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ABSTRACT 
Compared to conventional fabrication, additive manufacturing 
enables production of far more complex geometries with less 
tooling and increased automation. However, despite the common 
perception of AM’s “free” geometric complexity, this freedom 
comes with a literal cost: more complex geometries may be 
challenging to design, potentially manifesting as increased 
engineering labor cost. Being able to accurately predict design 
cost is essential to reliably forecasting large-scale design for 
additive manufacturing projects, especially for those using 
expensive processes like laser powder bed fusion of metals. 
However, no studies have quantitatively explored designers’ 
ability to complete this forecasting. In this study, we address this 
gap by analyzing the uncertainty of expert design cost 
estimation. First, we establish a methodology to translate 
computer-aided design data into descriptive vectors capturing 
design for additive manufacturing activity parameters. We then 
present a series of case study designs, with varied functionality 
and geometric complexity, to experts and measure their 
estimations of design labor for each case. Summary statistics of 
the cost estimates and a linear mixed effects model predicting 
labor responses from participant and design attributes was used 
to estimate the significance of factors on the responses. A task-
based, CAD model complexity calculation is then used to infer 
an estimate of the magnitude and variability of normalized labor 
cost to understand more generalizable attributes of the observed 
labor estimates. These two analyses are discussed in the context 
of advantages and disadvantages of relying on human cost 
estimation for additive manufacturing forecasts as well as future 
work that can prioritize and mitigate such challenges. 

1. INTRODUCTION
Compared to conventional processes, such as machining,

molding, and forming methods, additive manufacturing (AM) 
relies less on tooling, provides inherent automation, and can be 
applied to almost any geometry that fits within the AM machine 
build volume and resolution limits. In particular, additively 
manufacturing metal components using laser powder bed fusion 
(LPBF) presents substantial opportunities for value-driven, 
industrial applications. Although LPBF components may not 
always match the  mechanical properties [1–3] or baseline 
fabrication cost [4,5] of machined components, complex LPBF 
parts do not require additional tooling or time-consuming 
machine setups compared to simpler parts. Therefore, LPBF 
does not proportionally increase in manufacturing cost with 
increased complexity to the same degree as traditional 
manufacturing processes, especially in builds requiring fewer 
tooling-driven post-processing operations [6]. This attribute 
makes LPBF especially promising in sectors with geometric and 
weight limitations and lower production volumes, such as 
aerospace [7]. 

However, despite the complexity achievable by AM 
machines, LPBF and AM do little to support an important and 
increasingly challenging portion of the industrial manufacturing 
process:  the design of new components. In fact, the increased 
freedom to design complex parts can inadvertently become a 
hindrance to the design process in some cases. When parts 
become more complex, they deviate from more standardized 
components. This deviation can demand more analysis, iteration, 
and one-off design work from engineers, increasing the duration 
and cost of the design process [8]. Furthermore, design for AM 
(DfAM) often employs multiple computer-aided design (CAD) 
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activities, such as geometry definition, thermal analysis, slicing, 
topology optimization, and build preparation, which may not be 
needed for some conventional processes. Products designed for 
AM also tend to be most profitably manufactured at low volumes 
[5,9,10], making the cost of design even more impactful. 

Given that LPBF already has potential product performance 
drawbacks [11,12], stacking demanding and costly design 
challenges in advance of manufacturing could be particularly 
detrimental to the overall research and development process. 
Also, engineering design process quality has been shown to be 
further decreased when designers lack experience in a new 
manufacturing process like LPBF [13]. We posit that this 
combined lack of existing industrial expertise [13] and potential 
increase in design costs could slow the adoption of LPBF, which 
has not yet penetrated mainstream industry across all sectors. 

One way to address this gap is to provide designers with a 
means to reliably estimate required design labor for an LPBF-
focused project prior to actually completing design activities. 
Ideally, this design estimation technique would be repeatable, 
quick, and automatic. Creating such a tool to estimate 
complicated human factors like detailed CAD labor is not trivial. 
In this study we seek an important first step in realizing such a 
tool: characterizing human estimates of design labor cost for 
LPBF designs. 

Specifically, this work addresses the following research 
questions: 

1. To what degree do LPBF experts vary on estimates of
engineering labor required to complete typical DfAM
activities for individual components of varying geometric
complexity?

2. Given attributes of a design concept to be forecast and the
individual expert conducting the forecasting, how consistent
and predictable is an expert’s forecast and what are the most
significant attributes?

3. What is the range and variability of estimated time per
human design action, both within and between subjects?

The remainder of the paper is organized as follows: First, we 
discuss prior literature regarding manufactured product cost 
modeling and DfAM/LPBF-specific design process challenges. 
Next, we document our methodology to analyze design geometry 
in context of DfAM labor activities, measure expert cost 
prediction values, and analyze significant factors of expert cost 
analysis. Finally, we discuss our results and their implications on 
potential limits of human design labor cost estimation in the 
context of other challenges in the growing adoption of LPBF in 
industrial applications. 

2. BACKGROUND
In this section we synthesize prior literature regarding

manufactured product cost modeling approaches (see section 
2.1) and specific challenges of design for laser powder bed 
fusion additive manufacturing of metals (see section 2.2). 

2.1 Manufactured Product Cost Modeling 
The vast majority of products are still manufactured using 

conventional techniques [14], meaning that AM does and will 
continue to coexist with conventional processes when used by 
industrial organizations. Thus, understanding the context of 
literature related to modeling costs from manufacturing and 
design at large is essential to researching similar issues for AM. 

The second half of the twentieth century marked a gradual 
development in design strategies that are specifically oriented 
toward maximizing the practicability and efficiency of the 
manufacturing process for an engineered system [15–17]. As 
Kuo et al. point out [15], the focus began with “producibility” of 
components before evolving toward a consideration of a design’s 
consequences on the entire manufacturing process [15]. 
Dewhurst and Boothroyd, early pioneers of the Design for 
Assembly (DFA) subset of DFM, asserted that DFM is 
completed in two steps: a) identifying suitable materials and 
manufacturing processes, and b) designing individual 
components within the limits of the available resources [18]. 
This mentality leads to a commonly accepted strategy in which 
DFM is not one single technique, but rather a broad range of 
methodologies with which engineers design with particular 
manufacturing processes in mind, commonly called “Design for 
X” (DFX) [19–21]. In addition to manufacturing-related DFX 
concepts discussed here, DFX has also been expanded to cover 
many other industrial and societal concerns, such as design for 
sustainability [22], design for maintainability [23], and design 
for accessibility [24]. Under the Design for X mentality, the 
focus for cost estimation predominantly lies in a) the cost of the 
individual components, b) the cost of assembling components, 
and c) the end-to-end efficiency of the overall manufacturing 
process. Individual studies often focus on either a single process, 
such as machining [25], injecting molding [26], or casting [27], 
or a single type of material such as steel [28] or carbon fiber [29]. 

Although there exists substantial breadth of research in 
process and material-specific cost concerns, most works tend to 
focus on the upfront and ongoing costs of the actual 
manufacturing only, and not the cost of engineering design labor 
that precedes those operational manufacturing activities. Unlike 
most modern manufacturing techniques, which are tightly 
integrated with relatively predicable machines, the engineering 
design process is a largely human-driven activity, relying heavily 
on individuals and teams. To estimate costs related to these 
complex human factors, project management costing techniques 
may be used. One useful approach is activity-based costing 
(ABC) [30–34]. ABC involves the breakdown of work into a 
collection of activities called a work breakdown structure (WBS) 
[33], the assignment of costs to each activity, and the forecasting 
or monitoring of the resources spent on each activity [33,34]. 
Although ABC is certainly useful for cost-minimizing  strategies 
employed after the design stage [32,35], it is also particularly 
well-suited for cost analysis of human design labor because it 
can be used in situations that are not directly tied to production 
volume [33], such as the upfront design process [34]. Ben-Arieh 
et al. presented a framework to use ABC when designing 
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machined products, breaking down the design activity into 
specification development, conceptual design, and detail design 
stages [34,36]. They also further break down the design stages 
into the tools, resources, and personnel needed during those 
stages. Providing increasingly detailed breakdowns of cost could 
enhance the resolution of ABC for human-driven design. 
However, doing so may not be straightforward and may 
substantially depend on the nature of the particular 
manufacturing processes used, individual human participants, 
and organization management structures. As Armstrong points 
out ABC can hinder competitive practices that deviate from the 
standard activity types, hide useful information about indirect 
costs, and may be perilous if combined with management 
practices, such as tying labor activity data to performance 
evaluation [37]. 

2.2 Specific Challenges in Design for Laser Power Bed 
Fusion Additive Manufacturing of Metals 

Although costing and project management are both relevant 
to all manufacturing processes, LPBF AM has specific attributes 
that motivate its study in the current work. First, engineers who 
seek to use LPBF often aim to take advantage of one or several 
opportunistic attributes of AM [14]. For instance, mesostructural 
features like cellular cutouts [38] and lattices [39] can provide 
lightweight and strong features and are most easily added 
through layer-by-layer manufacturing like LPBF. Additionally, 
the high strength and excellent thermal resilience of metal 
components allows them to excel in demanding environments, 
such as aircraft [7]. The beneficial properties of metals also make 
them good candidates to conduct redesign efforts that 
incorporate part consolidation, in which multiple components in 
an assembly are redesigned into a single, connected component 
that performs the same function [40]. 

Although these opportunities are promising, they come with 
several downsides related to increased design challenges. First, 
parts that are produced through LPBF tend to be more expensive 
to manufacture than those made by traditional processes [5]. This 
limitation places greater importance on the activities of the 
designer, who may have to reduce resources in other components 
of the design to make up for increased cost of manufacture. 
Additionally, LPBF AM metal components can be susceptible to 
mechanical failures due to manufacturing defects, such as voids 
and cracks [41], that are very challenging to identify with non-
destructive evaluation [42]. These issues could increase the risk 
of using LPBF AM metal components in performance-critical 
applications, potentially driving up the amount of labor required 
to analyze the components. Such analysis must be done both for 
the performance of the LPBF machine, process settings, and 
selected material to produce the design and for its final 
performance in the chosen application. Ultimately, this drives up 
the total design costs associated with the component. 

Costing engineering projects on an activity and component-
based level of granularity is essential to ensuring an efficient and 
effective research and development process. Being able to 
preemptively estimate how much human design labor will be 
required when both the design tasks and final manufacturing 

process are demanding, as is the case in computer-aided design 
for LPBF AM, is especially important.  

In this study, we take the first steps in understanding how 
well experts in the field of LPBF AM of metals can currently 
estimate the required engineering design labor for individual 
components. Although seeking causal understanding is 
unrealistic for a preliminary study, we instead seek a breadth of 
knowledge by establishing a methodology to objectively 
quantify the complexity of components and the background 
experiences of participants and then measure design labor 
predictions across these factors. Through investigating the 
general human variability in this task, the resulting trends may 
be used to identify significant factors and plan larger or more 
targeted studies in the future that seek causal understanding that 
is sufficient to help build the next generation of assistive design 
tools, such as those based on artificial intelligence constructs. 

3. METHODOLOGY
We characterized the performance of experts when

estimating design labor for LPBF components and statistically 
analyzed the significance of design attribute and participant 
background factors. This section describes the details of the 
expert design cost estimation measurement process (see section 
3.1); design attribute description methodology (see section 3.2); 
and the analytical approach (see section 3.3). 

3.1. Expert Design Labor Estimate Measurement 
Process 

Data to investigate expert design cost prediction capabilities 
was obtained using a survey of LPBF experts who were tasked 
with making predictions about LPBF design case studies. The 
survey consisted of two primary sections. In the first section, 
participants were asked nine demographic questions. The first 
three of these questions polled participant years of experience in 
industry, gender, and ethnicity, while the other questions queried 
aspects of the respondent’s experience and self-assessed 
expertise.  

In the second section, participants were shown a series of 
nine LPBF design case studies. Each successive case study was 
shown in a random order to each participant, but the questions 
within each case study block were shown in a consistent order.  

Each case study question block contained a pencil sketch-
style image of the design concept from isometric and 
orthographic viewpoints (see Figure 1). This pencil sketch was 
presented to the participants as the starting point of the 
engineering design process, intended to mimic the result of a 
conceptual design brainstorming process. The concept sketch 
image was followed by isometric and orthographic CAD render 
views with some dimensions (see Figure 2). The dimensions on 
these views were not presented to provide detailed 
documentation, but rather as references to give participants a 
general sense of the designs’ scale. These CAD render views 
were presented to the participants as the ending point of the 
engineering design process, with the intent of conveying the 
result of a detailed design process. 
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FIGURE 1. EXAMPLE CONCEPT SKETCH IMAGE OF ONE 
OF THE CASE STUDY DESIGNS, THE GENERATIVE 

BRACKET, THAT WAS SHOWN TO SURVEY 
PARTICIPANTS AS THE STARTING POINT OF THE DESIGN 

PROCESS. 

FIGURE 2. EXAMPLE IMAGE OF FOUR ORTHOGRAPHIC 
VIEWS OF ONE OF THE CASE STUDY DESIGNS, THE 

GENERATIVE BRACKET, THAT WAS SHOWN TO SURVEY 
PARTICIPANTS AS THE ENDING POINT OF THE DESIGN 

PROCESS. 

After being shown each design, participants were asked to 
estimate how long in hours it would take an average engineer to 
design the pictured component. For this question, they were also 
asked to assume that the engineer begins the design process with 
the concept sketch of the design and ends with the CAD model 
shown below it. Next, the participant was asked to divide their 
total estimate into the following five categories by percent of 
design labor time: a) 3D solid modeling and computer-aided 
design (CAD), b) engineering analysis and simulation, c) 
manufacturability analysis and cost estimation, d) build 
orientation and support structure generation, and e) slicing and 

toolpath generation. These design activities were chosen because 
they represent a common workflow for LPBF [43].  

Next, participants were asked the extent to which they were 
confident in their design time prediction, whether the design was 
well-suited for metal AM LPBF, and whether the design was 
well-suited for manufacturing with conventional processes. Each 
of these three questions were presented as a 5-level Likert scale, 
where a 1 represented the participant strongly disagrees that the 
design was well-suited for the process and a 5 represented that 
the participant strongly agrees that the design was well-suited for 
the process. Finally, participants were asked to rate the geometric 
complexity of the design on a 5-level Likert scale, where a 1 
represented that the participant thought the design was very 
simple and a 5 represented that the participant thought the design 
was very complex. The survey was distributed to industry 
experts in LPBF.  

3.2. Case Study Design Attribute Description 
Methodology 

Although many products rely on assemblies, composites, or 
nonsolid entities, designing such products adds substantial 
diversity, complexity, and case-by-case specificity to the nature 
of the design process. Because of this, we limited the focus of 
case study designs to products which consist of a single, solid 
component that is made from a single material. This decision 
means that certain opportunistic attributes of AM are not as 
relevant to this study, such as multi-material complexity or part 
consolidation. Instead, we focus on DfAM opportunities related 
to hierarchical complexity and shape complexity. These 
opportunities are often achieved through the use of 
mesostructures [44] and topology optimization [45], which we 
incorporate in our case studies. 

In addition to categorically defining the scope of the current 
work, we also sought to study a varied range of different case 
study designs. Furthermore, we sought to understand if there 
were concise, quantifiable attributes related to design complexity 
that might be found to correlate with participant cost estimate 
results. To achieve this goal, we used three different quantitative 
complexity metrics: 𝐶𝑃𝑅, the volume ratio complexity 
factor;  𝐶𝐴𝑅, the area ratio complexity factor; and 𝐶𝐷𝑂𝐹, the CAD 
degrees of freedom complexity factor. 

Since selecting a single complexity factor could itself 
introduce bias, multiple types of complexity factors are 
considered and combined into a design attribute description 
vector which offers a holistic representation of a design’s 
complexity. Specifically, the design attribute description vector 
uses two geometric complexity factors and one design process 
activity-based factor. The geometric complexity factors of part 
volume ratio and part area ratio are defined as 

𝐶𝑃𝑅 = 1 −
𝑉𝑝

𝑉𝑏
(1) 

and 

𝐶𝐴𝑅 = 1 −
𝐴𝑠

𝐴𝑝
(2) 
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where 𝑉𝑝 is the part volume, 𝑉𝑏 is the part bounding box volume, 
𝐴𝑠 is the volume of a sphere of equal surface area to the part, and 
𝐴𝑝 is the part surface area. These geometric complexity factors 
were chosen because they are related to surface area and volume, 
both of which are aspects that affect the visual appearance of a 
design. Including factors with this attribute is important because 
the current work uses visualizations of designs to communicate 
them to participants. Attributes related to surface area and 
volume are also known to relate to AM costs from other work 
[46]. 𝐶𝑃𝑅 and 𝐶𝐴𝑅 are related to the implementation of the design 
surfaces used to model the part. The current work used 
parametric, mathematically defined surfaces modeled in 
Autodesk Fusion 360 [47] for these calculations. 

The CAD degrees of freedom complexity factor, 𝐶𝐷𝑂𝐹, is a 
design-activity-based factor because it directly relates to the user 
interface activities required to model the design concept. In 
summary, 𝐶𝐷𝑂𝐹 estimates the number of steps a human must take 
to model the part. This measurement is specific to both the CAD 
modeling paradigm chosen and the specific combination of 
features chosen to achieve the desired model. In this study, 
Autodesk Fusion 360 [47] was used with a parametric, feature-
based modeling paradigm. A “degree of freedom” in this context 
refers to a numeric parameter that the designer must set to define 
a particular feature used to model the part with the user interface 
of a CAD application. Compared to the geometric complexity 
factors, 𝐶𝐷𝑂𝐹 is not as visually recognizable from an image of a 
model, but does relate more closely to the actual required 
duration to design a component using CAD. This assertion is 
based on the assumption that setting each parameter in a design 
requires some duration of human-attentive effort. Specifically, 
𝐶𝐷𝑂𝐹 is computed by counting the number of CAD modeling
features of various types in a model, then multiplying the counts 
by the assumed degrees of freedom required to define each 
feature type. This procedure is summarized by the equation 

𝐶𝐷𝑂𝐹 = ∑ 𝜈𝑖𝑚𝑖

𝑛

𝑖=1

 
(3) 

where 𝑛 is the number of allowable CAD feature types, 𝜈𝑖  is the 
number of degrees of freedom assumed to be required for the 
feature 𝑖𝑡ℎ type, and 𝑚𝑖 is the number of instances of the 𝑖𝑡ℎ 
feature type. Different features require different numbers of 
numeric parameters to define. For instance, a point on a 2D 
plane, called a “Sketch Point” in many CAD applications, 
requires two numeric dimensions, 𝑥 and 𝑦 distances relative to 
an origin, be defined. Other features, such as a simple extrusion 
or revolve of a profile may require only one dimension, while 
others, such as a 2D linear pattern, may require more. Again, the 
specific types of features used, numbers of degrees of freedom 
that are included and important to those features, and 
combinations and sequences of those features used in an actual 
design is not unique for a particular geometry. These factors 
depend on the particular CAD application used and choices made 
by the designer. In this study, we used a sketch-based, parametric 
modeling approach. 

In this approach, 2D reference planes are first defined within 
a 3D build space. Next, sketch points representing the vertices of 
profile curves are located and drawn on the reference planes. 
Mathematically-defined curves are then drawn connecting these 
points into either closed profiles or non-closed paths for 
construction. The profiles and paths are then extruded, swept, 
revolved, or lofted to define 3D volumes. These 3D volumes are 
then combined to form a macrostructure volume. The 
macrostructure is either accepted as the final design, or is 
modified by patterning lattice cutouts to form a mesostructure or 
selectively trimmed based on a finite element analysis simulation 
of stress under loading. This process is a common approach to 
parametric CAD DfAM. Different CAD modeling paradigms, 
such as constructive solid geometry (CSG) of primitives, surface 
modeling, implicit modeling, or approaches which allow for 
combinations of paradigms may require different assumptions 
surrounding degrees of freedom per allowable feature if using a 
similar approach. 

The case studies were single-component products. 
Participants were prompted to estimate the design labor in hours 
required to create the part. To avoid possible bias in participants 
having seen certain designs before, we did not use existing 
commercially manufactured products nor previous designs from 
prior literature. 

To provide both consistency and replication in the design 
complexity, we used a three-level design complexity progression 
that was replicated for three different design functional types. 
This progression of design complexity included (a) 
macrostructure CAD only, (b) mesostructure CAD, and (c) 
generative CAD. The macrostructure-only CAD designs were 
created using parametric CAD features only, lacking 
mesostructural complexity achieved through patterned features 
and generative features. The macrostructure designs were the 
least complex in their functional categories, as measured by the 
three quantitative complexity factors. 

The mesostructure CAD designs included a patterned, 
subtractive lattice feature, incrementally increasing the 
complexity due to increased surface area. The generative CAD 
used a hybrid design approach that incorporated a combination 
of simulations, functional constraints, subtractive features, and 
additive features to guide and form the final shape. These 
included a stress-based topology optimization to lightweight the 
part given an assumed loading scenario to inspire broad 
lightweighting strategies followed by subsequent stress 
simulations to include additive support features. These designs 
were the most geometrically complex, largely due to their high-
dimensional splines and curved surfaces. The design intent of 
these forms for the study were that they efficiently withstood a 
load case and appeared “organic” to the participants. These 
complexity levels were replicated three times for the artifact 
types of “bracket”, “bottle opener”, and “hatchet”. The artifact 
types were selected because they could plausibly be single 
component products suitable for the scope of the study, were of 
reasonable scale for a contemporary LPBF machine’s build 
volume, and would have mechanical user requirements derived 
from the resistance of external forces (see Figure 3). 
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FIGURE 3. ISOMETRIC IMAGES OF THE CASE STUDY 
DESIGNS PRESENTED TO SURVEY PARTICIPANTS FOR 

DESIGN LABOR ESTIMATION. 

3.3. Data Analysis 
The survey data were analyzed for four primary 

considerations: a) the attributes of the participants, b) the 
consistency and predictability of the labor estimates, c) the 
significance of design and participant factors on labor estimates, 
and d) the comparative time per CAD degree of freedom for each 
participant. Understanding the participant sample attributes is 
important to contextualizing the results. Although the scope of 
the current work does not intend to assign causal relationships 
for the effects of all demographics measured, we anticipated that 
participant focus industry attributes, such as the degree to which 
an industry is regulated, might positively correlate with design 
labor estimates. However, we also anticipated that the resource 
limitations of the current work would likely render correlations 
not statistically significant at this time. 

Additionally, we investigated the significance of factors 
related to a) the design for which the labor was estimated and b) 
the individual conducting the estimation. To determine 
significance, we analyzed the data using a linear mixed effects 
model (LMEM). The response variable for the LMEM was the 
number of design labor hours estimated by a participant. The 
fixed effects were the artifact type (bracket, bottle opener, or 
hatchet), design material reduction strategy type (macrostructure 
only, lattice, generative), volume ratio complexity, area ratio 
complexity, degrees of freedom complexity, participant years of 
experience, participant design for AM self-assessed expertise, 
participant design for conventional processes self-assessed 
expertise, participant CAD self-assessed expertise, and 
participant cost estimation self-assessed expertise. The per-

subject random effects were participant-assessed design 
complexity, participant-assessed AM manufacturability, 
participant-assessed conventional manufacturability, and 
participant labor estimate confidence. The variables that were 
included as random effects were all participant reported for each 
design, and not intrinsic to the designs. 

The LMEM was conducted using R version 4.0.5 and the 
lmerTest version 3.1-3 library. Significance of the coefficients 
of each fixed effect were determined using Satterthwaite’s 
method t-tests and an alpha value of 0.05. Significance in this 
test suggests that the fixed effect contributes to the participant’s 
labor estimate. Analysis of variance (ANOVA) was used to 
determine if the random effects influenced labor estimates 
differently for each participant. 

Next, we explored the relationship between quantitative 
complexity and design effort by comparing each participant’s 
predictions to the number of degrees of freedom calculated for 
the design. This calculation is called 𝑡𝑁, the normalized degrees 
of freedom complexity factor, calculated as 

𝑡𝑁 =
𝑡𝑒𝑠𝑡

𝐶𝐷𝑂𝐹

(6)

where 𝐶𝐷𝑂𝐹 is the degrees of freedom complexity factor for the 
design model and 𝑡𝑒𝑠𝑡 is this participant estimated labor required 
to design the part in hours. 𝐶𝐷𝑂𝐹 was chosen for this calculation 
because it is the closest to a common denominator which can 
compare all parts. The units of 𝑡𝑁 are hours per degree of 
freedom, and allow us to compare both within group and 
between group central tendency and spread of participant 
responses similar to a labor rate. Although 𝐶𝐷𝑂𝐹 is only an 
approximate estimate of the number of degrees of freedom 
required to produce the CAD model in question, it provides a 
useful benchmark for the purposes of interpreting these data and 
comparing across subjects. We hypothesize that high variability 
of 𝑡𝑁 would be less desirable in industry when actually using 
human labor estimates for forecasting, as it would suggest high 
individual-to-individual bias and could erode trust in the 
estimates. 

4. RESULTS AND DISCUSSION
In this section we detail the results participant demographic 

breakdown (see section 4.1), the labor estimation results (see 
section 4.2), the linear mixed effects model results (see section 
4.3), and the estimated cost per design task results (see section 
4.4). 

4.1. Participant Sample Background Results 
In total, 25 participants fully completed the survey (partially 

complete responses were omitted). This sample included 19 
participants self-identifying as men, 3 participants self-
identifying as women, 0 participants identifying as another, and 
3 participants selecting to prefer not to say. 19 of the participants 
self-identified as white, 1 self-identified as Hispanic, Latino, or 
Spanish origin, 1 self-identified as Middle Eastern or North 
African, 1 self-identified as some other race, ethnicity, or origin, 
and 2 selected to prefer not to say. For industry affiliation, 10 
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participants self-identified as Aerospace, 6 self-identified as 
Defense, 2 self-identified as Education, 2 self-identified as 
Consumer Goods, 1 self-identified as Energy, 2 self-identified as 
Transportation, and 1 self-identified as “software and DfAM 
agnostic of industry”. The mean number of years of experience 
in industry was 11.4 years, ranging from a minimum of 0 years 
to a maximum of 33 years. The mean participant age was 35.1 
years. For the participant background five-level Likert scale 
questions, the responses were converted to a normalized value 
ranging from 0 to 1. Frequencies for these responses are shown 
in Figure 4.  

FIGURE 4. PLOTS OF PARTICIPANT SELF-REPORTED 
RESULTS TO WHETHER THEY AGREED THAT THEY ARE 

AN EXPERT IN A) DESIGN FOR ADDITIVE 
MANUFACTURING OF METALS WITH LASER POWDER 
BED FUSION, B) DESIGN FOR MANUFACTURING WITH 
CONVENTIONAL PROCESSES, C) COMPUTER-AIDED 

DESIGN, AND D) COST ESTIMATION OF DESIGN 
ACTIVITIES. 

4.2. Participant Sample Cost Estimation Results 
The participants’ estimates of required engineering design 

labor varied substantially both across artifact types and within 
design concepts (see Figure 5). Overall, the mean estimate for 
design labor of all concepts across all participants was 19.6 hours 
and the standard deviation was 21.2 hours. The generative 
bracket design concept had the longest estimated duration, with 
a mean estimate of 48.16 hours. Conversely, the macrostructure-
only bottle opener design concept was the shortest estimated 
duration, with a mean estimate of 7.8 hours recorded. The most 
variable design was the generative bracket, for which a standard 
deviation of 35.83 hours was observed. The design groups of 
bracket, bottle opener, and hatchet exhibited means of 27.72 

hours, 12.63 hours, and 18.49 hours respectively. When grouped 
by design-intent complexity, the estimated labor followed the 
central tendency trend of generative designs (30.87 hours), 
followed by lattice designs (19.09 hours), followed by 
macrostructure-only designs (8.88 hours). This trend was 
observed both overall and within all design groups except for the 
bottle opener, in which the generative and lattice designs were 
relatively closer on average. 

FIGURE 5. BOX PLOTS OF DESIGN LABOR ESTIMATION 
SURVEY RESULTS FOR EACH CASE STUDY DESIGN AND 

SELECT AGGREGATES OF MULTIPLE DESIGNS. 

In terms of design labor breakdown, participants indicated 
that engineering analysis and simulation was estimated to be the 
most time-consuming portion of the DfAM process, consuming 
34% of the design labor, on average (see Figure 6). Slicing and 
toolpath generation was the least time-consuming portion, with 
a mean of 9%. The magnitude of variability for design 
breakdown allocations was less than the variability observed for 
overall labor hours estimates. For instance, the mean standard 
deviation of design hours required for a single design concept 
was 108% of its mean, whereas the mean standard deviation for 
a single design labor activity was 62% of the respective mean. 

7 Copyright © 2022 by ASME



FIGURE 6. PLOTS OF MEAN DESIGN LABOR BREAKDOWN 
ESTIMATION RESULTS FOR EACH CASE STUDY DESIGN 

AND SELECTED AGGREGATES OF MULTIPLE CASE 
STUDY DESIGNS. 

Participants were above neutral in the self-assessed 
confidence of their predictions. When converted from a five-
point Likert scale to a normalized value, the mean confidence 
was 0.67 and the standard deviation was 0.21. A spread of 
perceived complexity, suitability for AM, and suitability for 
conventional manufacturing values were observed, covering the 
entire range of available responses. 

4.3. Labor Response Predictability Analysis  
The linear mixed effects model (LMEM), which was used to 
model whether participant and design attributes significantly 
affected participant estimated design cost, indicated a mix of 
both significant and insignificant factors were observed. Six of 
the fourteen of the factors investigated in the LMEM were 
significant to an alpha value of 0.05 (see Table 1). These 
significant factors included artifact type, hierarchical 
complexity, degrees of freedom complexity factor, participant 
perceived complexity, participant years of expertise, and 
participant degree of AM expertise. Many of these significant 
factors were data that were either provided by the participant 
directly, such as their levels of expertise, or directly evident to 
the participant, such as artifact type. Other attributes of the 
designs that were not directly communicated to the participants, 
such as area and surface volume ratio complexity, were not 
significant. These results suggest that the combination of a 
participant’s background and their own mental model of a 
design’s complexity were more impactful on their design labor 
duration estimate than general quantitative complexity values. 

One significant attribute that differs from this trend is degrees of 
freedom complexity factor. This factor’s significance suggests 
that unlike part and volume ratio complexity, the complexity 
factor based off the CAD modeling paradigm was correlative to 
this participant pool’s predictions even though it was not 
explicitly revealed to them. Although more detailed studies 
would be required to definitively assign causality, this difference 
could mean that the degrees of freedom complexity metric is 
more likely to be intuitive to experienced designers when 
assessing design complexity and required design duration based 
on their visual appearance.  

TABLE 1. LINEAR MIXED EFFECTS MODEL COEFFICIENTS 
AND T-STATISTIC RESULTS FOR THE LINEAR MODEL 
PREDICTING PARTICIPANT LABOR ESTIMATE GIVEN 
DESIGN CONCEPT AND PARTICIPANT BACKGROUND 
DATA. BOLDED P-VALUES WERE SIGNIFICANT TO 𝜶 = 

0.05. 
Independent 
Variable 

Model 
Coefficient 

t-statistic p-value 

Artifact Type -0.018 -2.010 0.046 
Hierarchical 
Complexity 

-0.072 -2.710 0.007 

Part Volume Ratio 
Complexity Factor 

0.021 0.657 0.512 

Part Area Ratio 
Complexity Factor 

0.126 0.949 0.344 

Degrees of Freedom 
Complexity Factor 

0.224 3.118 0.002 

Participant Perceived 
Complexity 

0.117 2.488 0.016 

Participant Estimated 
AM 
Manufacturability 

0.033 1.147 0.270 

Participant Estimated 
Conventional 
Manufacturability 

-0.016 -0.576 0.566 

Participant 
Confidence 

-0.046 -1.004 0.334 

Participant Years of 
Experience 

0.110 3.530 0.002 

Participant Degree of 
AM Expertise 

0.172 5.472 3.000e-5 

Participant Degree of 
Conventional 
Manufacturing 
Expertise 

0.039 -1.573 0.132 

Participant Degree of 
CAD Expertise 

-0.035 -1.008 0.329 

Participant Degree of 
Cost Estimation 
Expertise 

-0.032 -0.878 0.393 

In addition to whether factors were significant or 
insignificant, the LMEM also provides estimates as to the 
magnitude and directionality of each factors’ effect. Positive and 
relatively large coefficients were observed with the degrees of 
freedom complexity factor, participant perceived complexity, 
participant years of experience, and the participant degree of AM 
expertise. Although the degrees of freedom metric used in this 
study has not been validated experimentally, that the measure 
consistently and strongly correlates with participant estimated 
design labor costs is promising for its effectiveness as a concise 
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and reliable design attribute for future work. The positive 
correlation matches our intuitive hypothesis that the perception 
or suggestion of more CAD tasks would lead a design forecaster 
to a higher design cost estimate. Participant perceived 
complexity sharing a similar directional trend also supports this 
hypothesis. Participant years of experience and degrees of AM 
expertise having a positive effect on estimated design cost also 
supported our intuition. Professionals that have fewer years of 
experience have been observed to exhibit overconfidence in their 
field [48]. Conversely, in this case those engineers with more 
experience might become more risk averse over time, and 
therefore provide more conservative and costly estimates for 
labor. 

4.4. Estimated Cost Per Design Task 
In addition to investigating which design and participant 

attributes best predicted estimated cost, we also calculated and 
characterized an estimate of the time allotted for finer detailed 
CAD operations as based on the participant labor estimates and 
an estimate of the degrees of freedom of the CAD models. The 
CAD models for the design case studies used in the current work 
exhibited a range of 𝐶𝐷𝑂𝐹 and 𝑡𝑁 values (see Table 2). The 
macro-only hatchet was the lowest number of degrees of 
freedom, 96, while the generative hatchet was the highest, 1,073. 
The time per degree of freedom for all participants across all 
designs was 3.24 minutes per degree of freedom. In terms of 
individual designs, the greatest value was for the macro only 
hatchet, at 5.75 minutes per degree of freedom and the lowest 
value was for the generative bottle opener at 1.42 minutes per 
degree of freedom. 

TABLE 2. CALCULATED RESULTS FOR VOLUME RATIO 
COMPLEXITY (𝑪𝑷𝑹), AREA RATIO COMPLEXITY (𝑪𝑨𝑹) AND 

MEASURED PARTICIPANT ESTIMATED RESULTS FOR 
MEAN NORMALIZED PARTICIPANT RATED COMPLEXITY 

AND MEAN TIME PER DEGREE OF FREEDOM. 
Design Volume 

Ratio 
Complexity 
(𝑪𝑷𝑹) 

Area Ratio 
Complexity 
(𝑪𝑨𝑹) 

Mean 
Normalized 
Participant 
Rated 
Complexity 

Mean 
Time per 
Degree of 
Freedom 
(𝒕𝑵, 
minutes) 

Macro-only 
bracket 

0.703 0.499 0.08 5.16 

Lattice 
bracket 

0.805 0.692 0.65 4.11 

Generative 
bracket 

0.986 0.795 0.93 3.54 

Macro-only 
bottle 
opener 

0.0958 0.616 0.08 4.72 

Lattice 
bottle 
opener 

0.804 0.748 0.45 2.26 

Generative 
bottle 
opener 

0.721 0.690 0.47 1.42 

Macro-only 
hatchet 

0.722 0.573 0.18 5.75 

Lattice 
hatchet 

0.854 0.713 0.54 4.28 

Generative 
hatchet 

0.913 0.793 0.76 1.62 

The distribution of the estimated time per degrees of 
freedom for all designs aggregated together most resembled an 
exponential distribution (see Figure 7). Most values fell between 
zero and five minutes per action, with nearly 30% of the data 
falling under one minute per task. Since all of the computer-
aided design degrees of freedom could likely be physically 
completed in seconds by an experienced user who had already 
planned their actions in advance, these results strongly suggest 
that time estimated to complete the design by the participants 
would entail critical thinking or other non-CAD activities, as has 
been observed in experimental studies of CAD for AM activities 
[49]. Since outliers do exist in the overall data, and the 
distribution could be modeled as an exponential, we hypothesize 
that detecting outliers or deviations from a curve could be useful 
to screen potentially erroneous design cost estimates. Additional 
studies would be needed to guide the efficacy of such an 
approach. 

FIGURE 7. PROBABILITY HISTOGRAM OF THE AVERAGE 
ESTIMATED MINUTES PER DEGREE OF FREEDOM (𝒕𝑵) 
FOR EACH PARTICIPANT LABOR ESTIMATION OF A 
DESIGN, WITH ALL DESIGNS GROUPED TOGETHER. 

In addition to examining the distribution of the overall time 
per degree of freedom results, we also broke down the data into 
aggregates by design type and design complexity level (see 
Figure 8). Upon visual inspection, not all aggregates matched the 
characteristic exponential distribution shape as closely as the 
overall aggregate. Bottle opener, hatchet, generative, and macro 
only designs most closely matched the exponential shape, and 
the others did not appear to match a canonical distribution as 
closely. Generally, the bracket and hatchet designs exhibited 
similar distributions to each other when compared with the bottle 
opener aggregate distribution. The bottle opener aggregate had 
the highest probability of a degree of freedom taking less than 
one minute on average, further reinforcing the conclusion that 
the participants especially thought the bottle openers could be 
designed quickly. The likelihood of fast average degree of 
freedom times increased from macro-only, to lattice, to 
generative. This trend, when combined with the aforementioned 
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result of overall mean estimated times increasing in the same 
order, suggests an inconsistency and possible shortcoming in the 
participants. Although the participants were unaware of the 
degrees of freedom calculation, if it is assumed to be a sufficient 
proxy of the number of activities required to complete the design 
work, a consistent estimator should theoretically exhibit a 
roughly constant average time per degree of freedom. Instead, 
the participants do not appear to be increasing their estimates on 
average enough. However, the opposite could also be the case: 
that participants were overestimating the time for the lower 
degree of freedom designs. An additional study that 
experimentally verifies these phenomena in real-world design 
activities would be required to answer this new question. 

FIGURE 8. PROBABILITY HISTOGRAMS OF THE AVERAGE 
ESTIMATED MINUTES PER DEGREE OF FREEDOM (𝒕𝑵) 
FOR EACH PARTICIPANT LABOR ESTIMATION OF A 
DESIGN IN THE AGGREGATES OF A) ALL BRACKET 
DESIGNS, B) ALL BOTTLE OPENER DESIGNS, C) ALL 

HATCHET DESIGNS, D) ALL MACRO-ONLY DESIGNS, E) 
ALL LATTICE DESIGNS, AND F) ALL GENERATIVE 

DESIGNS 

5. CONCLUSION
Estimating the cost of designing manufactured components 

is important to profitable research and development, especially 
when those design costs may require the up-front scoping of 
demanding engineering activities like laser powder bed fusion. 
In this study we investigated the ability of people to preemptively 
estimate the design cost of metal LPBF AM components and 

what factors of people and components may influence those 
estimates. First, we created nine LPBF case study design concept 
components and CAD models of those designs. Next, we 
characterized the complexity of the CAD model geometries and 
topologies. We then distributed a survey to designers in industry 
who were experienced with the LPBF design process and 
measured their estimates for design labor and labor breakdown 
for each of the case studies. Finally, we analyzed the results of 
the design labor survey to understand the attributes of our 
sample, the distribution of the labor estimates in the sample, and 
estimate which factors related to the participants and the case 
studies were significant to their estimates. 

In terms of our first research question, related to how much 
experts vary in their estimates of labor, we found that the 
estimates varied substantially and inconsistently. For some case 
studies, experts differed in their labor estimate by two orders of 
magnitude, while others were less widely spread. This finding 
suggested that who was performing the estimate could greatly 
impact the magnitude of a research and development forecast 
even for relatively small-scale designs like those studied, 
differing by multiple weeks of engineering labor. Regarding our 
second research question, we found that if given summary 
attributes of a designer and a design problem we could predict 
their estimate. This result suggests that designers’ estimates are 
not varying due to random chance alone, but rather their 
experience, background, industry, or bias are likely major factors 
in their preconceived notion of design cost. Finally, for our third 
research question we found that there was substantial variability 
both within and between subjects for the normalized time per 
CAD action. This observation indicates that human subjects 
would, overall, not yield consistently accurate design cost 
estimations in an experimental environment. 

Overall, our results suggest that design labor cost estimation 
is a challenging task, with a potential for inconsistency due to 
personal bias and multiple factors. Given the importance of 
forecasting for allocation of research and development 
resources, further work is needed to both understand the nature 
of this challenge more precisely and investigate techniques to 
assist designers in this task. Future studies could directly expand 
on our findings by testing whether the factors we determined to 
be significant predictors of preemptively estimated cost are also 
significant predictors of measured, post-design labor cost. Our 
methodology could also be enhanced by identifying ways to 
maximize the overlap of relevant case studies with actual 
projects in industry so as to reduce the cost burden of conducting 
such time-consuming studies within the context of busy 
industrial or academic settings. Furthermore, future work could 
investigate if our survey results are replicated when posing the 
case studies and questions in the context of other subfields of 
AM, non-additive manufacturing environments, or 
environments not related to physical manufacturing but with a 
design component, such as software design. Lastly, 
interventional tools such as data-driven regression analyses 
could be developed and tested to enhance the consistency and 
accuracy of preemptive LPBF design labor cost estimation. 
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