlinearities characterized by non-Gaussian pro-
cesses. Phenomenological methods can accommodate
these nonlinearities in the stress-stretch behavior such as
the Mooney-Rivlin and Ogden models [2]. However,
these models are limited by their phenomenological na-
ture requiring parameter estimation from data that is not
well informed by the polymer structure. Other model-
ing approaches accommodate polymer structure and mi-
croscopic effects of polymer entanglement, cross-linking
and non-affine deformation [24, 25]. These models make
assumptions on the microscopic volume elements that are
homogenized over a continuum volume. Although these
models have been successful in predicting finite deforma-
tion in certain elastomers, homogenization across contin-
uum scales is based on a limited number of microscopic
factors that often ignore non-Gaussian statistical distribu-
tions, direct relations to multiscale structure, and connec-

tions to viscoelasticity. In many cases, fat-tailed proba-
bility distributions of polymer molecular motion becomes
important and the fractal nature of materials can provide
inputs to more accurately reflect derivative operations in
the continuum scale constitutive model. This can have a
significant influence on macroscale constitutive behavior
as extreme events in the tails of the probability densities
can have a cascading influence on macroscopic thermo-
dynamic and kinetic properties.

West and Grigolini have argued that fractal structure
is often best approximated by fractional calculus opera-
tors [9]. The pervasive nature of fractal structures in na-
ture, including materials, clearly illustrates a unique op-
portunity to understand how to apply these operators to
develop constitutive relations in complex materials. One
striking example is the fractional form of the continuity
equation or fractional conservation of mass [26]. It was
shown that when fluid density can be homogenized as a
power law function in space (e.g., fractal function) the
Caputo fractional Taylor expansion of two terms exactly
represents the density’s power law relation. From a phys-
ical perspective, a power-law density relation can be mo-
tivated by fluids within a porous media [26]. This facili-
tates formulating an exact representation of the continuity
equation by using first order fractional derivatives. This
same power-law density function would otherwise require
an infinite number of integer order derivatives from the
Taylor expansion to obtain the same accuracy as one frac-
tional Caputo derivative. The compactness gained by a
small number of fractional derivatives must be balanced
by the non-local properties of the fractional order oper-
ator which requires an integral calculation for the Ca-
puto or Riemann-Louiville version [27]. In other works,
Mainardi, Luchko and Paginini [13] have given solutions
to space-time fractional order balance equations that fol-
low a stretched exponential under certain limiting condi-
tions in space and time. From a Bayesian perspective, the
problem can be flipped around and cast as an inference of
a probability density from sparse fractal data. In doing so,
we illustrate how fractional order kinematic constraints
lead to a stretched exponential density which contains the
limiting case of a Gaussian density. It is known that a
microscopic field distributed about this stretched expo-
nential leads to the fractal space-time diffusion equation.
The result highlights how collecting sparse information
in space and time can be used to formulate fractal partial
differential equations to identify and simulate this type of
material behaviour. Importantly, such results motivate un-
derstanding the similarities and differences in local fractal
derivatives versus non-local fractional derivatives for ma-
terial modeling. We investigate how these characteristics
inferred from Bayesian statistics are used to guide the ap-
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plication of fractal or fractional order operators used in
developing rate-dependent constitutive equations in elas-
tomers.

Given the subtle but important distinctions between
fractal and fractional order operators in material model-
ing, we evaluate assumptions that constrain elastomeric
materials to follow certain trajectories that are better pre-
dicted by fractal or fractional order operators in space and
time. We apply entropy dynamics [8] to better under-
stand how our assumptions, cast as a set of constraints
about polymer network displacements, provide insights
on appropriate derivative operators. We illustrate how
a fractional (power-law) constraint of particle displace-
ments leads to a stretched exponential in space which,
in turn, suggests a fractal derivative is also ideal to ap-
proximate deformation via a fractal deformation gradi-
ent. Time dependent properties, such as viscoelasticity,
require additional assumptions on the irreversible char-
acteristics of entropy generation. The covariance prop-
erties of particle interactions are introduced in the en-
tropy dynamics framework to provide guidance on time
dependent particle interactions. Under Gaussian approx-
imations, the variance or covariance of particle motion is
linear in time which can be accurately approximated by
integer order time derivatives. If the covariance evolves
over a power-law in time, we show that a fractal time
derivative within the diffusion equation exactly models
such behavior. We compare this relation to fractional or-
der viscoelasticity assumptions through experimental val-
idation on the uniaxial stress-stretch behavior of dielectric
elastomers, VHB 4910 and 4949. We also offer insight on
when fractal and fractional order derivatives will give the
same or different material model predictions.

The entropy dynamics framework quantifies condi-
tional probability densities of future material particle po-
sitions given their original undeformed positions. The
particles are broken down into two different sets. One
set of particles is defined to be observable or control-
lable by an external loading device in a way that parti-
cles move in an affine manner based on boundary condi-
tions. These displacements are typically defined by trans-
formations which map changes on a boundary to the bulk
volume. The set of particles is denoted by their Eule-
rian or deformed position in three dimensional space as
X4 (t) for @« = 1,...,n particles in some representative
volume element (Eulerian frame volume). A second set
of unobservable or uncontrollable particles are denoted
by yo(t) for « = 1,...,m such that the total number
of particles in the material is N = n + m. These un-
observable particles contribute to heat, residual effects,
damage, or other irreversibilities that cannot be controlled
by an external loading device. We apply entropy dynam-

ics to construct a model containing constraints on both
the controllable x, and uncontrollable y, particle posi-
tions and their time dependent properties. These manifest
through quantifying the uncertainty of a continuum ho-
mogenization of the particles as a field mapped onto the
Lagrangian (undeformed) configuration that we denote by
X. This requires first quantifying a Bayesian posterior
density as a joint probability of the continuum homoge-
nized kinematics: x = x(X,t¢) and y = y(X,t). Once
the Bayesian posterior density is quantified, this naturally
leads to a maximization of the likelihood of future defor-
mation x(X, ¢) and internal state changes y (X, t) based
on thermodynamic functions that are obtained from the
posterior density. The thermodynamic functions provide
the information required to quantify fractal or fractional
hyperelastic and viscoelastic constitutive relations. We
then extend the kinematic relations to the fractal domain
to accommodate complexities that follow power-law be-
havior in space and time.

In the following section, we first outline how we ap-
ply entropy dynamics to obtain a Bayesian posterior prob-
ability. This is followed by the introduction of conditional
probability constraints on x = x(X,t) and y = y(X, )
as well as fractional constraints that lead to thermody-
namic potentials and entropy generation expression that
relate fractal elastomer network structure to kinematics
constrained to move along fractal paths. We then nu-
merically evaluate the model and validate it against vis-
coelastic elastomer data. Discussions are then given about
the importance of constraints and its interpretation with
respect to material structure when developing material
models based on fractional order and fractal order deriva-
tives. Conclusions are given in the final section.

2 THEORY
2.1 Preliminaries

We start by considering Shannon’s relative entropy
having the form

P(x,yX)

SIP, Q] :—/DP(x,y|X)ln <Q(x,y|X)

) dxdy
(1)

where the unknown posterior density is P(x,y|X) and
the prior density is Q(x,y|X). We will assume the prior
density as flat or uniform with respect to x and y mean-
ing that any location of x and y are equally possible given
its original position X. Note that the integral is over the
representative material volume D in the deformed con-
figuration. This means the probability densities are per
Eulerian volume. In three dimensions, the domain D is
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a volume where we use the notation dx = dxidzadzs
and dy = dyidysdys. Also note that we define the en-
tropy here as unitless meaning the probability densities
define the probability of x and y given X over the vol-
ume D. This requires special considerations such that the
total material volume is D = Dy U Dy, is disjoint in the
pointwise sense Dy N Dy, = 0.

Before describing the details of the model, we first
highlight that if the Shannon entropy is maximized ac-
cording to the variational problem

3S1P.Q) = T25P = 0 @

it can be shown that the solution for the Bayesian poste-
rior density P that maximizes S[P, Q] is a uniform con-
ditional probability that is inversely proportional to the
volume [28, 29]. As one may expect, this is because we
have assumed the prior is uniform and we have not in-
cluded any constraints when maximizing S|P, Q)] except
that P must integrate to one over all x and y. Additional
constraints are added to the model based on interactions
between relative displacements of x and y.

The constraint that we introduce in Section 2.2 is
to minimize the relative positions between neighboring
Lagrangian points: Ax = x(X + AX,¢) — X and
Ay = y(X 4+ AX,t) — Y where we denote Y as the
undeformed position of the unobservable deformed state
y. If a constraint based on Ax or Ay is added to Shan-
non’s entropy, we find that maximizing the Shannon en-
tropy tends to broaden the posterior of possible particle
positions while a constraint on the squared magnitude of
Ax or Ay narrows the posterior. The posterior becomes
a Gaussian distribution rather than a uniform distribution
and the width of the Gaussian depends on knowledge of
the covariance matrix which is used to constrain the vec-
tor products, AxAx, AyAy, and AxAy as described in
the following section. The quantitative form of the Gaus-
sian requires knowledge of covariance matrices that rep-
resent distributions of the self-interactions of AxAx and
AyAy and the interactions AxAy. These covariance
matrices may come from theoretical conjectures, sparse
observations from experiments, or high fidelity simula-
tions. Entropy dynamics provides a tool to evaluate the
uncertainties in terms of estimates of the covariance ma-
trix which may include time invariant and time varying
components. This provides advantages in distinguishing
reversible, path independent behavior (time independent
covariance) from irreversible, hysteretic behavior (time
dependent covariance). It also provides a way to connect

information theory and information entropy with ther-
modynamic entropy and constitutive relations for non-
Gaussian processes. This latter effect will be explored us-
ing fractional order constraints, as opposed to a quadratic
constraint, to relate fractal structure to fractional order
properties. This will impact both the reversible hypere-
lastic behavior and irreversible viscoelasticity.

2.2 Quadratic Constraints and neo-Hookean Behav-
ior

To facilitate later development of the fractal and frac-
tional order models, we first present the simpler model
containing a quadratic constraint in the cost function. In
this case, Shannon’s entropy is combined with a quadratic
constraint that limits the relative material displacements
between neighboring points located at X and X + AX.
We start by defining the integer order Taylor expansion
of the position vector of each material point that will be
used in the cost function constraint. The neighboring con-
tinuum displacements are described by

x(X+AX) =X+ 2% AX 4,

3
yX+AX) =Y + % - AX + - ®
We will penalize the relative positions for the observ-
able and unobservable displacement fields. The notation
Ax = x(X 4+ AX) — X is used for brevity and similarly
for the uncontrollable terms as Ay = y(X + AX) - Y.
A quadratic constraint is used to create a cost func-
tion that balances maximizing entropy with penalties of
large relative displacements. This uses the tensor product
AxAx, AxAy and AyAy that are constrained to differ-
ent covariance matrices associated with the relative dis-
placement vectors and their coupling. The cost function
is given by

H1P.Q = 51P.Q) = ( [ PexyiX)ixay - 1)
{Am ( / P(x, y|X)(AxAx)dxdy — 2)}
~tefan, - ([ Poyi@xayiixy - 2,,)
~te{a ([ Poyi)@yay)asay -3, )|

“)

where the Lagrange multipliers include vy, Az, A, and
A,,. The Shannon relative entropy S|P, Q)] is from ( 1)
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and there is a set of covariance matrices X;;, 3., and
X,y (each is 3 x 3) which describe the distribution of the
observable (X,,) and unobservable (X,,) material mo-
tion and their interactions (3., ). These covariance matri-
ces may vary spatially and temporally. We have also used
Tr to represent the trace. The quadratic constraint leads to
a Gaussian density of particle displacements fluctuations.

We briefly illustrate how this Gaussian density leads
to a neo-Hookean, viscoelastic constitutive model to high-
light how constraints are used within the information
theoretic approach. Importantly, our selection of the
quadratic constraint restricts the posterior density to ma-
terial displacements that are distributed about a Gaussian
density. This neglects the possibility of nonlinear effects
that may manifest as extreme events such as internal dis-
placements during unraveling of polymer entanglement
and random walks along a fractal polymer network which
are later described in Section 3.1.

We take the Gaussian probability obtained from max-
imizing (4) to construct a entropy function that we use to
develop the rate dependent, stress-stretch constitutive re-
lations. We neglect internal energy (u) changes within
an elastomer and treat the Helmholtz energy density as
Y = u— Tsp ~ —Tsp where T is temperature and
st is the thermodynamic entropy density. We conduct
the analysis in the limit of infinitesimal relative displace-
ments AX — dX from (3) such that we have the con-
ventional deformation gradient as the internal state. This
is described by dx ~ F - dX where we neglect higher
order terms in (3) and we have defined the deformation
gradient as F = g—)’z. We also include the deformation
gradient associated with the unobservable internal states
as ' = %y(_ The key relations associated with predict-
ing material motion of the observable and unobservable
displacement fields are denoted by

dx=F-dX and dy=T-dX (5

-~ [Fo S By
oo o ==[EE] @

We substitute these deformation gradients into the
posterior probability density that maximizes (4). For
brevity, we let Cy = ——L___ where the covariance

vV (emP (X

matrix X is defined in (6), D = 6, and then the probabil-
ity is

P(x,y|X) = Ce™ #XFETLR0X (g

To define the thermodynamic entropy, we apply a
different measure than directly using the Shannon en-
tropy. A rigorous comparison between two different en-
tropy functions (Gibbs H and Boltzmann H ) has been
discussed elsewhere [30]. These two entropy functions
differ in the following way. The Gibbs energy function
accommodates interactions among neighboring particles
while the Boltzmann version neglects particle correlation
(e.g., ideal gas). The Gibbs entropy function is equivalent
to Shannon’s entropy (excluding the prior). Upon further
analysis given by Jaynes [30], the thermodynamic entropy
can be described more simply by S = k In(P) where k is
Boltzmann’s constant. The Boltzmann entropy neglects
explicit material correlations and measures the phase vol-
ume of “reasonably probable” events. Since our prob-
ability is defined over the continuum of particle motion
by x = x(X, t), we directly use the posterior density of
particle kinematics to define the thermodynamic entropy
using Boltzmann’s form of entropy

St =kIn[P(x,y|X)]. @®)

This estimate of the thermodynamic entropy St is the to-
tal entropy of a volume V' of interest. The thermodynamic
entropy density must be normalized by an appropriate
representative volume which we denote by 2 in the un-
deformed (Lagrangian) volume such that sy = St/y.
This form of the thermodynamic entropy density is used
to formulate the rate dependent stress-stretch constitutive
relations.

To illustrate, we evaluate the characteristics of an
ideal Gaussian polymer network given the Gaussian pos-
terior that was obtained from the tensor product constraint
in the cost function. Simplifications are made by assum-
ing all material points are observable meaning all mate-
rial points are distributed about Gaussian density and re-
main Gaussian for all deformation states considered. This
means y can be neglected and X, and X, are irrele-
vant. We note that the assumption of Gaussian behavior
is applicable to all future material displacements relative
to the undeformed state. This is inherent in the fixed con-
straint X, within ( 4). It is well known that the Gaus-
sian network neglects significantly large deformation and
is only applicable for stretch ratios before strain harden-
ing occurs [24, 3]. This limitation is addressed in the sub-
sequent section.
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The thermodynamic entropy based on ( 7) gives

k

ST = —
Qo

<lnC —;(dX-FT-E;j-F-dX))
9

We make a further assumption that all particles move in-
dependently (zero covariance) and their variance in dis-
placement is equal and homogeneous such that 3,, =
021 where o7 is the variance and I is the identity matrix.
Under these assumptions, the deformation gradient and
their relative particle distances prior to deformation are
defined to be equivalent for the entire volume {2y which
gives

k 1 .

The Helmholtz free energy density is then

T 1 T

As expected, this shares characteristics with the clas-
sic neo-Hookean hyperelastic model that describes finite
deformation of polymers within the regime of Gaussian
network distributions. Note that in this free energy func-
tion, dX, is a set of constants and v then depends quadrat-
ically on the deformation gradient.

In the next section, we will change the tensor con-
straint from a quadratic to a fractional constraint to ac-
commodate fat-tail probability distributions of particle
displacements often exhibited by fractal structures. We
will also introduce rate-dependent effects governing vis-
coelasticity. This provides a means to correlate non-
Gaussian polymer network configurations with complex
constitutive relations where rate dependent polymer de-
formation may follow fractal space-time complexities.

3 FRACTAL AND FRACTIONAL ORDER
MODEL
3.1 Fractional Constraints and Non-Gaussian Hy-
perelasticity
Large elastomer deformation can lead to non-
Gaussian polymer network distributions where softening
followed by hardening in the stress-stretch behavior may
be observed as the underlying polymer network deforms

significantly. In this section, we extend the information
theoretic framework that resulted in a neo-Hookean free
energy in Section 2.2 to fractional order deformation con-
straints to accommodate nonlinear stress-stretch behavior
often observed during large elastomer deformation.

We previously described motion of particles over a
Euclidean domain in terms of the integer Taylor expan-
sion in (3). We argue in this section that a fractal mea-
sure of material displacement is a better predictor of ma-
terials exhibiting this form of complexity. This complex-
ity originates in the form of multiscale material structure
that is not perfectly crystalline nor perfectly random. The
goal is to predict the future configurations of such fractal
structure upon irreversible mechanical loading. We pro-
pose to use a fractal metric for the material configuration
and fractal derivative operators to predict future configu-
rations after applying mechanical loading. The choice of
fractal derivatives over fractional derivatives is discussed
later in Section 3.2. We represent the deformation on a
fractal domain using

ou 5
p(x+ Ax,t) ~ p(x,t) + Er Ax (12)

where the fractal vector of deformed material points is
p = p(x,t) as a function of the Eulerian frame coordi-
nates, and 8 > 0 is the order of fractal derivative. Given
the assumption of fractal material structure which may
produce polymer network displacements that are fractal
or multi-fractal (i.e, random fractals), we use a displace-
ment measure in the fractal domain that is defined by
u = p(x(X,t),t). This fractal metric is related to the
Euclidean domain based on a power-law relation often
described by a density of state [15, 22]. We focus on
isotropic densities of state and fractal exponents in this
analysis; more details are given by Tarasov [27]. To
simplify the notation, we include observable (u(r)) and
unobservable (p(¥)) fractal measures as a single vector
field u = [p™®, u¥)] which are analogous to the Eu-
clidean model from Section 2. The relationship between
the fractal measure in each coordinate direction (uz(-x’y))
and the normalized Cartesian (Eulerian) direction Z; for
1 = 1,2, 3 is defined to be

(z) _ vi2
Hiw = 2VF7(TV/2+1)|$1‘

| v
9

13)

(v) _ /2 A
i = vT(ern) 1Yi

where T; = f—o and y;, = ;’—0 are normalized coordinates

given the characteristic length scale [y in the Eulerian
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frame and I'() is the gamma function not to be confused
with the tensor in (5) [31]. The power-law scaling is de-
noted by v.

To establish translational and rotational invariance,
we restrict the radius of some sphere to a finite set that
we define by the characteristic length [y which is used to
define a representative continuum volume element of suf-
ficient size to represent the fractal structure. If we assume
that 8 = v from (12), this relation becomes

T av/2
d,UJi ) = WFZKCZXK,
(v) /2 (14)

dui = WFinXK

such that the fractal deformation gradient scales with the
Euclidean deformation gradient according to

. ﬂ.I// 2

KT =110 (v /2)
1,2, 3. Similar scaling applies to the deformation gradient
associated with the unobservable internal states I';x =
88@’;. A more detailed discussion on this invariance is
available [31].

The cost function that constrains fractal displace-

ments to a fractional order constraint is proposed to be

F; i where, F; = da;(”;'{ for K =

HIP,Q] = SIP,Q] - 7 ( [ P - 1>

— Tr{A : (/D P(u|X)Cx 2dp — Eﬁ:) }

(15)

where the fractional order covariance matrix is X is given
in (6) and the corresponding 6 x 6 Lagrange multiplier
matrix is A and Cx"/? = (dudu)”/2 . These second or-
der tensors are raised to a power using conventional oper-
ations by rotating the tensors to their eigendirections, ap-
plying the exponents to the eigenvalues, and rotating the
tensors back to their original directions [1]. Moreover,
these measures are positive semi-definite, symmetric and
therefore are real-valued matrices. The fractional power
law exponent v penalizes fractal displacements relative
to their initial positions. It is expected that this expo-
nent is related to the original fractal structure, however,
the exact relationship between the fractal dimension of a
polymer network and the fractional parameter v is non-
trivial [1, 32].

The general form of the cost function in the eigendi-
rection is given by

1Pl = s1r.Q o [ Plaxdn 1)

D

S Tr {A : ( P(i|X)D% djs — 2) } .
D

(16)

where A is rotated Lagrange multiplier matrix and it is
assumed that Cx has the same eigendirections as A. The
matrix D is diagonalized matrix with eigenvalues as di-
agonal entries of Cx.

Optimizing H with respect to P we get

—In(Q) + In(P) + 1+~ +Tr (A : D”/2> =0, (17)

The posterior density is

P([L‘X) _ Qef(l“r’YJrT’l“(A-Du/Q). (18)

The Lagrange multiplier -y is re-written in terms of a
partition function Z using the normalization constraint on
the probability density according to

7 — / e—(Tr(A-D"/z))dﬂ _ Q—lel+’y (19)
D
such that the posterior density is
P(p|X) = z Le~(Tr(AD?)), (20)

We solve for Z and A using the constraints and sym-
metry of P about |dft|= 0. Assuming @ is a flat prior,
after solving we get

1
v

V8 6
Z-1 _ 726(1“@_1))6 (11:[11\1;> 21

where I'(v~1) is again the gamma function.
The final form of the posterior P is

r(xtl) TT(EV/QCXV/z))

T(v—1)

P(ulX) = c< 22)
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L6 (L) ’ N
whereC’V=26(F(u_1))5 TooT) (det(X72))".

Note that for v = 2, substituting (14) into the above
density and using (6) leads to _
Wexp(f%dX- (FOHT . x71 FP . dX)
which coincides with 6-dimensional multivariate Gaus-
sian distribution as expected.

Following the same derivation from Section 2.2, a
Helmholtz free energy expression can be obtained from
the posterior in (11) which is given here by

Based on (23), the Helmholtz free energy is de-
fined as a function of the fractal deformation gradient,
¥, = 1, (FP) which can be re-written in terms of the
principal stretches that we define as )\f for the principal
directions L = 1,2, 3. Furthermore, we denote the ob-
servable stretch as )\/zL and unobservable stretch as )\/z’y.
Following the procedure that gives (14), a scalar factor
relates the fractal stretch to the observable deformation
gradient according to

B/2
B _ il
AF

= ) ‘2“)

where [ is the characteristic length scale and T' is the
gamma function. An analogous relationship exists for
)\[Z’y. In the case where § = 1 and [y = 1, the fractal
stretch equals the measurable stretch.

We introduce viscoelasticity into this model by ad-
justing the constraints for particle motion as given by
the last term in (16). This constraint on relative particle
motion (dp) is divided into observable (du(m)) and un-
observable (dp,(y)) terms that are independent. The un-
observable relative displacements contribute to the vis-
coelastic effect described in the following section. This
gives three separate constraints in the cost function with
a fractioglal variance on the observableV(EEx), unobserv-
able (X2,), and their interactions (X2,) fractal relative
displacements.

These constraints result in the following Helmholtz

free energy function

=T | NN 2
bo =T [ VXE) o5)
+2fé2()\€,x)\€,y)u/2 —&—f022(>\§’y>\€’y)”/2

where T is temperature, the principle directions are
L = 1,2, 3, and the constitutive parameters include one
governing observable stretch f}!, one governing non-
observable stretch f(}z, and one coupling term ng. These
parameters consist of the gamma function and time in-
variant portion of the covariance matrix given in (23); see
[31] for details.

3.2 Fractal and Fractional Order Operators

This section re-visits the integer Taylor series of a
function and then compares it to the fractal Taylor and
fractional series expansions space. To simplify the anal-
ysis, we illustrate its effect in terms of a general scalar
function f(x). Its use is given here to demonstrate the
utility of fractal derivatives in space and time for systems
that follow power-law (fractal relationships). This has
implications on predicting the kinematics of elastomers
upon mechanical loading.

The Taylor expansion of a smooth, infinitely differ-
entiable, function f at x = z is the power series given
by

f(x)Zf($0)+f'($o)(x—on)+f/l(QxO)@—ﬂfo)%r-m
2 £(n) Zo
-3 e
n=0 :
(26)

where f(") () is the n-th derivative of f evaluated at
Tr = Xo.

It is clear that the first two terms of the series provide
a linear approximation of the function around x = . For
nonlinear functions, extrapolation in space and time limits
accuracy, dependent upon the magnitude of the nonlinear-

1ty.

3.2.1 Fractal derivative
The fractal derivative of order 5 > 0 of a function f
is defined by

d;iﬂ’f(x) ~ iy £ (%0) — f(2) @7)

Tro—T _{L‘Oﬁ — Jjﬁ
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The fractal derivative is related to the ordinary
derivative in the following manner.

d - fwo) = fl=)
dxiﬂf(w) B :r:lolglzr x;fB — P

flxo) = f(x) wo—=

- Ilolgll o — & IO'B — Iﬁ (28)
df(z) ~d

T dr ?(xo —2)

P df(a)

B dx

Using the definition of the fractal derivative in (27),
one can construct the fractal Taylor series expansion. One
of the significant differences between the fractal Taylor
expansion and integer-order Taylor expansion is that the
approximation basis consists of powers of z? unlike the
integer order, which uses polynomials as the basis func-
tions. Thus, the goal is to approximate functions with
(2P — 2¢7)" instead of (z — 2¢)" as done in (26). Deriv-
ing the right expansion coefficient b, completes the frac-
tal Taylor series of f around x = xg

f(z) =bo + by (2 —3:05)—1—1)2(355 —3:05)24—....

> 29
=3 bi(a? — o) *)
k=0

where by = f(xp).

The coefficients by, are obtained using a similar pro-
cedure to finding the coefficients for the integer Taylor
series. As one can infer from the relation between the
regular derivative and fractal derivative (28), the expan-
sion coefficients by, have a similar form to integer Taylor
coefficients. These relations are

1/ d\"
by, = 7 <dx5) f(z = x0) (30)

where (d%ﬁ)]C f is the k-th fractal derivative of function f
of order (3.

We are particularly interested in fractal derivatives
for a given material with an initial fractal structure and the
possibility of displacements that follow fractal paths of
motion in space and time. Since fractals follow a power-
law, accurate approximation of power-law type functions
may improve predictions. The fractal Taylor series is an

excellent estimator of power-law functions. The first two
terms of the fractal Taylor series are exact for power-law
functions as long as we choose the proper fractal order.
For example, consider a power-law function f(z) = x®
for some o € R. Then the first two term approximate of
this function around = = z, using a fractal Taylor series
of fractal order 3, is

F(@) ~ F@) + 25 Fwo)a® — of)

=z5+—— z 0)
b X 31)
=xf + axﬂ a_l(ﬂcﬁ — .%‘g)
o
=zq + ﬁwa*‘g(xﬁ - xg)

If &« = 3, then we recover the original function f(x) =
x®. From the above calculations, it is clear that for power
functions, the two-term fractal Taylor expansion is exact
regardless of the point about which the Taylor expansion
is carried out. This behavior is lacking in the fractional
Taylor series, which we discuss below.

3.2.2 Fractional Caputo Derivative
The general definition for the Caputo fractional
derivative, DY, is given by

e L[ I0)
DS f(x) = T —a) /0 @ syt ds  (32)

forn—1<a<nneN

where o > 0 is the fractional order of the derivative and
n is the smallest integer greater than ov. The gamma func-
tion is given by I'(n — o) and f(™ (s) represent the n*"
integer derivative evaluated at point s. The fractional Tay-
lor expansion based on fractional Caputo derivatives has
been constructed and studied elsewhere [33]. The Caputo
fractional Taylor expansion has the form

(x — 20)”
I'a+1)
)2(1

f(x) = f(xo) + D f(z+)

(x — xo
T(2a +1)

(33)
+ DIDg f(z+)

ooy
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where f(x+) represents the right hand limit of f at x.
For functions following power law of the form f(x) =
q + (x — x0)P for some p > 0, Caputo based fractional
two-term Taylor approximation is exact. [26]

One significant difference between the fractal Tay-
lor series and Caputo based fractional Taylor series is
their basis of expansions. As mentioned earlier, frac-
tal series relies on (z® — x®) type of basis while the
fractional series uses (z — x¢)®. This difference in ba-
sis results in a slightly different approximation of func-
tions. More importantly, depending on the functions be-
ing approximated, one method can outperform the other
as shown in Figure 1. For example, two-term fractional
Taylor series is exact for f(x) = ¢ + (z — x)? but not
for g(x) = g+ aP — xo? (again p > 0) while the opposite
holds true for the fractal two-term Taylor expansion. This
difference in basis and approximation is explored by ap-
plying both operators in time domain to model viscoelas-
ticity.

3.3 Fractal Viscoelasticity

The stretched exponential posterior given by (22)
contains a covariance matrix that is assumed to be time
dependent. This time dependence accommodates non-
conservative behavior which in the case of elastomers is
a consequence of heat generation and elastomer network
configurational losses within the polymer network. In the
limiting case of time invariance, the posterior density and
subsequent forms of Gibbs and Boltzmann entropy re-
sults in a reversible hyperelastic-like function. We de-
lineate the reversible and irreversible components of the
total entropy according to the observable and unobserv-
able internal state variables to model viscoelasticity. This
distinguishes different components of the total Boltzmann
entropy function given by

ST = o In (P(u/X) (34)
0

where P(u|X) was previously given by (22) to have time
dependence within the covariance matrix and 2 is the La-
grangian volume element.

The time-varying characteristics within the posterior
are associated with the unobservable relative displace-
ments which we estimate using the deformation gradient
of the internal state I'”. By expanding terms within the
total entropy, we obtain a superposition of reversible and
irreversible entropy components. The explicit form of this
entropy is

25¢F +f — IO,S _ 30,5 _________
----- Fractional
Fractal | .7
2 —Integer | .7
~15¢
3 . °
= s
-
| >
* 4
. g
r -
; e
; ‘s
057 -4
N <
0 L L L L L L

—r (- 3)0.5
70f|.... Fractional
| Fractal
60 —Integer
50

Fig. 1: Fractal, fractional and integer order two-term Tay-
lor series approximations of two different basis functions.

k v/2
- B.—v/2 B
T= g {(F $-v/2.F ) (35)

e ) B A WOREE R

where we assume explicit time dependence in 33, (t).

The entropy generation is taken to be the terms in
(35) which contain the internal state T'”. We explicitly
define it as

Sg = Qﬁo {(Fﬁ-x;jm 'F'g)yﬂ

v/2 (36)
+ (073,072 1) }

To satisfy the second law of thermodynamics, the

€20z Iudy 8z UO Josn a|IASpiemp3 AISIanun sioulll] uleyinos Aq Jpd'y| | L-£2-Wel/g8/600./686290 L/GL L L 0L/10p/pd-ajoie/solueyoswpaldde/Bio-awse uonos||0d|eyBipawse//:dny woly papeojumod



time rate of change of s, must be positive semi-definite,
therefore, we restrict

dsy  Osg 5TfK

g K — 1)) >0 (37)
dt apr ot

where F' (1"5?{)) is an unknown function that depends on
the fractal time rate of change of the internal state. We
have also taken the fractal time rate of change of the en-
tropy generation with order 0 < a < 1 as denoted by
r E? . This is motivated by the previous discussion of frac-
tal Taylor series approximations of power law functions.
In the case of entropy generation, we assume a power-
law dependence in time which is governed by the time-
varying properties in the covariance matrix X, (¢). We
assume this covariance matrix increases in time accord-
ing to the power-law dependence, t*. We also simplify
the analysis by assuming the covariance is isotropic. In
this case we let, 3, = 3o(t) = ZoI(t* — t§) where
Yy is a positive constant and ¢ is the initial time. The
order of the time derivative « is unknown but related to
the fractal structure constraint v. We infer both v and «
from experiments as detailed in Section 4.

The simplest function that ensures F(Fg?) is posi-
tive definite is

P19 = g1, (38)

2

where 7 is an unknown viscous term. A comparison of
(37) and (38) gives us the viscoelastic relation necessary
to solve for I'; x which is

() _ O3y
F4 = — = <

where we have denoted the fractal viscoelastic stress by
Qix in terms of the change in entropy generation with
respect to the internal state ['; .

Our assumption of the fractal time derivative model
has assumed that the covariance matrix governing the in-
ternal state increases in time proportional to a special
power law function. In the limiting case, @ = 1, we ob-
tain the classical diffusion process that follows a Gaussian
density. We have generalized this to power law relations
with the limiting case of a Gaussian density when the time
order is @ = 1 and the spatial order is v = 2. We give

additional support for using a fractal time derivative by
starting with a stretched exponential probability density in
space and time. It is shown that when the internal state p
is homogenized over a stretched exponential, fractal time
derivatives in space and time lead to the fractal diffusion
equation. This extends results illustrated by Falconer[34]
for the limiting case of a Gaussian distribution.

To illustrate this relation, we write the homogenized
fractal displacements as

p(X' t+h) =C, / G- (X, h)dX,dX2dXs  (40)
Q

where

e [F (5 (X, 1) - pX 1)l (41)

D158 te

and the fractal displacement is homogenized over all
neighboring Lagrangian points X relative to X’ where
X’ = X + dX. We have also explicitly re-written (12)
in the reference configuration as du = p(X + dX,t) —
w(X, ).

Using the definition of the fractal derivatives in space
and time as

Opi 1 Oy
ote (-1 ot

ox?  pxPTox;

(42)

for X7 > 0, we can calculate the relationship between the
fractal time rate of change and the second order fractal
displacement gradients.

By substitution of (40) into (42) and assuming ( = «
and 8 = v, it can be shown that

B
Ouy 5 3] <8,uj)228FjI “3)

ot~ “Poxy \ oxy Yoxy

This result gives a strong indication that if the frac-
tal deformation gradient follows a stretched exponential
in space and time, a fractal diffusion equation can ac-
curately describe its behavior. Importantly, we use this
result to suggest that fractal time derivatives are ideal for
modeling viscoelasticity if the material displacements fol-
low stretched exponential distributions. This is counter to
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prior work that focused on fractional time derivatives to
describe viscoelasticity in elastomers [14]. We support
this argument in the following section by showing that
fractal and fractional order operators give nearly identi-
cal viscoelastic stress predictions in both elastomers VHB
4910 and 4949.

4 EXPERIMENTAL VALIDATION

Stress-stretch experiments on the dielectric elastomer
Very High Bond(VHB) 4910 and 4949 manufactured by
3M are used to validate the model. A series of uniax-
ial cyclic loading/unloading stress/stretch tests were con-
ducted to observe the change in steady-state hysteretic
stress behavior while varying the stretch rate. Details on
the experimental methods can be found elsewhere [35].
These stress/stretch results are used to compare a fractal
order linear viscoelastic model to the fractional order vis-
coelastic model discussed here.

—— Fractional
7 a |t Fractal

80 120

11
f0

02 022,024 026
0

0.38 164 166 1.68 1.7 1.72

Fig. 2: Overlaid posterior densities of the fractional and
fractal order models for VHB 4910 when calibrated a
stretch rate corresponding to 0.67 Hz. The red solid lines
represent the results for the fractional order model and the
blue dotted lines represent the results for the fractal order
model.

We further explain fractional order viscoelasticity us-
ing the Caputo fractional order derivative (32) to clarify
how it is compared to experiments. The integer deriva-
tive of the function was previously given by f(™(s). In
our case, the integer derivative of the deformation gra-
dient (F;g) or the stretch rate (A\;) replaces the function
(f™(s)) and the Caputo fractional order derivative sim-

—Fractional
n Q| Fractal
140 160 180 0.9 1 1.1
{1
0
0.2 0.25 0.3 -0.35 -0.3 -0.25
22
0
0.5 0.6

Fig. 3: Overlaid posterior densities of the fractional and
fractal order models for VHB 4949 when calibrated at
0.67 Hz. The red solid lines represent the results for the
fractional order model and the blue dotted lines represent
the results for the fractal order model

plifies to
(Dpann = 1 A (44)
A T I T aT(1 - )
for0<a<1

where o« > 0 is the fractional order of the derivative, h\ I
is the constant stretch rate, and the Gamma function has
also been given by I'(n — «).

The fractal derivative, on the other hand, is defined
by

At dA(t)
dte o dt

(45)

where « > 0 is the fractal order of the derivative, and
d)‘é t(t) is the integer order derivative of A;(¢). In this sim-
ple case, the fractional and fractal deformation gradients
are almost equivalent (aside from a factor of m)
and the viscoelastic stress/stretch rate relation looks to
follow power law behavior. However, in computations
dealing with more complicated cases, the solution for the
fractional order derivative may not be numerically effi-
cient to compute making the fractal order derivative a
suitable alternative.
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Fig. 4: Fractional Order Model. Representative set of
calibration plots for the fractional order model describ-
ing the steady-state cyclic stress vs stretch behavior for
VHB 4910 at (a) 6.7x107° Hz, and (b) 0.67 Hz.

To describe the total stress, we assume the free en-
ergy function has the form given in (25) plus an incom-
pressibility constraint which involves the additional free
energy component

=1 —pu(JHT 1) (46)

where J%% = X" ADTADT and py, is an unknown hy-
drostatic pressure. We are then able to obtain the total
hyperelastic stress

tot __ 81/}
NG
— T[N
x v/2— aJﬁ,ac
AR OGN ] —p OE
NG
(47)
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Fig. 5: Fractal Order Model. Representative set of cal-
ibration plots for the fractal order model describing the

steady-state cyclic stress vs stretch behavior of VHB 4910
at (a) 6.7x107° Hz and (b) 0.67 Hz.

and solve for the hydrostatic pressure given the zero trans-
verse stress constraint (s{°° = s = 0) and s5°* is the
uniaxial stress to obtain following pressure equation

L e R W A
)\5@)\?@’

Ph =

(48)

where IT1 = MPPADT 12 = APPADY, and 12 =
APYNDY.

The viscoelastic stress from the unobservable defor-
mation gradient, Ff %> can be solved by combining the
first and second laws of thermodynamics to describe the
irreversible deformation processes with negligible ther-
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mal gradients. This results in an entropy generation

.
59 =~ a?g (DFT7)(1) = Qix (DPT)() 2 0
iK
(49)

or

O (dTP ar’.
= —— 2 = . 1 >
Sg aFfK ( dte > QZK( dte = 07 (50)

depending on whether the fractional or fractal order
derivative is used, respectively, where S is the entropy
generation and irreversibilities are contained in the vis-

_ 9 ~ -
P A detailed ex

planation of how fractional ViscoelasEiKc stress in (49) is
derived is provided elsewhere [31].

The total stress can then be solved by combining
(47), (48), and either (49) or (50) depending on whether
the fractal or fractional order derivative, respectively, is
being used.

Using Bayesian statistical analysis, the parameter set,
0 = [n,a, f3t, f42, f3%,v], for both the fractional and
fractal viscoelastic models can then be inferred where 7

and « describe the viscoelastic behavior and f 1 (}2,

22 and v describe the hyperelastic model. The De-
layed Rejection Adaptive Metropolis (DRAM) algorithm
is employed based upon the Markov Chain Monte Carlo
(MCMC) sampling technique to construct posterior dis-
tributions [36, 37, 38]. All the chains look to have con-
verged to a stable mean with approximately the same sta-
tistical distribution along any point in the sample space
for about 2.5x 10 iterations for the fractional and fractal
order models. Figure 2 shows the marginal posterior den-
sities for both the fractional and fractal models for VHB
4910 when calibrated at the fastest stretch rate tested. All
six parameters look to have a Gaussian distribution and
except for 7, the parameter distributions overlap almost
completely. The difference in the values for ) can be ex-
plained by the difference in (44) and (45). Similar plots
for VHB 4949 are provided in Figure 3.

Mean parameter values can be found in Table 1 for
each tested stretch rate. Overall, each parameter set is
similar to the one previously discussed where all the pa-
rameters except for 7 have similar values and 7 is differ-
ent by the previously discussed factor for the fractional
and fractal models.

Using the determined parameter values, a model fit
for the VHB 4910 experimental data at the fastest speed
tested can be seen in Figures 4(b) and 5(b) along with
calculated 95% credible and prediction intervals for the

coelastic stress relation Q;x =
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Fig. 6: Fractional Order Model. Representative set of
calibration plots for the fractal order model describing
the steady-state cyclic stress vs stretch behavior for VHB
4949 at (a) 0.002 Hz, and (b) 0.67 Hz.

Table 1: Mean parameter values for VHB4910 for both
the fractional and fractal order models at all calibrated
stretch rates.

Model Parameter Calibrated Rate (1/s)
6.7x107° 0.047 0.1 0335 05 0.67
n 2400 279 194 148 108 108
o 0430  0.637 0.657 0.681 0.654 0.709
Fractional o 0.059  0.120 0.144 0.194 0.151 0.224
fi2 -0.031  -0.072 -0.089 -0.152 -0.129 -0.193
2 0.106  0.174 0200 0339 0309 0410
v 1.89 172 165 171 1.84  1.68
n 1180 200 143 112 789 849
« 0.431 0.637 0.657 0.681 0.654 0.709
Fractal ot 0.060 0.121  0.145 0.196 0.153  0.227
a2 -0.032  -0.073 -0.090 -0.154 -0.130 -0.195
22 0.107  0.176 0202 0342 0312 0414
v 1.89 172 165 171 184  1.68
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Fig. 7: Fractal Order Model. Representative set of cal-
ibration plots for the fractal order model describing the
steady-state cyclic stress vs stretch behavior for VHB
4949 at (a) 0.002 Hz, and (b) 0.67 Hz.

Table 2: Mean parameter values for VHB 4949 for both
the fractional and fractal order models at all calibrated
stretch rates.

Model Parameter Calibrated Rate (1/s)
0.002 002 02 04 067
n 6528 1364 307 182 155
a 0917 0965 0985 0983 0.995
Fractional ot 0.043  0.054 0.148 0.183  0.256
a2 -0.041 -0.057 -0.167 -021 -03
22 0.083 0.115 0312 0388 055
v 2366 2407 2095 2047 1.984
n 6350 1419 326 190 166
a 0.908 0971 1.003 0991  1.026
Fractal fu 0.043  0.051 0.144 0177 0259
a2 -0.043 -0.056 -0.165 -0.208 -0.308
22 0.092 0.114 0308 0387 0.563
v 232 2396 2083 2032 196

fractional and fractal order models, respectively. The
same procedure is then used to obtain separate parame-
ter sets for each tested rate. The calibrated model fits at
6.7x107° can be found in Figures 4(a) for the fractional
order model and Figure 5(a) for the fractal order model.
The fits between both models look to be almost identical
at each tested rate. The fractional and fractal model fit
on VHB 4949 data are provided in Figure 6 and Figure 7,
respectively, and mean model parameters for both models
are listed in Table 2.

Table 3: Sum of squares errors (kPa2) between the col-
lected experimental data (VHB 4910) and the model
given the stated calibrated parameter set.

Calibrated Rate (1/s)
6.7x107% 0.047 0.1 0335 05 067

Model

Fractional 9.27 739 568 156 264 16.6
Fractal 9.26 738 568 155 264 16.6

Table 4: Sum of squares errors (kPa?) between the col-
lected experimental data (VHB 4949) and the model
given the stated calibrated parameter set.

Calibrated Rate (1/s)
0.002  0.02 0.2 0.4 0.67
Fractional | 13.09 16.86 20.14 22.32 27.37
Fractal 1340 16.70 19.76 2217 26.99

Model

To more accurately assess the fits of the calibrated
plots, a sum-of-squares error between the experimental
data and model using the mean parameter values can be
determined. Table 3 and 4 give the errors for each cal-
ibrated model fit at each stretch rate. Comparing the
fractional and fractal errors, we see that the errors are
within 0.1% of each other with the fractal order model
slightly outperforming the fractional order model 50% of
the time.We also note that the mean estimates for n and «
converge to consistent values at higher stretch rates. This
is because viscoelasticity is more dominant at high stretch
rates. The inferred 17 and « at higher stretch rates are thus
more representative of viscoelastic behavior. Moreover,
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fixed i and o from higher stretch rates can accurately pre-
dict hysteresis at lower stretch rates; see [14].

5 CONCLUSION

A new modeling framework for polymer mechan-
ics has been developed using entropy dynamics. A cost
functional that combined Shannon informational entropy
with a fractional order constraint of relative particle dis-
placements was introduced to model non-Gaussian defor-
mation processes that often occur in materials that ex-
hibit fractal structure. The fractional order constraint
leads to a Bayesian posterior density that is a function
of observable and unobservable internal state deforma-
tion variables. Through the use of Boltzmann entropy,
we obtain a thermodynamic entropy and entropy gener-
ation function from the time-varying Bayesian posterior
that accommodates nonlinearities associated with fractal
or power-law characteristics in both space and time. The
Bayesian posterior obtained from this cost function has
the form of a stretched exponential which accommodates
non-Gaussian deformation for hyperelastic and viscoelas-
tic behavior. Such fat-tailed probabilities are often seen in
complex systems that are fractal in nature. While materi-
als have finite length scales and may not follow an exact
power-law or fractal structure, Bayesian inference gives
an estimate of uncertainty in the model parameters that
result from the power-law assumption.

The current study applied fractional and fractal or-
der operators to characterize the viscoelastic behavior of
polymers under constant strain rate loading. Under such
loading, local fractal time derivatives and nonlocal frac-
tional order time derivatives were shown to be equivalent
excluding a multiplicative constant. The two viscoelas-
tic models were calibrated to experimental data from two
different polymers and both illustrated equivalent esti-
mates of viscoelasticity over a broad range of deformation
rates, indicating their ability to characterize the materi-
als’ viscoelastic behavior accurately. This new approach
has important implications for providing stronger connec-
tions between complex multifractal structure and power-
law hyperelastic and viscoelastic properties that can be
used to design and optimize polymer-based materials and
structures, as traditional linear viscoelastic models may
not capture their nonlinear behavior. Further research
could explore applying these models to a broader range
of polymers and other loading conditions to assess dis-
tinctions between model predictions of data when using
local fractal or nonlocal fractional order operators. The
study highlights the potential of fractional and fractal or-
der models to advance our understanding of complex ma-
terial behavior.
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