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Windthrow, or the uprooting of trees by extreme wind gusts, is a natural forest
disturbance that creates microhabitats, turns over soil, alters hydrology, and removes
carbon from the above-ground carbon stock. Long recurrence intervals between extreme
wind events, however, make direct observations of windthrow rare, challenging our
understanding of this important disturbance process. To overcome this difficulty,
we present an approach that uses the geomorphic record of hillslope topographic
roughness as a proxy for the occurrence of windthrow. The approach produces a
probability function of the number of annual windthrow events for a maximum wind
speed, allowing us to explore how windthrow or tree strengths may change due to
shifting wind climates. Slight changes to extreme wind speeds may drive comparatively
large changes in windthrow production rates or force trees to respond and change the
distribution. We also highlight that topographic roughness has the potential to serve
as an important archive of extreme wind speeds.

topography | roughness | wind | trees

Wind imposes a common yet variable force on forests that can occasionally uproot
trees. Turbulent sweeps deliver unusually high wind speeds over short durations into
the canopy (1) and have the potential to impart drag forces that exceed the resistance
strengths of roots and soil (2–5). When this happens, trees topple in a process known
as tree or windthrow, which has consequences for geomorphology and forest ecosystems
by transporting and mixing soil (6–11), creating canopy gaps (12, 13), and providing
niche habitats (14, 15). Windthrow has an important role in ecosystem functioning of
forests and has consequences at scales that range from local to global. Indeed, widespread
windthrow is a potential explanation for the observed interannual variability in terrestrial
carbon sinks (16, 17). Further, climate change may alter the frequency and magnitude
of strong wind events (18), and windthrow frequencies will respond (19, 20).

Understanding the carbon cycle consequences of windthrow rates is particularly
pressing given the emerging focus on nature-based climate change mitigation strategies
like reforestation and altered forest management (21). Effectively implementing and
evaluating nature-based climate solutions (NbCS) requires quantifying present-day
carbon stocks and fluxes between them (22). Furthermore, we must know how climate
feedback, like changing wind speeds, will change rates of tree mortality and threaten the
residence time of carbon stored in forest biomass. Efforts to quantify rates of windthrow
to evaluate its impact on carbon dynamics have historically faced challenges posed by
the long recurrence interval and stochasticity of extreme events that drive it (23, 24).
Here, we demonstrate that the topographic roughness of forests serves as an archive of
windthrow events and can be used to quantify the process.

Windthrow adds topographic roughness to hillslopes by creating pit-mound couplets
that are initially sharp in form and degrade with time due to creep-like processes operating
within the soil mantle (Fig. 1A) (6, 10, 25). At any time t, a hillslope’s roughness
reflects the balance between the time series of roughness production by windthrow and
persistent decay of that roughness by creep-like processes. Windthrow production is a
stochastic signal driven by atmospheric extremes, which are difficult to measure (26).
Satellite imagery has been used to map blowdown events in the Amazon Rainforest (27);
however, these studies are normally limited to forest disturbances that are hectares in
size and one cannot determine whether trees have snapped or been uprooted. Many
windthrow events in temperate settings involve a small number of trees and are not easily
observable using satellite imagery. Lidar surveys may be used to map tree gap sizes (28) at
fine scales, but these also do not distinguish between windthrow and other forms of tree
mortality. Further, repeat lidar surveys over large areas are rare, which prevents direct
measurement of windthrow events. In this paper, we develop the statistical relationship
between topographic roughness, geomorphic creep-like processes, windthrow occurrence,
and extreme wind events and use these relationships to identify the probability function
of windthrow production rates (Fig. 1) for a moderate relief and temperate setting.
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Fig. 1. (A) Topographic roughness (r) is directly proportional to the windthrow production rate (p) and inversely proportional to the rate of creep-like decay
processes (K ). Across sites, this relationship scales with a constant C that describes the pit geometry. The image shows a pit-mound couplet with geometric
factors l and a labeled. (B) Slope maps (rise over run) from lidar-derived DEMs of two hillslopes with different amounts of roughness due to windthrow, implying
different histories between them. (C) The mechanical model of windthrow involves calculating the probability of windthrow by determining the overlap between
distributions of a driving force (wind gusts, black lines) and resisting force (tree strength, orange lines). The particular overlap of those two distributions produces
unique probability functions and statistical moments of windthrow production rates (D). Map of Indiana and Brown County are in the lower right of the figure.

We use southern Indiana as a case study and consider a me-
chanical model, which is capable of recreating surface roughness
characteristics similar to what we observe in nature, providing
evidence that the theoretical model is rooted in reality. Last, we
illustrate the potential for surface roughness to serve as an archive
of extreme wind events.

1. Theory

In this section, we present a theory that describes topographic
roughness and its statistical relationship to windthrow production
rates. Throughout this paper, µX and σ 2

X refer to the mean and
variance of the random variable X , respectively. The functions
fX (X ) and FX (X ) are the probability density and cumulative
probability functions, respectively. The subscript describes the
function, which may take different arguments. For example,
FX (Y ) describes the probability that a random variable Y > X .

A. Topographic Roughness. Windthrow pit-mound couplets
add roughness to hillslopes at the scale of meters (Fig. 1 A
and B). Over time, creep-like processes smooth couplets back
toward a planar surface (25, 29, 30). The topographic roughness
of a hillslope at time t [y] is the sum of topographic variance
from all pit-mound couplets of all ages, which amounts to a
convolution of the windthrow production rate p(t) [m−2 y−1]
(number per area per year) with a decay function. Previous work
(10) demonstrates that the roughness through time is

r(t) =
a2w2l2π

32

∫ t

−∞

p(t ′)
[
l2

4
+ K [t − t ′]

]−3/2

×

[
w2

4
+ K [t − t ′]

]−1/2

dt ′, [1]

where r [m2] is the topographic roughness (defined as the variance
of elevation), t − t ′ [y] is the age of couplets, and K [m2 y−1]
is a topographic diffusivity, which is a measure of the magnitude
of all creep-like soil transport processes. a [m2], l [m], and w [m]
are product amplitudes and characteristic lengths and widths
of initial pit-mound couplet geometry, respectively, defined in
ref. 10 (SI Appendix). In some settings, burrowing animals (31),
shrubs (32), solifluction lobes (33), landslide deposits (34, 35),
and bedrock outcrops (36) are sources of topographic roughness.
Those roughness sources are not present in our study area, so that
windthrow is the primary natural roughening process at the scale
of meters (10), as is the case for many moderate relief (10 to 100
m of relief and modest slopes 0.5) and temperate settings (8).
We use Eq. 1 to define relationships between statistical moments
of topographic roughness and the windthrow production rate.

B. Windthrow Production Rate. On a single hillslope bound by
a channel at the base and a ridge at the top, the number of
windthrow events per year per hectare, p(t ′) [m−2 y−1], is a
noisy time series that we consider as a discrete white noise. Using
measured topographic roughness values and theory, we aim to
describe and measure the underlying probability distribution,
fp(p) [m2 y], that the white noise, p(t ′), samples.

Previous researchers note that newly created forest gaps expose
existing trees to greater stress so that their likelihood of failing
increases (37, 38). This would add correlation in the time series
of p. On the other hand, a very large blowdown event would
remove many trees from the hillslope, and another event of
the same size is unlikely to occur until the forest recovers,
which describes an anticorrelated signal. The consequences of
correlation or anticorrelation in p are unclear and are worthy
of their own investigation. However, for most of the hillslopes
in Brown County, IN, we do not observe evidence for major
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windthrow events that create very large canopy gaps, so that
white noise is appropriate for our study.

To solve for statistical moments, we rearrange a result from
ref. 10 which provides the mean windthrow production rate,

µp =
4
[
φ2 + φ

]
a2l2π

Kµr , [2]

where φ = l/w. We also solve for the relationship between σ 2
p

and σ 2
r (SI Appendix)

σ 2
p =

48φ4

a4l2π21tφc
K σ 2

r − µ
2
p , [3]

where 1t is 1 y and φc = 1/2
(
φ2 + φ − 1/5

)
is a correction

factor for whenφ 6= 1. A solution exists forφ 6= 1, but it involves
many terms, so we provide this approximation for simplicity.
The 1t arises because our analytical solution requires that we
discretize the problem. Eqs. 2 and 3 show that the mean and
variance of windthrow production are linearly related to the mean
and variance of topographic roughness respectively and hillslope
diffusivity. All components on the right-hand side are measurable
from high-resolution topography or are rate constants that can
be estimated (e.g., K ). Estimating the topographic diffusivity
K is challenging, though previous work provides bounds and
suggests that K varies with climate (39–42). We consider values
of 0.001 ≤ K ≤ 0.01 [m2 y−1].

Land-use history is a complicating factor. As with most of the
eastern United States (43), much of Brown County was clear-
cut in the 19th century, which may have resulted in smoother
topography. However, forests began regenerating on many of
these hillslopes in the early 20th century (44, 45), such that
the unforested period of these landscapes was relatively brief.
While most of Brown County was affected by land-use change,
some hillslopes may have been thinned for timber instead of
farmed (44). The consequence of land-use history on topographic
roughness remains unknown. Previous authors have dated pit-
mound couplets to have ages of 100 to 1000 y in heavily
logged and mined states of Wisconsin and Michigan (46), and
topographic roughness in New England had been attributed
to precolonial storms (47). However, agricultural practices that
involved intense tilling would have smoothed and reduced natural
topographic roughness. We consider two end-member cases.
Case A assumes that the roughness persists through land-use
change so that there is no memory of land-use change. Case B
assumes that the roughness was completely removed during the
19th century and began to accumulate 100 y ago so that there
is memory of land-use change. Mathematically, the difference
between these two scenarios is captured by the lower limit of
integration in Eq. 1 (Case A: −∞ and Case B: t − 100 y).
We calibrate the mechanical model for Case A using values
measured from Eqs. 2 and 3, for Case B, we use modified forms
(SI Appendix).

C. Mechanical Model. For a tree to uproot, the drag force must
exceed a resisting force (2–5, 7, 48), which involves the strength of
roots and soil and the ability of a tree to flex. Resistance strengths
vary between individual trees (37, 49) as they differ by rooting
depth, degree of sheltering, surface slope, and canopy geometry.
The extreme wind events that drive windthrow occur during rare
atmospheric events that create highly variable turbulent bursts
and sweeps. Therefore, the occurrence of windthrow involves the
exceedance of one highly variable quantity (drag force) above

another (tree resistance). We approach this as a probabilistic
problem where windthrow rates are determined by the overlap
of drag and resisting force distributions (Fig.1C ). Our model
does not explicitly resolve the intrastorm dynamics where one
windthrow event may lead to others and the formation of canopy
gaps. The probabilistic approach is best applied at timescales
longer than the storm and is only capable of asking what is the
probability that P trees fail given that a maximum wind gust of
X meters per second occurred. This allows for the possibility of
gap-forming processes. To be clear, probabilistic does not imply
random but that our model incorporates the range of wind gusts
and the variability of the characteristics that determine trees’
resistance to strong winds (e.g., tree species, exposure, height,
dbh, etc).

Windthrow occurs during the strongest wind events. We antic-
ipate that derechos, which are large convective wind storms (50),
are the primary source of extreme winds in southern Indiana.
Tornadoes can affect forests (51, 52) of southern Indiana, but
their footprints are smaller and they are comparatively rare. We
define the driving force as the square of the strongest three-second
gust speed in a year,Dw [m2 s−2]. Gusts are commonly measured
using the 3-s time interval (26), and we use the squared gust speed
instead of a drag force because we do not know the values of the
coefficients of drag or cross-sectional areas for each tree, which are
required to calculate a force (4, 5). In our model, different canopy
shapes and sizes (and their impact on drag force) are implicitly
incorporated in the resistance function as they impact which
wind speeds certain trees can withstand (49). The cumulative
distribution function for tree resistance, FRt (Dw), describes the
probability that a tree will have a resistance Rt < Dw [m2 s−2]
and fail. As an example, a forest with a wide variety of canopy
shapes, topographic exposure, or rooting depths may have a larger
variance in Rt .

The probability distribution of windthrow production rates,
p, is determined by the overlap of driving and resisting force
distributions. The resistance function FRt (Dw) describes the
portions of trees that cannot resist a certain gust speed and will
fail and the rest which will remain standing. For a hillslope with
N trees, each tree has the same probability of being from the
population of trees that fail. This describes N trials with two
outcomes: a windthrow event or not. The binomial distribution
captures this description and is the conditional distribution of
the number of windthrow events given a gust speed,

fP(P|Dw) =
(
N
P

)
FRt (Dw)P [1− FRt (Dw)]N−P , [4]

where P = pH1t is a dimensionless integer that is the number
of trees that fall on a hectare, H [m2], in 1 y,1t. The remaining
piece is to determine how frequently maximum gust speeds have
a value between Dw and Dw + 1Dw, which is given by the
probability density function, fDw(Dw)1Dw. Using wind speed
data to determine fDw and the rules of marginal, conditional,
and joint probabilities (SI Appendix), we are able to obtain the
outstanding marginal distribution—the probability distribution
of windthrow production rates fp(p) (Fig. 1D).

This approach is flexible and can incorporate physical elements
of drag forces, tree roots, topography, and others, and it implicitly
incorporates all of the uncertainty and range of these properties.
All of these contribute to the variance of Rt , and we can estimate
their impact when measured over the spatial scale of 1,000’s km2

(e.g. Brown County, IN). However, Brown County, IN, has
relatively uniform rock type, forest characteristics, and physical
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geography, which should reduce the variability of tree resistance
and wind speeds.

The resistance function, FRt (Rt) is unknown for any particular
landscape and forest, but physical arguments inform some limits
on the shape. First, the pdf of tree resistance, fRt (Rt), must have
a finite mode that is greater than the mode of driving forces,
which reflects the simple observation that the most common
result is that trees resist most winds. Second, we are primarily
concerned with the location and spread of tree resistance Rt ,
which amount to the mean µRt [m2 y−2] and variance σ 2

Rt [m4

y−4]. Given these constraints, we postulate that tree resistance
is normally distributed so that FRt (Rt) is an error function. The
normal distribution is the maximum entropy distribution for a
known mean and variance, meaning that it requires the fewest
assumptions about the process, given that we know the first two
moments (53). This argument guides our choice as we determine
only the first two moments from Eqs. 2 and 3.

Calibrating the mechanical model with topographic roughness
requires that most tree throw in the field area is driven by
wind and is therefore windthrow. Tree throw is a more general
process and may also be driven by ice loading (54) and root rot
(55). In southern Indiana, we observe a clear aspect dependency
of tree throw couplets that is consistent with the dominant
wind direction (e.g., east and north-facing hillslopes) (10).
Furthermore, if ice or root rot were the primary drivers, then
we would expect to see approximately uniform occurrence of
couplets. But instead, we see variability in topographic roughness
(Fig. 2B) on different hillslopes and so that tree throw must be
driven by something with lots of variance, like wind. Nonetheless,
in SI Appendix, we develop a purely probabilistic model that does
not specify the driving mechanism, which produces results that
are similar to the mechanical model.

2. Data

A. Topographic Roughness. Recent work collected r on 1, 910
hillslopes from Brown County in southern Indiana (Fig. 1B)
(10), which is largely forested and hilly with 200 m of relief and
locally steep slopes (up to 45◦). Flat-lying shales, limestone, and
sandstone underly the entire county. We measure topographic
roughness from statewide, 0.76-m resolution, topographic data
that are fine enough to measure topographic roughness due
to windthrow, r (10). For this work, we limit our analysis

to hillslopes with slopes between 14◦ and 33◦ (0.25 to 0.65
slope) (Fig.1B) because shape parameters for pit-mound couplets
are consistent throughout moderately steep slopes. On shallow
slopes, much of the sediment falls back into the pit, and couplets
are small (10, 31). On steeper slopes, the couplets are shallower
and longer and contribute differently to topographic variance.
This limits our analysis to 1,408 hillslopes. From these data,
we obtain µr = 0.005 [m2] and σ 2

r = 7.14 × 10−06 and we
calculate µp and σ 2

p using Eqs. 2 and 3 for Cases A and B and
for different values of K . These values of µp and σ 2

p inform the
mechanical model described above. Data are available in ref. 56.

B. Wind Speed Data. Empirical measurements of extreme wind
events are notoriously sparse (18, 57). We used a 20-y record of
hourly (2000 to 2020) and 2 y of 10-Hz (2019 to 2020) wind
speed measurements from the nearby Morgan-Monroe State
Forest AmeriFlux site (US-MMS) to characterize the distribution
of wind gusts in the region (58). The tower is located on a
ridge at 39.3232 N, 86.4131 W. At 46 m tall, it is 20 m
above the canopy which has an average height of 27 m and
is composed of 80 to 90-y-old deciduous trees that are sugar
maple, tulip poplar, sassafras, and oaks (59). We think that
the statistics from this site are representative of Brown County,
which has consistent topographic relief so that there are not
any orographic or systematic topographic routing issues. Pairing
maximum gust values per hour with the hourly average results
in 17,520 measurements. Using those data, we form a statistical
relationship between gust speeds and hourly averaged speeds and
apply the statistical relationship to the full 20-y record of hourly
wind speeds (Fig. 2). Data are available in ref. 56.

We first define the form of the probability distribution of
hourly averaged wind speeds, uh [m s−1], which is a mixture of
Weibull and Gumbel distributions weighted by≈3/4 and≈1/4,
respectively, and summed together (Fig. 2A). The Weibull (60)
and Gumbel distributions have both been used to describe wind
speed distributions, with some noting that the Gumbel provides
a better fit to the tail (61). Next, using 2 y of 3-s averaged wind
speeds (gusts), we define the statistical relationship between the
probability of maximum squared gust speed, u2

g [m2 s−2], given
an hourly averaged wind speed (Fig. 2B, yellow contours). The
mean of the conditional distribution of fu2

g
(u2

g |uh) is similar to
the gust factor referenced in other studies (3). We find that

A B C

Fig. 2. (A) Magenta and blue are data from 2019–2020 and 2000–2020 respectively. Exceedance probability and probability density function (inset) of hourly
averaged wind speed data from the Morgan Monroe AmeriFlux tower. We test Gumbel (red), Weibull (cyan), and a mixture model of the two (black). (B) The
relationship between squared gust speed and hourly averaged wind speed allows us to develop the distribution of gust speeds. Yellow lines are the contours of
the joint probability of hourly wind speed and maximum squared gust speed, which we use to construct the extreme value distribution. (C) Probability density
function of the square of the most extreme wind gust speed in a year. The derived extreme value distribution appears to overlap with reported gust speeds
for derechos (50).
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the maximum gust, ug , is, on average, 1.9 times the hourly
average (SI Appendix). Typical gust factors range between 1.4
and 2.8, so that our estimate of 1.9 is consistent with average
gust factors across the conterminous United States (26) and at
sites in the United Kingdom (62). Using the rules for marginal,
conditional, and joint probabilities, we determine the probability
distribution of 3-s averaged squared gust speeds (A1). Finally, we
generate the extreme value distribution of 3-s squared gust speeds,
fDw (Fig. 2C ) (A2). The resulting form for fDw overlaps with
reported values for squared gust speeds from derechos, which
are a significant source of extreme winds in southern Indiana
(50, 63) (Fig. 2C ). In the next section, we combine the theory
and roughness data to obtain fp(p).

3. Results

A. Mechanical Model. We calibrate the mechanical model by
iteratively adjusting the position and spread of the resistance
function, FRt (Rt), to change the overlap with the driving force
distribution, fDw(Dw). This leads to different forms of fp(p) (Fig.
1 C and D). We then select the combination that produces
fp(p) with µp and σ 2

p that best match measurements from
Brown County. We test different land-memory cases and use

different topographic diffusivities, but in all cases, the results
show small, but nonzero, probability of windthrow for typical
annual wind speed maximum (20 ms−1) in this region (Fig. 3A).
The probability of failure increases significantly once severe storm
or tornadic wind speeds are surpassed.

Both land-memory case (A & B, dotted lines) and topographic
diffusivity, K (colors), affect the distribution, FRt (Rt) (Fig.
3A). Small values of K (yellow) require resistant trees because
topographic roughness decays slowly. Therefore, in order to
create the roughness statistics that we observe in Indiana, the
production rate must be low. There are also differences between
land-memory cases. In general, FRt must be shifted toward
weaker resistance values for Case B (land-memory, roughness
removal) as compared to Case A (no land-memory, roughness
persistence). This results in higher values of µp and is most
pronounced for K = 0.001 (Fig. 3D). This is because systems
with large topographic diffusivities approach an expected steady-
state roughness value faster than those with small diffusivities.
In SI Appendix, we parameterize a Weibull distribution using
the method of moments and Eqs. 2 and 3. This method does
not assume any particular driving mechanism and is a general
approach, but results from this analysis are consistent with our
mechanical model (Fig. 3B, dotted lines). In general, mean values

A B

DC

Fig. 3. (A) Overlap of driving forces (black) and the cumulative distribution of resisting forces (colors) which should be interpreted as the conditional probability
of failure given a driving force. We show best-fit forms of resistance functions for three values of K and using a normal distribution for resistance strengths.
The gray box illustrates the range of previous estimates of probability of failure given a squared wind speed from refs. 64 and 65. We also note that our
resistance function is consistent with that used in the model by Godfrey and Peterson (2017). (B) The resulting probability distribution of windthrow production
rates calculated by the overlap of driving and resisting forces in (A) and using the method of moments for a Weibull distribution. (C) Probability distribution of
numerically simulated roughness values from Eq. 1, where p is drawn from fp(p) in (B). The black line is the distribution of measured roughness values weighted
by hillslope area. (D) Table of results and statistics for the probability distributions in (B).
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of P range from 0.1 to 1.6, depending on diffusivity and land-
memory case, which are consistent with previous studies (7).

To evaluate the feasibility of fp(p), we numerically simulate
Eq. 1, (SI Appendix) and draw p(t ′) from our best-fit probability
distributions. In general, results for runs from Case A appear
to perform better than Case B, which may indicate that not all
roughness was removed in the 18th and 19th centuries (Fig.
3C ). But for all cases, the approximate location and spread of
the simulated distributions are close to those of the observed
distribution.

B. Climate Forcing. One of the many consequences of a warming
climate is a likely shift in magnitude or frequency of extreme
weather events. For example, tropical cyclone frequency may
decline while the intensity may increase (66). There is significant
uncertainty, however, regarding how wind speeds will change
in different climate change scenarios and locations. There is
some evidence that wind speeds are declining in North America
(18), while at the same time, there is evidence that winds are
increasing in parts of Europe (57). While different regions will
respond differently to climate change, there remains significant
uncertainty around wind speeds partly because there are few
natural archives and limited historical data (57).

Using the best-fit forms of FRt (Case A, K = 0.005 for
illustration), we consider a possible response of forests to various
scenarios. For the moment, we neglect possible changes of tree
resistance and focus on shifts in extreme winds. We test six
different scenarios that span from −3% to +3% mean extreme
wind speeds (note that this is not the square gust speed),
which change fDw by shifting the entire distribution toward
lower or higher values. For reference, the average maximum
annual gust speed is 26.5 [m s−1], and a 3% change results
in ±0.8 [m s−1]. These values are entirely consistent and
even conservative compared to previous modeling efforts which
suggest that a 6% increase in the 90th percentile of wind speeds
(57, 67). Combining these distributions with FRt , we can explore
possible forest responses to changes of extreme wind statistics
(Fig. 4A).

There is a nonlinear response to changes in extreme wind
statistics (Fig. 4B), and a 3% increase of the average maximum
gust speed drives a 38% increase in µp. The overlap of the
tails of two distributions, which are nonlinear functions, drive

Fig. 4. (A) Extreme value distributions of squared gust speed for cases
where the extreme gust speed (not squared) ranges from 97% (blue) to 103%
(orange) of the baseline values (black) and the resistance function for the
case where K = 0.005 (gray). (B) Resulting mean windthrow production rate
for each case.

windthrow and leads to a nonlinear response of µp to changes
in gust speed. For the case where wind speeds decrease, the
windthrow production rate would decline, but at a slower rate
than a comparable increase in wind speeds. This analysis neglects
possible physical responses of trees.

4. Discussion

A. Coevolution of Wind and Forests. Forests may respond to
climatic changes in a number of ways. Trees may increase
resistance to mechanical stresses through thigmomorphogenesis
(68), or trees may lose resistance following fire (69), or beetle
kill and disease may change the entire resistance function
by removing certain species (70). The mechanical model can
incorporate the coevolution of climate and tree resistance by all
of these responses as a shift of µRt (Rt) and σ 2

Rt . For example, an
increase of µRt which may be accomplished in one of two ways.
In the first, an increase of Dw results in a response of all trees to
become more resistant, which shifts FRt toward larger values. In
the second, an increase of Dw may rapidly remove the weaker
trees, leaving only the resistant ones remaining and thereby
shifting FRt toward larger values as well. In addition to changing
the mean and variance of tree resistance, we could also consider
the possibility of changing climates adding or changing the skew
of tree resistance distributions. We have limited our analysis to
distributions with zero skew here because we lack the higher-
order information required for higher moments. However, a
fruitful avenue for future research may be to combine physics-
based models like forestGALES (71) with topographic roughness
and our approach here.

B. Topographic Roughness as an Archive. Compared to pre-
cipitation and temperature, wind speed lacks a comprehensive
natural archive (18). Desert, paleolake, and coastal settings
provide natural archives of wind events (72, 73), but no natural
archive exists for forested settings. The form of Eq. 1 explicitly
writes the roughness as an archive of historical extreme events.
Previous researchers have used historical records of tree damage
and the enhanced Fujita scale (EF scale) to back out information
regarding wind speeds (23, 24). However, the EF-scale is discrete,
and this approach does not inform fp(p) or FRt (Rt). Insofar as the
signature of windthrow remains on the forest floor for centuries
(46), roughness has the potential for extending modern wind
speed data back several more decades or centuries.

In order to realize topographic roughness as an archive, we
must address several issues. First, while the topographic diffusivity
is a central parameter of theory in this paper, estimating the topo-
graphic diffusivity remains a central challenge in geomorphology.
Second, the probability distribution of windthrow resistance
strengths must be refined. We see opportunities to employ
deterministic physical and numerical, e.g., ForestGALES (37, 71)
models of windthrow (2–4) within a probabilistic framework
(49). Third, a more precise account of land-use change and
the impact on topographic roughness should be established.
Despite these issues, we reiterate that Eq. 1 unambiguously
writes roughness as an archive of historical wind events, which is
otherwise lacking.

C. Roughness as a Measure of Carbon Stocks and Fluxes.
Nature-based climate solutions require robust strategies to not
only quantify present-day carbon uptake but also to project
how future climate feedback might threaten the permanence
of ecosystem carbon pools and especially carbon stored in tree
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biomass. Forest disturbances like windthrow are stochastic, rare
events, which has challenged prior attempts to quantify the
consequences of wind-driven tree mortality (20). The approach
demonstrates that land-surface roughness serves as a record of
historical events and thus may be used to fill in the small sample
size. Moreover, we demonstrate that even small changes in wind
speed distributions may drive large changes in the expected
windthrow production rate, which should motivate future work
to consider the risk of wind-driven tree mortality in assessments
of carbon stored in forest-based NbCS.

5. Conclusions

We leverage theory that uses topographic roughness and lidar
data to establish candidate probability distributions of the tree
throw production rate, p. Assuming that most tree throw is driven
by wind, we find that the distribution of tree resistances must be
greater than the distribution of driving forces, with only the tails
of the distributions overlapping. The expected maximum gust
in Brown County, IN, is 26.5 m s−1, and the average tree can
withstand wind speeds of 46, 43, or 42 m s−1 (Fig. 3A), which
relate to the average number of tree throw events ranging from 0.1
to 1.6 events per year, depending on the topographic diffusivity.
These values are consistent with previous modeling efforts (7)
and tree census studies (64, 66). Our results and methodology
are most relevant to moderate relief and temperate settings, but
the theory could be adapted to flatter forested settings. Steep
settings tend to be roughened by other processes, and it may be
challenging to isolate roughness due to windthrow.

We also consider climate change scenarios wherein the average
extreme gust in a year increases/decreases by up to 3.0%. Because
windthrow is driven by the overlap of nonlinear tails of two
distributions, there is a nonlinear response in the frequency of
windthrow. For example, a 3.0% increase of average wind gust
speed drives a 38% increase in windthrow production. This
analysis does not consider any change in the tree population;
however, our model can incorporate potential changes by shifting
the resistance function.

Last, the theory demonstrates that roughness is an archive
of extreme events and suggests that there is potential for using
roughness as an archive of extreme wind speeds, which is

otherwise lacking. While much work needs to happen for this
to be realized, the theory unambiguously writes roughness as
an archive. As increasingly high-resolution topographic, climate,
and ecological datasets emerge, we suggest that presenting
topographic roughness as an accumulated history of events and
processes (as in Eq. 1) will become an increasingly useful tool for
quantifying stochastic ecogeomorphic processes.

A. Rules of Marginal, Conditional, and Joint Probabilities. The
rules for marginal, conditional, and joint probability functions
are critical for this paper. The equations

fX,Y (X, Y ) = fX (X |Y )fY (Y ) = fY (Y |X )fX (X ), [5]

and
fX (X ) =

∫
fX,Y (X, Y )dY, [6]

summarize the key relationships.

B. Extreme Value Distribution. The distribution of 3-s averaged
wind speeds is nontrivial. The bulk of the distribution may be fit
with a Weibull distribution. The tail, however, appears to depart
from a Weibull distribution. We have tested a mixture model
for the probability distribution of 3-s-averaged wind speeds and
note that a model containing Weibull and Gumbel distributions
weighted by 3/4 and 1/4, respectively, fits both the bulk and tail
well. Describing the tail of the wind speed distribution correctly
is key for determining the extreme value distribution.

gv(v) = NFv(v)N−1fv(v). [7]

In our case, N = 8,760, which is the number of hours in a year.

Data, Materials, and Software Availability. Probability distributions of
topographic roughness and codes for generating fp are archived at Zenodo
(https://doi.org/10.5281/zenodo.6822595) (56).
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