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ARTICLE INFO ABSTRACT

Keywords: This work is dedicated to introducing the properties and application of Eta functions. We derive the properties
Eta functions of the Eta function, such as the generating function, integral representation, and the Laplace transform. Also,
Eta-based functions some properties of the Eta-based functions are introduced. To show the advantages of the Eta-based functions

Delay differential equation

. ; in the computational method, we develop a new numerical method to solve the state-dependent and time-
Collocation points

dependent neutral delay differential equation based on the Eta-based function. We introduce the operational

Rolling mill matrix of derivative for the Eta-base functions to develop the new numerical method. This method uses the
operational matrix of derivative and collocation method to convert the delay differential equation to a system
of nonlinear algebraic equations. We derive the technique’s error bound and establish the method’s accuracy
by solving some examples, which are state-dependent and time-dependent delay differential equations. In the
end, we study the model of the metal forming process by rolling the mill using the new numerical method to
show the advantages of using the Eta-based function for solving a more practical problem.

1. Introduction it is challenging to solve a delay system analytically. Many researchers

have devoted considerable attention to finding numerical methods for
Eta functions have been introduced by Ixaru [1] for solving the solving delay differential equations, especially by Runge-Kutta and

Schrodinger equation. These functions are a powerful tools for deriv- spectral methods. Of the numerous papers we mention Runge-Kutta

ing the approximation of functions with trigonometric or hyperbolic methods [17,18], Legendre spectral method [19,20], Jacobi spectral

variation which has oscillatory character (see [2-9] and references method [21], hat spectral method [22], Galerkin method [23], mod-

therein). The new set of based functions, the Eta-based function, has
been introduced using the Eta functions. An essential property of the
Eta-based functions is that they tend to the polynomial when the
involved frequencies tend to zero. Thus, the Eta-based functions are .
suitable for attaining a good approximation of high oscillatory func- in [26,27].
tions and polynomials. This property brings the excellent opportunity To the best of our knowledge, prior analysis of delay differential
to approximate the solution of the dynamical systems when we do equations has addressed some, but not all, of the following issues
not know the behavior of the exact solution. Recently, Mashayekhi
et al. [10] have used the Eta-based functions to find the least-squares
approximation of a function. The paper results show the advantages
of using the Eta-based function compared to sets of orthogonal or
nonorthogonal functions for finding the least-squares approximation of
a high oscillatory function.

Delay differential equations (DDEs) have been used for modeling
many phenomena in electrical engineering [11], drilling system [12,
13], ecology [14], biology [15] and robotics [16]. It is well known that

ified homotopy perturbation method [24] and Chebyshev cardinal
functions [25]. Also, the analysis of the existence of the solution and its
properties for the neutral delay differential equations have been studied

» Solving the multi-pantograph delay differential equation.

» Solving the state-dependent and time-dependent delay differential
equation.

» Developing the method with less CPU time than existing ap-
proaches to solving DDEs.

» Developing an accurate method to solve DDEs in a large domain.

+ Studying the behavior of DDEs when the exact solution is un-
known.
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This paper will introduce some new properties of the Eta-based function
to address these issues by solving a general form of DDEs. To solve
this, we consider a general form of state-dependent and time-dependent
neutral delay equations, and we use Eta-based functions’ properties
to introduce the derivative’s operational matrix. The method first ex-
pands the solution of DDES as an Eta-based function with unknown
coefficients. The operational matrix of the derivative is then utilized to
reduce the solution of DDES to the solution of algebraic equations. We
show the accuracy of the method by solving some numerical examples.
The results of the numerical examples show the Eta-based functions are
much better than the Legendre polynomials when the exact solution of
the DDEs is trigonometric functions. Also, in this case, trigonometric
and Eta-based functions have the same accuracy. The Eta-based func-
tions are much better than the Legendre polynomials and trigonometric
functions when the exact solution of DDEs is an exponential function
or has one of the following forms

A(t) = 6, (1) sin(wt) + 6,(t) cos(wt) or A(t) = 6,(¢) sinh(wt) + 6,(t) cosh(wt),

where w is a constant and §,(¢), 6,(¢) are polynomials. The results of
the numerical models show the ability of the present method to solve
all kinds of DDEs with higher accuracy and less CPU time compared
to existing approaches. Also, these results demonstrate the power of
the technique to solve DDEs in a large domain. It will be seen that
the present method can be applied to the model of the metal forming
process by the rolling mill. Since the exact solution of the rolling mill
thickness control system is unknown, using the Eta-based functions
allowed us to consider all possible situations for the exact solution, in-
cluding trigonometric functions, hyperbolic functions, or polynomials.
The details of the work presented in this paper are listed as follows:

Section 2 presents some applicable definitions of generalized hyper-
geometric functions, Bessel functions, Eta-based functions, and the best
approximation. We use these definitions to introduce some properties
of Eta functions, including the generating function and integral repre-
sentation of the Eta function. We also present the Laplace transform of
the Eta function based on the Mittag-Leffler function, and we derive
the connection between the Eta-based and Bessel functions. We also
introduce the operational matrix of the derivative and dual operational
matrix of Eta-based functions. These matrices will be used in Section 3
to develop a numerical method for solving DDEs based on the Eta-based
functions. Section 3 introduces a new direct computational method for
solving the state-dependent and time-dependent neutral delay equation
using the Eta-based functions [10]. We use the operational matrix of
derivative for the Eta-base functions and collocation method to reduce
the delay differential equations to a set of nonlinear equations. Then
we solve these nonlinear equations. We derive the error bounds of
the numerical method in Section 4. In this section, we show the rate
of convergence in the present process depends on the number of Eta-
based functions, and the error bounds tend to be zero by increasing
the number of Eta-based functions. Numerical examples are presented
in Section 5 to demonstrate the efficiency and accuracy of the proposed
method. These numerical examples include the state-dependent and
time-dependent delay differential equations. In Section 6, to show the
application of the Eta-based function for a more realistic example,
we use the new numerical method to study the model of the metal
forming process by rolling mill [28], which is a state-dependent delay
differential equation. In metalworking, moving is a metal forming
process in which metal stock is passed through one or more rolls to
reduce the thickness and make the thickness uniform. A rolling mill is
equipment used for the rolling process of metal, and it can complete the
entire process. Roll stands holding pairs of rolls are grouped into rolling
mills that can quickly process metal, typically steel, into products such
as structural steel, bar stock, and rails. In this paper, using the new
numerical method, we study the behavior of the metal forming process
by the rolling mill. This study shows the rate of change of the metal
thickness depends on desired metal thicknesses after passing the rolling
mill, the initial thickness of the metal, and the thickness sensor. In the
end, a conclusion is drawn in Section 7.
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2. Eta functions and Eta-based functions

In this section, first, we provide some preliminaries helpful in
designing our numerical method and error analysis. Then, we introduce
some new properties of Eta and Eta-based functions.

2.1. Generalized hypergeometric functions

For real parameters py,...,p, and ¢y,...,q; (g; # 0,-1,-2,... j =
1,..., ), we define the generalized hypergeometric function oFppr1s s
P q1s 453 Y) according to Eq. (1) [29]

[

(P (Pa)y Y
aFﬂ(pl,...,pa;ql,...,qﬁ;Y)=ZM—

s 1
=0 (‘I|)k---(4ﬁ)k k! 0

where (p), is the Pochhammer symbol defined, in terms of the Gamma
function I'(.), by

Po=1 @ =pp+Dp+2)..(0+k-1)=T(p+k)/I(p), keN. (2)

a = p + 1, the series is convergent for |Y| < | and for |Y| = 1 the
series is conditionally convergent. If « > § + 1, the series is divergent.

If « < B, the series is absolutely convergent for all values of Y, if

2.2. Bessel functions

The Bessel function of the first kind of real order yx has the series
expansion as stated in Eq. (3) [29]:

s=3 _CV (Y, @
" AT+ u+ 2

The infinite series in Eq. (3) will converge for all values of Y. The
modified Bessel functions of the first kind are defined by Eq. (4) [29]
as

L) =i"J,3(Y), Q)

where i = y/—1 is the complex unit. It is easy to show the modified
Bessel functions of the first kind are a real function of Y.

2.3. Eta functions

Eta functions, denoted by #,(Y), n > 0 and Y # 0, are defined in
terms of the recurrence relation (5) [1,2]:

Hu2(Y) — 2n — D, (Y)

n,(Y) = % n=1,2.3,... 5)
where
1
sin(|Y|2)
l =0y <o
cos(|Y|2) Y <0, Y|2
n ) = { s ) =11 Y=o, ©®
cosh(Yz) Y >0, 'h(Y%)
S1in!
I — Y > 0.
Y2

These functions have the following values at Y =0 :
1
Qn+ 1!
where !! is a double factorial [1]. Eta functions have some well-known
properties such as:

1,(0) = n=1,2,... 7

* Series expansion:

©

—n (ktn)! YK
Mn(Y) =2 P

®

0 y .k

— o—(n+1 1 @) -

=2 (n+ )\/;Zmi—', n=0,1,...
k=0 2
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where for the second equality, we used the Legendre duplication
formula according to Eq. (9)

I'(2k) = TF(k)F(k + ) Re k> 0. 9
a
- Differentiation properties:
n(Y) = 'I,,+1(Y) n=-1,0,1,2,... 10)

» Generating differential equation: 7,(Y), (n = 0,1,2,...) is the
suitably normalized regular solution of differential equation (11)

Y + %(2n+3)z’— 3—‘z=0. an

We will derive three more Eta-functions properties in the following
theorems, including generating function, integral representation, and
Laplace transform.

Theorem 2.1 (Generating Function). The generating function of the Eta
functions is obtained according to Eq. (12) as

\/;ez 2 X —Erf\/> Znn(Y)t 12

where Erf, is an Error function (also called probability integral) as stated
in Eq. (13)

2 /’ _ 2
El‘ftz— e ds = —
NG NG

Y
Proof. Using the Taylor series of e2 and Eq. (13) we have

\/%eé% \L[ "f\/_ <62'> (ﬁeéx\lﬁErf %)

X
Y) 2+l
') —_ 00 1 2

= 2(2' Ee%xine_%z—zy(7>
v! 2 Vi©oz @r+D!!

2 had 27t2;/+1
= 13
¢ Zé @ + D!l 13

y=!

0
00 Y v
3G e o

2vy)

r!@y’ -
= Yoy, 14
S+ D! wZ;'o r+nhl ! a4

now we want to pick out the coefficient of ¢ in this expansion. For
a fixed value of y the coefficient of " is obtained by taking y — v = n,
i.e., y = v+n. Thus, for this special value of y in Eq. (14), the coefficient
of " can be obtained from the following relation

2’1 y '
2y + DIy = n)!
The total coefficient of " in Eq. (14) is obtained by summing over

all allowed values of y. Since v =y —n and v > 0, we should have y > n
so using Eq. (15), the total coefficient of " will be as

" = the coefficient of ". 15)

2"(n+k)! Yk

Z‘ Gr Dl = _,;)(2n+2k+1)! @) a6

where we have set k =y — n.

Theorem 2.2 (Integral Representation). Eta functions of order n can be
represented by the integral Eq. (17) as

27(n+1) T
nn(y) = 2—\/—/ —(n+ 5) 1+4, dt. a
i _
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Proof. We have

—(’H’ ) Iiﬂdt
k!

k=0

b el
IO D et dr = [
0 00

[so]
el k 18
= [ Ve Y T a8
k=0 ‘
(%)k 0 —(ktn+2)
T et 2eldt,

I
= 1M

we also recall the Hankel’s representation conforming to Eq. (19) [30],

+

T ktnsd) 27i
/ et = — = 19)
—o Ik+n+32)

substituting Eq. (19) into (18) leads to

k

0 el v S 27 (§)
/ el X eTidt = Z 413—' (20)

- S rk+n+3) K
consequently, from Egs. (8) and (20), we obtain
20D Jz / oL
2ri _
< 1 G)k
=20y ———— =), (€3]

k=oF(k+n+%) k!

Theorem 2.3 (Laplace Transform). The Laplace transform of Eta functions
is expressed following Eq. (22)

2—(n+1)\/;E 1
s I,n+% ( > :

L{n,(Y);s} = o (22)

Proof. Using Eq. (8) we have
L{n,(Y);s} =[5 e Y n,(NdY
=/0 =Y %2~ (n+1)\/—z

k'F(k+n+ )

[se]
— o—(n+1) 1 ™ sYyk (23)
= \/;1;04"k!1"(k+n+%)'/0 Y YkqY

_rn s (&)

3
S A Gkt

2—(n+1)
= Vip (L) ’
s l,n+§

4s

where

— S Yk
Ea,ﬂ(Y) = 1;) m, a>0, peC, 24

is the generalized Mittag-Leffler function [29].
2.4. Eta-based functions

Eta-based functions are defined according to Eq. (25) as
@) = t"‘ln[%J_l(Y(t)), n=12,.. (25)

where Lg] is the integer part of g, and Y (1) = —£2#? in the trigonometric
case and Y () = £2¢? in the hyperbolic case. These functions have the
following properties

@1 () =1t@,(1), for even number n > 2. (26)

1@, (1) = (n
F£2

where the upper/lower sign is for oscillatory/hyperbolic case.

- l)wn(t)

Ppia(t) = , for even number n >2, €&#0, (27)



S. Sedaghat and S. Mashayekhi

An essential property of the Eta-based functions is that they tend
to the classical power function (or polynomial) when ¢ = 0 [2]. In the
following theorem, the relation between Eta-based functions and the
Bessel functions is presented.

Theorem 2.4. The Eta-based functions ¢, (1) can be defined by the Bessel
functions as stated in Eq. (28)

1 n n 1
\/ggrlﬂt"‘lﬂ‘i Jio1 @D, Y =81,
2 2
@, = (28)
zey-151 1513 2,2
VaeT s, e v =

Proof. From Egs. (8), (25) and using the Legendre duplication formula
(9), we have

_ol5l-1m-1 Tk+15D yk
Pp(0) =221 2F(2k+2[ Ly

_2l - e IZ\/»zl —2k-2| 2 Jyk

r+[21+3) &

2w+ 5]-4

\/7,, HE 22 (S
SAGE; 1+ k! (29)

1
=\/Z55‘L5Jr"‘lﬂ‘wn @D, Y =-£7,
2 313
2k 1-F
\/7 LJ——Z (GO Y
2 4 T+ 5 1+ k!
:\/Zgé‘lih"‘lﬂ‘u,, (&, Y =8
2 l31-3

In the following theorem, we derive the product of two Eta-based
functions.

Theorem 2.5. For ¢ # 0, the product of two Eta-based functions ¢, (1)@,,(t)
can be obtained as reported by Eq. (30)

(134120 pim2 §° I
S (et 5= D5 1=

2t 2]+ 121 -1 [ gont
X( 2 ) 2 >(§T>
= 7z2_(l%J+l%J>tn+m72

F(5150451505+
><2 ?<2 217313

@@ (1) = 72

(30)

SIS 1241 J2+l IR J+:“)
l'(l"H- )F(L J+ )

Proof. Using the definition of Eta-based functions and Cauchy’s rule
for multiplication of power series, we have

~2k-1%] 2 2k+n—1 ~2%k-1%1 2 2k+m—1
2 (+§ t 2 (+§ t
1 13
@@, (1) = frz a2+ D) Z LIPS

_ o (B14131) jrma

o k k
1 +§212
XZZ . n Lyy oy . m 1y N < 4 >
=0j=0 G+ 151 =it k—j+ 5] =) k=)
= oo (1314151) jnema

1 1
zz k+L§J‘§ k+131-3 (:W)"
S5 e3) ")'(“H - k—j Jj ¢
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n m x
_ o (1B14151) jrema 1
et 5 1=k 513!

y <2k+ [%J; L3] —1> (%ztzy

Using the hypergeometric series, Eq. (1), and Legendre duplication
formula, Eq. (9), and Eq. (31) we have

(3D

oD@y (1) = 72 () e 22(k+[ J——)'tkﬂ 21-5)!
2

y <2k+ lEJ;' lEJ - 1> (igjrz )k

s (EEE) pras

o

z rek+|51+15 D
n 1 m 1 n m
& riet |51+ TUH L G 1+ TR L5 415D #

S IR )

7

(=) >

y 2B (311451513 +5 1515 LS L +L 5 L5+ 15 L1G 1+ 5 1i62)
r(21+Hrdz1+3

5

this completes the proof.
2.5. Best approximation and operational matrices

Suppose f(¢) € L*[0,1] and
a0 =H"A=a,h () + ayhy(t) + - + ay hy(8), (33)
is the best approximation to f out of H where
@17, cayl’, 34

are the base functions and coefficients vector. We have two next theo-
rems if we choose the Eta-based functions as basis functions in Eq. (33).

H@®) = [h,(t), by, ... =[ay, ay, ...

Theorem 2.6 (Operational Matrix of Derivative). The derivative of the
H(@t) = [@1(0), @30, ... on®)]T where ¢,(t) defined in Eq. (25) satisfies
the following relation

H'(1)= DOH (), (35)
where D(t) = [d;;1yxn s the operational matrix of derivative.

Proof. We present the proof for two cases, ¢ = 0 and & # 0. First we
consider ¢ # 0. From Egs. (10) and (25) we have

@)= (n = D"y (Y©0) F E"n 2 (Y (), (36)

using Egs. (26), (27) and Eq. (36), we have

FEOu n=1,
@1 =10, ) n is even, 37)
1@, + @,_1(t) nisodd.

Using Eq. (37) we have

D,(r) If N is even,
D(r) = (38)
D,(r) If N is odd,

where
0 e B}
1 0 0
t 1 0o 0
0 1 0 0
b= f 1 0 0 ’
t 1 0o 0
| 0 1 0
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o e ]
10 0
t 1 0 0
0 1 0 0
by = i1 0 0
0 1 0 0
I i1 0]

Now let to consider & = 0. Using Egs. (7) and (25), the derivative of
@,(1) is obtained conforming to Eq. (39)

0 n=1,
LN =10,_,(1) n is even, (39)
(n—De@,_(1) nisodd.

Using Eq. (39) we have

D; If N is even,
D(r) = (40)
D, If N is odd,

where
o o _
1 0 0
2 0 0
1 0 O
Dy = 4 0 O s
1 0 0
N-2 0 0
1 0
0 0 _
1 0 0
2 0 0
1 0 O
D, = 4 0 0
N-3 0 0
10 0
N-1 0

As you can see, in this case, D(r) does not depend on t.

Theorem 2.7 (Dual Operational Matrix). The dual operational matrix of
the H(t) = [@;(1), @2(t), ..., o] can be obtained according to Eq. (41)

as
1
/ H@OHT ()dt = 0y, (41)
0
where Q; is the N X N dual operational matrix and
o(1,1)  ¢1,2) ¢(1,N)
0y = ¢(2:71) ¢(2:, 2) ¢(2;N) ’ (42)
¢(N,1)  ¢(N,2) ¢(N,N)
in which
o (131+15])
r([ﬂJ+l)r(lﬂJ+l)
% cordfsshded gl s,
Hln,m) = S mem-0i G+ 5D, G 3D 3]+ 2 D =, Fezo
1 —_—
(n+m—1)!<2[%J—1)!!<2[gJ—1)!! fe=0.
(43)
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Proof. Since
1
/ H@HT (t)dt
0

[ [ oot [ o, (0ps0dt Sl o oyt |

f oo dt [ @yt J 2Dy ()d1

o on 0@t [ on (Dt Jo oxey vt

we have

1
&G, J) =/0 @;(Dp;(ndt, (44)

by integrating of the product of two Eta-based functions given in Eq.
(30) on [0, 1], the result is obtained directly for ¢ # 0. For ¢ = 0, the
result can be obtained by using Egs. (7) and (25).

3. State-dependent and time-dependent neutral delay equation

In this section, we use the Eta-based function to develop the new
numerical method for the state-dependent and time-dependent neutral
delay equation as stated in Eq. (45)

x'(t) = g(t, x(1), x(t -

6,(t, x(1)), x'(t = ©,(t, x(1)))),

(45)
x(0) = xq, 0<r<l.
In Eq. (45),
x(t) = [x,(1), X, (D), ..., x,(O)]T € R?, (46)
is a real-valued p-vector function and
g0 =g, &), ..., g,01", 47)

is assumed to be a sufficiently smooth real-valued p-vector function.
Also, ©,, 0, are assumed to be continuous functions for all ¢ € [0, 1].

3.1. Numerical method

This section is devoted to presenting a new numerical method for
solving the problem given in Eq. (45). Using Eq. (33) the best approx-
imation of x;(t), i =1,2,...,p is

x;() = HT (1) 4;, 48
and
x(t) = H(DA, 49

where A is a pN x 1 vector given by

A=[A}, 4, .. AT, (50)
and
Hn=1,® H (1), (51)

in which I, is the p dimensional identity matrix, H() is p X pN matrix
as well, and ® denotes Kronecker product [31].
Using Eq. (48) and Theorem 2.6, we have

x)(t) = H ()DT (1)A,. (52)
Using Egs. (46) and (48) we get

x'(1) = HD®)A, (53)
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where D(t) is pN x pN matrix as
D(ty=1,® D" (1).
Substituting Egs. (49) and (53) into (45), we have

AMDWNA = gt, H)A, H(t — 0,(t, H(n A))A,

H(t = 0,(t, Ht)A)D(t — 0,(t, H(1)A)) A). (54)

Next we collocate Eq. (54) at the Chebyshev nodes (see [32]) in [0, 1]

1 z(2j+1) 1 .
fi=zcos =~ 4= j=01,....,N—1, S5
I3 aN ) T2 (55)
to obtain a system of pN nonlinear equations as

W = H(t,)D())A — g(t;, At A, Ht; - 0,(;, HtpANA, H(1;
— 0,1, (1)) A) 6
x D(t; - 0,(t;, H(1t))A)A) =0

Similar to Eq. (49), corresponding matrix form for the initial condition
x(0) = x, is according to Eq. (57)

V =H0)A-x,=0. (57)

Replacing V instead of the p last row of W, we have a set of pN
nonlinear equations which can be solved for the elements of A using
the well Newton’s iterative method. Finally, we calculate x(¢) given in
Eq. (49).

4. Error estimate

This section aims to estimate the error norm for the numerical
method presented in Section 3.1. For ease of exposition but without
any loss of generality, we describe convergence analysis for p = 1 and
x; = x. At first, we suppose that H#(0, 1) with x4 > 0 is a Sobolev space
equipped with the norm confirming to Eq. (58)

b
I x 1 frweo,ny= <Z/ [xD ()| w(t)dt) <Z I x ”L2(01)> . (58)
Jj=0

To continue the error discussion, the following Theorem from [33] is
recalled.

Theorem 4.1. Assume that x be a member of Sobolev space H*(0,1) with
u > 0, and P,(2t—1) be the well-known shifted Legendre polynomials defined
on the interval [0, 1]. Let

N

Y a,P,Qt-1) €y, (59)
n=0

denotes the best approximation of x using the set of shifted Legendre
polynomials, where II y is the space of all polynomials of degree less than
or equal to N. Then we have

N
Y,
n=0

where ¢ is a constant positive independent of N and x and

|x|HﬂlN(0,1) :< N1 ” (’)” > (61)
i= mm H,s

Theorem 4.2. Suppose that x be a member of Sobolev space H*(0, 1) with
> 0, and ¢, be the Eta-based functions defined on the interval [0, 1].
Assume that x (1) = Z,I,V a,,(t) denotes the approximation of x using

=1

the set of Eta-based functions. Then we have

P,(2t-1) < CN_;"leu:N((),]), (60)

L2(0,1)

N

x - Z a,,()

n=1

N
< N7 Ixlguvon + 2, Va2 Blela, | (62)
n=1

L2(0,1)
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Proof. Using Egs. (8) and (25) we have
N

X — Zan(pn(t)

[[x(6) - XN(I)“LZ(O,I) =

n=1 L2(0,1)
2k 2k+n—1
= |lx() = 2~ [ ] () r
( ) 2‘1 \/— Zk =0 (k+[ J+ ) 4k k1
n L2(0,1)
N M 2.k 2k+n—1
_ .
= ||x() - 2 151 (F&9) t
z‘ kgol“(k+[%J+%> 4kl
(63)
4 i (;gz)k (2k+n—1 )
n L\ 4Kkl
k=M+1 r(“li“i) L2(0,1)
2 ktn—1
< ||x@® - 213 —(*'é L
> ( ) Z \/— Z =0 k+l J+ 4k |1
n=1 2
L2(0,1)
l - 2.k 2k+n—1
_|n = (2k+n—
+ zan\/;2 lzJ Z r k(+§n> 1 4k |
n=1 k=M+1 ( +l§]+§) 12(0,1)

Since the best approximation of a given function x € H#(0, 1) is unique
(For more details about the uniqueness of the best approximation,
please see [34] page 334), using Theorem 4.1, we have

N M k
- Yy — VTt

n=1k=0 ZL%JF(k+ 51+ %) kt

{2k+n—1

L2(0,1)
N-1 (64)
x(t)—= Y a,P,2t=1)
n=0 12(0,1)
< eNTHIX guen o1
<1§2)k (2k+n—1

Also, we know that the series Y7 | is convergent so

r(k+[§J+%) 45kt
we get

> (F&2 )k 2k+n—1

k=M+1 T (k+ 5]+ %) 44!

<eE, (65)

using Eq. (65) for all values of |f| < 1 we have

- —e2yk 2k+n—1

z a2l 151 z (2SO N <
n 1) 4K =
=l PETAYICTESY 2o
N k
Va2 E e, i G e < (66)
=1 i A <k+ L5] + 1) 44k! -
2472 120.1)

N n
Z\/;Z_lfje|a,,|.
n=1

Using Egs. (63), (64) and (66), we obtain the error estimate x —x, and
this completes the proof.

In the following Theorem, we obtain the error bound of the numerical
method presented in Section 3.1.

Theorem 4.3. Let x € H*(0,1) be the exact solution of Eq. (45) and
Xy = HTA = Z,'y: | @,9,(t) be the approximate solution of this equation
obtained by the method proposed in Section 3.1. Then, we have

N
Il = Sl 2oy S eNTH Il uviony + 2 VA2 2 ela,|

n=1
4= Al (o
+|A - 4|2 2B 67
POUN & cramirazie by’ ] ©7)

x (n— L n+ 32150 15+ %;¢§2>>
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Proof. Let assume xy (1) = H' A=Y a,0,(), we have

% = *nll 2oy < I = xnll 200 * v = Enll 201y ©8

Using Theorem 4.2, we have the upper bound for ||x —xy |12y S0 We
need to introduce an upper bound for |lxy — Xyll12()- To this aim,
using the Schwarz’s inequality, we find

2

N N
- 2 —
||xN - xN||L2(0,l) = Z a"(p,,(t) - Zarl(pn(t)
n=1 n=1 L2(0,1)
N 2
= z(an —a,)@,(1)
n=1 L2(0,1)
(69)
N 2
1 _
=/ Z(a,l —a,)e, )| dt
n=1

N N 2
< <Z |an - ﬁn|2) _/01 Z |(P,,(I)| dt.
n=1 n=1

Using Theorem 2.5 for n = m and Eq. (69) we have

N
- 2 - 12
[lxn _xN||L2(0,l) < <Z|a,, —a,| >
n=1
[ N TTPIRTIe T
x 2 2 o8] 12+ b )
O Szl AN T2 20 T2

(3-or)

N -2051

2742 1 ny. 1 n n 1., _¢2
I T AE NS EINEIRS )
Z;(—Hzn){r(tgngnz VTR preet 2

(70)

which completes the proof.

Remark. The result of Theorem 4.3 shows the rate of convergence in
the present method depends on the number of Eta-based functions, so
by increasing the number of Eta-based functions, the error bounds tend
to zero. For more details, please see example 5.3.

5. Numerical example

In this section, we assess the new numerical method presented in
Section 3.1 to derive the numerical solution of Eq. (45) for different
cases. We consider different formats of the delay term, including a zero
delay term, a pantograph delay where the delay term is represented as
x(qt), and a time-dependent delay where the delay term is expressed as
x(z(1)), and a state-dependent delay where a delay term is introduced as
x(t — ©(1,x(1))). To show the advantages of the Eta-based function, we
consider three cases for the set of base functions H(7) in Eq. (33). In
each example, we present the absolute error for each case to compare
the results.

Case 1: We choose Eta-based functions as a base. In this case
H®) =[o,(), 9,0, ..., 0O (71)

is defined on ¢ € [0, 1] where g, (¢) has been introduced in Eq. (25).
Case 2: We choose Legendre polynomials as a base. Legendre
polynomials, P,(r), is defined on the interval (-1,1) using the
following recursive formula

P,(t)=2P,_(t)- P,_,(t), n=2,3,..., (72)

where Py(r) = 1 and P,(r) = t. These polynomials are orthogonal
with respect to the weight w(r) = 1 on the interval [—1, 1]. In this
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Table 1
Absolute error for x,(r) in example 5.1.

t Eta-based functions Legendre polynomials Trigonometric functions
N=2 N=5 N=5

0.2 0.0 1.9x 107* 7.9% 1072

0.4 0.0 1.9% 1073 7.9%1072

0.6 0.0 1.7x 1074 8.3x 1072

0.8 4.4x10710 29x107* 9.0x 1072

Table 2
Absolute error for x,(f) in example 5.1.

t Eta-based functions Legendre polynomials Trigonometric functions
N=2 N=5 N=5

0.2 22x 10716 1.0x 1073 1.3x1072
0.4 22x 10716 7.5%107* 42x1072
0.6 44x10716 5.7x 107 6.4x 1072
0.8 8.8 x 10716 45x 1074 8.2x 1072

Table 3
Absolute error for example 5.2.

t Eta-based functions Legendre polynomials Trigonometric functions
N=4 N=4 N=4
0.2 3.60 x 10710 2.05x 1072 5.05x 1072
0.4 5.27x 1071° 2.50 x 1072 6.16 x 1072
0.6 6.10x 10716 2.67 x 1072 6.47 x 1072
0.8 6.66 x 10710 3.17x 1072 7.71x 1072
case
H@) =[Pyt —1), P2t =1),..., Py_1(2t = )] (73)

is defined for ¢ € [0, 1].
Case 3: We choose H(1) = [yy(®), (), ...,wn_1(D]T as a base
where

() = {cos(i X 1),

sin(i X t),

if i is even

if i is odd

and r € [0,1]. In some specific cases we could consider only
sin(i X t) or cos(i X t) as the base.

We implemented our method and performed our numerical simulations
with Mathematica 12.

5.1. Two-dimensional linear systems with a zero delay term

In this example, we consider a zero delay term to show the effec-
tiveness of the Eta-based functions for solving the ordinary differential
equations. We consider Eq. (45) with p = 2, g(t) = x;(r) + x,(¢) and
g, (1) = =2x,(1) — x,(t). We have a two dimensional differential system
with the exact solution x,(r) = 3sin(t) + 2cos(t) and x,(t) = —5sin(t) +
cos(t). Tables 1 and 2 show the absolute error for this case.

In this example, reaching the absolute error of order (10~'°), the
CPU time taken in Legendre polynomials was almost 271 times greater
than that in Eta-based functions, and this accuracy was not achieved
when we used trigonometric functions.

5.2. Pantograph delay differential equation

In this example, we consider Eq. (45) where p = 1 and g(t) =
X(3)+ @ + % - % sinh % In this case, we have a delay differential
equation of pantograph type with an exact solution x(¢) = rsinh(r). In
this case, for reaching the absolute error of order ®(10~'¢), the CPU
time taken in Legendre polynomials was almost 42 times greater than
that in Eta-based functions, and this accuracy was not achieved when
we used trigonometric functions. The absolute error is presented in
Table 3. In this table, we choose four first terms of the base for all
three different choices of base functions.
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Fig. 2. Error function for x,(r) (left) and x,(r) (right) for 7 € [0,100] and N =3 in example 5.6.

Table 4

Absolute error for example 5.3.
t Eta-based functions Trigonometric functions

N=3 N=7 N=11 N=3 N=7 N=11

0.2 1.2x1072 1.2x 1073 1.6 x 10710 52x1073 6.9x 107 42x 107
04 15x1072  95x10° 12x107'°  75x107°  53x107*  3.0x107°
0.6 1.4x 1072 7.1x10°° 9.1x 107! 5.8x 1073 40x 1074 22x107°
0.8 1.0x 1072 49%x107° 6.3x 107! 23%x1073 2.6x 107 1.6x 107

Table 5

CPU time used corresponding to Eta-based functions for solving example 5.3.
Absolute error  O(1072) O(1073) ©(1075) ©(10719)
CPU time (N =3) 0.001 (N =5) 0.016 (N =17) 0.031 (N =11) 0.157

Fig. 3. Schematic diagram of rolling mill.

5.3. Multi pantograph delay differential equation x(h) - 2e™F cos($)sin(£)x(4). The exact solution is x(r) = e~'cos(1). The

In this example, we consider the multi-pantograph delay differential absolute error is presented in Table 4. Also, CPU time used (in seconds)

equation. We assume, in Eq. (45), p = 1 and g(t) = —x(¢) — e_% sin(%) for different values of N is given in Table 5.
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Fig. 4. Comparative plots of the metal thickness (x(#)) for Eq. (78) with N =3, K =1 and initial conditions x(0) = 1, 7(0) = 0 with five different cases for ¢.

Table 6
Absolute error for example 5.4.

Table 8
Absolute error for x,(f) in example 5.6.

t Eta-based functions Legendre polynomials Trigonometric functions t Eta-based functions Legendre polynomials Trigonometric functions
N=3 N=3 N=3 N=3 N=3 N=3
0.2 1.3877 x 1071¢ 4.0251 x 1072 3.9415x 1072 0.2 0.0 4.63391 x 1072 277556 x 1077
0.4 1.6653 x 1071¢ 49112 x 1072 6.3251 x 1072 0.4 0.0 8.01172 x 1072 5.55112 % 10717
0.6 2.2204 x 10716 3.4987 x 1072 6.1952 x 1072 0.6 0.0 1.08939 x 107! 1.11022 x 10716
0.8 2.2204 x 10~1° 6.9415x 1073 3.7040 x 1072 0.8 0.0 1.39789 x 107! 1.11022 x 10716
Table 9

Table 7
Absolute error for example 5.5 at the point t = z with different choices of A.
A Methods Errors CPU time
0.3  Eta-based functions with N = 3 1.0479 x 10726 0.15
Numerical method [19] with N=2, M =9 0.11 x 10710 2538.69
0.7  Eta-based functions with N = 3 221161 x 107 0.33
Numerical method [19] with N =2, M =9 0.21x 1071 3418.12
1.0  Eta-based functions with N = 3 7.25971x 1072 0.41
Numerical method [19] with N=4, M =5  046x10~* 3332.34

5.4. Time-dependent neutral delay differential equation

To examine the effectiveness of the proposed method for time-de-
pendent neutral delay differential equations, we consider Eq. (45) with
p=1and g(t) = —x(O(1))+x'(O(t))+cosh(t)— HLI Also, we assume O(¢t) =
In(t + 1). The exact solution is chosen as x(t) = sinh(t). Table 6 shows
the absolute error for this case. In this example, reaching the absolute
error of order ©@(10~'%), the CPU time taken in Legendre polynomials
was almost 66 times greater than that in Eta-based functions, and the
CPU time taken in trigonometric functions was nearly 22 times greater
than that in Eta-based functions.

Absolute error for x,(f) in example 5.6.

t Eta-based functions
N=3

0.2 5.55112x 10717
0.4 5.55112x 10717
0.6 0.0
0.8 0.0

Legendre polynomials
N=3

Trigonometric functions
N=3

2.94881 x 1072 2.77556 x 10717
450456 x 1072 5.55112x 10717
5.42770 x 1072 0.0
6.41681 x 1072 0.0

5.5. State-dependent neutral delay differential equation

In this example, we consider a state-dependent delay differential
equation with delay term ©(r) = tx%(¢). In this case we assume p = 1
and

2(1) = cos(t)(1 + x(O(1))) + Ax(H)x'(O(t))
+ (1 = Asin(t)cos(tsin® (1)) — sin(t + sin*(1)).

We have a neutral delay differential equation with a state-dependent
delay with an exact solution x(¢) = sin(r). This example was considered
in [19] by using the hybrid functions approximation method. Using Eta-
based functions as a base, we have compared the present scenario with
the numerical method presented in [19]. The error bound and the CPU
time (in seconds) have been shown in Table 7.
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Fig. 5. Comparative plots of the metal thickness (x(#)) for Eq. (78) with N =3, ¢ = 0.5 and initial conditions x(0) = 1, 7(0) = 0 with seven different cases for K.

Table 10

CPU time used corresponding to Eta-based functions, Legendre polynomials, and Trigonometric functions for example 5.6.

Base function Eta-based functions

Legendre polynomials Trigonometric functions

CPU time to reach
the absolute error of
order O(107'7)

(N =3) 0.016

(N =14) 1825.6 (N =3) 0.016

Our new numerical method is computationally much better than the
proposed method in [19] especially when we ask for higher accuracy
and less computational time-consuming in state-dependent delay differ-
ential equations. Absolute errors for different values of 4 with N = 3
are also shown in Fig. 1.

5.6. System of state-dependent delay differential equations

Finally, we apply the new method to derive the numerical solution
of a two-dimensional system of state-dependent delay differential equa-
tions. In Eq. (45) assume that p = 2, g,(t) = x;(x,(?)) + cos(t) — sin(sint)
and g,(7) = x;(t)—x,(t)+cost, where x,(0) = x,(0) = 0. An exact solution
of this system is x;(¢) = x,(¢) = sin(r). Tables 8 and 9 show the absolute
error for ¢+ € [0,1]. In these tables, we choose three first terms of the
base for all three different choices of base functions. The CPU times
(in seconds) to reach the absolute error of order O(10~!7) are given in
Table 10. Also absolute errors for ¢ € [0, 100] are plotted in Fig. 2.

Remark. These numerical examples show the Eta-based functions are
much better than the Legendre polynomials when the exact solution of
the DDEs is trigonometric functions. Also, in this case, trigonometric
and Eta-based functions have the same accuracy. The Eta-based func-
tions are much better than the Legendre polynomials and trigonometric
functions when the exact solution of DDEs is an exponential function

10

or has one of the following forms
A(t) = 6,(t) sin(wt) + 6,(f) cos(wt) or A(t) = 6,(¢) sinh(wt) + 6,(¢) cosh(wt),

where ® is a constant and §,(r), §,(r) are polynomials. These results
are consistent with the reported results in [10]. This section’s results
convince us to use Eta-based functions to study the behavior of the
rolling mill thickness control system in the next section. Since the exact
solution of the rolling mill thickness control system is unknown, using
the Eta-based functions allowed us to consider all possible situations
for the exact solution, including trigonometric functions, hyperbolic
functions, or polynomials.

6. Rolling mill thickness control system with state-dependent de-
lay

In this section, we study the behavior of the rolling mill thickness
control system (for more details, please see [28]) using the method
presented in Section 3.1 to show the application of the Eta-based
function for a more practical problem. Consider a billet of metal of
thickness ¥ and width @ enters a simplified model of the rolling mill
with a velocity o and leaves it with a velocity o(r) having now the
thickness x(¢) and width w(r) (Fig. 3). The sheet thickness is measured
at a certain constant d from the rolls and then is used for control by
the controller R with the set value x,.
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Fig. 6. Behavior of the metal thickness (x()) for Eq. (78) with N =3, { =0.5, K =1 and six different cases for initial conditions.

Assuming the density of metal is constant, and by using the law of
conservation of mass, the equation expressing that the volume of metal
stays constant can be written as

X. @. 0= x(1).0(1).0(t).

The width w(r) is usually kept constant in relation to width @, so we
have

x(1).0(t) = const. 74

Since the velocity u(¢) is time-dependent, then delay = Between the rolls’
passage and the thickness sensor is a time-dependent function.

The distance traveled by the metal is obtained from the following
equation

t
d= / v(s)ds. (75)
t—1(t)
Substituting Eq. (74) in Eq. (75) and differentiating lead to
-
1 _1-7® _ (76)
x(t)  x(t —7(@®)
Suppose that the regulator is formulated as
X' () = —Kx(t — (1)) + Kx4 (), 77)

then, by using Egs. (76) and (77) the following system is acquired

X/ (t) = —=Kx(t — (1) + Kx,(t),

{T’(l) =1- x(t—t(1)

x®)
which corresponds to a system of state-dependent delay differential
equations.
Suppose that the thickness of metal after passing the distance d of
rolling mill according to the equation x,(f) = {x(r), 0 < ¢ < 1. Now,

(78)

11

we apply the presented method in Section 3.1 to study the behavior of
Eq. (78) in three different cases.

At first, we consider different desired metal thicknesses after passing
the rolling mill (changing the values of ¢) while the parameter K = 1
and x(0) = 1 are fixed. Fig. 4 shows this case’s thickness behavior (x(z)).
Next, we assume the desired thickness of the metal plate after passing
the rolling mill is fixed (x,(r) = 0.5x(#)) and change the parameter K.
Also, in this case, we assume the value of the initial thickness of the
metal is fixed (x(0) = 1). Fig. 5 shows this case’s thickness behavior
(x(1)). Finally, we change the value of the initial thickness of the metal
x(0) and the initial delay amount between the rolling passage and the
thickness sensor 7(0) while we assume K =1 ¢ = 0.5. Fig. 6 shows this
case’s thickness behavior (x(7)).

Since we do not have an exact solution for Eq. (78), we have
assumed all possible values Y(t) = 12, Y(t) = —t> and Y(t) = O of
frequencies, which introduce hyperbolic, trigonometric and polynomial
functions.

The results show that metal thickness (x(r)) decreases over time
despite different frequency choices. Also, these results demonstrate the
rate of change of x(r) depends on desired metal thicknesses after passing
the rolling mill (¢), the initial thickness of the metal (x(0)), thickness
sensor (7(0)) and parameter K.

Also, Fig. 7 shows the state-dependent delay decreases over time by
changing the initial thickness of the metal (x(0)) and thickness sensor

(z(0)).
7. Conclusion

We have derived some new properties of the Eta and Eta-based
functions. We have developed a new numerical method for solving the
state-dependent and time-dependent neutral delay differential equation
by introducing the operational matrix of derivative for the Eta-base
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Fig. 7. Behavior of the state-dependent delay for Eq. (78) with N =3, { =0.5, K =1 and six different cases for initial conditions.

functions. The results of the numerical examples show the advantages
of using the Eta-based functions for solving the state-dependent and
time-dependent neutral delay differential equation. When we do not
know the behavior of the exact solution, using the Eta-based functions
allowed us to consider all possible situations for the precise solution, in-
cluding a trigonometric function, hyperbolic functions, or polynomials.
In the end, we used the new numerical method to study the behavior
of the rolling mill thickness control system. This study shows the rate
of change of the metal thickness depends on desired metal thicknesses,
the initial thickness of the metal, and the initial thickness sensor.
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