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Abstract

The collection of gravitational waves (GWs) that are either too weak or too numerous to be individually resolved is
commonly referred to as the gravitational-wave background (GWB). A confident detection and model-driven
characterization of such a signal will provide invaluable information about the evolution of the universe and the population
of GW sources within it. We present a new, user-friendly, Python-based package for GW data analysis to search for
an isotropic GWB in ground-based interferometer data. We employ cross-correlation spectra of GW detector pairs to
construct an optimal estimator of the Gaussian and isotropic GWB, and Bayesian parameter estimation to constrain GWB
models. The modularity and clarity of the code allow for both a shallow learning curve and flexibility in adjusting the
analysis to one’s own needs. We describe the individual modules that make up pygwb, following the traditional steps of
stochastic analyses carried out within the LIGO, Virgo, and KAGRA Collaboration. We then describe the built-in pipeline
that combines the different modules and validate it with both mock data and real GW data from the O3 Advanced LIGO
and Virgo observing run. We successfully recover all mock data injections and reproduce published results.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Gravitational waves (678);
Gravitational wave detectors (676)

1. Introduction

Since the first direct gravitational-wave (GW) detection
(Abbott et al. 2016), the field of GW astrophysics has

exploded, now encompassing a wide range of instrumental
and observational campaigns across the globe. These detection
efforts monitor a vast range of frequencies, from the nanohertz
to the kilohertz, and are sensitive to a multitude of GW sources
emitting therein. While the GW sources in each band may
present extremely different characteristics, a potential candidate
for all GW measurements is a gravitational-wave background
(GWB), given by the collection of all GWs too faint to be
individually resolved or by the incoherent overlap of a large
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number of signals in the same band (Regimbau 2011;
Christensen 2019; Renzini et al. 2022). This sort of signal
has been targeted in several different data sets (Abbott et al.
2004, 2007, 2009, 2017, 2019, 2021) using search methods that
estimate the GW strain signal power, modeling the signal as
stochastic, frequently resorting to cross-correlation of multiple
independent observations (Allen & Romano 1999). These
searches are often referred to as stochastic searches by the GW
detection community, and these backgrounds are often referred
to as stochastic GWBs (SGWBs), even though, in practice, not
all target background signals are fully described by stochastic
variables,31 and this definition may imply an approximation. So
far, no confident detection of a GWB has been claimed.

With this paper, we present pygwb (Renzini et al. 2023), a
new Python-based package tailored to searches for isotropic
GWBs with current ground-based interferometers, namely the
Laser Interferometer Gravitational-wave Observatory (LIGO;
Aasi et al. 2015a), the Virgo observatory (Acernese et al.
2014), and the KAGRA detector (Akutsu et al. 2020), and with
the potential to be expanded and adapted to several other
detection efforts. The core analysis tools, described in detail in
what follows, are heavily inspired by the LIGO, Virgo, and
KAGRA Collaboration (LVK) stochastic analysis code,
stochastic.m. The latter consists of a set of MATLAB
scripts easily parallelizable on a high-throughput computing
cluster, and has been used in LVK data analysis for the
past data acquisition runs (Abbott et al. 2007, 2009,
2017, 2019, 2021). These include the three observing runs:
O1 (2015 September–2016 January), O2 (2016 November–
2017 August), and O3 (2019 April–2020 March), performed
with Advanced LIGO Hanford and Livingston and Advanced
Virgo Acernese et al. (2014) for parts of O2 and O3. Data
from Virgo have been included in stochastic analyses as of the
latest observing run. The analysis consists in the calculation
of an optimal statistic (Allen & Romano 1999) from the data
of multiple interferometers, which is directly related to the
amplitude of the GWB signal.

A notable change throughout the years of stochastic GW
analyses has been the constant shift toward Bayesian parameter
estimation (Mandic et al. 2012; Abbott et al. 2021). To date,
there is no preferred stochastic parameter estimation software,
and different groups have employed private scripts. To extend
the scope of the stochastic search beyond the optimal statistic,
we include a parameter estimation module in pygwb, based on
the Bilby package (Ashton et al. 2019), which allows the user
to test both predefined and user-defined models and obtain
posterior distributions on the parameters of interest.

The steady inflow of ever-improving GW data open for
analysis (LIGO Scientific Collaboration et al. 2021) has been a
catalyst for open-source GW data analysis codebase develop-
ment. By adopting the Python language and focusing on user-
friendliness, flexibility, and portability, we intend to introduce
stochastic searches to the wider GW community. Detecting a
GWB with ground-based interferometers will be a community
effort, and we expect search pipelines to evolve along the way.
The format and structure of pygwb facilitates this evolution,
and conversely the package is suitable for beginners approach-
ing GWB data analysis for the first time.

This paper is structured as follows. In Section 2, concepts
related to the characterization and detection methods of a GWB

are reviewed. A detailed overview of the individual modules
that make up the pygwb package follows in Section 3,
outlining the steps of LVK stochastic analyses. Several
manager objects that store relevant data and handle the analysis
internally are described in Section 4. The built-in pygwb
pipeline, which combines individual modules and performs the
search for an isotropic GWB, is presented in Section 5. To test
the capabilities of the pipeline, mock data sets with a variety of
simulated signals are analyzed in Section 6.1. To conclude,
results from the analysis of the third LVK collaboration
observing run, O3, are presented and compared with
collaboration results in Section 6.2.

2. The Isotropic Stochastic Analysis

An SGWB is characterized by its spectral emission, which is
the target of stochastic GW searches. The spectrum is typically
parameterized by the GW fractional energy density spectrum
ΩGW( f ), such that

r
r

W =f
d f

d f

1

ln
, 1GW

c

GW( )
( )

( )

where dρGW is the energy density of GWs in the frequency
band f to f+ df and ρc is the critical energy density in the
universe. When integrated over d flog , ΩGW( f ) gives the total
dimensionless GW energy density. The ΩGW( f ) spectrum is
thus directly related to the intensity of GWs. Specifically, from
Equation (1), it follows that (Allen & Romano 1999)
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where the strain spectral density Sh( f ) is defined as the
polarization-averaged second moment of the stochastic GW
strain field, decomposed into its polarization components h+
and h×,

* *

d d

á ¢ ¢ ñ + á ¢ ¢ ñ

= ¢ - ¢
+ + ´ ´n n n n

n n n

h f h f h f h f

f f S f

, , , ,

, , , 3h
2

( ˆ) ( ˆ ) ( ˆ) ( ˆ )
( ) ( ) ( ˆ) ( )( )

assuming statistical homogeneity. The unit vectors n̂, ¢n̂ span
the 2-sphere, while Î f . In the plane wave formalism, h+
and h× in Equation (3) are the Fourier coefficients of the time-
domain strain fields. If these are stochastically distributed, these
give rise to an SGWB that we describe solely through the
statistical moments of the distribution. In particular, a Gaussian
SGWB is fully described by its second moments, hence the
spectral density in Equation (3) is the primary target of a search
that assumes the signal to be both stochastic and Gaussian.
More details on these quantities can be found, for example, in
Romano & Cornish (2017).
Laser interferometers such as LIGO and Virgo are sensitive

to the strain field in the time domain coming from all
directions, h(t). These detectors measure the GW strain filtered
through a linear response function F (see the definition in
Romano & Cornish 2017), plus a detector noise component n,
which we may write in shorthand as

= +d t F t h t n t , 4( ) ( ) ( ) ( ) ( )
31 To avoid confusion, in this paper we will use the term SGWB to refer to
signals that are indeed defined as stochastic fields.
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where “å” indicates a convolution operation. Given that the
SGWB signal is weak and hard to distinguish from
instrumental noise, cross-correlating two independent, time-
coincident data streams with uncorrelated noise is an effective
way to construct an estimator for ΩGW( f ). We assume our
target stochastic GW signal is stationary, Gaussian, and
isotropic. We further assume the detector noise is Gaussian
and uncorrelated between detectors, which is a fair assumption
in the case of ground-based interferometers at current detector
sensitivity32 (after specific mitigation; Abbott et al. 2021;
Janssens et al. 2023), and that the noise amplitude is much
larger than the signal amplitude. Under these assumptions,33 it
has been shown (Aasi et al. 2015b; Romano & Cornish 2017)
that the cross-correlation-based minimum variance unbiased
estimator (MVUE) of ΩGW at a frequency bin f and the
corresponding variance is given by

g
W =

C

f S f
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where CIJ,f is the one-sided cross-spectral density (CSD) and
PI,f is the one-sided (auto-)power spectral density (PSD) of the
strain data dt from two detectors (I,J), as defined below in
Section 3.2.34 Note that throughout this work we will denote
continuous functions of the frequency with the notation ( f ),
whereas discrete functions of the frequency will be denoted
with a subscript f. Typically, in this paper, discrete functions
offrequency are estimators for continuous functions, and in
equations such as Equations (5) and (6), which mix discrete and
continuous functions, our notation implies that continuous
functions are evaluated at the discrete set of frequencies for
which we know the values of the discrete functions. In the
above, T is the duration of the data used to produce the above
spectral densities, and γIJ( f ) is the cross-correlated GW
response, or overlap reduction function (ORF), which is the
polarization- and sky-averaged cross-correlation of the indivi-
dual detector responses, FI. The ORF normalized for a pair of
perpendicular-arm interferometers is given by Allen & Romano
(1999):

òåg
p

= p- -n n nf d F f F f e
5
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where n̂ is the unit vector on the sky, in an arbitrary basis,35

xI− xJ is the difference between the position vectors of the two
detectors I and J, respectively, and A spans the polarization
basis. The ORF quantifies the reduction in sensitivity of the
cross-correlation stochastic search due to the detectors not
being coaligned and colocated and having different nontrivial
responses. The function S0 is defined as (Romano &
Cornish 2017; Renzini et al. 2022)

p
=S f

H

f
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80

0
2
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and converts a GW strain power spectrum into a fractional
energy density. The derivation of S0 is shown in Allen &
Romano (1999), and note that it includes the normalization
factor of the ORF, 5/8π, which ensures γIJ( f )≡ 1 for
coaligned, colocated detectors.
There are two important considerations to make regarding

the estimator in Equations (5) and (6). First, the implementation
of a discrete Fourier transform (DFT) over a finite time T in the
estimator of the continuous nonperiodic quantity ΩGW( f ) may
create spectral artifacts, as seen in Whelan (2004) and Press
et al. (2007). We outline how this is handled in Section 3.2.
Second, as the estimator is initially derived as a minimal
variance estimator in the time domain (Allen & Romano 1999),
the narrowband frequency estimator in Equation (5) is actually
obtained from a broadband one, as will be clarified in
Section 3.3. In the rest of this paper, we refer to W fGW,

ˆ as the
optimal estimator of the signal spectrum ΩGW( f ). The
optimality of the estimator can either be justified by the proof
that this is an MVUE or equivalently by showing that it
maximizes a reasonable likelihood for the data. When
performing parameter estimation, as outlined in Section 3.6,
we in fact employ a Gaussian likelihood that is maximized
by W fGW,

ˆ .
In stochastic analyses with current interferometers, we take

advantage of long observing times to improve detection
statistics. In practice, the data are segmented into smaller
chunks and analyzed individually, before they are optimally
combined to produce an estimate. This is convenient, due to
potential nonstationarities in the detector noise over both short
timescales, such as the length of an individual data segment,
and long timescales, such as the total observation time, as well
as reducing computational costs. Assuming each time segment
is independent, we perform a weighted average over all
segments to calculate W fGW,

ˆ for long observations. This
average can be thought of as an approximation to the ensemble
averages in Equation (3). Hence the more independent
observations that are averaged over, the better the measure-
ment. The averaging procedure is described in full in
Section 3.3.
The narrowband statistic of Equations (5) and (6) assumes

each frequency bin is independent. The information from each
bin can be combined under the assumption of a known GW
spectral density distribution. In GWB analyses, it is most
common to assume a power-law (PL) spectral shape for ΩGW:

W = W
a

f
f

f
, 9GW ref

ref

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

32 In future detectors, correlated noise will become a significant problem, and
quite a few methods for mitigating it have been proposed, including Wiener
filtering and Bayesian parameter estimation (Thrane et al. 2013, 2014;
Coughlin et al. 2016, 2018; Himemoto & Taruya 2017; Himemoto &
Taruya 2019; Meyers et al. 2020; Janssens et al. 2021, 2023; Himemoto et al.
2023).
33 Failure of stationarity or Gaussianity implies the estimator is suboptimal, yet
still valid (Drasco & Flanagan 2003; Lawrence et al. 2023); failure of isotropy
would also induce a bias, and the target signal would be ill-defined (Tsukada
et al. 2023.
34 Note that, in previous works, the notation CIJ was used to define the cross-
correlation statistic itself Abbott et al. (2021). This is not the case in this paper.

35 The ORF in pygwb is calculated in geocentric coordinates.

3

The Astrophysical Journal, 952:25 (23pp), 2023 July 20 Renzini et al.



where α is the spectral index of the signal, fref is a reference
frequency, and Ωref is defined as Ωref≡ΩGW( fref). Under this
assumption, the rescaling

=a

a

H f
f

f
10ref,

ref

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

can be used to reweight the estimate of the spectrum W fGW,
ˆ ,

obtained for α= 0, to optimize the statistic for a specific
spectral index α at a chosen reference frequency fref, reducing
the search to the estimation of a single number, Ωref. This
procedure is referred to as reweighting and is clarified in
Section 3.3. Alternatively, it is also possible to keep α as a free
parameter in the analysis and estimate both Ωref and α from the
data. This is described in Section 3.6.

3. Individual Modules

What follows is a detailed step-by-step presentation of the
stochastic analysis pipeline. We follow the natural structure of the
code for clarity, as we introduce each module individually. To
start, we present the preprocessing module, which precondi-
tions the time-domain strain from GW detectors for spectral
analysis. In spectral, we explain the power spectrum and
cross-spectrum calculations, which produce the PI,f and CIJ,f

spectra in Equations (5) and (6). We then describe postpro-
cessing, which includes the averaging procedures employed
over large data sets to obtain an optimal estimate of the signal
amplitude, starting from the quantities in Equations (5) and (6),
and knowledge of the expected spectral shape. In delta-sigma
cut and notch, we present modules that focus on data quality
checks and the implementation of relevant time-domain and
frequency-domain data cuts. We then describe the built-in
parameter estimation module pe, based on Bilby (Ashton
et al. 2019), a Python-based Bayesian inference library widely
used in GW data analysis. Finally, we present the simulator
module, which includes different mock data injection techniques
for GWB study and detection validation.

A schematic of the pygwb package is presented in Figure 1.
This includes the manager objects Interferometer,
Baseline, and Network, presented in Section 4.

3.1. Preprocessing

Preprocessing is the first step of stochastic GW data analysis, in
which data are read, downsampled, and high-pass-filtered. The
pipeline can use public data available from the Gravitational-wave
Open Science Center (GWOSC; LIGO Scientific Collaboration
et al. 2021), private data (data stored on the LVK servers restricted
to members of the collaboration), or local data. Data are read
using existing gwpy (Macleod et al. 2021) TimeSeries
methods. We denote the raw data measured at detector I over
the time period T by sI(tk) in what follows, where tk are discrete
times given by tk≡ kδt. The values of k are positive integers
between 0 and T/δt− 1 and δt is the sampling period, which in
the LIGO, Virgo, and KAGRA interferometers is 1/(16384 Hz).
The raw strain data from the two interferometers, sI(tk) and sJ(tk),
are downsampled to a user-defined sampling frequency fsamp,
using a user-defined resampling window (a Hamming window, by
default). The downsampling is performed to reduce the memory
and computational requirements of the analysis. This is achieved
using an existing gwpy TimeSeries filtering method for strain

data. Note that selecting an fsamp implies fixing a Nyquist
frequency of fNyquist= fsamp/2 for the analysis. The Nyquist
frequency is the highest frequency included in the Fourier
expansion at a given sampling rate. Hence, frequencies above it
cannot be probed. To avoid this becoming a limitation, fsamp
should be chosen to be high enough to contain the full spectrum
of the signal of interest, within the reasonable sensitivity of the
detector.
The low-frequency content of ground-based interferometer

data (in particular, below 10 Hz) is dominated by seismic
and control noise (Buikema et al. 2020). For this reason,
frequencies below a given (user-defined) cutoff frequency are
high-pass-filtered, i.e., excluded from the analysis. In previous
isotropic GWB searches (Abbott et al. 2009, 2017, 2019,
2021), the input data are high-pass-filtered using a 16th-order
Butterworth filter with a specific knee frequency. A 16th-order
Butterworth filter is built by first computing its transfer
function (in zero-pole-gain form) using the scipy library
and then filtering the data with the relevant gwpy Time-
Series method. The design of the high-pass filter is fixed in
the module, only allowing the user to specify the knee
frequency. The default value of the knee frequency is 11 Hz,
which was chosen to avoid spectral leakage from the noise
power spectrum below 20 Hz (Abbott et al. 2021). See Figure 2
for an example of data before and after preprocessing.
At this point, the data may also be screened for large bursts

of power in the detector data with a high signal-to-noise ratio
(SNR) or glitches, due to instrumental or environmental
disturbances, which are known to bias estimates of stochastic
analyses (Usman et al. 2016; Pankow et al. 2018; Davis et al.
2021; Acernese et al. 2022a; Davis & Walker 2022).
Historically, segments with loud glitches were flagged and
excluded from analysis by nonstationarity cuts (see
Section 3.4). In O3, a series of exceptionally loud glitches
appeared in the data, which led to large fractions of data being
removed by previously employed nonstationarity cuts (Abbott
et al. 2021). Hence, an alternative technique called gating was
employed to address these loud glitches and drastically reduce
the amount of data removed (Matas et al. 2021). Gating is
performed internally by pygwb by multiplying the data by an
inverse Planck-taper window (McKechan et al. 2010). Time
periods around samples in the whitened data that have an
absolute value above a chosen threshold are marked for gating
independently for each interferometer. The width of the gate
must be sufficiently large to remove the entirety of the relevant
glitch. The required width may change, based on the data
quality of the specific data in the analysis, and hence must be
empirically determined. The tapering length of the window
must also be sufficiently long to minimize the addition of
artifacts by the gating; 0.25 s is found to be sufficient (Davis &
Walker 2022). This technique is generically beneficial for the
analysis of data that are non-Gaussian, such as real GW
detector data. The gating implemented in pygwb is highly
customizable to the specific needs of the analysis; default
gating parameters are shown below in Table 1. For more details
on gating and parameter choices, see Davis & Walker (2022).
Finally, the module also allows the performance of a

time-shifted analysis in which one of the two time series is
shifted in time by an integer number of seconds before
the cross-correlation is performed. This technique is employed
as a detector noise characterization tool, since it removes
the potential correlation due to a broadband GWB, while
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preserving instrumental correlations with coherence times
greater than the applied time shift, like nearly sinusoidal
spectral artifacts from, e.g., electronics (Covas et al. 2018).36

The time shift is a user-defined parameter that should always
be greater than the light travel time between detectors (i.e.,
10 ms for the LIGO Hanford and Livingston detectors) and
smaller than the segment duration. Typically, a time shift of
1 s is used.

3.2. Spectral

The role of the spectral module is to compute, for each
time segment of duration T, the discrete frequency-domain

Figure 1. Schematic overview of the pygwb analysis flow. In the blue squares, we show the manager objects of the code that handle the analysis internally. These
manager objects query (red arrows) different modules for specific objects, calculations, or quantities (rounded bubbles), imported (gray arrows) by either internal (i.e.,
within pygwb) or external modules (i.e., outside of pygwb). Internal modules are indicated in red, while external modules are indicated in green.

36 It is worth noting that this time shift will probably not help identify
correlated broadband stochastic noise, such as correlated magnetic noise from
Schumann resonances, as this is largely caused by lightning strikes and the
correlation between detectors is due to seeing the same stochastic signal in both
detectors. This is in contrast to chance coherence between coincident periodic
artifacts (lines) at multiple sites that one can find by implementing time shifts.
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quantities CIJ,f, PI,f, and PJ,f used in Equations (5) and (6). The
one-sided cross- and auto-PSDs CIJ and PI, respectively, of a
single segment are defined as

*= =C
T
s s P

T
s

2
,

2
, 11IJ f I f J f I f I f, , , , ,

2˜ ˜ ∣ ˜ ∣ ( )

where sf̃ are DFTs of s(tk), defined by
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=
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k
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2

k
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where f=mδf, with m a natural number between 0 and
1/(2 δt δf ), and δf is the desired frequency resolution, chosen
such that 1/(2δtδf ) is an integer.

The segmented data are windowed before calculating the
Fourier transforms to avoid spectral leakage due to disconti-
nuities at the ends of the segments. The user may define their
own choice of window, which defaults to the Hann window if
none is selected. The spectral module uses methods from
scipy.signal to calculate spectrograms s f

t˜ of the given
data, which are then used to calculate the list of CIJ f

t
, , PI f

t
, , and

PJ f
t
, quantities, corresponding to different time segments

labeled by t in the data set. By default, these are calculated
with a 50% time overlap, to account for the impact of the
windowing. However, the user may redefine the overlap
between consecutive segments to be used throughout the
analysis to better suit any choice of window.

Different averaging procedures are employed to reduce the
fluctuations in the spectra estimates and compress the data. The
procedures we employ are selected to minimize sensitivity loss.
In the estimates of PI f

t
, and PJ f

t
, , we employ Welch’s estimation

method of PSDs (Welch 1967), which is known to produce
minimum variance estimates of the PSD, implemented as
follows. Each segment is divided into subsegments of duration
1/δf, which are DFTed individually. The autocorrelated power
sI f, 2∣ ˜ ∣ is then averaged over the subsegments to obtain estimates
of PI f

t
, and PJ f

t
, for time t. This procedure returns spectra at the

desired frequency resolution δf, which is typically much larger
than the original resolution 1/T Hz.

As the power varies slowly with frequency,37 we can
average over neighboring frequencies using a process known as
coarse-graining (Talbot et al. 2021). This is the default
procedure employed in the CSD estimation. The resulting
spectra are returned at the desired frequency resolution δf. Note
that the data are zero-padded before calculating Fourier
transforms for CIJ f

t
, , to avoid wraparound problems arising

from finite data (Abbott et al. 2004; Whelan 2004; Press et al.
2007), and hence coarse-graining is required to achieve the
desired frequency resolution. Zero-padding simply entails
appending a vector of zeros equal to the length of the segment
before taking the Fourier transform.
To further reduce fluctuations in the PSD estimates, the PI f

t
,

quantities are averaged over neighboring segments to obtain the
final estimate PI f

t
,

¯ of the PSD at a given time t. This is
appropriate, as the noise in GW detectors is (most often)
approximately stationary over periods of a few minutes. We
often refer to the initial (unbarred) quantities as “naive” and the
final (barred) quantities as “average” estimates in the rest of this
paper, to avoid confusion. By default, only nearest neighbors
are used for the calculation, such that the PSD at time t is an
average of the naive PSDs calculated for times t− T and t+ T.
The user may define any even number D of segments to be
used to perform this average, which are taken before and after
the reference time t, such that the PSD is averaged over naive
PSDs at times t−DT/2 and t+DT/2.
Figure 3 shows the cross- and auto-PSDs of 192 s of data

from the Hanford and Livingston detectors during O3, while
Figure 4 shows a 2 hr spectrogram of Hanford data during O3,
produced with the spectral module.

3.3. Postprocessing

Once a set of data, comprised of an uninterrupted stretch of
time-series data, has been preprocessed and average PSD and
CSD estimates have been calculated for each segment of data
within the set, one can combine those separate time segments
to construct a final, time-averaged estimate of the GWB
amplitude.
Due to the aggressive windowing choice we typically make,

and the subsequent overlapping of time segments, we must be
careful in combining time segments together. The overlapping
and windowing cause overlapping time segments to be
correlated with one another. Within each processed set,
individual time segments must be combined while accounting
for this covariance. A detailed calculation and discussion of
this covariance can be found in Lazzarini & Romano (2004),
while effective approximations to that full calculation can also
be used (see, e.g., Section IIIB of Ain et al. 2015).
To start, we construct the estimate of the GWB in a single

segment t. As detailed in Section 2, the GWB search is often
framed in terms of constructing a point estimate for ΩGW( fref),
the energy density of the GWB at the specific frequency fref,
assuming a PL for the GWB with spectral index α. We refer to
the estimator of this quantity asW

a
,ref

ˆ in general, and for a single
time segment of data, it can be constructed using a weighted
average over the individual frequency bin estimators Wf

ˆ and σf,

Figure 2. Comparison between the amplitude spectral density of a raw (blue
solid line) and preprocessed (orange solid line) 192 s segment of LIGO
Livingston O3 data. Preprocessing consists of downsampling the data to
4096 Hz and then removing the low-frequency content below 10 Hz.

37 The power varies slowly with frequency except in very few bins, where
narrowband spectral artifacts or lines are present, as discussed in Section 3.5.
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Table 1
Default Parameters for the pygwb_pipe Script as Well as the Parameters Data Class

Parameter Default Value Description

Script Arguments

output_path "" Output data path
calc_pt_est True If True, calculate point estimates
apply_dsc True If True, apply Δσ cut
pickle_out True If True, pickle postprocessed baseline
wipe_ifo True If True, set interferometer strain data to 0

Data Specifics

interferometer_list ["H1", "L1"] List of (2) interferometers
t0 0 Analysis start time
tf 100 Analysis end time
data_type public Data accessibility
channel GWOSC-16KHZ_R1_STRAIN Data channel name

Preprocessing

tag C00 Descriptive data tag
new_sample_rate 4096 Hz Downsampled sample rate
input_sample_rate 16,384 Hz Input sample rate
cutoff_frequency 11 Hz Lower frequency cutoff
segment_duration 192 s Individual segment duration
number_cropped_seconds 2 s Preprocessing cropped seconds
window_downsampling hamming Downsampling window
ftype fir Downsampling filter
time_shift 0 s Time shift duration

Gating

gate_data False If True, self-gate data
gate_tzero 1 s 0 time half-width duration
gate_tpad 0.5 s Gating window tapering
gate_threshold 50 Gating threshold
cluster_window 0.5 Gating cluster window
gate_whiten True If True, whiten data before gating

Spectral Density Estimation

frequency_resolution 1/32 Hz Output frequency resolution
overlap_factor 0.5 Consecutive segment fractional overlap
N_average_segments_welch_psd 2 Average PSD segment number
zeropad_csd True If true zeropad the CSD

FFT Window Specifics

window_fft_dict hann FFT window parameter dictionary

Postprocessing

polarization tensor ORF polarization basis
alpha 0 Spectral index α

fref 25 Hz Reference frequency fref
flow 20 Hz Lowest frequency included
fhigh 1726 Hz Highest frequency included

Data Quality Specifics

notch_list_path "" Notch list file path
calibration_epsilon 0 Calibration coefficient
alphas_delta_sigma_cut [−5, 0, 3] List of Δσ cut spectral indices
delta_sigma_cut 0.2 Δσ cut cutoff value
return_naive_and_averaged_sigmas False If True, return both σ and s̄

used in Δσ calculation

Output Specifics

save_data_type npz Output data type

Local Data Locations

local_data_path_dict {} Dictionary of local data paths

Note. Most of these choices reflect defaults chosen in the past when analyzing LIGO and Virgo data. Notably, the default start and end times for the analysis are not
meaningful and represent placeholders for the user-defined times. A default initialization file is included in the package with meaningful start and end times present in
the O3 open data set.
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described in Equations (5) and (6), calculated per segment t, as
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where the rescaling Href,α( f ) is defined in Equation (10). The
average variance spectrum per segment, st f,

2¯ , is calculated using
the average PSDs described in Section 3.2. These broadband
quantities can be calculated for each time segment t, and then
this set of estimators at each time can be combined to account
for the overlap between time segments discussed above. We
first lay out how to perform this combination assuming we have
calculated the quantities above for each individual time
segment. Then, we discuss how to alternatively average the
estimators in each frequency bin over time independently,
before combining them into an integrated quantity at the end.
The latter calculation is normalized such that it gives the same
result as the former. To avoid heavy notation, we drop the bars
that indicate average quantities in the rest of this section—all
variances used for the following calculations are average
variances, as defined above.

To construct an estimator for the GWB using a set of
measurements in short, overlapping time segments, we first
combine the segments that are nonoverlapping. If the overlap
between segments is 50% or less, then this amounts to
separately performing inverse-noise-weighted averaging over
the even- and odd-indexed segments:
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where the quantities W º W
a

t tref,
ˆ and s sº a

t tref, for each time
segment t. Analogous expressions are calculated for Ωeven and

σeven. Subscripts refer to even/odd time segments, and we drop
here the subscripts GW,ref, and α used to construct the integrated
quantities, to lighten the notation. We refer to the final,
frequency- and time-averaged estimate as Wref

ˆ for now.
Next, we calculate the cross-covariance between point

estimates in the odd and even segment combinations (Lazzarini
& Romano 2004),
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where M is the number of independent segments, and so
2M− 1 is the total number of overlapping segments, with the
window factors wovl

4¯ and w4¯ , as defined in Appendix A. For the
sake of compactness, we rewrite this as

s s s s= -k
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The covariance matrix between even/odd segment sets is
then defined as
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which we use to construct the optimal combination of segments
to obtain the point estimate Wref

ˆ and its variance s ref
2 . These are

given by
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where the i, j indices label odd/even quantities. The bias factor
bavg, which arises due to the harsh windowing of the data, has
been included in Equation (23). The derivation of the bias
factor is described in Appendix A. If combining over
nonoverlapping segments, then s = 0,oe

2 and this method
reduces to the typical inverse-noise-weighted average that
one would expect.
The above expressions are for a broadband estimator, but in

practice the postprocessing module combines over time
segments before combining over frequency bins. We refer to
the estimated narrowband quantities as W fref,

ˆ and σref,f. This
notation indicates that, once a PL spectral model is applied, the
estimate in a frequency bin represents an estimate of the GWB
at the reference frequency of the PL, assuming the chosen
spectral shape.
We normalize W fref,

ˆ and σref,f, such that, when performing a
weighted average over frequency bins after combining over-
lapping time segments, we get the same result as Equations (22)

Figure 3. An example of cross- and auto-PSDs of the Hanford and Livingston
detector data during O3.
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and (23) (which assume construction of a broadband estimator
before combining overlapping time segments). This results in the
following expression for s-
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and a corresponding expression for W fref,
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The even and odd estimators for each frequency bin are defined
as in Equations (15) and (16), except applied to individual bin-
by-bin estimators calculated at each time segment. As
discussed above, these expressions have been normalized,
such that
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The postprocessing module implements the above
expressions to estimate W fref,

ˆ and σref,f at a fixed α, and returns
them in form of an OmegaSpectrum object, which
subclasses the classic gwpy.FrequencySeries and adds
two key attributes: the spectral index α and the reference
frequency fref at which the spectrum is calculated. By default,
pygwb assumes a PL spectral index α= 0 and a reference
frequency fref= 25 Hz when constructing the above estimators.
To explicitly include the α dependence in our results, we refer
to the final postprocessed spectra as W

a
fref,

ˆ and sa
fref, .

One of the advantages of averaging over time before
averaging over frequency is that one can reweight W

a
fref,

ˆ and
sa

fref, to be estimators for different choices of α, without
needing to average over all time segments again for a new
choice of α. The OmegaSpectrum object has a built-in
method to perform a reweighting to change either the fref or α

used to calculate Ωref, employing the relation

W = Wa a a

a
f f

H f

H f
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1 1 2 2 1 1

1 2
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derived using Equation (9), which implies the following
relation between amplitudes at different reference frequencies:

W = W a

a

H f
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1 2

2

1

( )
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This allows the quick calculation of time- and frequency-
averaged estimates of the GWB amplitude associated with a
specific PL model.
The default Hubble constant H0, required in the scaling S0( f )

in Equation (8), is chosen to be H0= 67.7 km/(MpcL), drawn
from the Planck 2018 observations (Aghanim et al. 2020) and
imported directly from the astropy package. This is an
attribute of the OmegaSpectrum and may be reset by
the user.

3.4. Delta-sigma Cut

In general, the noise level in ground-based detectors changes
slowly on timescales of tens of minutes to hours. The variance
sGW
2 (see Equation (6)) associated to each segment is an

indicator of that level of noise, which typically changes at
roughly the percent level from one data segment to the next.
However, there are occasional very loud disturbances to the
detectors, such as glitches, which violate the Gaussianity of the
noise. Autogating procedures are in place, as explained in
Section 3.1, to remove loud glitches from the data; however,
the procedure does not remove all nonstationarities. To avoid
biases due to these noise events, an automated technique to
exclude them from the analysis has been developed (Abbott
et al. 2007). To this end, the pygwb package includes the
delta-sigma cut module, which flags specific segments to
be cut from the analyzed set. Note that inverse noise weighting,
as explained in Section 3.3, also reduces the effect of non-
Gaussian noise artifacts.
The “Δσ cut” calculation consists of comparing the σGW of a

segment t, σt, to that of its nearest neighbors and flagging it for
removal in case their values differ by more than a chosen
threshold. Conceptually, the calculation is based on the simple

Figure 4. An example spectrogram showing 2 hr of LIGO Hanford data during O3. The visible vertical columns correspond to noisy segments, which are usually
removed from the analysis (see Section 3.4).
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where i is a segment index. However, in practice, we perform
an analogous, more sophisticated calculation, which compares
the naive and average segment variances σt,α and s at,¯ . These
are derived from the unweighted naive and average segment
variances computed with Equation (6) using naive and average
PSDs per segment (see Section 3.2 for details), respectively,
which are then reweighted by the index α, as shown in
Equation (14). The final expression employed in the calculation
is

s s
s
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which also takes into account the bias factors that arise due to
the different impacts of windowing on naive and average
quantities (see Appendix A for details). Past analyses have used
a threshold of 0.2, as this has been shown to yield a Gaussian
distribution for the remaining (uncut) segment variances
(Abbott et al. 2009). For more details on this choice, see
Meyers (2018).

The Δσ cut calculation is performed assuming different
spectral indices α, as each PL is sensitive to a different
frequency band (see Figure 5). The union of all the segments
flagged for each α is taken, leading to a full list of segments to
discard from the analysis. The default choice of α values in the
delta-sigma cut module is α= {− 5, 0, 3}, as this
adequately covers most of the frequency band of LVK
searches, from 20–1726 Hz (Abbott et al. 2021), at current
sensitivity. These may be easily modified by the user. This
would be especially recommended if the search were carried
out over a different set of frequencies, or for data from
detectors with a spectral sensitivity different than that for
Advanced LIGO, Advanced Virgo, or KAGRA. Often, the
value of α= 5 is also considered, and was employed in the
most recent LVK isotropic search (Abbott et al. 2021). The
analysis performed at a spectral index α=− 5 is mostly
sensitive to nonstationary effects in the ∼15–50 Hz range,
while in the case of α= 0 the analysis is sensitive to effects
between ∼40–80 Hz, for α= 3 from ∼90–500 Hz, and finally
α= 5 is most sensitive to fluctuations at the higher frequencies,
above ∼500 Hz. These higher frequencies are not always
included in this sort of analysis, due to reduced sensitivity in
this range, hence α= 5 is not a default value used for the cut.

As the Δσ cut only compares neighboring segments, long
stretches of loud noise-contaminated data can pass the test and
be included in the analysis. We are currently working to
improve this by monitoring and flagging longer stretches of
nonstationary noise and prolonged loud noise conditions.

3.5. Notch

Ground-based laser interferometers present many narrow-
frequency noise artifacts that are typically persistent in time and
are generally referred to as noise lines. Some examples are
calibration lines and mechanical resonances (Davis et al. 2021;
Acernese et al. 2022b; van Remortel et al. 2023). The notch
module provides the framework to properly deal with these
noise lines in the case of the search for an isotropic GWB. The

solution is to “notch out” these noise lines, i.e., set the values of
the spectra at the affected frequency bins to zero. Note that the
notch module is not built to identify these lines, as this is
typically done by detector characterization experts working
closely with instrumentalists running the detectors. Rather, the
final product of the notch module is a frequency mask that
may be applied to the relevant spectra in the analysis.
The key object of the notch module is the StochNotch-

List, which is a list of StochNotch objects. A Stoch-
Notch object represents a physical noise line that has been
identified and needs to be removed from the data analysis. The
object has a minimum and maximum frequency, indicating the
contaminated frequency region. Furthermore, it also comes
with a descriptive string that allows the user to keep track of the
reason why the line was notched. All the different Stoch-
Notch objects for a certain analysis are then stored in the
StochNotchList, which contains the entire list of lines to
be notched from the analysis.
The notch mask used to apply a set of notches within the

analysis is constructed conservatively, such that any frequency
that has overlapping frequency content with the noise lines
defined in the StochNotchList will be removed when
applying the notch mask. To maintain generality, we discuss
here a generic estimated spectrum Wf

ˆ , where its value at
frequency f estimates ΩGW( f ) in the frequency range [f− δf/2,
f+ δf/2], where δf is the chosen frequency resolution, as
defined in Section 3.2. If a noise line has any overlap with the
interval [f− δf/2, f+ δf/2], the f frequency bin is excluded.
This implies that a hypothetical delta peak noise line at f+ δf/2
leads to notching both f as well as f+ δf.
We present the creation of a notch mask with an example in

Figure 6, which illustrates how our conservative notching
strategy excludes frequency bins based on different scenarios
of noise lines.
The current code is set up to apply the same notches to an

entire stretch of data, which can be considered “time-
independent” notching. To allow for time-dependent notching,
we could either use the current notch module and split the
analysis in different segments, each having their own notch list.

Figure 5. In this plot, PL spectra with different spectral indices are compared to
the O3 sensitivity curve of LIGO Livingston. Each PL is sensitive to a different
frequency band. This makes it necessary to repeat the Δσ cut assuming
different α, since this allows checking for noise fluctuations in the whole range
of frequencies analyzed. The O3 sensitivity curve for LIGO Livingston was
retrieved from O’Reilly et al. (2020).
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Alternatively, one could extend the current module with an
additional parameter that keeps track of which times have to be
notched. Since typically the majority of the notched lines in the
search for an isotropic GWB with data from the LIGO and
Virgo detectors are present during the entire data set, the
possible gain of implementing time-dependent notching is
expected to be limited.

3.6. Pe

Starting from an estimate of the GWB spectrum W fGW,
ˆ , with

variance s fGW,
2 , it is possible to place stringent constraints on

the GWB amplitude using a hybrid frequentist/Bayesian
approach. We consider the general case where we have a set
of GWB measurements W f

IJ
GW,

ˆ from different detector pairs, or
baselines, IJ. We define a Gaussian likelihood for B pairs of
detectors:
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where ΩM( f|Θ) is the GWB model and Θ are its parameters.
Bayes’ theorem is used to obtain posterior distributions on the
model parameters:
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where the priors p(Θ) are employed. In practice, when
performing parameter estimation on a large data set, we take

the postprocessed, unweighted (i.e., α= 0) estimate W f
IJ

ref,
0,ˆ to be

the measured GWB spectrum in each frequency bin, and plug it

into Equation (33). Note that it is necessary for the input
spectra used in parameter estimation to be unweighted, as any
other value would constitute a model choice and bias results.
Within the pygwb package, we include the pe module to

perform parameter estimation as an integral part of the analysis,
which naturally follows the computation of the optimal
estimate of the GWB. This is a notable improvement compared
to previous LVK analyses, where data products and parameter
estimation were handled independently by packages in
different programming languages. Furthermore, the pe module
is a simple and user-friendly toolkit for any model builder to
constrain their physical models with GW data.
The pe module is built on class inheritance, with

GWBModel as the parent class. The methods of the parent
class are functions shared between different GWB models, e.g.,
the likelihood formulation in Equation (33), as well as the noise
likelihood, given by Equation (33) with ΩM( f|Θ)≡ 0. It is
possible to include calibration uncertainty by modifying the
calibration_epsilon parameter, which defaults to 0.
For details on the marginalization over calibration uncertainty,
see Appendix B and Whelan et al. (2014). The GW polarization
used for analysis is user-defined, and defaults to standard
general relativity (GR) polarization (i.e., tensor). More details
on the possible polarization choices can be found in
Section 4.2. In our implementation of pe, we rely on the
Bilby package (Ashton et al. 2019) to perform parameter
space exploration, and employ the sampler dynesty by
default (Speagle 2020). The user has flexibility in choosing the
sampler as well as the sampler settings.
Child classes in the pe module inherit attributes and

methods from the GWBModel class. Each child class represents
a single GWB model, and combined they form a catalog of
available GWB models that may be probed with GW data. The
inheritance structure of the module makes it straightforward to
expand the catalog, allowing users of the pygwb package to
add their own ΩM( f|Θ) models. The flexibility of the pe
module allows the user to combine several GWB models
defined within the module. A particularly useful application of
this is the modeling of a GWB in the presence of correlated
magnetic noise, as discussed in Meyers et al. (2020), or the
simultaneous estimation of astrophysical and cosmological
GWBs (Martinovic et al. 2021). The pygwb documentation
(Renzini et al. 2023) contains information on the existing
models in the catalog, with a description of the GWB models
and their parameters.

3.7. Simulator

To both design optimized stochastic analyses and understand
our sensitivity to different categories of signals, it is essential to
be able to readily simulate realistic interferometer data. To this
end, the simulator module is primarily designed to generate
data that correspond to an isotropic SGWB with a given PSD.
The GWB data in a network of interferometers satisfy a

specific correlation matrix, which includes the set of ORFs of
the entire detector network to account for the spatial separation
and relative orientation of the detectors. Given a generic signal
PSD, Sh, the correlation matrix C( f ) is given by

d g= +C f P f S f . 35IJ IJ I IJ h( ) ( ) ( ) ( )

Here γIJ( f ) is the normalized ORF of the baseline IJ, as shown
in Equation (7), hence γII( f )≡ 1, and PI is the noise PSD of
interferometer I. We have introduced a boldface notation,

Figure 6. Example of how the notching of noise lines (orange lines) applied to
the discrete measurements of the spectrumW fGW,

ˆ (blue stars) leads to a final set
of measurements (red dots). The vertical shaded regions indicate the bins,
where even bins are white and odd bins are light blue. The orange lines trace
out the noise lines, such that a noise line is present where the orange curve is
zero. The analyzed data span [5.0, 6.875] Hz, in the unshaded region. In this
example, there are five noise lines, from left to right: a noise line ending at the
lowest-frequency bin, a noise line entirely contained in one frequency bin, a
noise line spread across two frequency bins, a noise line spread across multiple
frequency bins, and a noise line from bin edge to bin edge. After our notching
procedure, the data are reduced to the bins marked by the red dots. For visual
convenience, we have changed the amplitude in these remaining frequency bins
by a factor 0.9.
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which indicates matrices and vectors that span the detector
space. The fact that the cross-correlation between detectors for
I≠ J only depends on the signal PSD assumes the noise is
uncorrelated across all detectors.

The simulation of data correlated according to C( f ) proceeds
as follows. First, a vector of white, uncorrelated frequency-
domain data is generated, vf, with a certain frequency resolution
Δf. Then, the data are linearly transformed into the correlated C
space by

L=x v E , 36f
T

f
T

f f
T ( )

where Λ and E are the eigenvalue and eigenvector matrices of
C, respectively, calculated in each frequency bin. This
transformation results in data xf that present the correct
correlation, and have been colored with the injected noise
and signal power spectra, where appropriate. Finally, the
frequency-domain data vector is inverse DFTed to obtain a data
vector in the time domain.

Data generation in the frequency domain, followed by the
IFT to the time domain, can introduce edge effects in the
simulated data segments. These may be avoided by splicing
multiple data segments (Rabiner & Gold 1975). The splicing
procedure combines neighboring data segments by windowing
and overlapping them, and thus requires more data segments
than the actual desired number of segments.

Concretely, we consider the example where Nseg= 1 and
detail the splicing procedure below. As the number of desired
segments is 1, 2Nseg+ 1= 3 data segments are simulated.
Assuming these are simulated following the procedure outlined
above, we denote these three time-domain data segments by x0,
x1, and x2. A sine window, defined as

p
=w

j

N
sin , 37j ⎛

⎝
⎞
⎠

( )

for 0� j< N, where N is the number of samples per segment, is
used to window the data, which are then combined as

= =z yy w x N N 0, 2: , , 38j j j0 0 0 0( [ ] ) ( )

= =z yy w x , , 39j j j1 1 1 1 ( )

= =z yy w x N0, , 0: 2 , 40j j j2 2 2 2( [ ]) ( )

and finally we obtain a single segment of time-domain data z:

= + +z z z z . 410 1 2 ( )

In the above expressions, 0 represents an array of zeros with
length N/2, used to pad the segments, whereas the bracket
notation stands for python array slicing.

The splicing procedure can introduce a bias in the simulated
power spectrum, due to the spectral properties of the window
that is applied. However, the simulator module was tested
for several values of the spectral index of a PL signal PSD,
ranging between −3 and 3, yielding a correct injection for these
spectral indices. The user should nevertheless exercise caution
when using the simulator module and be aware of the
possible introduction of a bias outside the range of tested
spectral indices due to splicing.

We show an example of simulated data in Figure 7. The
injected signal and noise PSDs are plotted together with the
calculated PSD of a simulated data segment. A thorough testing
of the simulator module is performed in Section 6.1.1.

4. Manager Objects

pygwb counts three manager objects the user can interface
with: Interferometer, Baseline, and Network, which
are defined in the detector, baseline, and network
modules, respectively. Each object is in charge of storing and
saving relevant data, and handles data analysis internally. The
manager objects are designed such that the user need never call
a method from a module directly, but rather will invoke the
manager, which queries the relevant module to perform the
calculation. For details on how to use these objects, see the
complete set of tutorials in the pygwb online documentation
(Renzini et al. 2023).

4.1. Detector

The detector module is designed to organize the data
products related to a GW detector and provides functions to
create and process its internal data. It is formally defined as a
subclass of the Bilby Interferometer class (Ashton
et al. 2019). In what follows, we describe the additional
features we have developed, and refer the reader to the Bilby
documentation for the built-in properties inherited from the
parent class.
By default, the Interferometer object is initialized by

taking geometrical information of a GW detector, such as
latitude, longitude, and elevation, as arguments.

from pygwb import detector
my_detector = detector.Interferometer
(∗args, ∗∗kwargs)

While the above method allows the user to customize the
detector’s specification, one can initialize the object based on
existing GW detectors, as done in bilbyʼs Interferom-
eter class, by calling the get_empty_interferometer
method.
Once initialized, this object provides several ways to read in

and process time-series data, all of which internally call the
preprocessing module, using information such as a
channel name to query the data or pointing to a numpy array
or a gwpy object directly. Additionally, the Interferom-
eter object includes processing methods relying on the

Figure 7. Example of injection using the simulator module. The noise PSD
(orange) and the injected signal (red) are clearly discernible as parts of the PSD
of the simulated data (blue).
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spectral module described in Section 3.2 to calculate naive
and averaged spectrograms from the stored time-series data.

A pair of Interferometer objects can be used to
initialize a Baseline object, as described below. These are
then imported as attributes of the Baseline object and store
data products specific to each detector.

4.2. Baseline

The Baseline module is by design the core of the pygwb
stochastic analysis. Its main role is to manage the cross-
correlation between Interferometer data products, com-
bine these into a single cross-spectrum, which represents the
point estimate of the analysis, and calculate the associated
error, as introduced in Section 2.

The standard initialization of a Baseline object simply
requires a pair of Interferometer objects.

from pygwb import baseline
H1H2_baseline = baseline.Baseline(“H1-H2,”
H1, H2)

Here, H1 and H2 are Interferometer objects. It is also
possible to load a previously stored Baseline object in
pickle format by calling the relevant class method.

The data loaded into the Interferometer objects are
automatically imported into the Baseline object upon
initialization. The Baseline object relies on the spectral
module to calculate cross-correlations between the data
streams, following the methodology shown in Section 3.2.
Similarly, it relies on the postprocessing module to obtain
the point estimate W

a
ref

ˆ and its variance sa
ref , as described in

Equations (22)–(23). The user may choose to calculate point
estimate and sigma spectra or point values; in the latter case,
the spectra are automatically stored to facilitate subsequent
analyses.

Calculating W
a
ref

ˆ , as well as performing parameter estimation
on the GWB spectrum, requires the two-detector ORF, γIJ,
shown in Equation (7). The ORF is calculated at Baseline
object initialization, then stored as an attribute. By default, we
assume GR, which presents two independent degrees of
freedom for the strain field, typically A= {+ , × } in the
transverse-traceless gauge. For a precise derivation of this
function and detector response definitions, see, for example,
Romano & Cornish (2017).

The Baseline object is also equipped to probe circularly
polarized backgrounds (Seto & Taruya 2007) and non-GR
polarizations in the GWB, such as scalar and vector back-
grounds (Callister et al. 2017). This requires selecting a
different choice of A, according to the chosen polarization type,
which can be declared when calculating W

a
ref

ˆ or the ORF
directly. Details on the expressions for non-GR γIJ functions
may be found in the appendix of Callister et al. (2017).

4.3. Network

The network module is designed to handle two different
tasks. Its primary purpose is to combine results from different
Baseline objects. Similar to the Baseline object, the
Network object imports Baseline objects as attributes that
may be invoked through the Network. In addition to this
functionality, it can also be used to simulate cross-correlated
data across a network of detectors. Both signal-only and signal
and noise data can be simulated using a Network object. The

network module handles all data generation by querying the
simulator module.
The Network object can be initialized in two ways. By

default, it is initialized through a list of Interferometer
objects.

from pygwb import network
HLV_network=network.Network(’HLV’, [H1,
L1, V1])

It is also possible to initialize a Network using a list of
Baseline objects, to streamline the combination of results
from different baselines that already contain final data products.

HLV_network=network.Network.from_base-
lines(’HLV’, [HL_baseline, HV_baseline,
LV_baseline])

The combined point estimate and sigma spectra are stored as
attributes of the Network. These are combined by performing
an inverse-noise-weighted average over the individual baseline
final spectra, assuming the data are uncorrelated between
baselines, i.e., assuming each baseline provides independent
information. This is a valid approximation when working in the
large noise limit. Further details can be found in Allen &
Romano (1999).
The Network is also designed to produce appropriately

correlated simulated data for a network of interferometers. The
Network can either simulate data from scratch, or add
simulated data to pre-existing data, if the interferometers used
to initialize the object contain strain data. The latter is simply
done, as strain adds coherently in the time domain. This
functionality relies on the simulator module, which
performs the data simulation, as discussed in Section 3.7.

5. Analysis Pipeline

We present an overview of the package analysis scripts,
which combine the various modules into a GWB analysis
pipeline. The pipeline has several default values that may be
changed according to the user’s requirements. However, we
note that thanks to the flexibility of the pygwb package, one
can also easily construct an ad hoc pipeline.

5.1. pygwb_pipe

The core script of our analysis suite, pygwb_pipe, is
designed to carry out the bulk of the stochastic analysis. It
combines the pygwb modules in order to go from the
unprocessed data to the optimally averaged W

a
fref,

ˆ and sa
fref,

spectra for a single baseline. To read in the analysis parameters,
pygwb_pipe interfaces with the parameters module,
specifically designed to handle the analysis parameters, either
passed through an initialization file (param_file) or
declared in the command line. The module includes the
Parameters data class, which stores the chosen parameters.
The pipeline may be run from the command line as follows:

pygwb_pipe --param_file path_to_param_file

All param_file parameters may be alternatively passed
from the command line directly. If a mixture of parameter file
and command line parameters are passed, the latter will
override their corresponding values stored in the parameter file.
Additionally, a set of pipeline-specific parameters may be
passed from the command line for ease of use, such as whether
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to apply data quality cuts. A full list of parameters and their
descriptions may be found in Table 1.

After reading in the parameters, two Interferometer
objects are created accordingly, and data are loaded in and
preprocessed using the preprocessing module. Depending
on the value of the gate_data parameter in the initialization
file, the gating outlined in Section 3.1 also takes place at this
stage. Subsequently, a baseline object is created using the pair
of interferometer objects. Recall that the baseline module
plays a central role in the pipeline and handles the computation
of the various quantities of interest, including the (average)
PSDs and CSDs of the baseline, relying on the spectral
module. This is described in more detail in Sections 3.2
and 4.2.

The delta-sigma cut is then performed, and optimally
averaged spectra and an overall point estimate are calculated
with the relevant Baseline methods. The delta-sigma cut is
applied by default, but may also be calculated and applied at a
later stage. Finally, the spectra, the overall point estimate, and
the pickled baselines (if requested) are saved as the output. By
default, the output is in numpy binary file format, npz.

In realistic scenarios, we analyze year-long data sets, so
running pygwb_pipe in series is suboptimal. However, a
long data set can be split into smaller jobs and parallelized on a
cluster. The output of each job is then combined into a single
set of result spectra W

a
fref,

ˆ and σref,f, using the pygwb_com-
bine script. The latter simply takes a weighted average over
all jobs, assuming each job is an independent measurement of
the signal. At this stage, it is possible to implement final
postprocessing choices, such as reweighting the spectra to a
desired α and fref, as well as changing the default Hubble
constant H0 at which results are reported.

Details on running the pipeline and combination scripts may
be found in our online documentation (Renzini et al. 2023).

5.2. statistical_checks

With the statistical_checks module, we provide a
tool to perform initial statistical analyses of a pygwb run result
set and to visualize them in preformatted plots. We identify five
broad categories of checks.

The first set calculates the running point estimates for W
a
ref

ˆ
and sa

ref quantities as a function of time, as more data segments
are added to the analysis. The values of α and fref are those used

in the analysis and may not be changed at this point. The running
averages are cumulative weighted averages of time-ordered
segments, and do not take segment-by-segment correlation into
account. In the case of a detection, these converge to a biased
point estimate and σ, as proper postprocessing is not applied (see
Section 3.3). However, the visualization of running quantities is
extremely useful to identify trends in the data, and ultimately will
flag a possible detection. The module also provides a linear trend
analysis, fitting the evolution of the parameters described above
as a function of time.
The second set focuses on the SNR spectrum as a function of

frequency, defined as

s
=

W
a

aS N . 42f
f

f

ref,

ref,

ˆ
( )

The absolute value, real, and imaginary parts of the SNR are
calculated, as well as the cumulative SNR. An example of these
plots, using the first subset of O3 data further described in
Section 6.2, is given in Figure 8. These plots are a faithful
representation of the “noisiness” of each frequency bin and
how much each bin contributes to the analysis.
The third set of checks produces the IFT of the point

estimate spectrum, which should peak around zero seconds in
the case of a detection. Time-shifting the data in two detectors
by more than the coherence time between the two detectors
breaks the coherence between the two data streams, removing
any evidence of a GWB signal. Note that the coherence time is
determined by the bandwidth of our signal, which is of order
100 Hz, resulting in a coherence time of 10 ms. Hence, a GWB
signal will only peak around zero time lag between the outputs
of the detectors.
The fourth set studies the effect of the Δσ data quality cut

described in Section 3.4 on the analysis run. To this end, we
display several quantities before and after the cut is applied to
the data, including the segment values of W

a
iref,

ˆ , sa
iref, , and

sD a
iref, , and the deviations in SNR,

s
D =

W - áW ñ
a a

aS N , 43i
i

i

ref, ref

ref,

ˆ ˆ
( )

as a function of time. Here, angle brackets indicate an
arithmetic mean over all segments i. We also plot a histogram

Figure 8. Left: absolute value of the SNR spectrum as a function of frequencies. Right: sigma spectrum as a function of frequency.
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of the values of ΔSNR before and after the cut. This
distribution should be centered around 0, with a smooth
narrower distribution after the application of the Δσ cut. We
additionally plot the ΔSNR as a function of individual sa

iref, .

Finally, we plot the distribution of the ratios s sá ñi iref,
2

ref,
2 ,

which should peak around 1. Some representative plots are
shown as an example in Figure 9.

The last set of checks concerns a Kolmogorov–Smirnov
(KS) test that is used to verify that the ΔSNRi are consistent
with a Gaussian distribution. The KS test implementation of
this module returns the KS test statistic, which is the maximal
deviation from the Gaussian cumulative distribution function,
as well as the p-value. These values can be used to make
statements about the Gaussianity of the data (Dodge 2008). In
addition, the cumulative distribution function is plotted for the
data as well as for a Gaussian distribution.

6. Testing

To comprehensively test the pygwb analysis suite, we employ
an efficient workflow to analyze data sets of increasing
complexity. The data sets considered in this paper are as follows:

1. Continuous SGWB. A loud stationary and continuous
stochastic signal generated with the simulator mod-
ule, injected in Advanced LIGO Hanford and LIGO
Livingston, assuming design A+ sensitivity (Barsotti
et al. 2018).

2. Realistic compact binary coalescence (CBC) GWB. A
realistic background of merging binary black holes
(BBHs) and binary neutron stars (BNSs), injected in
Advanced LIGO Hanford and LIGO Livingston, assum-
ing design A+ sensitivity.

3. O3 data set. The full Advanced LIGO Hanford and LIGO
Livingston data set from the third LVK observing run
(Abbott et al. 2021).

The continuous SGWB (data set 1) is an idealized observing
scenario, as our stochastic model matches the target signal
perfectly by design, and as the signal is stationary and
continuous, our approach is optimal (Drasco & Flanagan 2003;
Lawrence et al. 2023). The CBC background (data set 2) is a
realistic scenario where the target signal is generated according
to astrophysical models, informed by GW detections. In this
case, the signal is non-Gaussian, and we expect our approach to
be unbiased (Regimbau et al. 2012, 2014; Meacher et al. 2015)

Figure 9. Left: point estimate, sigma, and deviations in ΔSNRi as a function of time before the delta-sigma cut (red) and after the cut (blue). Right: distribution of the
deviations in ΔSNRi as a function of time before the delta-sigma cut (red) and after the cut (blue).
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but suboptimal (Drasco & Flanagan 2003; Lawrence et al.
2023), due to the intermittent nature of the signal, which is not
taken into account in the search method. For more details on
the time-domain characteristics of these two types of signals
and the detection challenges these present, see, for example,
(Regimbau 2022). Finally, the O3 Advanced LIGO data set
(data set 3) presents all the complexity of analyzing real GW
detector data, including nonstationary noise, a large data
volume, and expensive computational requirements.

We handle large data sets by splitting the data into smaller
pygwb_pipe jobs, assuming each job is independent; these
are then combined using the pygwb_combine script (see
Section 5 for details). We then employ a parameter estimation
script, pygwb_pe, based on the pe module described in
Section 3.6, to perform parameter estimation on specific
models. For more details on how to run this sort of analysis,
we refer users to the online documentation for the most up-to-
date workflow instructions (Renzini et al. 2023). In the
following, we present the different data sets and summarize
our analysis results.

6.1. Mock Data

6.1.1. Stationary and Continuous

We employ the Network (Section 4.3) to generate a
stationary and continuous SGWB signal with a fixed PSD,
Sh( f ). This allows us to simultaneously test the module and the
whole analysis pipeline. The injected SGWB is scale-invariant,
i.e., ΩGW( f ) is constant over frequencies

W = ´ -f 1.06 10 . 44inj
7( ) ( )

This is converted to Sh( f ) using the relation in Equation (2).
The noise Pn( f ) is taken to be Gaussian, colored using the the
Advanced LIGO noise PSD (Aasi et al. 2015a). 100 days of
consecutive data are simulated at a sampling rate of 1024 Hz.

Each of the 100 days is analyzed separately, and we recover

a distribution of W25
0ˆ point estimates, shown in Figure 10 (left),

using α= 0 and fref= 25 Hz in the pipeline. Analyzing 100
days separately allows us to construct a distribution of
recovered point estimates, which is useful to assess the ability
of the simulator module to inject a stochastic stationary
signal. We then perform parameter estimation on the combined
100 days, presented in Figure 10 (right). We assume a log-
uniform prior from 10−11− 10−6 for Ωref and a Gaussian prior
with mean 0 and standard deviation 1.5 for α. This shows a
recovery within 1σ for Ωref= 1.06× 10−7 and within 2σ for
the spectral index αinj= 0.
The tests above illustrate that the simulator module is

able to successfully inject a stochastic stationary signal and that
the pygwb pipeline is able to recover this injection.

6.1.2. Gravitational-wave Background from a Coalescing Compact
Binary Population

The inspiral and merger of two compact objects emit a
characteristic GW signal. We generate data sets containing a
GWB signal resulting from the superposition of GW signals
from a set of CBC populations including BBHs and BNSs. To
simulate the signals, we employ the code used in the past for
the Einstein Telescope (ET) mock data and science challenges
(MDSCs; Regimbau et al. 2012, 2014; Meacher et al. 2016)
and for the Advanced LIGO and Advanced Virgo MDSC
(Meacher et al. 2015). The Monte Carlo algorithm that we use
for the generation of a compact binary population up to redshift
z= 10 is extensively described in Regimbau et al. (2012) and
Regimbau et al. (2015). We summarize below the main steps of
the simulations.
To generate a CBC population, we assume a merger rate per

unit redshift (Belczynski & Kalogera 2001; Bulik et al. 2004;
Belczynski et al. 2006; Berger et al. 2007):

=
dR z

dz

dV

dz
r z , 45c

c( ) ( ) ( )

where dVc/dz is the comoving volume element and rc the
coalescence rate as a function of redshift (Regimbau 2011).

Figure 10. Left: distribution of the recovered point estimate for each day in the data set. The injected value is denoted by the red line. Wref and σref denote the mean
and the standard deviation of the 100 point estimates. Right: parameter estimation performed on the 100 days, obtained assuming a log-uniform prior from 10−11

–10−6

for Ωref and a Gaussian prior with mean 0 and standard deviation 1.5 for α. The injected values are denoted by the black lines, while the contours represent the 1σ, 2σ,
and 3σ contours. The vertical dashed lines represent the 1σ confidence interval.
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The element of comoving volume assumes a Lambda cold dark
matter (ΛCDM) cosmology from Planck 2018 (Aghanim et al.
2020; Hubble parameter H0= 67.7 km s−1 Mpc−1, Ωm= 0.31,
and ΩΛ= 1−Ωm). We assume a coalescence rate normalized
to a local rate rc(0)= 1Mpc−3 Myr−1 for BNS coalescences
and rc(0)= 3Mpc−3 Myr−1 for BBH coalescences, assuming
the star formation rate from Hopkins & Beacom (2006) and a
minimum delay time between binary formation and merger of
20Myr for BNSs and 50Myr for BBHs; see Dominik et al.
(2012) and Neijssel et al. (2019) for more details. These
choices give rise to a data set composed of 87% of BNSs and
13% of BBHs.

The time intervals τ between consecutive CBC events in our
population are obtained by sampling an exponential distribu-
tion t t t= -P exp( ) ( ¯ ), where t̄ is the average time between
consecutive events. This is consistent with the assumption that
the coalescence times tc of the events behave as a Poisson
process (Regimbau et al. 2015). The coalescence redshift is
drawn from the normalized coalescence rate t=p z dR dz z( ) ¯ ( )
within z ä [0, 10]. The sky position n̂ of each source is
generated isotropically on the sky. The GW polarization angle
ψ, the phase angle f0 at the coalescence time, and the cosine of
the inclination angle of the orbital plane to the line of sight ι are
all drawn from uniform distributions. The mass function of the
components in the BBHs is chosen to be a PL plus peak (PLPP)
from the preferred case presented in the LVK collaboration
CBC population inference paper (Abbott et al. 2023) or a
simple PL (Abbott et al. 2021c), while the BNS masses are
drawn from a uniform distribution between 1 and 3 Me. The
BBH mass functions are used to label the two data sets
presented below. Spins are neglected in both cases.

For each source, the signal waveform is generated in the time
domain. For BNSs, we use the TaylorT4 time-domain
waveform (Buonanno et al. 2003). For BBH signals, we use the
EOBNRv2 (Buonanno et al. 2009) time-domain waveform from
numerical relativity. These are then injected into the LIGO
Hanford and Livingston detectors, with the addition of colored
Gaussian noise generated from the LIGO A+ design (Barsotti
et al. 2018; O’Reilly et al. 2020) expected sensitivity curve, to
produce the final data sets.

Following the above prescriptions, we generate two 6
months data sets with sampling frequency 1024 Hz, labeled
PLPP and PL, formed by two different CBC populations. The
two populations differ by the mass distributions of the BBHs
and the average times between consecutive events, as seen in
Table 2. The latter are chosen such that the GWB amplitudes of
the two data sets match, for ease of comparison. Furthermore,

to obtain an SNR large enough to confidently detect the
injected GWB, a small amplification of the signal is required.
To this end, the amplitudes of the CBC waveforms are
multiplied by 1.5 and 1.7 for the PLPP and the PL data sets,
respectively, resulting in an injected value of Ωref= 2.05×
10−9.
The ΩGW( f ) spectrum relative to each data set is obtained by

summing the contributions from individual coalescences
(Meacher et al. 2015), and is illustrated in Figure 11. As may
be observed, in the case of CBC signals, ΩGW( f ) increases as
f 2/3 from the inspiral phase (and then as f 5/3 from the BBH
merger phase), before reaching a peak and steeply decreasing
(Marassi et al. 2011). This motivates fixing the spectral index
parameter to α= 2/3 in our searches. Figure 11 also shows the
PL integrated sensitivity (PI) curve (Thrane & Romano 2013)
for the Hanford–Livingston baseline, assuming the design A+
sensitivity for the two detectors (Barsotti et al. 2018), an
observation time Tobs= 6 months, and a desired sensitivity of
SNR= 5. Given that the PI curve is almost tangent to Ωref of
the two data sets, we expect to observe the GWB signals with
SNR ∼5.
We analyze the two data sets in the frequency band

20–500 Hz, using a frequency resolution of 1/32 Hz and a
segment duration of 192 s. We choose α= 2/3, fref= 25 Hz,
and H0= 67.7 km s–1 Mpc–1 for this analysis. The results of
the analysis are summarized in Table 2. We recover the PLPP
injection within 1σ, and observe it with SNR= 5.4, while
recovering the PL injection within 1σ, with SNR = 5.0. We
attribute the differences in the recoveries to the specific data
and noise realizations within the data sets.
We then proceed with estimating the parameters α and Wa

ref ,
modeling ΩGW( f ) as a simple PL in frequency, as given by
Equation (9). We assume a log-uniform prior over Wref

0 , in the
range W W = - -, 10 , 10min

0
max
0 11 8[ ] [ ], and a Gaussian prior on α

with mean 2/3 and standard deviation W -log10 min
0(

W =log 2 1.510 min
0 ) . Note that the priors in Wa

ref are defined
for α= 0. The choice of the prior over α can be understood as
follows. The log-uniform prior over Wref

0 induces some implicit

Table 2
Parameters and Results of Each Data Set

DATA SET τ (s) a sW  ´ 1025
2 3

25
2 3 9( ˆ ˆ ) SNR noise

GW

PLPP 60 1.5 2.09 ± 0.39 5.4 11.1
PL 54.7 1.7 1.94 ± 0.39 5.0 9.2

Note. The first row refers to the PLPP data set, while the second row refers to
the PL one. Column (2): the average time between two successive binary
mergers, τ. Column (3): the waveform amplification factor, a. Column (4): the
recovered point estimate with 1σ uncertainty on the quantityW

a
ref

ˆ ( fref = 25 Hz,
α = 2/3). Column (5): the corresponding SNR. Column (6): the log-Bayes
factor noise

GW .

Figure 11. ΩGW( f ) for the data set corresponding to the PLPP (blue) and the
PL (red) models for the mass function. The black line is the PI curve for an
observation time of 6 months and an expected SNR = 5, assuming the
Hanford–Livingston baseline with Advanced LIGO plus design sensitivity. The
simulated signals intersect the PI curve, hence they are expected to be detected
with an SNR of at least 5.
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prior over α that can be shown to be a triangular prior centered
on α= 0 and nonzero for a W - W log log10 max

0
10 min

0∣ ∣ ( ). To
avoid a vanishing prior outside this range, we choose a
Gaussian prior for α with standard deviation comparable with
the triangular prior, centered on α= 2/3 to better match the
injected GWB.

Parameter estimation corner plots are shown in Figure 12.
For both data sets, Ωref and α are recovered within 1σ. The log-
Bayes factors noise

GW are 11.1 and 9.2 for the PLPP and PL data
sets, respectively, indicating strong evidence (Kass & Raftery
1995) for the presence of signal over noise only.

6.2. O3

In this section, we present results from the application of the
pygwb analysis suite to the full LIGO Hanford and LIGO
Livingston O3 data set (LIGO Scientific Collaboration et al.
2021). We set upper limits on the signal from an SGWB and
confirm these are consistent with previously published
collaboration results (Abbott et al. 2021).
The O3 data run collected between 2019 April 1 and 2020

March 27, divided into two subsets, with an interruption
between 2019 October 1 and November 1, with a total
coincident livetime of 205.4 days between LIGO Hanford and

Figure 12. Parameter estimation results. Left: corner plot obtained from running the parameter estimation over the PLPP data set. Right: corner plot obtained from
running the parameter estimation over the PL data set. Each plot shows the posteriors on Ωref and α obtained assuming a log-uniform prior on Wref

0 from 10−11
–10−8

and a Gaussian prior on α with mean 2/3 and standard deviation of 1.5, respectively, denoted by the gray dashed lines. The injected values are represented by the
black lines, indicating recoveries of both the amplitude of the signal and α within 1σ. The vertical blue dashed lines represent the 2σ confidence intervals.

Figure 13. Estimated cross-correlation spectrum sW 25
0

25
0ˆ ˆ from O3 data. By eye, it is possible to spot several narrowband artifacts (lines) that are subsequently

excluded from our analysis.
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LIGO Livingston. These are reduced to 196 days after category
1 vetoes38 (Abbott et al. 2018; Acernese et al. 2022a) and
external nonstationarity cuts are applied (for details, see Abbott
et al. 2021). The pygwb analysis is implemented with the
workflow described above. The O3 data, natively sampled at
16,384 Hz, are downsampled to 4096 Hz and high-pass-filtered
at 11 Hz.

The time-averaged O3 LIGO Hanford–Livingston cross-
correlation spectrum is presented in Figure 13. Our Δσ

threshold excludes 7.8% of the analyzed time (see Section 3.4
for implementation details). This result matches the previous
stochastic nonstationarity cut published in Abbott et al. (2021)
within 1%, with the previous cut excluding an extra 0.06% of
the time. We believe this small variation to be due to a different
window bias factor being used in the two analyses (the bias
factor calculation used here is outlined in Appendix A).

We calculate broadband integrated estimates between
20–1726 Hz of ΩGW( fref) for different PL spectral models,
applying the released O3 notch list (LIGO Scientific Colla-
boration et al. 2021) to exclude known problematic frequencies
(Covas et al. 2018). A summary of the values for the point
estimates and the uncertainties for these are presented in
Table 3. The uncertainties sa

ref agree within 1% with previously
published LVK results, presented in Abbott et al. (2021). The
point estimates for Wa

ref fluctuate notably more than the
uncertainties. We believe this to be due to small differences
in the analyses, to which the point estimates are more sensitive,
such as the individual start and end times of each pipeline job
and the differences in the nonstationarity cuts described above.
Finally, we perform parameter estimation to constrain

ΩGW( fref= 25Hz)≡Ω25 and the spectral index α with O3
data. We employ a log-uniform prior on Ω25 spanning [10−13,
10−6], and present results for two different priors on α: a
uniform prior between [−4, 4] and a Gaussian prior centered
around 0 with norm 3.5 (the latter matches the choice in Abbott
et al. 2021). To account for calibration uncertainty, we
marginalize over the uncertainty parameter λ, as described in
Appendix B, with a combined calibration error for Hanford and
Livingston of 1.48%, as in Abbott et al. (2021). Parameter
estimation confirms Ω25 is consistent with 0 and α remains
unconstrained, as may be seen in Figure 14. These results agree
with the previous parameter estimation carried out in Abbott
et al. (2021).
Our results are quoted at the value of the Hubble parameter

H0= 67.9 km s−1 Mpc−1, in line with published results. This is
not the built-in value of H0, defined in Section 3.3; however,
rescaling is straightforward, as it is an overall multiplication
factor, which may be changed when postprocessing the run
with the pygwb_combine script or manually using the built-
in functions of the OmegaSpectrum object, as explained in
Sections 3.3 and 5.

Figure 14. Parameter estimation results with pygwb_pe on LVK O3 data, using a log-uniform prior on Ω25 and a uniform prior (left) or a Gaussian prior on α (right),
as described in the text. The priors are denoted by the gray dashed lines.

Table 3
Summary of pygwb Search Results on O3 Data Set

α W ´
a

1025
9ˆ W ´ 10LVK

9ˆ Prior
Ωpe

(95% UL) αpe

0 −3.4 ± 8.1 −2.1 ± 8.2 UNIFORM 5.44 × 109 - -
+0.8 2.2
2.8

2/3 −4.5 ± 6.1 −3.4 ± 6.1 GAUSSIAN 4.06 × 109 - -
+0.5 2.8
2.8

3 −1.5 ± 0.9 −1.3 ± 0.9

Note. On the left, three columns summarizing the point estimates from the
weighted optimal statistic, at different spectral indices α. On the right, three
columns summarizing the Bayesian upper limits (ULs), with a log-uniform
prior on W25

0 and either a uniform or Gaussian prior on α. These results are
consistent with no detection of the amplitude of the background (Wa

ref is
consistent with 0), nor its spectral shape (α remains unconstrained).

38
“Category 1” vetoes flag data that are unsuitable for analysis, such as

incorrectly calibrated data, data collected during atypical operations of the
instruments, and data with severe data quality issues.
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We would like to note that this entire analysis was carried
out on a large computing cluster and completed in less than 5 hr
of human time. This is an example of the computational
efficiency of our package.

7. Conclusions

We present a new Python-based package tailored to GWB
searches with current ground-based interferometers. We opt for a
modular code, where each module performs specific tasks of the
GWB data analysis. The modularity of the code results in large
flexibility and offers the possibility of customizing the pipeline
according to one’s own needs. With the use of the Python
language, and the user-friendliness and flexibility of the code, we
aim to bring GWB searches to the wider GW community, as the
detection of a GWB with ground-based interferometers draws
potentially closer. With increasing amounts of GW data, pygwb
also answers the need for an open-source GWB data analysis tool.

In this paper, we show the application of the pygwb package
to mock data sets, illustrating how the various modules can be
assembled to form a search pipeline, and showing what a GWB
detection could look like with our analysis approach. To
conclude, we run the pygwb pipeline on real GW data from the
third observing run (O3) of the LVK collaboration, and recover
results in agreement with published results. Both analyses serve
as a validation of the software.

The pygwb package is designed to evolve along the way
and address new analysis needs as they arise. This is facilitated
by the structure and the format of pygwb, and the management
of the online Git repository. The pygwb team invites input
from the broader community, under the form of Git issues and
pull requests. New contributors to the code are always
welcome. Official updates and releases of the code will be
handled and reviewed internally by the software and review
teams, which are due to evolve.

We are aware that other analysis methodologies exist, which
accommodate different features of specific GWBs, such as
potential anisotropy (Ain et al. 2018) and the intermittency of
the BBH background (Smith & Thrane 2018; Lawrence et al.
2023). We look forward to interfacing with these methods and,
where useful and appropriate, improving the current codebase
to support and encompass more analysis schemes.

Finally, we are particularly excited at the prospect of
broadening the scope of the package to include support for
next-generation detectors such as ET (Maggiore et al. 2020)
and Cosmic Explorer (Reitze et al. 2019). While the science
cases and design properties of these detectors are still under
development, there is evident interest in targeting GWBs with
these detectors within the community (Sathyaprakash et al.
2011; Regimbau et al. 2012, 2014), and a notable increase in
sensitivity compared to present-day interferometers is expected.
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Appendix A
Window Functions and Bias Factors

The window factors, wovl
4¯ and w4¯ , used in Section 3.3 are

defined as in Equations (34) and (24) in Lazzarini & Romano
(2004). They are used to correct for the effect windowing has
on our estimate of the variances. Actually, these corrections
should include contributions from the autocorrelation function
(PSD) of the individual detectors or their cross-correlation (see,
e.g., Equations (21) and (32) of the same note). However, if the
frequency response of the window is sufficiently strongly
peaked around zero, then we can treat the transformed windows
as delta functions (Whelan 2004) and our expressions for these
quantities reduce to

å=
=

w
N

w
1

, A1
i

N

i
4

1

4¯ ( )

where wi represents the ith sample of the Hann window we use.
Likewise, we need to account for the covariance between point
estimates calculated in adjacent time segments. The point
estimates are each quadratic in the data, windowed, and use
50% overlapping segments of data, and so we must account for
the overlapping of the windows applied to the two segments:

å=
= +

-w
N

w w
1

2
, A2

i N

N

i i Novl
4

2 1

2
2

2¯ ( )

where we see this now as the cross-correlation of the pieces of
the two windows that overlap for the two segments.

When calculating the variance of our point estimate, we must
estimate the quantity -P Pf f1, 2,

1( ) , which is the expression that
appears in the Gaussian likelihood used to construct our
optimal estimators (Matas & Romano 2021) and is therefore
the relevant quantity when considering the variance of the point
estimates. We briefly summarize how to properly estimate this
quantity based on the discussion in Appendix B of Matas &
Romano (2021), noting that they do not consider the effect of
windowing, which we also discuss below.

For a segment of length T, we calculate estimators for the
PSDs, PI f,ˆ , where I =1, 2 labels the detector, using Welch’s

method (Welch 1967). We break our time segment T into 50%
overlapping chunks, calculate the PSD in each chunk, and
average those estimates together. If we want a PSD with
frequency resolution Δf, then we have K overlapping segments
where K= 2TΔf− 1. We can assume our (noisy) estimators for
the individual PSDs are unbiased and can be written as the true
PSD plus some small deviation, d= +P P Pf f f1, 1, 1,

ˆ . We now
look at the quantity of interest in calculating our variance:

d d
=

+ +P P P P P P

1 1
. A3

f f f f f f1, 2, 1, 1, 2, 2,ˆ ˆ [ ][ ]
( )

We can expand the denominator, take the expectation value of
both sides, and use the fact that 〈δPI,f〉= 0 and
dá ñ =P PvarI f I f,

2
, , where I= 1, 2 labels the detector. This gives

us

» + + +
P P P P

P

P

P

P

1 1
1

var var
A4

f f f f

f

f

f

f1, 2, 1, 2,

1,

1,
2

2,

2,
2

⎛

⎝
⎜

⎞

⎠
⎟ˆ ˆ ( )

k
= +

P P K

1
1

2
. A5

f f1, 2,

⎛
⎝

⎞
⎠

( )

This expression can be compared to Equation (B8) in Matas &
Romano (2021), noting that we have an extra term in the
variance of our PSDs, κ. This term reduces the “effective”
number of averages we perform due to our windowing, where
we apply a Hann window with amplitude {wi} at each sample i,
as well as the overlapping of our chunks of data. The correction
factor is given by Welch (1967):

k = +
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In practice, we ignore the term (K− 1)/K, as it leads to extra
corrections that are -K 2( ) that are quite small.
We can now define a bias correction factor based on the

windowing we choose and the number of averages used in
constructing PI f,ˆ . Defining Neff= κ−1K, we have

s s= +- -f
N

f1
2

, A72

eff

2
⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( ) ( ) ( )

where we have used simplified notation again, where the hat
indicates our estimator for Equation (6) and the unhatted σ

indicates the true value.
Taking the square root of both sides and inverting it gives us

s s= b N , A8eff( ) ˆ ( )

where the bias factor, b(Neff), is given by

=
-

b N
N

N 1
, A9eff

eff

eff
( ) ( )

assuming Neff is large. In Section 3.4, two different bias factors
are discussed. In one case, the “naive” σ is estimated using one
segment of length T, which results in fewer effective averages,
and a larger bias correction than our typical estimate of σ,
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which uses two adjacent segments of length T and therefore
twice as many averages.

Appendix B
Marginalizing Over Calibration Uncertainty

Given measurements Wi{ ˆ } with uncertainties si
2, as shown in

Section 3.6, the following likelihood function can be used to
perform parameter estimation on the GWB:
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Here, the Wf{ ˆ } are a set of estimators for the GW energy density at
discrete frequencies f, ΩM( f|Θ) is a model for the energy density
with parameters Θ, and  is a normalization constant. We will
consider only a single baseline and neglect the sum over the
detector pairs IJ appearing in Equation (33); if multiple detector
pairs exist, the derivation below can be replicated for each pair.

Equation (B1) assumes that our estimators Wf{ ˆ } are direct,
unbiased measurements of the underlying energy density
spectrum. In general, however, the imperfect amplitude and
phase calibration of GW detectors will break this assumption.
We can account for the calibration uncertainty by amending our
likelihood to introduce a new parameter λ:
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The parameter λ is an unknown multiplicative factor that
encapsulates the potential calibration inaccuracy. In the case of
perfect amplitude calibration (λ= 1), then Wf{ ˆ } are direct
measurements of the underlying (unknown) energy spectrum.
But if our calibration is imperfect (λ≠ 1), then Wf{ ˆ } are instead
measurements of some multiple λΩ( f ) of the GWB spectrum.
Although we do not know λ, it is possible to estimate the
uncertainty on the instrumental calibration. We will therefore
model λ itself as an unknown variable drawn from a normal
distribution centered at 1 (corresponding to perfect calibration),
but with a variance ò2:
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where ò is a known amplitude calibration uncertainty.
Additionally, we impose the constraint that λ be positive: we
expect errors in the amplitude of strain measurements, but not
their sign. In this case, the probability distribution for λ

becomes
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normalized to unity on the interval λ ä (0, ∞ ). Equation (B4)
is our prior on λ.
We can now use Equation (B4) to marginalize our likelihood

(Equation (B2)) over the unknown calibration factor λ. The
marginalized likelihood is given by

If we define
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the marginal likelihood can be more concisely expressed as
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this expression can be analytically integrated to obtain
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Marginalization of the calibration uncertainty is built into the
pygwb_pe module, and this calculation is automatically
triggered when passing a calibration error ò≠ 0. Additional
information on the treatment of calibration uncertainties can be
found in Whelan et al. (2014).
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