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The intersection between engineering design, manufacturing, and
artificial intelligence offers countless opportunities for break-
through improvements in how we develop new technology. However,
achieving this synergy between the physical and the computational
worlds involves overcoming a core challenge: few specialists edu-
cated today are trained in both engineering design and artificial
intelligence. This fact, combined with the recency of both fields’
adoption and the antiquated state of many institutional data man-
agement systems, results in an industrial landscape that is relatively
devoid of high-quality data and individuals who can rapidly use that
data for machine learning and artificial intelligence development. In
order to advance the fields of engineering design and manufacturing
to the next level of preparedness for the development of effective arti-
ficially intelligent, data-driven analytical and generative tools, a
new design for X principle must be established: design for artificial
intelligence (DfAl). In this paper, a conceptual framework for DfAI
is presented and discussed in the context of the contemporary field
and the personas which drive it. [DOI: 10.1115/1.4055854]

Keywords: artificial intelligence, computer-aided design

!Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the
JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received
June 21, 2022; final manuscript received September 20, 2022; published online
October 17, 2022. Assoc. Editor: William Bernstein.

Journal of Computing and Information Science in Engineering

W) Check for updates

1 Introduction

Engineering design and manufacturing have been on an exciting
trajectory in parallel with advancements in computation and internet
connectivity. In only a few generations the world has transitioned
from paper drawings stored in bulky file cabinets [1,2] to millions
of computer-aided design (CAD) models accessible from anywhere
in the world at the touch of a mouse click [3-5]. Entire professions,
such as drafters, have largely declined [6], while new movements,
such as that of the “maker” and rapid prototyping hobbyist have
exploded in popularity [7].

The proliferation of 3D CAD applications has helped drive the
adoption of advanced and robotic manufacturing [8]. What used
to require careful manual attention can now be accomplished by
computer-numeric controlled (CNC) machine tools, additive manu-
facturing (AM) machines, and many other automated solutions [9].
These advancements have fueled transformative progress in what
types of geometries can be manufactured, how quickly they can
be prototyped, and how much data can be mined to continuously
improve the efficiency and profitability of manufacturing [10].
This emphasis on data monitoring and internet of things (IoT) has
opened up new possibilities for “smart factories” using advanced,
distributed, and automated data monitoring techniques [11,12].

These advancements in digitally driven design and manufactur-
ing [13], although massively important, have led the design commu-
nity into a false sense of security. Technology and the development
of the digital thread are increasingly linking engineering design,
engineering analysis, and manufacturing into interconnected pro-
cesses. Thinking of these areas as separate, siloed fields limits the
potential for high performance in all three. While technologies
like computer-aided manufacturing (CAM) software can perform
useful and impressive tasks, they are limited in their capability by
the ability of software developers to translate complex expert man-
ufacturing knowledge into automated tools.

Recognizing the challenges of manually designing algorithms for
increasingly complex engineering processes, many have turned to
Al, and particularly machine learning (ML), as a potential future
of advancing engineering design software [14-20]. ML has
shown great success for text, image, sensor, and video analysis
[21-25]. Perhaps the two most exciting attributes of ML are its
ability to reuse the same algorithms to solve a wide variety of prob-
lems and to automatically train these software algorithms to solve a
problem [26,27]. These benefits, combined with recent advances in
parallel processing hardware, mobile computing, and cloud-based
computing, have led to a surge in ML research across industries
[28-31].

The generality of ML makes it easy to begin considering how
large datasets might be useful for many potential problems that
are adjacent to those in other fields. Examples may be found in a
variety of problem types of varying levels of complexity. For
instance, 3D object recognition [32-36] is a natural extension of
2D image recognition [37,38]. Additionally, segmentation of
image areas [37,39] can be similarly approached as the segmenta-
tion 3D volumes [40—44], in such applications as identifying critical
features or estimated defect zones [45-50]. Even video can be seen
as a specific case of time-series analysis [51], which is particularly
relevant to manufacturing processes with transient heat flow and
material deposition or removal phenomena [52-57]. These time-
series phenomena are a topic of particular interest in the rapidly
maturing area of smart factories [11,12,58,59], in which sensor
data are streamed to analytical and dashboard systems in real-time
[60-62]. Analogous time series could also be analyzed at the
design stage [63]. Rather than harvesting sensor data from a phys-
ical machine to monitor activities in a factory, simulation data could
be harvested and automatically analyzed at a larger scale to monitor
and optimize an engineering team before manufacturing is even
attempted.

As exciting as the advancements in ML are the prospect of apply-
ing ML to engineering design and manufacturing also reflects a
false sense of security in the industry. ML and Al may finally be
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emerging from the “trough of disillusionment” in some industries
[64]. However, the application of ML to engineering design fields
is far from trivial, which may decrease business risk tolerance.
One reason other fields may be more rapidly innovating ML tech-
nologies is that nonengineering data are often more common and
relatable to a wider community. For instance, the internet is
teeming with 2D graphics, images, text, and video which are con-
sumed daily by billions of people. Contrastingly, 3D CAD
models are only familiar to and interacted with perhaps a few
hundred thousand individuals on a daily basis [65]. If advanced
simulation technology data (such as data derived from finite
element analysis (FEA), topology optimization, and implicit model-
ing) are taken into account, the number of existing examples and
experts able to interpret them shrinks even further. Additionally,
ML in “manufacturing” and “engineering design,” although linked
through the digital thread and overall engineered product lifecycle,
are often themselves markedly different in goals, difficulty, and
implementation, adding to this complexity.

The consequence of general data and expert scarcity [66] has ripple
effects in the field of engineering design and manufacturing Al In
addition to the obvious challenge of smaller datasets being more chal-
lenging to work with for ML, a deeper data quality issue is present as
well. Whereas individuals in the general population can produce rel-
atively accurate labels [67—69] for something like 2D images or text,
producing equivalently accurate labels for complex engineering
design data may be challenging, time-consuming, or impossible for
all but the most experienced engineering specialists [3,70,71]. Con-
sider the case of trying to label an arbitrary 3D CAD model with
the “best manufacturing method” to build it [72]. Such a question
is a multi-objective optimization problem that may be highly suscep-
tible to human bias, orientation-dependent, or require extensive phys-
ical and/or economic analysis. Answering such fundamental
questions are very challenging without the context of the original
design and function of the part. The labor required to create robust
and useful datasets may actually prove prohibitive to medium and
large-scale adoption of ML in industry.

For the near-term, engineering design software will largely con-
tinue to depend on the time-tested traditional modeling and analysis
techniques that have transformed the manufacturing sector for the
last decades. In order for the benefit from data-driven approaches
like ML to be realized, the academic and industrial engineering
community must work together to prepare for and support long-
term innovation by strategically adjusting how engineering-design-
practicing institutions operate on an ongoing basis. We propose
design for artificial intelligence (DfAl) as a strategy for addressing
these objectives. DfAI is a set of goals, principles, and heuristics
that aim to improve the effectiveness, adoption, and innovation of
engineering design and manufacturing Al. DfAI is not a rigid,
fully mature construct, due to the rapidly evolving nature of Al;
rather it is an evolving set of additional user requirements that
strive to enhance how we architect design repositories, design engi-
neered products, and conduct engineering software development.
Like other design for X (DfX) principles, such as design for manu-
facturing (DfM), DfAI aims to improve design by explicitly focus-
ing on specific goals and practices associated with the activities
related to Al development. However, DfAI is differentiated from
many DfX principles because it must have a broader impact on
the long-term development of design-process-enhancing software,
rather than being restricted to only the shorter-term impact of man-
ufacturing a particular product. Creating useful engineering design
or manufacturing Al based on learnings from past engineering
design and manufacturing data requires guiding principles to
address this breadth.

2 Short-Term Excellence Versus Long-Term View,
A Challenge for the Future of Design

Engineering is ultimately economically and product-driven
meaning that the unit of work for engineers is relatively short-term.
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The role of design and manufacturing engineers requires them to
manage the creation, troubleshooting, continuous improvement,
and sales of manufactured goods. From a software standpoint,
CAD, CAM, Product Lifecycle Management (PLM), Product
Data Management (PDM), Enterprise Resource Management
(ERP), Material Requirements Planning (MRP), and other technol-
ogies have grown to support digitized end-to-end design and
manufacturing.

Although beneficial for business, focusing solely on improve-
ments and optimization of the products being designed and manu-
factured today could stifle the transformative potential of Al
technologies. For an optimized business, driven by its bottom-line,
discerning appropriate budget and allocation of resources for long-
term research and development is certainly challenging. Thus, a
great dilemma presents itself: How can institutions become moti-
vated to make serious investments in engineering and design Al
when they must still accomplish their challenging day-to-day mis-
sions? We propose that this immense challenge to advancing
DfAI can be addressed through three foci (see Fig. 1).

The three foci are (a) raising Al literacy in industry, (b) redesign-
ing engineering systems to better integrate with Al, and (c) enhanc-
ing the engineering Al development process. These three foci are
intentionally broad to help facilitate an inclusive, encompassing
conversation. To address them practically, we propose the adoption
and continuous improvement of DfAI as a guiding principle of engi-
neering design and manufacturing. Each of these foci is explored in
more detail in the following sections.

2.1 Raising Industrial Artificial Intelligence Literacy. The
first focus is to raise industrial literacy of the realities of Al for
design and manufacturing. Simply defining Al let alone developing
it, can be a challenging task, and a greater understanding of the
landscape of AI’s present and future could go a long way. Specifi-
cally, raising Al-literacy could be achieved by increasing the
synergy between (a) academic and industrial engineering design
and manufacturing experts and (b) engineering Al researchers and
those of adjacent fields.

More collaborative projects between academic labs and industry
could help make scientific studies more applicable to the real world.
Major compromises are needed from both sides to make this
easier-said-than-done goal a reality. Companies must be willing
to invest in labor to contribute to these projects as well as intellec-
tual property, which is often a barrier to increasing community

Raise
Al
Literacy

DfAI

Enhance the effectiveness,
adoption, and innovation
of engineering Al

Redesign
Engineering
Systems

Enhance Al
Development
Process

Fig. 1 The three, overall foci that are driven by the adoption of
DfAI principles
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knowledge. More strategic distinction of what can and cannot be
shared by a company, although more expensive to determine than
a completely defensive, conservative IP strategy, could end up
paying off in the long run by helping create new community-driven
technologies that could later enhance that organization’s capabili-
ties. Academic labs also must compromise to better fit industrial
needs. Some improvements could be made by increasing the scale
and timeline of research projects, perhaps by combining the
resources of labs or planning projects that transcend the normal
schedules of the academic cycle. Increasing scale in this way
could help alleviate the resource imbalance that often comes with
relatively large companies and relatively low-staffed academic labs.

Increasing synergy between engineering Al researchers and those
in adjacent fields, such as medical and general data science, could
have numerous benefits. The demand for specialization in higher
education creates powerful expertise in niche topics but might run
the risk of losing sight of the larger community. One of the most
powerful benefits of deep learning is its ability to be reused for
many different problems, sometimes with only slight modifications.
We must stop viewing advancements in individual fields as existing
in their own spheres of influence. From a practical standpoint, this
means providing greater support for interdisciplinary work and
increasing industrial networks beyond their specific manufacturing
or service sector.

2.2 Redesigning Engineering Systems to Meet Artificial
Intelligence Growth Demands. The second DfAI focus is to rede-
sign the systems that power design and manufacturing to enable
next-generation hierarchical data scalability and transformability.
Hierarchical data scalability is the capacity to manage exponentially
more design, simulation, and quality control data. As an example,
imagine creating a quality control digital thread for a manufacturing
company that measures their parts for simple length accuracy at key
dimensions. Such measurements are simple numbers and binary
pass/fail values, easily stored in a typical database. Achieving hier-
archical data scalability would mean going above and beyond the
current need of storing those quality control results by preparing
for the development of future, more advanced data, such as a full
3D volumetric scan of each part that is suitable as input to a
quality control Al construct. Failure to prepare for that possibility
while the system is being developed might hinder the progress of
implementing such an Al construct in the future, perhaps by
years, due to the investment now required to completely redesign
the system.

Like scalability, hierarchical data transformability also strives to
prepare for an Al-driven future. It is the ability to efficiently operate
on that data, transforming it through a series of automated opera-
tions. While the example of preparing for scalability relates
closely to the use and adoption of specific Al, transformability
addresses the need to develop that Al. Obtaining, cleaning, and val-
idating data can be a substantial portion of the labor and cost of even
attempting to create such technologies. Reducing the burden of
these challenging, often miserable tasks, can only be done by com-
piling and understanding that data at the outset. Ensuring data is
machine-readable, as accurate as possible, labeled with all possible
knowledge, and populated with standardized, descriptive metadata
could help motivate the development of Al by reducing the
up-front investment to produce proof-of-concept and prototype
technologies. Although some standards exist, digitally driven man-
ufacturing is far from being fully standardized in practice. There
exists a diverse landscape of file formats and institutionally specific
knowledge. Thus, a combination of improved standards around
engineering and design data management and organizational data
storage enhancements are necessary to support hierarchical data
transformability.

2.3 Enhancing the Artificial Intelligence Development
Process. The third focus is to improve the rate of adoption of
design engineering and manufacturing Al by enhancing the
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techniques, tools, and expertise of the community developing that
Al. Like manufacturing data management, this area could also
stand to adopt greater standardization. However, standardization
alone is not enough and may be misguided if attempted too early.
Thus, the education of both generalist and specialist experts in the
engineering and manufacturing Al space should be enhanced
through specialized curricula, research programs, and knowledge-
sharing venues that specifically advance this subfield of engineering
and manufacturing.

Many general-purpose Al development tools are becoming
increasingly accessible and performant. For instance, tools like Ten-
sorFlow [73] and scikit-learn [74] have decreased the barrier for
entry to apply ML/AI to new problems. However, developing
tools is only part of the solution. The specific ways in which the
community approach problems, prioritize resources, build teams,
and shares results are also important. Furthermore, understanding
how to succeed in complex, team-driven design projects like Al
development is not always trivial [75]. Achieving success in this
third focus includes both developing enhanced community and
institutional practices around Al-centric projects and enhancing
existing engineering tools, such as CAD applications and PLM soft-
ware, to integrate well with new ML and Al development and
deployment platforms.

3. DfAI Principles and Applications

We propose several interconnected DfAI principles, with the
acknowledgment that they are initial principles that should evolve
with and be expanded by the engineering Al community in the
future (see Fig. 2).

The proposed principles primarily relate to the data surrounding
engineering design and additional steps that improve that data for
use in ML and Al development. The first DfAI principle, digitiza-
tion, means striving to capture all engineering design data in a
digital format and store that data in a reliable place. At some orga-
nizations, improving digitization could mean actions as simple as
scanning paper drawings or replacing paper lab notebooks with
software. At others, it could mean better capturing verbal, sketched,
and whiteboard design collaboration. The next DfAI principle, data
linkage integrity, relates to ensuring the many interconnected files
and data points related to products are digitally linked. Ideally, all
aspects of a project are hierarchically linked in some way and
appropriately scalable. Examples of ensuring data are hierarchical
could mean ensuring different parts of an assembly are related to
each, different products are related to business initiatives, or differ-
ent versions of designs are related to each other and their relative
performances in reference to user requirements and specifications.
This DfAI principle is closely related to the next, machine readabil-
ity. Ensuring data linkage is more closely related to the abstract
concept of linking different parts of the digital thread together,
whereas ensuring machine readability relates more to an organiza-
tion’s future ability to automatically slice and analyze those data.
Another DfAI principle, metadata quality, could improve machine
readability. By ensuring high-quality descriptive attributes accom-
pany design data, programs that intend to consume that data are
easier and less time-consuming to create. We propose data valuation
as a DfAI principle. This principle relates less to practical engineer-
ing design activities and more toward fostering long-term motiva-
tion for engineering Al development. By improving the
understanding of data value, both direct value and value toward
future AI R&D opportunities, the return on investment (ROI) of
infrastructure changes to support Al may be justified. Finally, the
principles that define DfAI should evolve over time, expanding
and redefining alongside changes to engineering design, manufac-
turing, and Al technology.

DfAI takes advantage of the extensible nature of the DfX family
by applying the same meta-process of developing goals and heuris-
tics as other DfX strategies. Unlike many other DfX strategies, the
area of improvement is broader in DfAI In typical DfX techniques,
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All data in the cyber-
physical pathway is
digitized and stored as a
mandated part of the
normal engineering
design routine

DfAI

Principles

Digitization

Seeking an accurate
understanding of the current
and potential future value of
engineering datasets
themselves is prioritized

Data
Valuation

Metadata
Quality

DfAl principles evolve with
advancements in Al and

...evolution S .
engineering design technology

Links between projects, products,

file versions, manufactured goods,
and learnings are maintained and
audited

Data Linkage
Integrity

All data is able to be searched,
extracted, and individually or batch-
processed without the need for human
intervention

Machine
Readability

Metadata that describes constituent
designs and overall design repositories
to Al developers is developed and
maintained

Fig. 2 Proposed DfAl principles

such as design for manufacturing (DfM), the area of application rel-
evant to DfM is the design and manufacture of particular products.
While DfAI also applies to the design and manufacture of particular
products as a relevant area of improvement, it should also be
applied to broader aspects of the engineering design process at a
product portfolio, institutional practice, and design community
levels. The areas to which DfAI, which are interdependent and
not listed in priority order, is applied include (see Fig. 3):

(1) The design, manufacture, and testing of physical products
and assemblies (“Products”)

(2) The design and use of design repositories and the digital
threads which support them (“Design Repositories™)

(3) The design, manufacture, and use of manufacturing opera-
tional procedures, machines, lines, factories, and supply
chains (‘“Practices & Infrastructure”)

(4) The design, development process, and use of analytical and
artificially intelligent tools affect the cyber-physical manu-
facturing process (“Al Development”)

3.1 Conceptual Case Study for Applying DfAI Principles.
Design and manufacture of engineered products do not occur in a
vacuum, but rather in a complicated, financially driven landscape
of industry. To help illustrate the motivation for applying DfAI
principles to areas related to manufacturing, consider a hypothetical
case study of a new company inventing small electric aircraft to be
manufactured at a large scale for the shipping industry. At the outset
of creating the company, proving technology through research and
development, developing the business through market research and
sales, and preparing to scale up operations through raising capital
and preparing to build factories and hire works are expensive and
risky activities. Relatively short-term factors such as speed-
to-market and rapidly reaching profitability may eclipse all other
needs. Suppose the company could take two general paths: path
(a), a manual, data-devoid future, and path (b) a highly automatable
and data-rich future. In path (a), the company pursues only the
minimum viable product, does not spend excess resources on data
collection, and does not consider how they may develop the
end-to-end supply and manufacturing chain to be automatable in
the future. In path (b), the company invests in an extensive data

060903-4 / Vol. 22, DECEMBER 2022

collection, validation, storage, and retrieval system to capture data
through the lifecycle of design, manufacturing, and logistics into
the future and creates dedicated roles to build, maintain, and link
those systems to the growing organization. Path (a) is most likely
to be less-cost-intensive during up-front development and requires
fewer technical individuals. Now imagine 10 years later, and the
company’s competitors begin introducing extensive data-driven
design and manufacturing artificial intelligence that reduce their
operating cost below the company’s capabilities. The difference
in cost for path (a) versus path (b) companies to develop technology
as-needed that competes after the companies are entrenched and
mature may be staggering, perhaps threatening their feasibility.

3.2 Applying DfAI to Product Development. We contend
that DfAI principles can be applied to product development to
improve the design, manufacture, and testing of physical products
and assemblies in the long term. To consider how, one must

DfAI

Principles

Applied To

3) Practices
&
Infrastructure

2) Design
Repositories

4) Al
Development

Fig. 3 Broad application areas that could benefit from DfAIl
principles
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envision the entire lifecycle of an engineered product from ideation
to retirement and how each step is interconnected. Two examples of
contemporary areas of development are manufacturing machine
optimization and design process enhancement. Manufacturing
machine optimization often involves intelligently determining
machine settings, build orientations, and toolpath control strategies
that will most cost-effectively manufacture the highest quality part.
Design process enhancement typically involves automatically sug-
gesting either big-picture heuristics, such as which manufacturing
process is best suited for a design or other, smaller-scale tasks
such as automatically generating a physical form that meets the
design project’s problem statement or simulating and predicting
the performance of a given form.

Although both of these engineering Al examples strive to better
meet the ultimate goal of creating a product that addresses the user
requirements and specifications of a problem within constraints,
they do so at different stages of the design and manufacturing
process. While early generation Al efforts may be able to address
these stages individually with self-contained Al modules, later-
generation, paradigm-shifting innovations likely require cohesive
interconnection between all stages. For instance, optimizing a
machine is often great for making incremental improvements for
producing a single design, but won’t provide much insight in how
to achieve step-change improvements with entirely new designs
[76]. At the other end, design Al could help envision better products
to meet user requirements in a theoretical sense, but might fail to
account for the rapid advancements in the physical manufacturing
and material science spaces. Harmony between these two areas,
and the other areas of the design process, are necessary.

3.3 Applying DfAI to Design Repositories. The designers of
a new product should consider the entire cyber-physical pathway
for a design both at the outset of the project and in parallel to
each step. The cyber-physical pathway includes all of the digital
and physical outputs of the design and manufacturing process. It
is vital for engineers and product managers to understand it.
However, practices of individuals are only part of the solution,
and they must direct their data and knowledge to the second area
of DfAI application: the design repository (see Fig. 4). A design
repository is any dataset that contains information regarding multi-
ple product designs. Design conceptual, product description, mate-
rial composition, and quality control information should be
generated, made machine-readable, linked to other data through
traceability, stored in a design repository, and curated into metadata
descriptions of that design repository. Practical implementations

Journal of Computing and Information Science in Engineering

that achieve high-quality design repositories will vary depending
on the nature of the organization and the volume of its data.
Some example guidelines could include well-documented and
fully automatable APIs for data entry and retrieval, budgeting for
human data validation, budgeting for the development of automated
data validation, and research and development budget and pipeline
for continuous improvements to existing and new data acquisition
and validation systems. Additionally, the creation of dedicated
roles that may focus on management and execution of technical
design repository issues could increase the capability of organiza-
tions to enhance them over time, rather than relying on fitting
such responsibilities within nonspecialized personnel’s busy
schedules.

Producing multiple forms of linked, machine-readable data
allows those developers to rapidly produce labeled datasets for
supervised learning or validation tasks. To actually achieve worth-
while results from these activities, organizations must invest in both
specialized individuals to oversee these activities and training for all
contributing individuals to uphold this goal at each smaller task.
Additionally, business stakeholders in these opportunities must be
convinced of their value through ROI calculations that estimate
the potential benefits of being able to more inexpensively develop
future Al or even to sell the higher quality data outright. Although
the specific ways in which data quality and continuity are achieved
are highly dependent on the particular industry, manufacturing pro-
cesses, and products being considered, the general, initial DfAI heu-
ristic is simple: the entire cyber-physical pathway of each
engineered product should be understood, and gaps in data
quality and continuity should be documented. After that heuristic
is complete, follow-up DfAI heuristics should be applied to con-
sider the ROIs of investing in enhanced data management tech-
niques at each stage of the product design and manufacturing
process, prioritize those potential changes, and then execute them
in priority order.

3.4 Applying DfAI to Institutional Practice and
Infrastructure. In addition to the design of physically engineered
products, DfAI principles should also be applied to the practices,
tools, and infrastructure that support the design and manufacturing
overall. Human-in-the-loop AI can help operators and technicians
with manual or semi-automatic manufacturing tasks. Thus, data sur-
rounding the manufacturing tasks and the procedures that dictate
them should be well-understood and then considered for
DfAl-related issues. Similarly, the tools and machinery should
also be considered for DfAI, ideally trending toward more complete
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and automated data-gathering through the adoption of IoT technol-
ogies. Furthermore, the largest scales of manufacturing infrastruc-
ture, factories, shipping, supply chain, distribution, and inventory,
could also benefit from Al orchestration. How easily and effectively
the data produced by these systems could be used for Al develop-
ment should also be considered.

3.5 Applying DfAI to Artificial Intelligence Development
Processes. Finally, DfAI principles should also be applied to the
development of analytical tools and broader Al constructs that
seek to improve the engineering design and manufacturing
process. Generally, making improvements in this area means stan-
dardizing and enhancing the design process for Al. The industry
must shift by treating the Al development process more like an
engineered product design process by adopting DfAI principles,
similarly to how other DfX techniques seek to streamline design
in other ways.

Specifically, this DfAI application could be achieved in several
ways. First, the user requirements and specifications of engineering
design and manufacturing Al should be clearly understood. Essen-
tially, “market research” into the gaps and challenges in a specific
engineering design process should be clearly quantified and consid-
ered when determining whether an Al development process should
be done and how it should be approached. Second, enhanced stan-
dardized techniques for describing the inputs, outputs, algorithms,
and performance of Al tools should be developed and applied.
The minimal documentation required by academic journals and
existing business practices will not be sufficient to achieve com-
pounding progress in the modern software landscape, which is
rife with enormous and poorly documented data and software arti-
facts. Third, the design repositories used for the development, train-
ing, and evaluation of Al tools should be completely documented
and disseminated when possible. This means sharing much more
than just CAD files, but also hierarchically complex, high-
dimensional labels, such as simulation results. Today, replicating
or improving upon an engineering design deep learning study
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often means manually producing ones’ own dataset. This laborious
task must be improved through major collaboration efforts in the
community and the development of next-generation design reposi-
tory and interaction tools to support them. Finally, the results of the
Al development process should be documented and fed back into
the systems and tools associated with the other areas of DfAI appli-
cation. We should not settle for simply using Al to enhance our
current processes, but should use our growing knowledge to
make those processes better suited for Al itself.

4 A Conceptual Breakdown of Personas in Design for
Artificial Intelligence

Achieving long-term, future-state DfAI success requires the
establishment of effective workflows both between and within spe-
cific business roles under the guidance of a supportive institution.
Here, we refer to those business roles as personas. The three
major personas of the DfAI process are (a) the engineering design-
ers, (b) the design repository curator, and (c) the Al developer (see
Fig. 5). Although some of these personas may be clearly identifiable
roles at some institutions in the present day, others may be less
clearly defined, less common, or entirely absent. Thus, we call for
action to provide improved educational opportunities for individu-
als who may need to take on these roles.

The first persona participating in DfAI principles, engineering
designers, are likely the most intuitive personas involved in DfAI
(see Fig. 6). Generally, an engineering designer could include any
worker responsible for the development of user requirements and
specifications necessary for manufacturing a new product. This
role could be a single person with a generalized skillset or be collec-
tively fulfilled by a large team of specialists, depending on the size
of the organization and the complexity of the specific manufactur-
ing task. Although engineering designers are not the only personnel
involved with product design and manufacture, they are specifically
identified as key stakeholders in the DfAI personas since the con-
ception of a product at the design stage is the beginning of its
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Fig. 6 The engineering designer persona in terms of typical roles and actions that comprise
key participation activities in applications replated to DfAl that may benefit from DfAl

principles

technical lifecycle. From this perspective, engineering designers are
not at the end of the DfAl-principle application, but rather at the
beginning. Ideally, they should have a high degree of communica-
tion with and cascade DfAl-related responsibilities to peripheral or
downstream personnel that are key to the manufacturing process,
such as manufacturing engineers, quality engineers, process engi-
neers, industrial engineers technologists, manufacturing operators,
factory managers, planners, and technicians. The precise roles and
number of personnel in each of these adjacent engineering and man-
ufacturing roles are organization-dependent, and standardization of
such roles may be a beneficial topic of future work.

Engineering designers play many important roles in the broader
DfAI Some may be more obvious than others. For instance, engi-
neering designers are the end-user of design Al applications. This
role as the user situates them as an internal or external customer
of design Al products. Even if effective design Al products are
eventually produced and launched, their widespread use will
depend on meeting the customer technical and user experience
needs, which will be complex, varied, and continuously evolving
with the ever-changing manufacturing technology landscape.

In line with this end-user role, engineering designers are the DfAI
problem statement originators. This means that engineering design-
ers must be able to clearly document, communicate, and justify the
problems which are the highest priority to solve. Al developers may
not understand the engineering problems as well as the actual
designers completing day-to-day work.

Additionally, engineering designers are the originators of the
engineering data which may benefit data-driven Al development.
These data could take many forms, including product concepts,
CAD files, quotes, test data, simulation data, prototype documenta-
tion, and countless other portions of the digital thread. Ensuring that
engineering designers are trained, motivated, and supported to
spend portions of their limited working time on documenting
these data in a standardized and high-quality way is essential to
the DfAI process. Generally, improving in this area means spending
more time developing and executing procedures for engineering
tasks and incrementally automating design tasks that are tedious
or would otherwise cause the information to be lost.

The next DfAI persona, the design repository curator, is more
abstract and perhaps less traditional than the engineering designer

Journal of Computing and Information Science in Engineering

(see Fig. 7). Contemporary institutions are likely lacking a special-
ized individual or team responsible for maintaining design reposito-
ries that are intentionally designed for use as Al training datasets
[13]. Broadly, the design repository curator is responsible for creat-
ing, maintaining, and extracting all data related to engineering
design activities. Some near analogs exist. For instance, a database
maintainer or system administrator resembles this role in terms of
the technical data skillset required to generally interact with data.
However, a design repository curator is differentiated from a
generic database maintainer in that they must have greater engineer-
ing design and manufacturing knowledge to deliver design engi-
neers with data management tools that will meet the current
engineering design workflow demands and be extensible to
future, Al-driven workflow demands [20]. Complete separation of
data management and engineering design skillets creates a prohib-
itive wall to innovation and increases the expense of developing
new systems.

The design repository curator cannot operate effectively without
the creation of infrastructure that supports convenient access to the
data originators, the engineering designers. Today, many institu-
tions are skilled at creating design repositories that are effective
for non-Al development purposes. For example, quality systems
at regulated industries, such as medical or aerospace companies,
are typically highly effective at storing data to meet the minimum
legal requirements for those products. Creating effective infrastruc-
ture from a DfAI lens, however, means continuing to fulfill the
existing needs and priorities of a business or organization while
adding in DfAI requirements for that infrastructure early in design
repository creation. From a practical standpoint, doing so could
mean ensuring that data storage mechanisms store data in a convert-
ible format, preserve machine readability at scale, maintain links
between potential training data and labels, and are efficiently pro-
cessable and sliceable as batches.

The final DfAI persona, the Al developer, ties the other personas
together (see Fig. 8). The Al developer must obtain data from the
design repositories and use that data to create design-
processing-enhancing Al software constructs.

Al developers must be able to ideate, develop, market, and con-
tinuously improve Al software products that help design engineers.
To do this, they must have interdisciplinary skills. These skills
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should overlap the fields of design and manufacturing engineering,
computer science, data science, and Al development to some
degree. This heterogeneity of knowledge would design Al develop-
ers both recognize areas in the engineering design space that work
well and should not be substantially altered and also gaps in which
transformative improvements may be made. The specific algorithms
and technologies used to create design Al are the tools of the design
Al developer and will vary depending on the application, resources,
and development of future technology. The likelihood that numer-
ous specific algorithms will be invented, become outdated, and be

Design Al
Developer

Creates
Al
Constructs

Contributes
to Design Al
Community

enhanced over time necessitates a combination of and a strong col-
laboration between generalist and specialist design Al developers.

In addition to understanding the problems and potential solutions
in the design Al space, design Al developers must also interact
skillfully and efficiently with design repositories and their curators
[77-79]. Doing so successfully means retaining a broad knowledge
of both engineering design data that currently exists in
non-Al-enhanced engineering workflows and that which might
exist under a more advanced, Al-driven workflow. For example,
consider the transition from paper engineering drawing-driven

The persona responsible
for creating and
deploying software
modules that enhance
the engineering process

The persona which
must interact design
repository to curators to
obtain datasets from
those repositories

Consumes
Engineering
Data

The persona that
contributes to heuristics,
systems, tools, and
educational programs
which benefit future Al
projects

Fig. 8 The design Al developer persona in terms of typical roles and actions that comprise
key participation activities in applications replated to DfAl that may benefit from DfAIl

principles
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design to CAD-model-driven design [80]. This major shift in design
technology produces exponential more machine-readable data, such
as the 3D models themselves and simulation results. Future shifts
will add even more data to the Al developer’s toolkit, perhaps
including automatically harvested data on the human user interface
usage behavior that could be used to detect the designers’ skill level
and provide tailored feedback. Design Al developers being able to
adapt and preempt future shifts in technology will help drive both
the creation of that technology and the synergy with other personas,
such as design repository curators that may need to store new forms
of data.

Design Al developers also have a responsibility to a relatively
new and growing community. Currently, the publication systems
for presenting advancements in design Al rely on relatively old
technology and lack standardization. Ideally, design Al developers
will prioritize contribution to the standardization of terminology,
methodology, results reporting, and quality of design Al Further
developing and publishing heuristics related to DfAI is an essential
part of this process. In order to make faster progress as a commu-
nity, design Al researchers must find ways to efficiently transfer
knowledge through heuristics that are shared, extensible, and may
be iteratively developed through collaborative and interdisciplinary
research.

Finally, although not a single persona, the administration, man-
agement, and organization of the institutions and infrastructure
under which the other personas work is also vitally important. Orga-
nizations are very capable of achieving ambitious and transforma-
tive goals when they are motivated to do so. This motivation is
easier said than done. A portion of DfAI principles relates to build-
ing this motivation for business stakeholders, managers, depart-
ments, and institution administrators to fund and support
advanced design repositories and design Al development projects.
We propose that ideating and testing enhanced measures of return
on investment of maintaining advanced design engineering data
be increased. Understanding the timescales and benefits of apply-
ing DfAI principles economically will help them improve and pro-
liferate. Creating design Al is not a short-term project, but rather
a long-term collection of complex and interconnected projects
and activities that extend well beyond the roles of most individuals
or teams. DfAI should help clarify which efforts are likely to pay off
in the long run.

5 Closing Remarks

DfAI stands to improve many areas of the holistic end-to-end
design and manufacturing process, with stakeholders ranging
from institutions who set procedures, designers who adhere to
them, and future innovators who seek to use their learnings for
the development of Al. To achieve optimal success in the challeng-
ing areas of data-driven design and Al development, design Al
developers and design repository curators must not be an after-
thought in the core operation of design and engineering institutions.
A new specialty in DfAI must be grown with opportunities for the
education of individuals, careers, and the growth of dedicated
teams.

Like many fields, engineering design and manufacturing engi-
neering are strongly geared toward short-term goals: launching
the next project, getting the next grant, and publishing the next
paper. Increasingly generalized manufacturing methods are
enabling the manufacturing of increasingly optimized artifacts.
Unless we augment our design engineers with a next-generation
of CAD/CAM software based on more generalized Al and ML,
our ability to design novel and useful artifacts will fall short of
the potential of those new manufacturing techniques. The commu-
nity must invest intellectual resources by advancing and applying
the general principles of DfAI in the design repositories, design
activities, and engineering software development activities that
are conducted to efficiently and cost-effectively achieve the oppor-
tunities envisioned for Al-driven design.
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