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ABSTRACT

Compared to conventional fabrication, additive manufacturing
enables production of far more complex geometries with less
tooling and increased automation. However, despite the common
perception of AM’s “free” geometric complexity, this freedom
comes with a literal cost: more complex geometries may be
challenging to design, potentially manifesting as increased
engineering labor cost. Being able to accurately predict design
cost is essential to reliably forecasting large-scale design for
additive manufacturing projects, especially for those using
expensive processes like laser powder bed fusion of metals.
However, no studies have quantitatively explored designers’
ability to complete this forecasting. In this study, we address this
gap by analyzing the uncertainty of expert design cost
estimation. First, we establish a methodology to translate
computer-aided design data into descriptive vectors capturing
design for additive manufacturing activity parameters. We then
present a series of case study designs, with varied functionality
and geometric complexity, to experts and measure their
estimations of design labor for each case. Summary statistics of
the cost estimates and a linear mixed effects model predicting
labor responses from participant and design attributes was used
to estimate the significance of factors on the responses. A task-
based, CAD model complexity calculation is then used to infer
an estimate of the magnitude and variability of normalized labor
cost to understand more generalizable attributes of the observed
labor estimates. These two analyses are discussed in the context
of advantages and disadvantages of relying on human cost
estimation for additive manufacturing forecasts as well as future
work that can prioritize and mitigate such challenges.
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1. INTRODUCTION

Compared to conventional processes, such as machining,
molding, and forming methods, additive manufacturing (AM)
relies less on tooling, provides inherent automation, and can be
applied to almost any geometry that fits within the AM machine
build volume and resolution limits. In particular, additively
manufacturing metal components using laser powder bed fusion
(LPBF) presents substantial opportunities for value-driven,
industrial applications. Although LPBF components may not
always match the mechanical properties [1-3] or baseline
fabrication cost [4,5] of machined components, complex LPBF
parts do not require additional tooling or time-consuming
machine setups compared to simpler parts. Therefore, LPBF
does not proportionally increase in manufacturing cost with
increased complexity to the same degree as traditional
manufacturing processes, especially in builds requiring fewer
tooling-driven post-processing operations [6]. This attribute
makes LPBF especially promising in sectors with geometric and
weight limitations and lower production volumes, such as
aerospace [7].

However, despite the complexity achievable by AM
machines, LPBF and AM do little to support an important and
increasingly challenging portion of the industrial manufacturing
process: the design of new components. In fact, the increased
freedom to design complex parts can inadvertently become a
hindrance to the design process in some cases. When parts
become more complex, they deviate from more standardized
components. This deviation can demand more analysis, iteration,
and one-off design work from engineers, increasing the duration
and cost of the design process [8]. Furthermore, design for AM
(DfAM) often employs multiple computer-aided design (CAD)
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activities, such as geometry definition, thermal analysis, slicing,
topology optimization, and build preparation, which may not be
needed for some conventional processes. Products designed for
AM also tend to be most profitably manufactured at low volumes
[5,9,10], making the cost of design even more impactful.

Given that LPBF already has potential product performance
drawbacks [11,12], stacking demanding and costly design
challenges in advance of manufacturing could be particularly
detrimental to the overall research and development process.
Also, engineering design process quality has been shown to be
further decreased when designers lack experience in a new
manufacturing process like LPBF [13]. We posit that this
combined lack of existing industrial expertise [13] and potential
increase in design costs could slow the adoption of LPBF, which
has not yet penetrated mainstream industry across all sectors.

One way to address this gap is to provide designers with a
means to reliably estimate required design labor for an LPBF-
focused project prior to actually completing design activities.
Ideally, this design estimation technique would be repeatable,
quick, and automatic. Creating such a tool to estimate
complicated human factors like detailed CAD labor is not trivial.
In this study we seek an important first step in realizing such a
tool: characterizing human estimates of design labor cost for
LPBF designs.

Specifically, this work addresses the following research
questions:

1. To what degree do LPBF experts vary on estimates of
engineering labor required to complete typical DfAM
activities for individual components of varying geometric
complexity?

2. Given attributes of a design concept to be forecast and the
individual expert conducting the forecasting, how consistent
and predictable is an expert s forecast and what are the most
significant attributes?

3. What is the range and variability of estimated time per
human design action, both within and between subjects?

The remainder of the paper is organized as follows: First, we
discuss prior literature regarding manufactured product cost
modeling and DfAM/LPBF-specific design process challenges.
Next, we document our methodology to analyze design geometry
in context of DfAM labor activities, measure expert cost
prediction values, and analyze significant factors of expert cost
analysis. Finally, we discuss our results and their implications on
potential limits of human design labor cost estimation in the
context of other challenges in the growing adoption of LPBF in
industrial applications.

2. BACKGROUND

In this section we synthesize prior literature regarding
manufactured product cost modeling approaches (see section
2.1) and specific challenges of design for laser powder bed
fusion additive manufacturing of metals (see section 2.2).

2.1 Manufactured Product Cost Modeling

The vast majority of products are still manufactured using
conventional techniques [14], meaning that AM does and will
continue to coexist with conventional processes when used by
industrial organizations. Thus, understanding the context of
literature related to modeling costs from manufacturing and
design at large is essential to researching similar issues for AM.

The second half of the twentieth century marked a gradual
development in design strategies that are specifically oriented
toward maximizing the practicability and efficiency of the
manufacturing process for an engineered system [15-17]. As
Kuo et al. point out [15], the focus began with “producibility” of
components before evolving toward a consideration of a design’s
consequences on the entire manufacturing process [15].
Dewhurst and Boothroyd, early pioneers of the Design for
Assembly (DFA) subset of DFM, asserted that DFM is
completed in two steps: a) identifying suitable materials and
manufacturing processes, and b) designing individual
components within the limits of the available resources [18].
This mentality leads to a commonly accepted strategy in which
DFM is not one single technique, but rather a broad range of
methodologies with which engineers design with particular
manufacturing processes in mind, commonly called “Design for
X” (DFX) [19-21]. In addition to manufacturing-related DFX
concepts discussed here, DFX has also been expanded to cover
many other industrial and societal concerns, such as design for
sustainability [22], design for maintainability [23], and design
for accessibility [24]. Under the Design for X mentality, the
focus for cost estimation predominantly lies in a) the cost of the
individual components, b) the cost of assembling components,
and c) the end-to-end efficiency of the overall manufacturing
process. Individual studies often focus on either a single process,
such as machining [25], injecting molding [26], or casting [27],
or a single type of material such as steel [28] or carbon fiber [29].

Although there exists substantial breadth of research in
process and material-specific cost concerns, most works tend to
focus on the upfront and ongoing costs of the actual
manufacturing only, and not the cost of engineering design labor
that precedes those operational manufacturing activities. Unlike
most modern manufacturing techniques, which are tightly
integrated with relatively predicable machines, the engineering
design process is a largely human-driven activity, relying heavily
on individuals and teams. To estimate costs related to these
complex human factors, project management costing techniques
may be used. One useful approach is activity-based costing
(ABC) [30-34]. ABC involves the breakdown of work into a
collection of activities called a work breakdown structure (WBS)
[33], the assignment of costs to each activity, and the forecasting
or monitoring of the resources spent on each activity [33,34].
Although ABC is certainly useful for cost-minimizing strategies
employed after the design stage [32,35], it is also particularly
well-suited for cost analysis of human design labor because it
can be used in situations that are not directly tied to production
volume [33], such as the upfront design process [34]. Ben-Arich
et al. presented a framework to use ABC when designing
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machined products, breaking down the design activity into
specification development, conceptual design, and detail design
stages [34,36]. They also further break down the design stages
into the tools, resources, and personnel needed during those
stages. Providing increasingly detailed breakdowns of cost could
enhance the resolution of ABC for human-driven design.
However, doing so may not be straightforward and may
substantially depend on the nature of the particular
manufacturing processes used, individual human participants,
and organization management structures. As Armstrong points
out ABC can hinder competitive practices that deviate from the
standard activity types, hide useful information about indirect
costs, and may be perilous if combined with management
practices, such as tying labor activity data to performance
evaluation [37].

2.2 Specific Challenges in Design for Laser Power Bed
Fusion Additive Manufacturing of Metals

Although costing and project management are both relevant
to all manufacturing processes, LPBF AM has specific attributes
that motivate its study in the current work. First, engineers who
seek to use LPBF often aim to take advantage of one or several
opportunistic attributes of AM [14]. For instance, mesostructural
features like cellular cutouts [38] and lattices [39] can provide
lightweight and strong features and are most easily added
through layer-by-layer manufacturing like LPBF. Additionally,
the high strength and excellent thermal resilience of metal
components allows them to excel in demanding environments,
such as aircraft [7]. The beneficial properties of metals also make
them good candidates to conduct redesign efforts that
incorporate part consolidation, in which multiple components in
an assembly are redesigned into a single, connected component
that performs the same function [40].

Although these opportunities are promising, they come with
several downsides related to increased design challenges. First,
parts that are produced through LPBF tend to be more expensive
to manufacture than those made by traditional processes [5]. This
limitation places greater importance on the activities of the
designer, who may have to reduce resources in other components
of the design to make up for increased cost of manufacture.
Additionally, LPBF AM metal components can be susceptible to
mechanical failures due to manufacturing defects, such as voids
and cracks [41], that are very challenging to identify with non-
destructive evaluation [42]. These issues could increase the risk
of using LPBF AM metal components in performance-critical
applications, potentially driving up the amount of labor required
to analyze the components. Such analysis must be done both for
the performance of the LPBF machine, process settings, and
selected material to produce the design and for its final
performance in the chosen application. Ultimately, this drives up
the total design costs associated with the component.

Costing engineering projects on an activity and component-
based level of granularity is essential to ensuring an efficient and
effective research and development process. Being able to
preemptively estimate how much human design labor will be
required when both the design tasks and final manufacturing

process are demanding, as is the case in computer-aided design
for LPBF AM, is especially important.

In this study, we take the first steps in understanding how
well experts in the field of LPBF AM of metals can currently
estimate the required engineering design labor for individual
components. Although seeking causal understanding is
unrealistic for a preliminary study, we instead seek a breadth of
knowledge by establishing a methodology to objectively
quantify the complexity of components and the background
experiences of participants and then measure design labor
predictions across these factors. Through investigating the
general human variability in this task, the resulting trends may
be used to identify significant factors and plan larger or more
targeted studies in the future that seek causal understanding that
is sufficient to help build the next generation of assistive design
tools, such as those based on artificial intelligence constructs.

3. METHODOLOGY

We characterized the performance of experts when
estimating design labor for LPBF components and statistically
analyzed the significance of design attribute and participant
background factors. This section describes the details of the
expert design cost estimation measurement process (see section
3.1); design attribute description methodology (see section 3.2);
and the analytical approach (see section 3.3).

3.1. Expert Design Labor Estimate Measurement
Process

Data to investigate expert design cost prediction capabilities
was obtained using a survey of LPBF experts who were tasked
with making predictions about LPBF design case studies. The
survey consisted of two primary sections. In the first section,
participants were asked nine demographic questions. The first
three of these questions polled participant years of experience in
industry, gender, and ethnicity, while the other questions queried
aspects of the respondent’s experience and self-assessed
expertise.

In the second section, participants were shown a series of
nine LPBF design case studies. Each successive case study was
shown in a random order to each participant, but the questions
within each case study block were shown in a consistent order.

Each case study question block contained a pencil sketch-
style image of the design concept from isometric and
orthographic viewpoints (see Figure 1). This pencil sketch was
presented to the participants as the starting point of the
engineering design process, intended to mimic the result of a
conceptual design brainstorming process. The concept sketch
image was followed by isometric and orthographic CAD render
views with some dimensions (see Figure 2). The dimensions on
these views were not presented to provide detailed
documentation, but rather as references to give participants a
general sense of the designs’ scale. These CAD render views
were presented to the participants as the ending point of the
engineering design process, with the intent of conveying the
result of a detailed design process.
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FIGURE 1. EXAMPLE CONCEPT SKETCH IMAGE OF ONE
OF THE CASE STUDY DESIGNS, THE GENERATIVE
BRACKET, THAT WAS SHOWN TO SURVEY
PARTICIPANTS AS THE STARTING POINT OF THE DESIGN
PROCESS.
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FIGURE 2. EXAMPLE IMAGE OF FOUR ORTHOGRAPHIC
VIEWS OF ONE OF THE CASE STUDY DESIGNS, THE
GENERATIVE BRACKET, THAT WAS SHOWN TO SURVEY
PARTICIPANTS AS THE ENDING POINT OF THE DESIGN
PROCESS.

After being shown each design, participants were asked to
estimate how long in hours it would take an average engineer to
design the pictured component. For this question, they were also
asked to assume that the engineer begins the design process with
the concept sketch of the design and ends with the CAD model
shown below it. Next, the participant was asked to divide their
total estimate into the following five categories by percent of
design labor time: a) 3D solid modeling and computer-aided
design (CAD), b) engineering analysis and simulation, c)
manufacturability analysis and cost estimation, d) build
orientation and support structure generation, and e) slicing and

toolpath generation. These design activities were chosen because
they represent a common workflow for LPBF [43].

Next, participants were asked the extent to which they were
confident in their design time prediction, whether the design was
well-suited for metal AM LPBF, and whether the design was
well-suited for manufacturing with conventional processes. Each
of these three questions were presented as a 5-level Likert scale,
where a 1 represented the participant strongly disagrees that the
design was well-suited for the process and a 5 represented that
the participant strongly agrees that the design was well-suited for
the process. Finally, participants were asked to rate the geometric
complexity of the design on a 5-level Likert scale, where a 1
represented that the participant thought the design was very
simple and a 5 represented that the participant thought the design
was very complex. The survey was distributed to industry
experts in LPBF.

3.2. Case Study Design Attribute Description
Methodology

Although many products rely on assemblies, composites, or
nonsolid entities, designing such products adds substantial
diversity, complexity, and case-by-case specificity to the nature
of the design process. Because of this, we limited the focus of
case study designs to products which consist of a single, solid
component that is made from a single material. This decision
means that certain opportunistic attributes of AM are not as
relevant to this study, such as multi-material complexity or part
consolidation. Instead, we focus on DfAM opportunities related
to hierarchical complexity and shape complexity. These
opportunities are often achieved through the wuse of
mesostructures [44] and topology optimization [45], which we
incorporate in our case studies.

In addition to categorically defining the scope of the current
work, we also sought to study a varied range of different case
study designs. Furthermore, we sought to understand if there
were concise, quantifiable attributes related to design complexity
that might be found to correlate with participant cost estimate
results. To achieve this goal, we used three different quantitative
complexity metrics: Cpg, the volume ratio complexity
factor; C,p, the area ratio complexity factor; and Cpop, the CAD
degrees of freedom complexity factor.

Since selecting a single complexity factor could itself
introduce bias, multiple types of complexity factors are
considered and combined into a design attribute description
vector which offers a holistic representation of a design’s
complexity. Specifically, the design attribute description vector
uses two geometric complexity factors and one design process
activity-based factor. The geometric complexity factors of part

volume ratio and part area ratio are defined as
|

_ p
Cpr=1- v, )]
and
Ag
Car =1- @ 2
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where V}, is the part volume, V}, is the part bounding box volume,
A is the volume of a sphere of equal surface area to the part, and
Ap is the part surface area. These geometric complexity factors
were chosen because they are related to surface area and volume,
both of which are aspects that affect the visual appearance of a
design. Including factors with this attribute is important because
the current work uses visualizations of designs to communicate
them to participants. Attributes related to surface area and
volume are also known to relate to AM costs from other work
[46]. Cpg and C4p are related to the implementation of the design
surfaces used to model the part. The current work used
parametric, mathematically defined surfaces modeled in
Autodesk Fusion 360 [47] for these calculations.

The CAD degrees of freedom complexity factor, Cpop, is a
design-activity-based factor because it directly relates to the user
interface activities required to model the design concept. In
summary, Cpor estimates the number of steps a human must take
to model the part. This measurement is specific to both the CAD
modeling paradigm chosen and the specific combination of
features chosen to achieve the desired model. In this study,
Autodesk Fusion 360 [47] was used with a parametric, feature-
based modeling paradigm. A “degree of freedom” in this context
refers to a numeric parameter that the designer must set to define
a particular feature used to model the part with the user interface
of a CAD application. Compared to the geometric complexity
factors, Cpor is not as visually recognizable from an image of a
model, but does relate more closely to the actual required
duration to design a component using CAD. This assertion is
based on the assumption that setting each parameter in a design
requires some duration of human-attentive effort. Specifically,
Cpor is computed by counting the number of CAD modeling
features of various types in a model, then multiplying the counts
by the assumed degrees of freedom required to define each
feature type. This procedure is summarized by the equation

n

3)
Cpor = 2 vim;

i=1

where n is the number of allowable CAD feature types, v; is the
number of degrees of freedom assumed to be required for the
feature ith type, and m; is the number of instances of the ith
feature type. Different features require different numbers of
numeric parameters to define. For instance, a point on a 2D
plane, called a “Sketch Point” in many CAD applications,
requires two numeric dimensions, x and y distances relative to
an origin, be defined. Other features, such as a simple extrusion
or revolve of a profile may require only one dimension, while
others, such as a 2D linear pattern, may require more. Again, the
specific types of features used, numbers of degrees of freedom
that are included and important to those features, and
combinations and sequences of those features used in an actual
design is not unique for a particular geometry. These factors
depend on the particular CAD application used and choices made
by the designer. In this study, we used a sketch-based, parametric
modeling approach.

In this approach, 2D reference planes are first defined within
a 3D build space. Next, sketch points representing the vertices of
profile curves are located and drawn on the reference planes.
Mathematically-defined curves are then drawn connecting these
points into either closed profiles or non-closed paths for
construction. The profiles and paths are then extruded, swept,
revolved, or lofted to define 3D volumes. These 3D volumes are
then combined to form a macrostructure volume. The
macrostructure is either accepted as the final design, or is
modified by patterning lattice cutouts to form a mesostructure or
selectively trimmed based on a finite element analysis simulation
of stress under loading. This process is a common approach to
parametric CAD DfAM. Different CAD modeling paradigms,
such as constructive solid geometry (CSG) of primitives, surface
modeling, implicit modeling, or approaches which allow for
combinations of paradigms may require different assumptions
surrounding degrees of freedom per allowable feature if using a
similar approach.

The case studies were single-component products.
Participants were prompted to estimate the design labor in hours
required to create the part. To avoid possible bias in participants
having seen certain designs before, we did not use existing
commercially manufactured products nor previous designs from
prior literature.

To provide both consistency and replication in the design
complexity, we used a three-level design complexity progression
that was replicated for three different design functional types.
This progression of design complexity included (a)
macrostructure CAD only, (b) mesostructure CAD, and (c)
generative CAD. The macrostructure-only CAD designs were
created using parametric CAD features only, lacking
mesostructural complexity achieved through patterned features
and generative features. The macrostructure designs were the
least complex in their functional categories, as measured by the
three quantitative complexity factors.

The mesostructure CAD designs included a patterned,
subtractive lattice feature, incrementally increasing the
complexity due to increased surface area. The generative CAD
used a hybrid design approach that incorporated a combination
of simulations, functional constraints, subtractive features, and
additive features to guide and form the final shape. These
included a stress-based topology optimization to lightweight the
part given an assumed loading scenario to inspire broad
lightweighting strategies followed by subsequent stress
simulations to include additive support features. These designs
were the most geometrically complex, largely due to their high-
dimensional splines and curved surfaces. The design intent of
these forms for the study were that they efficiently withstood a
load case and appeared “organic” to the participants. These
complexity levels were replicated three times for the artifact
types of “bracket”, “bottle opener”, and “hatchet”. The artifact
types were selected because they could plausibly be single
component products suitable for the scope of the study, were of
reasonable scale for a contemporary LPBF machine’s build
volume, and would have mechanical user requirements derived
from the resistance of external forces (see Figure 3).
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FIGURE 3. ISOMETRIC IMAGES OF THE CASE STUDY
DESIGNS PRESENTED TO SURVEY PARTICIPANTS FOR
DESIGN LABOR ESTIMATION.

3.3. Data Analysis

The survey data were analyzed for four primary
considerations: a) the attributes of the participants, b) the
consistency and predictability of the labor estimates, c) the
significance of design and participant factors on labor estimates,
and d) the comparative time per CAD degree of freedom for each
participant. Understanding the participant sample attributes is
important to contextualizing the results. Although the scope of
the current work does not intend to assign causal relationships
for the effects of all demographics measured, we anticipated that
participant focus industry attributes, such as the degree to which
an industry is regulated, might positively correlate with design
labor estimates. However, we also anticipated that the resource
limitations of the current work would likely render correlations
not statistically significant at this time.

Additionally, we investigated the significance of factors
related to a) the design for which the labor was estimated and b)
the individual conducting the estimation. To determine
significance, we analyzed the data using a linear mixed effects
model (LMEM). The response variable for the LMEM was the
number of design labor hours estimated by a participant. The
fixed effects were the artifact type (bracket, bottle opener, or
hatchet), design material reduction strategy type (macrostructure
only, lattice, generative), volume ratio complexity, area ratio
complexity, degrees of freedom complexity, participant years of
experience, participant design for AM self-assessed expertise,
participant design for conventional processes self-assessed
expertise, participant CAD self-assessed expertise, and
participant cost estimation self-assessed expertise. The per-

subject random effects were participant-assessed design
complexity, participant-assessed AM  manufacturability,
participant-assessed conventional ~manufacturability, and
participant labor estimate confidence. The variables that were
included as random effects were all participant reported for each
design, and not intrinsic to the designs.

The LMEM was conducted using R version 4.0.5 and the
ImerTest version 3.1-3 library. Significance of the coefficients
of each fixed effect were determined using Satterthwaite’s
method t-tests and an alpha value of 0.05. Significance in this
test suggests that the fixed effect contributes to the participant’s
labor estimate. Analysis of variance (ANOVA) was used to
determine if the random effects influenced labor estimates
differently for each participant.

Next, we explored the relationship between quantitative
complexity and design effort by comparing each participant’s
predictions to the number of degrees of freedom calculated for
the design. This calculation is called ty, the normalized degrees
of freedom complexity factor, calculated as
ost. (©)

ty =
N CDOF

where Cpor is the degrees of freedom complexity factor for the
design model and t,; is this participant estimated labor required
to design the part in hours. Cpor was chosen for this calculation
because it is the closest to a common denominator which can
compare all parts. The units of ty are hours per degree of
freedom, and allow us to compare both within group and
between group central tendency and spread of participant
responses similar to a labor rate. Although Cpop is only an
approximate estimate of the number of degrees of freedom
required to produce the CAD model in question, it provides a
useful benchmark for the purposes of interpreting these data and
comparing across subjects. We hypothesize that high variability
of ty would be less desirable in industry when actually using
human labor estimates for forecasting, as it would suggest high
individual-to-individual bias and could erode trust in the
estimates.

4. RESULTS AND DISCUSSION

In this section we detail the results participant demographic
breakdown (see section 4.1), the labor estimation results (see
section 4.2), the linear mixed effects model results (see section

4.3), and the estimated cost per design task results (see section
4.4).

4.1. Participant Sample Background Results

In total, 25 participants fully completed the survey (partially
complete responses were omitted). This sample included 19
participants self-identifying as men, 3 participants self-
identifying as women, 0 participants identifying as another, and
3 participants selecting to prefer not to say. 19 of the participants
self-identified as white, 1 self-identified as Hispanic, Latino, or
Spanish origin, 1 self-identified as Middle Eastern or North
African, 1 self-identified as some other race, ethnicity, or origin,
and 2 selected to prefer not to say. For industry affiliation, 10

Copyright © 2022 by ASME



participants self-identified as Aerospace, 6 self-identified as
Defense, 2 self-identified as Education, 2 self-identified as
Consumer Goods, | self-identified as Energy, 2 self-identified as
Transportation, and 1 self-identified as “software and DfAM
agnostic of industry”. The mean number of years of experience
in industry was 11.4 years, ranging from a minimum of 0 years
to a maximum of 33 years. The mean participant age was 35.1
years. For the participant background five-level Likert scale
questions, the responses were converted to a normalized value
ranging from 0 to 1. Frequencies for these responses are shown
in Figure 4.
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FIGURE 4. PLOTS OF PARTICIPANT SELF-REPORTED
RESULTS TO WHETHER THEY AGREED THAT THEY ARE
AN EXPERT IN A) DESIGN FOR ADDITIVE
MANUFACTURING OF METALS WITH LASER POWDER
BED FUSION, B) DESIGN FOR MANUFACTURING WITH
CONVENTIONAL PROCESSES, C) COMPUTER-AIDED
DESIGN, AND D) COST ESTIMATION OF DESIGN
ACTIVITIES.

4.2. Participant Sample Cost Estimation Results

The participants’ estimates of required engineering design
labor varied substantially both across artifact types and within
design concepts (see Figure 5). Overall, the mean estimate for
design labor of all concepts across all participants was 19.6 hours
and the standard deviation was 21.2 hours. The generative
bracket design concept had the longest estimated duration, with
a mean estimate of 48.16 hours. Conversely, the macrostructure-
only bottle opener design concept was the shortest estimated
duration, with a mean estimate of 7.8 hours recorded. The most
variable design was the generative bracket, for which a standard
deviation of 35.83 hours was observed. The design groups of
bracket, bottle opener, and hatchet exhibited means of 27.72

hours, 12.63 hours, and 18.49 hours respectively. When grouped
by design-intent complexity, the estimated labor followed the
central tendency trend of generative designs (30.87 hours),
followed by lattice designs (19.09 hours), followed by
macrostructure-only designs (8.88 hours). This trend was
observed both overall and within all design groups except for the
bottle opener, in which the generative and lattice designs were
relatively closer on average.
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FIGURE 5. BOX PLOTS OF DESIGN LABOR ESTIMATION
SURVEY RESULTS FOR EACH CASE STUDY DESIGN AND
SELECT AGGREGATES OF MULTIPLE DESIGNS.

In terms of design labor breakdown, participants indicated
that engineering analysis and simulation was estimated to be the
most time-consuming portion of the DfFAM process, consuming
34% of the design labor, on average (see Figure 6). Slicing and
toolpath generation was the least time-consuming portion, with
a mean of 9%. The magnitude of variability for design
breakdown allocations was less than the variability observed for
overall labor hours estimates. For instance, the mean standard
deviation of design hours required for a single design concept
was 108% of its mean, whereas the mean standard deviation for
a single design labor activity was 62% of the respective mean.
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Participants were above neutral in the self-assessed
confidence of their predictions. When converted from a five-
point Likert scale to a normalized value, the mean confidence
was 0.67 and the standard deviation was 0.21. A spread of
perceived complexity, suitability for AM, and suitability for
conventional manufacturing values were observed, covering the
entire range of available responses.

4.3. Labor Response Predictability Analysis

The linear mixed effects model (LMEM), which was used to
model whether participant and design attributes significantly
affected participant estimated design cost, indicated a mix of
both significant and insignificant factors were observed. Six of
the fourteen of the factors investigated in the LMEM were
significant to an alpha value of 0.05 (see Table 1). These
significant factors included artifact type, hierarchical
complexity, degrees of freedom complexity factor, participant
perceived complexity, participant years of expertise, and
participant degree of AM expertise. Many of these significant
factors were data that were either provided by the participant
directly, such as their levels of expertise, or directly evident to
the participant, such as artifact type. Other attributes of the
designs that were not directly communicated to the participants,
such as area and surface volume ratio complexity, were not
significant. These results suggest that the combination of a
participant’s background and their own mental model of a
design’s complexity were more impactful on their design labor
duration estimate than general quantitative complexity values.

One significant attribute that differs from this trend is degrees of
freedom complexity factor. This factor’s significance suggests
that unlike part and volume ratio complexity, the complexity
factor based off the CAD modeling paradigm was correlative to
this participant pool’s predictions even though it was not
explicitly revealed to them. Although more detailed studies
would be required to definitively assign causality, this difference
could mean that the degrees of freedom complexity metric is
more likely to be intuitive to experienced designers when
assessing design complexity and required design duration based
on their visual appearance.

TABLE 1. LINEAR MIXED EFFECTS MODEL COEFFICIENTS
AND T-STATISTIC RESULTS FOR THE LINEAR MODEL
PREDICTING PARTICIPANT LABOR ESTIMATE GIVEN
DESIGN CONCEPT AND PARTICIPANT BACKGROUND
DATA. BOLDED P-VALUES WERE SIGNIFICANT TO a =

0.05.
Independent Model t-statistic p-value
Variable Coefficient
Artifact Type -0.018 -2.010 0.046
Hierarchical -0.072 -2.710 0.007
Complexity
Part Volume Ratio 0.021 0.657 0.512
Complexity Factor
Part Area Ratio 0.126 0.949 0.344
Complexity Factor
Degrees of Freedom 0.224 3.118 0.002
Complexity Factor
Participant Perceived | 0.117 2.488 0.016
Complexity
Participant Estimated | 0.033 1.147 0.270
AM
Manufacturability
Participant Estimated | -0.016 -0.576 0.566
Conventional
Manufacturability
Participant -0.046 -1.004 0.334
Confidence
Participant Years of 0.110 3.530 0.002
Experience
Participant Degree of | 0.172 5.472 3.000e-5
AM Expertise
Participant Degree of | 0.039 -1.573 0.132
Conventional
Manufacturing
Expertise
Participant Degree of | -0.035 -1.008 0.329
CAD Expertise
Participant Degree of | -0.032 -0.878 0.393
Cost Estimation
Expertise

In addition to whether factors were significant or
insignificant, the LMEM also provides estimates as to the
magnitude and directionality of each factors’ effect. Positive and
relatively large coefficients were observed with the degrees of
freedom complexity factor, participant perceived complexity,
participant years of experience, and the participant degree of AM
expertise. Although the degrees of freedom metric used in this
study has not been validated experimentally, that the measure
consistently and strongly correlates with participant estimated
design labor costs is promising for its effectiveness as a concise
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and reliable design attribute for future work. The positive
correlation matches our intuitive hypothesis that the perception
or suggestion of more CAD tasks would lead a design forecaster
to a higher design cost estimate. Participant perceived
complexity sharing a similar directional trend also supports this
hypothesis. Participant years of experience and degrees of AM
expertise having a positive effect on estimated design cost also
supported our intuition. Professionals that have fewer years of
experience have been observed to exhibit overconfidence in their
field [48]. Conversely, in this case those engineers with more
experience might become more risk averse over time, and
therefore provide more conservative and costly estimates for
labor.

4.4. Estimated Cost Per Design Task

In addition to investigating which design and participant
attributes best predicted estimated cost, we also calculated and
characterized an estimate of the time allotted for finer detailed
CAD operations as based on the participant labor estimates and
an estimate of the degrees of freedom of the CAD models. The
CAD models for the design case studies used in the current work
exhibited a range of Cpor and ty values (see Table 2). The
macro-only hatchet was the lowest number of degrees of
freedom, 96, while the generative hatchet was the highest, 1,073.
The time per degree of freedom for all participants across all
designs was 3.24 minutes per degree of freedom. In terms of
individual designs, the greatest value was for the macro only
hatchet, at 5.75 minutes per degree of freedom and the lowest
value was for the generative bottle opener at 1.42 minutes per
degree of freedom.

TABLE 2. CALCULATED RESULTS FOR VOLUME RATIO
COMPLEXITY (Cpg), AREA RATIO COMPLEXITY (C,z) AND
MEASURED PARTICIPANT ESTIMATED RESULTS FOR
MEAN NORMALIZED PARTICIPANT RATED COMPLEXITY
AND MEAN TIME PER DEGREE OF FREEDOM.

Design Volume Area Ratio Mean Mean
Ratio Complexity | Normalized Time per
Complexity | (C4p) Participant Degree of
(Cpr) Rated Freedom

Complexity (ty,
minutes)

Macro-only | 0.703 0.499 0.08 5.16

bracket

Lattice 0.805 0.692 0.65 4.11

bracket

Generative 0.986 0.795 0.93 3.54

bracket

Macro-only | 0.0958 0.616 0.08 4.72

bottle

opener

Lattice 0.804 0.748 0.45 2.26

bottle

opener

Generative 0.721 0.690 0.47 1.42

bottle

opener

Macro-only | 0.722 0.573 0.18 5.75

hatchet

Lattice 0.854 0.713 0.54 4.28

hatchet

Generative 0.913 0.793 0.76 1.62
hatchet

The distribution of the estimated time per degrees of
freedom for all designs aggregated together most resembled an
exponential distribution (see Figure 7). Most values fell between
zero and five minutes per action, with nearly 30% of the data
falling under one minute per task. Since all of the computer-
aided design degrees of freedom could likely be physically
completed in seconds by an experienced user who had already
planned their actions in advance, these results strongly suggest
that time estimated to complete the design by the participants
would entail critical thinking or other non-CAD activities, as has
been observed in experimental studies of CAD for AM activities
[49]. Since outliers do exist in the overall data, and the
distribution could be modeled as an exponential, we hypothesize
that detecting outliers or deviations from a curve could be useful
to screen potentially erroneous design cost estimates. Additional
studies would be needed to guide the efficacy of such an
approach.
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FIGURE 7. PROBABILITY HISTOGRAM OF THE AVERAGE
ESTIMATED MINUTES PER DEGREE OF FREEDOM (ty)
FOR EACH PARTICIPANT LABOR ESTIMATION OF A
DESIGN, WITH ALL DESIGNS GROUPED TOGETHER.

In addition to examining the distribution of the overall time
per degree of freedom results, we also broke down the data into
aggregates by design type and design complexity level (see
Figure 8). Upon visual inspection, not all aggregates matched the
characteristic exponential distribution shape as closely as the
overall aggregate. Bottle opener, hatchet, generative, and macro
only designs most closely matched the exponential shape, and
the others did not appear to match a canonical distribution as
closely. Generally, the bracket and hatchet designs exhibited
similar distributions to each other when compared with the bottle
opener aggregate distribution. The bottle opener aggregate had
the highest probability of a degree of freedom taking less than
one minute on average, further reinforcing the conclusion that
the participants especially thought the bottle openers could be
designed quickly. The likelihood of fast average degree of
freedom times increased from macro-only, to lattice, to
generative. This trend, when combined with the aforementioned
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result of overall mean estimated times increasing in the same
order, suggests an inconsistency and possible shortcoming in the
participants. Although the participants were unaware of the
degrees of freedom calculation, if it is assumed to be a sufficient
proxy of the number of activities required to complete the design
work, a consistent estimator should theoretically exhibit a
roughly constant average time per degree of freedom. Instead,
the participants do not appear to be increasing their estimates on
average enough. However, the opposite could also be the case:
that participants were overestimating the time for the lower
degree of freedom designs. An additional study that
experimentally verifies these phenomena in real-world design
activities would be required to answer this new question.
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FIGURE 8. PROBABILITY HISTOGRAMS OF THE AVERAGE
ESTIMATED MINUTES PER DEGREE OF FREEDOM (ty)
FOR EACH PARTICIPANT LABOR ESTIMATION OF A
DESIGN IN THE AGGREGATES OF A) ALL BRACKET
DESIGNS, B) ALL BOTTLE OPENER DESIGNS, C) ALL
HATCHET DESIGNS, D) ALL MACRO-ONLY DESIGNS, E)
ALL LATTICE DESIGNS, AND F) ALL GENERATIVE
DESIGNS

5. CONCLUSION

Estimating the cost of designing manufactured components
is important to profitable research and development, especially
when those design costs may require the up-front scoping of
demanding engineering activities like laser powder bed fusion.
In this study we investigated the ability of people to preemptively
estimate the design cost of metal LPBF AM components and
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what factors of people and components may influence those
estimates. First, we created nine LPBF case study design concept
components and CAD models of those designs. Next, we
characterized the complexity of the CAD model geometries and
topologies. We then distributed a survey to designers in industry
who were experienced with the LPBF design process and
measured their estimates for design labor and labor breakdown
for each of the case studies. Finally, we analyzed the results of
the design labor survey to understand the attributes of our
sample, the distribution of the labor estimates in the sample, and
estimate which factors related to the participants and the case
studies were significant to their estimates.

In terms of our first research question, related to how much
experts vary in their estimates of labor, we found that the
estimates varied substantially and inconsistently. For some case
studies, experts differed in their labor estimate by two orders of
magnitude, while others were less widely spread. This finding
suggested that who was performing the estimate could greatly
impact the magnitude of a research and development forecast
even for relatively small-scale designs like those studied,
differing by multiple weeks of engineering labor. Regarding our
second research question, we found that if given summary
attributes of a designer and a design problem we could predict
their estimate. This result suggests that designers’ estimates are
not varying due to random chance alone, but rather their
experience, background, industry, or bias are likely major factors
in their preconceived notion of design cost. Finally, for our third
research question we found that there was substantial variability
both within and between subjects for the normalized time per
CAD action. This observation indicates that human subjects
would, overall, not yield consistently accurate design cost
estimations in an experimental environment.

Overall, our results suggest that design labor cost estimation
is a challenging task, with a potential for inconsistency due to
personal bias and multiple factors. Given the importance of
forecasting for allocation of research and development
resources, further work is needed to both understand the nature
of this challenge more precisely and investigate techniques to
assist designers in this task. Future studies could directly expand
on our findings by testing whether the factors we determined to
be significant predictors of preemptively estimated cost are also
significant predictors of measured, post-design labor cost. Our
methodology could also be enhanced by identifying ways to
maximize the overlap of relevant case studies with actual
projects in industry so as to reduce the cost burden of conducting
such time-consuming studies within the context of busy
industrial or academic settings. Furthermore, future work could
investigate if our survey results are replicated when posing the
case studies and questions in the context of other subfields of
AM, non-additive  manufacturing  environments,  or
environments not related to physical manufacturing but with a
design component, such as software design. Lastly,
interventional tools such as data-driven regression analyses
could be developed and tested to enhance the consistency and
accuracy of preemptive LPBF design labor cost estimation.
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