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Abstract— This paper concerns identification of uncontrolled
or closed loop nonlinear systems using a set of trajectories that
are generated by the system in a domain of attraction. The
objective is to ensure that the trajectories of the identified
systems are close to the trajectories of the real system, as
quantified by an error bound that is prescribed a priori. A
majority of existing methods for nonlinear system identification
rely on techniques such as neural networks, autoregressive mov-
ing averages, and spectral decomposition that do not provide
systematic approaches to meet pre-defined error bounds. The
developed method is based on Carleman linearization-based
lifting of the nonlinear system to an infinite dimensional linear
system. The linear system is then truncated to a suitable order,
computed based on the prescribed error bound, and parameters
of the truncated linear system are estimated from data. The
effectiveness of the technique is demonstrated by identifying an
approximation of the Van der Pol oscillator from data within
a prescribed error bound.

I. INTRODUCTION

Identifying nonlinear dynamical systems from data, with-
out knowledge of the structure of the model, and with
guaranteed error bounds, has proven to be a difficult chal-
lenge. The focus of this paper is on the identification of the
dynamic model of a nonlinear system within prescribed error
bounds using Carleman lifting, where the finite dimensional
nonlinear system is lifted into an infinite-dimensional linear
system via Carleman linearization. The linear system is
then truncated to a suitable order, computed based on the
prescribed error bound, and the parameters of the truncated
linear system are estimated from data.

A variety of system identification methods are available
for linear time invariant (LTT) systems. For example, in non-
parametric frequency-domain estimation methods, the system
is subjected to a white noise input, the output is represented
in the frequency domain, and the user fits a model that
is determined by the number of resonant frequencies and
the decay rate of the power spectrum. On the other hand,
parametric methods presuppose a system representation, such
as an auto regressive moving average (ARMA) model or a
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state space (SS) model, where the order of the system is
estimated first using auto correlation. The system identifica-
tion problem is reduced to a parameter estimation problem,
which is solved using numerical gradient descent methods
to minimize a suitable error metric (c.f. [1]).

In the case of nonlinear systems, the identification problem
is much more difficult. If the structure of the system is
known a priori, the identification problem can be reduced to
a parameter estimation problem which can be solved using
Lyapunov-based adaptive estimation methods [2]. For prob-
lems with unknown system structure, spectral decomposition
methods have proven to be effective for system identification
in many practical applications [3]-[5], they generally do not
provide theoretical error bound guarantees. Similarly, using
neural networks for nonlinear system identification [6], do
not provide theoretical error bound guarantees.

In [7], the authors develop a system identification approach
that bounds the model error in terms of the prediction horizon
and the magnitude of the derivatives of the system state, if
the magnitudes of the derivatives of the system state are not
analytically available, then they are calculated from data, in
which case the error bounds may be violated.

The approach in this paper is inspired by the Carleman lin-
earization approach developed in [8]. Carleman linearization
converts a finite dimensional nonlinear system to an infinite
dimensional linear system. The conversion is realized by
expanding the state space of the nonlinear system to include
all monomial functions of the original state variables.

In [9], the authors used Carleman linearization in conjunc-
tion with a known nonlinear model to develop a truncated
linear system that approximates the nonlinear system in a
region of attraction. Moreover, the trajectory of the truncated
linear system is guaranteed to stay within a computable error
bound around the trajectory of the nonlinear system over
a prediction horizon. The error bound can be computed a
priori when the decay rate of the Maclaurin expansion of
the nonlinear system and the order of truncation are known.

In this paper, the results in [9] are leveraged to develop a
Carleman lifting-based approach to data-driven modeling of
nonlinear systems. Given a set of trajectories generated by a
nonlinear system and an upper bound on the decay rate of
the Maclaurin expansion, a linear system of a higher order
is identified such that the trajectory of the identified linear
system stays within a guaranteed error bound around the
trajectory of the nonlinear system over a prediction horizon,
and the error bound can be prescribed a priori.

The paper is organized as follows. The problem is for-



mulated in Section II. In Section III the approach for
identification of linear systems is presented. In Section IV
the properties of the identified system are analyzed. In
Section V an algorithm to generate the identified linear
system with a guaranteed error bound is presented. In Section
VI a simulation is presented to demonstrate the system
identification method. In Section VII, a discussion of the
results is presented, and Section VIII includes concluding
remarks and a discussion on future work.

II. PROBLEM STATEMENT

Consider an unknown dynamical system of the form
i = £(t,7) (1)

where f : (R;. x RY) — R? is a vector valued real analytic
function of several variables, R, = {y € R : y > 0},
x(0) = =z, and f(t,0) = 0. Given a set of observed
trajectories, {7;}7,; = X, generated from (1) and an error
bound A > 0, the objective is to develop a systematic
technique to either
1) construct another dynamical system of the form 2 =
g(t, 2) such that the error ||x(t) — 2]4(¢)|| between the
trajectories of the Z—system and the trajectories of (1)
is less than A for ¢ € [0, 7*], for some 7* > 0, where
%|q is the truncation of Z to the first d dimensions, or

2) conclude that construction of such a system, using
the particular method developed in this paper, is not
possible.

The problem, as formulated above, is difficult to solve for
general nonlinear systems. In this paper the formulation is
restricted to a sub-class of nonlinear systems, defined by the
following assumptions as in [9].

Assumption 1. The vector field f (¢, z) admits a Maclaurin
expansion about the state vector x

fit,o)= > fat)x*= >

ozl aeZi\{0}

£, (x>, t e RT. (2)

where a = (a1,...,a4) € Zjl_, is a multi-index and its
corresponding multi-variate monomial is x* =« --- 23",
where Z‘i is the set of non-negative integers.

Assumption 2. The Maclaurin expansion coefficients satisfy
the exponential decay property

sup Z Ifa(®)|l.. <CR™™,n>0 3)

>0
|a]=n

where C' and R are positive constants, and the cardinality of
« is defined by || = ay + -+ + ag.

While this assumption is restrictive, a large subclass of
systems fall under this category, since polynomial, trigono-
metric, and exponential functions have Maclaurin expansions
with exponential decay. The idea is to use Carleman lift-
ing [8], [9] to lift the nonlinear system into an infinite-
dimensional linear system such that the truncation of the

trajectory of the linear system to the first d dimensions ap-
proximates the trajectory of the system in (1), in the infinity
norm over a finite time interval. The infinite-dimensional
linear system is then truncated to yield a finite-dimensional
linear system such that the error between the projected
trajectories and the original trajectories is less than the given
error bound, A.

III. DATA-DRIVEN CARLEMAN LIFTING

Carleman linearization [8] lifts a finite dimensional non-
linear system to an infinite dimensional linear system

y=Ay “

where y is an infinite dimensional vector consisting of all
unrepeated monomials of = and A is an infinite dimensional
operator. The operator A is approximated by truncating its
matrix representation to the first M x M block, which will
be called A.

The nonlinear system is then approximated by a linear sys-
tem in terms of a lifted state z which consists of unrepeated
monomials of z up to order N. For example, if N = 3 then

2 2

= l(z) = [1,. .., 24,27, T1T2, . ., T1Xd, L5y - - ., Ty
= = 3 .2 3T
T3, 2T, ..., L1223, . .., T,

where [ : R — RM denotes the lifting map and M is the
number of monomials which is Ml = Z,szl (5.

The results of [9] indicate that for any system that satisfies
Assumptions 1 and 2, a trajectory in a region of attraction
can be approximated, with arbitrary accuracy, by truncation
of solutions of

2= Az )

to the first d dimensions, where computation of A requires
complete knowledge of the system dynamics, f.

In this paper, a data-driven approach to generate the
linear system is developed. Given a set of trajectories of
the nonlinear system, denoted by {~;} : [0,7] — RY, that
satisfy ||v;(t)|| < M for all ¢ € [0, 77, the objective is to find
an order N and an estimate A of an N'-order truncation A
of the operator A such that sup;c(g ;- [[2(t) — Z[a(t)]| < A,
where [0, 7%] is the interval over which the error bound can
be guaranteed and Z|; is the d—dimensional truncation of
the solution 2 of 2 = A% starting from 2(0) = I(x(0)).

Let z; denote the trajectory of (5) starting from the initial
condition z;(0) = {(~;(0)). Let

€i(t) = 1(vi(t)) -

denote the error between the trajectories of the model-based
Carleman linearization in (5) and the trajectories of (1). The
trajectories of the linear and the nonlinear systems are then
related by

L10u(0) = 20) + i) = Az @) + &), )

zi(t) 6)



Integrating (7),

7 T
| Gteen = [ asryir+am)

0 T
— 4 / (1(i(r) — ex(r) dr + 4(T). ®)
0

Note that ¢;(0) = 0. Concatenating all the measured trajec-
tories into a Vector L@t) = [I(n(t),-- l(vm(®)] T, and
lettlng I= fo T)dT, Where Z = [z1,--.,2m), with I, =

fo 7)dr and .[1“ = fo T)dr, one gets the relationships

Ir = I + I, and
D(T) = T(0) = Al — A + ¢(T), ©)
where €(t) = [e1(t),...,em(t)] .

Provided the matrix It is full rank, a data-driven approx-
imation A of the lifted matrix A can be computed using the
least-squares solution of (9) as

A= (D(T) —T(0)) I, (10)

where ()T denotes the Moore-Penrose pseudo-inverse.

Once the matrix A is computed from data, trajectories of
the linear system % = A2 can be computed and truncated
to the first d dimensions to estimate the trajectories of the
nonlinear system.

IV. ERROR ANALYSIS AND PRESCRIBED ERROR
APPROXIMATION

There are two sources of error between the trajectories of
the identified system truncated to the first d dimensions, and
the trajectories of the nonlinear system. The first, is the error
€ introduced in (6), between the trajectories of the nonlinear
system and the model-based Carleman-linearized system in
(5). The second, is the error 2(¢t) := z(t) — 2(t), between the
trajectories of the model-based Carleman-linearized system
and the identified linear system, starting from the same initial
conditions. The former is quantified in [9] as follows.

Assumption 3. The measured trajectories are bounded such
that ||v;(¢)|] < M for all ¢ = 1,...,d and ¢t € [0,T] and
M < g, where R is introduced in (3) and e is the base of
the natural logarithm.

Under Assumptions 1 - 3, for every IV > 1 there exists a
7* > 0 such that

lela(t)]| < D™, vt € [0,77], (11)
where €|; is the d—dimensional truncation of ¢ in (6),
0 < D = M(lf(—)f , Co < CR™!, and p <

(MeR™') e“0™" < 1. The error bound in (11) can then be
guaranteed over the time interval [0, 7*] for all 7* such that

—log(MeR™1)
Co ’

One of the main contribution of this paper is to quantify
the error Z, between the trajectories of the identified system

and the model-based Carleman-linearized system. To that
end, the following assumption is needed,

T*

12)

Assumption 4. There ex1sts a constant I such that
(17D~ < T, where I = [ Z(r)dr.

Theorem 1. If Assumptions 1 - 4 hold, then the state
estimation error is bounded as

lz(t) = 2la(®)l| < Dp™ + 7 BZA4,

for all t € [0,7%], where B = max{|[e"™"|,1}, 7 =
supye(o, |2(t)|, and A = HA AH
Proof. By using the triangle inequality
() = 2la(@)I] < llela@® + 1121 (13)
and under Assumptions 1 - 3.
lela())]l < D™ (14)

The dynamics of the error are given by
= Az — As.
By adding and subtracting AZ,
F=AZ+(A-A)z.

Using the variation of constants formula [10]

Z(m*) = e 3(0) + /O i AT (A — A)z(r)dr

The triangle inequality and the Cauchy-Schwarz inequality
then result in the bound

syl < [ e
0

Since z(0) = 0, then
|2(7*)|| < T*BZzA.

HA AH 12(7)| dr-.

s5)

Since A is unknown, calculation of A requires further
effort. To that end, let D(t) = Z(t) — Z(0). From (5) if
I is nonsingular, then

A=DI" (11"t
and from (10) the estimation is calculated as
A=D+e)I+I1)T [T+ 1) +1.)"?

Note that the matrix [ is comprised of integrals of the
trajectories of the model-based Carleman-linearized system,
and as such, it is unknown. However, the matrix It can be
computed, and is perturbed from I by I.. Using continuity
of eigenvalues of matrices with respect to elements of the
matrix, it can be concluded that for small enough I., the
difference between ||(I71)7!(| and ||(I 1 Ir) || is o([e).

The bound A can then be estimated using the matrix
inverse identity [11], (Q+V) 1 =Q ' -Q~'V(Q+V)~!
where @ and (Q + V') are non-singular matrices. Applying
the identity to the expression for A and using Assumption
4,

A< [T AT NN+ DI+ (] el
+ U + I+ ]2 )

AEIDI A (2T llell + DI+ [[ 2] elll, - (16)



where [|77]] < {127 || + [ ]|

Since B = max{|eA7"||,1}, an estimate of ||| is
obtained by realizing that

eAT :e(A—A—',-A)T :eA—AT eAT

)

and as a result,

E — BAT*

‘ < eA'r*

’6/17'*

a7)

Using (17) and (16) in (15), and substituting (14) and (15)
in (13), we get

() — 2la(t)| < Du® + 7~ BFA, Wte[o,r']. (18)

O

V. ORDER SELECTION ALGORITHM

Once the upper bound is calculated as a function of N
using (18), a search over V =1,2,..., N can be conducted
(see Algorithm 1), to yield

N* = arg mj\i/n(DuN +17*BzA),

where N* denotes the lifted order which produces
an identified system with the smallest guaranteed er-
ror bound. If DuN" + 7*BzZA > A, then the sys-
tem identification method cannot produce a system that
guarantees Sup;cpo .+ [7(t) — 2l2(t) < A. Otherwise,
if DuN" + 7*BzZA < A, then the system can be
identified using the truncation order N* to guarantee
supyc(o.r- le(t) = Zla(8)]| < A.

Algorithm 1 Carleman System identification algorithm. In
the algorithm, NV is an upper bound on the truncation order,
selected a priori.

Require: X, R, C, N and A
Ensure: Cy < CR™!
Ensure: M > ||z]
D M (1 (3))
Ensure: D > 0
Ensure: 7 < —log(MeR 1)
0
Ensure: 1 < (MeR™1) e <1
N+ 1
while N # N do
Find A from (16)
Find B from (17)
O(N) + DuN + 7*AzZB
N+ N+1
end while
if min[©(N)] < A then
N* + argminy[©(N)]
Return A using N*
else if min[O(N)] > A then
Return “Failed”
end if

VI. SIMULATION

To demonstrate the effectiveness of the system identifica-
tion approach in Section III, the Van der Pol Oscillator is
used. Consider the Van der Pol Oscillator given by

T1 = T2,

. 19
T9g = —T] — Tg + xgx% (19)

A total of 209 trajectories of the system in (19) are
sampled , each over the time interval [0, 10] with a sampling
time of 0.02 seconds. The trajectories are recorded starting
form initial conditions that are uniformly sampled from
the set [—1,1] x [—1,1]. The trajectories are then lifted
to different dimensions, with N = 2,3,...,12 for system
identification.

Using the lifted trajectories, (10) is used to determine the
system matrix A. The identified system matrix is used to
simulate the identified system from tq = 0 to ¢ty = 20
seconds. The trajectories generated by the identified system
are truncated to the first two dimensions and compared with
the recorded trajectories of the nonlinear system in (19).
For comparison, trajectories of the linear system obtained
using the model-based Carleman linearization in [9] are
also generated. Note that the system matrix Ais computed
directly using recorded data from the nonlinear system. The
model-based Carleman linearization from [9] is used for
comparison and analysis purposes only.

The resulting trajectories of the nonlinear system, the
model-based Carleman-linearized system, and the identified
linear systems are shown in Figures 1-3. To quantify the
performance, the errors sup,cpg ,+ [|(t) — 2]2(¢)|| between
the measured trajectories and the identified system trajecto-
ries, and sup;¢(o -+ [[2(t) — z|2(?)]|, between the measured
trajectories and the model-based Carleman-linearized trajec-
tories, are plotted in Figure 5. The parameters introduced
in Sections II and IV are selected as M = 1.5, R = 4.1,
C =337, N = 13 and Cy = 0.001, all of which satisfy
the conditions in Section IV and in (3). Using (18) the
selected parameters can be seen to guarantee the error bound
lz(t) = 2]2(t)|| < 3 over the time interval ¢ € [0,0.2].

Remark 1. Since the algorithm returns A using N* or returns
“Failed”, insights into the system identification method and
the error bounds for N # N* are not obtainable. To that
end, this paper presents results for identified systems using
lifting orders other than N* and compares the guaranteed
error bounds and the error for a range of lifting orders.
Figure 4 illustrates the data-driven bound on
|z(t) — 2|2(¢)||, developed in (18), compared
(1) — zl2(D)]],

SUPte(0,7]
with the model-based bound on sup,¢(g -+
developed in [9].

VII. DISCUSSION

The results in Figures 1-5 show that for the model-based
Carleman-linearized system, increasing the order N produces
a more accurate approximation of (19). However, as seen
in Figure 3 for the data-driven identified system, increasing
the order NV past a certain point can result in an identified
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Fig. 1. Trajectories of the nonlinear system, the identified system, and the

model-based Carleman-linearized system using N = 2.
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Fig. 3. Trajectories of the nonlinear system, the identified system, and the
model-based Carleman-linearized system using N = 11.

model that is inaccurate. As indicated by the bound in (18),
as long as 7* is small enough to satisfy (12), the Carleman
linearization is guaranteed to get better with increasing
truncation order. However, when used in conjunction with
a system identification method, there is a critical truncation
order after which the estimation becomes less accurate.

The optimal truncation order can be estimated using the

Identified System
Nonlinear System
Linearized System | |

0.6

04

T2

Fig. 2. Trajectories of the nonlinear system, the identified system, and the
model-based Carleman-linearized system using N = 5.

bound developed in (18), as illustrated by Figures 5 and 4.
Figure 5 shows that in the numerical experiment, N = 6
produces the identified system with the lowest error, while
the analytical bound, (see Figure 4) indicates that N* = 3,
meaning for N = 3 the smallest guaranteed error bound is
obtained. Since the analytical bound is conservative, some
discrepancy between the numerical results and the analytical
bound is expected.

To further explore the discrepancy, it is instructive to
plot the error between the full trajectories of the model-
based Carleman-linearized system and the data-driven iden-
tified linear system (see Figure 6) and the error between
the same trajectories, truncated to the first two dimen-
sions (see Figure 7). The results indicate that while the
full state estimation error supg«,«,« ||2(t) — Z(t)|| increases
monotonically with N, the truncated state estimation error
SUPg<i<r ||2]2(t) — 2[2(t)| initially decreases and then in-
creases with increasing N. The analysis presented in this
paper, that produces N* = 3, is based on a bound on
the full state estimation error, which is observed to be an
overly conservative bound on the truncated state estimation
error for a subset of truncation orders. The authors postulate
that development of an error bound for the truncated state
estimation error will reduce the discrepancy between the
analytical and the experimental results.

VIII. CONCLUSION AND FUTURE WORK

A system identification method using Carleman lineariza-
tion is developed to identify a lifted linear system that
produces trajectories which remain within a guaranteed error
bound from the trajectory of a nonlinear system under mild
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Fig. 4. Comparison  of analytical errors bounds on
sup;ejo,r+ [1o(t) — £]2(¢)[l, the error between the trajectories
of tlge nonlinear system and the identified system, and
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Fig. 6. maximum error norm of the full state between the linearized system
and the identified system using N =1,2,...,12

assumptions. The effectiveness of the technique is demon-
strated by identifying an approximation of the Van der Pol
oscillator from data.

The time interval [0,7*] over which the error bound is
guaranteed is determined by the decay rate in Assumption
2. In practice, it is preferable for 7* to be dictated by
the user. While data-driven construction of a linear system
that approximates trajectories of a nonlinear system up to
arbitrary precision, over an arbitrarily large time interval,
given a finite database of trajectories is infeasible, recent
results such as [12] indicate that model-based construction
of such a linear system is possible, albeit for a restricted class
of nonlinear systems. Examination of such restricted classes
from a data-driven construction perspective is a part of
future research. Future research will also focus on analytical
estimation of the truncated state estimation error, the bound
in Assumption 4, and the effect of measurement noise on the
error bound and investigation of machine precision effects at
high truncation orders.

REFERENCES

[1] L. Ljung, System identification — theory for the user. Prentice Hall,
1999.

[2] M. N. Mahyuddin, J. Na, G. Herrmann, X. Ren, and P. Barber,
“Adaptive observer-based parameter estimation with application to
road gradient and vehicle mass estimation,” IEEE Trans. Ind. Electron.,

vol. 61, no. 6, pp. 2851-2863, 2013.

0151 + Tdentified: SWPorerr ECEENRGI

» Linearized: supyci<,- [[z(t) — z |2 (2)]|
0.1F |
0.05F 1

0 . . . NP
2 4 6 8 10 12
N
Fig. 5. Comparison of errors supye|o, 7] [|z(t) — 2|2(t)]] be-

tween the measured trajectories and the identified trajectories, and
supeo,++] [12(t) — z|2(t)||, between the measured trajectories and the
model-based Carleman-linearized trajectories, for truncation orders N =
1,2,...,12.

0.05 T

=
0041, 1
@

\
—~0.03 1
=
20.021 1

1

v .

VI L i
£ 0.01 .. .

%

0 ‘ L e 4 e ‘
0 2 4 6 8 10 12
N
Fig. 7. maximum error norm of the first two states between the linearized

system and the identified system using N = 1,2,...,12

[3] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proc. Nat. Acad. Sci. U.S.A., vol. 113, no. 15, pp. 3932
3937, 2016.

[4] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, “A kernel-based
method for data-driven Koopman spectral analysis,” J. Comput. Dyn.,
vol. 2, no. 2, pp. 247-265, 2015.

[5]1 J. A. Rosenfeld, R. Kamalapurkar, B. Russo, and T. T. Johnson,
“Occupation kernels and densely defined Liouville operators for
system identification,” in Proc. IEEE Conf. Decis. Control, Dec.
2019, pp. 6455-6460.

[6] T. A. Tutunji, “Parametric system identification using neural net-
works,” Applied Soft Computing, vol. 47, pp. 251-261, 2016.

[71 G. Mamakoukas, M. L. Castafio, X. Tan, and T. D. Murphey,

“Derivative-based koopman operators for real-time control of robotic

systems,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2173—

2192, 2021.

T. Carleman, “Application de la théorie des équations intégrales

linéaires aux systémes d’équations différentielles non linéaires,” Acta

Mathematica, vol. 59, pp. 63-87, 1932.

[91 A. Amini, Q. Sun, and N. Motee, “Error bounds for carleman

linearization of general nonlinear systems,” in 2021 Proceedings of

the Conference on Control and its Applications. SIAM, 2021, pp.

1-8.

E. A. Coddington, An introduction to ordinary differential equations.

Courier Corporation, 2012.

H. V. Henderson and S. R. Searle, “On deriving the inverse of a sum

of matrices,” SIAM Review, vol. 23, no. 1, pp. 53-60, 1981.

A. Amini, C. Zheng, Q. Sun, and N. Motee, “Carleman linearization

of nonlinear systems and its finite-section approximations,” arXiv

preprint arXiv:2207.07755, 2022.

[8

[t}

[10]
[11]
[12]



	Introduction
	Problem Statement
	Data-driven Carleman Lifting
	Error Analysis and Prescribed Error Approximation
	Order Selection Algorithm
	Simulation
	Discussion
	Conclusion and future work
	References

