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1. Introduction

Gaiotto and Rapcék introduced an important family of vertex algebras Yn, wn,, n, [¢]
called Y-algebras, which are indexed by three integers N1, No, N3 > 0 and a complex
parameter v [13]. These vertex algebras are associated to interfaces of twisted N =4
supersymmetric gauge theories with gauge groups U(N;), U(Nz), and U(N3). The in-
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terfaces satisfy a permutation symmetry which is expected to induce a corresponding
symmetry on the vertex algebras. This led Gaiotto and Rapc¢ék to conjecture a triality
of isomorphisms of Y-algebras. Define ¢ = —:—f where €1 + €5 4+ €3 = 0, and set

€1,€2,€3 —
YN1,N27N3 = YNy N2 N [4].
In this, notation the triality conjecture is
€5(1):€0(2)5€0(3) ~ €1,€2,€3 .
YNU(1>7NU(2>,NU<3> YN N Ny for o € Ss. (1.1)

In the case when one of the labels Ny, Na, N3 is zero, Yy, n,.n4[¢] is a simple vertex
algebra, and it can be realized (up to a Heisenberg algebra) as a certain coset of an affine
W-(super)algebra. In this case, the triality conjecture is equivalent to the statement that
there are three different such realizations, and this was proven by Creutzig and the second
author in [10].

More precisely, for n > 1, consider the W-algebras

Wk(ﬁ[n+m7fn+7n)a ¢:k+n+m7

where f, 1, is the nilpotent element which is principal in sl,, and trivial in sl,,,. Note that
WH (5l m, fom) is a common generalization of the principal W-algebra W¥(sl,,) (the
case m = 0), the affine vertex algebra V¥(sl,, 1) (the case n = 1), the subregular W-
algebra W¥(sl,, 11, foubreg) (the case m = 1), and the minimal W-algebra WE (sl 12, fmin)
(the case m = 2). As in [10], we replace k with the shifted level ¥ = k + n + m, and we
set

W7/’(n’ m) = Wk(sln-l-ma fn-i-m) = Wwinim(s[n—i—mv fn+m)-

For m > 1, W¥(n,m) has affine vertex subalgebra

Vvm=lgl, ) =HQV V" (sl,,) m>2,
H m=1,

where H is the Heisenberg algebra. For n = 0, a different definition of W¥(0,m) was
given [10], and this is omitted for brevity. Consider the affine cosets

Com(V¥=m=1(gl, ), W¥(n,m)) m>2,n>0,
C¥(n,m) = Com(H, W¥(n, 1)) m=1 n>0,
WY (n,0) m=0, n>2.

Up to a Heisenberg algebra, these cosets are just the above Y-algebras, that is,
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Youn] =CY(N—M,M)®H, M<N,

1.2
Youn] =C V(M ~-N,N)@H, M>N. (12)

Next, for n > 1 and n > m, there is a similar family of affine WW-superalgebras
Wk(ﬁ[n\myfn\m)a Y =Fk+n+m,

where f,|, is the nilpotent element which is principal in sl,, and trivial in sl,,. As above,
Wk(5[n|m, Jnjm) is a common generalization of the principal WW-algebra WF(sl,) (the
case m = 0), the affine vertex superalgebra V*(sly,,,) (the case n = 1), the principal
W-superalgebra W¥ (5Ln)1, fsubreg) (the case m = 1), and the minimal W-superalgebra
Wk(s[2|m,fmin) (the case n = 2). In the case n = m, we need to take Wk(p5[n|n, fnin)
instead of W¥ (s, f51n) to get a simple algebra. Again, we replace the level k with the
shifted level ¢ = k +n — m, and set

Wk(g[n\myfn\m) n2>1, m;én,

VY(n,m) = .

For m > 1, V¥(n,m) has affine vertex subalgebra

VT (gl,) = HR VT (sl,) m > 2, m#£n,
VovTntl(sl,) nz2 m=mn
5 m = 1.

The extremal cases V¥(1,1), V¥(1,0), and V¥(0,m) are defined differently in [10], and
this is omitted for brevity. Define

Com(V—¥="+1(gl,,), V¥ (n, m)) n>0 m>2 m%n,
—p—n+1 ) GL, > _
Dw(n, m) = Com(V (sl,),V¥(n,n)) n>2 m=n,
Com(H,V¥(n, 1)) n>2 m=1,
V¥(n,0) n>2 m=0.

Again, we omit the definition of the extremal cases D¥(1,1), D¥(1,0), and D¥(0,1),
which can be found in [10]. Note that D¥(n,m) is just the affine coset for n # m, but in
the case n = m there is an action of GL; by outer automorphisms, and it is necessary
to take the G Li-orbifold of the affine coset. Up to a Heisenberg algebra, these cosets are
just the above Y-algebras:

Yion[W] =DY(N,L)®H,

(1.3)
Y mol] =D YT (M, L) @ H.

The main result of [10], which is equivalent to the Gaiotto-Rapcék triality conjecture
in the case where one of the labels is zero, is the following.
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Theorem 1.1. Let n > m > 0 be non-negative integers. As one-parameter vertex algebras

D’p(n,m)%C“l’_l(nfm,m)%l)w/(m,n), P = l+i =1
(I

This theorem is a vast generalization of well-known results such as Feigin-Frenkel
duality [12] and the coset realization of principal W-algebras of type A [3], which are
the special cases D¥(n,0) = wal(n, 0) and D¥(n,0) = D¥'(0,n), respectively. The Y-
algebras are important because they serve as building blocks for many interesting vertex
algebras. Conjecturally, they are isomorphic to the Wi, n, n,-algebras of [7], which act
on the moduli space of spiked instantons of certain toric Calabi-Yau threefolds [22].
In these examples, the toric diagram has three two-dimensional faces, and each face is
labeled by integers Ny, No, N3 that indicate an action of the gauge groups U(Ny), U(N3)
and U(N3). As explained in the introduction of [10], when one of these labels is zero, we
expect that the Yy as v-algebra has representation categories which are Kazhdan-Lusztig
categories K Ly(slys) and K L(sly) for some k, ¢. The extension of a tensor product of
two Y-algebras along a common K L (slys) should correspond to a toric Calabi-Yau
threefold whose toric diagram has four faces, and this procedure can be iterated to
create more complicated vertex algebras.

For the rest of this paper, we will use the cosets C¥(n,m) as our realization of
the Y-algebras. One of the key ingredients in the proof of Theorem 1.1 is that aside
from the extremal cases C¥(0,0),C¥(0,1),C¥(1,0) (which are isomorphic to C), and
C¥(0,2),C%(0,2) (which are isomorphic to the Virasoro algebra), C¥(n,m) can be re-
alized explicitly as a quotient of the universal two-parameter Weo-algebra W(c, A) con-
structed by the second author in [21].

1.1. Orbifolds of Y -algebras

The two-parameter vertex algebra W(c, A) has full automorphism group Z, [21,
Cor. 5.3]. Aside from the above extremal cases, all the algebras C¥(n,m) inherit this
Zo-symmetry. In this paper, our main goal is to study the structure of the orbifold
W(e, )\)Z2 as a two-parameter vertex algebra, and C¥(n, m)Z2 as one-parameter vertex
algebras, or equivalently, for generic values of ¥. We shall adopt the following notation:
if a vertex algebra V has a minimal strong generating set consisting of d; fields in weight
n; for i =1,2,... 7, we say that V is of type W(nfl, cooymdr).

Certain special cases of this problem have previously been studied in the physics
literature [6]. For example, it was conjectured that WF¥(sl3)%2 should be of type
W(2,6,8,10,12), and this was proven in our earlier paper [4]. Similar conjectures were
given in [6] for W¥(sl,) for n = 4,5,6:

(1) WE(sly)%2 should be of type W(2,4,6,8,10,12).
(2) WE(sl5)%2 should be of type W(2,4,6,82,9,103, 11,123, 13, 142).
(3) WE(slg)%2 should be of type W(2,4,62,82,9,103,11,123,13,142).
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Also, the parafermion algebra of sly, namely, N*(sly) = Com(H, V¥(sly)), is just
C¥(1,1). Tt was conjectured in [6] that N*(sly)%2 should be of type W(2,4,6,8,10), and
this was proven by Kanade and the second author [18]. We mention that Jiang and
Wang [14,15] have classified the irreducible modules and computed the fusion rings for
the simple parafermion algebras Kj(slo)%? = Com(H, Li(sl2))%2 for k € N, which are
Cy-cofinite and rational. Here Ly(slz) denotes the simple affine vertex algebra. Due to
the well-known isomorphism Ky (sly) = W,.(sly) for r = —k+ ’;—ié of Arakawa, Lam, and
Yamada [5], the orbifolds Kj(sly)%2 are really orbifolds of certain rational W-algebras
of type A. One of the motivations for this work is to study the representation theory
of W, (slx)%? for a general nondegenerate admissible level 7, which are Cy-cofinite and
rational [1,2].

1.2. Main result

Our main result is that after a suitable localization of the ring Cle, A, W(e, \)%? is
generated by the weight 4 field W* as a two-parameter vertex algebra. A consequence
is that after a suitable localization of the ring C[¢], all the one-parameter quotients
C¥(n, m)%2 for n > 4 and m = 0, and for n,m > 1, are generated by W*. In particular,
this holds for W¥(sl,,)%2 for all n > 4. We also give a finite strong generating set for
C%(n,m)%2. Our strong generating set is not typically minimal, although it is minimal
for W¥(sl,,)%2 for n = 4,5,6 and the above conjectures from [6] are true. We will also
give the minimal strong generating set for W¥ (5[7)22, which illustrates the subtlety
of this problem in general. Our strong generating set yields a finite generating set for
Zhuw’s algebra A(CY(n,m)%2) [23]. The description of this algebra is an important step
in understanding the representation theory of these algebras. The strategy of proof is as
follows.

(1) First, we consider the special case C¥(n,0) = WF¥(sl,) for n > 4, which has the
advantage that unlike C¥(n, m) for m > 1, it admits a large level limit Wee(sl,,) =
limy,_, 00 W¥(sl,,) which is a free field algebra. We find both minimal weak and strong
finite generating sets for Wee(sl,)%2. These give rise to weak and strong finite
generating sets for WF (5[,1)227 respectively, which are no longer minimal.

(2) Using the weak and strong generating sets for Wee(sl, )22 for all n, we find eco-
nomical (but not minimal) infinite weak and strong generating sets for W(c, \)%2.
These yield weak and strong finite generating sets for C¥(n,m)%> for all n,m.

(3) Using the partial OPE algebra of W(c, A) which appears in [21], we show that all weak
generators for W(c, A\)%2 from (2), and hence the entire algebra, can be generated

by the field W*.
2. Vertex algebras

We will assume that the reader is familiar with vertex algebras, and we use the same
notation as the previous paper [10] of the second author. In this section, we briefly recall
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the definition and basic properties of free field algebras, W-algebras, and the universal
two-parameter algebra W(c, A).

2.1. Free field algebras

A free field algebra is a vertex superalgebra V with weight grading

v= P vid. V=c,

de%ZZO
with strong generators {X| i € I} satisfying OPE relations
X)X (w) ~ a; j(z—w) XV WED g e € gy =0 if wh(X)+wt(XT) ¢ Z.

We now recall the four families of free field algebras that were introduced in [10].

Even algebras of orthogonal type. For each n > 1 and even k > 2, O, (n, k) is the vertex

1

algebra with even generators a', ..., a"™ of weight %, which satisfy

a'(2)a? (w) ~ 8 j(z —w) ™",

In the case k = 2, Ocy(n, k) just the rank n Heisenberg algebra #(n). It has no conformal
vector for k > 2, but for all k it is a simple vertex algebra and has full automorphism
group the orthogonal group O(n).

Even algebras of symplectic type. For each n > 1 and odd k > 1, Sey(n, k) is the vertex
algebra with even generators a?, b’ for i = 1,...,n of weight %, which satisfy

a'(2)b (w) ~ i (2 — w)_k, bi(2)a! (w) ~ —0;,(z — w)_k,

. , o (2.1)
a'(z)a’ (w) ~ 0, b* ()b (w) ~ 0.

In the case k = 1, Sev(n, k) is just the rank n By-system S(n). For k > 1, Sev(n, k)
has no conformal vector, but for all & it is simple and has full automorphism group the
symplectic group Sp(2n).

Odd algebras of symplectic type. For each n > 1 and even k > 2, Soqq(n, k) is the vertex
superalgebra with odd generators a?, b’ for i = 1,...,n of weight §7 which satisfy

a'(2)b? (w) ~ i (2 — w)_k, Y (2)a' (w) ~ —0;,(z — w)_k,

. , o (2.2)
a'(z)a’ (w) ~ 0, b (2)t (w) ~ 0.

In the case k = 2, Saa(n, k) is just the rank n symplectic fermion algebra A(n). It has
no conformal vector for £ > 2, but for all k it is simple and has full automorphism group
Sp(2n).
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0dd algebras of orthogonal type. For each n > 1 and odd k > 1, we define Ooqq(n, k) to
be the vertex superalgebra with odd generators o’ for i = 1, ..., n of weight %, satisfying

a'(2)a? (w) ~ §; j(z —w) 7", (2.3)

For k =1, Opda(n, k) is just the free fermion algebra F(n). As above, Ooq4(n, k) has no
conformal vector for k > 1, but it is simple and has full automorphism group O(n).

2.2. W-algebras

Let g be a simple, finite-dimensional Lie (super)algebra equipped with a nondegen-
erate, invariant (super)symmetric bilinear form ( | ), and let f be a nilpotent element
in the even part of g. Associated to g and f and any complex number k, is the W-
(super)algebra W¥ (g, f). The definition is due to Kac, Roan, and Wakimoto [16], and it
generalizes the definition for g a Lie algebra and f a principal nilpotent given by Feigin
and Frenkel [11].

Fix a basis {¢®}aes for g which is homogeneous with respect to parity, and define the
corresponding structure constants and parity by

0 q“ even,
*, "1 =P, ol = .
oS 1 ¢ odd.

The level k affine vertex algebra of g associated to the bilinear form ( | ) has strong
generators { X%} ,cg satisfying

X (2) X (w) ~ k(g®la”)(z —w) 2+ > S5 X (w)(z = w) 7
vyES

We define X, to be the field corresponding to g, where {gq}acs is the dual basis of
g with respect to ( | ). Let f be a nilpotent element in the even part of g, which we
complete to an slp-triple {f, z, e} C g satisfying

[x,e]:e, [mvf]:_f, [e,f]ZQ.Z‘.

We have the decomposition of g

g= @ Ok, or = {a € g| [x,a] = ka}.
keiz

Write S = J, Sk and S; = [~ Sk, where S, corresponds to a basis of gy.

As in [17], define the complex C(g, f, k) = V¥(g) ® F(g1) ® F(g1), where F(g,) is a
free field superalgebra associated to the vector superspace g = @1 7. 9k, and F (g%)
is the neutral vertex superalgebra associated to g1 with bilinear form (a,b) = (f|[a, 0]).
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Then F(g4) is strongly generated by fields {¢a, ¢ }acs, , Where ¢, and ¢* have the
opposite parity of ¢®. The OPEs are

a(2)@” (W) ~ dap(z —w) ™' pal2)pp(w) ~ 0~ % (2)0 (w).

F(g 1 ) is strongly generated by fields {®}acs, and ®* and ¢* have the same parity.
Their OPEs are ’

Do (2)®p(w) ~ (g%, ¢") (z —w) ™" ~ (fllg%, ¢"])(z —w) ™.

There is a Z-grading on C(g, f, k) by charge, and a weight 1 odd field d(z) of charge —1,

A= 3 (D X s S (1)l et 4

aESt a,B,7€S4

(2.4)
D (Fla)e™ + Y 9,
aES+ OtES%

whose zero-mode dy is a square-zero differential on C(g, f, k). The W-algebra WF¥(g, f)
is defined to be the homology H(C(g, f, k),dp). It has Virasoro element

L = Lgyg + 0x + Len + Lne, where

1
Leyeg = ———— —1)lel s x, xo
& 2(k+hY) 21 ’
acsS
L= Y (=ma: ¢"0a s +(1—ma) : (9")pa ). (2:5)
aeS4
1
Ly = 3 (09D,
€Sy

Here mqy = j if o € S;. The key structural theorem is the following.

Theorem 2.1. [17, Thm 4.1] Let g be a simple finite-dimensional Lie superalgebra with
an invariant bilinear form (| ), and let x, f be a pair of even elements of g such
that ad = is diagonalizable with eigenvalues in %Z and [z, f] = —f. Denote by g’ the

centralizer of f in g, and suppose that all eigenvalues of ad = on g/ are non-positive, so
that gf = ®D,<o gf. Then

(1) For each ¢* € gij, (7 > 0) there exists a do-closed field K* of weight 1 + j, with
respect to L.

(2) The homology classes of the fields K<, where {q®} is a basis of g/, freely generate
WH (g, f)-

(3) Ho(Cl(g. f,k),do) = W*(g, f) and H;(C(g, f,k),do) =0 if j # 0.
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2.3. Free field limits of W-algebras

We recall the notion of a deformable family of vertex algebras from [20,8,9]. It is a
vertex algebra B defined over the ring F of rational functions %’3 in a formal variable
K, where deg p < deg ¢, and the zeroes of ¢ lie in some at most countable subset K C C.
Then B> = lim,_,o B is a well-defined vertex algebra over C.

Let g be a Lie (super)algebra with a nondegenerate form ( | ), and let f € g be an
even nilpotent. It was shown in [10] that after rescaling the generators of W¥(g, f) by
ﬁ, there exists a deformable family W(g, f) with parameter x = vk such that

WH(g, £) 2 W(g, f)/(x — VE)W(g, f), for all k # 0.

Here (k —VE)W(g, f) denotes the vertex algebra ideal generated by s — vk, regarded as
an element of the weight zero subspace. Moreover, its large level limit lim,_, . W(g, f),
which we denote by W'¢(g, f), has the following property.

Theorem 2.2. [10, Thm. 3.5 and Cor. 3.4] Let g be a Lie superalgebra with invariant,
nondegenerate supersymmetric bilinear form, and let f € g be an even nilpotent. Then

m

Wiee(g, £) = QWi

i=1

where each V; is one of the standard free field algebras Oep(n, k), Opqa(n, k), Sev(n, k),
or Soaa(n, k).

Recall the decomposition g/ = ®j>0 g’ij, where j € %N. Fix a basis ij for g’ij, and
recall the field K € W¥(g, f) of weight 1+ j corresponding to ¢ € ij. We denote the
corresponding fields in the limit We¢(g, f) by X, and we partition J / ; into subsets
gl

Zev and ij odq consisting of even and odd elements. Then

j is a half-integer, ae J . as a skew-symmetric pairing, and generates

1) If j is a half-int Xl aeJl, .} has ask tric pairi d t
an even algebra of symplectic type.

(2) If j is an integer, {X%| a € ij,ev} has a symmetric pairing, and generates an even
algebra of orthogonal type.

3) If j is a half-integer, {X“| a € J f . has a symmetric pairing, and generates an

g j,odd g g

odd algebra of orthogonal type.

4) If j is an integer, {X%| a € Jf . has a skew-symmetric pairing, and generates

J g j,0dd Y g g

an odd algebra of symplectic type.

Theorem 2.2 has several applications, including;:
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(1) Simplicity of W¥(g, f) for generic values of k whenever g admits an invariant, non-
degenerate supersymmetric bilinear form [10, Thm. 3.6],

(2) Strong finite generation of W¥*(g, f)¢ for any reductive group of automorphisms G,
and generic values of k [10, Thm. 4.1].

Statement (2) is based on three observations. First, taking G-invariants commutes with
taking the limit in the following sense:

Lemma 2.3. [10, Lemma 4.1] Let g be a Lie (super)algebra with a nondegenerate form,
[ € g an even nilpotent element, and let W/™e(g, f) = @, V; be its free field limit. Let
G be a reductive group of automorphisms of W¥(g, f) as a one-parameter vertex algebra
which acts trivially on the ring of rational functions of k. Then W(g, f)€ is a deformable
family and

m

lim (W(g, £)°) = ( lim W(g, /)7 = (QV)".

K—00 ‘
i=1

Second, a strong finite generating set for the limit B*° of a deformable family gives
rise a strong finite generating set for B after a suitable localization of the ring Fi:

Lemma 2.4. [9, Lemma 3.2] Let K C C be at most countable, and let B be a deformable
family over Fy with weight grading B = @ -, Bld], such that B[0] = Fg. Let U =
{oi| i € I} be a strong generating set for B>, and let T = {a;| i € I} be a subset of
B such that p(a;) = «;. There exists a subset S C C containing K which is at most
countable, such that Fs @p, B is strongly generated by T'. Here we have identified T with
the set {1 ®a;| i € [} C Fs ®p, B.

Third, by [10, Thm 4.10], for any finite tensor product V = ", V; of standard free
field algebras, and any reductive group G of automorphisms of V, V¢ is strongly finitely
generated.

We will also need a version of Lemma 2.4 for weak generating sets.

Lemma 2.5. Let B be a deformable family over Fi as in Lemma 2.4. Let U = {cy;| i € I}
be a weak generating set for B>, and let T = {a;| ¢ € I} be a subset of B such that
©(a;) = ;. There exists a subset S C C containing K which is at most countable, such
that Fs @, B is weakly generated by T'. As above, we have identified T with the set
{1®a;|i€l} CFsQp, B.

Proof. This is immediate from Lemma 2.4 and the fact that if {a;| ¢ € I} weakly
generates B>, the set

{oi, 0, (- (i, —105,_, )+ )] i1,..oyip €1, Ji,..0,jro1 2> 0}
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strongly generates B>. 0O

In this paper, we only need the special case of W¥(sl,,), which satisfies
Wiee(st,) = (X) O(1, 2i). (2.6)
i=1

We often use the notation W* for the generators of O(1,2i), which satisfy
Wi Wi (w) ~ (z —w) ™2
3. Universal two-parameter YV, -algebra

Here we recall some features of the universal two-parameter vertex algebra W(c, \)
constructed by the second author in [21]. It is defined over the ring Cle, A], and is
generated by a Virasoro field L of central charge ¢ and a primary weight 3 field W3
which is normalized so that (W3)(5)W3 = £1. The remaining strong generators W of
weight 7 > 4 are defined inductively by

Wi=WHqyWwt  i>4
Then W(c, \) is freely generated by {L, W?| i > 3}. It has a conformal weight grading

W(e,\) = @W(c, A)[n],
n>0
where each W(c,\)[n] is a free Cle, AJ]-module and W(c, A)[0] = Clc, A]. There is a
symmetric bilinear form on W(c, A)[n] given by

<7 >n : W(Cv )‘)[n] ®(C[C7A] W(Ca A)[n} - C[Cv >‘]’ <w7 V>7l = Wiep-1)V.

The determinant det,, of this form is nonzero for all n, which is equivalent to the sim-
plicity of W(e, M) as a vertex algebra over Cle, A].
Certain coefficients are independent of the parameters ¢, \. We have for 3 <i < j

WH )W (w) ~ -+ ai ;W72 (w) (2 = w) 7 + b , oW 72 (w) (2 — w) ™,

where a; ; and b; ; are independent of ¢, \. By definition, a3 ; = 1 for all j > 3. In [2]]
we computed a few of these constants, namely,

4 12 20

= —, b,':%, a5 = 77— oy -
j+1 MGG+ 2) TG+ 1) +2)

4,5

In fact, they can be deduced from the recursive procedure in the proof of Theorem 5.2
of [21], and we record this result for later use.
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Lemma 3.1. For all 3 < i < j, we have

. il _— il(i—1)
B e+ +2) - (+i—2)

PTG +2) (i 3)

Let p be an irreducible factor of dety11 and let I = (p) C Cle, A] =2 W(e, A)[0] be the
corresponding ideal. Consider the quotient

W (e, N) = W(e, \)/T-W(e, \),
where I is regarded as a subset of the weight zero space W(c,A)[0] = Cle, A], and
I-W(e, \) denotes the vertex algebra ideal generated by I. This is a vertex algebra over
the ring Cl[e, A]/I, which is no longer simple. It contains a singular vector w in weight
N +1, which lies in the maximal proper ideal Z C W!(c, \) graded by conformal weight.
If p does not divide det,,, for any m < N+ 1, w will have minimal weight among elements
of Z. Often, w has the form

W _ pL,w3, ... w1, (3.1)

possibly after localizing the ring Clc, ], where P is a normally ordered polynomial in
the fields L, W?3,..., WN~! and their derivatives. If this is the case, there will exist
relations in the simple graded quotient Wy(c, \) := W (¢, \)/Z of the form

W™ = P (L,W3,..., W),

for all m > N +1 expressing W™ in terms of L, W3,..., W and their derivatives. Then
Wi (e, ) will be of type W(2,3, ..., N). Conversely, any one-parameter vertex algebra W
of type W(2,3, ..., N) for some N satisfying mild hypotheses, is isomorphic to Wy(c, \)
for some I = (p) as above, possibly after localizing. The corresponding variety V(1) C C?
is called the truncation curve for W.

Theorem 3.2. [10, Thm 6.1] Form > 1 andn > 0, and form =0 andn > 3, C¥(n,m) =
Wr,.... (¢, \), where I, ., is described explicitly via the parametrization

(n —m —n— 1) = —m—n+ 1)(n + % —m—n)
(Y —1) ’

c(¥) = —

(3.2)

-1y

M) = o T —m =) =% —m—n ) T 0 —m—n)’

Moreover, after a suitable localization of the ring C[b], WHm (¢, X) has a singular vector
of the form
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W(m+1)(m+n+1) _ P(L W3 W(m+1)(m+n+1)—1)
) PRI

and no singular vector of lower weight, where P is a normally ordered polynomial in
the fields L, W3, ... WmtDmin+=1 " qnd their derivatives. Therefore Wy, , (¢, \) has
minimal strong generating type W(2,3,...,(m+1)(m+n+1)—1).

It is expected that this list accounts for all the finite truncations of W(e, A), but this
remains an open question.

3.1. Orbifolds of W(c, \)

By [21, Cor. 5.3], W(c, A) has full automorphism group Zs as a vertex algebra over
C|e, A], and the action of the generator 6 € Zs is given by 0(L) = L and §(W?3) = —W3.
This forces O(W?*) = (—=1)'W* for all i > 3. The action of Zs on W(c,\) induces a
Z5-grading

W(Cv )‘) = W(Ca )‘)6 @ W(Cv )‘)T7

where 0 acts on W(c, A)g and W(e, M) by id and —id, respectively. Therefore W(c, \)%2 =
W(c, X)g. Moreover, all the ideals Z,, ,,, are graded by Zs:
Znym =Ty mo P L, m1, WhereZ,

’ mn

m,0 = In,m N W(C, )\)6, and I”ﬂ'”j = In,m n W(C, /\)T
It follows that C¥(n,m)% can be realized as the quotient
cv (na m)Z2 = W(Cv A)Zz/zn,m,ﬁ' (33)

If we pass to a suitable localization R of Clc, A], the weight d subspace W(c, \)%2[d] will
be a free R-module, and a basis {w1,...,w,,} for this space will descend to a basis for
the weight d subspace C¥(n, m)%2|d], for all but finitely many choices of n,m.

Define the following fields

Uii;l,?j*Fl = (aaw2i+1)(8bw2j+l) : 1<i< j, a,b > 07 (34)

which have weight 2i4+2j+a-+b+2 and clearly lie in W(c, A\)%2. Note that for 1 < i < j and
m > 0, the following sets span the same (m+1)-dimensional space of weight 2i+2j+m+2:

{Uamtd T 0<m <a), {0°Up M 0<a<m}, {9°Un 0" 0<a<m).

(3.5)
Similarly, for ¢ > 1 and m > 0, the following sets span the same (m + 1)-dimensional
spaces of weights 47 + 2m + 2 and 4¢ + 2m + 3, respectively:

(U252 0 <a<om),  {0*U55 % 0 <a<m}, 56
(U2phitilo<m<al,  {0*PUFSAI 0 < a <m). '
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Lemma 3.3. As a vertex algebra over the ring Clc, A], W(e, )\)Z2 has a strong generating
set consisting of the union of the following sets:

(1) {L, W% i>2},
(2) {U35:* i > 1, a >0},
(3) {Us " 1<i<j, a>0}.

In particular, this holds for all ¢, \, so no localization of Cle, \] is required.

Proof. The key observation is that W(c, A) has a good increasing filtration in the sense
of [19], defined by deg(W?) = i for i > 2, where W? = L, and setting the degree of a
monomial : 9F1 W ... 9% Wir : to be at most i1 + - - - +4,. It is apparent from the OPE
algebra which is defined recursively in [21] that for all 4,5 > 2 and k > 0, the degree of
W(ik)Wj is at most i + j — 2. It follows that the associated graded algebra gr(V(c, A))
is the differential commutative algebra with generators {W?| i > 2}. This filtration is
clearly Zo-invariant, hence gr(W(e, \)%2) = gr(W(c, \))%2. Since the latter is clearly
generated by the above monomials (where normally ordered is now unnecessary), the
claim follows. O

Since C¥(n,m) is of type W(2,3,...,(m+1)(m+n+1) — 1) after localizing the ring
C[v], we obtain

Corollary 3.4. For n > 3 and m = 0, and for n,m > 1, after the above localization,
C¥(n,m)% has a strong generating set

(1) L,W?, for2 < i < mtlmint) =1
(2) 3122121+1,f07‘ alll1 <i< % and a > 0,
(3) Ugf;rl HHL foralll <i<j< % and a > 0.

Specializing to the case n > 3 and m = 0, we have

Corollary 3.5. After the above localization, Wk(sln)22 has a strong generating set con-
sisting of the union of the following sets:

(1) {L,W?] 2 <i< 2},
(2) U 1<i< 2, a>0},
(3) {Uga "2 1<Z<J< , a >0}

4. The structure of W¥(sl,,) %>

Before we consider the structure of W(c, A)%2 and its quotients C¥ (n,m)%2 in general,
we begin by studying the special case C¥(n,0)%2 = W¥(sl,,)Z2. This has the advantage
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that its large level limit is an orbifold of a free field algebra. In the case n = 3, WF(sl3)%2
has a (minimal) strong generating set {L, U§7’§a| a = 0,1,2,3}, and hence is of type
W(2,6,8,10,12) [4]. For the rest of this section, we assume that n > 4.

Recall that W¥(sl,)%2 is a deformable family, and

Zo n Zy
Wfree(ﬁ[n)zz ~ lim ch(ﬁln)Zg o ( lim Wk(s[n)> = (®O(1,2Z)) .
=1

k—oc0 k—o0

Moreover, since § € Zo acts on the generator W € O(1,2i) by 0(W?) = (—=1)'W?, we
may rewrite this in the form

Zs
®M20(1,4i) ® <®?_/fc9(1,4i — 2)) , n even,
Wfree(ﬁ[n)Zz ~

Zy
®§’il“/20<1,4z‘>®<®<" V2o (1,4¢+2)> . nodd.

We shall use the same notation U, %" to denote the elements : (91W21+1)(9*W2i+1):
in both W¥(sl,,)%2 and Wee(sl,, )Z2 when no confusion can arise.

4.1. Weak generators for W¥(sl,,)%?

First, we will find a minimal weak generating set for Wfee(sl,,)%2

Theorem 4.1. For alln > 4, l/\/free(sln)z2 has a minimal weak generating set S consisting
of the union of the following sets:

(1) {W;;'\_ L<i<g),
(2) {Ugg T 1<i< 2}

Proof. First, we need to show that S is indeed a weak generating set. It is straightforward
to check that for all a > 0,

(4 + a)(15 + 8a + 4a?)
30

3,3 3,3 3,3
(Uo,o )(3)U0,2a = Uo 2at+2 T
where remaining terms are of the form 0%Ug’y, . ; for i =1,2,...,a+ 1. It follows by

induction that all terms Ué‘j’a can be generated from Ug’;g’ .
Next, for all a > 0 and 2 < i < %, we have

2 3 4 5
(Ugg,) 4)U321+1 (2 +a)( +aéé + a)( +a)Ua3+2fJ61+
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where remaining terms are of the form 8iUg’7’3i'§1_i for i = 1,2,...,a+ 1. Since the sets
{8iU§”3i'§1| i=0,1,...,a} and {8ZUSEZJ61| i=20,1,...,a} span the same vector space,

it follows that all fields U&f”l can be generated from S.
Next, for all 2 <4 < 5, we have

. . o 1
3,21+1 3,2¢4+1 __ 2i+41,2:94+1 3,3
Uoo DeyUss — =Ugo + @i—s5)aii—1) UsiZao-

This shows that U§7%+1’2i+1 lies in the algebra generated by S. By the same argument as

above, Uy "*"*! generates Uy, for all a > 1.
Finally, for all 2 <i < j < % and a > 0, we have

(1+a)(2+a)(3+a)(d+a)5+a) 21254

3,2i41 3,2j+1
(UvO,OZ )(5)Ua,OJ = 120 a,0

Since all the strong generators appearing in Corollary 3.5 can be generated by .S, this
shows that S is indeed a weak generating set.

As for minimality, all the generators W2 are needed because they do not appear in
the OPEs of the other generators W7 for W'ree(sl,,), for j # 2i. Moreover, if any of the

2i+1 . 2i+1,2i+i
generators Uyy T were omitted, we would not be able to generate any field U2+,
USIH’QJJ” for ¢ < j, or Ugjbﬂ’z“” for j < i, since W% does not appear in the OPEs

of Wt for £ #2i+1. O

Remark 4.2. We may also consider the infinite tensor product @;-, O(1,2i), which has
a Zs-action given by §(W?) = (—=1)!W! for all i > 2. Then the same argument shows
that (@, O(1, 2i))Z2 has a minimal weak generating set {W?2, U§7’gi+1| i>1}.

An immediate consequence of Lemma 2.5 and Theorem 4.1 is

Corollary 4.3. After a suitable localization, for all n > 4, W*(sl,,)%2 has a weak gener-
ating set consisting of the union of the following sets:

(1) {W322|-+11§ i< 3},
(2) {Uppy | 1<i< 5}

We will see later that this weak generating set is not minimal, and we will reduce it

to a minimal weak generating set.
4.2. Strong generators for W¥(sl,, )%

Next, we will find a strong generating set for W*(sl,,)%2, again starting with the large

level limit.
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Theorem 4.4. For n > 4, Wf7'ee(5[n)Z2 has a minimal strong generating set T consisting

of

(1) W2, for1<i<?2

(2) Uy, fora=0,1,2,3,

(3) U2 forall2<i<j< anda=0,1,2,3,4,5,6,
(4) 3”211 22“; forall2 <i< % anda=0,1,2,

(5) UZHFY2HL forall2 < i< j <2 and a=0,1,2,3,4,5,

Proof. First, we need to show that T is indeed a strong generating set. In order to
handle the cases of n even and odd simultaneously, we write d = § — 1 when n is even

and d = ”T_l when n is odd. In both cases we need to find minimal strong generators
of (®?=1 O(1,4i + 2))22. In view of Corollary 3.5, it suffices to construct decoupling

relations for

(1) U.

(2) USQZH for2<i<j<danda>7,
(3) Ugl;(;l 2+ for2<i<danda >3,

(4) U, 2z+12j+1 ,for 2<i<j<danda>6.

2a0, for a > 4,

In other words, these fields can all be expressed as normally ordered polynomials in the
elements of T" and their derivatives.
A calculation shows that we have the following relation in weight 14:

19 23 23
LUB3UB3 . L B3yss . - 33 Q233 _ 22 gap33
0,0Y1,1 0,1Y0,1 2032708 + 1420° Y06 T 576 0,4 1)
23 391 ’
_aﬁU 3 88 3 3
T 1807 702 T 10320
Since Ug’;l?’ = %8U§’,’§’ and Ul?’f’ = —Ug’:g’ + %GQU&’S’, (4.1) can be written in the form
U037§> = P4(Ug,7(?v UOB,)S’ U Ugg) (42)

s

where P is a normally ordered polynomial in {Us, 0| @ = 0,1, 2,3} and their derivatives.
This is the desired decoupling relation for Ugﬁ’g’ .
Similarly, we have the following relation in weight 16:

1 7 7

UgaUSs = UgsUys - = — ==—Udto 62U3§ + —84U§;§' — U}
7200 96 32 (4.3)
10a8r033 9L g

Since Ug’g?’ = Uyl — 282U3’23 13U0 ‘0> We can use this and (4.2), to rewrite (4.3) in the

)

form
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UOlO_ (U007U027U047U ) (44)

This is the desired decoupling relation for Ug”fo
We now assume inductively that there exist similar decoupling relation

Ug,’én)a (U007U02aU04aU 3, (4.5)

for all 0 < a < n, with the cases a = 0, 1 being the base cases. Observe that the operator
(Ué’;é’ )(1) raises weight by 4, and satisfies

5+m

3,3 3,3
(Uo,o)(l)U0,2m - TUO 2m-+4 +- (4-6)
where the remaining term is a linear combination of 0%, 6323711—&-4 g for 1 <4 <m+2.
Applying it to the relation Uo,zn—z (U0 i U0 o UO o U ) yields
3+ 2n
30 U2n+2Jr = Uy 0)1)Pn 1(U007U027U04aU ;)- (4.7)

Moreover, since (Ué’ 2a)(O)U03 5 is a total derivative for all a,b,, s, it is apparent that the

right hand side of (4.7) does not depend on Uo,zn +o- Therefore we can rescale (4.7) and
rewrite it in the form

3,3 73,3 3,3
Uo 2n42 = Q(Uo,o Vo2 U0,2n)7

where () is a normally ordered polynomial in U0 0> UO 5y - U0 5n, and their derivatives.
Finally, using the relations (4.5) for a < n, we can rewrite thlb in the form

Ug,é3 (U007U02aU04aU 2,

as desired. Therefore we have decoupling relations for US’,’SQ for a > 4.
Next, we compute

11 o o
. U U3 ,2i+1 P U U3 ,2i+1 - U3,27,+1’
5040 %7
1 (4.8)
. 3, 21+1 . C773.3773,2i41 | _ 3,2i+1
: U U c = Ugx Ul = 5sg0 005
which are decoupling relations for Uy 3 2”1 and Ug’”g L for all § > 2.
We shall now construct higher decoupling relations
Ug”’fiﬂ =P, foralli>2andr>38§, (4.9)

where P, is a normally ordered polynomial in the elements of T" and their derivatives.

We regard Oey (1,47 + 2) as a subalgebra of the rank one Heisenberg algebra 7 (1) with

generator a?*! satisfying
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a2i+1(z)a2i+1(w) ~ (Z _ w>—2.

Then ®‘Z:1 Oev (1,47 + 2) is a subalgebra of the rank d Heisenberg algebra H(d), where
the generators W21 are given by

Wil — € 9220 +1
(4i + 1)!

Next, let

82 2z+1 2i+1 - H(d)Zz

M&

=1

Note that v does not lie in the subalgebra (®?:1 Oev (1,41 + 2))22; however, the mode
V(1) preserves this subalgebra and raises the weight by 2. A calculation shows that for
all a > 0,

viyUsd ™ = (124 2a + 40) Uy 25 + - (4.10)
where the remaining terms are of the form U, g jrgl pfor1<b<a+2.

By applying v(;) repeatedly to (4.8), we can inductively construct all decoupling
relations

3,2i+1
UOJ‘ - Pi,ra

using the same procedure as the construction of the relations for U&’an above.
Next, we have the following calculation:

: Ug’ir—&-172i+1Ug;76+1,2j+1 L U02’i7‘+1,2j+1Ug’i6§—172j+1 L
B 1 2041241 _ 1 2j+1,2j+1 (4.11)

2(27 + 1)1 OAFZET (4 4 )4 + 2 ) QAR

Specializing to the case i = 1 and r = 2a, we get the relation
, , , . 1
L33 241,25+ | 3,241 773,241 3,3

UpsaUpo 77 1= U T U™ = 527 11 U04i+242a
2+ 1) (4.12)

1 2j+1,2j+1

 51(6 + 2a)  O0+2e

Since we already have decoupling relations for Ugy’f j+2+2q- this ylelds the desired decou-
pling relations for Uojﬁizij 1 forall j>2and a > 0.
Finally, for 2 <14 < j < d we compute

3,2i4+1773,25+1 3,3772t+1,25+1 12‘12'1
UG U =t U U = U T (4.13)

720 6+7,0
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Since we already have decoupling relations for Ug’:fiﬂ for all » > 7, this yields de-
coupling relations for Ugit}fj“, for all 2 < i < j < d and r > 0. The same then

holds for Ugfg:lfjﬂ. This completes the proof that T is a strong generating set for
Wfree(ﬁ[n)Zg.

As for the minimality, there can be no decoupling relation for Ug”’g’a for a = 0,1,2
since there are no relations of weight less than 14. Similarly, if there were a decoupling
relation for Ug'>*** for some a < 6, it would need to involve the variable W2i*! and
have weight at most 2¢ + 4 + a. The relation of this kind of minimal weight has the form
: U&’S’Ui’ézH D= Ui’g’US’:ng : = .-+, but this relation has weight 2i + 11. The other
possible decoupling relations are ruled out similarly. 0O

Remark 4.5. We may also consider the infinite tensor product ;- O(1,2i), which has
a Zs-action given by (W) = (=1)"W? for all i > 2. The same argument shows that
(®2,0(1, 2i))Z2 has a minimal strong generating set consisting of

(1) W2 fori>1,

(2) Ugsy, for a=0,1,2,3,

(3) U™ foralli>2and a=0,1,2,3,4,5,6,

(4) Ugf;;l’%ﬂ, foralli > 2 and a = 0,1, 2,

(5) Up 27 forall 2<i< jand a=0,1,2,3,4,5.

In particular, (@2, O(1,2i))% is of type W(2,4,62,8%,9,10° ... k™, ...). In this no-
tation, for all integers k > 11,

3m — 2 k =4m,

3m —5 k=4m+1,
3m k=4m+ 2,
3m —4 k=4m+ 3.

NnEe =

The following is immediate from Lemma 2.4 and Theorem 4.4.

Corollary 4.6. After a suitable localization, for all n > 4, W¥(sl,,)%2 has a strong gener-
ating set consisting of

(1) W2, for1<i<?%,

(2) Uy, fora=0,1,2,3,

(3) Ug™!, forall2<i<j<%anda=0,1,23,4,56,
(4) Ugf;;l’%ﬂ, forall2 <i< 3 anda=0,1,2,

(5) Ugf;’l’gj“, forall2<i<j< % anda=0,1,2,3,4,5.
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One might speculate that the strong generating set for W¥(sl,)%2 given by Corol-
lary 4.6 is minimal for generic values of k as well. In fact, this is the case for n = 4,5, 6,
which was first conjectured in the physics literature in [6].

Corollary 4.7. After a suitable localization, for n = 4,5,6, W¥(sl,,)%2 has the following
minimal strong generating type:

(1) WE(sly)%2 is of type W(2,4,6,8,10,12).
(2) WE(sl5)%2 is of type W(2,4,6,8%,9,10%,11,123,13, 142).
(3) WE(slg)Z2 is of type W(2,4,62,8%,9,10%,11,123, 13, 142).

Proof. In the case n = 4 there is nothing to prove because there are no normally ordered
relations below weight 14. For n = 5,6, there are three fields of weight 14 given by
Corollary 3.5, namely U(i’g , U{i’i’ , Ugy’g , and only one normally ordered relation in weight
14, which has the form : UOS,’S Uf’i3 = Ui’g’ Ui’g’ = ---. As we have already seen, this
can be used to eliminate one of these generators, namely U03,7§) , and the other two are
needed because there are no more relations in weight 14. O

Remark 4.8. In the case n = 4, this statement follows alternatively from [18, Cor. 6.1],
due to the isomorphism of Lie algebras sly = so0g. In [18, Section 10], it was stated
erroneously that the only nontrivial one-parameter quotient of (e, \)%2 which is iso-
morphic to a quotient of the even spin algebra W< (c, \), is N*(sl,), which is the case
C¥(1,1)%2 and is of type W(2,4,6,8,10). The correct statement is that there are two

such examples, namely, C¥(1,1)%2 and C¥(4,0)%2.

When n > 7, the strong generating set for W¥(sl,,)%2 given by Corollary 4.6 is not
minimal. To illustrate this phenomenon we consider the case of n = 7 in detail.

Theorem 4.9. After a suitable localization, Wk(5[7)22 has a minimal strong generating
set

(1) L,W* WS,

(2) Ugs,, fora=0,1,2,3,

(3) Uy fora=0,1,2,3,4,5,6,
(4) Uy, for a=0,1,2,3,4,5,
(5) Ug,’gsa fora=0,1,2,

(6) Uy, for a=0,1,2,3,

(7) U077’27a, fora=0,1,

and is therefore of type W(2,4,62,82,9,10%, 112, 12°, 13,145,152, 16). In particular, the
remaining fields in weights 16, 17, and 18 which appear in Corollary 4.6, are not needed
for Wk(sl7)%z.
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Proof. The same argument as the proof of Corollary 4.7 shows that there are no further
decoupling relations in weight 14 (or below). Therefore the five fields given by Corol-
lary 4.6, namely, U5’7’65, Ug,’f, Ug’)’z, Ué’g, and U07,’077 are all needed.

In weight 15, there are two fields given by Corollary 4.6, Ug”g and Ug_’g . A priori, there
is only one possible relation that might allow further decoupling, namély,

However, a computation shows that this relation does not allow either Ug:g and Ug’; to
be decoupled, so both are needed in W¥(sl;)%2.

In weight 16 there are six generators from Corollary 3.5, namely Ug’,’f’o, U§7’85, U&’g ,
U{i’g , US’:Z , and Ug”g . Three of these generators, namely U03,7i0)07 U(z)’,),g , and Ug”g , can be

eliminated in We(sl;)%Z2  and therefore in W¥(sl;)%2 for generic k, using the relations

3,5773,5 17337755
UooUso : —: UsoUpy = )
L 773:3773,5 . 77337735 L
:UgoUsp : —: UsgUpg =, (4.14)
3.37,3,3 C173,3773,3
UooUsls (U0 U =

Note that there is no relation in weight 16 that involves the field W7. For any relation
of weight 16 among the generators of Wfree (5[7)22, Ugg and US’:Z cannot appear because
W7 does not appear in the OPEs of W for i < 7. However, in W¥ (5[7)Z27 we have five
relations of the form

: Ug,’gUg,’g P Ug,’gUg,’g L= allUg,’fo + aleS’jS + (llgUg”s + a14U§i’g + a15U5”’47 +oee
UsoUso = UsyUsts + = anUg iy + anaUsg + azsUye + a2aUgq + azsUgy + -+
UsoUsy s = UpgUss = anUpy + asaUpe + assUps + asaUgg + assUgf + -+
UpoUsh + = Usp Ut + = aanUgg + aslUss + assUps + aaalUps + assUgy + -+,
UsoUss « = UsuUsy = = asiUpho + asaUpls + assUp's + asalUp + assUgy + -+

(4.15)

where the remaining terms do not depend on Ug’,’fo, U§;§’ , Ug’jgs , U&’g , and U§7’47 . The
matrix [a;;] can be computed explicitly by computer and it is nonsingular for generic
values of k. Therefore suitable linear combinations of these relations will yield decoupling
relations for Ug”’g and U05”47 . It is easy to check that U07,727 cannot appear in any relation,
so this is the only strong generator in weight 16 that is needed.

In weight 17, there are three generators from Corollary 3.5, namely Ug’:g , U(i’?? , U(i’g .
Only two of these generators, namely Ug”g’ and Ug; , can be eliminated in Wee(sl;).
However, in W¥(sl;)%2, we have three relations
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337755 . 113.5773,5 3,5 3,7 5,7
: UI,O UO,O L= Ul,O UO,O = a11U079 + algUOJ +a13U075 + -,

337937 . 13.3773,7 3,5 3,7 5,7

: UO,O Ul,O L= Ul,O UO,O = a21U079 + a22U0)7 + a23U0’5 + e (416)
1337735 . . 713.3773,5 . 3,5 3,7 5,7

: U070 U370 T U370 UO,O L= a31U079 + a32U0,7 + a33U075 + e

Again, it is straightforward to compute the matrix [a;;] and check that it is invertible
for generic k. Therefore all the generators in weight 17 can be eliminated.

Finally, in weight 18, there are six generators from Corollary 3.5, namely U&’f’Q, Ug ’150,
Ug’”g, Ué”g, Ué’y’g, and Ug’;z. Five of these generators, namely Ug’%, Ug”fo, Ug”g, UO”;),
and U{i’G, can be eliminated in W¢(sl;)%2, but there is no relation allowing U077’47 to
be decoupled. However, in W¥(sl;)%2 we can decouple U&’Z by applying the operator
(W4)(1) to the weight 16 decoupling relation for Ug”z , since

(W)Ut = assUgi + -+ .

Here we are using that (W*) W7 is a normally ordered polynomial in {L, W*| 3 < i < 7}
and their derivatives, so the remaining terms appearing in (W4)(1)U05”47 do not depend
on Uo7,747~ Also, it is apparent that when (W4)(1) is applied to the right hand side of the

decoupling relation for U(i’z , the term Ug;j cannot appear. O
5. The structure of W(c, A)%2

As in Section 3, we use the generating set {L,W?| i > 3} given in [21], so that
W(?’E))W?’ =<land Wi = (W3), W= for i > 4.
Lemma 5.1. After a suitable localization of the ring Cle, N, W(c, \)22 has a weak gen-
erating set consisting of the union of the following sets:

(1) {L, W] i > 2},
(2) {Ups™' i > 1.

Proof. For each d > 0, let W(c, A\)#2[d] denote the subspace of weight d, and let V[d] C
W(e,\)22[d] denote the span of all fields that can be written as linear combinations
of words in {L, W% Ug;gi} and the k' vertex algebra products for k € Z. Then V =
@D~ Vd] is exactly the subalgebra which is weakly generated by the above fields.

If V # W(c,\)%2, there is some weight d where any basis W(c, \)%2[d] contains a
vector that is not in V[d]. Then the image of this vector would be needed in a basis
of W¥(sl,)%2> = C¥(0,n) for all but finitely many values of n. This contradicts Corol-
lary 4.3. O

Theorem 5.2. After a suitable localization of Clc, ], W(c, \)%? has a strong generating
set consisting of the following fields

(1) W2, fori>1,
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(2) Uy, fora=0,1,2,3,

(3) U2, for alli > 2 and a =0,1,2,3,4,5,6,

(4) Ugf;;ll’z”l, foralli>2 and a=0,1,2,

(5) Uget W27 for all2 < i < j and a =0,1,2,3,4,5.

Proof. The proof is the same as the proof of Lemma 5.1, using Corollary 4.6 instead of
Corollary 4.3. O

Corollary 5.3. After a suitable localization of the ring C[¢], C¥(n,m)%? has a strong

finite generating set

(1) LW?, for2 < i < {milmint)=1

(2) Ugs,, fora=0,1,2,3,

(3) U2, for all 2 < i < HDmnt D=L g 4 = 0,1,2,3, 4, 5,6,

(4) Ug)i;fll’%ﬂ, forall2 <i< % and a =0,1,2,

(5) Ughtb2 4 for all 2 < i < j < DOt D=L g g = 0,1,2,3,4, 5.

The above strong generating sets for W(c, \)%2 and C¥(n,m)%2 are not minimal. In
fact, the decoupling relations in W¥ (5[7)Z2 in weights 16, 17, and 18 that we found in the
proof of Theorem 4.9, are the specializations of relations in W(e, /\)ZZ. So the generators
Use Usd, Ugx, and Uy can be eliminated in W(e, \)%2 and in C¥(n,m)%> for all
n,m. It is an interesting problem to determine the minimal strong generating sets for
W(e, )22 as well as C¥(n,m)%z.

We are now able to prove the main result in this paper.

Theorem 5.4. Let R be the localization of Clc, \] for which Lemma 5.1 holds, and let R’
be the localization of R obtained by inverting A and —8 + 22X + 5¢, if necessary. Then
as a vertez algebra over R', W(c, /\)Z2 is generated by W*.

Proof. Let (W*) C W(c, \)%2 denote the vertex subalgebra generated by W4. In view
of Lemma 5.1, we need to show that all the fields W2 and W&g”l lie in (W?) after
inverting A and —8 + 22\ + 5\c. First, we claim that L € (W*) with no restrictions on
¢, A, i.e., with no localization required. From Equation (A.3) of [21] we have

4
(WH W = —3(-125 43202+ 9)) L,

so L lies in (W?) as long as —125 + 32\(2 + ¢) # 0. Note that this holds for ¢ = —2 for
any value of A.

Suppose next that ¢ # —2 and A = %, so that (W4)(5)W4 = 0 and L cannot

be obtained in this way. Using the OPE algebra of W(e, \) specialized along the curve

A= %, we have the following computations:
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1250(43 + 9¢)
c+2

W)@ (WHeW?) = L

)

200(5831 + 1353c¢) I

(W) <<W4)<4> (<W4)<3>W4)) = ct2

It follows that for all ¢ # —2, L € (W*) for all values of \.
Next, we claim that as long as A # 0 and \ # HLW’ both W¢ and : W3W? : lie in
(W*). This follows from the following calculations:

4 288\

4 4 _ 6 3 3
WEWE = 2o — =22 Wi :
32
(W) @) (W W) = = (=82 + 115X + 26A)W (5.2)

2
+ ﬂx(s + 55X+ Xe) - W3WS3 . 4

Here the remaining terms only depend on L, W* and their derivatives, and hence lie in
(W*). We can solve for W6 and : W3W3 : separately as long as

288X

4
5 5
det

—2(-32+115A+26Ac)  ZXA(8 45X+ Ac)

21
- —UA( 8 4+ 22X + 5Ac) £ 0.

Note that —8 + 22X\ +5\c = 0 is just the truncation curve for W¥(sl3). It is necessary to
localize along this curve because the quotient W¥(sl3)%2 of W(e, \)%? is not generated
by a field in weight 4.

Next, we have

32X

(WHayUss = 2050 + = (13 — 128X — 16Ac) U5 — 8NQ*Uy S — =5« Lo*W* .

112X
3

2 1
+ % S (O'L)L +682W6 +

S (O*Lywt +?:(aL)(aW4):+12A;(33L)(8L);

(5.3)
—11 + 40X + 2Xc

o*w
9

149 — 688X + 40Xc

6
L.
1080 0

Since Uy, Uy, and L can be generated from W*, it follows that Uy € (W*) with no
further localization required. Next, we have

4
(W4)(1)W6 - ?W8 + Y

where the remaining terms lie in (W*), so W& € (W*). We also have
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376X 55 T52A
TUO,O -5

Ul 4 ... (5.4)

4
(W)W = S - U+

where the remaining terms lie in (W*), so W10, Ug,’g and Ug,’g all lie in (W*) with no
further localization required.

Let V5, denote the vector space spanned by {Ug’%+1’25+1| 1<r<s, 2r+2s+2=2a}.
We have an injective linear map

. 2r+1,2s+1y\ 2r+3,2s+1 2r+1,2s+3
f . ‘/Qa - ‘/2a+27 f(U070 ) - a4,2r+1U0,0 + a4,25+1U0’0 )

which agrees with the restriction of (W4)(1) to Vo, up to terms which depend only on
W32 for j < a and Uf_]zﬂ’%“ for 2k 4 2¢ 4 2 < 2a. Here the constants a; ; are given
by Lemma 3.1. We now assume inductively that the fields W2¢ and the spaces V3, lie in
(W4 for all @ < i+ 1, with no further localization required. We have already checked
the base cases where 7 < 4. Observe first that

(W4)(1)W2i+2 _ (14722'+2W2i+4 4o ,

where the remaining terms either lie in V44, or in (W*) by inductive hypothesis. Since
W?2i+4 cannot appear in (W4)(1)U for any U € Va;49, it suffices to show that Va4 lies in
(W*4). Note that our inductive hypothesis also implies that f agrees with the restriction
of (W*)(1) to Vajq2 up to terms which lie in (W*).

If 7 is even, V544 and Vo492 both have dimension % Since f : Vo100 — Voipyg is
injective, it is also surjective, so Va;1q C (W4).
”Tl and V5,49 has dimension %, so the image
f(Vai19) C Vit 4 has codimension one. It is easy to check that Ué:6+4 spans a complement

of f(v2i+2). But

If ¢ is odd, Va;14 has dimension

(W) Uso = 2a6,:UsgH + -+,
where the remaining terms lie in (WW*). Hence US:EJA lies in (W*) as well. O

Corollary 5.5. After a suitable localization of C[p], C¥(n,m)%2 is generated as a vertex
algebra by W* for alln >4 and m =0, and alln > 1 if m > 1. In particular, this holds
for WE(s1,)22 for all n > 4.

It is an interesting problem to determine the minimal localization R’ of C[c, \] needed
for Theorem 5.4 to hold, and similarly to determine the minimal localization of C[t]
needed for Corollary 5.5 to hold. Suppose that S is a localization of Cle, A] for which
w4 generates W6 and all fields Ug:g’a for @ > 0. It is not difficult to show using the
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form of a; j,b; ; given by Lemma 3.1 that no further localization is required, that is, we
can take R’ = S. Moreover, we expect that S will be the localization of C[c, A] along
finitely many polynomials. This would imply that for each m, n, the localization needed
for Corollary 5.5 to hold will require inverting finitely polynomials in 1; equivalently,
W* will generate C¥ (n, m)%2 for all but finitely many values of ©». We hope to return to
this question later.

Data availability
No data was used for the research described in the article.
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