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Abstract— Reliable operation of automatic systems is
heavily dependent on the ability to detect faults in the
underlying dynamics. While traditional model-based meth-
ods have been widely used for fault detection, data-driven
approaches have garnered increasing attention due to their
ease of deployment and minimal need for expert knowl-
edge. In this paper, we present a novel principal component
analysis (PCA) method that uses occupation kernels. Occu-
pation kernels result in feature maps that are tailored to the
measured data, have inherent noise-robustness due to the
use of integration, and can utilize irregularly sampled sys-
tem trajectories of variable lengths for PCA. The occupation
kernel PCA method is used to develop a reconstruction er-
ror approach to fault detection and its efficacy is validated
using numerical simulations.

Index Terms— Fault detection, principal component anal-
ysis, reproducing kernel Hilbert spaces

I. INTRODUCTION

FAULT detection methods for dynamical systems rely on
the identification of anomalous behavior using measured

data. Applications of fault detection range from healthcare
[1]; manufacturing [2], [3]; monitoring sensor behavior [4],
[5]; monitoring chemical processes [6], [7]; identifying the
onset of nonlinear behavior in dynamical systems [8]; and
identifying traffic anomalies [9]. A multitude of approaches to
fault detection have been studied over the past few decades,
such as data-driven, set-based, observer-based, and time-series
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analysis methods [3], [10]–[12]. Set-based methods accom-
plish fault detection by computing a forward reachable set
and checking if the system state at the next time step is
inside that set [10]. State estimation techniques such as the
extended Kalman filter (EKF) and the Leunberger observer
have been successfully implemented for fault detection in
industrial processes [11], [13]. Set-based and observer-based
methods are model based, whereas this paper focuses on data-
driven fault detection [3].

Data-driven fault detection methods, such as principal com-
ponent analysis (PCA), kernelized principal component anal-
ysis (KPCA), and the Kahrunen-Loeve transform (KLT) [14],
typically employ multivariate statistical procedures combined
with an index, such as a reconstruction error, Hotteling’s T 2,
a squared prediction error (SPE), or a combination thereof,
to detect anomalies [3], [10], [15]. The KLT utilizes the
expansion of a random variable as a linear combination of
eigenfunctions of the covariance operator for fault detection
[12]. In finite dimensions and in the context of data driven
methods or discrete sampling, the KLT is simply PCA.

PCA and KPCA methods extract the principal components
of a dynamical system. Specifically, principal component
analysis diagonalizes the covariance matrix associated with
the fault-free training data. The dominant eigenvectors of
the covariance matrix are then used to effectively reduce the
dimension of the reconstruction problem by considering only
these principal components for reconstruction. A key limita-
tion of PCA is that it fails to capture nonlinearities in the data.
Kernelized PCA remedies this limitation by lifting the data to
a higher-dimensional feature space via a (nonlinear) feature
map [16]. PCA is then applied in the feature space, resulting
in nonlinear principal components [16]. Fault detection using
KPCA / PCA relies on computation of a metric (T 2, SPE,
etc.) that measures how well new data can be reconstructed
using the principal components [1], [2], [4]–[8], [15].

The feature maps used for KPCA are typically the canonical
feature maps associated with generic kernel functions such as
the Gaussian radial basis function [15]. As such, the feature
maps are largely independent of the system or the measured
data. In this paper, a new PCA framework is developed where
the feature maps are also derived from the training data. The
idea, motivated by results such as [17], is to use trajectories
generated by a dynamical system as a fundamental unit of
data by embedding them in a reproducing kernel Hilbert space
(RKHS) using the so-called occupation kernels.

The resulting PCA method, called occupation kernel PCA
(OKPCA), is expected to perform better owing to the use
of feature maps that are adapted to the data. In addition
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the computations required to implement OKPCA rely exclu-
sively on integrals of kernel functions evaluated along system
trajectories. As a result, OKPCA is endowed with intrinsic
robustness to zero-mean noise and can be implemented on data
sets containing variable length trajectories that are irregularly
sampled [17]. Fault detection then proceeds by reconstructing
a given trajectory as a linear combination of eigenfunctions
of a suitably defined kernelized covariance operator and com-
puting a suitable analog of the reconstruction error used for
KPCA by Hoffman [15].

This paper is organized as follows: Section II establishes the
mathematical background of KPCA. Section III outlines the
OKPCA method for fault detection. In section IV OKPCA is
applied to detect faulty trajectories generated by an academic
example and a quadrotor in two numerical experiments. Sec-
tion V concludes the paper.

II. BACKGROUND

In this section, a brief overview of current PCA methods is
provided for completeness.

A. Principal Component Analysis
Given a set of M centered observations {xj ∈ Rn}Mj=1 ⊂

X ⊆ Rn, where “centered” indicates that
∑M

j=1 xj = 0, the
principal component analysis (PCA) procedure diagonalizes
the covariance matrix C defined by C = 1

M

∑M
j=1 xjx

⊤
j

where C is at most rank M (if all observation vectors are
linearly independent). Since C is a positive semi-definite
matrix, it is diagonalizable and has nonnegative eigenvalues.
The eigenvectors of C are referred to as the principal com-
ponents, typically ordered in a decreasing sequence of the
corresponding eigenvalues. Given a vector v ∈ Rn we note that
Cv = 1

M

∑M
j=1⟨xj , v⟩xj , where ⟨·, ·⟩ indicates the standard

dot product. In particular, if v is an eigenvector of C with
eigenvalue λ, we have Cv = λv = 1

M

∑M
j=1⟨xj , v⟩xj , which

implies that all eigenvectors of C lie in the span of {xj}Mj=1.

B. Kernelized Principal Component Analysis
Kernelized principal component analysis (KPCA) [15] ex-

tends the PCA procedure to produce nonlinear principal
components. This is done by embedding the data into a re-
producing kernel Hilbert space (RKHS) via a feature mapping
Φ : X ⊆ Rn → H .

Definition 1: Let X be a nonempty set. A function k : X×
X → R is called a kernel function on X if there exists a R-
Hilbert space H and a map Φ : X → H such that for all
x, x′ ∈ X we have k(x, x′) = ⟨Φ(x′),Φ(x)⟩H . We call Φ a
feature map and H a feature space of k.
In other words, the data point x is replaced by a element Φ(x)
in the Hilbert space H and the dot product is replaced by an
inner-product over the Hilbert space. It should be noted that
the choice of feature map is not unique, however, the Moore-
Aronszajn theorem guarantees the existence of a unique RKHS
corresponding to k and a canonical feature map that maps
into that RKHS in the case where k is a positive semi-definite
kernel.

Definition 2: A RKHS, H , over a set X is a Hilbert space
of real-valued functions over the set X such that for all x ∈ X
the evaluation functional, Ex : H → R, given as Exg := g(x)
is bounded.
The Riesz representation theorem guarantees, for all x ∈
X , the existence of a unique function kx ∈ H such that
⟨g, kx⟩H = g(x), where ⟨·, ·⟩H is the inner product for H [18,
Chapter 1]. The function kx is called the reproducing kernel
centered at x, the function k(x, y) = ⟨ky, kx⟩H is called the
reproducing kernel of H and the mapping Φ : X → H given
by x 7→ k(·, x) = Φ(x), is called the canonical feature map.

In this setting we can now define nonlinear principal
components via analogous constructions. Given a feature map
Φ : X ⊆ Rn → H and a set of data {xj}Mj=1 centered in
H , i.e.

∑M
j=1 Φ(xj) = 0, the kernelized covariance operator

C : H → H is defined as C = 1
M

∑M
j=1[Φ(xj) ⊗ Φ(xj)],

where, the notation [u ⊗ v], for u, v ∈ H , denotes the rank
one operator defined by [u⊗ v]h = ⟨h, v⟩u for h ∈ H .

It is worth noting that C is a finite rank and positive semi-
definite operator and thus diagonalizable. If v is an eigenfunc-
tion of C then automatically v ∈ span{Φ(xj) : j = 1, . . . ,M}
and v =

∑M
j=1 αjΦ(xj) for αj ∈ R. The coefficients αi

can be computed by solving a matrix equation, indeed for an
eigenfunction v ∈ H , ⟨Φ(xk), Cv⟩H = ⟨Φ(xk), λv⟩H , which,
along with

⟨Φ(xk), λv⟩H = λ
M∑
i=1

⟨Φ(xk), αiΦ(xi)⟩,

implies by definition of ⊗ that

⟨Φ(xk), Cv⟩H =
M∑

i,j=1

αi⟨Φ(xj),Φ(xi)⟩H⟨Φ(xk),Φ(xj)⟩H
M

.

(1)
If we define α = (α1, . . . , αM )⊤, k(xi, xj) =

⟨Φ(xi),Φ(xj)⟩H and K = (k(xi, xj))
M
i,j=1, equation

(1) can be expressed in the matrix form
MλKα = K2α. (2)

Since K is a positive semi-definite matrix, it is sufficient to
solve the equation Kα = λMα to recover all the solutions to
(2). In other words, the vector of coefficients α is a normalized
eigenvector of the matrix K.

Let α(1), . . . , α(N), for 0 < N ≤ M , be a set of
eigenvectors of K, corresponding to nonzero eigenvalues 0 <
λ1 ≤ . . . ,≤ λN , normalized such that for k = 1, . . . , N ,
λk⟨α(k), α(k)⟩Rn = 1. The k−th eigenfunction v(k) of C can
then be expressed as v(k) =

∑M
i=1 α

(k)
i Φ(xi) ∈ H .

Definition 3: Given a test point x ∈ X , we call
⟨v(k),Φ(x)⟩H , where v(k) is an eigenfunction of C, a non-
linear principal component of {xj}Mj=1 at x corresponding to
Φ.

Remark 1: If the data used for PCA are uncentered in H ,
they can be centered by replacing K with

K̃ = K − JMK −KJM + JMKJM ,

where (JM )i,j =
1
M .



III. OCCUPATION KERNEL PCA

In this section, we will appropriately modify KPCA to
incorporate trajectories as a fundamental unit of data. To do so
will require an embedding of trajectories into a RKHS. The
embedding will be achieved by using the novel occupation
kernels developed in [17], and the resulting technique will be
called OKPCA.

Definition 4: Let X ⊂ Rn be compact, H be a RKHS
of real-valued continuous functions over X , and γ ∈
C([0, T ], X) be a trajectory, where C([0, T ], X) denotes the
set of continuous functions from [0, T ] to X . The functional
g 7→

∫ T

0
g(γ(τ))dτ is bounded, and may be represented

as
∫ T

0
g(γ(τ))dτ = ⟨g,Γγ⟩H , for some Γγ ∈ H by the

Riesz representation theorem. The function Γγ is called the
occupation kernel corresponding to γ in H [17].
The occupation kernel corresponding to a trajectory can be
shown to be the integral of a kernel function along the
trajectory.

Proposition 1: [17] Let H be a RKHS of real-valued
continuous functions over a set X and let γ : [0, T ] → X
be a continuous trajectory as in Definition 4. The occupation
kernel corresponding to γ in H , Γγ , may be expressed as

Γγ(x) =

∫ T

0

K(x, γ(t))dt. (3)

Proof: Note that Γγ(x) = ⟨Γγ ,K(·, x)⟩H , by the
reproducing property of K. Consequently,

Γγ(x) = ⟨Γγ ,K(·, x)⟩H = ⟨K(·, x),Γγ⟩H

=

∫ T

0

K(γ(t), x) dt =

∫ T

0

K(x, γ(t)) dt,

which establishes the result.
A kernelized covariance operator can now be defined for a set
of trajectories.

Definition 5: Let H be a Hilbert space, Γ = {γi : [0, T ] →
X}Mi=1 be a finite set of trajectories and Φ : C([0, T ], X) → H
be a feature map taking trajectories into H . With {Φ(γj) :

j = 1, . . .M} centered in H , i.e.
∑M

j=1 Φ(γj) = 0, define the
kernelized covariance operator as

CΓ =
1

M

M∑
j=1

[Φ(γj)⊗ Φ(γj)].

Similar to the kernelized covariance operator C above, CΓ

is a positive semi-definite finite rank operator and as a result,
admits eigenfunctions of the form v(k) =

∑M
i=1 α

(k)
i Φ(γi).

The notion of nonlinear principal components then extends
naturally to Hilbert spaces.

Definition 6: Given a test trajectory γ : [0, T ] → X and a
feature map Φ : C([0, T ], X) → H , we call ⟨v(k),Φ(γ)⟩H ,
where v(k) is an eigenfunction of CΓ, a nonlinear principal
component of Γ at γ corresponding to Φ.
While the principal components can be defined with respect to
any feature map, the occupation kernels themselves provide a
feature map that is convenient for analysis and implementation.
The convenience stems from the fact that if the occupation
kernels are selected to be the feature maps, the coefficients
α
(k)
i of the eigenfunction v(k) of CΓ are given by normalized

eigenvectors of the Gram matrix of occupation kernels.

Proposition 2: The mapping Φ(γ) = Γγ is a feature map
from C([0, T ], X) to H . The eigenfunctions of CΓ under this
feature map can be computed by solving K̃Γα = λMα where
K̃Γ is the centered occupation kernel Gram matrix, given by

K̃Γ = K − JMK −KJM + JMKJM
where (JM )i,j = 1

M and K =
(
⟨Γγi

,Γγj

〉
H
)Mi,j=1 is the

original occupation kernel Gram matrix. In particular, if
α(1), . . . , α(N), for 0 < N ≤ M , are eigenvectors of K̃Γ,
corresponding to nonzero eigenvalues 0 < λ1 ≤ . . . ,≤ λN ,
normalized such that for k = 1, . . . , N , λk⟨α(k), α(k)⟩Rn = 1,
then the k−th eigenfunction v(k) of CΓ can be expressed as

v(k) =
M∑
i=1

α
(k)
i Γγi ∈ H.

Proof: The proof of the above proposition proceeds
analogously to what is done in KPCA. We need only note
that ⟨Φ(γi),Φ(γj)⟩H = ⟨Γγi

,Γγj
⟩H and that K̃Γ = (JM −

I)K(JM − I) is positive semi-definite.

A. OKPCA for Fault Detection

Here we will outline an interesting application of OKPCA
to detect faulty trajectories based on Hoffman’s reconstruction
error [15].

Definition 7: Let γ be a test trajectory, Γ = {γj : j =
1, . . .M} be a collection of trajectories, V = {v(k) : k =
1, . . . N} be a collection of eigenfunctions for CΓ, and Φ0 =
1
M

∑M
j=1 Φ(γj) be the center of Γ in H . Letting Φ̃(γ) =

Φ(γ)−Φ0 we can define the reconstruction error for γ in H
with respect to V by

R(γ) = ∥Φ̃(γ)∥2H −
N∑
j=1

⟨Φ̃(γ), v(j)⟩2H . (4)

Remark 2: If the feature maps are selected to be the occu-
pation kernels, the reconstruction error can be computed using
integrals of the kernel function along the trajectory. Indeed,
using the feature map Φ(γ) = Γγ , we get

∥Φ̃(γ)∥2H =

〈
Φ(γ)−

M∑
j=1

Φ(γj)

M
,Φ(γ)−

M∑
j=1

Φ(γj)

M

〉
H

= ⟨Γγ ,Γγ⟩H −
M∑
j=1

2⟨Γγ ,Γγj
⟩H

M
+

M∑
i,j=1

⟨Γγi
,Γγj

⟩H
M2

and for a given k we have
⟨Φ̃(γ), v(k)⟩H

=
M∑
j=1

α
(k)
j

[
⟨Γγ ,Γγj ⟩H − 1

M

M∑
n=1

⟨Γγn ,Γγj ⟩H

− 1

M

M∑
ℓ=1

⟨Γγ ,Γγℓ
⟩H +

1

M2

M∑
n,ℓ=1

⟨Γγn
,Γγℓ

⟩H

 .
The reconstruction error can then be computed using the fact
that given two trajectories γi and γj , the inner product of the
corresponding occupation kernels is given by

⟨Γγi ,Γγj ⟩H =

∫ T

0

∫ T

0

k(γi(τ), γj(t)) dτdt.

Remark 3: Similar to KPCA, the OKPCA reconstruction
error also has an interesting geometric interpretation. Note that



the reconstruction error can be represented in the inner product
form

R(γ) =

〈
Φ̃(γ), Φ̃(γ)−

N∑
j=1

⟨Φ̃(γ), v(j)⟩Hv(j)
〉

H

.

Hence, the reconstruction error is a measure of how well the
projection of Φ̃(γ) onto span{v(j) : j = 1, . . . , N} recreates
Φ̃(γ).
Given a large enough set of normal trajectories, the recon-
struction error can thus be used to detect faulty trajectories.

Definition 8: Let Γ = {γj : j = 1, . . .M} be a collection
of trajectories, called training data. Let V = {v(k) : k =
1, . . . N} denote the principal component vectors, i.e., a col-
lection of eigenfunctions for CΓ corresponding to non-zero
eigenvalues. Let RV (γ) be the reconstruction error for a test
trajectory γ in H with respect to V . For a given threshold
ε > 0, we will call a test trajectory ε−faulty if RV (γ) > ε.

Remark 4: This definition of fault is dependent on N , the
number of principal component vectors being used to compute
the reconstruction error, the selected kernel, and the threshold
ε. The threshold ε can be decided based on reconstruction
errors evaluated at trajectories that are a part of the training
data. For further remarks on the selection of the kernel and
the number of principal component vectors, see the discussion
section.

IV. EXPERIMENTS

In the following, two numerical experiments are presented
to illustrate the efficacy of the developed fault detection
method. The first experiment is an academic one where the
developed method is used to identify trajectories generated
by a nonlinear system that is different from the one used to
generate the training data.

In the second experiment, simulated trajectories of a quadro-
tor aircraft are used to train the algorithm. The trained algo-
rithm is then used to identify trajectories generated by a faulty
quadrotor, where the fault is introduced by changing control
parameters.

A. Description and Results
Experiment 1: In this experiment, 100 fault detection trials
are performed. In each trial, the training data comprises of 100
trajectories of the system

ẋ1 = −x1 + x2 sin
(πx1

2

)
, ẋ2 = −x2 + x1 cos

(πx1
2

)
initialized from randomly selected initial conditions on the unit
circle. To test the developed OKPCA fault detection method,
the reconstruction error is evaluated at 20 trajectories of the
same system and 20 trajectories of the faulty system

ẋ1 = −x1 + 0.9x2 sin
(πx1

5

)
, ẋ2 = −x2 + 0.8x1 cos

(πx2
3

)
also starting from random initial conditions on the unit circle.

All trajectories are 2 seconds long and sampled every
0.01 seconds. The Gaussian radial basis function k(x, y) =

e
−∥x−y∥2

µ is used as the kernel function with width parameter
µ = 0.6 and N = 20 eigenvectors are selected for the
projection in (4). The detection threshold is set to be equal
to 2 times the highest reconstruction error seen in the training

M Method No Noise (%) Samp. Noise (%) Meas. Noise (%)
FP FN MP FP FN MP FP FN MP

50 OKPCA 11.5 0.1 2.6 10.2 0.2 4 11.2 0.7 11.9
KPCA 10.6 0.1 1.9 15 0.3 8.1 11.9 1.8 23.1

100 OKPCA 1.3 0.2 0.7 1.3 0.6 3.9 0.6 1.8 8.8
KPCA 1.6 0.1 0.9 1.7 0.7 5.5 0.3 3.2 12.4

150 OKPCA 0.2 0.2 0 0.1 0.5 3.6 0.2 1.9 8.2
KPCA 0.4 0.1 0.5 0.1 0.8 5.2 0.1 3.7 12.6

TABLE I
A COMPARISON OF OKPCA WITH KPCA FOR THE SYSTEM AND FAULT

MODELS IN EXPERIMENT 1. THE INITIALISMS FP, FN, AND MP DENOTE

THE FALSE POSITIVE RATE, THE FALSE NEGATIVE RATE, AND THE

MIXING PERCENTAGE, AVERAGED OVER 100 TRIALS, RESPECTIVELY.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
2

Training Data
Normal Test Data
Faulty Test Data

Fig. 1. Noisy trajectories used as training data (green) and normal
(blue) and faulty (red) test data to test degradation of performance in
Experiment 1.

data, that is, ε = 2maxi{R(γi)}Mi=1. Normal test trajecto-
ries with reconstruction errors higher than the threshold are
classified as false positives and faulty test trajectories with
reconstruction errors smaller than the threshold are classified
as false negative. To compare OKPCA and KPCA in a way that
is independent of threshold selection, a mixing percentage is
computed. The mixing percentage is defined as the percentage
of the test trajectories that fall within the band defined by
the smallest reconstruction error among faulty trajectories and
the largest reconstruction error among normal trajectories. The
performance of OKPCA and KPCA for this test is summarized
in the third column of Table I

Since the OKPCA method relies on integrals of trajectories,
the data do not need to be equally spaced. To demonstrate the
applicability of the OKPCA method to data sets with variable
sampling rates, a sampling noise, uniformly distributed in the
interval [−0.004, 0.004] is added to each sampling instant
of the training data and the test data (i.e., the sampling
rate is uniformly distributed between 0.002s and 0.01s). The
performance of OKPCA and KPCA for this test is summarized
in the fourth column of Table I.

As opposed to PCA, which is generally not robust to noise
[19], occupation kernel PCA, owing to integration of the
trajectories, is expected to have inherent robustness to zero-
mean measurement noise and sampling noise. To test this
hypothesis, the 100 trials are repeated with M = 50, 100, and
150 by adding Gaussian noise with standard deviation 0.01 to
each measurement in the training data and the test data (see
Fig. 1). For comparison, the KPCA fault detection method
from [15] is applied to the same data set with 20 eigenvectors
and µ = 5. The performance of OKPCA and KPCA for this
test is summarized in the last column of Table I.

Fig. 2 illustrates the results of one of the successful (no false
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Fig. 2. An example trial in Experiment 1 where the faulty trajectories
and the normal trajectories are well-separated by the reconstruction
error and no false negative or false positive results are generated.
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Fig. 3. An example trial in Experiment 1 where a few of the faulty
trajectories fall below the threshold, generating false negative results.

positives or false negatives) noisy trials where it can be seen
that the faulty test trajectories have a higher reconstruction
error than the normal test trajectories. Fig. 3 illustrates the
results of one of the unsuccessful noisy trials where the
decision boundary is not as clear as the successful trial.
Experiment 2: In the second experiment, the fault detec-
tion capabilities of OKPCA are evaluated using trajectories
generated by a quadrotor. A quadrotor model under a known
PID controller is simulated in MATLAB. A simplified model
of the quadrotor in the vehicle frame is used by neglecting
the Coriolis force and assuming the pitch (θ) and roll (ϕ)
angles are small (see Equations 35 − 40 in [20] for details).
The model consists of 12 state variables that include position
(x, y, z), velocity (u, v, w), Euler angles (ϕ, θ, ψ), and roll
rates (p, q, r) of the quadrotor.

The controller used in the simulation is from Sections
7, 7.2, and 7.3 in [20]. Given a desired setpoint, the controller
regulates the quadrotor to the setpoint by manipulating the
velocity, pitch, and roll using three separate proportional-
integral-derivative (PID) controllers. The control gains are
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ynormal(t)

znormal(t)
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zfaulty(t)

Fig. 4. Example of a normal (solid) and a faulty (dotted) trajectory of
the quadrotor in Experiment 2 under simulated major actuator fault.
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Fig. 5. Reconstruction error comparison for major actuator faults in
Experiment 2.
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Fig. 6. Example of a normal (solid) and a faulty (dotted) trajectory of
the quadrotor in Experiment 2 under simulated minor actuator fault.
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Fig. 7. Reconstruction error comparison for minor actuator faults in
Experiment 2.

identical for each of the three PID controllers. For the training
data the proportional gain KP , integral gain KI , and derivative
gain KD were selected to be 5, 2, and 8, respectively. For
examples of noise-free normal and faulty trajectories for the
major and the minor faults, see Figs. 4 and 6, respectively.

The algorithm is trained on a data set consisting of 500
trajectories of randomly generated lengths, sampled at approx-
imately 5 Hz. Irregular sampling rates and measurement noise
are implemented similar to Experiment 1. Each trajectory is
started from a random initial condition in the box with side
length 2 centered at the origin in R12 and the quadrotor is
commanded to fly to the origin. Actuator faults are simulated
by altering the PID gains. To simulate major actuator faults,
20 trajectories are generated using KP = 15, KD = 2, and
KI = 12, and the minor actuator faults are simulated by
generating another 20 trajectories using KP = 4, KD = 7,
and KI = 3.

The Gaussian radial basis function kernel with width param-
eter µ = 10 is used for OKPCA and N = 100 eigenvectors
are used for reconstruction. The reconstruction errors for the
faulty trajectories are then compared with those corresponding
to 20 newly generated normal trajectories. Fig. 5 and Fig. 7
show the fault detection capabilities for trajectories generated
with major and minor actuator faults, respectively. The fault
detection threshold is set to be εmajor = 2maxi{R(γi)}Mi=1

for the major actuator tests and εminor = maxi{R(γi)}Mi=1

for the minor actuator tests.

B. Discussion

The experiments demonstrate the efficacy of OKPCA for
data-driven fault detection applications. As noted in Experi-
ment 1, in randomized trials, without any knowledge of the
system model or the fault, OKPCA results in reconstruction
errors that differentiate faulty trajectories from normal trajec-
tories with less than 1% false positive and false negative rates,
with moderate degradation in performance when the data and
the sampling rates are corrupted with noise. In addition to
the practical advantages of OKPCA over KPCA listed in the
introduction, Table I also indicates that in most experiments,



OKPCA outperforms KPCA in the mixing percentage metric.
The false positive and false negative rates depend on the
selected threshold, and as such are not suitable for use as
a metric for comparison.

The results of Experiment 2 indicate that OKPCA can
detect faulty trajectories irrespective of measurement noise
and sampling noise. While major actuator faults are detectable
with high confidence (Fig. 5), minor actuator faults are hard
to detect (Fig. 7). Degradation of performance with decreasing
severity of faults is expected in data-driven fault detection
methods, especially in the presence of measurement noise.

Similar to Hoffman’s observations in [15], too small values
of the kernel width, µ, result in the kernel functions that
are near zero everywhere, rendering PCA meaningless. Too
large values of µ result in a near-zero reconstruction error for
all trajectories, faulty and normal. In Experiment 1, a large
range of values of µ, between 0.6 and 600, was found to
yield similar performance. While large, the acceptable range
of values of µ depends, in ways that are not well-understood,
on density and number of trajectories in the training data.
Selection of µ can be done using trial and error given a set
of trajectories that are known to be faulty. The number of
eigenvectors, N , needs to be selected large enough to ensure
that the reconstruction errors are near zero when evaluated at
trajectories in the training data.

The results in Table I strongly indicate that larger data
sets can result in fewer false positives when fault detection
is performed using OKPCA. While the false negative rate is
small, it shows no such trend. It should be noted that the
errors in Table I are computed with the threshold in each trial
selected as ε = 2maxi{R(γi)}Mi=1. The fact that the false
positive rate drops to zero when a larger training data set
is used implies that as the training data set gets larger the
threshold ϵ could potentially be selected to be smaller. The
authors hypothesize that with a more judicious selection of the
threshold, the decreasing trend in false positive rates, observed
in Table I, can also be realized in the false negative rates, up
to a limit, as the training data set gets larger. It should be
noted, however, that OKPCA fault detection scales cubically
in M , and as such, the use of large training data sets requires
a significant amount of computational resources.

V. CONCLUSION

In this paper, the kernel PCA method is generalized to
kernelized covariance operators on reproducing Kernel Hilbert
spaces. The resulting OKPCA method generates principal
components of a set of trajectories as opposed to a set of
points. It is shown that when occupation kernels are used
as feature maps, the computations involved reduce to com-
putation of single and double integrals of kernel functions
along the trajectories in the training data and the test data.
The developed OKPCA method is applied to the data-driven
fault detection problem to separate normal trajectories of a
dynamical system from faulty ones, without any knowledge of
the system dynamics. Two numerical experiments demonstrate
the efficacy of the developed technique.

The numerical experiments indicate that provided a training
data set of known normal trajectories and a test data set of

known faulty trajectories is available, the parameters of the
developed OKPCA fault detection method can be selected
by trial and error from a wide range of acceptable values.
Performance improvement with increasing amount of training
data is also observed, albeit accompanied by a significant
rise in computational costs. The numerical experiments also
indicate an inherent robustness to noise. A theoretical analysis
of noise-robustness is out of the scope of this paper, and a part
of future research.
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