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Abstract

This paper studies the genetic variation within species using the Eta base functions. We

consider the House of Cards Kingman’s model to study genetic variation. This model analyzes

the balance between mutation and selection within species, while other forces that produce

and maintain genetic variation cause only perturbations. Since this model is a nonlinear

integral equation, we introduce a new numerical method for solving the nonlinear mixed

Volterra–Fredholm integral equations. We find the best approximation of unknown functions

to solve the integral equation using the Eta functions and collocation method. We derive

the error bounds of the numerical method and solve some numerical examples to show the

high accuracy of the new numerical technique. Using this numerical method, we study the

behavior of the probability density of genes within species by considering three different

cases of fitnesses for individuals.

Keywords Genetic variation · House of Cards Kingman’s model · Eta functions · Best

approximation · Mixed Volterra–Fredholm integral equations

Mathematics Subject Classification 9208

1 Introduction

Genetics study genetic variation and heredity in population (Griffiths et al. 2005). Genes

consist of deoxyribonucleic acid (DNA) that contains the code, or blueprint, used to synthe-

size a protein. Population genetics aims to understand the forces that produce and maintain

genetic variation within species. These forces include mutation, recombination, natural selec-

tion, population structure, and the random transmission of genetic material from parents to

offspring (Wakeley 2009). A Mutation, changing in DNA sequence, may be transmitted to

descendants by DNA replication, resulting in a sector or patch of cells having an abnormal
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function, such as cancer. Based on Natural selection, organisms more adapted to their envi-

ronment are more likely to survive. This process causes species to change and diverge over

time. (Kingman 1978) considered the equilibrium of a population as existing because of a

balance between two factors, mutation, and selection, while other phenomena cause only

perturbations. In this model, a nonlinear integral equation, an individual with a larger type

value is more productive. Kingman’s model have been studied in different literatures, see

for example Bürger (Bürger 1986, 1989, 1998, 2000; Steinsaltz et al. 2005; Evans et al.

2013; Yuan 2017, 2020). We study the properties of this model using a new numerical model

developed for Volterra-Fredholm integral equations.

There are different types of integral equations, Volterra integral equations, Fredholm

integral equations and Volterra–Fredholm integral equations (Liu et al. 2020; Amin et al.

2020).

Since nonlinear integral equations are usually difficult to get their exact solution, many

authors have worked on analytical methods, and numerical methods for the solution of this

kind of equation (Binh and Ninh 2019). Some of these methods are the successive approxima-

tions method (Chen et al. 1997; Tricomi 1985; Wazwaz 2011), Newton-Kantorovich method

(Chen et al. 1997), Adomian decomposition method (Wazwaz 2011), Homotopy analysis

method (Liao 2003), iterative numerical method (Ziari and Bica 2019).

In this paper, to study the genetic variation using the Kingman model, we introduce a new

numerical method for the nonlinear Volterra–Fredholm integral equations. The technique

relies on using the Eta functions (Mashayekhi and Ixaru 2020).

Eta functions have been introduced by (Ixaru 1984) and have been used in developing the

new numerical methods in several literatures. For example, see (Ixaru 1997; Liviu Gr and

Guido Vanden 2004; Cardone et al. 2010; Coleman and Ixaru 2006; Kim et al. 2002, 2003;

Ixaru 2002; Conte et al. 2010) and references therein.

Recently, Mashayekhi and Ixaru (2020) have used the Eta functions to find the best

approximation of a function. The paper results show the advantages of using the Eta function

compared to sets of orthogonal or nonorthogonal functions for finding the best approximation

of a high oscillatory function.

The present paper introduces a new direct computational method for solving the non-

linear Volterra–Fredholm integral equations. This method uses the Eta-based functions as

base functions to find the best approximation of the solution of the integral equations. An

essential property of the Eta-based functions is that they tend to the polynomial when the

involved frequencies tend to zero. Thus, the Eta-based functions are suitable for attaining a

good approximation of high oscillatory functions and polynomials. This property brings the

excellent opportunity to approximate the solution of the dynamical systems when we do not

know the behavior of the exact solution. In this paper, we introduce the best approximation

of the unknown function using Eta-based functions and convert the solution of the nonlinear

Volterra–Fredholm integral equations to the solution of a set of nonlinear equations using the

collocation method. We derive the error bounds of the numerical method and show the high

accuracy of the new numerical technique by solving some numerical examples.

Using the new numerical method, we study the properties of the House of Cards Kingman’s

model. We consider three different cases for the fitness of individuals with different values

for the mutation rate to study the behavior of the probability density of genes within species.

Since the exact solution, in this case, is unknown, using the Eta-based functions allow us to

consider all possible situation for the exact solution, which includes trigonometric function,

hyperbolic functions, or polynomials.

The paper is organized as follows: Sect. 2 introduces Kingman’s model. Section 3 presents

the new numerical method for the nonlinear Volterra–Fredholm integral equations. In Sect. 4,
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we study the genetic variation based on Kingman’s model using the new numerical method.

In Sect. 5, we report the conclusion.

2 The balance between selection andmutation using Kingman’s model

In this section, we describe the House of Cards Kingman’s model, which is a nonlinear

integral equation (Kingman 1980). To study the properties of a gene, we use two terms, allele

and locus. While locus is the position of an allele in the chromosome, an allele is a version

of a gene. Let consider a single locus and suppose that the possible alleles at this locus are

listed as A1, A2, . . . , Ak . Suppose that wi j are the fitnesses, which are the probability of an

individual with genotype Ai A j to survive and reproduce, and have the following form

wi j = F(ξi , ξ j , εi j ), (1)

for some function F : (0, 1)3 → [0,∞) which is symmetric in its first two arguments.

Suppose that in a particular generation the ξi values of the genes in the gamete pool have

an empirical distribution approximated by a probability density ρ(t), 0 < t < 1. The

individuals in the next generation inherit a ξi value from each gamete, and so may be describe

by a pair of ξi values (ξi , ξ j ) whose joint distribution is ρ(t)ρ(s). Individuals with this

description have on average a fitness K (ξi , ξ j ) which by Eq. (1) and based on the definition

of marginal probability is given by

K (t, s) =
∫ 1

0

F(t, s, z)dz, (2)

so that the joint density in the mature population is

ρ(t)ρ(s)K (t, s)

W
, (3)

where

W =
∫ 1

0

∫ 1

0

ρ(t)ρ(s)K (t, s)dtds. (4)

Thus, without mutation, the ξi values in the next gamete pool would have density

ρ(t) =
∫ 1

0

W −1ρ(t)ρ(s)K (t, s)ds. (5)

If a mutation happens at rate μ then mutation replaces this by (1 − μ)ρ(t) + μ so the ξi

values in the next gamete pool would have density

ρ(t) = (1 − μ)

∫ 1

0

W −1ρ(t)ρ(s)K (t, s)ds + μ. (6)

Let assume K ∗(t, s, ρ(s)) = W −1ρ(t)ρ(s)K (t, s) then we can rewrite Eq. (6) as

ρ(t) = (1 − μ)

∫ 1

0

K ∗(t, s, ρ(s))ds + μ.

Since K ∗(t, s, ρ(s)) depends on W −1, Eq. (6) is a nonlinear Fredholm integral equation

determining ρ(t) in terms of K and μ. In the next section, we develop the numerical method

to study the properties of Eq. (6). Although Eq. (6) is a Fredholm integral equation, we solve

more general cases, which include Fredholm and Volterra integral equations, in the next

section to show the advantages of the new numerical method for solving more general cases.
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3 Integral equation

In this section, we develop a new numerical method based on the Eta functions for solving

the system of Fredholm and Volterra integral equations

P(t) = G(t) + λ1

∫ t

0

K1(t, s, P(s))ds + λ2

∫ 1

0

K2(t, s, P(s))ds, 0 ≤ t, s ≤ 1, (7)

where

P(t) = [ρ1(t), . . . , ρn(t)]T ,

G(t) = [g1(t), . . . , gn(t)]T ,

K1(t, s, P(s)) = [κ1
1 (t, s, P(s)), . . . , κ1

n (t, s, P(s))]T ,

K2(t, s, P(s)) = [κ2
1 (t, s, P(s)), . . . , κ2

n (t, s, P(s))]T

and λ1 and λ2 are constant vectors. It needs to mention Eq. (7) is a general form of Eq. (6),

and we will study the properties of Eq. (6) using the new numerical method developed in this

section. For more details please see Sect. 4.

3.1 Best approximation

Suppose f (t) ∈ L2[0, 1] and

f F
M+1(t) = FT D =

M+1
∑

i=1

di fi (t), (8)

is a best approximation to f out of F where

F(t) = [ f1(t), f2(t), . . . , fM+1(t)]T , D = [d1, d2, . . . , dM+1]T ,

are the base functions and coefficients vector, respectively. The details of the best approx-

imation have been presented on Mashayekhi and Ixaru (2020). The base functions have a

crucial role in deriving the best approximation. This paper aims to show the advantages of

using the Eta function as a based function for finding the best approximation to solve integral

equations.

Eta functions ηm(Z) with m > 0 and Z �= 0 are generated by recurrence (Ixaru 1984,

1997):

ηm(Z) = ηm−2(Z) − (2m − 1)ηm−1(Z)

Z
, m = 1, 2, 3, . . . (9)

where

η−1(Z) =
{

cos(|Z | 1
2 ) Z ≤ 0

cosh(Z
1
2 ) Z > 0,

η0(Z) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sin(|Z |
1
2 )

|Z |
1
2

Z < 0

1 Z = 0

sinh(Z
1
2 )

Z
1
2

Z > 0,

For Z = 0 these functions have the following values

ηm(0) = 1

(2m + 1)!! , m = 1, 2, . . .
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where !! is a double factorial (Ixaru 1984). These functions are used to introduce the set of

Eta-based functions in the following way:

φm(t) = tm−1η⌊ m
2 ⌋−1(Z(t)), m = 1, 2, · · · (10)

where ⌊m
2
⌋ is the integer part of m

2
, and Z(t) = −ω2t2 in the trigonometric case and

Z(t) = ω2t2 in the hyperbolic case. An important property of the Eta-based functions is that

they tend to power functions when ω = 0 (For more details please see (Ixaru 1997)).

In this paper, to show the advantages of Eta based functions, we consider three different

choices for the set of base functions F(t) in Eq. (8):

• We choose Eta-based functions as a base. In this case F(t) =
[φ1(t), φ2(t), . . . , φM+1(t)] is defined on t ∈ [0, 1] where φi (t) has been introduced in

Eq. (10).

• We choose Legendre polynomials as a base. These polynomials are orthogonal on the

interval [−1, 1] and have the recurrence relation (Kirkwood 2018)

(m + 1)Lm+1(t) = (2m + 1)t Lm(t) − mLm−1(t),

where L0(t) = 1 and L1(t) = t . In this case

F(t) = [L0(2t − 1), L1(2t − 1), . . . , L M (2t − 1)]

is defined on t ∈ [0, 1].
• We choose F(t) = [ψ0(t), ψ1(t), . . . , ψM (t)] as a base where

ψi (t) =
{

cos(i × t), if i is even

sin(i × t), if i is odd

and t ∈ [0, 1]. In some specific cases, we could consider only sin(i × t) or cos(i × t) as

the base.

It has been shown that the Eta-based functions are the best candidate as a base to find the

approximation of trigonometric and hyperbolic functions (Mashayekhi and Ixaru 2020).

3.2 Numerical technique

In this section, we develop a new numerical technique for solving the system of Fredholm

and Volterra integral equations in Eq. (7).

Using Eq. (8) the best approximation of ρi (t) in Eq. (7) is

ρi (t) = FT (t)Di , (11)

and

P(t) = F̂(t)D̂, (12)

where D̂ is a n(M + 1) × 1 vector given by

D̂ = [D1, D2, . . . , Dn]T , (13)

and

F̂(t) = In ⊗ FT (t), (14)

where In is the n dimensional identity matrix. Also, F̂(t) is n × n(M + 1) matrix and ⊗
shows Kronecker product (Mashayekhi and Sedaghat 2021). Replacing Eqs. (12) in (7), we
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have

F̂(t)D̂ = G(t) + λ1

∫ t

0

K1(t, s, F̂(s)D̂)ds + λ2

∫ 1

0

K2(t, s, F̂(s)D̂)ds, 0 ≤ t, s ≤ 1,

(15)

Using the Gauss-Legendre numerical integration for evaluating the integral in Eq. (15), we

get

F̂(t)D̂ = G(t) + λ1

p
∑

i=0

ωi K1

(

t,
t

2
+ t

2
γi , F̂

(

t

2
+ t

2
γi

)

D̂

)

+λ2

p
∑

i=0

ωi K2

(

t,
1

2
+ 1

2
γi , F̂

(

1

2
+ 1

2
γi

)

D̂

)

, 0 ≤ t ≤ 1, (16)

where ωi and γi are weights and nods of Gauss–Legendre given in Smith (1965). Using

Eq. (16), we introduce the residual of the problem as

R(t, D̂) = F̂(t)D̂ − G(t) − λ1

p
∑

i=0

ωi K1

(

t,
t

2
+ t

2
γi , F̂

(

t

2
+ t

2
γi

)

D̂

)

−λ2

p
∑

i=0

ωi K2

(

t,
1

2
+ 1

2
γi , F̂

(

1

2
+ 1

2
γi

)

D̂

)

, (17)

and collocate Eq. (17) at the extreme points of the Chebyshev polynomial (Mashayekhi and

Sedaghat 2021) to get n(M + 1) nonlinear equations which can be solved for the elements

of D̂. We use Newton’s iterative method to solve the nonlinear equations for the elements of

D̂. Finally, we calculate P(t) given in Eq. (12).

Remark To apply Newton’s iterative method, in the first stage, we set M = 1 and then use

Newton’s iterative process with a random initial condition. For M = 1, the equation has few

terms, and the random initial condition gives us some results. Next, we increase the value of

M until a satisfactory convergence is achieved. We use the approximate solution in the first

stage as our initial guess of this stage. We continue this approach until the results are similar

to a required number of decimal places for two consecutive M values.

3.3 Best approximation errors

In this section, we derive the error bound of the numerical method presented in Sect. 3.2. For

the sake of simplicity, but without any loss of generality, we describe convergence analysis

for n = 1 and ρ1 = ρ. First, review some relevant properties of hypergeometric functions,

Sobolev space, and best approximation using Legendre polynomials.

Generalized hypergeometric functions. For any real ai , b j with b j �= 0,−1,−2, . . . (i =
1, . . . , p ; j = 1, . . . , q), the generalized hypergeometric function is a power series defined

by Kilbas (2006)

p Fq(a1, . . . , ap; b1, . . . , bq ; Z) =
∞
∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)
k

Z k

k! , (18)

where the Pochhammer or ascending factorial symbol for a ∈ R − {0} is defined as

(a)0 = 1, (a)k = a(a + 1)(a + 2) . . . (a + k − 1) = Ŵ(a + k)/Ŵ(a), k ∈ N.
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Here, Ŵ(.) is the usual Gamma function. It is known that this series is absolutely convergent

for all values of Z if p ≤ q , for p = q + 1, the series converges for |Z | < 1 and for |Z | = 1

under some additional conditions. If p > q + 1, the series is divergent.

Products of two hypergeometric functions 0 F1(γ ; Z)0 F1(δ; Z) is obtained as Bateman

(1953),

0 F1(γ ; Z)0 F1(δ; Z) = 2 F3

(

1

2
γ + 1

2
δ,

1

2
γ + 1

2
δ − 1

2
; γ, δ, γ + δ − 1; 4Z

)

. (19)

Now, we recall the following lemma to obtain the presentation of Eta-based functions in

terms of the hypergeometric functions.

Lemma 1 Legendre duplication formula is defined as Kilbas (2006)

Ŵ(2m) = 22m−1

√
π

Ŵ(m)Ŵ

(

m + 1

2

)

, Re m > 0.

Theorem 1 The Eta-based functions φm(t) can be represented in terms of the hypergeometric

function

φm(t) = 2−⌊ m
2 ⌋√π

Ŵ(⌊m
2
⌋ + 1

2
)

tm−1
0 F1

(

⌊m

2
⌋ + 1

2
; Z

4

)

, (20)

where Z = −ω2t2 in the trigonometric case and Z = ω2t2 in the hyperbolic case.

Proof Series expansion of ηm(Z) satisfy the following relation Ixaru (1997):

ηm(Z) = 2m

∞
∑

q=0

(q + m)!
q!(2q + 2m + 1)! Zq , m = 0, 1, . . . (21)

from Eqs. (10) and (21) and by using Legendre duplication formula we obtain

φm(t) = 2⌊ m
2 ⌋−1tm−1

∞
∑

k=0

Ŵ(k+⌊ m
2 ⌋)

Ŵ(2k+2⌊ m
2 ⌋)

Zk

k! = 2⌊ m
2 ⌋−1tm−1

∞
∑

k=0

√
π2

1−2k−2⌊ m
2

⌋

Ŵ(k+⌊ m
2 ⌋+ 1

2 )

Zk

k!

= 2
−⌊ m

2
⌋√

π

Ŵ(⌊ m
2 ⌋+ 1

2 )
tm−1

∞
∑

k=0

1

(⌊ m
2 ⌋+ 1

2 )
k

( Z
4 )

k

k! = 2
−⌊ m

2
⌋√

π

Ŵ(⌊ m
2 ⌋+ 1

2 )
tm−1

0 F1(⌊m
2
⌋ + 1

2
; Z

4
).

Sobolev Norm. The Sobolev norm of integer order r ≥ 0 in the interval (0, 1), is given by

‖ ρ ‖H r (0,1)=

⎛

⎝

r
∑

j=0

∫ 1

0

|ρ( j)(t)|2w(t)dt

⎞

⎠

1
2

=

⎛

⎝

r
∑

j=0

‖ ρ( j) ‖2
L2(0,1)

⎞

⎠

1
2

, (22)

where ρ( j) denotes the derivative of ρ of order j and H r (0, 1) is a Sobolev space. ⊓⊔

Theorem 2 Suppose that ρ ∈ H r (0, 1) with r ≥ 0, and Lm(2t − 1), are the well-known

shifted Legendre polynomials defined on the interval [0, 1]. Assume that

M
∑

m=0

dm Lm(2t − 1) ∈ �M
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denotes the best approximation of ρ out of shifted Legendre polynomials, where �M is the

space of all polynomials of degree less than or equal to M. Then we have Mashayekhi and

Sedaghat (2021)
∥

∥

∥

∥

∥

ρ −
M

∑

m=0

dm Lm(2t − 1)

∥

∥

∥

∥

∥

L2(0,1)

≤ cM−r |ρ|H r;M (0,1) , (23)

where

|ρ|H r;M (0,1) =

⎛

⎝

r
∑

i=min{r ,M+1}

∥

∥

∥
ρ(i)

∥

∥

∥

2

2

⎞

⎠

1
2

,

and c > 0 is a constant which is independent of M.

In the following theorem, we derive the error bound of the approximation using the

Eta-based functions as a base.

Theorem 3 Suppose that ρ ∈ H r (0, 1) with r ≥ 0, and φm (m = 1, . . . , M + 1) are the

Eta-based functions defined on the interval [0, 1]. Assume that ρM (t) =
∑M+1

m=1 dmφm(t)

denotes the best approximation of ρ out of Eta-based functions. Then we have
∥

∥

∥

∥

∥

ρ −
M+1
∑

m=1

dmφm(t)

∥

∥

∥

∥

∥

L2(0,1)

≤ cM−r |ρ|H r;M (0,1) +
M+1
∑

m=1

2−⌊ m
2 ⌋√π

Ŵ(⌊m
2
⌋ + 1

2
)
εm |dm |. (24)

Proof Using Theorem 1, we have

‖ρ(t) − ρM+1(t)‖L2(0,1) =
∥

∥

∥

∥

ρ −
M+1
∑

m=1

dmφm(t)

∥

∥

∥

∥

L2(0,1)

=
∥

∥

∥

∥

∥

ρ(t) −
M+1
∑

m=1

ςm

∞
∑

k=0

(∓ω2)k
(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k!

∥

∥

∥

∥

∥

L2(0,1)

=
∥

∥

∥

∥

∥

ρ(t) −
M+1
∑

m=1

ςm

(

N
∑

k=0

(∓ω2)k
(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k! +
∞
∑

k=N+1

(∓ω2)k
(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k!

)∥

∥

∥

∥

∥

L2(0,1)

≤
∥

∥

∥

∥

∥

ρ(t) −
M+1
∑

m=1

ςm

N
∑

k=0

(∓ω2)k
(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k!

∥

∥

∥

∥

∥

L2(0,1)

+
∥

∥

∥

∥

∥

M+1
∑

m=1

ςm

∞
∑

k=N+1

(∓ω2)k
(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k!

∥

∥

∥

∥

∥

L2(0,1)

,

where

ςm = dm

2−⌊ m
2 ⌋√π

Ŵ(⌊m
2
⌋ + 1

2
)
.

Since the best approximation of a given function ρ ∈ H r (0, 1) is unique, using Theorem 2

we get
∥

∥

∥

∥

∥

ρ(t) −
M+1
∑

m=1

N
∑

k=0

(∓ω2)kςm
(

⌊m
2
⌋ + 1

2

)

k

t2k+m−1

4kk!

∥

∥

∥

∥

∥

L2(0,1)

=
∥

∥

∥

∥

∥

ρ(t) −
M

∑

m=0

dm Lm(2t − 1)

∥

∥

∥

∥

∥

L2(0,1)

≤ cM−r |ρ|H r;M (0,1). (25)

Since the series
∑∞

k=0
(∓ω2)

k

(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k! is convergent, for each m we have εm as follows

|
∞
∑

k=N+1

(∓ω2)
k

(

⌊m
2
⌋ + 1

2

)

k

t2k+m−1

4kk! | < εm, (26)
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using Eq. (26) for all values of |t | < 1, we have

∥

∥

∥

∥

∥

M+1
∑

m=1

ςm

∞
∑

k=N+1

(∓ω2)
k

(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k!

∥

∥

∥

∥

∥

L2(0,1)

≤
M+1
∑

m=1

⎛

⎝|ςm |
∥

∥

∥

∥

∥

∞
∑

k=N+1

(∓ω2)
k

(

⌊ m
2 ⌋+ 1

2

)

k

t2k+m−1

4k k!

∥

∥

∥

∥

∥

L2(0,1)

⎞

⎠

≤
M+1
∑

m=1

εm |ςm | ≤
M+1
∑

m=1

2
−⌊ m

2
⌋√

π

Ŵ(⌊ m
2 ⌋+ 1

2 )
ε|dm |,

this completes the proof. ⊓⊔

Now, Using Theorem 3, we derive the error bound for the numerical method presented in

Sect. 3.2.

Theorem 4 Suppose that ρ ∈ H r (0, 1) with r ≥ 0 is the exact solution of Eq. (7) and

ρ̄M+1 = FT D̄ =
∑M+1

m=1 d̄mφm(t) is its approximation given by the method proposed in

Sect. 3.2, then,

‖ρ − ρ̄M+1‖L2(0,1) ≤ cM−r |ρ|H r;M (0,1) +
M+1
∑

m=1

2
−⌊ m

2
⌋√

π

Ŵ(⌊ m
2 ⌋+ 1

2 )
εm |dm |

+
∥

∥D − D̄
∥

∥

L2(0,1)

(

M+1
∑

m=1

π2
−2⌊ m

2
⌋

(−1+2m){Ŵ(⌊ m
2 ⌋+ 1

2 )}2 2 F3

(

m − 1
2
, ⌊ m

2
⌋; m + 1

2
, 2⌊ m

2
⌋, ⌊ m

2
⌋ + 1

2
; ∓w2

)

)

1
2

,

where
∑M+1

m=1 dmφm(t) = FT D denotes the approximation of ρ using the set of Eta-based

functions.

Proof Let assume ρM+1(t) = FT D =
∑M+1

m=1 dmφm(t), we have

‖ρ − ρ̄M+1‖L2(0,1) ≤ ‖ρ − ρM+1‖L2(0,1) + ‖ρM+1 − ρ̄M+1‖L2(0,1). (27)

Using Theorem 3, we have the upper bound for ‖ρ − ρM+1‖L2(0,1) so we need to find an upper

bound for ‖ρM+1 − ρ̄M+1‖L2(0,1). To do this, using the Schwarz’z inequality, Theorem 1

and Eq. (19) we obtain

‖ρM+1 − ρ̄M+1‖2
L2(0,1)

=
∥

∥

∥

∥

M+1
∑

m=1

dmφm(t) −
M+1
∑

m=1

d̄mφm(t)

∥

∥

∥

∥

2

L2(0,1)

=
∥

∥

∥

∥

M+1
∑

m=1

(dm − d̄m)φm(t)

∥

∥

∥

∥

2

L2(0,1)

=
∫ 1

0

∣

∣

∣

∣

∣

M+1
∑

m=1

(dm − d̄m)φm(t)

∣

∣

∣

∣

∣

2

dt ≤
(

M+1
∑

m=1

∣

∣dm − d̄m

∣

∣

2

)

∫ 1

0

M+1
∑

m=1

|φm(t)|
2

dt

=
(

M+1
∑

m=1

∣

∣dm − d̄m

∣

∣

2
) ∫ 1

0

M+1
∑

m=1

π2−2⌊ m
2 ⌋t2m−2

{Ŵ(⌊ m
2
⌋ + 1

2
)}2

{

0 F1

(

⌊ m

2
⌋ + 1

2
; ∓w2t2

4

)}2

dt

=
(

M+1
∑

m=1

∣

∣dm − d̄m

∣

∣

2
) ∫ 1

0

M+1
∑

m=1

π2−2⌊ m
2 ⌋t2m−2

{Ŵ(⌊ m
2
⌋ + 1

2
)}2 2 F3

(

⌊ m

2
⌋, ⌊ m

2
⌋ + 1

2
; ⌊ m

2
⌋ + 1

2
, ⌊ m

2
⌋ + 1

2
, 2⌊ m

2
⌋;∓w2t2

)

dt

=
(

M+1
∑

m=1

∣

∣dm − d̄m

∣

∣

2
)

M+1
∑

m=1

π2
−2⌊ m

2
⌋

(−1+2m){Ŵ(⌊ m
2 ⌋+ 1

2 )}2 2 F3

(

m − 1
2
, ⌊ m

2
⌋; m + 1

2
, 2⌊ m

2
⌋, ⌊ m

2
⌋ + 1

2
;∓w2

)

,

this completes the proof. ⊓⊔
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Remark In this section, to derive the error bound of the Eta-based function, we have used the

Legendre polynomials, so the error bound has more terms than the error bound of using the

Legendre polynomials as a base. We plan to derive the error bound of the Eta-based function

directly in future work.

3.4 Numerical test

In this section, we use the method presented in Sect. 3.2 to solve seven examples to show the

accuracy of the present method. In all examples, we use the extreme points of the Chebyshev

polynomial as the collocation points (Mashayekhi and Sedaghat 2021) while we consider

three different choices for the set of base functions: Eta-based function, Legendre polyno-

mials, and trigonometric functions. In different examples, we consider a different form of

non-linearity such as ρ2(s), cos(ρ(s)) and eρ(s). The error presented for all examples is

an absolute error. For all examples, we consider two different cases λ1 = 0, λ2 = 1 and

λ1 = 1, λ2 = 0 (Fredholm and Volterra cases). Since the results for both cases are similar,

we present one of them in the Tables. At the end of the examples, we analyze the results of

these examples.

• Example 1: In this example, we assume n = 1, K2(t, s, ρ(s)) = k(t, s)ρ2(s) where

k(t, s) = ts and the exact solution is ρ(t) = cos(t). The absolute error is presented in

Table 1. In this table, we choose the three first terms of the base for all three different

choices of base functions.

• Example 2: In this example, we assume n = 1, K2(t, s, ρ(s)) = k(t, s)ρ2(s) where

k(t, s) = tcos(s) or k(t, s) = scos(t) and the exact solution is ρ(t) = cos(t). The

absolute error is presented in Table 2. In this table, we choose four first terms of the base

for all three different choices of base functions.

• Example 3: In this example, we assume n = 1, K2(t, s, ρ(s)) = k(t, s)cos(ρ(s)) where

k(t, s) = ts and the exact solution is ρ(t) = cos(t). The absolute error is presented in

Table 3. In this table, we choose four first terms of the base for all three different choices

of base functions.

Table 1 Absolute error (Example 1)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 3.9 × 10−12 5.5 × 10−4 3.8 × 10−12

0.4 8.1 × 10−12 1.0 × 10−3 7.7 × 10−12

0.6 1.2 × 10−11 4.5 × 10−4 1.2 × 10−11

0.8 1.6 × 10−11 6.2 × 10−5 1.6 × 10−11

Table 2 Absolute error (Example 2)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 1.5 × 10−12 1.0 × 10−4 1.5 × 10−12

0.4 2.9 × 10−12 1.0 × 10−4 3.3 × 10−12

0.6 4.4 × 10−12 1.4 × 10−4 5.0 × 10−12

0.8 5.8 × 10−12 2.6 × 10−5 6.4 × 10−12
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Table 3 Absolute error (Example 3)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 4.7 × 10−12 1.4 × 10−4 4.1 × 10−12

0.4 9.1 × 10−12 2.2 × 10−5 9.2 × 10−12

0.6 1.3 × 10−11 1.9 × 10−5 1.3 × 10−11

0.8 1.8 × 10−11 1.4 × 10−4 1.7 × 10−11

Table 4 Absolute error (Example 4)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 3.8 × 10−11 1.1 × 10−4 3.5 × 10−11

0.4 7.5 × 10−11 8.6 × 10−5 7.9 × 10−11

0.6 1.1 × 10−10 1.1 × 10−4 1.1 × 10−10

0.8 1.5 × 10−10 1.2 × 10−5 1.5 × 10−10

Table 5 Absolute error (Example 5)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 1.4 × 10−11 5.6 × 10−4 2.4 × 10−5

0.4 2.9 × 10−11 4.7 × 10−4 7.2 × 10−5

0.6 4.4 × 10−11 6.4 × 10−4 1.1 × 10−4

0.8 5.9 × 10−11 1.2 × 10−4 3.8 × 10−5

Table 6 Absolute error for ρ1(t) (Example 6)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 1.4 × 10−11 5.6 × 10−4 2.4 × 10−5

0.4 2.9 × 10−11 4.7 × 10−4 7.2 × 10−5

0.6 4.4 × 10−11 6.4 × 10−4 1.1 × 10−4

0.8 5.9 × 10−11 1.2 × 10−4 3.8 × 10−5

• Example 4: In this example, we assume n = 1, K2(t, s, ρ(s)) = k(t, s)eρ(s) where

k(t, s) = ts and the exact solution is ρ(t) = cos(t). The absolute error is presented in

Table 4. In this table, we choose four first terms of the base for all three different choices

of base functions.

• Example 5: In this example, we assume n = 1, K2(t, s, ρ(s)) = k(t, s)ρ2(s) where

k(t, s) = ts and the exact solution is ρ(t) = tsinh(t). The absolute error is presented in

Table 5. In this table, we choose four first terms of the base for all three different choices

of base functions.

• Example 6: In this example, we assume n = 2, κ2
1 (t, s, ρ1(s), ρ2(s)) = ρ1(s) +

ρ2(s), and κ2
2 (t, s, ρ1(s), ρ2(s)) = ρ1(s) − ρ2(s) with the exact solution ρ1(t) =

tsinh(t), ρ2(t) = cosh(t). Tables 6 and 7 show the absolute error for this example.
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Table 7 Absolute error for ρ2(t) (Example 6)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 1.0 × 10−11 3.3 × 10−4 1.6 × 10−6

0.4 1.7 × 10−11 9.4 × 10−5 1.8 × 10−6

0.6 2.6 × 10−11 1.6 × 10−4 6.2 × 10−7

0.8 3.7 × 10−11 3.6 × 10−4 2.3 × 10−5

Table 8 Absolute error (Example 7)

t Eta-based functions Legendre polynomials Trigonometric functions

0.2 2.9 × 10−12 4.0 × 10−5 1.5 × 10−2

0.4 5.9 × 10−12 1.0 × 10−5 3.4 × 10−3

0.6 8.9 × 10−12 2.3 × 10−5 1.9 × 10−2

0.8 1.1 × 10−11 2.3 × 10−5 2.7 × 10−2

In these tables, we choose the four first terms of the base for all three different choices

of base functions.

• Example 7: In this example, we assume n = 1, K2(t, s, ρ(s)) = k(t, s)ρ2(s) where

k(t, s) = ts and the exact solution is ρ(t) = tcos(t). Table 8shows the absolute error for

this example. In this table, we choose the five first terms of the base for all three different

choices of base functions.

These numerical examples show the Eta-based functions are much better than the Legendre

polynomials when the exact solution of the integral equation is trigonometric functions.

Also, in this case, trigonometric and Eta-based functions have the same accuracy. The Eta-

based functions are much better than the Legendre polynomials and trigonometric functions

when the exact solution of the integral equation is an exponential function or has one of the

following forms

�(t) = δ1(t) sin(ωt) + δ2(t) cos(ωt) or �(t) = δ1(t) sinh(ωt) + δ2(t) cosh(ωt),

where ω is a constant and �1(t), �2(t) are continuous functions. These results are consistent

with the reported results in Mashayekhi and Ixaru (2020). The results of this section convince

us to use Eta-based functions to study the House of Cards Kingman’s model in Eq. (6). Since

the exact solution of House of Cards Kingman’s model is unknown, using the Eta-based

functions allowed us to consider all possible situations for the exact solution, including a

trigonometric function, hyperbolic functions, or polynomials.

4 Genetic variation using Kingman’s model

In this section, we study the House of Cards Kingman’s model in Eq. (6) using the numerical

method introduced in Sect. 3.2. We consider three different cases for the fitness of individuals,

K (t, s), in Eq. (6) with different values for the mutation rate. Since we do not have an

exact solution for Eq. (6), we have assumed a different format of the involved frequencies,

Z(t) in Eq. (10), to consider all possible cases including trigonometric function, hyperbolic
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Fig. 1 The probability density of genes, ρ(t), for μ < 1 with K (t, s) = t × s

functions, or polynomials. These three different cases include Z(t) = t2, Z(t) = −t2, and

Z(t) = 0, which introduce hyperbolic, trigonometric, and polynomial functions, respectively.

Figures 1, 2, and 3show the probability density of genes within species, ρ(t), for different

values of Z(t) and different values of fitnesses, K (t, s), which includes K (t, s) = t ×
s, K (t, s) = cos(t) × cos(s) and K (t, s) = cosh(t) × cosh(s) with the mutation rate less

than one (μ < 1). These figures show despite different choices for K (t, s), the value of the

probability density, ρ(t), does not change dramatically over time. Figures 4, 5, and 6show the

probability density of genes within species, ρ(t), for different values of Z(t) and different

values of fitnesses, K (t, s), which includes K (t, s) = t × s, K (t, s) = cos(t) × cos(s)

and K (t, s) = cosh(t) × cosh(s) with the mutation rate greater than one (μ > 1). These

figures show the behavior of the probability density, ρ(t), depends on the value of K (t, s).

These figures show for K (t, s) = t × s, K (t, s) = cosh(t) × cosh(s) the value of the

density, ρ(t), decreases through time while the value of the density, ρ(t), increases through

time by choosing K (t, s) = cos(t) × cos(s). These results show the probability density of

individuals within species does not depend on the fitness of individuals when the mutation

rate is less than one. At the same time, this is not the case when the mutation rate is greater

than one.
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Fig. 2 The probability density of genes, ρ(t), for μ < 1 with K (t, s) = cos(t) × cos(s)

Fig. 3 The probability density of genes, ρ(t), for μ < 1 with K (t, s) = cosh(t) × cosh(s)
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Fig. 4 The probability density of genes, ρ(t), for μ > 1 with K (t, s) = t × s

Fig. 5 The probability density of genes, ρ(t), for μ > 1 with K (t, s) = cos(t) × cos(s)
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Fig. 6 The probability density of genes, ρ(t), for μ > 1 with K (t, s) = cos(t) × cos(s)

5 Conclusion

We review the House of Cards Kingman’s model using the new numerical method to study

the genetic variation, which solves the nonlinear Volterra–Fredholm integral equations. The

process is based on using the Eta-based functions. We used the best approximation and

the extreme points of the Chebyshev polynomial as the collocation points. We derive the

numerical method’s error bounds and demonstrate the numerical technique’s accuracy by

solving some numerical tests. Since the exact solution for the House of Cards Kingman’s

model is unknown, using the Eta-based functions allowed us to consider all possible situations

for the exact solution, including trigonometric function, hyperbolic functions, or polynomials.

Using the numerical method, we show that the probability density of individuals within

species depends on the mutation rate.
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