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A B S T R A C T

Soft dielectric elastomers are commonly used in applications where large deformation is prevalent such as
energy harvesters, sensors, and soft actuators. The thermo-mechanical response of these elastomers is important
in order to accurately describe the viscoelastic behavior over a broad range of operating conditions. Fractal
characteristics of the dielectric elastomer VHB 4905 and their connection to fractional order viscoelasticity
are analyzed to better understand viscoelasticity over a range of elevated temperatures starting at room
temperature. We extend prior work in viscoelasticity to include excluded volume effects as a function of
temperature. A fractal hyperelastic model is combined with a fractional order viscoelastic model and validated
experimentally. Bayesian uncertainty methods are used to quantify the material parameters and their influence
on temperature dependent viscoelasticity measurements. The model fits are compared to previously collected
temperature dependent viscoelastic measurements on VHB 4905 for temperatures ranging from 23 ◦C to 60 ◦C.
Based on fractional order viscoelasticity, we infer that the excluded volume parameter is negative and initially
decreases before reaching a constant value near 50 ◦C.

1. Introduction

Fractals are self-replicating geometries that occur across all length
or time scales (Mandelbrot et al., 2004). This mathematical construct
provides a unique tool to understand complexities in mechanics of
materials (West and Grigolini, 2010). In polymer science, this charac-
teristic can manifest as monomers forming polymer networks that lead
to complex multiscale structures from the network’s topology, distri-
butions of the crosslink density, free volume distributions, mesoscale
phase distributions, etc. When these polymer structures form fractal
geometries, their structure is difficult to represent on a Euclidean
domain since length measures, and the associated displacement gradi-
ents, may not have finite values. This poses challenges in constructing
accurate constitutive laws using common integer order calculus. When
represented on a fractal domain; however, deformation and stress are
expected to be better represented using fractal or fractional order
derivatives (West et al., 2012; Li and Ostoja-Starzewski, 2009). We
investigate this concept by validating a fractal inspired modeling using
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an information theoretic framework to construct a hyperelastic and

viscoelastic model for temperature dependent, finite deformation in

elastomers based on a set of experimental data.

Application of fractional order calculus to mechanics of materi-

als has seen a resurgence in theoretical and computational develop-

ments (Tarasov, 2011; Lischke et al., 2020; Li and Ostoja-Starzewski,

2020; Mashayekhi et al., 2018, 2021; Pahari and Oates, 2022). This

has stimulated further interest in probing complex multiscale structure

of materials and relating these structures to fractional order opera-

tors within the constitutive models and balance laws (Wheatcraft and

Meerschaert, 2008; Mashayekhi et al., 2019). The concept is different

from conventional multiscale mechanics models that fuse different

physical processes at the quantum, molecular, micro, meso, and macro

scales (Tadmor and Miller, 2011). Fractals represent geometrical com-

plexity which cannot easily be reduced down to elementary parts

because of non-local interactions in space or time which propagate

across scales in complex and unpredictable ways (West and Grigolini,
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2010). Fractional order operators are often better suited to handle such
behavior; however, appropriate connections between fractal geometry
and fractional property relations remain a challenge. It is often argued
that given a fractal geometry, heat, stress, chemical diffusion, etc.
diffuses across the material while constrained to a random walk on
a fractal domain Havlin and Ben-Avraham (1987), Balankin (2015).
Recent results have applied this concept to fractional viscoelastic-
ity (Mashayekhi et al., 2019). This prior work on viscoelasticity did not
consider temperature dependent constitutive behavior. In this work, we
explore how the fractal and fractional order model assumptions provide
insight into simulating viscoelasticity on an elastomer deformed at
constant temperatures ranging from room temperature up to 60 ◦C.

More broadly, development of constitutive relations and balance
equations of momentum, energy, and entropy rely on Taylor expansions
and integrals that are localized to a continuum point. Whether it
is derivatives associated with a Taylor expansion or spatial or time
derivatives from the divergence or Reynold’s transport theorem, in-
teger derivatives are routinely used (Malvern, 1969). Under certain
restrictions of power-law relations, fractional derivatives have shown
to be superior in predicting behavior farther away from operating
points along a Taylor series (Wheatcraft and Meerschaert, 2008). These
power-law characteristics, such as fluid flow or heat through com-
plex media, are often motivated by the presence of fractal media.
The connections between a fractal solid and a fractional operator that
describes constitutive behavior remains elusive. The fractal structure
of a solid can be well described using the Hausdorff dimension which
can be estimated accurately using the box-counting method (Falconer,
2004). However, fractional operators are used to predict stress from
deformation and deformation rates that may follow some fractal path
(i.e., a power-law function). The direct mapping of fractal structure
to fractional properties remains an open question. There are further
questions about the distinctions between fractional order (non-local)
operators (Tarasov, 2005) versus fractal order (local) operators (Chen
et al., 2017) that may both provide good predictions of stress and trans-
port phenomena in fractal media. Given these challenges, we approach
the problem here using an information theoretic framework to elucidate
the origin of assumptions so that further developments can be made to
build better models, via integer, fractional, or fractal order operators,
to better predict constitutive behavior in materials that exhibit fractal
structure. We adopt methods from entropy dynamics (Caticha, 2015)
which combines Shannon’s entropy with fractional order constraints
on material kinematics (integer operators are the limiting case). This
includes a fractional covariance matrix that provides partial infor-
mation to inform the model to enhance prediction. This may come
from experiments or higher fidelity models. We use this information
to guide the form of the spatial and temporal derivative operators used
in constructing the viscoelastic constitutive equations.

Previous work has shown a strong correlation between the order of
the fractional derivative in the linear fractional model of viscoelasticity
with fractal structure and excluded volume effects (Mashayekhi et al.,
2021). The excluded volume measure is a well known concept used
in polymer physics to describe the affinity between monomer chains
within a bulk polymer. It is based on the Meyer function where the
Boltzmann distribution is used to evaluate the probability of locating
a monomer at the point 𝑟 relative to the non-interacting case where
the potential energy is zero (𝑈 (𝑟) = 0). The Meyer function is math-

ematically represented by 𝑓 (𝑟) = 𝑒
−
𝑈 (𝑟)

𝑘𝑇 − 1 where 𝑘 is the Boltzmann
constant and 𝑇 is absolute temperature. The excluded volume is then
represented by an integral over a representative material volume

𝜅 = −∫ 4𝜋𝑟2𝑓 (𝑟)𝑑𝑟 (1)

and 𝜅 is positive for polymers with net repulsion between the monomers
and negative for polymers with net attraction between the monomers
(Rubinstein et al., 2003). This parameter influences the statistical
properties of the polymer network including viscoelasticity. The work

presented here will explore connections between the excluded volume
and fractional viscoelasticity which builds off of prior theoretical
analysis (Mashayekhi et al., 2021).

We explore temperature dependent hyperelastic and viscoelastic
behavior by constructing a constitutive model using entropy dynam-
ics (Caticha, 2015; Caticha and Preuss, 2004) to infer information
about fractal and fractional order structure–property relations. A key
distinction from prior entropy dynamics and the proposed framework
is the use of fractional order constraints that lead to non-Gaussian
Bayesian posterior densities. The form of these densities offer guidance
to the proper fractional order derivative operators in the constitu-
tive equations and the form of the free energy function. This pro-
vides a framework to understand connections between fractal structure
and fractional deformation in elastomers. A hyperelastic model is ob-
tained by maximizing Shannon’s relative entropy under a power-law
constraint of relative polymer network displacements. The power-law
constraint is chosen given its characteristics associated with fractal
geometry. We chose a fractal deformation gradient to represent the
kinematics based on arguments given in Appendix. This kinematic
assumption and hyperelastic model are combined with fractional or-
der viscoelasticity to accommodate hysteresis as a function of stretch
rate. Prior fractional order viscoelasticity (Mashayekhi et al., 2019)
is extended to assess assumptions associated with fractional excluded
volume behavior to evaluate a recent theoretical relation (Mashayekhi
et al., 2021). This is achieved through model comparisons of experi-
mental viscoelastic measurements in the elastomer made by 3M (Very
High Bond (VHB) 4905) as a function of temperature from 23◦C to
60 ◦C (Mehnert et al., 2021). The inference and uncertainty of the
fractal excluded volume are quantified across this temperature range
using Bayesian statistics.

In Section 2, we briefly describe the theory for fractal hyperelas-
ticity and fractional order viscoelasticity. In Section 3, we validate
the model on VHB 4905 across a range of temperatures and quantify
changes in the fractal excluded volume relative to the fractional vis-
coelastic order. The change in viscoelasticity from room temperature
to 60 ◦C is used to estimate how the excluded volume changes as
a function of temperature. Concluding remarks are given in the final
section.

2. Theoretical approach

Since limited knowledge is available about the chemical structure
of the commercial VHB elastomer, we infer structure–property re-
lations from temperature dependent stress measurements at a fixed
strain rate (Mehnert et al., 2021). We apply an information theoretic
approach to derive stress–stretch behavior as a function of random
particle motion assuming the polymer network’s motion is constrained
to fractal geometry. This allows us to explore power-law constraints
for both observable and non-observable (internal state) material dis-
placements that contribute to reversible and irreversible deformation.
The methodology starts with Shannon’s relative entropy which is max-
imized subject to a set of fractional constraints that penalize relative
particle displacements, presumably along a fractal polymer network.
Constitutive relations for hyperelastic and viscoelastic stress over a
range of temperatures are formulated from the Bayesian posterior
density that are derived from maximizing Shannon’s entropy under
fractional deformation constraints.

The relative fractal displacements are based on a dimensional regu-
larization of the true Euclidean domain displacements. This provides a
means to homogenize and approximate multiscale displacement mea-
sures as a finite measure based on the constraint of fractal geometry.
Importantly, this assumption involves relating fractal structure, which
may be quantified via microscopy and box counting methods, with
material displacements that are assumed to move along the fractal geo-
metric constraints. We use a density of state to regularize displacements
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that are assumed to follow a fractal pattern. Details of the isotropic den-
sity of state are given by Tarasov (2011) and the anisotropic density of
state is given by Li and Ostoja-Starzewski (2009). In the present model,
we assume isotropic densities of state and spherical symmetry. We
avoid the need for micropolar theory and asymmetric Cauchy stresses,
as described elsewhere (Li and Ostoja-Starzewski, 2009), through the
use of homogenization over a characteristic length scale. More details
discussing this homogenization, the fractal deformation gradient, and
associated invariance relations are given in Appendix.

2.1. Entropy dynamic method

We introduce a fractal measure of geometry to estimate complex
deformation in elastomers. This approach uses a power-law relation to
quantify length measures between the fractal domain and the Euclidean
domain. By focusing on isotropic fractals (Tarasov, 2011), we define a
relative fractal displacement as

𝛥𝜇𝑖(𝑥𝑖, 𝑡) = 𝜇𝑖(𝑥𝑖 + 𝛥𝑥𝑖, 𝑡) − 𝜇𝑖(𝑥𝑖, 𝑡) = 𝑐
(𝑖)

1
(𝜈, 𝑥𝑖)𝛥𝑥𝑖(𝑋𝐾 , 𝑡) (2)

where 𝑐(𝑖)
1
is the isotropic density of state along the Euclidean direction

of the relative distance between particles in the deformed (Eulerian)
frame 𝛥𝑥𝑖 where we have 𝛥𝑥𝑖(𝑋𝐾 , 𝑡) = 𝑥𝑖(𝑋𝐾 + 𝛥𝑋𝐾 , 𝑡) − 𝑥𝑖(𝑋𝐾 , 𝑡) and
𝑋𝐾 is the Lagrangian coordinate (Malvern, 1969) (no sum on 𝑖 in the
density of state). The isotropic fractal dimension is given by 𝜈 and
ranges between 0 and 1. Several forms of the line transformation have
been considered and have different trade-offs (Li and Ostoja-Starzewski,
2020), but they generally include a power-law dependence on the
Euclidean coordinates 𝑥𝑖. The isotropic density of state and methods
used here to obtain a fractal deformation gradient are further described
in the subsequent paragraphs.

The changes in fractal displacements of neighboring points sepa-
rated over the Euclidean frame (𝛥𝑥𝑖) are expected to be well approxi-
mated using a fractal Taylor expansion to first order

𝜇𝑖(𝑥𝑖 + 𝛥𝑥𝑖, 𝑡) ≃ 𝜇𝑖(𝑥𝑖, 𝑡) +
𝜕𝜇𝑖

𝜕𝑥
𝛽

𝑖

[𝑥
𝛽

𝑖
− (𝑥′

𝑖
)𝛽 ]. (3)

In the Appendix, we use the chain rule between the Eulerian coordi-
nates 𝑥𝑖 and the Lagrangian coordinates 𝑋𝐾 to obtain a definition for
fractal displacements in terms of the fractal deformation gradient of
order 𝛽 > 0 as

𝑑𝜇𝑖 =
𝜕𝜇𝑖

𝜕𝑋
𝛽

𝐾

𝑑𝑋𝐾 = 𝐹
𝛽

𝑖𝐾
𝑑𝑋𝐾 . (4)

Here we have taken the limit 𝛥𝑥𝑖 → 𝑑𝑥𝑖, 𝛥𝑋𝐾 → 𝑑𝑋𝐾 , and 𝛥𝜇𝑖 →

𝑑𝜇𝑖. In the limiting case of 𝛽 = 1, we obtain the conventional def-
inition of the deformation gradient describing material deformation
of a continuum volume element relative to its undeformed configura-
tion (Malvern, 1969). Furthermore, in the case of 𝜈 = 1 from (2) and
consequently, 𝑐(𝑖)

1
= 1, we have 𝛥𝜇𝑖 = 𝛥𝑥𝑖. The fractal deformation

gradient is used to better estimate material deformation of particle
motion that is expected to follow power-law (fractal) behavior. We also
note that 𝛽 should be equivalent to 𝜈 in the density of state if defor-
mation follows the fractal dimension in the undeformed Lagrangian
configuration. We let these parameters be different initially to highlight
places where uncertainty can occur once the chain rule is applied to
obtain the fractal deformation gradient. This is described in more detail
in Appendix.

The fractal measure 𝝁 is broken down into an observable (𝝁1)
and a non-observable (𝝁2) vector to accommodate reversible and irre-
versible (viscoelastic) deformation. The total set of fractal displacement
measures is denoted by 𝝁 = [𝝁1,𝝁2] which results in a 6 × 6 size defor-
mation gradient to accommodate both observable and non-observable
deformations. This results in a block diagonal matrix form where 𝐹 𝛽

𝑖𝐾

contains the conventional 3 × 3 deformation gradient 𝐅𝛽(1) = 𝜕𝝁1
𝜕𝐗

and

𝐅𝛽(2) =
𝜕𝝁2
𝜕𝐗
. The 6 × 6 deformation gradient is written in terms of the

observable and non-observable 3 × 3 matrices as

𝐅
𝛽 =

[
𝐅𝛽(1) 𝟎

𝟎 𝐅𝛽(2)

]
(5)

where 𝟎 is a 3 × 3 matrix of zeros.
We use this fractal deformation gradient to model stresses during

viscoelastic finite deformation. For more details on the fractal deriva-
tive operator applied in fractal mechanics, see Li and Ostoja-Starzewski
(2013). It is important to note that translational and rotational invari-
ance of the fractal metric has been discussed by Tarasov (Tarasov,
2011) which only holds over the entire fractal set. This poses challenges
when taking limits to a point as is typically done in continuum mechan-
ics. Details discussing how we address the invariance problem are given
in Appendix.

These measures of fractal displacements are integrated into an
entropy dynamics framework to formulate a free energy function from
information theory that is connected to thermodynamic entropy. We
combine Shannon’s relative entropy with a fractional constraint on the
fractal relative displacements in (2). More details on the optimization of
the cost function containing Shannon’s entropy and the fractional order
constraint can be found elsewhere (Oates et al., 2021). Key details are
given as follows.

The cost function that is used to obtain the Bayesian posterior
density is

𝐻[𝑃 ,𝑄] = 𝑆[𝑃 ,𝑄] − 𝛾

(

∫ 𝑃 (𝝁|𝐗)𝑑𝝁 − 1

)

− Tr

{
𝜦 ⋅

(

∫ 𝑃 (𝝁|𝐗)𝐂
𝜈

2

𝑋
𝑑𝝁 −𝜮

𝜈

2 (𝑡)

)}
.

(6)

In this equation, the posterior probability 𝑃 (𝝁|𝐗) quantifies the condi-
tional probability of having the fractal configuration 𝝁 given 𝐗. This
amounts to a probabilistic model that gives estimates of the possi-
ble fractal displacements given an undeformed (Lagrangian) material
configuration. In the cost function defined here, two constraints have
been introduced. The first constraint restricts the probability 𝑃 (𝝁|𝐗) to
integrate to one over all possible 𝝁 configurations that is penalized by
the Lagrange multiplier 𝛾. The second constraint imposes a fractional
penalty on relative particle motion which we denote by the tensor
product, 𝐂𝜈∕2

𝑋
= (𝛥𝝁𝛥𝝁)𝜈∕2, to follow the time-dependent fractional

covariance matrix 𝜮𝜈∕2(𝑡). This integral is penalized by the Lagrangian
matrix 𝜦. Again, these relative fractal displacements are broken into ob-
servable (𝛥𝝁1) and non-observable (𝛥𝝁2) internal state displacements.
More details about these terms are given in subsequent paragraphs.

The two constraints in (6) are balanced by the relative Shannon
entropy, 𝑆[𝑃 ,𝑄]. It is defined in terms of the Bayesian posterior 𝑃 and
a prior density 𝑄 that is given by

𝑆[𝑃 ,𝑄] = −∫ 𝑃 (𝝁|𝐗) ln
(
𝑃 (𝝁|𝐗)
𝑄(𝝁|𝐗)

)
𝑑𝝁 (7)

which gives a measure of the distance between the posterior 𝑃 and the
prior 𝑄 densities. The prior density is generally defined as a conditional
probability of the form 𝑄 = 𝑄(𝝁|𝐗). These two probabilities of the
fractal displacements are conditioned upon the undeformed material
points 𝐗.

In (6), we have divided changes in the fractal displacement into
observable 𝛥𝝁1 and non-observable 𝛥𝝁2 terms which comprise the
complete measure 𝝁 = [𝝁1,𝝁2] that is contained in 𝑃 (𝝁|𝐗) and 𝑄(𝝁|𝐗)
for brevity. If all displacements are observable, the deformed fractal po-
sitions 𝝁 share similarities with the Eulerian frame (deformed) material
points, 𝐱(𝐗, 𝑡) (Malvern, 1969; Sumelka, 2014; Tarasov, 2011). The non-
observable fractal displacements contribute to the entropy generation
and viscoelastic stresses. We will illustrate how the viscoelastic effects
manifest from time dependence in the covariance matrices given by
𝜮(𝑡).

The second and third terms in (6) include the probability normaliza-
tion constraint and the fractional displacement constraint in the second
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and third terms, respectively. These constraints are enforced by the
scalar Lagrange multiplier 𝛾 and the Lagrange multiplier matrix 𝜦.
The latter is a 6 × 6 matrix given that 𝝁 = [𝝁1,𝝁2] consist of two
3 × 1 vectors or a single 6 × 1 vector. The fractional order covariance
matrix (𝜮

𝜈

2 ) is similarly defined by a 6 × 6 matrix. This matrix is
raised to a power using conventional operations by rotating the tensors
to their eigendirections, applying the exponents to the eigenvalues,
and rotating the tensors back to their original directions. The covari-
ance matrix is positive semi-definite and symmetric which results in
real valued components after being raised to the positive fractional
power 𝜈∕2. From a physical perspective, this fractional power penalizes
fractal displacements relative to their initial positions by assuming
future displacements follow a power-law displacement function that
is constrained by the original fractal structure of the material. In the
limiting case of 𝜈 = 2, a Gaussian network is obtained which results in
the conventional neo-Hookean model (Weiner, 2012). It is possible that
this exponent is dependent upon the original fractal structure in some
complicated way (Havlin and Ben-Avraham, 1987). Here we assume
they are equal and properties are inferred using the cost function,
experimental data and Bayesian uncertainty analysis.

The resulting Bayesian posterior density is obtained from maxi-
mizing the cost function in (6) which gives a stretched exponential
posterior density (Oates et al., 2021). We use this posterior as the
starting point to construct the constitutive model for rate dependent
elastomer deformation according to

𝑃 (𝝁|𝐗) = 𝑍−1𝑒
−Tr

(
𝜦̂
−𝜈∕2

⋅𝐃
𝜈∕2

𝑋

)

(8)

where 𝑍 is a partition function that ensures integration of the posterior
density equals one based on solving for the Lagrange multiplier 𝛾 via
the first constraint in (6); see Caticha (2015) for details. The rotated
Lagrange multiplier matrix is denoted by 𝜦̂ and it is assumed that
𝐂𝑋 has the same eigendirections as 𝜦. The matrices 𝐃𝑋 and 𝜮̂ are
diagonalized matrices with eigenvalues as diagonal entries of 𝐂𝑋 and
𝜮 respectively. The form of the posterior density given in terms of the
fractional covariance matrix and fractal exponent 𝜈 is eventually

𝑃 (𝝁|𝐗) = 𝜈6𝑀6∕𝜈

26(𝛤 (𝜈−1))
6
det

(
𝜮−𝜈∕2

)1∕𝜈
𝑒
−𝑀 Tr

(
𝜮−𝜈∕2(𝑡)⋅𝐶𝐱

𝜈∕2
)

. (9)

where we let 𝑀 =
𝛤 (

𝜈+1
𝜈

)

𝛤 (𝜈−1)
and 𝛤 (⋅) is the Gamma function. This

expression gives a conditional probability for the new fractal relative
positions. We take the limit: 𝛥𝝁 → 𝑑𝝁 such that 𝐂𝜈∕2

𝑋
= (𝑑𝝁𝑑𝝁)𝜈∕2. The

parameter 𝜈 originates in the fractional order penalties on 𝛥𝜇𝑖 (Oates
et al., 2021) with 𝜈 = 2 giving the limit of a Gaussian process. If 𝜈 < 2,
the posterior is a stretched exponential in terms of the relative fractal
displacements.

A substitution of the fractal deformation gradient based on (4) into
(9) gives

𝑃 (𝝁|𝐗) = 𝜈6𝑀6∕𝜈

26(𝛤 (𝜈−1))
6
det

(
𝜮−𝜈∕2

)1∕𝜈
𝑒
−𝑀 Tr

(
𝜮−𝜈∕2(𝑡)⋅[(𝐅𝜈 ⋅𝑑𝐗)(𝐅𝜈 ⋅𝑑𝐗)]𝜈∕2

)

.

(10)

This final expression relates the Euclidean frame deformation gradient
to an approximation of the fractal deformation gradient given by

𝑑𝜇𝑖 = 𝐹 𝜈
𝑖𝐾
𝑑𝑋𝐾 =

𝜋𝜈∕2

2𝜈−1𝑙0𝛤 (𝜈∕2)
𝐹𝑖𝐾𝑑𝑋𝐾 (11)

where 𝛤 (𝜈∕2) is again the Gamma function and we have introduced
a characteristic length scale 𝑙0. Unlike in the Appendix where we
assume uncertainty in the knowledge of 𝜈, we have assumed the fractal
dimension is exactly known here such that 𝐹 𝛽

𝑖𝐾
= 𝐹 𝜈

𝑖𝐾
where 𝛽 = 𝜈

as previously described by (2) and (3); see the Appendix for further
details.

From the Bayesian posterior density in (10), we formulate a free
energy function to quantify the reversible stress. This first requires

defining a thermodynamic entropy from the Bayesian posterior den-
sity. A comparison of the Gibbs and Boltzmann entropy functions has
been described by Jaynes (1965). It was shown that the Gibbs func-
tion accommodates interactions among neighboring particles while the
Boltzmann function neglects interactions. The Gibbs function is equiv-
alent to the Shannon entropy used here excluding the prior density.
Further, simplifications of the Gibbs or Shannon entropy function can
be made if the entropy quantifies the phase volume of ‘reasonably prob-
able’ events (Jaynes, 1965). This simplified thermodynamic entropy
function is given directly by 𝑆 = −𝑘 ln(𝑃 ). In comparison, it neglects
the averaging over all probability states, i.e., 𝑆 = −𝑘 ∫ 𝑃 ln(𝑃 )𝑑𝑉 .
Given that our probability is defined for a dimensionally regularized
fractal displacement measure by homogenizing 𝝁 over a characteristic
length scale 𝑙0, we also assume ‘reasonably probable’ events via this
dimensional regularization given by the densities of state power-law
relation in 𝑐(𝑘)

1
and the relations in Appendix.

Given these arguments, we define the total entropy of the material
to be

𝑆𝑇 = −𝑘 ln𝑃 (𝝁|𝐗) (12)

which includes both reversible and irreversible effects. The reversible
effects are contained within the measure 𝝁1 and the irreversibilities are
contained within 𝝁2. These separate effects have been lumped into the
Bayesian posterior (10).

The reversible and irreversible components contained within 𝑆𝑇 are
separated based on time invariant and time dependent terms in the

covariance matrix 𝜮(𝑡)−𝜈∕2 = 𝜮
−𝜈∕2

+ 𝛿𝜮(𝑡)−𝜈∕2 where 𝜮
−𝜈∕2

is the
fractional time invariant covariance and 𝛿𝜮(𝑡)−𝜈∕2 is the time varying
fractional covariance. These two components are written in terms of
the functions

𝛷 = −𝑀 Tr
(
𝜮

−𝜈∕2
⋅ 𝐂

𝜈∕2

𝑋

)

𝛷𝑡 = −𝑀 Tr
(
𝛿𝜮(𝑡)−𝜈∕2 ⋅ 𝐂

𝜈∕2

𝑋

) (13)

where 𝛷 is the time invariant component and 𝛷𝑡 is the time varying
component. We can now re-write the entropy function as

𝑆𝑇 = −𝑘
(
ln(𝑍) +𝛷 +𝛷𝑡

)
(14)

where 𝑍 =
𝜈6

26(𝛤 (𝜈−1))6

(
𝛤 (

𝜈+1
𝜈

)

𝛤 (𝜈−1)

)6∕𝜈

det
(
𝜮−𝜈∕2

)1∕𝜈
from (10).

We further simplify the deformation gradient into its principle
stretch components using 𝜆𝑗 as the principle stretch components for
𝐹 𝜈
𝑖𝐾
. Recall that our definition of the deformation gradient includes

observable and non-observable components. This requires us to include
three observable stretches 𝜆𝑗 for 𝑗 = 1, 2, 3 and three non-observable
stretches for 𝑗 = 4, 5, 6. We can now write the time invariant expression
for 𝛷 as

𝛷 = −𝑀𝐴0

6∑

𝑘=1

6∑

𝑙=1

𝛴
−𝜈∕2

𝑘𝑙
(𝜆𝑘𝜆𝑙)

𝜈∕2 (15)

where we include the explicit summation over the observable and
non-observable stretch ratios and 𝐴0 = (𝑑𝑋𝐼𝑑𝑋𝐼 )

𝜈∕2. An analogous
expression can be written for 𝛷𝑡 using 𝛿𝜮(𝑡).

In the following subsection, we take this time invariant portion of
the entropy in (14) and formulate a free energy expression followed
by the hyperelastic stress relations. The portion of the entropy that
contains time varying behavior (e.g, within 𝛷𝑡), is then used to for-
mulate the entropy generation and viscoelastic stresses associated with
non-measurable deformation contained within the fractal stretch 𝜆𝜈

𝑄(2)
.

2.2. Constitutive relations

We first define the free energy density using the reversible part
of the entropy function (14) as 𝜓 = −𝑇𝑆𝑇 ,0 where 𝑇 is the absolute
temperature and 𝑆𝑇 ,0 = −𝑘(ln(𝑍) + 𝛷) neglects contributions from 𝛷𝑡
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and internal energy. We lump the parameters from (15) together and

assume certain symmetry on the covariance matrix 𝛴
−𝜈∕2

𝑘𝑙
. We assume

3 × 3 block diagonal form requiring three phenomenological constants:
one parameter governing observable stretch (𝑓 11

0
), one governing non-

observable stretch (𝑓 12
0
), and one coupling term (𝑓 22

0
). This can be

written as

𝜓 = 𝑇

[
3∑

𝑄=1

(
𝑓 11
0
𝜆𝜈
𝑄
+ 2𝑓 12

0
(𝜆𝑄𝜆𝑄+3)

𝜈∕2 + 𝑓 22
0
(𝜆𝜈
𝑄+3

)
)]

(16)

where the phenomenological parameters 𝑓 11
0
, 𝑓 12

0
and 𝑓 22

0
contain

𝑘𝑀𝛴
𝐴𝐵

0
𝐴
𝜈∕2

0
. Also note that we are defining the observable stretches

for 𝜆𝑄 for 𝑄 = 1, 2, 3 and 𝜆𝑄+3 for 𝑄 = 4, 5, 6. This function therefore
has three unknown constitutive parameters plus the fractional order
parameter 𝜈. We have neglected the constant associated with the
partition function 𝑍 since it does not influence the stress.

We add an incompressibility constraint into this free energy function
to accommodate elastomer deformation that occurs over a constant
volume process. This involves the additional free energy component

𝜓̂ = 𝜓 − 𝑝ℎ[𝐽
𝜈 − 1] (17)

where 𝐽 𝜈 = 𝜆𝜈
1
𝜆𝜈
2
𝜆𝜈
3
and 𝑝ℎ is an unknown hydrostatic pressure that is

multiplied by 𝐽 𝜈 −1 to constrain the volume to be incompressible. The
total stress is defined by changes in the free energy with respect to the
observable stretch ratio

𝑠𝑡𝑜𝑡
𝐿

=
𝜕𝜓̂

𝜕𝜆𝜈
𝐿

= 𝑇

[
𝜈𝑓 11

0
(𝜆𝜈
𝑄
𝜆𝜈
𝑄
)𝜈∕2−1𝜆𝜈

𝐿
+ 𝜈𝑓 12

0
(𝜆𝜈
𝑄
𝜆𝜈
𝑄+3

)𝜈∕2−1𝜆𝜈
𝐿+3

]
− 𝑝ℎ

𝜕𝐽 𝜈

𝜕𝜆𝜈
𝐿

.

(18)

By defining 𝐼11
1

= 𝜆𝜈
𝑄
𝜆𝜈
𝑄
, 𝐼12

1
= 𝜆𝜈

𝑄
𝜆𝜈
𝑄+3

, and 𝐼22
1

= 𝜆𝜈
𝑄+3

𝜆𝜈
𝑄+3

we can
re-write the stress as

𝑠𝑡𝑜𝑡
𝐿

= 𝑇 𝜈
[
𝑓 11
0
(𝐼11

1
)𝜈∕2−1𝜆𝜈

𝐿
+ 𝑓 12

0
(𝐼12

1
)𝜈∕2−1𝜆𝜈

𝐿+3

]
− 𝑝ℎ

𝜕𝐽 𝜈

𝜕𝜆𝜈
𝐿

. (19)

We highlight here the identifiability of 𝜈 due to its reliance as an
exponent of the invariants as well as the first term in the equation
above since it gives some indication of fractal structure from material
property relations. We now focus on uniaxial loading which allows the
hydrostatic pressure to be found in closed form. This pressure is found
by applying the zero transverse stress constraint for uniaxial loading
applied in the 3-direction, which gives

𝑝ℎ =
𝑇 𝜈

[
𝑓 11
0
(𝐼11

1
)𝜈∕2−1𝜆𝜈

1
+ 𝑓 12

0
(𝐼12

1
)𝜈∕2−1𝜆𝜈

1

]

𝜆𝜈
2
𝜆𝜈
3

. (20)

This takes the 1 and 2 directions to be the zero transverse stress
directions.

The observable fractal stretch, 𝜆𝜈
𝐿
, is related to the stretch in the

Euclidean domain using the transformation (41) given in Appendix.
A scaling relationship between the fractal domain and the Euclidean
domain gives

𝜆𝜈
𝐿
=

𝜋𝜈∕2

2𝜈−1𝑙0𝛤 (𝜈∕2)
𝜆𝐿 (21)

where 𝑙0 is the characteristic length scale. This relation allows for the
observable stretch (𝜆𝐿) to be related to the fractal stretch (𝜆

𝜈
𝐿
) that is

used in the stress–stretch constitutive relation given by (19).

2.3. Entropy generation and viscoelasticity

The implementation of fractional viscoelasticity follows the thermo-
dynamic framework previously described elsewhere (Mashayekhi et al.,
2018). This method follows the conventional approach of combining
the first and second laws of thermodynamics, except the time rates of
change are presumed to be better described by fractional time deriva-
tives. We relate these balance equations with the information theoretic
approach used here. This requires relating the entropy function (14)

to an entropy generation function that is used to describe irreversible
viscoelastic stress.

Under the assumption of negligible temperature gradients and frac-
tional rates of change of the internal state variables, combining the
first and second laws of thermodynamics results in the inequality
(Mashayekhi et al., 2018),

𝑆𝑔 = −
𝜕𝜓̂

𝜕𝐹 𝜈
𝑖𝐾(2)

𝐷𝛼
𝑡
𝐹 𝜈
𝑖𝐾(2)

(𝑡) = 𝑄𝑖𝐾𝐷
𝛼
𝑡
𝐹 𝜈
𝑖𝐾(2)

(𝑡) ≥ 0 (22)

where 𝑆𝑔 is the entropy generation and irreversibilities are contained
in the viscoelastic stress relation 𝑄𝑖𝐾 = −

𝜕𝜓

𝜕𝐹 𝜈
𝑖𝐾(2)

. We have denoted 𝐹𝑖𝐾(2)

as the non-observable components of the deformation gradient 𝐅𝜈(2) =
𝐅𝛽(2) given in (5). Based on the assumed power-law relation in the
fractal kinematic relations, we have assumed that rates of deformation
are better approximated by fractional time derivatives on the fractal
deformation gradient of the Caputo form, 𝐷𝛼

𝑡
, which is defined by

𝐷𝛼
𝑡
𝐹 𝜈
𝑖𝐾(2)

(𝑡) =
1

𝛤 (𝑛 − 𝛼) ∫
𝑡

0

𝐹
𝜈(𝑛)

𝑖𝐾(2)
(𝑠)

[𝑡 − 𝑠]𝛼+1−𝑛
𝑑𝑠 (23)

for 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N

where 𝛼 > 0 is the fractional order of the time derivative and 𝑛 is the
smallest integer greater than 𝛼. This fractional order 𝛼 is connected
to the fractal structure dimension 𝜈 based on certain assumptions
of random walks on a fractal domain Mashayekhi et al. (2018). We
give further details on fractal structure–fractional order time rates in
Section 2.4. The integer time derivative of the deformation gradient is
given by 𝐹 𝜈(𝑛)

𝑖𝐾(2)
where we focus on the case of first order time derivatives

with 𝑛 = 1. We note that several fractional order operators or fractal
operators (Chen et al., 2010) could be used to estimate the viscoelastic
behavior. For example, the Riemann-Liouville fractional order operator
could be used; however, it gives a non-zero value for a constant.
Local fractal operators may also be considered which share certain
similarities with fractional order operators that are beyond the scope
of the present work. We focus on the use of fractional order Caputo
derivatives here to build upon prior theoretical analysis (Mashayekhi
et al., 2021) that used fractional order excluded volume effects. The
relation given by (22) defines the governing equation to solve for the
irreversible deformation gradient components. Recall the entropy 𝑆𝑇
contains a time varying component in 𝛷𝑡 that leads to the entropy
generation function 𝑆𝑔 . In our model, this time varying property is
based on the assumption of a time varying covariance matrices, 𝛿𝜮(𝑡).
Classical diffusion processes assume the covariance matrix scales linear
in time. For example, the variance that describes the distribution of
localized heat spreads out linear in time as a Gaussian distribution
for ideal (non-fractal) materials. In the case of fractal media, material
complexities may slow the spread of heat or other irreversibilities (local
residual strains, non-modeled molecular degrees of freedom) which
may diffuse proportional to 𝑡𝛼 where 0 ≤ 𝛼 ≤ 1. As such, we assume
𝛿𝜮(𝑡) ∝ 𝑡𝛼 . This motivates the application of the fractional derivative
in (23) since it has been shown that first order fractional Taylor
series approximations of power-law functions are exact (Wheatcraft and
Meerschaert, 2008).

We choose a quadratic function for 𝑆𝑔 in terms of the fractional time
derivative of the non-observable (internal state) deformation 𝐹 𝜈

𝑖𝐾(2)
to

ensure the entropy generation function is positive definite. In this case,
we have

𝑆𝑔 = 𝜂𝛼𝐷
𝛼
𝑡
𝐹 𝜈
𝑖𝐾(2)

𝐷𝛼
𝑡
𝐹 𝜈
𝑖𝐾(2)

(24)

where 𝜂𝛼 > 0 is a dissipative viscous parameter. When this function
is written in terms of the stretch ratio, we have 𝑆𝑔 = 𝜂𝛼𝐷

𝛼
𝑡
𝜆𝜈
𝐿+3

𝐷𝛼
𝑡
𝜆𝜈
𝐿+3

where we have again denoted the non-observable stretch ratios by 𝜆𝐿+3
for 𝐿 = 1, 2, 3.

Substitution of (24) into (22) gives the general viscoelastic stress
equation

𝜂𝛼𝐷
𝛼
𝑡
𝐹 𝜈
𝑖𝐾(2)

(𝑡) = 𝑄𝑖𝐾 . (25)
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We now write this expression in terms of the principle stretch compo-
nents. For uniaxial problems where 𝐿 = 3 is again the loading direction,
the viscoelastic stress is

𝑄3 = −𝑇 𝜈
[
𝑓 12
0
(𝐼12

1
)𝜈∕2−1𝜆𝜈

3
+ 𝑓 22

0
(𝐼22

1
)𝜈∕2−1𝜆𝜈

6

]
(26)

and the viscoelastic equation is given by

𝜂𝛼𝐷
𝛼
𝑡
𝜆𝜈
6
+ 𝑇 𝜈𝑓 22

0
(𝐼22

1
)𝜈∕2−1𝜆𝜈

6
= −𝑇 𝜈𝑓 12

0
(𝐼12

1
)𝜈∕2−1𝜆𝜈

3
. (27)

It should be noted that in the limit of Gaussian behavior (i.e., neo-
Hookean behavior), the time constant of this model becomes 𝜏𝛼 =

𝜂𝛼

2𝑇𝑓22
0

.

In addition, an assumption is made that the viscoelastic stress is
not affected by the hydrostatic pressure. To fully solve for the non-
observable stretch in the loading direction, we assume the Jacobian
for the non-observable stretch ratios is also incompressible: 𝐽 𝜈(2) =

𝜆𝜈
4
𝜆𝜈
5
𝜆𝜈
6
= 1 which may introduce additional model-based uncertainty

into the analysis.

2.4. Excluded volume relation

Prior work (Mashayekhi et al., 2021, 2019) defines a relation be-
tween the fractional viscoelastic order and the excluded volume effect
that is derived from the Zimm polymer model. This relations leads to

𝛼 =
2𝑑𝑠 + 𝑑𝑠𝑑𝑓

2(2 + 𝜅)
(28)

where 𝑑𝑠 is the spectral dimension, 𝑑𝑓 is the two dimensional fractal
dimension, and 𝜅 is the excluded volume. The spectral dimension
is proportional to a ratio of the fractal random walk dimension on
a two dimensional plane and the fractal dimension. It can be iden-
tified through the power-law relation that regulates the amplitudes
of vibrations across the frequency spectrum (Alexander and Orbach,
1982; Havlin and Ben-Avraham, 1987; Balankin et al., 2012) or ex-
perimentally from infrared measurements (Mashayekhi et al., 2019).
The fractal dimension is related to the fractal structure of the material
which can be characterized via optical analyses and the box-counting
method (Miloevic et al., 2013).

In prior work (Mashayekhi et al., 2019), we quantified the spectral
dimension, 𝑑𝑠, from transient infrared data on VHB 4910 and the two
dimensional fractal dimension, 𝑑𝑓 , from the microscopy images and the
box-counting method. In the following section, we will investigate the
additional effect of the excluded volume parameter by evaluating its es-
timated value from VHB viscoelastic data over a range of temperatures.
We will assume the fractional viscoelastic order 𝛼 and the excluded
volume parameter 𝜅 are temperature dependent while 𝑑𝑠 and 𝑑𝑓 are
constant over the temperature range tested. Hence, we will assume an
inverse relationship between the fractional viscoelastic order and the
excluded volume parameter as a function of temperature.

3. BayesIan uncertainty quantification

We use Bayesian uncertainty analysis to infer the hyperelastic and
viscoelastic model parameters that include fractional order dissipa-
tion and the excluded volume parameter. Experimental results of tem-
perature dependent viscoelasticity of VHB are used to validate the
model (Mehnert et al., 2021). Stress versus stretch data at constant
temperatures ranging from 23 ◦C to 60 ◦C containing 75 data points
per data set were used to better understand changes in fractional
viscoelastic order and the excluded volume.

The fractional order derivative is studied in this paper to describe
the viscoelastic behavior of elastomers. Previous work studying the
viscoelastic behavior of dielectric elastomers at room temperature can
be found in Miles et al. (2015), Oates et al. (2018) and Mashayekhi
et al. (2018). Temperature dependence is considered here by evaluating
changes in hyperelastic and fractional order across the temperatures
from 23 ◦C to 60 ◦C. The uncertainty quantification will be presented
by first illustrating parameter identification and uncertainty followed
by an error analysis of the calibrated models by comparisons to data
and the uncertainty in estimating excluded volume effects.

3.1. Parameter estimation

Bayesian statistics are used to calibrate the parameters in both
the hyperelastic and viscoelastic models. In order to calibrate the
parameters, the model is compared with experimental data collected
by Mehnert et al. (2021). The statistical model implemented is

𝑠
𝑡𝑜𝑡,𝑑𝑎𝑡𝑎

3
(𝑖) = 𝑠𝑡𝑜𝑡

3
(𝑖; 𝜃) + 𝜀(𝑖), 𝑖 = 1,… , 𝑁 (29)

where 𝑠𝑡𝑜𝑡,𝑑𝑎𝑡𝑎
3

(𝑖) is the experimental stress measurements, 𝑠𝑡𝑜𝑡
3
(𝑖; 𝜃) is the

model response, 𝜀(𝑖) is the observation error of the model response, 𝜃
is a parameter set of random variable with underlying distributions,
and 𝑁 is the number of data points. The parameter distributions are
quantified using Bayes’ relation

𝜋(𝜃|𝑠𝑡𝑜𝑡,𝑑𝑎𝑡𝑎
3

) =
𝑝(𝑠𝑡𝑜𝑡

3
|𝜃)𝜋0(𝜃)

∫
R𝑝
𝑝(𝑠𝑡𝑜𝑡

3
|𝜃)𝜋0(𝜃)𝑑𝜃

. (30)

The parameter distributions are developed through repeated sampling
leading to posterior parameter densities (𝜋(𝜃|𝑠𝑡𝑜𝑡,𝑑𝑎𝑡𝑎

3
)). The posterior

parameter densities indicate the probability of the unknown parameters
given the observed data. The densities are updated using the likelihood
(𝑝(𝑠𝑡𝑜𝑡

3
|𝜃)) of the model given a particular parameter set and any a priori

knowledge that may constrain the parameters (𝜋0(𝜃)). This prior density
is assumed to have a flat distribution since no prior knowledge is
know about the parameter distributions excluding positive definiteness
of certain parameters. The denominator of Bayes’ equation ensures
the posterior distribution integrates to one. The likelihood function is

defined as 𝑝(𝑠𝑡𝑜𝑡
3
|𝜃) = 𝑒

−
𝑆𝑆

2𝜎2 where 𝑆𝑆 is the sum-of-squares residual

between the model and the data, 𝑆𝑆 =
∑𝑁

𝑖=1
[𝑠
𝑡𝑜𝑡,𝑑𝑎𝑡𝑎

3
(𝑖) − 𝑠𝑡𝑜𝑡

3
(𝑖; 𝜃)]2,

and 𝜎2 is the unknown variance. The Markov Chain Monte Carlo
(MCMC) sampling method is used in conjunction with the Delayed Re-
jection Adaptive Metropolis (DRAM) algorithm to develop the posterior
distributions (Haario et al., 2001, 2006; Smith, 2013).

3.2. Model analysis

We begin by looking at the model composed of the hyperelastic and
the fractional order viscoelastic parameters. MCMC and DRAMmethods
discussed in the above section are used to identify the parameters set in
order to begin our analysis. We are therefore able to identify average
values as well as probability distributions for each parameter in the
parameter set

𝜃 = [𝜂, 𝛼, 𝑓 11
0
, 𝑓 12

0
, 𝑓 22

0
, 𝜈] (31)

where 𝜂 and 𝛼 relate to the fractional order viscoelastic behavior
(see Eq. (25)) while 𝑓𝐴𝐵

0
and 𝜈 can be found in (18) and relate to

the reversible behavior. Parameter chains from the MCMC analysis at
23◦C can be seen in Fig. 1(a). Typically with Bayesian uncertainty
quantification, a visual assessment is the most common and first test
of convergence. For the parameter chain analysis, we observe the
sampling history over a chosen amount of iterations. After 3 × 105

iterations, the chains look to have converged to a stable distribution.
This is based on each chain appearing to have noise around a mean
with no significant jumps or periods of stagnation. Details regarding
the criteria for statistical acceptance and convergence tests when using
DRAM can be found in Haario et al. (2006, 2001). If desired Gelman–
Rubin and Geweke convergence diagnostics can be completed which
test the final convergence state based on different initial starting points
and the mean response of each parameter chain comparing the first
10% and the last 50%, respectively. However, these statistical diag-
nostics only prove that the chains have not ‘not converged’. Values
for these diagnostics can be found in Tables 1 and 2. The Geweke
diagnostic values, which are derived from a standard Z-test, are all
close to and below 1 proving the chains are stable. For the Gelman–
Rubin diagnostic, a value of 1 would mean the chains are exactly
the same. A large value suggests the variance can be decreased with
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Fig. 1. Model parameter estimation results for T=23◦C. (a) Parameter Chains. (b) Marginal posterior densities.

Table 1
Geweke convergence diagnostics.

Temperature (𝑜C) 𝜂 𝛼 𝑓 11
0

𝑓 12
0

𝑓 22
0

𝜈

23 0.998 0.999 0.999 0.999 0.999 0.999
30 0.996 0.996 0.992 0.993 0.995 0.997
40 0.998 0.999 0.997 0.998 0.998 0.999
50 0.993 0.979 0.959 0.963 0.974 0.983
60 0.998 0.998 0.995 0.996 0.998 0.998

Table 2
Gelman–Rubin convergence diagnostics.

Temperature (𝑜C) 𝜂 𝛼 𝑓 11
0

𝑓 12
0

𝑓 22
0

𝜈

23 1.00 1.03 1.02 1.01 1.01 1.03
30 0.999 1.06 1.13 1.12 1.08 1.10
40 1.01 0.996 0.993 0.999 0.990 0.993
50 1.01 0.997 0.992 1.01 0.992 0.999
60 0.997 1.01 1.03 1.01 1.01 1.01

more simulations. In general, there is no consensus of what the upper
limit for this statistic should be though it must be close to one. For
our purposes, a value less than 1.2 is deemed reasonable for this
diagnostic. In Table 2, we see that the values are also very close to
1 meaning the variances are almost exactly the same no matter what
the starting initial point is. The marginal posterior densities are then
created from the converged parameter chains with the use of a kernel
density estimator algorithm (Smith, 2013), see Fig. 1(b), to visualize
the parameter distributions. The posterior densities for most parameters
look to be of a nominal Gaussian distribution with some parameters
having a thicker tail and asymmetry.

Another component of the analysis is the pairwise plot. This plots
the parameter chains against each other to evaluate whether there are
any correlations between the parameter pairs. The pairwise plot can be
found in Fig. 2. Potential linear correlations can be see in the pairwise
plot between (𝑓 11

0
, 𝜈) suggesting there may be a simplified parameter

set. A nearly linear relationship indicates that the parameter pairs may
not be uniquely identifiable meaning that one can be functionally de-
termined from the other. A rigorous assessment of the material physics
may lead to model reduction, but for now we simply are aware that
a correlation might exist and will interpret our results in light of that
uncertainty. The scaling relationship in (21) is not directly identifiable
since it is lumped into the constitutive parameters 𝑓 11

0
, 𝑓 12

0
, and 𝑓 22

0

Similar procedures are completed to calibrate the model parameters
at all tested temperatures. We identify parameters for each temperature
to identify sensitivity of the hyperelastic and viscoelastic parame-
ters over the temperature range tested. The MCMC DRAM generated

Table 3
Average calibrated parameters values as denoted with an overbar.

Temperature (𝑜C) 𝜂̄ 𝛼̄ 𝑓 11
0

𝑓 12
0

𝑓 22
0

𝜈̄

23 624 0.637 0.717 −0.603 1.02 1.05
30 514 0.801 0.777 −0.576 0.871 0.982
40 491 0.897 0.698 −0.494 0.718 0.984
50 279 0.918 0.723 −0.456 0.609 0.866
60 277 0.942 0.471 −0.294 0.402 0.977

parameter chains for other temperatures were similar to the room
temperature results shown in Fig. 1. Average parameter values and
standard deviations for each calibrated parameter and temperature can
be found in Tables 3 and 4, respectively. Relatively small fluctuations in
the hyperelastic parameters were observed as a function of temperature
with no obvious trend. Conversely, a reduction in the average viscous
coefficient 𝜂 was seen as the temperature increased as expected. We
also observe that the fractional order of viscoelasticity asymptotically
approached unity as temperature increased.

The next step of the model analysis entails propagating the un-
certainty of the parameters through the model to quantify how well
the output is described. A statistically significant number of samples
are taken from the posterior densities and are used to generate 95%
prediction and credible intervals. Fig. 3(a) shows the calibrated model
response at 23◦C. Additional calibration plots for the other tested
temperatures can also be found in Fig. 3 where the same trends as with
23◦C are seen.

An analysis measuring the error between the statistical model and
the data is conducted using

𝑒𝑀𝐶𝑀𝐶 =
1

𝑁

𝑁∑

𝑖=1

[𝑠
𝑡𝑜𝑡,𝑑𝑎𝑡𝑎

3
(𝑖) − 𝑠𝑡𝑜𝑡

3
(𝑖; 𝜃)]2 (32)

where 𝑁 is the number of data points, 𝑠𝑡𝑜𝑡
3
(𝑖; 𝜃) is the model stress

response, and 𝑠
𝑡𝑜𝑡,𝑑𝑎𝑡𝑎

3
(𝑖) is the measured experimental stress which

were all previously given in (29). The 𝓁2 norm error values at each
temperature calibration are 1.99 kPa2 for 23◦C, 2.48 kPa2 for 30◦C,
0.954 kPa2 for 40◦C, 0.781 kPa2 for 50◦C, and 0.594 kPa2 for 60◦C.

We are also interested in assessing the effect of temperature on the
excluded volume 𝜅. To do this, we first look at fractional viscoelastic
order (𝛼) vs temperature in Fig. 4(a). The fractional viscoelastic order
increases as temperature increases until it asymptotically approaches
the limit of 1 (e.g., ideal linear dashpot). To relate the fractional
order to the excluded volume, we use (28) and previously determined
values of 𝑑𝑠=0.15 and 𝑑𝑓=1.87 (Mashayekhi et al., 2019). We can,
therefore, transform Fig. 4(a) to show the excluded volume as a func-
tion of temperature which is plotted, along with its uncertainty due
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Table 4
Standard deviations for calibrated parameters.

Temperature (𝑜C) 𝜎𝜂 𝜎𝛼 𝜎𝑓 11
0

𝜎𝑓 12
0

𝜎𝑓 22
0

𝜎𝜈

23 114 6.86 × 10−2 5.08 × 10−2 4.18 × 10−2 9.69 × 10−2 2.78 × 10−2

30 58.1 8.92 × 10−2 1.19 × 10−1 5.99 × 10−2 5.25 × 10−2 5.06 × 10−2

40 33.0 6.38 × 10−2 7.65 × 10−2 3.86 × 10−2 3.00 × 10−2 3.89 × 10−2

50 19.3 6.16 × 10−2 9.54 × 10−2 5.30 × 10−2 4.94 × 10−2 4.63 × 10−2

60 21.3 4.43 × 10−2 4.02 × 10−2 2.03 × 10−2 1.80 × 10−2 3.21 × 10−2

Fig. 2. Pairwise correlation plots for the parameters at T=23◦C.

to uncertainty of 𝛼, in Fig. 4(b). As expected, the excluded volume
follows the inverse trend as seen for fractional order vs temperature.
The excluded volume decreases with increasing temperature until it hits
an asymptote of approximately 𝜅 → −1.7. Notably, its nominal value
is negative which signifies net attraction between the monomers. This
makes sense as VHB4905 is a solid so the monomers should be close
together and entangled. A positive value for excluded volume would
be more common in dilute solutions. Since elastomers tend to shrink
when heated, this could explain the decrease in excluded volume.

Several fractal dimensions and fractal or fractional order operators
have been used to better understand complex viscoelastic material
behavior. While the direct relationship between these dimensions and
operators remains elusive, we offer some discussion that may offer
motivation for future work to simplify the modeling framework. We
emphasize that the spectral dimension 𝑑𝑠 and two dimensional fractal
dimension 𝑑𝑓 have been held constant over the temperature range
tested. In prior work (Mashayekhi et al., 2019), we inferred the spectral
dimension of VHB 4910, which has the same composition as VHB
4905, over comparable temperature ranges by measuring diffusion of
temperature with an infrared camera. This would suggest a constant
𝑑𝑠 is applicable here; however, prior infrared measurements were con-
ducted at a zero strain state and thus neglected potential changes in
the spectral dimension under different states of deformation. Similarly,
the two dimensional fractal dimension was quantified at a zero strain
state. Additional dependencies of strain on 𝑑𝑠 and 𝑑𝑓 should be in-
vestigated to understand the sensitivities of strain on the spectral and
fractal dimensions. Moreover, we have made distinctions between the
fractional order deformation constraint 𝜈 and any potential relations

with the two dimensional fractal dimension 𝑑𝑓 , the one dimensional
fractal dimension 𝜈 in (2), and the fractal deformation gradient order 𝛽.
Further work should be investigated to determine if direct relationships
exist between the one, two, and three dimensional fractal geometry as
a function of deformation and the gradient operators which estimate
particle motion from some reference state.

4. Conclusions

A fractal inspired hyperelastic model is used to describe the re-
versible behavior of VHB4905 while a fractional order viscoelastic
model is used to describe the viscoelastic behavior. The model is
validated by comparing model fits to finite deformation experimental
stress–stretch data over a range of temperatures. Surprisingly good
model estimates are made by starting with an information theoretic
approach that contains fractional order penalties on deformation. This
constrains future deformation to follow a power-law function that
is based on the fractal dimension of the polymer network in the
undeformed Lagrangian frame. The additional assumption of time de-
pendent covariance within this constraint illustrates how fractional
order viscoelasticity emerges from the entropy generation function.
By identifying a Bayesian posterior density and information entropy,
we make use of prior research that connects information entropy to
thermodynamic entropy and free energy expressions (Jaynes, 1957).
Uncertainty methods are then used to obtain parameter value es-
timations given a sparse set of experimental data over a range of
temperatures. The parameter values and their uncertainty for fractional
order were related to the excluded volume in the interval from 23 ◦C to
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Fig. 3. Calibration plots. (a) T=23◦C. (b) T=30◦C. (c) T=50◦C. (d) T=60◦C. The plot calibrated at 40◦C is not shown.

60 ◦C. A nominally decreasing to constant trend was inferred between
the excluded volume and temperature given our model assumptions of
fractal deformation and fractional order viscoelasticity. We note that
the trend of 𝛼 could be obscured by parameter correlations. Looking
at the other parameters, 𝑓 12

0
increases while 𝑓 11

0
and 𝑓 22

0
decrease.

There could be underlying physical correlations between the fractional
parameter 𝜈 and the excluded volume as well as temperature. Future
work will focus on understanding differences between applying frac-
tional time derivatives versus fractal order time derivatives to describe
viscoelasticity to further validate the excluded volume trend as well as
simplify model assumptions and computational complexity associated
with non-local operators (fractional derivatives) vs. local operators
(fractal derivatives) (Oldham and Spanier, 1974; Falconer, 2004).
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Appendix

We provide details on the choice of differential operators for our de-
formation gradient introduced in Section 2. Following Tarasov (2011),
we define the fractal measure on a collection of 3 measurable sets
(𝑊𝑘, 𝜇𝑘, 𝐷) with 𝑘 = 1, 2, 3 to form the Cartesian product set 𝑊 =

𝑊1 ×𝑊2 ×𝑊3. Here, 𝜇𝑘 is the measure in each Cartesian direction and
𝐷 ≤ 3 is the fractal volume dimension. The fractal measure over this
set is

𝜇𝐵(𝑊 ) = 𝜇1(𝑊1)𝜇2(𝑊2)𝜇3(𝑊3) (33)

and we can evaluate a function over the fractal domain

∫𝑊 𝑓 (𝑥1, 𝑥2, 𝑥3)𝑑𝜇𝐵 = ∫𝑊1
∫𝑊2

∫𝑊3

𝑓 (𝑥1, 𝑥2, 𝑥3)𝑑𝜇1(𝑥1)𝑑𝜇2(𝑥2)𝑑𝜇3(𝑥3)
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Fig. 4. (a) Fractional order vs. temperature including the 95% credible intervals of the fractional order 𝛼. (b) The corresponding excluded volume (𝜅) according to (28).

(34)

where we have introduced a normalized set of coordinates in the
Eulerian frame, 𝑥𝑘 = 𝑥𝑘∕𝑙0 where 𝑙0 is the characteristic length scale.
We will use this length scale later when homogenizing the fractal
structure as an effective continuum.

We divide the fractal volume measure into an estimate of fractal
dimensions along each Cartesian direction which quantifies the fractal
dimension for each 𝑊𝑘. In this analysis, we assume isotropy in the
fractal dimensions which further allows

𝐷 = 𝜈1 + 𝜈2 + 𝜈3 = 3𝜈 (35)

where 𝜈 = 𝜈1 = 𝜈2 = 𝜈3.

The relationship between the fractal measure in each direction (𝜇𝑖)
and the Cartesian (Eulerian) direction 𝑥𝑖 is defined to be

𝜇𝑖(𝑥𝑖) =
𝜋𝜈∕2

2𝜈𝛤 (𝜈∕2 + 1)
|𝑥𝑖|

𝜈 (36)

where 𝛤 (𝜈∕2 + 1) is the Gamma function. This functional relationship
describes a length measure of the fractal specifically along the direction
𝑥𝑖 where the subscript 𝑖 on 𝜇𝑖 corresponds to the 𝑥𝑖 direction.

Given the power law relation in (36), we evaluate kinematic re-
lations where we approximate deformation gradients over the fractal
measure 𝜇𝑖(𝑥𝑖) to quantify relative changes in particle distances. These
measures of relative displacement must be invariant to rigid body trans-
lations and rotations which poses challenges over the fractal metric
given by (36). This challenge is due to the lack of translational and
rotational invariance at a point (Tarasov, 2011). Micropolar theory has
been proposed to address the rotational invariance problem for the
case of anisotropic fractals (Li and Ostoja-Starzewski, 2020). However,
issues remain, even in the isotropic fractal case, that we discuss as
follows.

We take the approach of defining a homogenized measure of defor-
mation over a finite set instead of taking the limit to a continuum point.
This creates a trade-off in spatial accuracy at a continuum point with a
more accurate measure that is invariant to translations and rotations.
Despite this trade-off, it is expected to provide a better measure for
predicting kinematics that accommodate material complexities that
do not follow Gaussian distributions. In the following derivation, we
outline the approach and assumptions used to approximate deformation
gradients over a finite set which homogenizes the underlying fractal
structure. We also note that it is not the only operator that may
be considered. Many others may also be considered which may pro-
vide enhanced estimates for specific material characteristics (Atangana,
2017).

We first take the differential of (36)

𝑑𝜇𝑖

𝑑𝑥
𝛽

𝑖

=
𝑑

𝑑𝑥
𝛽

𝑖

(
|𝑥𝑖|

𝜈) 𝜋𝜈∕2

2𝜈𝛤 (𝜈∕2 + 1)
=

1

𝛽𝑥
𝛽−1
𝑖

𝑑

𝑑𝑥𝑖

(
|𝑥𝑖|

𝜈) 𝜋𝜈∕2

2𝜈𝛤 (𝜈∕2 + 1)

=
sgn(𝑥𝑖)𝜋

𝜈∕2

2𝜈𝛤 (𝜈∕2 + 1)

𝜈|𝑥𝑖|
𝜈−1

𝛽𝑥
𝛽−1
𝑖

(37)

where we applied the fractal derivative in the second step. Also note
that we only take the derivative in directions aligned between the
measure 𝜇𝑖 and 𝑥𝑖 since the fractal measure in (36) is only defined in
these directions.

If 𝜈 = 𝛽 and 𝑥𝑖 > 0, we have

𝑑𝜇𝑖 =
𝜋𝜈∕2

2𝜈𝛤 (𝜈∕2 + 1)
𝑑𝑥

𝜈

𝑖
. (38)

We now evaluate the fractal Eulerian differential 𝑑𝑥𝜈
𝑖
by evaluating

its change with respect to the Lagrangian frame. We do this by first
noting that 𝑥𝑖 = 𝑥𝑖(𝑋𝐾 ) where we define a similar normalization in the
Lagrangian frame, 𝑋𝐾 = 𝑋𝐾∕𝐿0, given the characteristic length 𝐿0 in
the Lagrangian frame. This power law differential along the 𝑖 direction
is 𝑑𝑥𝜈

𝑖
= 𝜈𝑥

𝜈−1
𝑖

𝑑𝑥𝑖 = 𝜈𝑥
𝜈−1
𝑖

𝜕𝑥𝑖

𝜕𝑋𝐾
𝑑𝑋𝐾 where there is no sum on 𝑖. In the

last step, the chain rule was applied on 𝑥𝑖 = 𝑥𝑖(𝑋𝐾 ).

We can now return to (37) and expand the more general relation
where 𝜈 ≠ 𝛽. For 𝑥𝑖 > 0, the fractal differential is

𝑑𝜇𝑖 =
𝜋𝜈∕2𝜈

2𝜈𝛤 (𝜈∕2 + 1)

|𝑥𝑖|
𝜈−1

𝛽𝑥
𝛽−1
𝑖

𝑑𝑥
𝛽

𝑖
=

𝜋𝜈∕2𝜈

2𝜈𝛤 (𝜈∕2 + 1)

|𝑥𝑖|
𝜈−1

𝛽𝑥
𝛽−1
𝑖

𝛽𝑥
𝛽−1
𝑖

𝐹 𝑖𝐾𝑑𝑋𝐾

(39)

where 𝐹 𝑖𝐾𝑑𝑋𝐾 =
𝜕𝑥𝑖

𝜕𝑋𝐾
𝑑𝑋𝐾 . If we let

𝐹 𝑖𝐾𝑑𝑋𝐾 =
𝜕𝑥𝑖

𝜕𝑋𝐾
𝑑𝑋𝐾 =

1

𝑙0

𝜕𝑥𝑖

𝜕𝑋𝐾
𝑑𝑋𝐾 ∶=

1

𝑙0
𝐹𝑖𝐾𝑑𝑋𝐾 and 𝜈 = 𝛽, this

simplifies to

𝑑𝜇𝑖 =
𝜋𝜈∕2𝜈|𝑥𝑖|𝜈−1

2𝜈 𝑙𝜈−2
0

𝛤 (𝜈∕2 + 1)
𝐹𝑖𝐾𝑑𝑋𝐾 . (40)

Since we have assumed isotropy in the fractal metric, spherical
symmetry can be applied. Translational and rotational invariance is es-
tablished by restricting the radius of some sphere to a finite set that we
define by the characteristic length |𝑥𝑖| = 𝑙0 where the originally defined
𝑙0 defines a representative continuum volume element of sufficient size
to represent the fractal structure. In principle, this characteristic scale
could be determined using the box-count method and evaluating the
uncertainty of the fractal dimension as the box size shrinks to 𝑙0. By
defining |𝑥𝑖| = 𝑙0, this means we have set the operating point about the
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fractal derivative and the chain rule to be about 𝑙0. This gives the final
relation

𝑑𝜇𝑖 =
𝜋𝜈∕2

2𝜈−1𝑙0𝛤 (𝜈∕2)
𝐹𝑖𝐾𝑑𝑋𝐾 (41)

such that the fractal deformation gradient scales with the Euclidean
deformation gradient according to

𝐹 𝜈
𝑖𝐾

=
𝜋𝜈∕2

2𝜈−1𝑙0𝛤 (𝜈∕2)
𝐹𝑖𝐾 . (42)

It is important to note the normalization of length on the fractal
deformation gradient relative to the Euclidean deformation gradient.
This is because we have normalized the fractal displacement metric in
(36). In the limit of 𝜈 → 1, the fractal deformation gradient equals the
Euclidean deformation gradient if 𝑙0 = 1 (unitless given the unitless
fractal measure in (36)). If 0 < 𝜈 < 1, the fractal deformation
gradient is scaled by the appropriate characteristic length scale of the
representative volume element and the Gamma function.
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