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The universal two-parameter W∞-algebra is a classifying 
object for vertex algebras of type W(2, 3, . . . , N) for some N . 
Gaiotto and Rapčák recently introduced a large family of such 
vertex algebras called Y -algebras, which includes many known 
examples such as the principal W-algebras of type A. These 
algebras admit an action of Z2, and in this paper we study the 
structure of their orbifolds. Aside from the extremal cases of 
either the Virasoro algebra or the W3-algebra, we show that 
these orbifolds are generated by a single field in conformal 
weight 4, and we give strong finite generating sets.

© 2023 Published by Elsevier Inc.

1. Introduction

Gaiotto and Rapčák introduced an important family of vertex algebras YN1,N2,N3 [ψ]
called Y -algebras, which are indexed by three integers N1, N2, N3 ≥ 0 and a complex
parameter ψ [13]. These vertex algebras are associated to interfaces of twisted N = 4
supersymmetric gauge theories with gauge groups U(N1), U(N2), and U(N3). The in-
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terfaces satisfy a permutation symmetry which is expected to induce a corresponding 
symmetry on the vertex algebras. This led Gaiotto and Rapčák to conjecture a triality 
of isomorphisms of Y -algebras. Define ψ = − ε2

ε1
where ε1 + ε2 + ε3 = 0, and set

Y ε1,ε2,ε3
N1,N2,N3

:= YN1,N2,N3 [ψ].

In this, notation the triality conjecture is

Y
εσ(1),εσ(2),εσ(3)

Nσ(1),Nσ(2),Nσ(3)
∼= Y ε1,ε2,ε3

N1,N2,N3
, for σ ∈ S3. (1.1)

In the case when one of the labels N1, N2, N3 is zero, YN1,N2,N3 [ψ] is a simple vertex 
algebra, and it can be realized (up to a Heisenberg algebra) as a certain coset of an affine 
W-(super)algebra. In this case, the triality conjecture is equivalent to the statement that 
there are three different such realizations, and this was proven by Creutzig and the second 
author in [10].

More precisely, for n ≥ 1, consider the W-algebras

Wk(sln+m, fn+m), ψ = k + n + m,

where fn+m is the nilpotent element which is principal in sln and trivial in slm. Note that 
Wk(sln+m, fn,m) is a common generalization of the principal W-algebra Wk(sln) (the 
case m = 0), the affine vertex algebra V k(slm+1) (the case n = 1), the subregular W-
algebra Wk(sln+1, fsubreg) (the case m = 1), and the minimal W-algebra Wk(slm+2, fmin)
(the case n = 2). As in [10], we replace k with the shifted level ψ = k + n + m, and we 
set

Wψ(n, m) := Wk(sln+m, fn+m) = Wψ−n−m(sln+m, fn+m).

For m ≥ 1, Wψ(n, m) has affine vertex subalgebra

{
V −ψ−m−1(glm) = H ⊗ V −ψ−m−1(slm) m ≥ 2,

H m = 1,

where H is the Heisenberg algebra. For n = 0, a different definition of Wψ(0, m) was 
given [10], and this is omitted for brevity. Consider the affine cosets

Cψ(n, m) =

⎧⎪⎨
⎪⎩

Com(V ψ−m−1(glm), Wψ(n, m)) m ≥ 2, n ≥ 0,

Com(H, Wψ(n, 1)) m = 1, n ≥ 0,

Wψ(n, 0) m = 0, n ≥ 2.

Up to a Heisenberg algebra, these cosets are just the above Y -algebras, that is,
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Y0,M,N [ψ] = Cψ(N − M, M) ⊗ H, M ≤ N,

Y0,M,N [ψ] = C−ψ+1(M − N, N) ⊗ H, M > N.
(1.2)

Next, for n ≥ 1 and n ≥ m, there is a similar family of affine W-superalgebras

Wk(sln|m, fn|m), ψ = k + n + m,

where fn|m is the nilpotent element which is principal in sln and trivial in slm. As above, 
Wk(sln|m, fn|m) is a common generalization of the principal W-algebra Wk(sln) (the 
case m = 0), the affine vertex superalgebra V k(sl1|m) (the case n = 1), the principal 
W-superalgebra Wk(sln|1, fsubreg) (the case m = 1), and the minimal W-superalgebra 
Wk(sl2|m, fmin) (the case n = 2). In the case n = m, we need to take Wk(psln|n, fn|n)
instead of Wk(sln|n, fn|n) to get a simple algebra. Again, we replace the level k with the 
shifted level ψ = k + n − m, and set

Vψ(n, m) =
{

Wk(sln|m, fn|m) n ≥ 1, m �= n,

Wk(psln|n, fn|n) n ≥ 2, m = n.

For m ≥ 1, Vψ(n, m) has affine vertex subalgebra
⎧⎪⎨
⎪⎩

V −ψ−m+1(glm) = H ⊗ V −ψ−m+1(slm) m ≥ 2, m �= n,

V −ψ−n+1(sln) n ≥ 2, m = n,

H m = 1.

The extremal cases Vψ(1, 1), Vψ(1, 0), and Vψ(0, m) are defined differently in [10], and 
this is omitted for brevity. Define

Dψ(n, m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Com(V −ψ−m+1(glm), Vψ(n, m)) n ≥ 0, m ≥ 2, m �= n,

Com(V −ψ−n+1(sln), Vψ(n, n))GL1 n ≥ 2, m = n,

Com(H, Vψ(n, 1)) n ≥ 2, m = 1,

Vψ(n, 0) n ≥ 2, m = 0.

Again, we omit the definition of the extremal cases Dψ(1, 1), Dψ(1, 0), and Dψ(0, 1), 
which can be found in [10]. Note that Dψ(n, m) is just the affine coset for n �= m, but in 
the case n = m there is an action of GL1 by outer automorphisms, and it is necessary 
to take the GL1-orbifold of the affine coset. Up to a Heisenberg algebra, these cosets are 
just the above Y -algebras:

YL,0,N [ψ] = Dψ(N, L) ⊗ H,

YL,M,0[ψ] = D−ψ+1(M, L) ⊗ H.
(1.3)

The main result of [10], which is equivalent to the Gaiotto-Rapčák triality conjecture 
in the case where one of the labels is zero, is the following.
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Theorem 1.1. Let n ≥ m ≥ 0 be non-negative integers. As one-parameter vertex algebras

Dψ(n, m) ∼= Cψ−1
(n − m, m) ∼= Dψ′

(m, n), ψ′ = 1
ψ

+ 1
ψ′ = 1.

This theorem is a vast generalization of well-known results such as Feigin-Frenkel 
duality [12] and the coset realization of principal W-algebras of type A [3], which are 
the special cases Dψ(n, 0) ∼= Cψ−1(n, 0) and Dψ(n, 0) ∼= Dψ′(0, n), respectively. The Y -
algebras are important because they serve as building blocks for many interesting vertex 
algebras. Conjecturally, they are isomorphic to the WN1,N2,N3-algebras of [7], which act 
on the moduli space of spiked instantons of certain toric Calabi-Yau threefolds [22]. 
In these examples, the toric diagram has three two-dimensional faces, and each face is 
labeled by integers N1, N2, N3 that indicate an action of the gauge groups U(N1), U(N2)
and U(N3). As explained in the introduction of [10], when one of these labels is zero, we 
expect that the Y0,M,N -algebra has representation categories which are Kazhdan-Lusztig 
categories KLk(slM ) and KL�(slN ) for some k, �. The extension of a tensor product of 
two Y -algebras along a common KLk(slM ) should correspond to a toric Calabi-Yau 
threefold whose toric diagram has four faces, and this procedure can be iterated to 
create more complicated vertex algebras.

For the rest of this paper, we will use the cosets Cψ(n, m) as our realization of 
the Y -algebras. One of the key ingredients in the proof of Theorem 1.1 is that aside 
from the extremal cases Cψ(0, 0), Cψ(0, 1), Cψ(1, 0) (which are isomorphic to C), and 
Cψ(0, 2), Cψ(0, 2) (which are isomorphic to the Virasoro algebra), Cψ(n, m) can be re-
alized explicitly as a quotient of the universal two-parameter W∞-algebra W(c, λ) con-
structed by the second author in [21].

1.1. Orbifolds of Y -algebras

The two-parameter vertex algebra W(c, λ) has full automorphism group Z2 [21, 
Cor. 5.3]. Aside from the above extremal cases, all the algebras Cψ(n, m) inherit this 
Z2-symmetry. In this paper, our main goal is to study the structure of the orbifold 
W(c, λ)Z2 as a two-parameter vertex algebra, and Cψ(n, m)Z2 as one-parameter vertex 
algebras, or equivalently, for generic values of ψ. We shall adopt the following notation: 
if a vertex algebra V has a minimal strong generating set consisting of di fields in weight 
ni for i = 1, 2, . . . , r, we say that V is of type W(nd1

1 , . . . , ndr
r ).

Certain special cases of this problem have previously been studied in the physics 
literature [6]. For example, it was conjectured that Wk(sl3)Z2 should be of type 
W(2, 6, 8, 10, 12), and this was proven in our earlier paper [4]. Similar conjectures were 
given in [6] for Wk(sln) for n = 4, 5, 6:

(1) Wk(sl4)Z2 should be of type W(2, 4, 6, 8, 10, 12).
(2) Wk(sl5)Z2 should be of type W(2, 4, 6, 82, 9, 103, 11, 123, 13, 142).
(3) Wk(sl6)Z2 should be of type W(2, 4, 62, 82, 9, 103, 11, 123, 13, 142).
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Also, the parafermion algebra of sl2, namely, Nk(sl2) = Com(H, V k(sl2)), is just 
Cψ(1, 1). It was conjectured in [6] that Nk(sl2)Z2 should be of type W(2, 4, 6, 8, 10), and 
this was proven by Kanade and the second author [18]. We mention that Jiang and 
Wang [14,15] have classified the irreducible modules and computed the fusion rings for 
the simple parafermion algebras Kk(sl2)Z2 = Com(H, Lk(sl2))Z2 for k ∈ N, which are 
C2-cofinite and rational. Here Lk(sl2) denotes the simple affine vertex algebra. Due to 
the well-known isomorphism Kk(sl2) ∼= Wr(slk) for r = −k + k+1

k+2 of Arakawa, Lam, and 
Yamada [5], the orbifolds Kk(sl2)Z2 are really orbifolds of certain rational W-algebras 
of type A. One of the motivations for this work is to study the representation theory 
of Wr(slk)Z2 for a general nondegenerate admissible level r, which are C2-cofinite and 
rational [1,2].

1.2. Main result

Our main result is that after a suitable localization of the ring C[c, λ], W(c, λ)Z2 is 
generated by the weight 4 field W 4 as a two-parameter vertex algebra. A consequence 
is that after a suitable localization of the ring C[ψ], all the one-parameter quotients 
Cψ(n, m)Z2 for n ≥ 4 and m = 0, and for n, m ≥ 1, are generated by W 4. In particular, 
this holds for Wk(sln)Z2 for all n ≥ 4. We also give a finite strong generating set for 
Cψ(n, m)Z2 . Our strong generating set is not typically minimal, although it is minimal 
for Wk(sln)Z2 for n = 4, 5, 6 and the above conjectures from [6] are true. We will also 
give the minimal strong generating set for Wk(sl7)Z2 , which illustrates the subtlety 
of this problem in general. Our strong generating set yields a finite generating set for 
Zhu’s algebra A(Cψ(n, m)Z2) [23]. The description of this algebra is an important step 
in understanding the representation theory of these algebras. The strategy of proof is as 
follows.

(1) First, we consider the special case Cψ(n, 0) = Wk(sln) for n ≥ 4, which has the 
advantage that unlike Cψ(n, m) for m ≥ 1, it admits a large level limit W free(sln) =
limk→∞ Wk(sln) which is a free field algebra. We find both minimal weak and strong 
finite generating sets for W free(sln)Z2 . These give rise to weak and strong finite 
generating sets for Wk(sln)Z2 , respectively, which are no longer minimal.

(2) Using the weak and strong generating sets for W free(sln)Z2 for all n, we find eco-
nomical (but not minimal) infinite weak and strong generating sets for W(c, λ)Z2. 
These yield weak and strong finite generating sets for Cψ(n, m)Z2 for all n, m.

(3) Using the partial OPE algebra of W(c, λ) which appears in [21], we show that all weak 
generators for W(c, λ)Z2 from (2), and hence the entire algebra, can be generated 
by the field W 4.

2. Vertex algebras

We will assume that the reader is familiar with vertex algebras, and we use the same 
notation as the previous paper [10] of the second author. In this section, we briefly recall 
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the definition and basic properties of free field algebras, W-algebras, and the universal 
two-parameter algebra W(c, λ).

2.1. Free field algebras

A free field algebra is a vertex superalgebra V with weight grading

V =
⊕

d∈ 1
2Z≥0

V[d], V[0] ∼= C,

with strong generators {Xi| i ∈ I} satisfying OPE relations

Xi(z)Xj(w) ∼ ai,j(z−w)−wt(Xi)−wt(Xj), ai,j ∈ C, ai,j = 0 if wt(Xi)+wt(Xj) /∈ Z.

We now recall the four families of free field algebras that were introduced in [10].

Even algebras of orthogonal type. For each n ≥ 1 and even k ≥ 2, Oev(n, k) is the vertex 
algebra with even generators a1, . . . , an of weight k

2 , which satisfy

ai(z)aj(w) ∼ δi,j(z − w)−k.

In the case k = 2, Oev(n, k) just the rank n Heisenberg algebra H(n). It has no conformal 
vector for k > 2, but for all k it is a simple vertex algebra and has full automorphism 
group the orthogonal group O(n).

Even algebras of symplectic type. For each n ≥ 1 and odd k ≥ 1, Sev(n, k) is the vertex 
algebra with even generators ai, bi for i = 1, . . . , n of weight k

2 , which satisfy

ai(z)bj(w) ∼ δi,j(z − w)−k, bi(z)aj(w) ∼ −δi,j(z − w)−k,

ai(z)aj(w) ∼ 0, bi(z)bj(w) ∼ 0.
(2.1)

In the case k = 1, Sev(n, k) is just the rank n βγ-system S(n). For k > 1, Sev(n, k)
has no conformal vector, but for all k it is simple and has full automorphism group the 
symplectic group Sp(2n).

Odd algebras of symplectic type. For each n ≥ 1 and even k ≥ 2, Sodd(n, k) is the vertex 
superalgebra with odd generators ai, bi for i = 1, . . . , n of weight k

2 , which satisfy

ai(z)bj(w) ∼ δi,j(z − w)−k, bj(z)ai(w) ∼ −δi,j(z − w)−k,

ai(z)aj(w) ∼ 0, bi(z)bj(w) ∼ 0.
(2.2)

In the case k = 2, Sodd(n, k) is just the rank n symplectic fermion algebra A(n). It has 
no conformal vector for k > 2, but for all k it is simple and has full automorphism group 
Sp(2n).
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Odd algebras of orthogonal type. For each n ≥ 1 and odd k ≥ 1, we define Oodd(n, k) to 
be the vertex superalgebra with odd generators ai for i = 1, . . . , n of weight k

2 , satisfying

ai(z)aj(w) ∼ δi,j(z − w)−k. (2.3)

For k = 1, Oodd(n, k) is just the free fermion algebra F(n). As above, Oodd(n, k) has no 
conformal vector for k > 1, but it is simple and has full automorphism group O(n).

2.2. W-algebras

Let g be a simple, finite-dimensional Lie (super)algebra equipped with a nondegen-
erate, invariant (super)symmetric bilinear form ( | ), and let f be a nilpotent element 
in the even part of g. Associated to g and f and any complex number k, is the W-
(super)algebra Wk(g, f). The definition is due to Kac, Roan, and Wakimoto [16], and it 
generalizes the definition for g a Lie algebra and f a principal nilpotent given by Feigin 
and Frenkel [11].

Fix a basis {qα}α∈S for g which is homogeneous with respect to parity, and define the 
corresponding structure constants and parity by

[qα, qβ ] =
∑
γ∈S

fαβ
γ qγ , |α| =

{
0 qα even,

1 qα odd.

The level k affine vertex algebra of g associated to the bilinear form ( | ) has strong 
generators {Xα}α∈S satisfying

Xα(z)Xβ(w) ∼ k(qα|qβ)(z − w)−2 +
∑
γ∈S

fαβ
γ Xγ(w)(z − w)−1.

We define Xα to be the field corresponding to qα where {qα}α∈S is the dual basis of 
g with respect to ( | ). Let f be a nilpotent element in the even part of g, which we 
complete to an sl2-triple {f, x, e} ⊆ g satisfying

[x, e] = e, [x, f ] = −f, [e, f ] = 2x.

We have the decomposition of g

g =
⊕

k∈ 1
2Z

gk, gk = {a ∈ g| [x, a] = ka}.

Write S =
⋃

k Sk and S+ =
⋃

k>0 Sk, where Sk corresponds to a basis of gk.
As in [17], define the complex C(g, f, k) = V k(g) ⊗ F (g+) ⊗ F (g 1

2
), where F (g+) is a 

free field superalgebra associated to the vector superspace g+ =
⊕

k∈ 1
2Z>0

gk, and F (g 1
2
)

is the neutral vertex superalgebra associated to g 1 with bilinear form 〈a, b〉 = (f |[a, b]). 

2
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Then F (g+) is strongly generated by fields {ϕα, ϕα}α∈S+ , where ϕα and ϕα have the 
opposite parity of qα. The OPEs are

ϕα(z)ϕβ(w) ∼ δα,β(z − w)−1, ϕα(z)ϕβ(w) ∼ 0 ∼ ϕα(z)ϕβ(w).

F (g 1
2
) is strongly generated by fields {Φα}α∈S 1

2
and Φα and qα have the same parity. 

Their OPEs are

Φα(z)Φβ(w) ∼ 〈qα, qβ〉(z − w)−1 ∼ (f |[qα, qβ ])(z − w)−1.

There is a Z-grading on C(g, f, k) by charge, and a weight 1 odd field d(z) of charge −1,

d(z) =
∑

α∈S+

(−1)|α| : Xαϕα : −1
2

∑
α,β,γ∈S+

(−1)|α||γ|fαβ
γ : ϕγϕαϕβ : +

∑
α∈S+

(f |qα)ϕα +
∑

α∈S 1
2

: ϕαΦα :,
(2.4)

whose zero-mode d0 is a square-zero differential on C(g, f, k). The W-algebra Wk(g, f)
is defined to be the homology H(C(g, f, k), d0). It has Virasoro element

L = Lsug + ∂x + Lch + Lne, where

Lsug = 1
2(k + h∨)

∑
α∈S

(−1)|α| : XαXα :,

Lch =
∑

α∈S+

(−mα : ϕα∂ϕα : +(1 − mα) : (∂ϕα)ϕα :) ,

Lne = 1
2

∑
α∈S 1

2

: (∂Φα)Φα : .

(2.5)

Here mα = j if α ∈ Sj . The key structural theorem is the following.

Theorem 2.1. [17, Thm 4.1] Let g be a simple finite-dimensional Lie superalgebra with 
an invariant bilinear form ( | ), and let x, f be a pair of even elements of g such 
that ad x is diagonalizable with eigenvalues in 1

2Z and [x, f ] = −f . Denote by gf the 
centralizer of f in g, and suppose that all eigenvalues of ad x on gf are non-positive, so 
that gf =

⊕
j≤0 g

f
j . Then

(1) For each qα ∈ g
f
−j, (j ≥ 0) there exists a d0-closed field Kα of weight 1 + j, with 

respect to L.
(2) The homology classes of the fields Kα, where {qα} is a basis of gf , freely generate 

Wk(g, f).
(3) H0(C(g, f, k), d0) = Wk(g, f) and Hj(C(g, f, k), d0) = 0 if j �= 0.
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2.3. Free field limits of W-algebras

We recall the notion of a deformable family of vertex algebras from [20,8,9]. It is a 
vertex algebra B defined over the ring FK of rational functions p(κ)

q(κ) in a formal variable 
κ, where deg p ≤ deg q, and the zeroes of q lie in some at most countable subset K ⊆ C. 
Then B∞ = limκ→∞ B is a well-defined vertex algebra over C.

Let g be a Lie (super)algebra with a nondegenerate form ( | ), and let f ∈ g be an 
even nilpotent. It was shown in [10] that after rescaling the generators of Wk(g, f) by 

1√
k

, there exists a deformable family W(g, f) with parameter κ =
√

k such that

Wk(g, f) ∼= W(g, f)/(κ −
√

k)W(g, f), for all k �= 0.

Here (κ −
√

k)W(g, f) denotes the vertex algebra ideal generated by κ −
√

k, regarded as 
an element of the weight zero subspace. Moreover, its large level limit limκ→∞ W(g, f), 
which we denote by W free(g, f), has the following property.

Theorem 2.2. [10, Thm. 3.5 and Cor. 3.4] Let g be a Lie superalgebra with invariant, 
nondegenerate supersymmetric bilinear form, and let f ∈ g be an even nilpotent. Then

W free(g, f) ∼=
m⊗

i=1
Vi,

where each Vi is one of the standard free field algebras Oev(n, k), Oodd(n, k), Sev(n, k), 
or Sodd(n, k).

Recall the decomposition gf =
⊕

j≥0 g
f
−j , where j ∈ 1

2N. Fix a basis Jf
−j for gf

−j , and 

recall the field Kα ∈ Wk(g, f) of weight 1 + j corresponding to qα ∈ Jf
−j . We denote the 

corresponding fields in the limit W free(g, f) by Xα, and we partition Jf
−j into subsets 

Jf
−j,ev and Jf

−j,odd consisting of even and odd elements. Then

(1) If j is a half-integer, {Xα| α ∈ Jf
−j,ev} has a skew-symmetric pairing, and generates 

an even algebra of symplectic type.
(2) If j is an integer, {Xα| α ∈ Jf

−j,ev} has a symmetric pairing, and generates an even 
algebra of orthogonal type.

(3) If j is a half-integer, {Xα| α ∈ Jf
−j,odd} has a symmetric pairing, and generates an 

odd algebra of orthogonal type.
(4) If j is an integer, {Xα| α ∈ Jf

−j,odd} has a skew-symmetric pairing, and generates 
an odd algebra of symplectic type.

Theorem 2.2 has several applications, including:
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(1) Simplicity of Wk(g, f) for generic values of k whenever g admits an invariant, non-
degenerate supersymmetric bilinear form [10, Thm. 3.6],

(2) Strong finite generation of Wk(g, f)G for any reductive group of automorphisms G, 
and generic values of k [10, Thm. 4.1].

Statement (2) is based on three observations. First, taking G-invariants commutes with 
taking the limit in the following sense:

Lemma 2.3. [10, Lemma 4.1] Let g be a Lie (super)algebra with a nondegenerate form, 
f ∈ g an even nilpotent element, and let W free(g, f) ∼=

⊗m
i=1 Vi be its free field limit. Let 

G be a reductive group of automorphisms of Wk(g, f) as a one-parameter vertex algebra 
which acts trivially on the ring of rational functions of k. Then W(g, f)G is a deformable 
family and

lim
κ→∞

(
W(g, f)G

) ∼=
(

lim
κ→∞

W(g, f)
)G ∼=

( m⊗
i=1

Vi

)G
.

Second, a strong finite generating set for the limit B∞ of a deformable family gives 
rise a strong finite generating set for B after a suitable localization of the ring FK :

Lemma 2.4. [9, Lemma 3.2] Let K ⊆ C be at most countable, and let B be a deformable 
family over FK with weight grading B =

⊕
d≥0 B[d], such that B[0] ∼= FK . Let U =

{αi| i ∈ I} be a strong generating set for B∞, and let T = {ai| i ∈ I} be a subset of 
B such that ϕ(ai) = αi. There exists a subset S ⊆ C containing K which is at most 
countable, such that FS ⊗FK

B is strongly generated by T . Here we have identified T with 
the set {1 ⊗ ai| i ∈ I} ⊆ FS ⊗FK

B.

Third, by [10, Thm 4.10], for any finite tensor product V =
⊗m

i=1 Vi of standard free 
field algebras, and any reductive group G of automorphisms of V, VG is strongly finitely 
generated.

We will also need a version of Lemma 2.4 for weak generating sets.

Lemma 2.5. Let B be a deformable family over FK as in Lemma 2.4. Let U = {αi| i ∈ I}
be a weak generating set for B∞, and let T = {ai| i ∈ I} be a subset of B such that 
ϕ(ai) = αi. There exists a subset S ⊆ C containing K which is at most countable, such 
that FS ⊗FK

B is weakly generated by T . As above, we have identified T with the set 
{1 ⊗ ai| i ∈ I} ⊆ FS ⊗FK

B.

Proof. This is immediate from Lemma 2.4 and the fact that if {αi| i ∈ I} weakly 
generates B∞, the set

{αi1 ◦j1 (· · · (αir−1 ◦jr−1 αir
) · · · )| i1, . . . , ir ∈ I, j1, . . . , jr−1 ≥ 0}
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strongly generates B∞. �
In this paper, we only need the special case of Wk(sln), which satisfies

W free(sln) ∼=
n⊗

i=1
O(1, 2i). (2.6)

We often use the notation W i for the generators of O(1, 2i), which satisfy

W i(z)W i(w) ∼ (z − w)−2i.

3. Universal two-parameter W∞-algebra

Here we recall some features of the universal two-parameter vertex algebra W(c, λ)
constructed by the second author in [21]. It is defined over the ring C[c, λ], and is 
generated by a Virasoro field L of central charge c and a primary weight 3 field W 3

which is normalized so that (W 3)(5)W
3 = c

31. The remaining strong generators W i of 
weight i ≥ 4 are defined inductively by

W i = (W 3)(1)W
i−1, i ≥ 4.

Then W(c, λ) is freely generated by {L, W i| i ≥ 3}. It has a conformal weight grading

W(c, λ) =
⊕
n≥0

W(c, λ)[n],

where each W(c, λ)[n] is a free C[c, λ]-module and W(c, λ)[0] ∼= C[c, λ]. There is a 
symmetric bilinear form on W(c, λ)[n] given by

〈, 〉n : W(c, λ)[n] ⊗C[c,λ] W(c, λ)[n] → C[c, λ], 〈ω, ν〉n = ω(2n−1)ν.

The determinant detn of this form is nonzero for all n, which is equivalent to the sim-
plicity of W(c, λ) as a vertex algebra over C[c, λ].

Certain coefficients are independent of the parameters c, λ. We have for 3 ≤ i ≤ j

W i(z)W j(w) ∼ · · · + ai,jW i+j−2(w)(z − w)−2 + bi,j∂W i+j−2(w)(z − w)−1,

where ai,j and bi,j are independent of c, λ. By definition, a3,j = 1 for all j ≥ 3. In [21]
we computed a few of these constants, namely,

a4,j = 4
j + 1 , b4,j = 12

(j + 1)(j + 2) , a5,j = 20
(j + 1)(j + 2) .

In fact, they can be deduced from the recursive procedure in the proof of Theorem 5.2 
of [21], and we record this result for later use.
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Lemma 3.1. For all 3 ≤ i ≤ j, we have

ai,j = i!
6(j + 1)(j + 2) · · · (j + i − 3) , bi,j = i!(i − 1)

6(j + 1)(j + 2) · · · (j + i − 2) .

Let p be an irreducible factor of detN+1 and let I = (p) ⊆ C[c, λ] ∼= W(c, λ)[0] be the 
corresponding ideal. Consider the quotient

WI(c, λ) = W(c, λ)/I · W(c, λ),

where I is regarded as a subset of the weight zero space W(c, λ)[0] ∼= C[c, λ], and 
I · W(c, λ) denotes the vertex algebra ideal generated by I. This is a vertex algebra over 
the ring C[c, λ]/I, which is no longer simple. It contains a singular vector ω in weight 
N + 1, which lies in the maximal proper ideal I ⊆ WI(c, λ) graded by conformal weight. 
If p does not divide detm for any m < N +1, ω will have minimal weight among elements 
of I. Often, ω has the form

W N+1 − P (L, W 3, . . . , W N−1), (3.1)

possibly after localizing the ring C[c, λ], where P is a normally ordered polynomial in 
the fields L, W 3, . . . , W N−1, and their derivatives. If this is the case, there will exist 
relations in the simple graded quotient WI(c, λ) := WI(c, λ)/I of the form

W m = Pm(L, W 3, . . . , W N ),

for all m ≥ N +1 expressing W m in terms of L, W 3, . . . , W N and their derivatives. Then 
WI(c, λ) will be of type W(2, 3, . . . , N). Conversely, any one-parameter vertex algebra W
of type W(2, 3, . . . , N) for some N satisfying mild hypotheses, is isomorphic to WI(c, λ)
for some I = (p) as above, possibly after localizing. The corresponding variety V (I) ⊆ C2

is called the truncation curve for W.

Theorem 3.2. [10, Thm 6.1] For m ≥ 1 and n ≥ 0, and for m = 0 and n ≥ 3, Cψ(n, m) ∼=
WIn,m

(c, λ), where In,m is described explicitly via the parametrization

c(ψ) = − (nψ − m − n − 1)(nψ − ψ − m − n + 1)(nψ + ψ − m − n)
(ψ − 1)ψ ,

λ(ψ) = − (ψ − 1)ψ
(nψ − n − m − 2)(nψ − 2ψ − m − n + 2)(nψ + 2ψ − m − n) .

(3.2)

Moreover, after a suitable localization of the ring C[ψ], WIn,m(c, λ) has a singular vector 
of the form
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W (m+1)(m+n+1) − P (L, W 3, . . . , W (m+1)(m+n+1)−1)

and no singular vector of lower weight, where P is a normally ordered polynomial in 
the fields L, W 3, . . . , W (m+1)(m+n+1)−1, and their derivatives. Therefore WIn,m

(c, λ) has 
minimal strong generating type W(2, 3, . . . , (m + 1)(m + n + 1) − 1).

It is expected that this list accounts for all the finite truncations of W(c, λ), but this 
remains an open question.

3.1. Orbifolds of W(c, λ)

By [21, Cor. 5.3], W(c, λ) has full automorphism group Z2 as a vertex algebra over 
C[c, λ], and the action of the generator θ ∈ Z2 is given by θ(L) = L and θ(W 3) = −W 3. 
This forces θ(W i) = (−1)iW i for all i ≥ 3. The action of Z2 on W(c, λ) induces a 
Z2-grading

W(c, λ) = W(c, λ)0 ⊕ W(c, λ)1,

where θ acts on W(c, λ)0 and W(c, λ)1 by id and −id, respectively. Therefore W(c, λ)Z2 =
W(c, λ)0. Moreover, all the ideals In,m are graded by Z2:

In,m = In,m,0 ⊕ In,m,1, where In,m,0 = In,m ∩ W(c, λ)0, and In,m,1 = In,m ∩ W(c, λ)1.

It follows that Cψ(n, m)Z2 can be realized as the quotient

Cψ(n, m)Z2 ∼= W(c, λ)Z2/In,m,0. (3.3)

If we pass to a suitable localization R of C[c, λ], the weight d subspace W(c, λ)Z2 [d] will 
be a free R-module, and a basis {ω1, . . . , ωrd

} for this space will descend to a basis for 
the weight d subspace Cψ(n, m)Z2 [d], for all but finitely many choices of n, m.

Define the following fields

U2i+1,2j+1
a,b = : (∂aW 2i+1)(∂bW 2j+1) :, 1 ≤ i ≤ j, a, b ≥ 0, (3.4)

which have weight 2i +2j+a +b +2 and clearly lie in W(c, λ)Z2 . Note that for 1 ≤ i < j and 
m ≥ 0, the following sets span the same (m +1)-dimensional space of weight 2i +2j+m +2:

{U2i+1,2j+1
a,m−a | 0 ≤ m ≤ a}, {∂aU2i+1,2j+1

0,m−a | 0 ≤ a ≤ m}, {∂aU2i+1,2j+1
m−a,0 | 0 ≤ a ≤ m}.

(3.5)
Similarly, for i ≥ 1 and m ≥ 0, the following sets span the same (m + 1)-dimensional 
spaces of weights 4i + 2m + 2 and 4i + 2m + 3, respectively:

{U2i+1,2i+1
a,2m−a | 0 ≤ a ≤ 2m}, {∂2aU2i+1,2i+1

0,2m−2a | 0 ≤ a ≤ m},

{U2i+1,2i+1 | 0 ≤ m ≤ a}, {∂2a+1U2i+1,2i+1| 0 ≤ a ≤ m}.
(3.6)
a,2m+1−a 0,2m−2a
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Lemma 3.3. As a vertex algebra over the ring C[c, λ], W(c, λ)Z2 has a strong generating 
set consisting of the union of the following sets:

(1) {L, W 2i| i ≥ 2},
(2) {U2i+1,2i+1

0,2a | i ≥ 1, a ≥ 0},
(3) {U2i+1,2j+1

0,a | 1 ≤ i < j, a ≥ 0}.

In particular, this holds for all c, λ, so no localization of C[c, λ] is required.

Proof. The key observation is that W(c, λ) has a good increasing filtration in the sense 
of [19], defined by deg(W i) = i for i ≥ 2, where W 2 = L, and setting the degree of a 
monomial : ∂k1W i1 · · · ∂kr W ir : to be at most i1 + · · · + ir. It is apparent from the OPE 
algebra which is defined recursively in [21] that for all i, j ≥ 2 and k ≥ 0, the degree of 
W i

(k)W
j is at most i + j − 2. It follows that the associated graded algebra gr(W(c, λ))

is the differential commutative algebra with generators {W i| i ≥ 2}. This filtration is 
clearly Z2-invariant, hence gr(W(c, λ)Z2) ∼= gr(W(c, λ))Z2 . Since the latter is clearly 
generated by the above monomials (where normally ordered is now unnecessary), the 
claim follows. �

Since Cψ(n, m) is of type W(2, 3, . . . , (m + 1)(m + n + 1) − 1) after localizing the ring 
C[ψ], we obtain

Corollary 3.4. For n ≥ 3 and m = 0, and for n, m ≥ 1, after the above localization, 
Cψ(n, m)Z2 has a strong generating set

(1) L, W 2i, for 2 ≤ i ≤ (m+1)(m+n+1)−1
2 ,

(2) U2i+1,2i+1
0,2a , for all 1 ≤ i < (m+1)(m+n+1)−1

2 and a ≥ 0,
(3) U2i+1,2j+1

0,a , for all 1 ≤ i < j < (m+1)(m+n+1)−1
2 and a ≥ 0.

Specializing to the case n ≥ 3 and m = 0, we have

Corollary 3.5. After the above localization, Wk(sln)Z2 has a strong generating set con-
sisting of the union of the following sets:

(1) {L, W 2i| 2 ≤ i ≤ n
2 },

(2) {U2i+1,2i+1
0,2a | 1 ≤ i < n

2 , a ≥ 0},
(3) {U2i+1,2j+1

0,a | 1 ≤ i < j < n
2 , a ≥ 0}.

4. The structure of Wk(sln)Z2

Before we consider the structure of W(c, λ)Z2 and its quotients Cψ(n, m)Z2 in general, 
we begin by studying the special case Cψ(n, 0)Z2 ∼= Wk(sln)Z2 . This has the advantage 
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that its large level limit is an orbifold of a free field algebra. In the case n = 3, Wk(sl3)Z2

has a (minimal) strong generating set {L, U3,3
0,2a| a = 0, 1, 2, 3}, and hence is of type 

W(2, 6, 8, 10, 12) [4]. For the rest of this section, we assume that n ≥ 4.
Recall that Wk(sln)Z2 is a deformable family, and

W free(sln)Z2 ∼= lim
k→∞

Wk(sln)Z2 ∼=
(

lim
k→∞

Wk(sln)
)Z2

∼=
( n⊗

i=1
O(1, 2i)

)Z2

.

Moreover, since θ ∈ Z2 acts on the generator W i ∈ O(1, 2i) by θ(W i) = (−1)iW i, we 
may rewrite this in the form

W free(sln)Z2 ∼=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⊗n/2
i=1 O(1, 4i)

⊗ ( ⊗n/2
i=1 O(1, 4i − 2)

)Z2

, n even,

⊗(n−1)/2
i=1 O(1, 4i)

⊗ ( ⊗(n−1)/2
i=1 O(1, 4i + 2)

)Z2

, n odd.

We shall use the same notation U2i+1,2j+1
a,b to denote the elements : (∂aW 2i+1)(∂bW 2j+1):

in both Wk(sln)Z2 and W free(sln)Z2 when no confusion can arise.

4.1. Weak generators for Wk(sln)Z2

First, we will find a minimal weak generating set for W free(sln)Z2 .

Theorem 4.1. For all n ≥ 4, W free(sln)Z2 has a minimal weak generating set S consisting 
of the union of the following sets:

(1) {W 2i| 1 ≤ i ≤ n
2 },

(2) {U3,2i+1
0,0 | 1 ≤ i < n

2 }.

Proof. First, we need to show that S is indeed a weak generating set. It is straightforward 
to check that for all a ≥ 0,

(U3,3
0,0 )(3)U

3,3
0,2a = (4 + a)(15 + 8a + 4a2)

30 U3,3
0,2a+2 + · · · ,

where remaining terms are of the form ∂2iU3,3
0,2a+2−2i for i = 1, 2, . . . , a + 1. It follows by 

induction that all terms U3,3
0,2a can be generated from U3,3

0,0 .
Next, for all a ≥ 0 and 2 ≤ i < n

2 , we have

(U3,3
0,0 )(4)U

3,2i+1
a,0 = (2 + a)(3 + a)(4 + a)(5 + a)

U3,2i+1
a+1,0 + · · · ,
60
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where remaining terms are of the form ∂iU3,2i+1
0,a+1−i for i = 1, 2, . . . , a + 1. Since the sets 

{∂iU3,2i+1
0,a−i | i = 0, 1, . . . , a} and {∂iU3,2i+1

a−i,0 | i = 0, 1, . . . , a} span the same vector space, 
it follows that all fields U3,2i+1

0,a can be generated from S.
Next, for all 2 ≤ i < n

2 , we have

(U3,2i+1
0,0 )(5)U

3,2i+1
0,0 = U2i+1,2i+1

0,0 + 1
(4i − 5)!4(i − 1)U3,3

4i−4,0.

This shows that U2i+1,2i+1
0,0 lies in the algebra generated by S. By the same argument as 

above, U2i+1,2i+1
0,0 generates U2i+1,2i+1

0,2a for all a ≥ 1.
Finally, for all 2 ≤ i < j < n

2 and a ≥ 0, we have

(U3,2i+1
0,0 )(5)U

3,2j+1
a,0 = (1 + a)(2 + a)(3 + a)(4 + a)(5 + a)

120 U2i+1,2j+1
a,0 .

Since all the strong generators appearing in Corollary 3.5 can be generated by S, this 
shows that S is indeed a weak generating set.

As for minimality, all the generators W 2i are needed because they do not appear in 
the OPEs of the other generators W j for W free(sln), for j �= 2i. Moreover, if any of the 
generators U3,2i+1

0,0 were omitted, we would not be able to generate any field U2i+1,2i+i
a,b , 

U2i+1,2j+i
a,b for i < j, or U2j+1,2i+i

a,b for j < i, since W 2i+1 does not appear in the OPEs 
of W � for � �= 2i + 1. �
Remark 4.2. We may also consider the infinite tensor product 

⊗∞
i=1 O(1, 2i), which has 

a Z2-action given by θ(W i) = (−1)iW i for all i ≥ 2. Then the same argument shows 
that 

( ⊗∞
i=1 O(1, 2i)

)Z2 has a minimal weak generating set {W 2i, U3,2i+1
0,0 | i ≥ 1}.

An immediate consequence of Lemma 2.5 and Theorem 4.1 is

Corollary 4.3. After a suitable localization, for all n ≥ 4, Wk(sln)Z2 has a weak gener-
ating set consisting of the union of the following sets:

(1) {W 2i| 1 ≤ i ≤ n
2 },

(2) {U3,2i+1
0,0 | 1 ≤ i < n

2 }.

We will see later that this weak generating set is not minimal, and we will reduce it 
to a minimal weak generating set.

4.2. Strong generators for Wk(sln)Z2

Next, we will find a strong generating set for Wk(sln)Z2 , again starting with the large 
level limit.
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Theorem 4.4. For n ≥ 4, W free(sln)Z2 has a minimal strong generating set T consisting 
of

(1) W 2i, for 1 ≤ i ≤ n
2 ,

(2) U3,3
0,2a, for a = 0, 1, 2, 3,

(3) U3,2i+1
0,a , for all 2 ≤ i < j < n

2 and a = 0, 1, 2, 3, 4, 5, 6,
(4) U2i+1,2i+1

0,2a , for all 2 ≤ i < n
2 and a = 0, 1, 2,

(5) U2i+1,2j+1
0,a , for all 2 ≤ i < j < n

2 and a = 0, 1, 2, 3, 4, 5.

Proof. First, we need to show that T is indeed a strong generating set. In order to 
handle the cases of n even and odd simultaneously, we write d = n

2 − 1 when n is even 
and d = n−1

2 when n is odd. In both cases we need to find minimal strong generators 
of 

( ⊗d
i=1 O(1, 4i + 2)

)Z2 . In view of Corollary 3.5, it suffices to construct decoupling 
relations for

(1) U3,3
2a,0, for a ≥ 4,

(2) U3,2i+1
0,a , for 2 ≤ i < j ≤ d and a ≥ 7,

(3) U2i+1,2i+1
0,2a , for 2 ≤ i ≤ d and a ≥ 3,

(4) U2i+1,2j+1
0,a , for 2 ≤ i < j ≤ d and a ≥ 6.

In other words, these fields can all be expressed as normally ordered polynomials in the 
elements of T and their derivatives.

A calculation shows that we have the following relation in weight 14:

: U3,3
0,0 U3,3

1,1 : − : U3,3
0,1 U3,3

0,1 : = − 19
4032U3,3

0,8 + 23
1440∂2U3,3

0,6 − 23
576∂4U3,3

0,4

+ 23
480∂6U3,3

0,2 − 391
40320∂8U3,3

0,0 .

(4.1)

Since U3,3
0,1 = 1

2∂U3,3
0,0 and U3,3

1,1 = −U3,3
0,2 + 1

2∂2U3,3
0,0 , (4.1) can be written in the form

U3,3
0,8 = P4(U3,3

0,0 , U3,3
0,2 , U3,3

0,4 , U3,3
0,6 ), (4.2)

where P4 is a normally ordered polynomial in {U2a,0| a = 0, 1, 2, 3} and their derivatives. 
This is the desired decoupling relation for U3,3

0,8 .
Similarly, we have the following relation in weight 16:

: U3,3
0,0 U3,3

2,2 : − : U3,3
0,2 U3,3

0,2 : = − 1
7200U3,3

0,10 − 1
72∂2U3,3

0,8 + 7
96∂4U3,3

0,6 − 7
32∂6U3,3

0,4

+ 17
64∂8U3,3

0,2 − 31
576∂10U3,3

0,0 .

(4.3)

Since U3,3
2,2 = U3,3

0,4 − 2∂2U3,3
0,2 + 1

2∂U3,3
0,0 , we can use this and (4.2), to rewrite (4.3) in the 

form



18 M. Al-Ali, A.R. Linshaw / Journal of Algebra 625 (2023) 1–27
U3,3
0,10 = P5(U3,3

0,0 , U3,3
0,2 , U3,3

0,4 , U3,3
0,6 ). (4.4)

This is the desired decoupling relation for U3,3
0,10.

We now assume inductively that there exist similar decoupling relation

U3,3
0,2a = Pa(U3,3

0,0 , U3,3
0,2 , U3,3

0,4 , U3,3
0,6 ), (4.5)

for all 0 ≤ a ≤ n, with the cases a = 0, 1 being the base cases. Observe that the operator 
(U3,3

0,0 )(1) raises weight by 4, and satisfies

(U3,3
0,0 )(1)U

3,3
0,2m = 5 + m

30 U3,3
0,2m+4 + · · · , (4.6)

where the remaining term is a linear combination of ∂2iU3,3
0,2m+4−2i for 1 ≤ i ≤ m + 2. 

Applying it to the relation U3,3
0,2n−2 = Pn−1(U3,3

0,0 , U3,3
0,2 , U3,3

0,4 , U3,3
0,6 ) yields

3 + 2n

30 U3,3
0,2n+2 + · · · = (U3,3

0,0 )(1)Pn−1(U3,3
0,0 , U3,3

0,2 , U3,3
0,4 , U3,3

0,6 ). (4.7)

Moreover, since (U3,3
0,2a)(0)U

3,3
0,2b is a total derivative for all a, b, r, s, it is apparent that the 

right hand side of (4.7) does not depend on U3,3
0,2n+2. Therefore we can rescale (4.7) and 

rewrite it in the form

U3,3
0,2n+2 = Q(U3,3

0,0 , U3,3
0,2 , . . . , U3,3

0,2n),

where Q is a normally ordered polynomial in U3,3
0,0 , U3,3

0,2 , . . . , U3,3
0,2n and their derivatives. 

Finally, using the relations (4.5) for a ≤ n, we can rewrite this in the form

U3,3
0,2a = Pa(U3,3

0,0 , U3,3
0,2 , U3,3

0,4 , U3,3
0,6 ),

as desired. Therefore we have decoupling relations for U3,3
0,2a for a ≥ 4.

Next, we compute

: U3,3
0,0 U3,2i+1

1,0 : − : U3,3
0,1 U3,2i+1

0,0 : = 11
5040U3,2i+1

0,7 ,

: U3,3
0,0 U3,2i+1

2,0 : − : U3,3
0,2 U3,2i+1

0,0 : = 1
2880U3,2i+1

0,8 ,

(4.8)

which are decoupling relations for U3,2i+1
0,7 and U3,2i+1

0,8 , for all i ≥ 2.
We shall now construct higher decoupling relations

U3,2i+1
0,r = Pi,r, for all i ≥ 2 and r > 8, (4.9)

where Pi,r is a normally ordered polynomial in the elements of T and their derivatives. 
We regard Oev(1, 4i + 2) as a subalgebra of the rank one Heisenberg algebra H(1) with 
generator α2i+1 satisfying
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α2i+1(z)α2i+1(w) ∼ (z − w)−2.

Then 
⊗d

i=1 Oev(1, 4i + 2) is a subalgebra of the rank d Heisenberg algebra H(d), where 
the generators W 2i+1 are given by

W 2i+1 = ε√
(4i + 1)!

∂2iα2i+1.

Next, let

ν =
d∑

i=1
: (∂2α2i+1)α2i+1 : ∈ H(d)Z2 .

Note that ν does not lie in the subalgebra 
( ⊗d

i=1 Oev(1, 4i + 2)
)Z2 ; however, the mode 

ν(1) preserves this subalgebra and raises the weight by 2. A calculation shows that for 
all a ≥ 0,

ν(1)U
3,2i+1
0,a = (12 + 2a + 4i)U3,2i+1

0,a+2 + · · · , (4.10)

where the remaining terms are of the form ∂bU3,2i+1
0,a+2−b for 1 ≤ b ≤ a + 2.

By applying ν(1) repeatedly to (4.8), we can inductively construct all decoupling 
relations

U3,2i+1
0,r = Pi,r,

using the same procedure as the construction of the relations for U3,3
0,2a above.

Next, we have the following calculation:

: U2i+1,2i+1
0,r U2j+1,2j+1

0,0 : − : U2i+1,2j+1
0,r U2i+1,2j+1

0,0 : =

− 1
2(2j + 1)!U

2i+1,2i+1
0,4j+2+r − 1

(4i + 1)!(4i + 2 + r)U2j+1,2j+1
0,4i+2+r .

(4.11)

Specializing to the case i = 1 and r = 2a, we get the relation

: U3,3
0,2aU2j+1,2j+1

0,0 : − : U3,2j+1
0,r U3,2j+1

0,0 : = − 1
2(2j + 1)!U

3,3
0,4j+2+2a

− 1
5!(6 + 2a)U2j+1,2j+1

0,6+2a .

(4.12)

Since we already have decoupling relations for U3,3
0,4j+2+2a, this yields the desired decou-

pling relations for U2j+1,2j+1
0,6+2a , for all j ≥ 2 and a ≥ 0.

Finally, for 2 ≤ i < j ≤ d we compute

: U3,2i+1
0,r U3,2j+1

0,0 : − : U3,3
0,0 U2i+1,2j+1

4,0 : = 1
U2i+1,2j+1

6+r,0 . (4.13)
720
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Since we already have decoupling relations for U3,2i+1
0,r for all r ≥ 7, this yields de-

coupling relations for U2i+1,2j+1
6+r,0 , for all 2 ≤ i < j ≤ d and r ≥ 0. The same then 

holds for U2i+1,2j+1
0,6+r . This completes the proof that T is a strong generating set for 

W free(sln)Z2 .
As for the minimality, there can be no decoupling relation for U3,3

0,2a for a = 0, 1, 2
since there are no relations of weight less than 14. Similarly, if there were a decoupling 
relation for U3,2i+1

0,a for some a ≤ 6, it would need to involve the variable W 2i+1 and 
have weight at most 2i + 4 + a. The relation of this kind of minimal weight has the form 
: U3,3

0,0 U3,2i+1
1,0 : − : U3,3

1,0 U3,2i+1
0,0 : = · · · , but this relation has weight 2i + 11. The other 

possible decoupling relations are ruled out similarly. �
Remark 4.5. We may also consider the infinite tensor product 

⊗∞
i=1 O(1, 2i), which has 

a Z2-action given by θ(W i) = (−1)iW i for all i ≥ 2. The same argument shows that ( ⊗∞
i=1 O(1, 2i)

)Z2 has a minimal strong generating set consisting of

(1) W 2i, for i ≥ 1,
(2) U3,3

0,2a, for a = 0, 1, 2, 3,
(3) U3,2i+1

0,a , for all i ≥ 2 and a = 0, 1, 2, 3, 4, 5, 6,
(4) U2i+1,2i+1

0,2a , for all i ≥ 2 and a = 0, 1, 2,
(5) U2i+1,2j+1

0,a , for all 2 ≤ i < j and a = 0, 1, 2, 3, 4, 5.

In particular, 
( ⊗∞

i=1 O(1, 2i)
)Z2 is of type W(2, 4, 62, 83, 9, 105, . . . knk , . . . ). In this no-

tation, for all integers k ≥ 11,

nk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3m − 2 k = 4m,

3m − 5 k = 4m + 1,

3m k = 4m + 2,

3m − 4 k = 4m + 3.

The following is immediate from Lemma 2.4 and Theorem 4.4.

Corollary 4.6. After a suitable localization, for all n ≥ 4, Wk(sln)Z2 has a strong gener-
ating set consisting of

(1) W 2i, for 1 ≤ i ≤ n
2 ,

(2) U3,3
0,2a, for a = 0, 1, 2, 3,

(3) U3,2i+1
0,a , for all 2 ≤ i < j < n

2 and a = 0, 1, 2, 3, 4, 5, 6,
(4) U2i+1,2i+1

0,2a , for all 2 ≤ i < n
2 and a = 0, 1, 2,

(5) U2i+1,2j+1
0,a , for all 2 ≤ i < j < n and a = 0, 1, 2, 3, 4, 5.
2
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One might speculate that the strong generating set for Wk(sln)Z2 given by Corol-
lary 4.6 is minimal for generic values of k as well. In fact, this is the case for n = 4, 5, 6, 
which was first conjectured in the physics literature in [6].

Corollary 4.7. After a suitable localization, for n = 4, 5, 6, Wk(sln)Z2 has the following 
minimal strong generating type:

(1) Wk(sl4)Z2 is of type W(2, 4, 6, 8, 10, 12).
(2) Wk(sl5)Z2 is of type W(2, 4, 6, 82, 9, 103, 11, 123, 13, 142).
(3) Wk(sl6)Z2 is of type W(2, 4, 62, 82, 9, 103, 11, 123, 13, 142).

Proof. In the case n = 4 there is nothing to prove because there are no normally ordered 
relations below weight 14. For n = 5, 6, there are three fields of weight 14 given by 
Corollary 3.5, namely U3,3

0,8 , U5,5
0,4 , U3,5

0,6 , and only one normally ordered relation in weight 
14, which has the form : U3,3

0,0 U3,3
1,1 : − : U3,3

1,0 U3,3
1,0 := · · · . As we have already seen, this 

can be used to eliminate one of these generators, namely U3,3
0,8 , and the other two are 

needed because there are no more relations in weight 14. �
Remark 4.8. In the case n = 4, this statement follows alternatively from [18, Cor. 6.1], 
due to the isomorphism of Lie algebras sl4 ∼= so6. In [18, Section 10], it was stated 
erroneously that the only nontrivial one-parameter quotient of W(c, λ)Z2 which is iso-
morphic to a quotient of the even spin algebra Wev(c, λ), is Nk(sl2), which is the case 
Cψ(1, 1)Z2 and is of type W(2, 4, 6, 8, 10). The correct statement is that there are two 
such examples, namely, Cψ(1, 1)Z2 and Cψ(4, 0)Z2 .

When n ≥ 7, the strong generating set for Wk(sln)Z2 given by Corollary 4.6 is not
minimal. To illustrate this phenomenon we consider the case of n = 7 in detail.

Theorem 4.9. After a suitable localization, Wk(sl7)Z2 has a minimal strong generating 
set

(1) L, W 4, W 6,
(2) U3,3

0,2a, for a = 0, 1, 2, 3,
(3) U3,5

0,a for a = 0, 1, 2, 3, 4, 5, 6,
(4) U3,7

0,a , for a = 0, 1, 2, 3, 4, 5,
(5) U5,5

0,2a for a = 0, 1, 2,
(6) U5,7

0,a , for a = 0, 1, 2, 3,
(7) U7,7

0,2a, for a = 0, 1,

and is therefore of type W(2, 4, 62, 82, 9, 104, 112, 125, 133, 145, 152, 16). In particular, the 
remaining fields in weights 16, 17, and 18 which appear in Corollary 4.6, are not needed 
for Wk(sl7)Z2 .
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Proof. The same argument as the proof of Corollary 4.7 shows that there are no further 
decoupling relations in weight 14 (or below). Therefore the five fields given by Corol-
lary 4.6, namely, U3,5

0,6 , U5,5
0,4 , U3,7

0,4 , U5,7
0,2 , and U7,7

0,0 , are all needed.
In weight 15, there are two fields given by Corollary 4.6, U3,7

0,5 and U5,7
0,3 . A priori, there 

is only one possible relation that might allow further decoupling, namely,

: U3,3
0,0 U3,3

2,1 : − : U3,3
2,0 U3,3

1,0 : = · · · .

However, a computation shows that this relation does not allow either U3,7
0,5 and U5,7

0,3 to 
be decoupled, so both are needed in Wk(sl7)Z2 .

In weight 16 there are six generators from Corollary 3.5, namely U3,3
0,10, U3,5

0,8 , U3,7
0,6 , 

U5,5
0,6 , U5,7

0,4 , and U7,7
0,2 . Three of these generators, namely U3,3

0,10, U3,5
0,8 , and U5,5

0,6 , can be 
eliminated in W free(sl7)Z2 , and therefore in Wk(sl7)Z2 for generic k, using the relations

: U3,5
0,0 U3,5

0,0 : − : U3,3
0,0 U5,5

0,0 = · · · ,

: U3,3
0,0 U3,5

2,0 : − : U3,3
2,0 U3,5

0,0 : = · · · ,

: U3,3
0,0 U3,3

2,2 : − : U3,3
2,0 U3,3

2,0 : = · · · .

(4.14)

Note that there is no relation in weight 16 that involves the field W 7. For any relation 
of weight 16 among the generators of W free(sl7)Z2 , U3,7

0,6 and U5,7
0,4 cannot appear because 

W 7 does not appear in the OPEs of W i for i < 7. However, in Wk(sl7)Z2 , we have five 
relations of the form

: U3,5
0,0 U3,5

0,0 : − : U3,3
0,0 U5,5

0,0 : = a11U3,3
0,10 + a12U5,5

0,6 + a13U3,5
0,8 + a14U3,7

0,6 + a15U5,7
0,4 + · · · ,

: U3,3
0,0 U3,5

2,0 : − : U3,3
2,0 U3,5

0,0 : = a21U3,3
0,10 + a22U5,5

0,6 + a23U3,5
0,8 + a24U3,7

0,6 + a25U5,7
0,4 + · · · ,

: U3,3
0,0 U3,5

1,1 : − : U3,3
1,0 U3,3

1,0 : = a31U3,3
0,10 + a32U5,5

0,6 + a33U3,5
0,8 + a34U3,7

0,6 + a35U5,7
0,4 + · · · ,

: U3,3
0,0 U3,3

3,1 : − : U3,3
3,0 U3,3

1,0 : = a41U3,3
0,10 + a42U5,5

0,6 + a43U3,5
0,8 + a44U3,7

0,6 + a45U5,7
0,4 + · · · ,

: U3,3
0,0 U3,3

2,2 : − : U3,3
2,0 U3,3

2,0 : = a51U3,3
0,10 + a52U5,5

0,6 + a53U3,5
0,8 + a54U3,7

0,6 + a55U5,7
0,4 + · · · ,

(4.15)

where the remaining terms do not depend on U3,3
0,10, U5,5

0,6 , U3,5
0,8 , U3,7

0,6 , and U5,7
0,4 . The 

matrix [aij ] can be computed explicitly by computer and it is nonsingular for generic 
values of k. Therefore suitable linear combinations of these relations will yield decoupling 
relations for U3,7

0,6 and U5,7
0,4 . It is easy to check that U7,7

0,2 cannot appear in any relation, 
so this is the only strong generator in weight 16 that is needed.

In weight 17, there are three generators from Corollary 3.5, namely U3,5
0,9 , U3,7

0,7 , U5,7
0,5 . 

Only two of these generators, namely U3,5
0,9 and U3,7

0,7 , can be eliminated in W free(sl7). 
However, in Wk(sl7)Z2 , we have three relations
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: U3,3
1,0 U5,5

0,0 : − : U3,5
1,0 U3,5

0,0 : = a11U3,5
0,9 + a12U3,7

0,7 + a13U5,7
0,5 + · · · ,

: U3,3
0,0 U3,7

1,0 : − : U3,3
1,0 U3,7

0,0 : = a21U3,5
0,9 + a22U3,7

0,7 + a23U5,7
0,5 + · · · ,

: U3,3
0,0 U3,5

3,0 : − : U3,3
3,0 U3,5

0,0 : = a31U3,5
0,9 + a32U3,7

0,7 + a33U5,7
0,5 + · · · .

(4.16)

Again, it is straightforward to compute the matrix [aij] and check that it is invertible 
for generic k. Therefore all the generators in weight 17 can be eliminated.

Finally, in weight 18, there are six generators from Corollary 3.5, namely U3,3
0,12, U3,5

0,10, 
U3,7

0,8 , U5,5
0,8 , U5,7

0,6 , and U7,7
0,4 . Five of these generators, namely U3,3

0,12, U3,5
0,10, U3,7

0,8 , U5,5
0,8 , 

and U5,7
0,6 , can be eliminated in W free(sl7)Z2 , but there is no relation allowing U7,7

0,4 to 
be decoupled. However, in Wk(sl7)Z2 we can decouple U7,7

0,4 by applying the operator 
(W 4)(1) to the weight 16 decoupling relation for U5,7

0,4 , since

(W 4)(1)U
5,7
0,4 = a4,5U7,7

0,4 + · · · .

Here we are using that (W 4)(1)W
7 is a normally ordered polynomial in {L, W i| 3 ≤ i ≤ 7}

and their derivatives, so the remaining terms appearing in (W 4)(1)U
5,7
0,4 do not depend 

on U7,7
0,4 . Also, it is apparent that when (W 4)(1) is applied to the right hand side of the 

decoupling relation for U5,7
0,4 , the term U7,7

0,4 cannot appear. �
5. The structure of W(c, λ)Z2

As in Section 3, we use the generating set {L, W i| i ≥ 3} given in [21], so that 
W 3

(5)W
3 = c

31 and W i = (W 3)(1)W
i−1 for i ≥ 4.

Lemma 5.1. After a suitable localization of the ring C[c, λ], W(c, λ)Z2 has a weak gen-
erating set consisting of the union of the following sets:

(1) {L, W 2i| i ≥ 2},
(2) {U3,2i+1

0,0 | i ≥ 1}.

Proof. For each d ≥ 0, let W(c, λ)Z2 [d] denote the subspace of weight d, and let V [d] ⊆
W(c, λ)Z2 [d] denote the span of all fields that can be written as linear combinations 
of words in {L, W 2i, U3,2i

0,0 } and the kth vertex algebra products for k ∈ Z. Then V =⊕
d≥0 V [d] is exactly the subalgebra which is weakly generated by the above fields.
If V �= W(c, λ)Z2 , there is some weight d where any basis W(c, λ)Z2 [d] contains a 

vector that is not in V [d]. Then the image of this vector would be needed in a basis 
of Wk(sln)Z2 = Cψ(0, n) for all but finitely many values of n. This contradicts Corol-
lary 4.3. �
Theorem 5.2. After a suitable localization of C[c, λ], W(c, λ)Z2 has a strong generating 
set consisting of the following fields

(1) W 2i, for i ≥ 1,
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(2) U3,3
0,2a, for a = 0, 1, 2, 3,

(3) U3,2i+1
0,a , for all i ≥ 2 and a = 0, 1, 2, 3, 4, 5, 6,

(4) U2i+1,2i+1
0,2a , for all i ≥ 2 and a = 0, 1, 2,

(5) U2i+1,2j+1
0,a , for all 2 ≤ i < j and a = 0, 1, 2, 3, 4, 5.

Proof. The proof is the same as the proof of Lemma 5.1, using Corollary 4.6 instead of 
Corollary 4.3. �
Corollary 5.3. After a suitable localization of the ring C[ψ], Cψ(n, m)Z2 has a strong 
finite generating set

(1) L, W 2i, for 2 ≤ i ≤ (m+1)(m+n+1)−1
2 ,

(2) U3,3
0,2a, for a = 0, 1, 2, 3,

(3) U3,2i+1
0,a , for all 2 ≤ i < (m+1)(m+n+1)−1

2 and a = 0, 1, 2, 3, 4, 5, 6,
(4) U2i+1,2i+1

0,2a , for all 2 ≤ i < (m+1)(m+n+1)−1
2 and a = 0, 1, 2,

(5) U2i+1,2j+1
0,a , for all 2 ≤ i < j < (m+1)(m+n+1)−1

2 and a = 0, 1, 2, 3, 4, 5.

The above strong generating sets for W(c, λ)Z2 and Cψ(n, m)Z2 are not minimal. In 
fact, the decoupling relations in Wk(sl7)Z2 in weights 16, 17, and 18 that we found in the 
proof of Theorem 4.9, are the specializations of relations in W(c, λ)Z2 . So the generators 
U3,7

0,6 , U5,7
0,4 , U5,7

0,5 , and U7,7
0,4 can be eliminated in W(c, λ)Z2 and in Cψ(n, m)Z2 for all 

n, m. It is an interesting problem to determine the minimal strong generating sets for 
W(c, λ)Z2 as well as Cψ(n, m)Z2 .

We are now able to prove the main result in this paper.

Theorem 5.4. Let R be the localization of C[c, λ] for which Lemma 5.1 holds, and let R′

be the localization of R obtained by inverting λ and −8 + 22λ + 5λc, if necessary. Then 
as a vertex algebra over R′, W(c, λ)Z2 is generated by W 4.

Proof. Let 〈W 4〉 ⊆ W(c, λ)Z2 denote the vertex subalgebra generated by W 4. In view 
of Lemma 5.1, we need to show that all the fields W 2i and W 3,2i+1

0,0 lie in 〈W 4〉 after 
inverting λ and −8 + 22λ + 5λc. First, we claim that L ∈ 〈W 4〉 with no restrictions on 
c, λ, i.e., with no localization required. From Equation (A.3) of [21] we have

(W 4)(5)W
4 = −4

3(−125 + 32λ(2 + c))L,

so L lies in 〈W 4〉 as long as −125 + 32λ(2 + c) �= 0. Note that this holds for c = −2 for 
any value of λ.

Suppose next that c �= −2 and λ = 125
32(2+c) , so that (W 4)(5)W

4 = 0 and L cannot 
be obtained in this way. Using the OPE algebra of W(c, λ) specialized along the curve 
λ = 125 , we have the following computations:
32(2+c)
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(W 4)(5)
(
(W 4)(3)W

4)
= 1250(43 + 9c)

c + 2 L,

(W 4)(4)

(
(W 4)(4)

(
(W 4)(3)W

4))
= 200(5831 + 1353c)

c + 2 L.

(5.1)

It follows that for all c �= −2, L ∈ 〈W 4〉 for all values of λ.
Next, we claim that as long as λ �= 0 and λ �= 8

22+5c , both W 6 and : W 3W 3 : lie in 
〈W 4〉. This follows from the following calculations:

W 4
(1)W

4 = 4
5W 6 − 288λ

5 : W 3W 3 : + · · · ,

(W 4)(3)(W 4
(1)W

4) = −32
5 (−32 + 115λ + 26λc)W 6

+ 2304
5 λ(8 + 5λ + λc) : W 3W 3 : + · · ·

(5.2)

Here the remaining terms only depend on L, W 4 and their derivatives, and hence lie in 
〈W 4〉. We can solve for W 6 and : W 3W 3 : separately as long as

det

⎡
⎢⎣

4
5 −288λ

5

−32
5 (−32 + 115λ + 26λc) 2304

5 λ(8 + 5λ + λc)

⎤
⎥⎦

= −9216
5 λ(−8 + 22λ + 5λc) �= 0.

Note that −8 + 22λ + 5λc = 0 is just the truncation curve for Wk(sl3). It is necessary to 
localize along this curve because the quotient Wk(sl3)Z2 of W(c, λ)Z2 is not generated 
by a field in weight 4.

Next, we have

(W 4)(1)U
3,3
0,0 = 2U3,5

0,0 + 1
3(13 − 128λ − 16λc)U3,3

0,2 − 8λ∂2U3,3
0,0 − 32λ

3 : L∂2W 4 :

+ 112λ

3 : (∂2L)W 4 : +56λ

3 : (∂L)(∂W 4) : +12λ : (∂3L)(∂L) :

+ 32λ

3 : (∂4L)L : +1
6∂2W 6 + −11 + 40λ + 2λc

9 ∂4W 4

+ 149 − 688λ + 40λc

1080 ∂6L.

(5.3)

Since U3,3
0,2 , U3,3

0,0 , and L can be generated from W 4, it follows that U3,5
0,0 ∈ 〈W 4〉 with no 

further localization required. Next, we have

(W 4)(1)W
6 = 4

7W 8 + · · · ,

where the remaining terms lie in 〈W 4〉, so W 8 ∈ 〈W 4〉. We also have
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(W 4)(1)W
8 = 4

9W 10 − 376λ

3 U5,5
0,0 − 752λ

3 U3,7
0,0 + · · · ,

(W 4)(1)U
3,5
0,0 = U5,5

0,0 + 2
3U3,7

0,0 + · · · ,

(W 6)(1)U
3,3
0,0 = 2U3,7

0,0 + · · · ,

(5.4)

where the remaining terms lie in 〈W 4〉, so W 10, U5,5
0,0 and U3,7

0,0 all lie in 〈W 4〉 with no 
further localization required.

Let V2a denote the vector space spanned by {U2r+1,2s+1
0,0 | 1 ≤ r ≤ s, 2r+2s +2 = 2a}. 

We have an injective linear map

f : V2a → V2a+2, f(U2r+1,2s+1
0,0 ) = a4,2r+1U2r+3,2s+1

0,0 + a4,2s+1U2r+1,2s+3
0,0 ,

which agrees with the restriction of (W 4)(1) to V2a up to terms which depend only on 
W 2j for j ≤ a and U2k+1,2�+1

a,b for 2k + 2� + 2 ≤ 2a. Here the constants ai,j are given 
by Lemma 3.1. We now assume inductively that the fields W 2a and the spaces V2a lie in 
〈W 4〉 for all a ≤ i + 1, with no further localization required. We have already checked 
the base cases where i ≤ 4. Observe first that

(W 4)(1)W
2i+2 = a4,2i+2W 2i+4 + · · · ,

where the remaining terms either lie in V2i+4, or in 〈W 4〉 by inductive hypothesis. Since 
W 2i+4 cannot appear in (W 4)(1)U for any U ∈ V2i+2, it suffices to show that V2i+4 lies in 
〈W 4〉. Note that our inductive hypothesis also implies that f agrees with the restriction 
of (W 4)(1) to V2i+2 up to terms which lie in 〈W 4〉.

If i is even, V2i+4 and V2i+2 both have dimension i
2 . Since f : V2i+2 → V2i+4 is 

injective, it is also surjective, so V2i+4 ⊆ 〈W 4〉.
If i is odd, V2i+4 has dimension i+1

2 and V2i+2 has dimension i−1
2 , so the image 

f(V2i+2) ⊆ V2i+4 has codimension one. It is easy to check that U i,i+4
0,0 spans a complement 

of f(V2i+2). But

(W 6)(1)U
i,i
0,0 = 2a6,iU

i,i+4
0,0 + · · · ,

where the remaining terms lie in 〈W 4〉. Hence U i,i+4
0,0 lies in 〈W 4〉 as well. �

Corollary 5.5. After a suitable localization of C[ψ], Cψ(n, m)Z2 is generated as a vertex 
algebra by W 4 for all n ≥ 4 and m = 0, and all n ≥ 1 if m ≥ 1. In particular, this holds 
for Wk(sl4)Z2 for all n ≥ 4.

It is an interesting problem to determine the minimal localization R′ of C[c, λ] needed 
for Theorem 5.4 to hold, and similarly to determine the minimal localization of C[ψ]
needed for Corollary 5.5 to hold. Suppose that S is a localization of C[c, λ] for which 
W 4 generates W 6 and all fields U3,3

0,2a for a ≥ 0. It is not difficult to show using the 
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form of ai,j , bi,j given by Lemma 3.1 that no further localization is required, that is, we 
can take R′ = S. Moreover, we expect that S will be the localization of C[c, λ] along 
finitely many polynomials. This would imply that for each m, n, the localization needed 
for Corollary 5.5 to hold will require inverting finitely polynomials in ψ; equivalently, 
W 4 will generate Cψ(n, m)Z2 for all but finitely many values of ψ. We hope to return to 
this question later.

Data availability

No data was used for the research described in the article.
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