
Advances in Mathematics 409 (2022) 108678
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Trialities of orthosymplectic W-algebras ✩

Thomas Creutzig a, Andrew R. Linshaw b,∗

a University of Alberta, Canada
b University of Denver, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 July 2021
Received in revised form 28 June 
2022
Accepted 12 August 2022
Available online 8 September 2022
Communicated by A. Kleshchev

Keywords:
Vertex algebra
W-algebra
Nonlinear Lie conformal algebra
Coset construction

Trialities of W-algebras are isomorphisms between the affine 
cosets of three different W-(super)algebras, and were first 
conjectured in the physics literature by Gaiotto and Rapčák. 
In this paper we prove trialities among eight families of W-
(super)algebras of types B, C, and D. The key idea is to 
identify the affine cosets of these algebras with one-parameter 
quotients of the universal two-parameter even spin W∞-
algebra which was recently constructed by Kanade and the 
second author. Our result is a vast generalization of both 
Feigin-Frenkel duality in types B, C, and D, and the coset 
realization of principal W-algebras of type D due to Arakawa 
and us. It also provides a new coset realization of principal 
W-algebras of types B and C. As an application, we prove 
the rationality of the affine vertex superalgebra Lk(osp1|2n), 
the minimal W-algebra Wk−1/2(sp2n+2, fmin), and the coset 
Com(Lk(sp2m), Lk(sp2n)), for all integers k, n, m ≥ 1 with 
m < n. We also prove the rationality of some families 
of principal W-superalgebras of osp1|2n and osp2|2n, and 
subregular W-algebras of so2n+1.
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1. Introduction

Trialities of W-algebras are isomorphisms between the affine cosets of three differ-
ent W-(super)algebras, as one-parameter vertex algebras. In recent work [37, Thm. 1.1], 
we proved a family of trialities among W-(super)algebras of type A which was conjec-
tured by Gaiotto and Rapčák in [55]. This theorem is a common generalization of both 
Feigin-Frenkel duality and the coset realization of principal W-algebras of sln [48,12], 
as well as Feigin-Semikhatov duality between subregular W-algebras of sln, and princi-
pal W-superalgebras of sln|1 [51,25]. The key idea of the proof was to identify all these 
affine cosets with one-parameter quotients of the universal two-parameter vertex algebra 
W(c, λ) of type W(2, 3, . . . ). The existence and uniqueness of this structure was conjec-
tured for many years in the physics literature [94,54,86,87], and was recently proven by 
the second author in [80]. One-parameter quotients of W(c, λ) are in bijection with a 
family of curves in the parameter space C2 called truncation curves, and [37, Thm. 1.1]
follows from the explicit ideals that define these curves.

In this paper, we will prove an analogous triality theorem which involves eight families 
of W-(super)algebras of types B, C, and D. First, g will be either so2n+1, sp2n, so2n, or 
ospn|2r, and will decompose as

g = a ⊕ b ⊕ ρa ⊗ ρb.

Here a and b are Lie sub(super)algebras of g, and ρa, ρb transform as the standard 
representations of a, b, respectively, and have the same parity which can be either even 
or odd.

Let fb ∈ g be the nilpotent element which is principal in b and trivial in a, and let 
Wk(g, fb) be the corresponding W-(super)algebra. In all cases, Wk(g, fb) is of type

W
(

1dim a, 2, 4, . . . , 2m,

(
db + 1

2

)da
)

.

In particular, there are dim a fields in weight 1 which generate an affine vertex (super)al-
gebra of a. The fields in weights 2, 4, . . . , 2m are even and are invariant under a. The da

fields in weight db+1
2 can be even or odd, and transform as the standard a-module.

For n, m ≥ 0 we have the following cases where b = so2m+1.

(1) Case 1B: g = so2n+2m+2, a = so2n+1.
(2) Case 1C: g = osp2m+1|2n, a = sp2n.
(3) Case 1D: g = so2n+2m+1, a = so2n.
(4) Case 1O: g = osp2m+2|2n, a = osp1|2n.

For n ≥ 0 and m ≥ 1 we have the following cases where b = sp2m.

(1) Case 2B: g = osp2n+1|2m, a = so2n+1.
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(2) Case 2C: g = sp2n+2m, a = sp2n.
(3) Case 2D: g = osp2n|2m, a = so2n.
(4) Case 2O: g = osp1|2n+2m, a = osp1|2n.

It is convenient to replace the level k with the critically shifted level ψ = k + h∨, 
where h∨ is the dual Coxeter number of g. For i = 1, 2 and X = B, C, D, O, we denote 
the corresponding W-algebra by Wψ

iX(n, m). In the cases i = 1, 2 and X = C, we 
denote the corresponding affine cosets by Cψ

iC(n, m). In the cases X = B, D, O, there 
is an additional action of Z2, and Cψ

iX(n, m) denotes the Z2-orbifold of the affine coset. 
We will also define the algebras Wψ

2X(n, 0) in a different way so that our results hold 
uniformly for all n, m ≥ 0.

Our main result is that there are four families of trialities among the algebras 
Cψ

iX(n, m).

Main Theorem 1. (Theorem 4.1) For all integers m ≥ n ≥ 0, we have the following 
isomorphisms of one-parameter vertex algebras.

Cψ
2B(n, m) ∼= Cψ′

2O(n, m − n) ∼= Cψ′′

2B (m, n), ψ′ = 1
4ψ

,
1
ψ

+ 1
ψ′′ = 2, (1.1)

Cψ
1C(n, m) ∼= Cψ′

2C(n, m − n) ∼= Cψ′′

1C (m, n), ψ′ = 1
2ψ

,
1
ψ

+ 1
ψ′′ = 1, (1.2)

Cψ
2D(n, m) ∼= Cψ′

1D(n, m − n) ∼= Cψ′′

1O (m, n − 1), ψ′ = 1
2ψ

,
1

2ψ
+ 1

ψ′′ = 1, (1.3)

Cψ
1O(n, m) ∼= Cψ′

1B(n, m − n) ∼= Cψ′′

2D(m + 1, n), ψ′ = 1
ψ

,
1
ψ

+ 1
2ψ′′ = 1. (1.4)

Special cases of this result include Feigin-Frenkel duality in types B, C, and D [48], 
as well as a version for principal W-superalgebras of osp1|2n which was recently proven 
in [24]. The special case

Cψ
2D(n, 0) ∼= Cψ′′

1O (0, n − 1), 1
2ψ

+ 1
ψ′′ = 1, n ≥ 2

of (1.3) provides a new proof of the coset realization of principal W-algebras of type D
[12]. The special case

Cψ
2B(n, 0) ∼= Cψ′′

2B (0, n), 1
ψ

+ 1
ψ′′ = 2

of (1.1) recovers the coset realization of the principal W-superalgebra of osp1|2n [24]. 
More importantly, the special case

Cψ
1C(n, 0) ∼= Cψ′′

1C (0, n), 1 + 1
′′ = 1
ψ ψ
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of (1.2) provides a new coset realization of principal W-algebras of type B (and type C
by Feigin-Frenkel duality), since

Cψ
1C(n, 0) = Com(V k(sp2n), V k(osp1|2n)), k = −1

2(ψ + 2n + 1).

Cψ′′

1C (0, n) = Wψ′′−2n+1(so2n+1).

This is quite different from the coset realizations of Wk(g) for simply-laced g given in 
[12] since it involves affine vertex superalgebras. Finally, the special case

Cψ
2D(1, m) ∼= Cψ′

1D(1, m − 1), ψ′ = 1
2ψ

of (1.3) provides an alternative proof of the duality between the Heisenberg cosets of 
Wψ′−2m+1(so2m+1, fsubreg) and Wψ−m(osp2|2m) appearing in [25].

The key idea in the proof of Main Theorem 1 is to identify all the algebras Cψ
iX(n, m) as 

one-parameter quotients of the universal even spin two-parameter W∞-algebra Wev(c, λ)
constructed by Kanade and the second author in [75]. Such quotients of Wev(c, λ) are in 
bijection with a family of plane curves called truncation curves. By explicitly computing 
the truncation curves for these algebras, Main Theorem 1 follows from symmetries of 
our formulas for the defining ideals. We thus identify four distinct N × N families of 
truncations of Wev(c, λ), which we conjecture to account for all of its truncations. In 
fact, we can give a uniform description of all these truncations by replacing the integer 
parameters n and m in one of the formulas by half-integers. We mention that the algebras 
Cψ

iX(n, m) were called orthosymplectic Y -algebras by Gaiotto and Rapčák in [55], and 
some of the trialities we prove were conjectured in [55], as well as the paper [88] of 
Procházka.

1.1. Rationality results

As an application of Main Theorem 1, we prove many new rationality results in 
Section 7.

Main Theorem 2. Denote by F(n) the vertex superalgebra of n free fermions, by Lk(g)
the simple affine vertex superalgebra of the simple Lie superalgebra g at level k, and by 
W�(g) the simple principal W-superalgebra of g at level �.

(1) For all n, k ∈ Z≥1, Lk(osp1|2n) is lisse and rational (Theorem 7.1).
(2) For all m ≥ 1, Wψ−m−1/2(osp1|2m) is lisse and rational at the following levels:

(a) ψ = 2m−1
4(m+r) , where m + r and 1 + 2r are coprime (Theorem 7.2),

(b) ψ = 1+2m
2(1+2m+2r) , where r and 1 + 2m are coprime (Theorem 7.2),

(c) ψ = m , where 2r − 1 and 2m are coprime (Theorem 7.3).
2m+2r−1
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(3) For all m ≥ 1, Wψ−2m−1(so2m+3, fsubreg) is lisse and rational at the following levels:

(a) ψ = 3+2m+2r
2m+2 , where m + 1 and 2r + 1 are coprime (Theorem 7.5),

(b) ψ = 2m+2r+1
2m+1 where r and 2m + 1 are coprime (Theorem 7.6),

(c) ψ = 2(2+m)
1+2m (Corollary 7.3),

(d) ψ = 2m
2m−1 (Corollary 7.4).

(4) For all m ≥ 1, Wψ−m(osp2|2m+2) is lisse and rational at the following levels:

(a) ψ = 1+m
3+2m+2r , where m + 1 and 2r + 1 are coprime (Corollary 7.1),

(b) ψ = 2m+1
2(2m+2r+1) , where r and 2m + 1 are coprime (Corollary 7.2),

(c) ψ = 2m+1
4(2+m) (Corollary 7.3),

(d) ψ = 2m−1
4m (Corollary 7.4).

(5) For all n ≥ 1 and r ≥ 1, Wr−1/2(sp2n+2, fmin) is lisse and rational.
(6) For all k, n, m ∈ Z≥1 with n > m, the following cosets are lisse and rational:

(a) Com(Lk−1/2(sp2n), Lk(sp2n) ⊗ L−1/2(sp2n)) (Theorem 7.8),
(b) Com(Lk(sp2n−2m), Lk(sp2n)) (Corollary 7.6),
(c) Com (Ln(sp2k), Ln−m(sp2k) ⊗ F(4mk)) (Corollary 7.7).

Main Theorem 2 (1) completes the classification of lisse and rational affine vertex 
superalgebras Lk(g), for g a simple Lie superalgebra. When g is a Lie algebra, it is a 
celebrated result of Frenkel and Zhu [52] that Lk(g) is lisse and rational if and only if 
k ∈ N. When g is not a Lie algebra, Gorelik and Kac [56] claimed that Lk(g) is lisse 
only when g = osp1|2n and k ∈ N; see [6] for the recent proof. However, the rationality 
was previously known only for osp1|2 [21]. The proof of Main Theorem 2 (1) involves 
exhibiting Lk(osp1|2n) as an extension of the rational vertex algebra Lk(sp2n) ⊗W�(sp2n)
for � = −(n + 1) + 1+k+n

1+2k+2n .
A celebrated result of Arakawa [7,8] is that for a simple Lie algebra g, Wk(g) is lisse 

and rational when k is a nondegenerate admissible level for ĝ. Again, a similar statement 
is expected to be true for Wk(osp1|2m). Based on the coset realization of Wk(osp1|2m), 
we make the following conjecture.

Conjecture 1.1. (Conjecture 7.1) For all m ≥ 1, Wψ−m−1/2(osp1|2m) where ψ = p
2(p+q) , 

is lisse and rational if

(1) p, q ∈ N are coprime,
(2) p ≥ 2m − 1 if q is odd,
(3) p ≥ 2m if q is even.
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By (1.1), this conjecture implies that Wψ′−m−1/2(osp1|2m) is also lisse and rational at 
the Feigin-Frenkel dual level, where ψ′ = 1

4ψ = p+q
2p .

Main Theorem 2 (2) proves several cases of Conjecture 1.1 by identifying
Wψ−m−1/2(osp1|2m) in these cases with a simple current extension of a known rational 
vertex algebra of the form Ws(sp2r) or Ws(so2r)Z2 . In the case n = 1, where Wk(osp1|2)
is just the N = 1 superconformal algebra, Conjecture 1.1 is already known ([74,1,83,16]), 
and we give an alternative proof; see Theorem 7.4.

Main Theorem 2 (3) proves several cases of the Kac-Wakimoto rationality conjecture 
[72], which was later refined by Arakawa [7].1 Let g be a simple Lie algebra and k =
−h∨ + p

q an admissible level for ĝ. The associated variety of Lk(g) is then the closure of 
a nilpotent orbit Oq which depends only on the denominator q. If f ∈ g is a nilpotent 
lying in Oq, the simple W-algebra Wk(g, f) is known to be non-zero and lisse [7]. Such 
pairs (f, q) are called exceptional pairs, and they generalize the notion of exceptional pair 
due to Kac and Wakimoto [72] and Elashvili, Kac, and Vinberg [45]. The corresponding 
W-algebras are also called exceptional, and were conjectured by Arakawa to be rational 
in [7], generalizing the original conjecture of [72]. Very recently, Arakawa and van Ekeren 
proved rationality of all exceptional W-algebras in type A, and all exceptional subregular 
W-algebras of simply-laced types [14].

The type B subregular W-algebra Wk(so2m+3, fsubreg) for m ≥ 1 is exceptional when 
k = −(2m + 1) + p

q is admissible and q = 2m + 2 or 2m + 1; see Table 1 of [14]. 
Main Theorem 2 (3) proves rationality in all cases where q = 2m + 2 and all cases 
where q = 2m + 1 and p is odd, generalizing the result for m = 1 of Fasquel [46]. In 
these cases, we identify Com(H(1), Wk(so2m+3, fsubreg))Z2 with a known rational vertex 
algebra of the form Ws(sp2r) or Ws(so2r)Z2 . In the cases where q = 2m + 1 and p is 
even, Com(H(1), Wk(so2m+3, fsubreg))Z2 is identified with a vertex algebra of the form 
Ws(osp1|2r)Z2 . Using the methods of this paper, we are only able to prove rationality 
of Wk(so2m+3, fsubreg) when r = 1. However, the rationality for all such p and q is 
a special case of McRae’s result [82]. As a consequence, we obtain further examples 
where Conjecture 1.1 is true; see Remark 7.1. Note that Main Theorem 2 (4) follows 
immediately from part (3) together with the duality between subregular W-algebras of 
type B and principal W-superalgebras of osp2|2m appearing in [25].

It turns out that the cases q = 2m + 1 and q = 2m + 2 do not account for all rational 
algebras of the form Wk(so2m+3, fsubreg). We will show that

Com(H(1), Wk(so2m+3, fsubreg))Z2 ∼= Ws(osp1|2r)Z2 ,

for k = −(2m + 1) + 2(m−r+1)
1+2m−2r and s = −(r + 1

2 ) + m+1−r
2m+1−2r . In the case m ≥ 2r − 1, 

Conjecture 1.1 would then imply the rationality of Wk(so2m+3, fsubreg) even though k is 

1 In a recent preprint that appeared a few months after this paper was submitted, Robert McRae has 
proven the Kac-Wakimoto-Arakawa conjecture in full generality [82, Main Theorem 4].
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not an admissible level; see Remark 7.2. In the case r = 1, these examples are rational 
by Main Theorem 2 (4d). These are new examples of rational W-algebras that are not 
covered by the Kac-Wakimoto-Arakawa conjecture, and it is an interesting problem to 
find more such examples and ultimately to classify them.

The rationality of Wr−1/2(sp2n+2, fmin) for r ∈ Z≥1 given by Main Theorem 2 (5), 
is another case of the Kac-Wakimoto-Arakawa rationality conjecture. We will show that 
Wr−1/2(sp2n+2, fmin) is an extension of the rational vertex algebra Lr(sp2n) ⊗ Ws(sp2r)
for s = −(r + 1) + 1+n+r

3+2n+2r . This was conjectured in [13] and proven in [75] in the case 
n = 1.

Main Theorem 2 (6a) is proven by showing that Com(Lk−1/2(sp2n), Lk(sp2n) ⊗
L−1/2(sp2n)) is isomorphic to W�(sp2k) for � = −(k + 1) + 1+n+k

1+2n+2k , which is a new 
level-rank duality. Similarly, Main Theorem 2 (6b) and (6c) are proven by showing that 
both cosets are extensions of the rational vertex algebra

m⊗
i=1

(W�i
(sp2k) ⊗ Wsi

(sp2k))

with �i = −(k + 1) + 2+n−i+k
3+2n−2i+2k and si = −(k + 1) + 1+n−i+k

3+2n−2i+2k . Note that (6b) implies 
that Lk(sp2n) is an extension of 

⊗n
i=1 (W�i

(sp2k) ⊗ Wsi
(sp2k)) with �i, si as above. This 

is analogous to the statement in [12] that Lk(gln) is an extension of 
⊗n

i=1 W�i
(glk) with 

�i = −k = k+n−i
k+n−i+1 , which is an analogue of the Gelfand-Tsetlin subalgebra of U(gln).

1.2. Triality from kernel vertex algebras

Motivated from four-dimensional GL-twisted N = 4 supersymmetric Yang-Mills theo-
ries, certain kernel vertex algebras in type A were conjecturally introduced in [22]. Here, 
we will introduce analogues for orthosymplectic type and explain how this provides an-
other perspective on triality. The kernel vertex algebras also play an important role in 
the context of the quantum geometric Langlands program and our conjectures are closely 
related to the ideas sketched in Section 10.4 of [49].

Let g be either a simple Lie algebra of type B, C, D or osp1|2n.2 Let P + denote the 
set of dominant weights of g, and R ⊆ P + the subset corresponding to the tensor ring 
generated by the standard representation of g; that is, λ ∈ R if and only if the irreducible 
highest-weight representation ρλ is a submodule of some iterated tensor product of the 
standard representation of g. Let g′ = so2n+1 if g = osp1|2n and vice versa, and let 
g′ = g otherwise. Note that there is a one-to-one correspondence of irreducible finite 
dimensional non-spin representations of so2n+1 and osp1|2n, such that characters agree. 
A similar statement also holds for the quantum (super)groups [18]. Let τ denote the 
induced map on dominant weights. If g is neither of type so2n+1 nor of type osp1|2n then 

2 The case g = so2 can also be included and we refer to [26] for discussion of the kernel vertex algebra 
and its relative semi-infinite cohomology.



8 T. Creutzig, A.R. Linshaw / Advances in Mathematics 409 (2022) 108678
let τ be the identity on P +. Motivated from Theorem 4.1 we let φ be generic and φ′

related to φ by the formula

1
φ

+ 1
φ′ = 2, if g is of type C,

1
φ

+ 1
φ′ = 1, if g is of type D,

1
2φ

+ 1
φ′ = 1, if g is of type osp1|2n,

1
φ

+ 1
2φ′ = 1, if g is of type B.

Let V φ−h∨
g (g) and V φ′−h∨

g′ (g′) be the universal affine vertex (super)algebras of g and 
g′ at levels φ − h∨

g and φ′ − h∨
g′ . Let Mφ(λ) = V φ−h∨

g (λ) and Mφ′(λ) = V φ′−h∨
g′ (τ(λ))

be the Weyl modules at these levels whose top level is the irreducible highest-weight 
representation of g of highest weight λ, respectively of g′ of highest weight τ(λ). Then 
set

A[g, φ] :=
⊕
λ∈R

Mφ(λ) ⊗ Mφ′
(λ).

More generally, let f, f ′ be nilpotent elements in g, g′ and let Mφ
f (λ) and Mφ′

f ′ (λ) be the 

images under quantum Hamiltonian reduction of Mφ(λ) and Mφ′(λ) corresponding to 
f and f ′, respectively. Then set

A[g, φ, f, f ′] :=
⊕
λ∈R

Mφ
f (λ) ⊗ Mφ′

f ′ (λ),

so that A[g, φ] = A[g, φ, 0, 0]. The conjecture is that these objects can be given the 
structure of a simple vertex superalgebra for generic φ. In the case that g is of type 
D, f = 0, and f ′ is a principal nilpotent, this is the coset theorem of type D of [12]. 
Moreover, the case of arbitrary f and f ′ the principal nilpotent is the main theorem of 
[11] applied to the coset theorem. In that paper also many similar algebras are studied. 
Note that in order for g = so3 to fit in the so2n+1-series, we use the Killing form rescaled 
by two as bilinear form, i.e., in our convention V k(so3) = V 2k(sl2) = V 2k(sp2). This can 
be thought of as to setting the dual Coxeter number of so3 to one.

For f = f ′ = 0, the case of g = so3 and g = osp1|2 is proven in [22] and the case 
of g = sp2 in [23] and these are the affine vertex superalgebra of d(2, 1; 1 − φ) at level 
one, respectively, the minimal quantum Hamiltonian reduction of d(2, 1; (1 − φ)/2) at 
level 1/2, which is the one-parameter family of large N = 4 superconformal algebras at 
central charge −6.

Cosets can often also be characterized as relative semi-infinite Lie algebra cohomolo-
gies. It seems that the cohomology approach is suitable to put our trialities into a more 



T. Creutzig, A.R. Linshaw / Advances in Mathematics 409 (2022) 108678 9
general perspective. Let g be a simple Lie algebra, B a basis for g and B′ a dual basis. 
Let F(g) be two copies of free fermions in the adjoint representation of g with gen-
erators {bx, cx′ | x ∈ B, x′ ∈ B′} and operator products bx(z)cy′(w) ∼ δx,y(z − w)−1. 
Consider the affine vertex algebra of g at level −2h∨, V −2h∨(g), and let x(z) be the field 
corresponding to x ∈ g. Let d := d0 be the zero-mode of the field

d(z) :=
∑
x∈B

: x(z)cx′
(z) : −1

2
∑

x,y∈B

: (: b[x,y](z)cx′
(z) :)cy′

(z) :,

which squares to zero. Let F̃(g) denote the subalgebra of F(g) generated by the bx and 
∂cx′ (these are just dim g pairs of symplectic fermions). For a module M for V −2h∨(g)
the relative complex is

Crel(g, d) =
(

M ⊗ F̃(g)
)g

and this relative complex is preserved by d [50, Prop. 1.4.]. The cohomology is denoted 
by Hrel,•

∞ (g, M). As shown in [50] and explained in Section 2.5 of [20], it satisfies

Hrel,0
∞ (g, V k(λ) ⊗ V −2h∨−k(μ)) =

{
C if μ = −ω0(λ),
0 otherwise.

(1.5)

Here ω0 is the unique Weyl group element that interchanges the fundamental Weyl 
chamber with its negative. It is reasonable to expect that one can construct similar 
complexes with similar properties for affine vertex superalgebras and it would be very 
interesting to do so for at least g = osp1|2n. In order to include the case n = 0, we define 
master chiral algebra and cohomology to be trivial, that is so0 := so1 := sp0 := osp1|0 =
{ } and A[{ }, φ] := C as well as Hrel,0

∞ ({ }, C) = C.

Conjecture 1.2. With the above set-up, and f, f ′ nilpotent in g, g′, respectively:

(1) The object A[g, φ, f, f ′] can be given the structure of a one-parameter vertex super-
algebra.

(2) For generic φ, A[g, φ, f, f ′] is a simple vertex operator superalgebra extending 
Wφ−h∨

g (g, f) ⊗ Wφ′−h∨
g′ (g′, f ′).

(3) There exists a generalization of relative semi-infinite Lie superalgebra cohomology 
for g = osp1|2n satisfying (1.5).

(4) For all integers m ≥ n ≥ 0, we have the following isomorphisms of one-parameter 
vertex algebras.
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(a) For ψ′ = 1
4ψ and 1

ψ + 1
ψ′′ = 2,

Wψ
2B(n, m) ∼= Hrel,0

∞

(
osp1|2n, Wψ′

2O(n, m − n) ⊗ A[osp1|2n,
1
2 − ψ′]

)
,

Wψ′′

2B (m, n) ∼= Com
(

V ψ′−n−1(osp1|2n), A[osp1|2m, ψ′, fsp2m−2n
, 0]

)
.

(b) For ψ′ = 1
2ψ and 1

ψ + 1
ψ′′ = 1,

Wψ
1C(n, m) ∼= Hrel,0

∞

(
sp2n, Wψ′

2C(n, m − n) ⊗ A[sp2n,
1
2 − ψ′]

)
,

Wψ′′

1C (m, n) ∼= Com
(

V ψ′−n− 3
2 (sp2n), A[sp2m, ψ′, fsp2m−2n

, 0]
)

.

(c) For ψ′ = 1
2ψ and 1

2ψ + 1
ψ′′ = 1,

Wψ
2D(n, m) ∼= Hrel,0

∞

(
so2n, Wψ′

1D(n, m − n) ⊗ A[so2n, 1 − ψ′]
)

,

Wψ′′

1O (m, n) ∼= Com
(

V ψ′−2n+1(so2n), A[so2m+1, ψ′, fso2m−2n+1 , 0]
)

.

(d) For ψ′ = 1
ψ and 1

ψ + 1
2ψ′′ = 1 and m > n in the second case,

Wψ
1O(n, m) ∼= Hrel,0

∞

(
so2n+1, Wψ′

1B(n, m − n) ⊗ A[so2n+1, 1 − ψ′]
)

,

Wψ′′

2D (m, n) ∼= Com
(

V ψ′−2n(so2n+1), A[so2m, ψ′, fso2m−2n−1 , 0]
)

.

Both sides of the conjectured isomorphisms have the same affine vertex superalgebra 
and the same quotient of Wev(c, λ) as commuting pair of subalgebras.

The relative semi-infinite cohomology part of (4) of the conjecture for n = 0 is Feigin-
Frenkel duality [48]. The coset part of (4) should be viewed as a generalization of coset 
realization of principal W-algebras, e.g. the case n = 0 of (4)(a) corresponds to the coset 
realization of principal W-superalgebras of osp1|2n of [24] and the case (4)(d) to the 
coset realization of principal W-algebras of type D of [12]. Our conjecture is a natural 
extension to orthosymplectic type of our conjectures for type A made in Section 10 of 
[37]. The relative semi-infinite cohomology part of this conjecture is proven for subregular 
W-algebras of type A and B [26]. We sketched a proof strategy in Section 10 of [37] for 
type A, and we expect that all our conjectures for type A as well as orthosymplectic 
type can be proven uniformly.

Besides its importance in physics and quantum geometric Langlands, our conjectures 
provide a way to relate representation categories in a nice way. For example, if Con-
jecture 4 (a) is correct, then the functor Hrel,0

∞
(
osp1|2n, ? ⊗ A[osp1|2n, 1

2 − ψ′]
)

maps 
Wψ′

2O(n, m − n)-modules to Wψ
2B(n, m)-modules. It is reasonable that such a functor has 
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nice monoidal properties. Indeed in the type A and subregular W-algebra case, this is 
true, namely there is a block-wise equivalence of categories and an isomorphism be-
tween the superspaces of logarithmic intertwining operators [26]. Also the coset part of 
the conjecture should be useful to connect representation categories. For example, the 
coset realization of principal W-algebras of type ADE has been used to prove a braided 
monoidal equivalence between a simple current twist of ordinary modules of the affine 
vertex algebra at admissible level, and a subcategory of modules of the principal W-
algebra appearing as the coset; see [19, Thm. 7.1] for the precise statement. In the case 
g = sl2 the admissible level result appeared in [28, Thm. 7.4], and a theorem at generic 
level was also established in [29, Prop. 5.5.2]. Note that these results prove variants of a 
conjecture made in the context of quantum geometric Langlands, see [3, Conj. 6.3]. It is 
work in progress to study the categories of ordinary modules of Lk(osp1|2n) at admissi-
ble level, and especially to show that they are braided equivalent to subcategories of the 
principal W-algebras of type B that appear as the cosets.

1.3. Geometry and conformal field theory

The Alday-Gaiotto-Tachikawa (AGT) correspondence is a relation between four-
dimensional gauge theories and two-dimensional conformal field theories [4]. It yields 
interesting connections to geometry, for example a celebrated result of Schiffmann and 
Vasserot [92] asserts that the principal W-algebra of type A acts on the equivariant 
cohomology of the moduli space of instantons on C2. There is a generalization to equiv-
ariant cohomology of Uhlenbeck spaces where principal W-algebras of simply-laced type 
act [15], and the authors expect that their construction can be generalized to the non 
simply-laced case. This is interesting as conjecturally the YM,N,L-algebras of Gaiotto and 
Rapčák, that is the cosets of W-superalgebras of the triality of type A, act on moduli 
spaces of spiked instantons [89], and we hope that a nice geometric interpretation also 
exists in the orthosymplectic case. Note that at least a nice four-dimensional physics 
interpretation exists for them [55]. In all the above mentioned works, it has been shown 
that a subalgebra of a Heisenberg vertex algebra, characterized as the kernel of certain 
screening operators, acts on an equivariant cohomology. Another crucial problem is thus 
to develop explicit screening realizations. Naoki Genra has already provided nice screen-
ing realizations of W-superalgebras [53] and the main obstacle of making them more 
explicit are screening realizations of affine vertex superalgebras. Screening realizations 
should also provide a different proof of the trialities with the advantage that it should 
give further insights on the connection of representation theories. From the physics per-
spective the screening charges provide the interaction term in the action of the conformal 
field theory. A duality of conformal field theories is then an isomorphism of symmetry 
algebras, that is underlying vertex algebras, together with a matching of correlation func-
tions. Our trialities in type A at low rank have already led to new dualities of conformal 
field theories [27] and likely there are more to be discovered.
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1.4. Outline

This paper is organized as follows. In Section 2 we review the basic terminology and 
examples of vertex algebras that we need. We also prove that extensions of a rational 
vertex algebra are rational under hypotheses that hold in all our examples. In Section 3, 
we introduce the W-(super)algebras Wψ

iX(n, m) for i = 1, 2 and X = B, C, D, O that 
we need. In Section 4, we state our main result and also discuss the special cases which 
recover Feigin-Frenkel duality and various coset realizations of principal W-algebras. In 
Section 5 we discuss the free field limits of Wψ

iX(n, m) and the strong generating types of 
the algebras Cψ

iX(n, m). In Section 6 we prove Main Theorem 1 by explicitly computing 
the truncation curves realizing Cψ

iX(n, m) as quotients of Wev(c, λ). In Section 7 we prove 
Main Theorem 2. In Appendix A, we give the explicit truncation curve for Cψ

2B(n, m), 
from which all other truncation curves can be derived. Finally, in Appendices B, C, and 
D, we classify the pointwise coincidences between the simple quotients Cψ,iX(n, m), and 
the algebras Ws(sp2r), Ws(so2r)Z2 , and Ws(osp1|2r)Z2 . These coincidences are needed 
in the proof of Main Theorem 2.

2. Vertex algebras

We will assume that the reader is familiar with vertex algebras, and we use the same 
notation as our previous paper [37]. In this section, we briefly recall the definition and 
basic properties of free field algebras, W-algebras, and the two-parameter even spin 
algebra Wev(c, λ). We then prove some general results on extensions of rational vertex 
algebras which are needed in the proof of Main Theorem 2.

2.1. Free field algebras

Recall that a free field algebra is a vertex superalgebra V with weight grading

V =
⊕

d∈ 1
2Z≥0

V[d], V[0] ∼= C,

with strong generators {Xi| i ∈ I} satisfying OPE relations

Xi(z)Xj(w) ∼ ai,j(z−w)−wt(Xi)−wt(Xj), ai,j ∈ C, ai,j = 0 if wt(Xi)+wt(Xj) /∈ Z.

Note V is not assumed to have a conformal structure. We now recall the four families of 
standard free field algebras that were introduced in [37].
Even algebras of orthogonal type. For each n ≥ 1 and even k ≥ 2, Oev(n, k) is the vertex 
algebra with even generators a1, . . . , an of weight k

2 , which satisfy

ai(z)aj(w) ∼ δi,j(z − w)−k.
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In the case k = 2, Oev(n, k) is just the rank n Heisenberg algebra H(n). Note that 
Oev(n, k) has no conformal vector for k > 2, but for all k it is a simple vertex algebra 
and has full automorphism group the orthogonal group On.
Even algebras of symplectic type. For each n ≥ 1 and odd k ≥ 1, Sev(n, k) is the vertex 
algebra with even generators ai, bi for i = 1, . . . , n of weight k

2 , which satisfy

ai(z)bj(w) ∼ δi,j(z − w)−k, bi(z)aj(w) ∼ −δi,j(z − w)−k,

ai(z)aj(w) ∼ 0, bi(z)bj(w) ∼ 0.
(2.1)

In the case k = 1, Sev(n, k) is just the rank n βγ-system S(n). For k > 1, Sev(n, k)
has no conformal vector, but for all k it is simple and has full automorphism group the 
symplectic group Sp2n.
Odd algebras of symplectic type. For each n ≥ 1 and even k ≥ 2, Sodd(n, k) is the vertex 
superalgebra with odd generators ai, bi for i = 1, . . . , n of weight k

2 , which satisfy

ai(z)bj(w) ∼ δi,j(z − w)−k, bj(z)ai(w) ∼ −δi,j(z − w)−k,

ai(z)aj(w) ∼ 0, bi(z)bj(w) ∼ 0.
(2.2)

In the case k = 2, Sodd(n, k) is just the rank n symplectic fermion algebra A(n). Note 
that Sodd(n, k) has no conformal vector for k > 2, but for all k it is simple and has full 
automorphism group Sp2n.
Odd algebras of orthogonal type. For each n ≥ 1 and odd k ≥ 1, we define Oodd(n, k) to 
be the vertex superalgebra with odd generators ai for i = 1, . . . , n of weight k

2 , satisfying

ai(z)aj(w) ∼ δi,j(z − w)−k. (2.3)

For k = 1, Oodd(n, k) is just the free fermion algebra F(n). As above, Oodd(n, k) has no 
conformal vector for k > 1, but it is simple and has full automorphism group On.

2.2. W-algebras

Let g be a simple, finite-dimensional Lie (super)algebra equipped with a nondegen-
erate, invariant (super)symmetric bilinear form ( | ), and let f be a nilpotent element 
in the even part of g. Associated to g and f and any complex number k, is the W-
(super)algebra Wk(g, f). The definition is due to Kac, Roan, and Wakimoto [68], and it 
generalizes the definition for f a principal nilpotent and g a Lie algebra given by Feigin 
and Frenkel [47].

First, let {qα}α∈S be a basis of g which is homogeneous with respect to parity. We 
define the corresponding structure constants and parity by

[qα, qβ ] =
∑

fαβ
γqγ , |α| =

{
0 qα even,

1 qα odd.
γ∈S
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The affine vertex algebra of g associated to the bilinear form ( | ) at level k is strongly 
generated by {Xα}α∈S with OPEs

Xα(z)Xβ(w) ∼ k(qα|qβ)(z − w)−2 +
∑
γ∈S

fαβ
γXγ(w)(z − w)−1.

We define Xα to be the field corresponding to qα where {qα}α∈S is the dual basis of g
with respect to ( | ).

Let f be a nilpotent element in the even part of g, which we complete to an sl2-triple 
{f, x, e} ⊆ g satisfying [x, e] = e, [x, f ] = −f, [e, f ] = 2x. Then g decomposes as

g =
⊕

k∈ 1
2Z

gk, gk = {a ∈ g|[x, a] = ka}.

Write S =
⋃

k Sk and S+ =
⋃

k>0 Sk, where Sk corresponds to a basis of gk.
As in [71], one defines a complex C(g, f, k) = V k(g) ⊗F (g+) ⊗F (g 1

2
), where F (g+) is a 

free field superalgebra associated to the vector superspace g+ =
⊕

k∈ 1
2Z>0

gk, and F (g 1
2
)

is the neutral vertex superalgebra associated to g 1
2

with bilinear form 〈a, b〉 = (f |[a, b]). 
F (g+) is strongly generated by fields {ϕα, ϕα}α∈S+ , where ϕα and ϕα have opposite 
parity to qα. The operator products are

ϕα(z)ϕβ(w) ∼ δα,β(z − w)−1, ϕα(z)ϕβ(w) ∼ 0 ∼ ϕα(z)ϕβ(w).

F (g 1
2
) is strongly generated by fields {Φα}α∈S 1

2
and Φα and qα have the same parity. 

Their operator products are

Φα(z)Φβ(w) ∼ 〈qα, qβ〉(z − w)−1 ∼ (f |[qα, qβ ])(z − w)−1.

There is a Z-grading on C(g, f, k) by charge, and a weight one odd field d(z) of charge 
minus one,

d(z) =
∑

α∈S+

(−1)|α| : Xαϕα : −1
2

∑
α,β,γ∈S+

(−1)|α||γ|fαβ
γ : ϕγϕαϕβ : +

∑
α∈S+

(f |qα)ϕα +
∑

α∈S 1
2

: ϕαΦα :,
(2.4)

whose zero-mode d0 is a square-zero differential on C(g, f, k). The W-algebra Wk(g, f)
is defined to be the homology H(C(g, f, k), d0). It has Virasoro element L = Lsug + ∂x +
Lch + Lne, where

Lsug = 1
2(k + h∨)

∑
(−1)|α| : XαXα :,
α∈S
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Lch =
∑

α∈S+

(−mα : ϕα∂ϕα : +(1 − mα) : (∂ϕα)ϕα :) ,

Lne = 1
2

∑
α∈S 1

2

: (∂Φα)Φα : . (2.5)

Here mα = j if α ∈ Sj . The central charge of L is computed to be

c(g, f, k) = k sdim g

k + h∨ − 12k(x|x) −
∑

α∈S+

(−1)|α|(12m2
α − 12mα + 2) − 1

2 sdim g 1
2
. (2.6)

Denote by gf the centralizer of f in g, and let a = gf ∩ g0, which is a Lie subsuper-
algebra of g. By [71, Thm. 2.1], Wk(g, f) contains an affine vertex superalgebra of type 
a. In particular, Wk(g, f) contains elements Iα for α ∈ g0,

Iα := Xα +
∑

β,γ∈S+

(−1)|γ|fαβ
γ : ϕγϕβ : +(−1)|α|

2
∑

β∈S 1
2

fβα
γΦβΦγ (2.7)

and satisfying

[Iα
λIβ ] = fαβ

γIγ + λ

(
k(qα|qβ) + 1

2

(
κg(qα, qβ) − κg0(qα, qβ) − κ 1

2
(qα, qβ)

))
, (2.8)

with κ 1
2

the supertrace of g0 on g 1
2
. The key structural theorem is the following.

Theorem 2.1. [71, Thm 4.1] Let g be a simple finite-dimensional Lie superalgebra with an 
invariant bilinear form ( | ), and let x, f be a pair of even elements of g such that ad x

is diagonalizable with eigenvalues in 1
2Z and [x, f ] = −f . Suppose that all eigenvalues of 

ad x on gf are non-positive, so that gf =
⊕

j≤0 g
f
j . Then

(1) For each qα ∈ g
f
−j, (j ≥ 0) there exists a d0-closed field Kα of conformal weight 

1 + j, with respect to L.
(2) The homology classes of the fields Kα, where {qα} is a basis of gf , strongly and 

freely generate the vertex algebra Wk(g, f).
(3) H0(C(g, f, k), d0) = Wk(g, f) and Hj(C(g, f, k), d0) = 0 if j �= 0.

One can also consider the reduction of a module, i.e., for a V k(g)-module M , the 
homology of the complex H(M ⊗ F (g+) ⊗ F (g 1

2
), d0) is a Wk(g, f)-module that we 

denote by Hk,f (M), that is

Hk,f (M) := H(M ⊗ F (g+) ⊗ F (g 1 ), d0). (2.9)

2
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2.3. Translation of W-algebras

We summarize a very useful result of Tomoyuki Arakawa, Boris Feigin and one of 
us [11]. For this we consider two affine vertex algebras of type g, the first one, V , of 
level k and the second one, L, of level �. Denote the generators of the first one by Xα

and the generators of the second one by Y α. As complexes we take the previous one 
C(g, f, k) = V ⊗ F (g+) ⊗ F (g 1

2
) and also C(g, f, k, �) = V ⊗ L ⊗ F (g+) ⊗ F (g 1

2
). In 

addition to the differential d0 of last subsection, we also define the differential d′
0 as the 

zero-mode of the field

d′(z) = d(z) +
∑

α∈S+

(−1)|α| : Y αϕα : .

Then the homology with respect to d0 is just the quantum Hamiltonian reduction on 
the V subalgebra of V ⊗ L, while the homology with differential d′

0 is the reduction with 
respect to the diagonal action at level k + �. We now restrict to � being a positive integer 
and consider L = L�(g) the simple affine vertex algebra of g at level �. The main result 
of [11] is

Theorem 2.2. [11] As vertex algebras

H0(C(g, f, k), d0) ⊗ L ∼= H0(C(g, f, k, �), d′
0).

The conformal vector of the right-hand side is not the sum of the standard conformal 
vectors of the left-hand side. We will use this theorem for the case L = Lm(sp2n) for 
m ∈ Z>0, f a minimal nilpotent, and k = −1/2. In this case, H0(C(g, f, k), d0) = C is 
trivial, and we can use the theorem to get a nice decomposition of Lm(sp2n), see (7.8). 
This then allows us to prove rationality of Com(Lm(sp2n−2), Lm(sp2n)).

Remark 2.1. Let a = gf ∩ g0. Then the affine subalgebras of Wk(g, f) and Wk+�(g, f)
are V s(a) and V t(a) for some levels s, t depending on k, k + �. Moreover, L has an action 
of Lt−s(a). Recall that Iα is nontrivial in H0(C(g, f, k), d0) and Iα + Y α is nontrivial 
in H0(C(g, f, k, �), d′

0). The homology classes [Iα + Y α]′, [Iα] of these fields generate 
homomorphic images Ns(a) of V s(a) and N t(a) of V t(a) inside H0(C(g, f, k, d0) ⊗L and 
H0(C(g, f, k, �), d′

0). Consider the cases:

• If V = V k(g), then both homologies are subalgebras of C(g, f, k, �) (see the 
discussion before [11, Lem. 4.1]), so in this instance the subalgebra V t(a) of 
Wk+�(g, f) ⊆ H0(C(g, f, k, �), d′

0) is the diagonal subalgebra of V s(a) ⊗ Lt−s(a) ⊆
H0(C(g, f, k), d0) ⊗ L generated by Iα + Y α.

• The embedding V t(a) ⊆ V s(a) ⊗ Lt−s(a) ⊆ Wk(g, f) ⊗ L induces the embedding 
N t(a) ⊆ Ns(a) ⊗ Lt−s(a) ⊆ H0(C(g, f, k), d0) ⊗ L, mapping [Iα + Y α]′ to [Iα] + Y α.
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2.4. Singular vectors

In this subsection, we compute some conformal weights of singular vectors in principal 
W-algebras at nondegenerate admissible levels. We use

Lemma 2.1. [37, Lem. 3.3] Let g be a simple Lie algebra, ρ̄, ρ̄∨ its Weyl vector and Weyl 
covector, and set ᾱ = −θ if (v, r∨) = 1 and ᾱ = −θs if (v, r∨) = r∨. Here r∨ is the lacity 
of g and θ, θs are the highest root and highest short root. Set λ̄ = nu

v ᾱ∨ − (ρ̄, ᾱ∨)ᾱ
Denote by Sing(V ) the weight of the singular vector of V of lowest conformal weight. 

Then for k = −h∨ + u
v of (co)principal admissible weight, singular vectors of affine and 

principal W-algebra have weight

(1) Sing(V k(g)) = v
2u λ̄(λ̄ + 2ρ̄),

(2) Sing(Wk(g)) = v
2u λ̄(λ̄ + 2ρ̄) − λ̄ρ̄∨ for k a nondegenerate admissible level.

Corollary 2.1. Denote by Sing(V ) the weight of the singular vector of V of lowest con-
formal weight. Then for k = −h∨ + u

v of (co)principal admissible weight, we have

(1) Sing(V k(sp2n)) = v(u − n) for v odd, and Sing(V k(sp2n)) = v
2 (u − 2n + 1) for v

even,
(2) Sing(V k(so2n+1)) = v(u − 2n + 2) for v odd, and Sing(V k(so2n+1)) = v

2 (u − 2n + 1)
for v even,

(3) Sing(W k(sp2n)) = (v − 2n + 1)(u − n) for v odd, and Sing(W k(sp2n)) = (v
2 − 2n +

2)(u − 2n + 1) for v even and for k a nondegenerate admissible level,
(4) Sing(W k(so2n+1)) = (v − 2n + 1)(u − 2n + 2) for v odd, and Sing(W k(so2n+1)) =

( v
2 − n)(u − 2n + 1) for v even and for k a nondegenerate admissible level.

Proof. Consider the lattice Zn with orthonormal basis ε1, . . . , εn. We embed root and 
coroots in rescalings of this lattice in the standard way, e.g. the simple positive roots 
of so2n+1 are ε1 − ε2, . . . , εn−1 − εn, εn, and for sp2n they are ε1−ε2√

2 , . . . , εn−1−εn√
2 , 

√
2εn. 

Especially,

(1) g = so2n+1 and v odd. Then θ = θ∨ = ε1 + ε2, ρ∨ = nε1 + (n − 1)ε2 + · · · + εn, 
ρ = 1

2 ((2n − 1)ε1 + (2n − 3)ε2 + · · · + εn) and so ρθ∨ = 2n − 2 and ρ∨θ = 2n − 1. It 
follows that λ̄ = (u − 2n + 2)θ.

(2) g = so2n+1 and v even. Then θs = ε1 and θ∨
s = 2ε1. Thus ρθ∨

s = 2n −1 and θsρ∨ = n. 
It follows that λ̄ = (u − 2n + 1)θs.

(3) g = sp2n and v odd. Then θ =
√

2ε1 and ρ∨ = 1√
2((2n − 1)ε1 + (2n − 3)ε2 + · · · + εn), 

ρ = 1√
2(nε1 +(n −1)ε2 + · · ·+ εn). Thus ρθ∨ = n and θρ∨ = 2n −1 and λ̄ = (u −n)θ.

(4) g = sp2n and v even. Then θs = 1√
2(ε1 +ε2) and θ∨

s =
√

2(ε1 +ε2). Thus ρθ∨
s = 2n −1

and ρ∨θs = 2n − 2 and λ̄ = (u − 2n + 1)θs.
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Inserting in the formula of Lemma 2.1 gives the claim. �
Remark 2.2. Let 1 ≤ m < n. Then there is an embedding ι : sp2n−2m →
sp2n of sp2n−2m in sp2n sending the simple roots of sp2n−2m to the simple roots 
εm+1−εm+2√

2 , . . . , εn−1−εn√
2 , 

√
2εn of sp2n−2m. Denote by Xx, Y y the fields of V k(sp2n−2m)

and V k(sp2n) corresponding to the elements x ∈ sp2n−2m, y ∈ sp2n. Then ι induces 
an embedding of V k(sp2n−2m) in V k(sp2n) sending Xx to Y ι(x) for x ∈ sp2n−2m. This 
embedding can be characterized via nilpotent elements as follows: Let fi = e−

√
2εi

and 

gi be the subspace of gfi

i−1 of 
√

2εi weight zero for i = 1, . . . , m and g0 := sp2n so that 
gi

∼= sp2n−2i and especially gm = ι(sp2n−2m).

2.5. Universal two-parameter even spin W∞-algebra

We briefly recall the universal two-parameter vertex algebra Wev(c, λ) of type 
W(2, 4, . . . ), which was conjectured to exist in the physics literature [17], and was con-
structed in [75]. It is defined over the polynomial ring C[c, λ] and is generated by a 
Virasoro field L of central charge c, and a weight 4 primary field W 4. In addition, it is 
strongly and freely generated by the fields {L, W 2i| i ≥ 2} where W 2i = W 4

(1)W
2i−2 for 

i ≥ 3.
Wev(c, λ) is simple as a vertex algebra over C[c, λ], but there is a discrete family of 

prime ideals I = (p(c, λ)) ⊆ C[c, λ] for which the quotient

Wev,I(c, λ) = Wev(c, λ)/I · Wev(c, λ),

is not simple as a vertex algebra over the ring C[c, λ]/I. We denote by Wev
I (c, λ) the 

simple quotient of Wev,I(c, λ) by its maximal proper graded ideal I. After a suitable 
localization, all one-parameter vertex algebras of type W(2, 4, . . . , 2N) for some N sat-
isfying some mild hypotheses, can be obtained as quotients of Wev(c, λ) in this way; 
see [34, Thm. 2.1]. The distinct generators of such ideals arise as irreducible factors of 
Shapovalov determinants, and are in bijection with such one-parameter vertex algebras.

We also consider Wev,I(c, λ) for maximal ideals

I = (c − c0, λ − λ0), c0, λ0 ∈ C.

Then Wev,I(c, λ) and its quotients are vertex algebras over C. Given maximal ideals 
I0 = (c − c0, λ − λ0) and I1 = (c − c1, λ − λ1), let W0 and W1 be the simple quotients of 
Wev,I0(c, λ) and Wev,I1(c, λ). A criterion for W0 and W1 to be isomorphic is given by [75, 
Thm. 8.1]; aside from a few degenerate cases, we must have c0 = c1 and λ0 = λ1. This 
implies that aside from the degenerate cases, all other coincidences among the simple 
quotients of one-parameter vertex algebras Wev,I(c, λ) and Wev,J(c, λ), correspond to 
intersection points of their truncation curves V (I) and V (J).
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We record a slight improvement to the results of [75] for later use. By [75, Thm. 8.1, 
case (4)], for c �= 1, 25, the Virasoro algebra Virc is realized as a quotient of Wev(c, λ)
by setting

λ = ± 1
7
√

(c − 25)(c − 1)
, (2.10)

and taking the simple quotient. This occurs because the weight 4 field becomes singular, 
and hence all higher descendants W 2k for k ≥ 2 also vanish in the simple quotient. It is 
straightforward to check that the truncation curve for Wk(sp2n) given by [75, Eq. A.1], 
in the case n = 1 coincides with (2.10). It follows that [75, Thm. 9.3], which is stated in 
the range 2 ≤ n < m, actually holds for 1 ≤ n < m. Similarly, [75, Thm. 9.4] which is 
stated for n ≥ 2, also holds for n ≥ 1.

Next, the truncation curve for Wk(so2n)Z2 given in [75, Thm. 6.3] for n ≥ 3, in fact 
holds for n = 2 as well. In this case,

Wk(so4)Z2 ∼=
(
Virc ⊗ Virc

)Z2
, c = − (1 + 2k)(4 + 3k)

2 + k
,

where Z2 acts by permutation. This truncation curve was computed in [84] and is easily 
seen to coincide with the specialization of the curve for Wk(so2n)Z2 to the case n = 2. 
Therefore [75, Thm. 9.1], which was stated in the range 3 ≤ n < m, actually holds for 
2 ≤ n < m. Similarly, [75, Thm. 9.4] holds for all n ≥ 1 and m ≥ 2.

2.6. Extensions of rational vertex operator algebras

An extension of a lisse (C2-cofinite) vertex algebra is also lisse [2, Prop. 5.2]. We also 
need a general result that says that extensions of a rational vertex algebra are rational 
as well. One such statement is [57, Thm. 3.5]. One assumption, however, is a positivity 
assumption on conformal weights of modules, and this assumption is not satisfied in most 
of our cases of interest. Another such statement is [33, Cor. 1.1], which however only 
applies to Z-graded vertex algebra extensions. We need to consider 1

2Z-graded vertex 
superalgebra extensions, and so we now ensure that the rationality result generalizes to 
this setting.

We first recall the main basic theorems of [76,57,30,32,33] using [38, Section 2]. Let 
V be a vertex operator algebra and C = (C, �, 1, A•,•,•, l•, r•, R•,•) be a category of 
V -modules with a natural vertex and braided tensor category structure in the sense 
of [58–66]. The tensor bifunctor is denoted by �, the tensor identity is just the vertex 
operator algebra V itself and will be denoted by 1. The associativity constraint, the left 
and right unit constraint and the braiding are denoted by A, l, r, R.

Definition 2.1. [76] An algebra is a triple (A, μA, ιA) with A an object in C and multipli-
cation μA : A � A → A and an embedding of tensor unit ιA : 1C → A that satisfy
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(1) Multiplication is associative: μA◦(idA �μA) = μA◦(μA�idA) ◦AA,A,A : A �(A �A) →
A

(2) Multiplication is unital: μA ◦ (ιA � idA) = lA : 1C � A → A and μA ◦ (idA �ιA) =
rA : A � 1C → A

(A, μA, ιA) is a commutative algebra if additionally

(3) Multiplication is commutative: μA ◦ RA,A = μA : A � A → A.

We will use the short-hand notation A for an algebra (A, μA, ιA).

Definition 2.2. [76] Let A be an algebra, and define CA to be the category of pairs (X, μX), 
where X is an object in C and μX : A � X → X is a morphism in C subject to

(1) Unit property: lX = μX ◦ (ιA � idX) : 1C � X → X

(2) Associativity: μX ◦ (idA �μX) = μX ◦ (μA � idX) ◦ AA,A,X : A � (A � X) → X.

A morphism f ∈ HomCA
((X1, μX1), (X2, μX2)) is a morphism f ∈ HomC(X1, X2) such 

that μX2 ◦ (idA �f) = f ◦ μX1 .
When A is commutative, define Cloc

A to be the full subcategory of CA containing local 
objects: those (X, μX) such that μX ◦ RX,A ◦ RA,X = μX .

There is an induction functor FA : C → CA that maps an object X ∈ C to (A �X, μ �
IdX) and a morphism ϕ : X → Y to IdA � ϕ : F(X) → F(Y ), see [32] for more details.

Super commutative algebras are defined similarly in [30]. The structural categorical 
results are summarized in the following theorem.

Theorem 2.3. Let C be a braided tensor category and let A be a commutative algebra in 
C. Then the following results hold:

(1) The category CA is a tensor category ([76, Thm. 1.5], [32, Thm. 2.53]).
(2) The subcategory Cloc

A is a braided tensor category ([76, Thm. 1.10], [32, Thm. 2.55]]).
(3) The induction functor FA : C → CA is monoidal ([76, Thm. 1.6], [32, Thm. 2.59]).
(4) The induction functor satisfies Frobenius reciprocity, that is, it is left adjoint to the 

forgetful functor GA from CA to C:

HomCA
(FA(W ), X) = HomC(W, GA(X)) (2.11)

for objects W in C and X in CA (see for example [76, Thm. 1.6(2)], [32, Lem. 2.61]).
(5) Let W be an object in C. Then FA(W ) is in Cloc

A if and only if the monodromy is 
trivial, that is MA,W := RW,A ◦ RA,W = idA�W ([32, Prop. 2.65]).

(6) Let C0 be the full subcategory of objects in C that induce to Cloc
A . Then the restriction 

of the induction functor FA : C0 → Cloc
A is a braided tensor functor ([32, Thm. 2.67]).
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The next theorem tells us that we can use the categorical results to study extensions 
of vertex algebras.

Theorem 2.4. Let V be a vertex operator algebra, and let C be a category of V -modules 
with a vertex tensor category structure in the sense of [58–66]. Then the following results 
hold:

(1) A vertex operator algebra extension V ⊆ A in C is equivalent to a commutative 
associative algebra in the braided tensor category C with trivial twist and injective 
unit ([57, Thm. 3.2]).

(2) The category of modules in C for the extended vertex operator algebra A is isomorphic 
to the category of local C-algebra modules Cloc

A ([57, Thm. 3.4]).
(3) The results in (1) and (2) hold for a vertex operator superalgebra extension: The 

vertex operator superalgebra extension V ⊆ A in C such that V is in the even sub-
algebra A0 is equivalent to a commutative associative superalgebra in C whose twist 
θ satisfies θ2 = idA. The category of generalized modules for the vertex operator su-
peralgebra A is isomorphic to the category of local C-superalgebra modules Cloc

A ([30, 
Thm. 3.13, 3.14]).

(4) The isomorphism given in [57, Thm. 3.4] and [30, Thm. 3.14] between the category 
of modules in C for the extended vertex operator (super)algebra A and the category 
of local C-algebra modules Cloc

A is an isomorphism of vertex tensor (super)categories 
([32, Thm. 3.65]).

A tensor category is called a fusion category if it is semisimple with finitely many 
inequivalent simple objects and every object is rigid. In particular in that case there is a 
trace and thus a notion of dimension of objects. The following theorem gives conditions 
under which a vertex algebra extension has a semisimple representation category.

Theorem 2.5. [33, Theorem 5.12] Suppose U and W are braided fusion categories of 
modules for simple self-contragredient vertex operator algebras U and W , respectively, 
and

A =
⊕
i∈I

Ui ⊗ Wi

is a simple Z-graded vertex operator algebra extension of U ⊗ W in C = U � W where 
the Ui are distinct simple modules in U including U0 = U and the Wi are modules in W
such that

dim HomW(W, Wi) = δi,0.

Then dimC A > 0 and the category of (grading-restricted, generalized) A-modules in C
is a braided fusion category.
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We need to generalize this theorem to the case where A is possibly a vertex opera-
tor superalgebra and possibly 1

2Z-graded. Let V be a vertex operator algebra and C a 
category of V -modules. We assume this category to be braided fusion. Let A ⊇ V be an 
object in C that itself carries the structure of a vertex algebra or vertex superalgebra. 
We assume V to be Z-graded, but A does not need to be. However, we assume A to 
be Z2-graded, A = A0̄ ⊕ A1̄, such that A0̄ is a Z-graded vertex algebra containing V , 
V ⊆ A0̄. In other words, A0̄ is a Z2-orbifold of A and so A1̄ is a self-dual simple current 
[81].3 Let Cloc

A and Cloc
A0̄

be the categories of local A and A0̄-modules that lie in C. Note 
that CA = (CA0̄)A by [39, Section 3.6] and since a local A-module is necessarily local as 
a module for the subalgebra A0̄, also Cloc

A = (Cloc
A0̄

)loc
A .

Let M be a simple object in Cloc
A0̄

and let F : Cloc
A0̄

→ CA be the induction functor and 
G the restriction functor. We have G(F(M)) ∼= M ⊕ N with N = A1̄ �M . The modules 
M and N are graded by conformal weight, i.e.

M =
⊕

n∈Z+hM

Mn, N =
⊕

n∈Z+hN

Nn,

for some complex numbers hM , hN . The monodromy RA1̄,M ◦RM,A1̄ is either the identity 
on N or minus the identity on N , see [30] for details. In the latter case, we call any 
submodule of F(M) a twisted module and the subcategory of CA whose objects are 
direct sums of twisted modules is denoted by Ctw

A . The module F(M) is either simple or 
a direct sum of two simple modules [32, Prop. 4.18 and Cor. 4.22]. In the latter case one 
has M ∼= N and by Frobenius reciprocity HomCA0̄

(M, M ⊕M) = HomCA
(F(M), F(M)), 

i.e. these two simple summands of F(M) need to be inequivalent. We are interested in 
three cases and their properties are given in [32, Section 4.2].

(1) A is a 1
2Z-graded vertex algebra, especially conformal weights of A1̄ are in Z + 1

2 . 
In this case F(M) is always simple. Moreover it is local if and only if hM = hN + 1

2
mod 1. Otherwise it is twisted. See Section 4.2.2 and especially Lemma 4.29 of [32].

(2) A is a 1
2Z-graded vertex superalgebra, especially conformal weights of A1̄ are in 

Z + 1
2 . F(M) is local if and only if hM = hN + 1

2 mod 1 and otherwise it is twisted. 
F(M) is simple if it is local. If F(M) is twisted then either it is simple or M ∼= N

and F(M) is a direct sum of two simple objects. This type of extension is Section 
4.2.3 of [32].

(3) A is a Z-graded vertex superalgebra. In this case F(M) is always simple. Moreover 
it is local if and only if hM = hN mod 1. Otherwise it is twisted. See Section 4.2.1 
and especially Lemma 4.26 of [32].

3 A simpler proof of this statement is given in Appendix A of [31], observing that the argument there is 
the same for vertex superalgebras.
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If we assume that A is a simple vertex (super)algebra, then the action of A on a non-zero 
A-module cannot have a kernel and so especially M and N cannot be zero. Assume that 
A is simple.

Assume that V = U ⊗ W is the tensor product of two vertex operator algebras and 
assume that

A0̄
∼=

⊕
i∈I

Ui ⊗ Wi

for some index set I. Here the Ui are distinct simple U -modules and we set U = U0 and 
W = W0. Also, assume that the Ui and Wi are objects of vertex tensor categories CU of 
U -modules and CW of W -modules, that are braided fusion categories Then the Deligne 
product C = CU � CW is a vertex tensor category as well [33, Thm. 5.5]. The Wi are 
not necessarily distinct, but one requires that Hom(W, Wi) = 0 for i �= 0. Under these 
assumptions Cloc

A0̄
is a braided fusion category as well by Theorem 2.5. We now prove that 

Cloc
A and Ctw

A are also semisimple.
The following is similar to the proof of [25, Thm. 5.13]. Let D be either Cloc

A or Ctw
A . 

Let X, Y be two simple modules in D and consider an exact sequence E : 0 → X →
Z → Y → 0. We show that it splits. Let M be a direct summand of G(Y ). There are 
two cases

(1) Y ∼= F(M) and G(Y ) = M ⊕ N with N = A1̄ � M and M � N or
(2) F(M) ∼= Y ⊕ W with W � Y and G(F(M)) ∼= M ⊕ M .

We use Frobenius reciprocity. In the first case

HomCA
(Y, Z) = HomCA

(F(M), Z) = HomCloc
A0̄

(M, G(Z)) = HomCloc
A0̄

(M, G(X) ⊕ G(Y ))

= HomCloc
A0̄

(M, G(X ⊕ Y )) = HomCA
(F(M), X ⊕ Y ) = HomCA

(Y, X ⊕ Y )

and hence E splits. In the second case

HomCA
(Y ⊕ W, Z) =HomCA

(F(M), Z) = HomCloc
A0̄

(M, G(Z))

=HomCloc
A0̄

(M, G(X) ⊕ G(Y ))

=HomCloc
A0̄

(M, G(X ⊕ Y )) = HomCA
(F(M), X ⊕ Y )

=HomCA
(Y ⊕ W, X ⊕ Y )

and hence E splits as well. Summarizing:

Proposition 2.1. ( 1
2Z-graded vertex superalgebra generalization of [33, Thm. 5.12])

Let A = A0̄ ⊕ A1̄ be a simple vertex (super)algebra of one of the three types listed above 
extending the Z-graded self-contragredient simple vertex algebra U ⊗ W . Assume that
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A0̄
∼=

⊕
i∈I

Ui ⊗ Wi

for some index set I. Here the Ui are distinct simple U -modules and we set U = U0
and W = W0. Also assume that the Ui and Wi are objects of vertex tensor categories 
that are braided fusion categories CU , CW of U respectively W -modules. Assume that 
Hom(W, Wi) = 0 for i �= 0. Let C = CU � CW . Then both Cloc

A and Ctw
A are semisimple.

Proposition 2.2. Let V be a simple vertex superalgebra of CFT-type and let π be a simple 
rank n Heisenberg subalgebra of V with

V =
⊕
λ∈L

Vλ

the decomposition of V into generalized weight spaces for π. Here L is the set of λ ∈ Cn

with Vλ �= 0. If C = Com(π, V ) acts semisimply on V , then L ⊆ C is a subgroup of 
Cn and there are simple C-modules Cλ, such that Vλ = πλ ⊗ Cλ as π ⊗ C-modules. In 
particular, π acts semisimply on V .

Proof. V0 is a vertex subalgebra of V . Since V is simple, V is spanned by {unv | u ∈
V, n ∈ Z} for any non-zero v ∈ V [43, Cor. 4.2]. Thus λ, μ ∈ L implies μ − λ ∈ L as well. 
For u, v in V , there exists m ∈ Z such that umv �= 0 [40, Prop. 11.9] and so λ, μ ∈ L

implies μ + λ ∈ L as well. It follows that each Vλ is a simple V0-module and that L is a 
subgroup of Cn.

If V0 is not completely reducible as a π-module, then there exists a length two self-
extension of π. It is generated by v ∈ V0, s.t. there is a Heisenberg field X(z) whose 
zero-mode X0 acts nilpotently, i.e. X0v = w �= 0 and Xnv = 0 for n > 0 and such 
that w is a vacuum vector for π, i.e. w ∈ C. C is simple, since it acts semisimply 
on itself and since vertex algebras can’t be decomposable as modules for themselves. 
Hence there exists y ∈ C and m ∈ Z such that ymw = |0〉. But this means that 
X0ymv = ymX0v = ymw = |0〉, i.e. ymv is a vector at the top level of V and not in 
the kernel of X0, contradicting that V is of CFT-type. It follows that V0 is completely 
reducible as a π-module and hence the only possibility is that V0 = π ⊗ C. Each Vλ is 
a simple V0-module and so it must be of the form Vλ = πλ ⊗ Cλ for simple C-modules 
Cλ. �
Proposition 2.3. Let V be a simple lisse vertex superalgebra of CFT-type and U be the 
affine subalgebra generated by the weight one subspace of V . Let W = Com(U, V ) and 
assume that W is self-contragredient. If W is rational, then so is V .

Proof. By [42] applied to the even subalgebra of V , U is necessarily the tensor product 
of a Heisenberg vertex algebra of some rank and an integrable affine vertex algebra L. 
The bilinear form on the weight one subspace is non-degenerate since V is simple and so 
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especially it is non-degenerate on the Heisenberg subalgebra, so that the Proposition 2.2
applies. The commutant Ũ = Com(W, V ) of W in V is an extension of L ⊗ VL for some 
lattice vertex algebra VL (see [25, Lem. 5.8] or [42]). L needs to be positive definite for V
being of CFT-type. Since the (categorical) dimension of any simple lattice vertex algebra 
module is one and the one of any integrable representation is positive, it follows that Ũ
is rational by [76, Thm. 3.3]. Hence Proposition 2.1 (respectively already [33, Thm. 5.12]
if V is an integer graded vertex algebra) applies to V as an extension of Ũ ⊗ W , and so 
V is rational as well. �

By [77, Cor. 3.2], a simple integer graded vertex operator algebra is self-dual if its 
conformal weight one space is in the kernel of the Virasoro mode L1. This holds especially 
if the conformal weight one space vanishes.

Corollary 2.2. (Corollary of [77, Cor. 3.2]) Let W be a simple integer graded vertex op-
erator algebra of CFT-type with no fields of conformal weight one. Then W is its own 
contragredient dual.

Especially Proposition 2.3 applies if W is a simple rational principal W-algebra as-
sociated to a simple Lie algebra or an order two orbifold of a simple rational principal 
W-algebra.

We need another corollary of Proposition 2.1. For this let V be a simple vertex (su-
per)algebra and W1, W2 be simple vertex (super)subalgebras. Let L, W3 be simple vertex 
(super)subalgebras of W2, such that Com(W2, V ) = W1, Com(L, W2) = W3 and such 
that W2, W3 are actually integer graded self-contragredient vertex operator algebras. As-
sume that there are braided fusion categories CL, C1, C3 of modules for the vertex algebras 
L, W1, W3, such that V is an object in C := CL � C1 � C3. Then W2 corresponds to a 
commutative (super)algebra object in D := CL �C3, that we also denote by W2. We thus 
have an induction functor F : D → DW2 with right adjoint denoted by G. For an object 
M in DW2 one has by Frobenius reciprocity

HomDW2
(W2, M) ∼= HomD(W3 ⊗ L, G(M)).

Hence a simple object M in DW2 with the property that HomD(W3⊗L, G(M)) is non-zero 
necessarily is isomorphic to W2. This implies

Com(W2, V ) = Com(W3 ⊗ L, V )

and thus

W1 = Com(W2, V ) = Com(W3 ⊗ L, V ) = Com (W3, Com(L, V )) .

The setting of Proposition 2.1 thus holds for W1 = U, W3 = W, Com(L, V ) = A, i.e.
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Corollary 2.3. With the above setting, the categories of local and twisted Com(L, V )-
modules that lie in C1 � C3 are semisimple. Especially if W1 and W3 are rational and 
lisse, then so is Com(L, V ).

3. Hook-type W-algebras in types B, C, and D

In this section, we define the eight families of W-(super)algebras that we need in a 
unified framework. First, let g be a simple Lie (super)algebra of type B, C, or D; in 
particular, g is either so2n+1, sp2n, so2n, or ospn|2r. We further assume that g admits a 
decomposition

g = a ⊕ b ⊕ ρa ⊗ ρb, (3.1)

with the following properties.

(1) a and b are Lie sub(super)algebras of g. Here b is either so2m+1 or sp2m, and a can 
be so2n+1, sp2n, so2n, or osp1|2n.

(2) ρa and ρb transform as the standard representations of a and b, respectively.
(3) ρa and ρb have the same parity, which can be even or odd.

Note that if a = osp1|2n, ρa even means that ρa
∼= C2n|1 as a vector superspace, whereas 

ρa odd means that ρa
∼= C1|2n. If g = ospm|2n, we use the following convention for its 

dual Coxeter number h∨.

h∨ =
{

m − 2n − 2 type B
2n+2−m

2 type C
, sdim(ospm|2n) = (m − 2n)(m − 2n − 1)

2 . (3.2)

In this notation, type B (respectively C) means that the subalgebra b ⊆ g is of type 
B (respectively C), and the bilinear form on ospm|2n is normalized so that it coincides 
with the usual bilinear form on b. The cases we need are the following.

• Case 1B: g = so2n+2m+2, b = so2m+1, a = so2n+1, ρa ⊗ ρb even.
• Case 1C: g = osp2m+1|2n, b = so2m+1, a = sp2n, ρa ⊗ ρb odd.
• Case 1D: g = so2n+2m+1, b = so2m+1, a = so2n, ρa ⊗ ρb even.
• Case 1O: g = osp2m+2|2n, b = so2m+1, a = osp1|2n, ρa ⊗ ρb odd.
• Case 2B: g = osp2n+1|2m, b = sp2m, a = so2n+1, ρa ⊗ ρb odd.
• Case 2C: g = sp2n+2m, b = sp2m, a = sp2n, ρa ⊗ ρb even.
• Case 2D: g = osp2n|2m, b = sp2m, a = so2n, ρa ⊗ ρb odd.
• Case 2O: g = osp1|2n+2m, b = sp2m, a = osp1|2n, ρa ⊗ ρb even.

Corresponding to (3.1), we have an embedding V k(b) ⊗ V �(a) ↪→ V k(g), where the 
level � is given as follows.
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(1) In cases 1B, 1D, 2C, and 2O, � = k,
(2) In cases 1C and 1O, � = −k

2 ,
(3) In cases 2B and 2D, � = −2k.

Let fb ∈ g be the nilpotent element which is principal in b and trivial in a. The 
corresponding W-algebras Wk(g, fb) will be called hook-type W-algebras since they are 
analogous to the hook-type W-algebras of type A introduced in [37]. Let da = dim ρa

and db = dim ρb. In particular, db = 2m + 1 if b = so2m+1, and db = 2m if b = sp2m.
It follows from the decomposition (3.1) that in all cases, Wk(g, fb) is of type

W
(

1dim a, 2, 4, . . . , 2m,

(
db + 1

2

)da
)

.

The affine subalgebra is V t(a) for some level t, which we describe below. The fields in 
weights 2, 4, . . . , 2m are even and are invariant under a. The da fields in weight db+1

2 can 
be even or odd, and they transform as the standard a-module. By [37, Cor. 3.5], we may 
assume without loss of generality that the fields in weights 2, 4, . . . , 2m lie in the affine 
coset Com(V t(a), Wk(g, fb)), and that the da fields in weight db+1

2 are primary for the 
action of V t(a).

Write g =
⊕

d ρd, where ρd denotes the d-dimensional representation of the sl2-triple 
{f, x, e}. Then each ρd gives rise to a field of conformal weight d+1

2 in Wk(g, fb), and 
the corresponding ghosts give rise to a central charge contribution

cd = − (d − 1)(d2 − 2d − 1)
2 . (3.3)

The central charge c of Wk(g, fb) is then computed to be

c = cg + cdilaton + cghost,

cg = k sdim g

k + h∨
g

,

cdilaton = −k ×
{

2m(m + 1)(2m + 1) b = so2m+1

2m(4m2 − 1) b = sp2m,

cprin = 6m2 − 8m4,

cghost = cprin + sdacdb
.

(3.4)

Here the formula for cdb
is obtained by specializing (3.3). Finally, the level t of the affine 

subalgebra V t(a) ⊆ Wk(g, fb) is given by

t = � ± (db − 1) ×
{

1 a = so2n, so2n+1,
1 a = sp , osp ,

(3.5)

2 2n 1|2n
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where we have + if ρa ⊗ ρb is even and − if it is odd. For a = osp1|2n, we must replace 
da by da − 2 = sda, where sda means superdimension. Recall that in this case, ρa is 
called even (respectively odd) if the 2n-dimensional standard module for sp2n is even 
(respectively odd). We will always replace k with the critically shifted level ψ = k + h∨, 
where h∨ denotes the dual Coxeter number of g. We now describe the examples we need 
in more detail.

3.1. Case 1B

For g = so2n+2m+2, we have ψ = k + 2n + 2m. We define

Wψ
1B(n, m) := Wk(so2n+2m+2, fso2m+1),

which has affine subalgebra V ψ−2n(so2n+1). We consider the following extreme cases.

(1) If m ≥ 1 and n = 0, fso2m+1 is also the principal nilpotent in so2n+2, so Wψ
1B(0, m) =

Wψ−2m(so2m+2).
(2) For m = 0 and n ≥ 1, fso1 ∈ so2n+2 is the zero nilpotent, so Wψ

1B(n, 0) =
V ψ−2n(so2n+2).

(3) If m = n = 0, Wψ
1B(0, 0) = V ψ(so2), which is just the rank one Heisenberg algebra 

H(1).

3.2. Case 1C

For g = osp2m+1|2n, we have ψ = k + 2m − 2n − 1. We define

Wψ
1C(n, m) := Wk(osp2m+1|2n, fso2m+1),

which has affine subalgebra V −ψ/2−n−1/2(sp2n). Here we are using the convention (3.2)
that osp2m+1|2n has dual Coxeter number 2m − 2n − 1.

(1) If m ≥ 1 and n = 0, g = so2m+1 and fso2m+1 is the principal nilpotent, so 
Wψ

1C(0, m) = Wψ−2m+1(so2m+1).
(2) If m = 0 and n ≥ 1, g = osp1|2n and fso1 = 0, so Wψ

1C(n, 0) = V ψ+2n+1(osp1|2n). 
Note that even for m = 0, we use the convention (3.2) that osp1|2n has dual Coxeter 
number −2n − 1. With this choice, we have the embedding V −ψ−n−1/2(sp2n) →
V ψ+2n+1(osp1|2n).

(3) If m = n = 0, Wψ
1C(0, 0) = C.
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3.3. Case 1D

For g = so2n+2m+1, we have ψ = k + 2n + 2m − 1. We define

Wψ
1D(n, m) := Wk(so2n+2m+1, fso2m+1),

which has affine subalgebra V ψ−2n+1(so2n).

(1) If m ≥ 1 and n = 0, g = so2m+1 and fso2m+1 is principal, so Wψ
1D(0, m) =

Wψ−2m+1(so2m+1).
(2) If m = 0 and n ≥ 1, g = so2n+1 and fso1 = 0, so Wψ

1D(n, 0) = V ψ−2n+1(so2n+1).
(3) If m ≥ 1 and n = 1, g = so2m+3 and fso2m+1 ∈ so2m+3 is the subregular nilpo-

tent, so Wψ
1D(1, m) = Wψ−2m−1(so2m+3, fsubreg). In this case, the affine subalgebra 

V ψ−1(so2) is just H(1).
(4) If m = n = 0, Wψ

1D(0, 0) = C.

3.4. Case 1O

For g = osp2m+2|2n, we have ψ = k + 2m − 2n. We define

Wψ
1O(n, m) = Wk(osp2m+2|2n, fso2m+1),

which has affine subalgebra V −ψ/2−n(osp1|2n). We are using the convention (3.2) that 
osp2m+2|2n has dual Coxeter number 2m − 2n, whereas the dual Coxeter number of 
osp1|2n is taken to be 2n+1

2 .

(1) If m ≥ 1 and n = 0, g = so2m+2 and fso2m+1 is the principal nilpotent, so 
Wψ

1O(0, m) = Wψ−2m(so2m+2).
(2) If m = 0 and n ≥ 1, we have g = osp2|2n and fso1 = 0, so Wψ

1O(n, 0) =
V ψ+2n(osp2|2n). As above, even for m = 0, we use the convention (3.2) that osp2|2n

has dual Coxeter number −2n. We then have an embedding

V −ψ/2−n(osp1|2n) → V ψ+2n(osp2|2n),

where the dual Coxeter number of osp1|2n is chosen to be 2n+1
2 .

(3) If m = n = 0, Wψ
1O(0, 0) = V ψ(osp2|0) = H(1).

3.5. Case 2B

For g = osp2n+1|2m, we have ψ = k + m − n + 1/2. For m ≥ 1 and n ≥ 0, we define

Wψ
2B(n, m) := Wk(osp2n+1|2m, fsp ),
2m
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which has affine subalgebra V −2ψ−2n+2(so2n+1). We are using the convention (3.2) that 
osp2n+1|2m has dual Coxeter number 2m−2n+1

2 .

(1) If m ≥ 1 and n = 0, g = osp1|2m and fsp2m
is the principal nilpotent, so Wψ

2B(0, m)
is the principal W-superalgebra Wψ−m−1/2(osp1|2m).

(2) If m = 1 and n ≥ 1, g = osp2n+1|2 and fsp2 is the minimal nilpotent, so

Wψ
2B(n, 1) = Wψ+n−3/2(osp2n+1|2, fmin).

(3) If m = 0 and n ≥ 1, we need a different definition. We set

Wψ
2B(n, 0) := V −2ψ−2n+1(so2n+1) ⊗ F(2n + 1).

Here F(2n + 1) is the rank 2n + 1 free fermion algebra, which has an action of 
L1(so2n+1). Therefore Wψ

2B(n, 0) has a diagonal action of V −2ψ−2n+2(so2n+1).
(4) If m = n = 0, we define Wψ

2B(0, 0) = F(1).

3.6. Case 2C

For g = sp2n+2m, we have ψ = k + n + m + 1. For m ≥ 1 and n ≥ 0, we define

Wψ
2C(n, m) := Wk(sp2n+2m, fsp2m

),

which has affine subalgebra V ψ−n−3/2(sp2n).

(1) If m ≥ 1 and n = 0, g = sp2m and fsp2m
is the principal nilpotent, so Wψ

2C(0, m) =
Wψ−m−1(sp2m).

(2) If m = 1 and n ≥ 1, g = sp2n+2 and fsp2m
is the minimal nilpotent. Then

Wψ
2C(n, 1) = Wψ−n−2(sp2n+2, fmin).

(3) If m = 0 and n ≥ 1, we define

Wψ
2C(n, 0) := V ψ−n−1(sp2n) ⊗ S(n).

Here S(n) is the rank n βγ system, which has an action of L−1/2(sp2n). Therefore 
Wψ

2C(n, 0) has a diagonal action of V ψ−n−3/2(sp2n).
(4) If m = n = 0, we define Wψ

2C(0, 0) = C.

3.7. Case 2D

For g = osp2n|2m, we have ψ = k + m − n + 1. For m ≥ 1 and n ≥ 0, we define

Wψ
2D(n, m) := Wk(osp2n|2m, fsp ),
2m



T. Creutzig, A.R. Linshaw / Advances in Mathematics 409 (2022) 108678 31
which has affine subalgebra V −2ψ−2n+3(so2n). We are using the convention (3.2) that 
osp2n|2m has dual Coxeter number m − n + 1.

(1) If m ≥ 1 and n = 0, g = sp2m and fsp2m
is the principal nilpotent. Then Wψ

2D(0, m) =
Wψ−m−1(sp2m).

(2) If m ≥ 1 and n = 1, g = osp2|2m and fsp2m
is the principal nilpotent, so Wψ

2D(1, m)
is the principal W-superalgebra Wψ−m(osp2|2m). Note that in this case, the affine 
subalgebra V −2ψ+1(so2) is just the Heisenberg algebra H(1).

(3) If m = 1 and n ≥ 1, g = osp2n|2, and fsp2 is the minimal nilpotent so Wψ
2D(n, 1) =

Wψ+n−2(osp2n|2, fmin).
(4) If m = 0 and n ≥ 1, we define

Wψ
2D(n, 0) := V −2ψ−2n+2(so2n) ⊗ F(2n).

Here F(2n) is the rank 2n free fermion algebra, which admits an action of L1(so2n). 
Then Wψ

2D(n, 0) admits a diagonal action of V −2ψ−2n+3(so2n).
(5) If m = n = 0, we define Wψ

2D(0, 0) = C.

3.8. Case 2O

For g = osp1|2n+2m, we have ψ = k + m + n + 1/2. For m ≥ 1 and n ≥ 0, we define

Wψ
2O(n, m) := Wk(osp1|2n+2m, fsp2m

),

which has affine subalgebra V ψ−n−1(osp1|2n). We are using the convention (3.2) that 
osp1|2n+2m has dual Coxeter number 2m+2n+1

2 , and the dual Coxeter number of osp1|2n

is taken to be 2n+1
2 .

(1) If m ≥ 1 and n = 0, g = osp1|2m and fsp2m
is principal. Then Wψ

2O(0, m) =
Wψ−m−1/2(osp1|2m).

(2) If m = 1 and n ≥ 1, g = osp1|2n+2, and fsp2 is the minimal nilpotent, so Wψ
2O(n, 1) =

Wψ−n−3/2(osp1|2n+2, fmin).
(3) If m = 0 and n ≥ 1, we define

Wψ
2O(n, 0) := V ψ−n−1/2(osp1|2n) ⊗ S(n) ⊗ F(1).

Recall that S(n) ⊗ F(1) admits an action of L−1/2(osp1|2n), so Wψ
2O(n, 0) admits a 

diagonal action of V ψ−n−1(osp1|2n).
(4) If m = n = 0, we define Wψ

2O(0, 0) = F(1).
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3.9. Affine cosets

Our main objects of study are the affine cosets of these W-algebras. In fact, in the 
case where a is either so2n, so2n+1, or osp1|2n, the action of a integrates to an action of 
the corresponding connected (super)group SO2n, SO2n+1, or SOsp1|2n, and this action 
further extends to the double cover O2n, O2n+1, or Osp1|2n. In these cases, we need to 
take the Z2-orbifold of the corresponding affine coset. Here is the list of these algebras.
Case 1B:

Cψ
1B(n, m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Com(V ψ−2n(so2n+1), Wψ

1B(n, m))Z2 m ≥ 1, n ≥ 1,

Com(V ψ−2n(so2n+1), V ψ−2n(so2n+2))Z2 m = 0, n ≥ 1,

Wψ−2m(so2m+2)Z2 m ≥ 1, n = 0,

H(1)Z2 m = n = 0.

(3.6)

In all cases, Cψ
1B(n, m) has central charge

c = − (ψ + mψ − m − n − 1)(2mψ − 2m − 2n − 1)(ψ + 2mψ − 2m − 2n)
(ψ − 1)ψ .

Case 1C:

Cψ
1C(n, m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Com(V −ψ/2−n−1/2(sp2n), Wψ

1C(n, m)) m ≥ 1, n ≥ 1,

Com(V −ψ/2−n−1/2(sp2n), V ψ+2n+1(osp1|2n)) m = 0, n ≥ 1,

Wψ−2m+1(so2m+1) m ≥ 1, n = 0,

C m = n = 0.

(3.7)

If we define the central charge of C to be zero, then in all cases, Cψ
1C(n, m) has central 

charge

c = − (−m + n + mψ)(1 − 2m + 2n + ψ + 2mψ)(−1 − 2m + 2n + 2ψ + 2mψ)
(ψ − 1)ψ .

Case 1D:

Cψ
1D(n, m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Com(V ψ−2n+1(so2n), Wψ
1D(n, m))Z2 m ≥ 1, n > 1,

Com(H(1), Wψ−2m−1(so2m+3, fsubreg))Z2 m ≥ 1, n = 1,

Com(V ψ−2n+1(so2n), V ψ−2n+1(so2n+1))Z2 m = 0, n ≥ 1,

Wψ−2m+1(so2m+1) m ≥ 1, n = 0,

C m = n = 0.

(3.8)

In all cases, Cψ
1D(n, m) has central charge
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c = − (−m − n + mψ)(1 − 2m − 2n + ψ + 2mψ)(−1 − 2m − 2n + 2ψ + 2mψ)
(ψ − 1)ψ .

Case 1O:

Cψ
1O(n, m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Com(V −ψ/2−n(osp1|2n), Wψ

1O(n, m))Z2 m ≥ 1, n ≥ 1,

Com(V −ψ/2−n(osp1|2n), V ψ+2n(osp2|2n)) m = 0, n ≥ 1,

Wψ−2m(so2m+2)Z2 m ≥ 0, n = 0,

H(1)Z2 m = n = 0.

(3.9)

In all cases, Cψ
1O(n, m) has central charge

c = − (−1 − m + n + ψ + mψ)(−1 − 2m + 2n + 2mψ)(−2m + 2n + ψ + 2mψ)
(ψ − 1)ψ .

Case 2B:

Cψ
2B(n, m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Com(V −2ψ−2n+2(so2n+1), Wψ
2B(n, m))Z2

m ≥ 1, n ≥ 1,

Com(V −2ψ−2n+2(so2n+1), V −2ψ−2n+1(so2n+1) ⊗ F(2n + 1))Z2

m = 0, n ≥ 1,

Wψ−m−1/2(osp1|2m)Z2

m ≥ 1, n = 0,

F(1)Z2

m = n = 0.

(3.10)

In all cases, Cψ
2B(n, m) has central charge

c = − (−m + n − ψ + 2mψ)(1 − 2m + 2n + 4mψ)(−1 − 2m + 2n + 2ψ + 4mψ)
2ψ(2ψ − 1) .

Case 2C:

Cψ
2C(n, m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Com(V ψ−n−3/2(sp2n), Wψ

2C(n, m)) m ≥ 1, n ≥ 1,

Com(V ψ−n−3/2(sp2n), V ψ−n−1(sp2n) ⊗ S(n)) m = 0, n ≥ 1,

Wψ−m−1(sp2m) m ≥ 1, n = 0,

C m = n = 0.

(3.11)

In all cases, Cψ
2C(n, m) has central charge

c = − (−m − n + 2mψ)(−1 − m − n + ψ + 2mψ)(−1 − 2m − 2n − 2ψ + 4mψ)
.

ψ(2ψ − 1)
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Case 2D:

Cψ
2D(n, m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Com(V −2ψ−2n+3(so2n), Wψ
2D(n, m))Z2 m ≥ 1, n > 1,

Com(H(1), Wψ−m(osp2|2m))Z2 m ≥ 1, n = 1,

Com(V −2ψ−2n+3(so2n), V −2ψ−2n+2(so2n) ⊗ F(2n))Z2 m = 0, n ≥ 1,

Wψ−m−1(sp2m) m ≥ 1, n = 0,

C m = n = 0.

(3.12)
In all cases, Cψ

2D(n, m) has central charge

c = − (−m + n + 2mψ)(−1 − m + n + ψ + 2mψ)(−1 − 2m + 2n − 2ψ + 4mψ)
ψ(2ψ − 1) .

Case 2O:

Cψ
2O(n, m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Com(V ψ−n−1(osp1|2n), Wψ
2O(n, m))Z2

m ≥ 1, n ≥ 1,

Com(V ψ−n−1(osp1|2n), V ψ−n−1/2(osp1|2n) ⊗ S(n) ⊗ F(1))Z2

m = 0, n ≥ 1,

Wψ−m−1/2(osp1|2m)Z2

m ≥ 1, n = 0,

F(1)Z2

m = n = 0.

(3.13)

In all cases, Cψ
2O(n, m) has central charge

c = − (−m − n − ψ + 2mψ)(1 − 2m − 2n + 4mψ)(−1 − 2m − 2n + 2ψ + 4mψ)
2ψ(2ψ − 1) .

We shall regard ψ as a formal variable and the algebras Cψ
iX(n, m) for i = 1, 2 and 

X = B, C, D, O, as one-parameter vertex algebras with parameter ψ. If ψ0 ∈ C is a 
complex number, Cψ0

iX(n, m) will always denote the specialization of Cψ
iX(n, m) to the 

value ψ = ψ0. For generic values of ψ0, this coincides with the actual coset, although it 
can be a proper subalgebra of the coset if ψ0 is a negative rational number.

Theorem 3.1. For i = 1, 2 and X = B, C, D, O, Cψ
iX(n, m) is simple as a one-parameter 

vertex algebra; equivalently this holds for generic values of ψ.

Proof. In all cases where Wψ
iX(n, m) is a quantum Hamiltonian reduction, namely the 

cases where n + m ≥ 1, and m ≥ 1 when i = 2, the simplicity of Wψ
iX(n, m) and of its 

affine coset follows from parts (1) and (2) of [37, Thm. 3.6]. In the cases X = B, D, O
where Cψ

iX(n, m) is the Z2-orbifold of the affine coset, the simplicity follows from [41].
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In the cases Wψ
2X(n, 0), the simplicity of the affine coset follows from [25, Prop. 5.4], 

and in the cases X = B, D, O, the simplicity of Cψ
2X(n, 0) again follows from [41]. Finally, 

the claim is obvious in the all cases when n = m = 0. �
4. Main result

The main result in this paper is analogous to [37, Thm. 1.1].

Theorem 4.1. For all integers m ≥ n ≥ 0, we have the following isomorphisms of one-
parameter vertex algebras.

Cψ
2B(n, m) ∼= Cψ′

2O(n, m − n) ∼= Cψ′′

2B (m, n), ψ′ = 1
4ψ

,
1
ψ

+ 1
ψ′′ = 2, (4.1)

Cψ
1C(n, m) ∼= Cψ′

2C(n, m − n) ∼= Cψ′′

1C (m, n), ψ′ = 1
2ψ

,
1
ψ

+ 1
ψ′′ = 1, (4.2)

Cψ
2D(n, m) ∼= Cψ′

1D(n, m − n) ∼= Cψ′′

1O (m, n − 1), ψ′ = 1
2ψ

,
1

2ψ
+ 1

ψ′′ = 1, (4.3)

Cψ
1O(n, m) ∼= Cψ′

1B(n, m − n) ∼= Cψ′′

2D(m + 1, n), ψ′ = 1
ψ

,
1
ψ

+ 1
2ψ′′ = 1. (4.4)

Note that Cψ
2D(n, m) for m ≥ n and Cψ

2D(n, m) for m < n belong in different families, 
and similarly for Cψ

1O(n, m). For the rest of this section we discuss some special cases of 
this result.

4.1. Special cases of (4.1)

In the case n = 0 of (4.1), we have

Cψ
2B(0, m) = Wψ−m−1/2(osp1|2m)Z2 ,

Cψ′

2O(0, m) = Wψ′−m−1/2(osp1|2m)Z2 .

The isomorphism Cψ
2B(0, m) ∼= Cψ′

2O(0, m) is the Z2-invariant part of Feigin-Frenkel dual-
ity for principal W-algebras of osp1|2m, which was proven in a different way in [24].

Remark 4.1. A special case of Theorem 6.3 is that the OPE algebra of
Wψ′−m−1/2(osp1|2m), which is a simple current extension of Wψ′−m−1/2(osp1|2m)Z2

by an odd field of weight 2m+1
2 , is uniquely determined by Wψ′−m−1/2(osp1|2m)Z2 . 

Therefore our result implies the full Feigin-Frenkel duality Wψ−m−1/2(osp1|2m) ∼=
Wψ′−m−1/2(osp1|2m).
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In the case m = 0 of (4.1), we have

Cψ
2B(n, 0) = Com(V −2ψ−2n+2(so2n+1), V −2ψ−2n+1(so2n+1) ⊗ F(2n + 1))Z2 ,

Cψ′′

2B (0, n) = Wψ′′−n−1/2(osp1|2n)Z2 .

Therefore the isomorphism Cψ
2B(n, 0) ∼= Cψ′′

2B (0, n) implies that both
Wψ′′−n−1/2(osp1|2n) and Com(V −2ψ−2n+2(so2n+1), V −2ψ−2n+1(so2n+1) ⊗ F(2n + 1))
are simple current extensions of Wψ′′−n−1/2(osp1|2n)Z2 by an odd field in weight 2n+1

2 . 
As above, Theorem 6.3 then implies

Wψ′′−n−1/2(osp1|2n) ∼= Com(V −2ψ−2n+2(so2n+1), V −2ψ−2n+1(so2n+1) ⊗ F(2n + 1))
∼= Com(V −2ψ−2n+2(so2n+1), V −2ψ−2n+1(so2n+1) ⊗ L1(so2n+1)).

(4.5)

We recover the coset realization of principal W-superalgebras of osp1|2n, which was 
proven in a different way in [24].

4.2. Special cases of (4.2)

In the case n = 0, the isomorphism Cψ
1C(0, m) ∼= Cψ′

2C(0, m) for ψ′ = 1
2ψ , is just 

Feigin-Frenkel duality in types B and C, since Cψ
1C(0, m) = Wψ−2m+1(so2m+1) and 

Cψ′

2C(0, m) ∼= Wψ′−m−1(sp2m).
In the case m = 0, we have

Cψ
1C(n, 0) = Com(V −ψ/2−n−1/2(sp2n), V ψ+2n+1(osp1|2n)),

Cψ′′

1C (0, n) = Wψ′′−2n+1(so2n+1),

so the isomorphism Cψ
1C(n, 0) ∼= Cψ′′

1C (0, n) yields a new coset realization of type B and 
C principal W-algebras. Recall that we are using the convention (3.2) that osp1|2n has 
dual Coxeter number −2n − 1. If we instead use the dual Coxeter number 2n+1

2 , so that 
V k(sp2n) embeds in V k(osp1|2n), then we have Cψ

1C(n, 0) = Com(V k(sp2n), V k(osp1|2n))
for k = −1

2 (ψ + 2n + 1). We obtain

Corollary 4.1. For all n ≥ 1, we have the following isomorphism of one-parameter vertex 
algebras

Com(V k(sp2n), V k(osp1|2n)) ∼= Wr(so2n+1), r = −(2n − 1) + 1 + 2k + 2n

2(1 + k + n) . (4.6)

This realization of Wr(so2n+1) is very different from the coset realization of W�(g)
for g simply-laced given in [12] since it involves affine vertex superalgebras. Although 
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we are not aware of this statement being previously conjectured in the literature, both 
algebras were known to have the same strong generating type and graded character; see 
[35, Cor. 7.4] and [36, Cor 5.7].

4.3. Special cases of (4.3)

In the case n = 0, the isomorphism Cψ
2D(0, m) ∼= Cψ′

1D(0, m) is again Feigin-Frenkel 
duality in types B and C, since

Cψ
2D(0, m) = Wψ−m−1(sp2m),

Cψ′

1D(0, m) = Wψ′−2m+1(so2m+1).

In the case n = 1 and m ≥ 1, we have

Cψ
2D(1, m) = Com(H(1), Wψ−m(osp2|2m))Z2 ,

Cψ′

1D(1, m − 1) = Com(H(1), Wψ′−2m+1(so2m+1, fsubreg))Z2 .

Therefore the isomorphism Cψ
2D(1, m) ∼= Cψ′

1D(1, m − 1) recovers the Z2-invariant part of 
the duality

Com(H(1), Wψ′−2m+1(so2m+1, fsubreg)) ∼= Com(H(1), Wψ−m(osp2|2m)), (4.7)

of Genra, Nakatsuka and one of us [25].

Remark 4.2. The isomorphism Cψ
2D(1, m) ∼= Cψ′

1D(1, m − 1) can be used to give 
a new proof of (4.7) as follows. Both Com(H(1), Wψ′−2m+1(so2m+1, fsubreg)) and 
Com(H(1), Wψ−m(osp2|2m)) are simple current extensions of Cψ

2D(1, m), where the exten-
sion is generated by an even field ω in weight 2m +1. The generators of Cψ

2D(1, m) and ω do 
not close under OPE, and new strong generators are needed in weights 2m +3, 2m +5, . . . . 
It can be shown that there is a unique simple current extension of Cψ

2D(1, m) with these 
properties, such that ω(4m+1)ω �= 0. The proof is similar to, but more involved than the 
proof of Theorem 6.3, and is omitted.

In the case n = 1 and m = 0 of (4.3), we have Wψ
2D(1, 0) := H(1) ⊗ F(2) and 

Cψ
2D(1, 0) = Com(H(1), H(1) ⊗ F(2))Z2 ∼= F(2)O2 . Also, Cψ

1O(0, 0) ∼= H(1)Z2 . We recover 
the isomorphism H(1)Z2 ∼= F(2)O2 .

4.4. Special cases of (4.4)

In the case n = 0, the isomorphism Cψ
1O(0, m) ∼= Cψ′

1B(0, m) is just the Z2-invariant 
part of Feigin-Frenkel duality in type D, since
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Cψ
1O(0, m) = Wψ−2m(so2m+2)Z2 ,

Cψ′

1B(0, m) = Wψ′−2m(so2m+2)Z2 .

As in Remark 4.1, this statement together with Theorem 6.3, gives a new proof of the 
full duality.

In the case m = 0 and n ≥ 2, we have

Cψ′′

2D(n, 0) ∼= Com(V −2ψ′′−2n+3(so2n), V −2ψ′′−2n+2(so2n) ⊗ F(2n))Z2

∼= Com(V −2ψ′′−2n+3(so2n), V −2ψ′′−2n+2(so2n) ⊗ L1(so2n))Z2 .
(4.8)

Since Cψ
1O(0, n − 1) ∼= Wψ−2n+2(so2n)Z2 , the isomorphism Cψ

1O(0, n − 1) ∼= Cψ′′

2D(n, 0)
recovers the Z2-invariant part of the coset realization of principal W-algebras of type D
proven in [12]. Finally, this statement together with Theorem 6.3, gives a new proof of 
the coset realization of Wψ′−2n+2(so2n).

4.5. Sketch of proof

The proof of Theorem 4.1 involves the following steps.

(1) Using the free field limits of Wψ
iX(n, m), together with some classical invariant theory, 

we find strong generating sets for Cψ
iX(n, m) for i = 1, 2 and X = B, C, D, O. If 

a = sp2n, and if a = so2n or a = so2n+1 and ρa ⊗ ρb is odd, we will find minimal
strong generating sets. In the remaining cases, namely, a = osp1|2n, and a = so2n or 
a = so2n+1 and ρa ⊗ ρb is even, we will not find minimal strong generating sets at 
this stage, but we will deduce them later as a consequence of Theorem 4.1.

(2) We show that in all cases, Cψ
iX(n, m) has a subalgebra C̃ψ

iX(n, m) generated by the 
weights 2 and 4 field, which is isomorphic to a quotient W of Wev,IiX,n,m(c, λ), for 
some ideal IiX,n,m ⊆ C[c, λ]. In particular, Wψ

iX(n, m) is an extension of V t(a) ⊗ W
by da fields of appropriate parity in weight db+1

2 which transform as the standard 
a-module.

(3) We show that the existence of such an extension of V t(a) ⊗W uniquely and explicitly 
specifies the ideal IiX,n,m.

(4) We compute coincidences between the simple quotient C̃ψ,iX(n, m) and principal 
W-algebras of type C, by finding intersection points on their truncation curves. 
Using Corollary 2.1, we prove that C̃ψ

iX(n, m) = Cψ
iX(n, m) as one-parameter vertex 

algebras. In particular, Cψ
iX(n, m) is isomorphic to the simple quotient Wev

IiX,n,m
(c, λ)

in all cases.
(5) The isomorphisms in Theorem 4.1 all follow from the explicit formulas for IiX,n,m.
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5. Large level limits

In this section, we describe the large level limits of Wψ
iX(n, m) and the strong gener-

ating types of Cψ
iX(n, m).

5.1. Case 1C

Recall that Wψ
1C(n, m) has affine subalgebra V −ψ/2−n−1/2(sp2n), even fields in weights 

2, 4, . . . , 2m which are invariant under sp2n, and 2n odd fields of weight m + 1, 
which transform as the standard representation of sp2n. By [37, Cor. 3.5], we may 
assume without loss of generality that the fields in weights 2, 4, . . . , 2m commute 
with V −ψ/2−n−1/2(sp2n), and the weight m + 1 fields are primary with respect to 
V −ψ/2−n−1/2(sp2n). By [37, Cor. 3.4], the free field limit of Wψ

1C(n, m) is

Oev(2n2 + n, 2) ⊗
( m⊗

i=1
Oev(1, 4i)

)
⊗ Sodd(n, 2m + 2).

Lemma 5.1. For n + m ≥ 1, Cψ
1C(n, m) is of type

W(2, 4, . . . , 2(1 + m)(1 + n) − 2)

as a one-parameter vertex algebra. Equivalently, this holds for generic values of ψ.

Proof. First, it follows from [37, Lem. 4.2] that Cψ
1C(n, m) has limit

( m⊗
i=1

Oev(1, 4i)
)

⊗
(
Sodd(n, 2m + 2)

)Sp2n .

By [37, Thm. 4.3], 
(
Sodd(n, 2m + 2)

)Sp2n is of type

W(2m + 2, 2m + 4, . . . , 2(1 + m)(1 + n) − 2).

Since 
⊗m

i=1 Oev(1, 4i) is of type W(2, 4, . . . , 2m), it follows from [37, Lem. 4.2] that 
Cψ

1C(n, m) is of type W(2, 4, . . . , 2(1 + m)(1 + n) − 2). �
5.2. Case 2B

Recall that for m ≥ 1, Wψ
1B(n, m) has affine subalgebra V −2ψ−2n+2(so2n+1), even 

fields in weights 2, 4, . . . , 2m which commute with V −2ψ−2n+2(so2n+1), and 2n + 1 odd 
fields of weight 2m+1

2 , which are primary with respect to V −2ψ−2n+2(so2n+1) and trans-
form as the standard representation of so2n+1. The free field limit of Wψ

1B(n, m) is 
therefore
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Oev(2n2 + n, 2) ⊗
( m⊗

i=1
Oev(1, 4i)

)
⊗ Oodd(2n + 1, 2m + 1).

Lemma 5.2. For n + m ≥ 1, Cψ
2B(n, m) is of type

W(2, 4, . . . , 4(m + 1)(n + 1) − 2)

as a one-parameter vertex algebra. Equivalently, this holds for generic values of ψ.

Proof. By [37, Lem. 4.2] as above, Cψ
2B(n, m) has limit

( m⊗
i=1

Oev(1, 4i)
)

⊗
(
Oodd(2n + 1, 2m + 1)

)O2n+1
.

By [37, Thm. 4.4], 
(
Oodd(2n + 1, 2m + 1)

)O2n+1 is of type

W(2m + 2, 2m + 4, . . . , 4(m + 1)(n + 1) − 2),

so the claim follows as above. �
5.3. Case 2C

Recall that for m ≥ 1, Wψ
2C(n, m) has affine subalgebra V ψ−n−3/2(sp2n), even fields in 

weights 2, 4, . . . , 2m which commute with V ψ−n−3/2(sp2n), and 2n even fields of weight 
2m+1

2 , which are primary with respect to V ψ−n−3/2(sp2n) and transform as the standard 
representation of sp2n. The free field limit of Wψ

2C(n, m) is therefore

Oev(2n2 + n, 2) ⊗
( m⊗

i=1
Oev(1, 4i)

)
⊗ Sev(n, 2m + 1).

Lemma 5.3. For n + m ≥ 1, Cψ
2C(n, m) is of type

W(2, 4, . . . , 2(1 + n)(1 + m + n) − 2)

as a one-parameter vertex algebra. Equivalently, this holds for generic values of ψ.

Proof. By [37, Lem. 4.2], Cψ
2C(n, m) has limit

( m⊗
i=1

Oev(1, 4i)
)

⊗
(
Sev(n, 2m + 1)

)Sp2n .

By [37, Thm. 4.2], 
(
Sev(n, 2m + 1)

)Sp2n is of type
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W(2m + 2, 2m + 4, . . . , 2(1 + n)(1 + m + n) − 2),

so the claim follows. �
5.4. Case 2D

Recall that for m ≥ 1, Wψ
2D(n, m) has affine subalgebra V −2ψ−2n+3(so2n), even fields 

in weights 2, 4, . . . , 2m which commute with V −2ψ−2n+3(so2n), and 2n odd fields of 
weight 2m+1

2 , which are primary with respect to V −2ψ−2n+3(so2n) and transform as the 
standard representation of so2n. The free field limit of Wψ

2D(n, m) is therefore

Oev(2n2 − n, 2) ⊗
( m⊗

i=1
Oev(1, 4i)

)
⊗ Oodd(2n, 2m + 1).

Lemma 5.4. For n + m ≥ 1, Cψ
2D(n, m) is of type

W(2, 4, . . . , 2(m + 1)(2n + 1) − 2)

as a one-parameter vertex algebra. Equivalently, this holds for generic values of ψ.

Proof. By [37, Lem. 4.2], Cψ
2D(n, m) has limit

( m⊗
i=1

Oev(1, 4i)
)

⊗
(
Oodd(2n, 2m + 1)

)O2n
.

By [37, Thm. 4.4], 
(
Oodd(2n, 2m + 1)

)O2n is of type

W(2m + 2, 2m + 4, . . . , 2(m + 1)(2n + 1) − 2),

so the claim follows. �
Next, we consider the cases Cψ

1B(n, m) and Cψ
1D(n, m) where we are not able to find a 

minimal strong generating set at this stage.

5.5. Case 1B

Recall that Wψ
1B(n, m) has affine subalgebra V ψ−2n(so2n+1), even fields in weights 

2, 4, . . . , 2m which commute with V ψ−2n(so2n+1), and 2n + 1 even fields in weight m +
1 which are primary with respect to V ψ−2n(so2n+1) and transform as the standard 
representation of so2n+1. The free field limit of Wψ

1B(n, m) is then

Oev(2n2 + n, 2) ⊗
( m⊗

Oev(1, 4i)
)

⊗ Oev(2n + 1, 2m + 2).

i=1
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Lemma 5.5. As a one-parameter vertex algebra, Cψ
1B(n, m) is of type W(2, 4, . . . , 2N) for 

some N satisfying 2N ≥ 2(1 + n)(3 + 2m + 2n) − 2.

Proof. By [37, Lem. 4.2], Cψ
1B(n, m) has limit

( m⊗
i=1

Oev(1, 4i)
)

⊗
(
Oev(2n + 1, 2m + 2)

)O2n+1
.

By [37, Thm. 4.5], 
(
Oev(2n + 1, 2m + 2)

)O2n+1 is of type W(2m + 2, 2m + 4, . . . , 2N) for 
some 2N ≥ 2(1 + n)(3 + 2m + 2n) − 2, so the claim follows. �
Remark 5.1. The lower bound on N is a consequence of Weyl’s second fundamental 
theorem of invariant theory for O2n+1 [95]. We have an isomorphism of differential graded 
rings

gr
(
Oev(2n + 1, 2m + 2)

)O2n+1 ∼= C[
⊕
i≥0

Vi]O2n+1 ,

where each Vi
∼= C2n+1 as an O2n+1-module. The generators of C[

⊕
i≥0 Vi]O2n+1 are all 

quadratics, and the ideal of relations is generated by determinants of degree 2n + 2 in 
these quadratics. The relation of minimal weight has weight 2(1 + n)(3 + 2m + 2n), and 
the statement that 

(
Oev(2n + 1, 2m + 2)

)O2n+1 is of type W(2m + 2, 2m + 4, . . . , 2(1 +
n)(3 + 2m + 2n) − 2) is equivalent to this relation being a decoupling relation for the 
generator in weight 2(1 + n)(3 + 2m + 2n). We will see later (Corollary 6.1) that in fact 
2N = 2(1 + n)(3 + 2m + 2n) − 2.

5.6. Case 1D

Recall that Wψ
1D(n, m) has affine subalgebra V ψ−2n+1(so2n), even fields in weights 

2, 4, . . . , 2m which commute with V ψ−2n+1(so2n), and 2n additional even fields of weight 
m + 1 which are primary with respect to V ψ−2n+1(so2n) and transform as the standard 
representation of so2n. The free field limit of Wψ

1D(n, m) is therefore

Oev(2n2 − n, 2) ⊗
( m⊗

i=1
Oev(1, 4i)

)
⊗ Oev(2n, 2m + 2).

Lemma 5.6. As a one-parameter vertex algebra, Cψ
1D(n, m) is of type W(2, 4, . . . , 2N) for 

some N satisfying 2N ≥ 2(1 + m + n)(1 + 2n) − 2.

Proof. First, [37, Lem. 4.2] shows that Cψ
1D(n, m) has limit

( m⊗
Oev(1, 4i)

)
⊗

(
Oev(2n, 2m + 2)

)O2n
.

i=1
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Again by [37, Thm. 4.5], 
(
Oev(2n, 2m + 2)

)O2n is of type W(2m + 2, 2m + 4, . . . , 2N) for 
some 2N ≥ 2(1 + m + n)(1 + 2n) − 2, so the claim follows. �

As above, the relation of minimal weight among the generators has weight 2(1 + m +
n)(1 +2n), and again we will see later (Corollary 6.1) that 2N = 2(1 +m +n)(1 +2n) −2.

Finally, we consider the cases Cψ
1O(n, m) and Cψ

2O(n, m). We need two new ingredients: 
the description of orbifolds of certain free field algebras under Osp1|2n, and the adaptation 
of the method of studying affine cosets by passing to their orbifold limits developed in 
[35], to cosets of V k(osp1|2n). We begin by restating the versions of Sergeev’s first and 
second fundamental theorems of invariant theory for Osp1|2n that we need; these are 
specializations of [90, Thm. 1.3] and [91, Thm. 4.5]. First, we consider the invariants in 
the ring of functions on a sum of copies of the standard module with odd parity.

Theorem 5.1. For k ≥ 0, let Uk be a copy of the standard Osp1|2n-module C1|2n, which 
has odd subspace spanned by {xk,i, yk,i| i = 1, . . . , n}, and even subspace spanned by zk. 
Then the ring of invariant polynomial functions

R = C[
⊕
k≥0

Uk]Osp1|2n

is generated by the quadratics

qa,b = 1
2

n∑
i=1

(xi,ayi,b + xi,byi,a) + 1
2zazb a, b ≥ 0.

Let Qa,b be commuting indeterminates satisfying Qa,b = Qb,a. The kernel of the map

C[Qa,b] → R, Qa,b �→ qa,b

is generated by polynomials pI of degree 2n + 2 in the variables Qa,b corresponding to a 
rectangular Young tableau of size 2 × (2n + 2), filled by entries from a standard sequence 
I of length 4n + 4 from the set of indices {0, 1, 2, . . . }. The entries must weakly increase 
along rows and strictly increase along columns.

For the invariants in the ring of functions on a sum of copies of the standard module 
with even parity, a few modifications are needed.

Theorem 5.2. For k ≥ 0, let Uk be a copy of the standard Osp1|2n-module C2n|1, with 
even subspace spanned by {xk,i, yk,i| i = 1, . . . , n} and odd subspace spanned by zk. Then 
the ring of invariant polynomial functions

R = C[
⊕

Uk]Osp1|2n
k≥0
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is generated by the quadratics

qa,b = 1
2

n∑
i=1

(xi,ayi,b − xi,byi,a) − 1
2zazb a, b ≥ 0.

Let Qa,b be commuting indeterminates satisfying Qa,b = −Qb,a. The kernel of the map

C[Qa,b] → R, Qa,b �→ qa,b

is generated by polynomials pI of degree 2n + 2 in the variables Qa,b corresponding to a 
rectangular Young tableau of size 2 × (2n + 2), filled by entries from a standard sequence 
I of length 4n + 4 from the set of indices {0, 1, 2, . . . }. The entries must strictly increase 
along rows and weakly increase along columns.

In both cases, the precise form of the relations can be found in [91], but is not needed 
for our purposes. We only need the conformal weight of the relations which can be read 
off from the entries in the corresponding Young tableau.

Next, we recall that V k(osp1|2n) comes from a deformable family in the sense of 
[35] as follows. Let κ be a formal variable satisfying κ2 = k, and let F be the ring of 
complex-valued rational functions of κ of degree at most zero, with possible poles only 
at κ = 0. In other words, F consists of functions of the form p(κ)

κd , where d ≥ 0 and 
p is a polynomial of degree at most d. There is a vertex algebra V over F such that 
V/(κ −

√
k)V ∼= V k(osp1|2n) for all k �= 0. Here (κ −

√
k)V denotes the ideal generated 

by κ −
√

k. In the notation of [35],

V∞ = lim
κ→∞

V ∼= H(2n2 + n) ⊗ A(n),

where H(2n2 + n) denotes the Heisenberg algebra of rank 2n2 + n = dim sp2n and A(n)
denotes the rank n symplectic fermion algebra.

We now consider vertex algebras Wk which admit a homomorphism V k(osp1|2n) →
Wk with the following properties:

(1) There exists a deformable family W defined over the ring FK of rational functions 
of degree at most zero in κ, with poles in some at most countable set K, such that

W/(κ −
√

k)W ∼= Wk, for all
√

k /∈ K.

(2) The map V k(osp1|2n) → Wk is induced by a map of deformable families V → W.
(3) W∞ = limκ→∞ W decomposes as

W∞ ∼= V∞ ⊗ W̃ ∼= H(2n2 + n) ⊗ A(n) ⊗ W̃,

for some vertex subalgebra W̃ ⊆ W∞.
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(4) The action of osp1|2n on W infinitesimally generates an action of the Lie supergroup 
SOsp1|2n, and W decomposes into finite-dimensional SOsp1|2n-modules.

Under these circumstances, we obtain

Theorem 5.3.

(1) C = Com(V, W) is a deformable family, and

C/(κ −
√

k)C ∼= Ck = Com(V k(osp1|2n), Wk),

for generic k.
(2) SOsp1|2n acts on W̃, and we have an isomorphism

C∞ ∼= Com(V∞, V∞ ⊗ W̃)SOsp1|2n

∼= Com(H(2n2 + n) ⊗ A(n), H(2n2 + n) ⊗ A(n) ⊗ W̃)SOsp1|2n

∼= W̃SOsp1|2n .

(5.1)

(3) For generic k, Wk admits a decomposition

Wk ∼=
⊕

λ∈P +

V k(λ) ⊗ Ck(λ), (5.2)

where P + denotes the set of dominant weights of osp1|2n, V k(λ) are the corresponding 
Weyl modules, and the multiplicity spaces Ck(λ) are irreducible Ck-modules.

The proof of the first two statements is the same as the proof of [35, Thm. 6.10], and 
only uses the fact that finite-dimensional SOsp1|2n-modules are completely reducible. 
Similarly, the proof of the third statement is the same as the proof of [37, Thm. 4.12]. It 
is apparent than in our main examples, namely Wk = Wψ

1O(n, m) and Wψ
2O(n, m) these 

hypotheses are satisfied. Moreover, these algebras are in fact modules over the double 
cover Osp1|2n of SOsp1|2n, and it is the Z2-orbifold of the coset that we actually need to 
study.

5.7. Case 1O

Recall that Wψ
1O(n, m) has affine subalgebra V −ψ/2−n(osp1|2n), even fields in weights 

2, 4, . . . , 2m which commute with V −ψ/2−n(osp1|2n), and 2n odd fields and one even field 
of weight m + 1, which are primary with respect to V −ψ/2−n(osp1|2n) and transform as 
the standard representation of osp1|2n. The free field limit of Wψ

1O(n, m) is therefore

Oev(2n2 + n, 2) ⊗ Sodd(n, 2) ⊗
( m⊗

Oev(1, 4i)
)

⊗ Sodd(n, 2m + 2) ⊗ Oev(1, 2m + 2).

i=1
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Lemma 5.7. As a one-parameter vertex algebra, Cψ
1O(n, m) has a strong generating set of 

type W(2, 4, . . . ), which need not be minimal. If it admits a finite strong generating set 
of type W(2, 4, . . . , 2N) for some N , we must have 2N ≥ 2(3 + 2m)(1 + n) − 2.

Proof. First, it follows from Theorem 5.3 that Cψ
1O(n, m) has limit

( m⊗
i=1

Oev(1, 4i)
)

⊗
(
Sodd(n, 2m + 2) ⊗ Oev(1, 2m + 2)

)Osp1|2n .

We assign Sodd(n, 2m + 2) ⊗ Oev(1, 2m + 2) the good increasing filtration where the 
weight m + 1 generators {ai, bi| i = 1, . . . , n} of Sodd(n, 2m + 2), and the weight m + 1
generator a of Oev(1, 2m + 2) all have degree 1. Then

gr
((

Sodd(n, 2m + 2) ⊗ Oev(1, 2m + 2)
)Osp1|2n

)
∼= gr

(
Sodd(n, 2m + 2) ⊗ Oev(1, 2m + 2)

)Osp1|2n

∼= R,

where R is the ring of invariants in Theorem 5.1. Then 
(
Sodd(n, 2m + 2) ⊗ Oev(1, 2m +

2)
)Osp1|2n is strongly generated by the corresponding fields

ωa,b = 1
2

n∑
i=1

(
: (∂aai)(∂bbi) : + : (∂bai)(∂abi) :

)
+ 1

2 : (∂aa)(∂ba) :, a, b ≥ 0,

which have weight 2m + 2 + a + b. As usual, there are linear relations among these fields 
and their derivatives, and the subsets

{∂kω2a,0| a ≥ 0}, {ωa,b| a ≥ b ≥ 0}

span the same vector space. Therefore the fields {ω2a,0| a ≥ 0}, which have weight 
2m +2 +2a, are a strong generating set. This shows that 

(
Sodd(n, 2m +2) ⊗Oev(1, 2m +

2)
)Osp1|2n has a strong generating set of type W(2m + 2, 2m + 4, . . . ), which proves this 

first statement since Oev(1, 4) ⊗ Oev(1, 8) ⊗ · · · ⊗ Oev(1, 4m) is of type W(2, 4, . . . , 2m).
Next, the relation of minimal weight given by Theorem 5.1 corresponds to the 2 ×

(2n + 2), Young tableau with bottom row consisting of 0’s and top row consisting of 1’s. 
This relation therefore has weight 2(3 + 2m)(1 + n). If there exists a decoupling relation

ω2a,0 = P (ω0,0, ω2,0, . . . , ω2a−2,0), (5.3)

where P is a normally ordered polynomial in ω0,0, ω2,0, . . . , ω2a−2,0 and their derivatives, 
the weight 2a +2m +2 of this relation must therefore be at least 2(3 +2m)(1 +n). Start-
ing with this relation, we claim that there exist similar decoupling relations expressing 
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ω2b,0 for all b > a as normally ordered polynomials in ω0,0, ω2,0, . . . , ω2a−2,0 and their 
derivatives. Therefore if (5.3) is such a relation of minimal weight, then Cψ

1O(n, m) would 
be of type W(2, 4, . . . , 2N) for 2N = 2a + 2m.

To construct these decoupling relations, we regard Sodd(n, 2m +2) ⊗Oev(1, 2m +2) as 
a subalgebra of A(n) ⊗ H(1), where A(n) = Sodd(n, 2) is the rank n symplectic fermion 
algebra and H(1) = Oev(1, 2) is the rank one Heisenberg algebra. As in [37], let ei, f i

denote the generators of A(n), which satisfy

ei(z)f j(w) ∼ δi,j(z − w)−2, f j(z)ei(w) ∼ −δi,j(z − w)−2,

ei(z)ej(w) ∼ 0, f i(z)f j(w) ∼ 0,
(5.4)

and let α be the generator of H(1) satisfying α(z)α(w) ∼ (z − w)−2. Then Sodd(n, 2m +
2) ⊗ Oev(1, 2m + 2) is realized inside A(n) ⊗ H(1) via

ai = ε√
(k − 1)!

∂k/2−1ei, bi = ε√
(k − 1)!

∂k/2−1f i, a = ε√
(k − 1)!

∂k/2−1α.

Next, let

r = 1
2

n∑
i=1

(
: (∂ei)f i : + : ei∂f i :

)
+ 1

2 : (∂α)α : ∈
(
A(n) ⊗ H(1)

)Osp1|2n .

Note that r does not lie in the subalgebra 
(
Sodd(n, 2m + 2) ⊗ Oev(1, 2m + 2)

)Osp1|2n ; 
however, the mode r(1) preserves this subalgebra. A calculation shows that for all a ≥ 0,

r(1)ω2a,0 = (−1)m+1(2a + 2m + 4)ω2a+2,0 + · · · , (5.5)

where the remaining terms are of the form ∂2i+2ω2a−2i,0 for 0 ≤ i ≤ a. Now suppose we 
have a decoupling relation of the form (5.3). Applying r(1), we obtain a relation

(−1)m+1(2a + 2m + 4)ω2a+2,0 = r(1)P (ω0,0, ω2,0, . . . , ω2a−2,0).

It follows from (5.5) together with the fact that (ω2i,0)(0)ω2j,0 is a total derivative for all 
i, j ≥ 0, that the right hand side is a normally ordered polynomial in ω0,0, ω2,0, . . . , ω2a,0
and their derivatives. All appearances of ω2a,0 and its derivatives can be eliminated by 
substituting (5.3) and its derivatives. Therefore we can express ω2a+2,0 as a normally 
ordered polynomial in ω0,0, ω2,0, . . . , ω2a−2,0 and their derivatives.

Inductively, assume that we have constructed such relations

ω2a+2i,0 = P2a+2i(ω0,0, ω2,0, . . . , ω2a−2,0), 0 ≤ i ≤ t. (5.6)

As above, applying r(1) to both sides of ω2a+2t,0 = P2a+2t(ω0,0, ω2,0, . . . , ω2a−2,0) yields

(−1)m+1(2a + 2t + 2m + 4)ω2a+2t+2,0 = r(1)P2a+2t+2(ω0,0, ω2,0, . . . , ω2a−2,0).
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Again, the right hand side can be written as a normally ordered polynomial in 
ω0,0, ω2,0, . . . , ω2a+2t,0 and their derivatives. All appearances of ω2a,0, ω2a+2,0, . . . ,

ω2a+2t,0 and their derivatives can be eliminated using the previous decoupling relations 
(5.6) for 0 ≤ i ≤ t. �

We will see later (Corollary 6.1) that Cψ
1O(n, m) is of type W(2, 4, . . . , 2(3 + 2m)(1 +

n) − 2), so the relation of weight 2(3 + 2m)(1 + n) must in fact be a decoupling relation.

5.8. Case 2O

Recall that Wψ
2O(n, m) has affine subalgebra V ψ−n−1(osp1|2n), even fields in weights 

2, 4, . . . , 2m which commute with V ψ−n−1(osp1|2n), and 2n even fields and one odd field 
of weight 2m+1

2 , which are primary with respect to V ψ−n−1(osp1|2n) and transform as 
the standard representation of osp1|2n. The free field limit of Wψ

2O(n, m) is therefore

Oev(2n2 + n, 2) ⊗ Sodd(n, 2) ⊗
( m⊗

i=1
Oev(1, 4i)

)
⊗ Sev(n, 2m + 1) ⊗ Oodd(1, 2m + 1).

Lemma 5.8. As a one-parameter vertex algebra, Cψ
2O(n, m) has a strong generating set of 

type W(2, 4, . . . ), which need not be minimal. If it admits a finite strong generating set 
of typeW(2, 4, . . . , 2N) for some N , we must have 2N ≥ 4(1 + n)(1 + m + n) − 2.

Proof. First, it follows from Theorem 5.3 that Cψ
2O(n, m) has limit

( m⊗
i=1

Oev(1, 4i)
)

⊗
(
Sev(n, 2m + 1) ⊗ Oodd(1, 2m + 1)

)Osp1|2n .

So to prove the first statement, it suffices to show that 
(
Sev(n, 2m + 1) ⊗ Oodd(1, 2m +

1)
)Osp1|2n is of type W(2m + 2, 2m + 4, . . . ). The argument is similar to the proof of 

Lemma 5.7, and is based on Theorem 5.2. First, in terms of the weight 2m+1
2 generators 

{ai, bi| i = 1, . . . , n} of Sev(n, 2m +1), and the weight 2m+1
2 generator φ of Oodd(1, 2m +

1), we have strong generators

ωa,b = 1
2

n∑
i=1

(
: (∂aai)(∂bbi) : − : (∂bai)(∂abi) :

)
− 1

2 : (∂aφ)(∂bφ) :, a, b ≥ 0,

which have weight 2m +1 +a +b. Not all of these are necessary, and it is easy to see that 
the subset {ω2a+1,0| a ≥ 0} suffices to strongly generate. Since these fields have weights 
2m + 2, 2m + 4, . . . , this proves the first statement.

Next, the relation of minimal weight among these generators corresponds to the 2 ×
(2n + 2) Young tableau with both rows consisting of 0, 1, . . . , 2n + 1, so this relation has 
weight 4(1 + n)(1 + m + n). If there exists a decoupling relation for any of the generating 
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fields, the lowest possible weight where this could occur is therefore 4(1 + n)(1 + m + n). 
As in the case of Lemma 5.7, if there exists a decoupling relation for ω2a+1,0 for some 
2a + 1 ≥ (1 + 2n)(3 + 2m + 2n), it is easy to construct similar decoupling relations 
expressing ω2b+1,0 for all b > a as normally ordered polynomials in ω1,0, ω3,0, . . . , ω2a−1,0
and their derivatives. �

Again, Corollary 6.1 implies that the relation of weight 4(1 + n)(1 + m + n) is in fact 
a decoupling relation.

5.9. On subalgebras of Cψ
iX(n, m)

Even though Cψ
iX(n, m) is of type W(2, 4, . . . ), it is not yet obvious that it can be 

obtained as a quotient of Wev,IiX,n,m(c, λ) because it remains to show that it is generated 
by the weights 2 and 4 fields. This will be shown in the next section, and the following 
weaker statement will be needed.

Lemma 5.9. For i = 1, 2 and X = B, C, D, O, Cψ
iX(n, m) is generated by the fields in 

weights 2, 4, . . . , 2m + 4.

Proof. It suffices to show that the free field limit has this property. In all cases, this limit 
has the form

( m⊗
i=1

Oev(1, 4i)
)

⊗ AG,

where A is a free field algebra and G is either O2n+1, Sp2n, O2n, or Osp1|2n. In all cases, 
it is straightforward to check that the fields in weights 2m + 2 and 2m + 4 are sufficient 
to generate all the fields in higher weights 2m + 6, 2m + 8, . . . which strongly generate 
AG. The proof is similar to the proof of [79, Lem. 4.2], and is omitted. �

For i = 1, 2 and X = B, C, D, O, let

C̃ψ
iX(n, m) ⊆ Cψ

iX(n, m)

be the subalgebra generated by the weights 2 and 4 fields. Let {ω2r| 1 ≤ r ≤ N} be the 
strong generators of Cψ

iX(n, m) corresponding to the large level limits which are given by 
Lemmas 5.1-5.8. (Here we are excluding the degenerate cases where N = 1). Without 
loss of generality, we may assume that ω2 = L and W 4 = ω4, that is, ω4 has been chosen 
to be primary with respect to L and normalized as in [75]. Set W 2r = W 4

(1)W
2r−2, for 

r ≥ 3.
For 3 ≤ r ≤ N , we can write

W 2r = λrω2r + · · · , λr ∈ C, (5.7)
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where the remaining terms are normally ordered monomials in {L, ω2s| 2 ≤ s < r}. If 
λr �= 0 for all r, then C̃ψ(n, m) = Cψ(n, m). Otherwise, let M ≥ 2 be the first integer 
such that λM+1 = 0.

Lemma 5.10. With M as above, {L, W 4, . . . , W 2M } close under OPE, so that C̃ψ
iX(n, m)

is of type W(2, 4, . . . , 2M).

Proof. First, since {L, ω2s| 2 ≤ s ≤ N} close under OPE and λr �= 0 for 3 ≤ r ≤ M , 
we can replace ω2s with W 2s for 3 ≤ s ≤ M . It follows that W 2i

(k)W
2j is a normally 

ordered polynomial in {L, W 2s| 2 ≤ s ≤ M} and their derivatives whenever 2i + 2j −
k − 1 ≤ 2M + 1. Since λM+1 = 0, W 4

(1)W
2M is also a normally ordered polynomial in 

{L, W 2s| 2 ≤ s ≤ M}.
Next, we need to show that W 4

(0)W
2M is a normally ordered polynomial in 

{L, W 2s| 2 ≤ s ≤ M} and their derivatives, that is, ∂ω2M+2 does not appear. The 
argument is a slight modification of the proof of [75, Lemma 3.3], except that we replace 
W 2M+2 with ω2m+2. Write

W 4
(1)W

2M =a4,2M ω2M+2 + C4,2M ,

W 4
(0)W

2M =b4,2M ∂ω2M+2 + D4,2M ,
(5.8)

where C4,2M , D4,2M depend only on {L, W 2s| 2 ≤ s ≤ M} and their derivatives. Note 
that (5.7) implies that a4,2M = λM+1 = 0.

Recall the Jacobi relation

L(2)(W 4
(0)W

2M ) = (L(2)W
4)(0)W

2M + W 4
(0)(L(2)W

2M )

+ 2(L(1)W
4)(1)W

2M + (L(0)W
4)(2)W

2M .
(5.9)

First, L(2)(W 4
(0)W

2M ) = b4,2M L(2)∂ω2M+2 + L(2)D4,2M , and since D4,2M only depends 
on L, W 4, . . . , W 2M and their derivatives, L(2)D4,2M does not contribute to the coeffi-
cient of ω2M+2. Next, we have

L(2)∂ω2M+2 = −(∂L)(2)ω
2M+2 + ∂(L(2)ω

2M+2).

By weight considerations, L(2)ω
2M+2 only depends on L, W 4, . . . , W 2M , and their deriva-

tives. Modulo terms which depend on L, W 4, . . . , W 2M and their derivatives, we have

L(2)∂ω2M+2 ≡ −(∂L)(2)ω
2M+2 = 2L(1)ω

2M+2 = 2(2M + 2)ω2M+2.

So the left hand side of (5.9) is 2(2M + 2)b4,2M ω2M+2, up to terms which do not depend 
on ω2M+2.

Next, the term (L(2)W
4)(0)W

2M from (5.9) vanishes because W 4 is primary. The 
term W 4

(0)(L(2)W
2M ) from (5.9) does not contribute to the coefficient of ω2M+2, 

since L(2)W
2M only depends on L, W 4, . . . , W 2M−2 and their derivatives. The term 
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2(L(1)W
4)(1)W

2M from (5.9) contributes 8W 4
(1)W

2M = 8a4,2M ω2M+2. The term 
(L(0)W

4)(2)W
2M from (5.9) contributes ∂W 4

(2)W
2M = −2W 4

(1)W
2M = −2a4,2M ω2M+2. 

Equating the coefficients of ω2M+2, we obtain 2(2M + 2)b4,2M = 6a4,2M , so that 
b4,2M = 3

2M+2a4,2M = 0. This proves the above claim that W 4
(0)W

2M does not depend 
on ∂ω2M+2.

Similarly, for 4 < 2i ≤ 2j ≤ 2M and 2i + 2j = 2M + 4, write

W 2i
(1)W

2j =a2i,2jω2M+2 + C2i,2j ,

W 2i
(0)W

2j =b2i,2j∂ω2M+2 + D2i,2j ,
(5.10)

where C2i,2j , D2i,2j depend only on {L, W 2s| 2 ≤ s ≤ M} and their derivatives. A similar 
modification of the proof of [75, Lemmas 3.3, 3.4, and 3.5] show that the constants 
a2i,2M+4−2i, b2i,2M+4−2i are scalar multiplies of a4,2M = λM+1, hence they all vanish.

Next, since W 2M+4 = W 4
(1)W

2M+2 and W 2M+2 is a normally ordered polynomial in 
L, W 4, . . . , W 2M and their derivatives, we have λM+2 = 0. As above, for 4 < 2i ≤ 2j ≤
2M and 2i + 2j = 2M + 6, write

W 2i
(1)W

2j =a2i,2jω2M+4 + C2i,2j ,

W 2i
(0)W

2j =b2i,2j∂ω2M+4 + D2i,2j ,
(5.11)

where C2i,2j , D2i,2j depend only on {L, W 2s| 2 ≤ s ≤ M} and their derivatives. The 
same argument shows that for 4 < 2i, a2i,2M+6−2i, b2i,2M+6−2i are all scalar multiplies 
of a6,2M = λM+2 = 0, hence they all vanish. In particular, for 4 < 2i ≤ 2j ≤ 2M and 2i +
2j = 2M + 6, all terms in the OPE of W 2i(z)W 2j(w) depend only on L, W 4, . . . , W 2M .

By induction on r, the same procedure shows that for 4 < 2i ≤ 2j ≤ 2M , 2i +
2j ≤ 2M + 2r, and 2r ≤ 2M , all terms in the OPE of W 2i(z)W 2j(w) depend only on 
L, W 4, . . . , W 2M . �
Theorem 5.4. For i = 1, 2 and X = B, C, D, O, C̃ψ

iX(n, m) is a one-parameter quotient 
of Wev(c, λ) for some ideal IiX,n,m.

Proof. We will prove this only for C̃ψ
1D(n, m) since the proof in the other cases is similar. 

First, for n ≥ 1 and m = 0,

Cψ
1D(n, 0) ∼= Com(V ψ−2n+1(so2n), V ψ−2n+1(so2n+1))Z2 ,

which is generated by the weights 2 and 4 fields and arises as a quotient of Wev(c, λ)
[34, Thm. 3.3]. In particular, it coincides with C̃ψ

1D(n, 0). Similarly, for n = 0 and m ≥ 1, 
Cψ

1D(0, m) ∼= Wk(so2m+1) so the same holds by [75, Cor. 5.2].
We assume next that n ≥ 1 and m ≥ 1, and let {L, W 4, . . . , W 2M } be the strong 

generating set for C̃ψ
1D(n, m) given by Lemma 5.10. We need a slightly different argument 

in the cases M ≥ 7 and M < 7.
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Suppose first that M ≥ 7. By [75, Thm. 3.10], to show that C̃ψ
1D(n, m) is a quotient 

of Wev(c, λ) it suffices to prove that {L, W 2r| 2 ≤ r ≤ 7} satisfy the OPE relations of 
[75]; equivalently, all Jacobi identities of type (W 2a, W 2b, W 2c) for a + b + c ≤ 8 hold as 
a consequence of [75, Eq. (2.6)-(2.9)]. In this notation, W 2 = L, as in [75].

By [34, Thm. 2.1], this condition is automatic if the graded character of C̃ψ
1D(n, m)

coincides with that of Wev(c, λ) up to weight 13. By Lemma 5.6, the first relation among 
the generators {L, ω2r| r ≥ 2} of Cψ

1D(n, m) and their derivatives occurs in weight 2(m +
n + 1)(2n + 1), and since n, m ≥ 1, there are no normally ordered relations in Cψ

1D(n, m)
among these fields in weight below 18. Therefore the character of Cψ

1D(n, m) coincides 
with that of Wev(c, λ) in weight up to 14. Since M ≥ 7, C̃ψ

1D(n, m) and Cψ
1D(n, m) have 

the same graded character up to weight 14, so the conclusion holds.
Finally, suppose that M < 7. Since λM+1 = 0 and λr �= 0 for 2 ≤ r ≤ M , there can 

be no nontrivial normally ordered relations among the generators {L, W 4, . . . , W 2M } of 
C̃ψ

1D(n, m) in weight up to 2M , since this property holds for the corresponding fields 
{L, ω4, . . . , ω2M }. Equivalently, all Jacobi relations among {L, W 4, . . . , W 2M } of type

(W 2a, W 2b, W 2c), 2a + 2b + 2c ≤ 2M + 2,

must hold as a consequence of [75, Eq. (2.6)-(2.9)] alone. Therefore the OPEs 
W 2i(z)W 2j(w) for 2i + 2j ≤ 2M are the same as those of WI,ev(c, λ) for some ideal 
I ⊆ C[c, λ].

If we use the same procedure as the construction Wev(c, λ) given by [75, Thm. 3.9], 
beginning with the fields L, W 4, . . . , W 2M and the OPEs W 2i(z)W 2j(w) for 2i + 2j ≤
2M , we can formally define new fields W 2M+2r = (W 4

(1))rW 2M for all r ≥ 1, and then 
define the OPE algebra of all fields {L, W 4, . . . , W 2M , W 2M+2r| r ≥ 1} recursively so 
that they are the same as the OPEs in WI,ev(c, λ). In particular, this realizes C̃ψ

1D(n, m)
as a one-parameter quotient of WI,ev(c, λ) by some vertex algebra ideal I containing a 
field in weight 2M +2 of the form W 2M+2 −P (L, W 4, . . . , W 2M ), where P is a normally 
ordered polynomial in L, W 2, . . . , W 2M and their derivatives. �
Corollary 5.1. For n + m ≥ 1, Wψ

iX(n, m) is an extension of V t(a) ⊗ W, where W is a 
quotient of Wev,IiX,n,m(c, λ), for some ideal IiX,n,m ⊆ C[c, λ].

6. Proof of main result

6.1. Step 1: computation of truncation curves

In this subsection, we shall compute the ideals IiX,n,m ⊆ C[c, λ] such that C̃ψ
iX(n, m)

is realized as a quotient of Wev,IiX,n,m(c, λ). More precisely, we will parametrize the 
corresponding variety V (IiX,n,m) ⊆ C2 by giving a rational map

ΦiX,n,m : C \ P → V (IiX,n,m), ΦiX,n,m(ψ) =
(
c(ψ), λ(ψ)

)
.
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Here P is the finite set consisting of poles c(ψ) and λ(ψ). Note first that in the cases 
n = 0, m ≥ 1, and X = C, D, there is nothing to prove because

C̃ψ
1C(0, m) = Cψ

1C(0, m) = Wψ−2m+1(so2m+1) = C̃ψ
1D(0, m) = Cψ

1D(0, m),

C̃ψ
2C(0, m) = Cψ

2C(0, m) = Wψ−m−1(sp2m) = C̃ψ
2D(0, m) = Cψ

2D(0, m).
(6.1)

The truncation curve for Wψ−2m+1(so2m+1) already appears in [75], and coincides with 
the truncation curves for both C̃ψ

1C(n, m) and C̃ψ
1D(n, m) specialized to n = 0. Similarly, 

the truncation curve for Wψ−m−1(sp2m) from [75] coincides with the truncation curves 
for both C̃ψ

2C(n, m) and C̃ψ
2D(n, m) when n = 0.

The following cases must also be treated separately, and will be discussed briefly at 
the end of this section.

(1) C̃ψ
1D(1, m) and C̃ψ

2D(1, m), where a = so2,
(2) C̃ψ

1B(0, m), C̃ψ
1O(0, m), C̃ψ

2B(0, m), and C̃ψ
2O(0, m) where a = 0. In these cases, 

Wψ
iX(0, m) is a simple current extension of Cψ

iX(0, m) of order two.

In all other cases, a is simple and our approach will be uniform, and from now on we 
assume this to be the case. We postulate that W is a one-parameter quotient of Wev(c, λ)
and that V t(a) ⊗W admits an extension which has da additional strong generating fields 
of weight db+1

2 and appropriate parity, which transform in the standard representation 
ρa of a. We will show that these data uniquely determine the truncation curve for W, or 
equivalently, the formula λ(ψ).

Let p be a vector in this copy of ρa which is primary with respect to the action of 
V t(a). Without loss of generality, we may take p to be a highest-weight vector in this 
representation of a. This forces the following OPEs:

L(z)p(w) ∼
(

μ − Cas
t + h∨

a

)
p(w)(z − w)−2 +

(
∂p + · · ·

)
(w)(z − w)−1. (6.2)

Here μ = db+1
2 , Cas is the Casimir eigenvalue of the standard representation of a, and 

h∨
a is the dual Coxeter number of a. Additionally, the OPEs of W 4, W 6, and W 8 with p

must have the following form:

W 4(z)p(w) ∼ k0p(w)(z − w)−4 +
(

k1∂p + · · ·
)

(w)(z − w)−3

+
(

k2∂2p + k3 : Lp : + · · ·
)

(w)(z − w)−2

+
(

k4∂3p + k5 : (∂L)p : +k6 : L∂p : + · · ·
)

(w)(z − w)−1,

W 6(z)p(w) ∼ k7p(w)(z − w)−6 +
(

k8∂p + · · ·
)

(w)(z − w)−7 + · · · ,
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W 8(z)p(w) ∼ k9p(w)(z − w)−8 + · · · . (6.3)

This is because our vertex algebra is strongly generated by V t(a) ⊗ W together with the 
fields of weight db+1

2 transforming in the standard representation of a. Since the fields 
W 2i commute with V t(a), each term appearing in these OPEs has the same Cartan 
weight as p relative to the Cartan subalgebra of a. Moreover, only those terms which 
depend on p, L, and their derivatives are needed in our calculations, so all other terms 
are omitted in (6.3).

Next, we impose the following Jacobi identities

L(2)(W 4
(1)p) − W 4

(1)(L(2)p) − (L(0)W
4)(3)p

− 2(L(1)W
4)(2)p − (L(2)W

4)(1)p = 0, (6.4)

L(3)(W 4
(0)p) − W 4

(0)(L(3)p) − (L(0)W
4)(3)p − 3(L(1)W

4)(2)p

− 3(L(2)W
4)(1)p − (L(3)W

4)(0)p = 0, (6.5)

L(4)(W 4
(0)p) − W 4

(0)(L(4)p) − (L(0)W
4)(3)p − 4(L(1)W

4)(3)p − 6(L(2)W
4)(2)p

− 4(L(3)W
4)(1)p − (L(4)W

4)(0)p = 0, (6.6)

L(3)(W 4
(1)p) − W 4

(1)(L(3)p) − (L(0)W
4)(4)p − 3(L(1)W

4)(3)p

− 3(L(2)W
4)(2)p − (L(3)W

4)(1)p = 0, (6.7)

L(2)(W 4
(2)p) − W 4

(2)(L(2)p) − (L(0)W
4)(4)p

− 2(L(1)W
4)(3)p − (L(2)W

4)(2)p = 0, (6.8)

L(2)(W 4
(0)p) − W 4

(0)(L(2)p) − (L(0)W
4)(2)p

− 2(L(1)W
4)(1)p − (L(2)W

4)(0)p = 0, (6.9)

W 4
(0)(W 4

(6)p) − W 4
(6)(W 4

(0)p) − (W 4
(0)W

4)(6)p = 0, (6.10)

W 4
(4)(W 4

(2)p) − W 4
(2)(W 4

(4)p) − (W 4
(0)W

4)(6)p − 4(W 4
(1)W

4)(5)p − 6(W 4
(2)W

4)(4)p

− 4(W 4
(3)W

4)(3)p − (W 4
(4)W

4)(2)p = 0, (6.11)

W 4
(1)(W 4

(5)p) − W 4
(5)(W 4

(1)p) − (W 4
(0)W

4)(6)p − (W 4
(1)W

4)(5)p = 0, (6.12)

W 4
(0)(W 6

(8)p) − W 6
(8)(W 4

(0)p) − (W 4
(0)W

6)(8)p = 0, (6.13)

W 4
(1)(W 6

(7)p) − W 6
(7)(W 4

(1)p) − (W 4
(0)W

6)(8)p − (W 4
(1)W

6)(7)p = 0. (6.14)

Note that (6.4) has weight μ + 1, and a computation shows that the coefficient of ∂p

depends only on k1, k2, k3 together with the level t of a, and the parameters n, m. Sim-
ilarly, (6.5) has weight μ + 1, and the coefficient of ∂p depends only on k1, k4, k5, k6
together with t, n, m. Next, (6.6), (6.7), and (6.8) all have weight μ, and hence are scalar 
multiples of p; these equations depend only on k0, . . . , k6, together with t, n, m. Also, 
(6.9) has weight μ +2, and the coefficient of ∂2p depends only on k2, k4, k6 together with 
t, n, m.
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Next, (6.10), (6.11), and (6.12) all have weight μ, and hence are scalar multiples of 
p; these equations depend only on k0, . . . , k8, together with λ, t, n, m. Finally, (6.13) and 
(6.14), all have weight μ, and hence are scalar multiples of p; these equations depend 
only on k0, . . . , k9, together with λ, t, n, m.

Using the Mathematica package of Thielemans [93], we can solve these equations to 
obtain a unique solution for k0, . . . , k9 and λ as functions of t, n, m. We then set t to 
be the level of the affine subalgebra V t(a), which depends on ψ and n. Solving for λ in 
terms of ψ, n, m, and using the formulas for c = c(ψ, n, m) appearing in Subsection 3.9, 
gives the explicit rational parametrizations

ΦiX,n,m : C \ P → V (IiX,n,m), ΦiX,n,m(ψ) =
(
c(ψ), λ(ψ)

)
,

for i = 1, 2 and X = B, C, D, O. The explicit formula for Ψ2B,n,m(ψ) is given in Ap-
pendix A, but we do not give the others because as we shall see in the next section, all 
others can be obtained from this one together with various symmetries.

Finally, we comment on how this argument must be modified in the cases where 
a = so2, or a = 0 and we take a Z2-orbifold. First, in the case C̃ψ

1D(1, m), the affine 
subalgebra is a Heisenberg algebra H(1), and we normalize the generator J so that the 
two fields p± transforming as ρa satisfy

J(z)p±(w) ∼ ±(z − w)−1. (6.15)

Then J satisfies

J(z)J(w) ∼ (ψ − 1)(z − w)−2. (6.16)

We replace the level t in the above argument by ψ − 1, we replace (6.2) with

L(z)p(w) ∼
(

2ψ + 2mψ − 2m − 3
2(ψ − 1)

)
p(w)(z − w)−2 +

(
∂p + · · ·

)
(w)(z − w)−1, (6.17)

and we solve the same system of equations to determine λ.
Next, in the case C̃ψ

2D(1, m), if we normalize the Heisenberg field J so that (6.15)
holds, we have

J(z)J(w) ∼ (1 − 2ψ)(z − w)−2. (6.18)

Again, we replace the level t by 1 − 2ψ, we replace (6.2) with

L(z)p(w) ∼
(

ψ + 2mψ − m

2ψ − 1

)
p(w)(z − w)−2 +

(
∂p + · · ·

)
(w)(z − w)−1, (6.19)

and we apply the same procedure.
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Finally, in the remaining cases C̃ψ
1B(0, m), C̃ψ

1O(0, m), C̃ψ
2B(0, m), and C̃ψ

2O(0, m), we let 
p be a generator of the simple current extension of Cψ

iX(0, m) of weight μ, and we replace 
(6.2) with

L(z)p(w) ∼ μp(w)(z − w)−2 +
(

∂p + · · ·
)

(w)(z − w)−1. (6.20)

The variable t no longer appears, and rest of the argument is the same.

6.2. Step 2: symmetries of truncation curves

Theorem 6.1. For m ≥ n ≥ 0 and m + n ≥ 1, we have the following identities

Φ2B,n,m(ψ) = Φ2O,n,m−n

( 1
4ψ

)
= Φ2B,m,n

( ψ

2ψ − 1
)
,

Φ1C,n,m(ψ) = Φ2C,n,m−n

( 1
2ψ

)
= Φ1C,m,n

( ψ

ψ − 1
)
,

Φ2D,n,m(ψ) = Φ1D,n,m−n

( 1
2ψ

)
= Φ1O,m,n−1

( 2ψ

2ψ − 1
)
,

Φ1O,n,m(ψ) = Φ1B,n,m−n

( 1
ψ

)
= Φ2D,m+1,n

( ψ

2(ψ − 1)
)
.

(6.21)

Proof. The explicit formulas for ΦiX,n,m(ψ) in all cases can be computed using the 
approach in the previous subsection. These symmetries follow immediately from our 
formulas. �

It turns out that all eight functions ΦiX,n,m(ψ) can be expressed uniformly in terms 
of one of them. From (6.21), it clear that within each of the four triality classes, there is a 
uniform expression, so what remains is to find an expression that relates the expressions 
from different triality classes. The explicit formula for Φ2B,n,m(ψ) appears in Appendix A
as (A.1). Here n, m are nonnegative integers, but if we are allowed to replace them with 
half-integers, we obtain the following.

Theorem 6.2.

Φ1O,n,m(ψ) = Φ2B,n,m+ 1
2

(ψ

2
)
, (6.22)

Φ2D,n,m(ψ) = Φ2B,n− 1
2 ,m(ψ), (6.23)

Φ1C,n,m(ψ) = Φ2B,n+ 1
2 ,m+ 1

2

(ψ

2
)
. (6.24)

By (6.21), we can recover Φ1B,n,m(ψ), Φ1D,n,m(ψ), and Φ2C,n,m(ψ), from
Φ1O,n,m+n( 1

ψ ), Φ2D,n,m+n( 1
2ψ ), and Φ1C,n,n+m( 1

2ψ ), respectively. Together with (6.22) -
(6.24), this shows that all functions ΦiX,n,m(ψ) for i = 1, 2 and X = B, C, D, O, can be 
recovered from these symmetries together with the explicit formula (A.1) for Φ2B,n,m(ψ).
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6.3. Step 3: exhaustiveness

The last step in the proof of Theorem 4.1 is to show that C̃ψ
iX(n, m) = Cψ

iX(n, m) for 
i = 1, 2 and X = B, C, D, O. The isomorphisms in Theorem 4.1 then follow immediately 
from the symmetries in Theorem 6.1. For a particular value of ψ ∈ C, let C̃ψ,iX(n, m)
and Cψ,iX(n, m) denote the simple quotients of these algebras.

In view of Lemma 5.9 and Theorem 5.4, it suffices to show that C̃ψ
iX(n, m) contains the 

strong generating fields of Cψ
iX(n, m) in weights 2, 4, . . . , 2m + 4. We give the proof only 

for C̃ψ
2B(n, m) since the argument in the other cases is the same. The truncation curve 

(A.1) for C̃ψ
2B(n, m) and the truncation curve for Ws(sp2r), which appears in Appendix 

A of [75], intersect at the point (c, λ) given in (A.2). This intersection gives rise to the 
following isomorphism:

C̃ψ,2B(n, m) ∼= Ws(sp2r), ψ = 1 + 2m − 2n

2(1 + 2m + 2r) , s = −(r + 1) + 1 + 2m + 2r

4(n + r) .

(6.25)
Note that s is a nondegenerate admissible level for ŝp2r whenever 1 + 2m + 2r and 
n + r are coprime. By Corollary 2.1, for ψ and r sufficiently large, the universal algebra 
Ws(sp2r) has a singular vector in weight 4(m +1)(n +1), and no singular vector in lower 
weight. Also, by [75, Rem. 5.3], Ws(sp2r) is generated by the weights 2 and 4 fields for 
all non-critical values of s, hence this holds for the simple quotient Ws(sp2r) as well. It 
follows that C̃ψ,2B(n, m) contains all fields in weights 2, 4, . . . , 4(m + 1)(n + 1) − 2, so 
it must coincide with Cψ,2B(n, m). Since this holds at infinitely many values of ψ and 
r, it holds for the universal objects as well. This shows that C̃ψ

2B(n, m) = Cψ
2B(n, m) as 

one-parameter vertex algebras. Repeating this argument in the other cases completes 
the proof of Theorem 4.1.

As a consequence of Theorem 4.1 and the minimal strong generating types for 
Cψ

2B(n, m) and Cψ
2D(n, m) given earlier, we immediately obtain

Corollary 6.1. For n + m ≥ 1, we have the following minimal strong generating types as 
one-parameter vertex algebras.

(1) Cψ
1B(n, m) is of type W(2, 4, . . . , 2(1 + n)(3 + 2m + 2n) − 2),

(2) Cψ
1D(n, m) is of type W(2, 4, . . . , 2(1 + m + n)(1 + 2n) − 2),

(3) Cψ
1O(n, m) is of type W(2, 4, . . . , 2(3 + 2m)(1 + n) − 2),

(4) Cψ
2O(n, m) is of type W(2, 4, . . . , 4(1 + n)(1 + m + n) − 2).

A remarkable feature of the truncation curves is that their pairwise intersection points 
are all rational points. We expect, but do not prove, that these four families of curves 
account for all nontrivial truncations of Wev(c, λ); an equivalent conjecture is also due 
to Procházka [88]. In Appendices B, C, and D, we will give the explicit classification 
of coincidences between the simple quotients Cψ,iX(n, m) and the algebras Ws(sp2r), 



58 T. Creutzig, A.R. Linshaw / Advances in Mathematics 409 (2022) 108678
Ws(so2r)Z2 , and Ws(osp1|2r)Z2 ; certain isomorphisms of this kind will be needed for our 
rationality results in Section 7.

6.4. Uniqueness and reconstruction

The algebras Wψ
iX(n, m) satisfy a uniqueness theorem which is analogous to [37, 

Thm. 9.1 and Thm. 9.8].

Theorem 6.3. For all n, m with n + m ≥ 1, i = 1, 2, and X = B, C, D, O, the full OPE 
algebra of Wψ

iX(n, m) is determined completely from the structure of Cψ
iX(n, m), the action 

of the Lie algebra a on the fields which transform as the standard representation ρa, and 
the nondegeneracy condition on these fields given by [37, Thm. 3.5]. In particular,

(1) If Aψ
iX(n, m) is a one-parameter vertex algebra which extends V t(a) ⊗ Cψ

iX(n, m) by 
da fields in conformal weight db+1

2 of correct parity, which are primary with respect 
to V t(a) as well as the total Virasoro field, and satisfy the nondegeneracy condition, 
then Aψ

iX(n, m) ∼= Wψ
iX(n, m), as one-parameter vertex algebras.

(2) The same result holds if we specialize to a particular value of ψ, and replace 
Aψ

iX(n, m) and Wψ
iX(n, m) by their simple quotients Aψ,iX(n, m) and Wψ,iX(n, m).

In the cases where a is simple, the proof is the same as the proof of [37, Thm. 9.1]
in the case m > 1, and is omitted. In the cases Wψ

iD(1, m) where a = so2, the affine 
subalgebra is a Heisenberg algebra H(1), and we normalize the generator J such that 
(6.15) holds. By the same argument as the proof of [37, Thm. 9.1] in the case m = 1, all 
OPEs in Wψ

iD(1, m) are uniquely determined by the structure of Cψ
iD(1, m) and (6.15), 

(6.16), and (6.18).
Finally, in the cases Cψ

1B(0, m), Cψ
1O(0, m), Cψ

2B(0, m), and Cψ
2O(0, m), a is zero and 

Cψ
iX(0, m) is just the Z2-orbifold of Cψ

iX(0, m). In these cases, the argument showing 
the uniqueness of order two simple current extensions of Cψ

iX(0, m) by one field in the 
appropriate weight and parity, is even easier and is left to the reader.

7. Rationality results

By combining Theorem 4.1 with the theory of extensions of rational vertex superal-
gebras, we prove many new rationality results in this section.

7.1. Affine vertex superalgebras of osp1|2n

Among the most fundamental examples of rational vertex algebras are the simple 
affine vertex algebras Lk(g) at positive integer level k [52]. For Lie superalgebras, it 
is known that the only examples of lisse affine vertex superalgebras are Lk(osp1|2n) for 
k ≥ 0 [56], but the rationality is only known for n = 1 [21]. In this case, it is a consequence 
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of the fact that Lk(osp1|2) is an extension of Lk(sp2) times a rational Virasoro algebra. 
This perspective generalizes naturally to the case n > 1, where the Virasoro algebra is 
replaced by a principal W-algebra of type C.

Theorem 7.1. For all positive integers n, k, the vertex superalgebra Lk(osp1|2n) is lisse 
and rational, and is an extension of Lk(sp2n) ⊗ W�(sp2n), for � = −(n + 1) + 1+k+n

1+2k+2n .

Proof. [73, Prop. 8.1 and 8.2] tells us that Lk(sp2n) embeds into Lk(osp1|2n) if k is a pos-
itive integer. Since Lk(sp2n) is rational, Lk(osp1|2n) is completely reducible as a module 
for Lk(sp2n). It follows that Com(Lk(sp2n), Lk(osp1|2n)) is simple by [25, Prop. 5.4].

Next, since k > −(n + 1), it follows from [35, Thm. 8.1] that Com(Lk(sp2n),
Lk(osp1|2n)) is a homomorphic image of Cψ

1C(n, 0) = Com(V k(sp2n), V k(osp1|2n)), where 
k = −1

2 (ψ + 2n + 1). Since Com(Lk(sp2n), Lk(osp1|2n)) is simple, it must be the simple 
quotient Cψ,1C(n, 0). Combining this with Corollary 4.1, together with Feigin-Frenkel 
duality, we obtain

Com(Lk(sp2n), Lk(osp1|2n)) ∼= W�(sp2n), � = −(n + 1) + 1 + k + n

1 + 2k + 2n
,

which is lisse and rational [8]. We thus have that both Lk(osp1|2n) and its even subalgebra 
Lk(osp1|2n)Z2 are extensions of a lisse vertex algebra. This extension must be of finite 
index; otherwise, at least one of the finitely many irreducible modules of the lisse vertex 
algebra must appear with infinite multiplicity. This is impossible since conformal weight 
spaces of Lk(osp1|2n), and its even subalgebra Lk(osp1|2n)Z2 , are finite dimensional. It 
follows that both these extensions are lisse. Rationality of Lk(osp1|2n)Z2 follows from 
Proposition 2.3, and rationality of Lk(osp1|2n) then follows from [25, Thm. 5.13]. �
7.2. Rationality of Wk(osp1|2n)

A celebrated result of Arakawa [8] says that for a simple Lie algebra g, W�(g) is lisse 
and rational when � is a nondegenerate admissible level for ĝ. When g is simply-laced, 
recall from [12] that

Com(Lk+1(g), Lk(g) ⊗ L1(g)) ∼= W�(g), where � = −h∨ + k + h∨

k + h∨ + 1 . (7.1)

In particular, this realizes W�(g) for all nondegenerate admissible levels �.
We consider the analogous diagonal coset for type B. First, if k is an admissible 

level for ŝo2n+1 we have an embedding Lk+1(so2n+1) ↪→ Lk(so2n+1) ⊗ L1(so2n1) [70]. 
Additionally, L1(so2n+1) acts on the free fermion algebra F(2n + 1), and

Com(Lk+1(so2n+1), Lk(so2n+1) ⊗ L1(so2n+1))
∼= Com(Lk+1(so2n+1), Lk(so2n+1) ⊗ F(2n + 1)).
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In the notation of Theorem 4.1, recall the isomorphism

Cψ
2B(n, 0) ∼= Com(V −2ψ−2n+2(so2n+1), V −2ψ−2n+1(so2n+1) ⊗ F(2n + 1))Z2

∼= Cψ′

2B(0, n) ∼= Wψ′−n−1/2(osp1|2n)Z2 ,
1
ψ

+ 1
ψ′ = 2.

(7.2)

Suppose that the level −2ψ − 2n + 1 is admissible for ŝo2n+1, that is,

−2ψ − 2n + 1 = −(2n − 1) + p

q
,

where p, q ∈ N are coprime and p ≥ 2n − 1 if q is odd, and p ≥ 2n is q is even. In 
this case, by [35, Thm. 8.1 and Rem. 8.3] the simple quotient Cψ′,2B(0, n) coincides with 
Com(Lk+1(so2n+1), Lk(so2n+1) ⊗ F(2n + 1))Z2 , which we expect to be lisse and rational 
by analogy with the simply-laced case. This motivates the following conjecture.

Conjecture 7.1. The principal W-superalgebra Wψ′−n−1/2(osp1|2n) where ψ′ = p
2(p+q) , 

is lisse and rational if

(1) p, q ∈ N are coprime,
(2) p ≥ 2n − 1 if q is odd,
(3) p ≥ 2n if q is even.

By (4.1), this conjecture implies that Wψ′−m−1/2(osp1|2m) is also lisse and rational at 
the Feigin-Frenkel dual level, where ψ′ = 1

4ψ = p+q
2p .

As in the case of Wk(g) for a Lie algebra g, we expect that rational vertex su-
peralgebras Wk(osp1|2n) will serve as building blocks for many non-principal rational 
W-superalgebras. In the next subsection, we will give examples of subregular W-algebras 
of so2m+3 and principal W-superalgebras of osp2|2n+2 with this property.

Using the realization Cψ
2B(0, m) ∼= Wψ−m−1/2(osp1|2m)Z2 , we are able to prove some 

cases of Conjecture 7.1 using the coincidences appearing in Appendices B and C.

Theorem 7.2.

(1) For k = −(m + 1
2 ) + 2m−1

4(m+r) and r ∈ N, Wk(osp1|2m) is lisse and rational when m +r

and 1 + 2r are coprime.
(2) For k = −(m + 1

2 ) + 1+2m
2(1+2m+2r) and r ∈ N, Wk(osp1|2m) is lisse and rational when 

r and 1 + 2m are coprime.

Proof. By Theorem B.3, for k = −(m + 1
2 ) + 2m−1

4(m+r) , we have

Cψ,2B(0, m) = Wψ−m−1/2(osp1|2m)Z2 ∼= Ws(sp2r), s = −(r + 1) + 1 + 2r
.
4(m + r)
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Since s is a nondegenerate admissible level for ŝp2r, the first statement follows.
Similarly, Theorem B.3 also shows that for k = −(m + 1

2 ) + 1+2m
2(1+2m+2r) , we have

Cψ,2B(0, m) = Wψ−m−1/2(osp1|2m)Z2 ∼= Ws(sp2r), s = −(r + 1) + 1 + 2m + 2r

4r
.

Again, s is a nondegenerate admissible level for ŝp2r, so the second statement follows. �
We have a similar result coming from coincidences with algebras of the form 

Wr(so2n)Z2 .

Theorem 7.3. For k = −(m + 1
2 ) + m

2m+2r−1 and r ∈ N, Wk(osp1|2m) is lisse and rational 
when 2r − 1 and 2m are coprime.

Proof. By Theorem C.3, for k = −(m + 1
2 ) + m

2m+2r−1 we have

Cψ,2B(0, m) = Wψ−m−1/2(osp1|2m)Z2 ∼= Ws(so2r)Z2 , s = −(2r − 2) + 2r − 1
2m + 2r − 1 .

Since s is a nondegenerate admissible level for ŝo2r, the claim follows. �
In the case of Wk(osp1|2), it was shown in [20] that the diagonal coset

Cr
2 = Com(V r+2(sl2), V r(sl2) ⊗ L2(sl2))

is a quotient of Wev(c, λ) with parametrization

c = 3r(6 + r)
2(2 + r)(4 + r) , λ = −2(r + 2)(r + 4)(−5248 − 4488r − 352r2 + 132r3 + 11r4)

7(r − 2)(r + 8)(68 + 42r + 7r2)(352 + 354r + 59r2) .

A calculation shows that Cr
2

∼= Cψ
2B(0, 1) = Wψ−3/2(osp1|2)Z2 , where ψ and r are related 

by ψ = 2+r
2(4+r) or ψ = 4+r

2(2+r) . Since the simple quotient Cr,2 is lisse and rational whenever 
r is admissible for ŝl2, we obtain

Theorem 7.4. Wψ−3/2(osp1|2) is lisse and rational when ψ = 2+r
2(4+r) or ψ = 4+r

2(2+r) , and 

r is admissible for ŝl2.

7.3. Subregular W-algebras of type B

Recall that Wk(so2m+3, fsubreg) for m ≥ 1 is exceptional in the sense of [14] when 
k = −(2m + 1) + p

q is admissible and q = 2m + 2 or 2m + 1; see Table 1 of [14]. It is 
therefore lisse [7], but the rationality is only known in the case m = 1 [46]. We will prove 
the rationality in all cases where q = 2m + 2, and in all cases where q = 2m + 1 and p
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is odd. In the missing cases where q = 2m + 1 and p is even, we will see that rationality 
would follow from Conjecture 7.1.

Recall that Com(H(1), Wψ−2m−1(so2m+3, fsubreg))Z2 can be identified with
Cψ,1D(1, m). We set ψ = p

q as above, and we begin with the case q = 2m + 2.

Theorem 7.5. For all ψ = 3+2m+2r
2m+2 such that r ∈ N and m + 1 and 2r + 1 are coprime, 

Wψ−2m−1(so2m+3, fsubreg) is lisse and rational.

Proof. By Theorem B.2, we have

Cψ,1D(1, m) ∼= Com(H(1), Wψ−2m−1(so2m+3, fsubreg))Z2

∼= Ws(sp2r), s = −(r + 1) + 2m + 2r + 3
2(2r + 1) .

Note that the first isomorphism holds by [35, Thm. 8.1 and Rem. 8.3]. Under the above 
arithmetic condition, s is a nondegenerate admissible level for ŝp2r, so Cψ,1D(1, m) is lisse 
and rational. Therefore Com(H(1), Wψ−2m−1(so2m+3, fsubreg)), being a simple current 
extension of Cψ,1D(1, m) is also lisse and rational. It then follows from Proposition 2.3
that Wψ−2m−1(so2m+3, fsubreg) is lisse and rational as well. �

Recall from (4.3) in the case n = 1 that

Com(H(1), Wψ−2m−1(so2m+3, fsubreg))Z2 ∼= Com(H(1), Wψ′−m(osp2|2m+2))Z2 ,

ψ′ = 1
2ψ

.

This is the Z2-invariant part of the duality (4.7) proved in [25]. We obtain

Corollary 7.1. For ψ′ = 1+m
3+2m+2r such that r ∈ N and m + 1 and 2r + 1 are coprime,

Wψ′−m(osp2|2m+2) is lisse and rational.

The fact that Wψ′−m(osp2|2m+2) is lisse was also pointed out in [25] as a consequence 
of (4.7) together with the lisseness of Wψ−2m−1(so2m+3, fsubreg).

Next, we consider the case where q = 2m + 1 and p is odd.

Theorem 7.6. For ψ = 2m+2r+1
2m+1 such that r ∈ N and r and 2m + 1 are coprime,

Wψ−2m−1(so2m+3, fsubreg) is lisse and rational.

Proof. By Theorem C.2 and [35, Thm. 8.1 and Rem. 8.3], we have

Cψ,1D(1, m) ∼= Com(H(1), Wψ−2m−1(so2m+3, fsubreg))Z2

∼= Ws(so2r)Z2 , s = −(2r − 2) + 2r
.
2m + 2r + 1
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As above, s is a nondegenerate admissible level for ŝo2r, so Cψ,1D(1, m) is lisse and 
rational. Therefore Com(H(1), Wψ−2m−1(so2m+3, fsubreg)) is also lisse and rational, and 
so is Wψ−2m−1(so2m+3, fsubreg). �
Corollary 7.2. For ψ′ = 2m+1

2(2m+2r+1) such that r ∈ N and r and 2m + 1 are coprime,
Wψ′−m(osp2|2m+2) is lisse and rational.

We now consider the case where q = 2m + 1 and p is even. By Theorem D.2, we have

Cψ,1D(1, m) ∼= Ws(osp1|2r)Z2 , ψ = 2(m + r + 1)
2m + 1 , s = −(r + 1

2) + m + r + 1
1 + 2r

.

(7.3)
For r = 1, we have Cψ,1D(1, m) ∼= Ws(osp1|2)Z2 ∼= Ca,2, where

ψ = 2(2 + m)
2m + 1 , s = −3

2 + 2 + m

3 , a = −2 + 6
2m + 1 .

Since a is admissible for ŝl2, it follows from Theorem 7.4 that

Corollary 7.3. For ψ = 2(2+m)
2m+1 , Wψ−2m−1(so2m+3, fsubreg) is lisse and rational. Simi-

larly, for ψ′ = 2m+1
4(2+m) , Wψ′−m(osp2|2m+2) is lisse and rational.

Remark 7.1. If ψ = 2(m+r+1)
2m+1 , m + r + 1 and 2m + 1 are coprime, and r > 1, we are 

not able to prove the rationality of Wψ−2m−1(so2m+3, fsubreg) using the methods of this 
paper. However, due to McRae’s recent proof of the Kac-Wakimoto-Arakawa conjecture 
in full generality [82], these algebras are indeed rational. In view of (7.3) together with 
Proposition 2.3, it follows that Ws(osp1|2r) is rational when s = −(r + 1

2) + m+r+1
1+2r . This 

proves an additional family of cases of Conjecture 7.1.

It is natural to ask whether the examples where k = −(2m + 1) + p
q is admissible and 

q = 2m +2 or 2m +1, account for all cases where Wk(so2m+3, fsubreg) is lisse and rational. 
It turns out that this is not the complete list. For example, we have isomorphisms

Cψ,1D(1, m) ∼= Ws(osp1|2)Z2 ∼= Ca,2,

ψ = 2m

2m − 1 , s = −3
2 + m

2m − 1 , a = 4m − 4.
(7.4)

Since a is a positive integer for m > 1, we obtain

Corollary 7.4. For ψ = 2m
2m−1 , Wψ−2m−1(so2m+3, fsubreg) is lisse and rational. Similarly, 

for ψ′ = 2m−1
4m , Wψ′−m(osp2|2m+2) is lisse and rational.

Remark 7.2. The examples in Corollary 7.4 fit into the third family of coincidences in 
Theorem D.2, namely,
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Cψ,1D(1, m) ∼= Ws(osp1|2r)Z2 , ψ = 2(m − r + 1)
1 + 2m − 2r

, s = −(r + 1
2) + m + 1 − r

2m + 1 − 2r
.

Since m+1−r
2m+1−2r = p+q

2p for p = 2m − 2r + 1 and q = 1, Conjecture 7.1 would imply that 
Ws(osp1|2r)Z2 is lisse and rational whenever m ≥ 2r − 1, and hence that the following 
algebras are lisse and rational:

Wψ−2m−1(so2m+3, fsubreg), ψ = 2(m − r + 1)
1 + 2m − 2r

, m ≥ 2r − 1,

Wψ′−m(osp2|2m+2), 1 + 2m − 2r

4(m − r + 1) , m ≥ 2r − 1.

(7.5)

7.4. Minimal W-algebras of type C

Here we prove another case of the Kac-Wakimoto rationality conjecture, which in-
volves the minimal W-algebras Wr−1/2(sp2n+2, fmin) for all integers r, n ≥ 1. Recall 
that in the case m = 1, Wψ

2C(n, 1) = Wψ−n−2(sp2n+2, fmin), and has affine subalge-
bra V ψ−n−3/2(sp2n). If we specialize to the case ψ = 3+2n+2r

2 for r a positive integer, 
it was shown in [13] that we have an induced embedding of simple vertex algebras 
Lr(sp2n) → Wr−1/2(sp2n+2, fmin). By [35, Thm. 8.1], the coset

Com(Lr(sp2n), Wr−1/2(sp2n+2, fmin))

is simple and coincides with the simple quotient Cψ,2C(n, 1) of Cψ
2C(n, 1).

Theorem 7.7. For all positive integers n, r, Wr−1/2(sp2n+2, fmin) is lisse and rational, 
and is an extension of Lr(sp2n) ⊗ Ws(sp2r) for s = −(r + 1) + 1+n+r

3+2n+2r .

Proof. By Theorem B.4 and [35, Thm. 8.1], for ψ = 3+2n+2r
2 and r a positive integer we 

have

Cψ,2C(n, 1) ∼= Com(Lr(sp2n), Wr−1/2(sp2n+2, fmin) ∼= Ws(sp2r),

s = −(r + 1) + 1 + n + r

3 + 2n + 2r
. (7.6)

Since s is a nondegenerate admissible level for Ws(sp2r), Cψ,2C(n, 1) is lisse and rational. 
Therefore Wr−1/2(sp2n+2, fmin) is an extension of Lr(sp2n) ⊗Ws(sp2r), and hence is also 
lisse and rational by Proposition 2.3. �

The isomorphism (7.6) was first conjectured in [13], and was shown in [75] to be 
equivalent to the explicit truncation curve; see [75, Conj. 7.4]. This curve is also given 
by Φ2C,n,m(ψ) in the case m = 1, which can be obtained from the formula (A.1) for 
Φ2B,n,m(ψ), together with (6.21) and (6.24).
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Remark 7.3. In the case r = 0 and ψ = 3+2n
2 , Cψ,2C(n, 1) is the simple quotient of 

WI,ev(c, λ), where I is the maximal ideal generated by c and (λ + 44+53n+12n2

77(20+29n+12n2) ). Using 
[75, Eq. (3.6) and (3.8)] and the recursive structure of the OPE algebra of Wev(c, λ)
given by [75, Thm. 3.9], it is not difficult to check that the generators L and W 4 of 
WI,ev(c, λ) lie in the maximal proper ideal, so Cψ,2C(n, 1) ∼= C. Therefore Theorem 7.7
holds for r = 0 as well. This provides an alternative proof of the fact that L0(sp2n) ↪→
W−1/2(sp2n+2, fmin) is a conformal embedding for all n ≥ 1 [5].

7.5. Cosets of type C

It is a longstanding conjecture that if A ⊆ V are both lisse and rational vertex algebras, 
the coset C = Com(A, V) is also lisse and rational. This is a theorem if A is a lattice 
vertex algebra [31], but otherwise is it known only in isolated examples. In fact, there 
are even more general situations where coset vertex algebras can be lisse and rational. 
For example, (7.1) implies that when g is simply-laced, Com(Lk+1(g), Lk(g) ⊗ L1(g)) is 
lisse and rational for all admissible levels k. We expect the following generalization of 
this statement to hold.

Conjecture 7.2. Let g be a simple, finite-dimensional Lie algebra, r a positive integer, 
and k an admissible level for ĝ. Then the coset Com(Lk+r(g), Lk(g) ⊗ Lr(g)) is lisse and 
rational.

This is known for all admissible levels k in the special case g = sl2 and r = 2 [1,20], and 
also when k is a positive integer and r = 2 in the case of E8 [78].4 The next result gives 
another special case and will be useful for proving the rationality of other interesting 
cosets later.

Theorem 7.8. For k ∈ Z≥1, the coset

Com(Lk−1/2(sp2n), Lk(sp2n) ⊗ L−1/2(sp2n)) ∼= W�(sp2k),

with � = −(k + 1) + 1+n+k
1+2n+2k . In particular, this coset is lisse and rational.

Proof. Note that [69, Cor. 4.1] tells us that Lk−1/2(sp2n) embeds into Lk(sp2n) ⊗
L−1/2(sp2n) if k is a positive integer. Hence we get that Com(Lk−1/2(sp2n), Lk(sp2n) ⊗
L−1/2(sp2n)) is simple as well, again by [25, Prop. 5.4], which applies since Lk(sp2n) ⊗
L−1/2(sp2n)) is an ordinary module for Lk−1/2(sp2n), and that category is completely 
reducible [9]. Thus by Theorem B.4 and [35, Thm. 8.1]

Com(Lk−1/2(sp2n), Lk(sp2n) ⊗ S(n)) ∼= W�(sp2k), � = −(k + 1) + 1 + n + k

1 + 2n + 2k
.

4 Note that the argument of [78] for admissible k also applies if one uses [33, Thm. 5.5].
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The vertex algebra S(n) decomposes as S(n) ∼= L−1/2(sp2n) ⊕L−1/2(ω1) with ω1 the first 
fundamental weight of sp2n, i.e., the top level of L−1/2(ω1) is the standard representation 
of sp2n. Since ω1 is not in the root lattice of sp2n, Lk−1/2(sp2n) cannot be a submodule 
of Lk(sp2n) ⊗ L−1/2(ω1). It follows that

Com(Lk−1/2(sp2n), Lk(sp2n) ⊗ L−1/2(sp2n)) ∼= Com(Lk−1/2(sp2n), Lk(sp2n) ⊗ S(n)),

which completes the proof. �
The category of ordinary modules of Lk−1/2(sp2n) is semisimple [9] and we denote by 

Pk the set of weights such that Lk−1/2(λ) is an ordinary module for Lk−1/2(sp2n). We 
have

Lk(sp2n) ⊗ L−1/2(sp2n) ∼=
⊕

λ∈Pk∩Q

Lk−1/2(λ) ⊗ M(λ). (7.7)

Here each multiplicity space M(λ) is either a direct sum of W�(sp2k)-modules or zero. 
In fact M(λ) can only be non-zero if λ is in the root lattice Q of sp2n and so we restrict 
the sum to Pk ∩ Q. Finally, M(0) ∼= W�(sp2k).

Let fmin be a minimal nilpotent element. The minimal reduction functor Hk,fmin at 
level k, see (2.9), has the property that for an irreducible highest-weight module Lk(λ)
of the affine vertex algebra of g, the reduction Hk,fmin(Lk(λ)) is an irreducible ordinary 
module of the minimal W-algebra Wk(g, fmin) as long as k is not a positive integer [10]. 
We aim to determine the λ, such that Hk,fmin(Lk−1/2(λ)) ∼= Wk−1/2(sp2n, fmin).

Lemma 7.1. For g = sp2n and k ∈ Z≥1, Hk,fmin(Lk−1/2(λ)) ∼= Wk−1/2(sp2n, fmin) implies 
λ = mω1 with m ∈ {0, 2k + 1}.

Proof. The minimal W-algebra has an affine subalgebra of type sp2n−2. The top level of 
Hk,fmin(Lk−1/2(λ)) is described in [10, (66)] (see also [71, (6.14)]), and has highest weight 
λ restricted to the Cartan subalgebra of sp2n−2. The conformal weight of the top level is 
the conformal weight of the top level of Lk−1/2(λ) minus λ(x), where x is in the Cartan 
subalgebra of the sl2-triple for the quantum Hamiltonian reduction; see Section 2.2.

In the case of g = sp2n, we embed the root system as usual in Zn with orthonormal 
basis {ε1, . . . , εn}. Then simple positive roots are α1 = 1√

2(ε1−ε2), . . . , αn−1 = 1√
2(εn−1−

εn), αn =
√

2εn. The longest short co-root is θ∨
s =

√
2(ε1 + ε2) and the Weyl vector is 

ρ = 1√
2(nε1 + (n − 1)ε2 + · · · + εn). The sl2-triple corresponds to the longest root, that 

is 
√

2ε1 and so it follows that the top level of Hk,fmin(Lk−1/2(λ)) has sp2n−2 weight zero 
if and only if λ = mω1 is a multiple of the first fundamental weight ω1 = ε1√

2 . Moreover 
λ is an admissible weight if and only if λθ∨

s ≤ 2k + 2n + 1 − 2h = 2k + 1 with h = 2n

the Coxeter number of sp2n. The conformal weight of the top level is for λ = mω1,

λ(λ + 2ρ) − λω1 = m
(

m + 2n − 1
)

,
2k + 2n + 1 2 2k + 2n + 1
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i.e. it vanishes if either m = 0 or m = 2k + 1. �
Recall from Remark 7.3 that H−1/2,fmin(L−1/2(sp2n)) ∼= C. Applying Theorem 2.2 to 

(7.7) with L = Lk(sp2n) and V = L−1/2(sp2n) yields

Lk(sp2n) ∼= Lk(sp2n) ⊗ C ∼= Lk(sp2n) ⊗ H−1/2,fmin(L−1/2(sp2n))
∼= Hk−1/2,fmin(Lk(sp2n) ⊗ (L−1/2(sp2n))

∼=
⊕

λ∈Pk∩Q

Hk−1/2,fmin(Lk−1/2(λ)) ⊗ M(λ).
(7.8)

Since (2k + 1)ω1 is not in the root lattice Q of sp2n, we can use Lemma 7.1 to conclude 
that

Com(Wk−1/2(sp2n, fmin), Lk(sp2n)) ∼= W�(sp2k), � = −(k + 1) + 1 + n + k

1 + 2n + 2k
.

Recall Theorem 7.7 saying that

Com(Lk(sp2n−2), Wk−1/2(sp2n, fmin)) ∼= Ws(sp2k), s = −(k + 1) + n + k

1 + 2n + 2k
.

We can thus employ Corollary 2.3 with V = Lk(sp2n), W1 = W�(sp2k), W2 =
Wk−1/2(sp2n, fmin), W3 = Ws(sp2k) and L = Lk(sp2n−2) to conclude that

Corollary 7.5. For k ∈ Z≥1 and n ∈ Z≥2 the coset Com(Lk(sp2n−2), Lk(sp2n)) is lisse 
and rational and is an extension of W�(sp2k) ⊗ Ws(sp2k) with � = −(k + 1) + 1+n+k

1+2n+2k

and s = −(k + 1) + n+k
1+2n+2k .

Remark 7.4. By Remark 2.1 the embedding of Lk(sp2n−2) in Lk(sp2n) is the standard 
one described in Remark 2.2 (and m = 1).

The standard coset conformal vector of the coset Com(Lk(sp2n−2), Lk(sp2n)) is the 
difference of the Sugawara vectors of Lk(sp2n) and Lk(sp2n−2). Note that the conformal 
vector of W�(sp2k) ⊗ Ws(sp2k) is not the standard coset conformal vector. The contra-
gredient dual and being of CFT-type depend on the choice of a conformal vector, e.g. 
the coset Com(Lk(sp2n−2), Lk(sp2n)) is self-contragredient and of CFT-type with the 
standard coset conformal vector. On the other hand, neither the lisse nor rationality 
properties depend on a choice of conformal vector.

We can iterate, i.e. apply Corollary 2.3 with V = Lk(sp2n), L = Lk(sp2n−2(m+1)), 
W1 = Com(Lk(sp2n−2m), Lk(sp2n)), W2 = Lk(sp2n−2m), W3 = Com(Lk(sp2n−2(m+1)),
Lk(sp2n−2m)). Then the induction hypothesis is that W1 = Com(Lk(sp2n−2m), Lk(sp2n))
is rational and lisse. The base case has just been proven and the induction step is again 
Corollary 2.3.
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Corollary 7.6. For k ∈ Z≥1, n, m ∈ Z≥1 and n > m the coset Com(Lk(sp2n−2m),
Lk(sp2n)) is lisse and rational and is an extension of

m⊗
i=1

(W�i
(sp2k) ⊗ Wsi

(sp2k)) (7.9)

with �i = −(k + 1) + 2+n−i+k
3+2n−2i+2k and si = −(k + 1) + 1+n−i+k

3+2n−2i+2k .

As above, the embedding of Lk(sp2n−2m) in Lk(sp2n) is the standard one described 
in Remark 2.2.

This coset is isomorphic to another interesting coset via level-rank duality. For this 
we use that Lk(sp2n) and Ln(sp2k) form a commuting pair in F(4nk) [67, Prop. 2]; a 
detailed proof is given in the appendix of [85]. We can thus apply the idea of the proof 
of [12, Thm. 13.1], namely

Com (Lk(sp2n−2m), Lk(sp2n))
∼= Com (Lk(sp2n−2m), Com (Ln(sp2k), F(4nk)))
∼= Com (Lk(sp2n−2m) ⊗ Ln(sp2k), F(4nk))
∼= Com (Ln(sp2k), Com (Lk(sp2n−2m), F(4nk)))
∼= Com (Ln(sp2k), Com (Lk(sp2n−2m), F(4(n − m)k)) ⊗ F(4mk))
∼= Com (Ln(sp2k), Ln−m(sp2k) ⊗ F(4mk)) .

Corollary 7.6 thus gives us

Corollary 7.7. For k, n, m ∈ Z≥1 and n > m, the coset

Com (Ln(sp2k), Ln−m(sp2k) ⊗ F(4mk))

is lisse and rational and is an extension of

m⊗
i=1

(W�i
(sp2k) ⊗ Wsi

(sp2k))

with �i = −(k + 1) + 2+n−i+k
3+2n−2i+2k and si = −(k + 1) + 1+n−i+k

3+2n−2i+2k .

7.6. Gelfand-Tsetlin algebras in types B, C and D

Consider the sequence of upper left corner inclusions gl1 ⊆ gl2 ⊆ · · · ⊆ gln+1, and 
let Zi denote the center of U(gi). The Gelfand-Tsetlin algebra is the commutative sub-
algebra of U(gln+1) which is generated by {Zi| i = 1, . . . , n + 1} [44]. In the setting of 
affine Lie algebras, the analogous object needs to be defined in a different way because 
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the center of the universal enveloping algebra is trivial for noncritical levels. In [12], 
it was shown that for all k, n ∈ Z≥1, the coset Com(Lk(gln−1), Lk(gln)) is isomorphic 
to W�(glk) for � = −k + k+n−1

k+n . Iterating this construction shows that Lk(gln) is an 
extension of 

⊗n
i=1 W�i

(glk) with �i = −k = k+n−i
k+n−i+1 . This was regarded in [12] as a 

noncommutative, affine analogue of the Gelfand-Tsetlin subalgebra Γ of U(gln). Even 
though 

⊗n
i=1 W�i

(glk) is noncommutative, its Zhu algebra is commutative, and it maps 
to Γ via the Zhu functor [96].

For types B and D, a similar observation appears in [34]. For k, n ∈ N, the cosets

Dk(n) = Com(Lk(so2n), Lk(so2n+1))Z2 , Ek(n) = Com(Lk(so2n+1), Lk(so2n+2))Z2 ,

(7.10)
were called generalized parafermion algebras of orthogonal types. Just as the realization 
of Lk(gln) as an extension of 

⊗n
i=1 W�i

(glk) comes from the chain of inclusions gl1 ⊆
gl2 ⊆ · · · ⊆ gln, the chains of inclusions so2 ⊆ so3 ⊆ · · · ⊆ so2n+2 and so2 ⊆ so3 ⊆ · · · ⊆
so2n+1 imply that Lk(so2n+2) and Lk(so2n+1) are extensions of

H ⊗ Dk(1) ⊗ Ek(1) ⊗ Dk(2) ⊗ Ek(2) ⊗ · · · ⊗ Dk(n − 1) ⊗ Ek(n − 1) ⊗ Dk(n) ⊗ Ek(n),

H ⊗ Dk(1) ⊗ Ek(1) ⊗ Dk(2) ⊗ Ek(2) ⊗ · · · ⊗ Dk(n − 1) ⊗ Ek(n − 1) ⊗ Dk(n).
(7.11)

Therefore the algebras (7.11) can be regarded as analogues of the Gelfand-Tsetlin algebra, 
and they also have commutative Zhu algebras. Since Dk(m) ∼= Ck+2m−1,1D(m, 0) and 
Ek(m) ∼= Ck+2m,1B(m, 0), it follows from Theorems C.1 and C.2 that for r ∈ N and 
k = 2r,

D2r(m) ∼= Ws(so2r)Z2 , s = −(2r − 2) + 2m + 2r − 2
2m + 2r − 1 ,

E2r(m) ∼= Ws(so2r)Z2 , s = −(2r − 2) + 2m + 2r − 1
2m + 2r

.

(7.12)

In particular, if k = 2r is even, the Gelfand-Tsetlin subalgebras of L2r(so2n+1) and 
L2r(so2n+2) are tensor products of rational vertex algebras of the form Ws(so2r)Z2 .

Similarly, for r ∈ N and k = 2r + 1, it follows from Theorems D.1 and D.2 that

D2r+1(m) ∼= Ws(osp1|2r)Z2 , s = −(r + 1
2) + m + r

2m + 2r − 1 ,

E2r+1(m) ∼= Ws(osp1|2r)Z2 , s = −(r + 1
2) + m + r

2m + 2r + 1 .

(7.13)

So if k = 2r + 1 is odd, the Gelfand-Tsetlin subalgebras of L2r+1(so2n+1) and 
L2r+1(so2n+2) are tensor products of algebras of the form Ws(osp1|2r)Z2 , which are 
expected to be rational by Conjecture 7.1.

In type C, it follows from Corollary 7.5 that for all k, n ∈ Z≥1, Lk(sp2n) is an extension 
of the rational vertex algebra
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n⊗
i=1

(W�i
(sp2k) ⊗ Wsi

(sp2k))

with �i = −(k + 1) + 2+n−i+k
3+2n−2i+2k and si = −(k + 1) + 1+n−i+k

3+2n−2i+2k . Again, we regard this 
as a Gelfand-Tsetlin subalgebra of Lk(sp2n), and its Zhu algebra is commutative.

Appendix A. Explicit truncation curve for Cψ
2B(n, m)

Here we give the explicit parametrization of the truncation curve for Cψ
2B(n, m). For 

all n, m with n + m ≥ 1,

Cψ
2B(n, m) ∼= Wev

I2B,n,m
(c, λ),

where the ideal I2B,n,m is described explicitly via the parametrization

c2B,n,m(ψ)

= − (−m + n − ψ + 2mψ)(1 − 2m + 2n + 4mψ)(−1 − 2m + 2n + 2ψ + 4mψ)
2ψ(2ψ − 1) ,

λ2B,n,m(ψ)

= − 2ψ(2ψ − 1)f
7(−m + n + ψ + 2mψ)(−1 − 2m + 2n + 4mψ)(1 − 2m + 2n − 2ψ + 4mψ)gh

,

f = −19m + 80m3 − 16m5 + 19n − 240m2n + 80m4n + 240mn2 − 160m3n2 − 80n3

+ 160m2n3 − 80mn4 + 16n5 + 49ψ + 114mψ

− 364m2ψ − 640m3ψ + 160m5ψ − 76nψ

+ 728mnψ + 1440m2nψ − 640m4nψ − 364n2ψ − 960mn2ψ + 960m3n2ψ + 160n3ψ

− 640m2n3ψ + 160mn4ψ − 196ψ2 − 380mψ2 + 2184m2ψ2 + 2240m3ψ2 − 640m5ψ2

+ 228nψ2 − 2912mnψ2 − 3840m2nψ2 + 1920m4nψ2 + 728n2ψ2 + 1920mn2ψ2

− 1920m3n2ψ2 − 320n3ψ2 + 640m2n3ψ2 + 392ψ3

+ 760mψ3 − 4368m2ψ3 − 4480m3ψ3

+ 1280m5ψ3 − 304nψ3 + 2912mnψ3 + 5760m2nψ3 − 2560m4nψ3 − 1920mn2ψ3

+ 1280m3n2ψ3 − 392ψ4 − 912mψ4

+ 2912m2ψ4 + 5120m3ψ4 − 1280m5ψ4 + 304nψ4

− 3840m2nψ4 + 1280m4nψ4 + 608mψ5 − 2560m3ψ5 + 512m5ψ5,

g = −7 + 4m2 − 8mn + 4n2 + 14ψ − 16m2ψ + 16mnψ − 28ψ2 + 16m2ψ2,

h = 5m − 20m3 − 5n + 60m2n − 60mn2 + 20n3 + 49ψ − 20mψ + 120m3ψ + 10nψ

− 240m2nψ + 120mn2ψ − 98ψ2 + 40mψ2 − 240m3ψ2 − 20nψ2
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+ 240m2nψ2 − 40mψ3 + 160m3ψ3. (A.1)

Using this explicit parametrization (A.1) as well as the truncation curve for Ws(sp2r)
which appears in Appendix A of [75], it is easy to verify that these curves intersect at 
the point (c, λ) given by

c = −r(−1 − 2m + 4n − 4mr + 4nr)(1 + 2m + 2n + 2r − 4mr + 4nr)
2(n + r)(1 + 2m + 2r) ,

λ = − 2(n + r)(1 + 2m + 2r)f
7(1 + 2r)(2n + r − 2mr + 2nr)(1 + 2m − 4mr + 4nr)gh

,

f = −68n − 408mn − 816m2n − 544m3n + 136n2

+ 544mn2 + 544m2n2 + 96n3 + 192mn3

− 49r − 256mr − 360m2r + 64m3r + 304m4r − 212nr − 1000mnr − 1456m2nr

− 608m3nr + 92n2r − 1296mn2r − 2960m2n2r

+ 1824n3r + 3264mn3r − 576n4r − 196r2

− 632mr2 − 176m2r2 + 608m3r2 − 772nr2 − 3000mnr2 − 496m2nr2 + 4832m3nr2

+ 640n2r2 − 5792mn2r2 − 9664m2n2r2 + 4176n3r2 + 6432mn3r2 − 1600n4r2 − 392r3

− 328mr3 + 2368m2r3 + 2272m3r3 − 1280m4r3 − 1544nr3 − 5824mnr3 + 928m2nr3

+ 3840m3nr3 + 2240n2r3 − 4512mn2r3 − 4480m2n2r3

+ 1312n3r3 + 2560mn3r3 − 640n4r3

− 392r4 + 608mr4 + 2912m2r4 − 1280m3r4 − 912nr4 − 2784mnr4 + 1600m2nr4

− 640m3nr4 − 128n2r4 + 640mn2r4 + 1920m2n2r4

− 960n3r4 − 1920mn3r4 + 640n4r4

+ 608mr5 − 1216m2r5 − 128m3r5 + 256m4r5 − 608nr5 + 2432mnr5 + 384m2nr5

− 1024m3nr5 − 1216n2r5 − 384mn2r5 + 1536m2n2r5

+ 128n3r5 − 1024mn3r5 + 256n4r5,

g = −7 − 28m − 28m2 + 14n + 28mn − 24n2

− 14r − 28mr − 28nr − 16mnr + 16n2r

− 28r2 + 16m2r2 − 32mnr2 + 16n2r2,

h = −44n − 88mn − 49r − 108mr − 20m2r − 78nr + 20mnr

+ 40n2r − 98r2 − 20mr2 + 40nr2 − 120mnr2 + 120n2r2 − 40mr3 + 80m2r3

+ 40nr3 − 160mnr3 + 80n2r3. (A.2)

In the next three Appendices, we classify coincidences between the simple quo-
tients Cψ,1B(n, m), Cψ,1D(n, m), Cψ,2B(n, m), and Cψ,2C(n, m) and the algebras Ws(sp2r), 
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Ws(so2r)Z2 , and Ws(osp1|2r)Z2 . There are coincidences at central charges c = 0, 1, −24,

−22
5 , 1

2 , where the algebra degenerates; see [75, Thm. 8.1]. Aside from these points, all 
additional coincidences correspond to intersection points on the truncation curves. This 
follows from [75, Cor. 8.2], together with a case-by-case analysis to rule out possible 
additional coincidences at points where the formula for λ is not defined. The details are 
omitted since the argument is similar to the proof of special cases appearing in Sec-
tion 9 of [75]. Via our triality results, similar coincidences can be found for Cψ,1C(n, m), 
Cψ,2D(n, m), Cψ,1O(n, m), and Cψ,2O(n, m) and these are also omitted.

Appendix B. Coincidences with type C principal W-algebras

Theorem B.1. (Type 1B) We have the following coincidences.

Cψ,1B(n, m) ∼= Ws(sp2r),

for m, n ≥ 0 and r ≥ 1.

(1) ψ = 1 + m + n + r

1 + m
, s = −(r + 1) + 1 + m + n + r

2(n + r) ,

(2) ψ = 2(m + n)
1 + 2m + 2r

, s = −(r + 1) + 1 − 2n + 2r

2(1 + 2m + 2r) ,

(3) ψ = 1 + 2m + 2n + 2r

2m
, s = −(r + 1) + 1 + 2n + 2r

2(1 + 2m + 2n + 2r) ,

(4) ψ = 1 + m + n

1 + m + r
, s = −(r + 1) + 1 + m + r

2(r − n) , r �= n,

(5) ψ = 2(m + n − r)
1 + 2m − 2r

, s = −(r + 1) + r − m − n

2r − 2m − 1 ,

(6) ψ = 1 + 2m + 2n − 2r

2(m − r) , s = −(r + 1) + r − m

2r − 2m − 2n − 1 , r �= m.

Theorem B.2. (Type 1D) We have the following coincidences

Cψ,1D(n, m) ∼= Ws(sp2r),

for m, n ≥ 0 and r ≥ 1.

(1) ψ = m + n + r

m
, s = −(r + 1) + n + r

2(m + n + r) ,

(2) ψ = 2m + 2n − 1
2m + 2r + 1 , s = −(r + 1) + 1 − n + r

1 + 2m + 2r
,

(3) ψ = 1 + 2m + 2n + 2r

2(1 + m) , s = −(r + 1) + 1 + 2m + 2n + 2r

2(2r + 2n − 1) ,

(4) ψ = 1 + 2m + 2n

2(1 + m + r) , s = −(r + 1) + 1 + m + r

1 − 2n + 2r
,

(5) ψ = 2m + 2n − 2r − 1
, s = −(r + 1) + 1 − 2m − 2n + 2r ,
2m − 2r + 1 2(2r − 2m − 1)
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(6) ψ = m + n − r

m − r
, s = −(r + 1) + r − m

2(r − m − n) , r �= m, n + m.

Theorem B.3. (Type 2B) We have the following coincidences

Cψ,2B(n, m) ∼= Ws(sp2r),

for m, n ≥ 0 and r ≥ 1.

(1) ψ = 1 + 2m − 2n + 2r

2(1 + 2m) , s = −(r + 1) + 1 + 2m − 2n + 2r

4(r − n) , r �= n,

(2) ψ = 1 + 2m − 2n

2(1 + 2m + 2r) , s = −(r + 1) + 1 + 2m + 2r

4(n + r) ,

(3) ψ = m − n + r

2m − 1 , s = −(r + 1) + 1 − 2n + 2r

4(m − n + r) , r �= n − m,

(4) ψ = m − n − r

2m − 2r − 1 , s = −(r + 1) + 1 − 2m + 2r

4(n − m + r) , r �= m − n,

(5) ψ = 2m − 2n − 2r − 1
4(m − r) , s = −(r + 1) + 1 − 2m + 2n + 2r

4(r − m) , r �= m,

(6) ψ = 2m − 2n − 1
4(m + r) , s = −(r + 1) + 1 + 2n + 2r

4(m + r) .

Theorem B.4. (Type 2C) We have the following coincidences

Cψ,2C(n, m) ∼= Ws(sp2r),

for m, n ≥ 0 and r ≥ 1.

(1) ψ = 1 + m + n + r

1 + 2m
, s = −(r + 1) + 1 + m + n + r

1 + 2n + 2r
,

(2) ψ = 1 + m + n

1 + 2m + 2r
, s = −(r + 1) + 1 + 2m + 2r

2(2r − 2n − 1) ,

(3) ψ = 1 + 2m + 2n + 2r

2(2m − 1) , s = −(r + 1) + 1 + n + r

1 + 2m + 2n + 2r
,

(4) ψ = m + n

2(m + r) , s = −(r + 1) + r − n

2(m + r) ,

(5) ψ = m + n − r

2(m − r) , s = −(r + 1) + r − m − n

2(r − m) , r �= m,

(6) ψ = 1 + 2m + 2n − 2r

2(2m − 2r − 1) , s = −(r + 1) + 1 − 2m + 2r

2(2r − 2m − 2n − 1) .

Appendix C. Coincidences with orbifolds of type D principal W-algebras

Theorem C.1. (Type 1B) We have the following coincidences

Cψ,1B(n, m) ∼= Ws(so2r)Z2 ,
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for m, n ≥ 0 and r ≥ 2.

(1) ψ = 2(m + n + r)
1 + 2m

, s = −(2r − 2) + 2n + 2r − 1
2(m + n + r) ,

(2) ψ = 1 + 2m + 2n

2(m + r) , s = −(2r − 2) + 2r − 2n − 1
2(m + r) ,

(3) ψ = 1 + m + n − r

1 + m − r
, s = −(2r − 2) + r − m − n − 1

r − m − 1 , r �= m + 1.

Theorem C.2. (Type 1D) We have the following coincidences

Cψ,1D(n, m) ∼= Ws(so2r)Z2 ,

for m, n ≥ 0 and r ≥ 2.

(1) ψ = 2m + 2n + 2r − 1
1 + 2m

, s = −(2r − 2) + 2(n + r − 1)
2m + 2n + 2r − 1 ,

(2) ψ = m + n

m + r
, s = −(2r − 2) + r − n

m + r
,

(3) ψ = 1 + 2m + 2n − 2r

2(1 + m − r) , s = −(2r − 2) + 2r − 2m − 2n − 1
2(r − m − 1) , r �= m + 1.

Theorem C.3. (Type 2B) We have the following coincidences

Cψ,2B(n, m) ∼= Ws(so2r)Z2 ,

for m, n ≥ 0 and r ≥ 2.

(1) ψ = 2m − 2n + 2r − 1
4m

, s = −(2r − 2) + 2r − 2n − 1
2m − 2n + 2r − 1 ,

(2) ψ = 1 + 2m − 2n − 2r

2(1 + 2m − 2r) , s = −(2r − 2) + 2r − 2m − 1
2n + 2r − 2m − 1 ,

(3) ψ = m − n

2m + 2r − 1 , s = −(2r − 2) + 2n + 2r − 1
2m + 2r − 1 .

Theorem C.4. (Type 2C) We have the following coincidences

Cψ,2C(n, m) ∼= Ws(so2r)Z2 ,

for m, n ≥ 0 and r ≥ 2.

(1) ψ = m + n + r

2m
, s = −(2r − 2) + n + r

m + n + r
,

(2) ψ = 1 + 2m + 2n

2(2m + 2r − 1) , s = −(2r − 2) + 2(r − n − 1)
2m + 2r − 1 ,

(3) ψ = 1 + m + n − r
, s = −(2r − 2) + 2(r − m − n − 1) .
1 + 2m − 2r 2r − 2m − 1



T. Creutzig, A.R. Linshaw / Advances in Mathematics 409 (2022) 108678 75
Appendix D. Coincidences with orbifolds of Ws(osp1|2r)Z2

Theorem D.1. (Type 1B) We have the following coincidences

Cψ,1B(n, m) ∼= Ws(osp1|2r)Z2 ,

for m, n ≥ 0 and r ≥ 1.

(1) ψ = 1 + 2m + 2n + 2r

1 + 2m
, s = −(r + 1

2) + n + r

1 + 2m + 2n + 2r
,

(2) ψ = 1 + 2m + 2n

1 + 2m + 2r
, s = −(r + 1

2) + r − n

1 + 2m + 2r
,

(3) ψ = 1 + 2m + 2n − 2r

1 + 2m − 2r
, s = −(r + 1

2) + 2r − 2m − 2n − 1
2(2r − 2m − 1) .

Theorem D.2. (Type 1D) We have the following coincidences

Cψ,1D(n, m) ∼= Ws(osp1|2r)Z2 ,

for m, n ≥ 0 and r ≥ 1.

(1) ψ = 2(m + n + r)
1 + 2m

, s = −(r + 1
2) + m + n + r

2n + 2r − 1 ,

(2) ψ = 2(m + n)
1 + 2m + 2r

, s = −(r + 1
2) + 1 − 2n + 2r

2(1 + 2m + 2r) ,

(3) ψ = 2(m + n − r)
1 + 2m − 2r

, s = −(r + 1
2) + r − m − n

2r − 2m − 1 .

Theorem D.3. (Type 2B) We have the following coincidences

Cψ,2B(n, m) ∼= Ws(osp1|2r)Z2 ,

for m, n ≥ 0 and r ≥ 1.

(1) ψ = m − n + r

2m
, s = −(r + 1

2) + r − n

2(m − n + r) , r �= n − m,

(2) ψ = m − n − r

2(m − r) , s = −(r + 1
2) + r − m

2(n − m + r) , r �= m, m − n,

(3) ψ = m − n

2(m + r) , s = −(r + 1
2) + n + r

2(m + r) .

Theorem D.4. (Type 2C) We have the following coincidences

Cψ,2C(n, m) ∼= Ws(osp1|2r)Z2 ,

for m, n ≥ 0 and r ≥ 1.
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(1) ψ = 1 + 2m + 2n + 2r

4m
, s = −(r + 1

2) + 1 + 2n + 2r

2(1 + 2m + 2n + 2r) ,

(2) ψ = 1 + 2m + 2n

4(m + r) , s = −(r + 1
2) + m + r

2r − 2n − 1 ,

(3) ψ = 1 + 2m + 2n − 2r

4(m − r) , s = −(r + 1
2) + r − m

2r − 2m − 2n − 1 , r �= m.

Corollary D.1. All isomorphisms Wk(osp1|2m)Z2 ∼= W�(osp1|2n)Z2 occur in the following 
list:

k = −(m + 1
2) + m + n

2m
, k = −(m + 1

2) + m

2(m + n) ,

� = −(n + 1
2) + m + n

2n
, � = −(n + 1

2) + n

2(m + n) .

(D.1)

This has central charge

c = − (1 + 2m)(1 + 2n)(2mn − m − n)
2(m + n) .
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