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1. Introduction

Trialities of W-algebras are isomorphisms between the affine cosets of three differ-
ent W-(super)algebras, as one-parameter vertex algebras. In recent work [37, Thm. 1.1],
we proved a family of trialities among W-(super)algebras of type A which was conjec-
tured by Gaiotto and Rapédk in [55]. This theorem is a common generalization of both
Feigin-Frenkel duality and the coset realization of principal W-algebras of sl,, [48,12],
as well as Feigin-Semikhatov duality between subregular W-algebras of sl,, and princi-
pal W-superalgebras of sl,,;; [51,25]. The key idea of the proof was to identify all these
affine cosets with one-parameter quotients of the universal two-parameter vertex algebra
W(c, A) of type W(2,3,...). The existence and uniqueness of this structure was conjec-
tured for many years in the physics literature [94,54,86,87], and was recently proven by
the second author in [80]. One-parameter quotients of W(¢, A) are in bijection with a
family of curves in the parameter space C? called truncation curves, and [37, Thm. 1.1]
follows from the explicit ideals that define these curves.

In this paper, we will prove an analogous triality theorem which involves eight families
of W-(super)algebras of types B, C, and D. First, g will be either 509,11, $p5,,, 025, OF
08P, |2, and will decompose as

g=adbd py X pp.

Here a and b are Lie sub(super)algebras of g, and p,, pp transform as the standard
representations of a, b, respectively, and have the same parity which can be either even
or odd.

Let fy € g be the nilpotent element which is principal in b and trivial in a, and let
W¥(g, fy) be the corresponding W-(super)algebra. In all cases, W¥(g, fy) is of type

. dy +1\%
W<1d”“ “,2,4,...,2m,< b; ) >

In particular, there are dim a fields in weight 1 which generate an affine vertex (super)al-

gebra of a. The fields in weights 2,4, ...,2m are even and are invariant under a. The d,

fields in weight d"; L can be even or odd, and transform as the standard a-module.

For n,m > 0 we have the following cases where b = §09,,41.
(1) Case 1B: g = 502,42m+42, O = 502,41.
(2) Case 1C: g= 05p27n+1\2n7 a= 5p2n'
(3) Case 1D: g = 509,41 9m+1, 0= S09,.
(4) Case 10: g= 05p2m+2|2n7 a= 05pl|2n'

For n > 0 and m > 1 we have the following cases where b = sp,,,.

(1) Case 2B: g = 08Py, 12y @ = 502,41
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(2) Case 2C: g = Py, oms 0= 5Py,
(3) Case 2D: g = 05py,, (2,0, O = 502;,.
(4) Case 20: g = 05P1|2n42ms @ = 05Pq|o,-

It is convenient to replace the level k& with the critically shifted level ¢ = k + hY,
where hV is the dual Coxeter number of g. For ¢ = 1,2 and X = B, C, D, O, we denote
the corresponding W-algebra by W;/;( (n,m). In the cases i = 1,2 and X = C, we
denote the corresponding affine cosets by C;/’C(n,m). In the cases X = B, D, O, there
is an additional action of Zs, and C;bX (n,m) denotes the Zs-orbifold of the affine coset.
We will also define the algebras W;[’ v (n,0) in a different way so that our results hold
uniformly for all n,m > 0.

Our main result is that there are four families of trialities among the algebras
CZ’/JX(n,m).

Main Theorem 1. (Theorem 4.1) For all integers m > n > 0, we have the following
isomorphisms of one-parameter vertex algebras.

Clp(nm) = Clo(mm =) = Cly(mm). W= o SHm=2 (L)
Clotnm) = Clonm —n) =€l mn). /=50 sp=1 (12)
Clp(nm) = Clpnm—m) = Clp(mn 1), ¢'=30  go+oo=1 (13)
Clolmm) = Cly(nm —n) = Chpm+1m), ¥ =2 szl (14)

Special cases of this result include Feigin-Frenkel duality in types B, C, and D [48],
as well as a version for principal W-superalgebras of 0sp;2, which was recently proven
n [24]. The special case

1" 1 1
P ~ Y _
CQD(TL7O):Clo(0,’I’L—1), @4‘@—1, n>2
of (1.3) provides a new proof of the coset realization of principal W-algebras of type D
[12]. The special case

1

CYs(n,0) =2 CYy (0,7m), " + 7

=2

of (1.1) recovers the coset realization of the principal WW-superalgebra of 0spyjs, [24].
More importantly, the special case

" 1
CfC(n’O)gcf)C(Ovn)» —+ =1
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of (1.2) provides a new coset realization of principal W-algebras of type B (and type C
by Feigin-Frenkel duality), since

1
C%C(nﬂ O) = Com(Vk(5p2n), Vk(05p1|2n))a k= —5(1/’ + 2n + 1)
CYL(0,n) = WY =2 (504,,11).

This is quite different from the coset realizations of W¥(g) for simply-laced g given in
[12] since it involves affine vertex superalgebras. Finally, the special case

1

C;/)D(lvm)gC;/}D(Lm*l% 1/)/: @

of (1.3) provides an alternative proof of the duality between the Heisenberg cosets of
le_2m+1(502m+17 fsubreg) and W¢_m(05p2|2m) appea’ring in [25}

The key idea in the proof of Main Theorem 1 is to identify all the algebras CfX (n,m) as
one-parameter quotients of the universal even spin two-parameter W-algebra W (¢, A)
constructed by Kanade and the second author in [75]. Such quotients of W (¢, \) are in
bijection with a family of plane curves called truncation curves. By explicitly computing
the truncation curves for these algebras, Main Theorem 1 follows from symmetries of
our formulas for the defining ideals. We thus identify four distinct N x N families of
truncations of W*¢ (¢, A), which we conjecture to account for all of its truncations. In
fact, we can give a uniform description of all these truncations by replacing the integer
parameters n and m in one of the formulas by half-integers. We mention that the algebras
C;’bX (n,m) were called orthosymplectic Y-algebras by Gaiotto and Rap¢dk in [55], and
some of the trialities we prove were conjectured in [55], as well as the paper [88] of
Prochézka.

1.1. Rationality results

As an application of Main Theorem 1, we prove many new rationality results in
Section 7.

Main Theorem 2. Denote by F(n) the vertex superalgebra of n free fermions, by Li(g)
the simple affine vertex superalgebra of the simple Lie superalgebra g at level k, and by
We(g) the simple principal W-superalgebra of g at level €.

(1) For alln,k € Z>1, Lr(0spyj2y,) is lisse and rational (Theorem 7.1).
(2) For all m > 1, Wy_—1/2(05p1)2,n) is lisse and rational at the following levels:

(a) ¥ = m+r), where m + 1 and 1+ 2r are coprime (Theorem 7.2),
(b) Y= m, where r and 1+ 2m are coprime (Theorem 7.2),
(¢) ¥ = 5=, where 2r — 1 and 2m are coprime (Theorem 7.3).
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(8) Forallm > 1, Wy_om—1(802m+3, fsubreg) 1s lisse and rational at the following levels:

(a) Y = %, where m + 1 and 2r + 1 are coprime (Theorem 7.5),

(b) Y= % where r and 2m + 1 are coprime (Theorem 7.6),

(c) = 21(3:52) (Corollary 7.3),

(d) ¥ = 322 (Corollary 7./).

2m—1

(4) For allm > 1, Wy (08Pgjop,42) is lisse and rational at the following levels:

(a) ¢ = =™ where m + 1 and 2r + 1 are coprime (Corollary 7.1),

3¥2m+2r’
(b) ¥ = %, where r and 2m + 1 are coprime (Corollary 7.2),
(c) = ﬁ;’fﬂll) (Corollary 7.3),
(d) = 22=L (Corollary 7.4).

(5) For alln >1 and r > 1, W,_1/2(P2n+2, fmin) 15 lisse and rational.
(6) For all k,n,m € Z>1 with n > m, the following cosets are lisse and rational:

(a) Com(Ly_1/2(5p2n), Li(sp2n) ® L_1/2(sp2n)) (Theorem 7.5),
(b) Com(Lg(span—am), Lx(span)) (Corollary 7.6),
(¢) Com(Ly(spak), Ln—m(spar) @ F(dmk)) (Corollary 7.7).

Main Theorem 2 (1) completes the classification of lisse and rational affine vertex
superalgebras Li(g), for g a simple Lie superalgebra. When g is a Lie algebra, it is a
celebrated result of Frenkel and Zhu [52] that Lg(g) is lisse and rational if and only if
k € N. When g is not a Lie algebra, Gorelik and Kac [56] claimed that L (g) is lisse
only when g = o0spyj2, and k € N; see [6] for the recent proof. However, the rationality
was previously known only for ospyj, [21]. The proof of Main Theorem 2 (1) involves
exhibiting Ly (05p1)2,,) as an extension of the rational vertex algebra Ly (sp2y) @ We(sp2n)
for £ = —(n+1) + e

A celebrated result of Arakawa [7,8] is that for a simple Lie algebra g, Wi(g) is lisse

and rational when k is a nondegenerate admissible level for g. Again, a similar statement
is expected to be true for Wi (0spy)2,,). Based on the coset realization of Wk(05p1|2m),
we make the following conjecture.

P
2(p+q)’

Conjecture 1.1. (Conjecture 7.1) For all m > 1, Wy, _1/2(08p1)2,,) Where ¢ =
is lisse and rational if

(1) p,q € N are coprime,
(2) p>2m —1if ¢ is odd,
(3) p>2m if q is even.
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By (1.1), this conjecture implies that Ww/—m—1/2(05131|2m) is also lisse and rational at
L _ ptg

the Feigin-Frenkel dual level, where ¢’ = W= e

Main Theorem 2 (2) proves several cases of Conjecture 1.1 by identifying
Wep—m—1 /2(05]31‘2,”) in these cases with a simple current extension of a known rational
vertex algebra of the form W;(spa,.) or Wi (s02,)%2. In the case n = 1, where Wi (05py)2)
is just the N = 1 superconformal algebra, Conjecture 1.1 is already known ([74,1,83,16]),
and we give an alternative proof; see Theorem 7.4.

Main Theorem 2 (3) proves several cases of the Kac-Wakimoto rationality conjecture
[72], which was later refined by Arakawa [7].! Let g be a simple Lie algebra and k =
—hY + % an admissible level for g. The associated variety of Lj(g) is then the closure of
a nilpotent orbit @, which depends only on the denominator ¢. If f € g is a nilpotent
lying in @y, the simple W-algebra Wi(g, f) is known to be non-zero and lisse [7]. Such
pairs (f, q) are called exceptional pairs, and they generalize the notion of exceptional pair
due to Kac and Wakimoto [72] and Elashvili, Kac, and Vinberg [45]. The corresponding
W-algebras are also called exceptional, and were conjectured by Arakawa to be rational
in [7], generalizing the original conjecture of [72]. Very recently, Arakawa and van Ekeren
proved rationality of all exceptional W-algebras in type A, and all exceptional subregular
We-algebras of simply-laced types [14].

The type B subregular W-algebra Wi, (50243, fsubreg) for m > 1 is exceptional when
k= —@2m+ 1)+ £ is admissible and ¢ = 2m + 2 or 2m + 1; see Table 1 of [14].
Main Theorem 2 (3) proves rationality in all cases where ¢ = 2m + 2 and all cases
where ¢ = 2m + 1 and p is odd, generalizing the result for m = 1 of Fasquel [46]. In
these cases, we identify Com(H (1), Wi (502m+3, fsubreg))?? with a known rational vertex
algebra of the form W;(spa,) or Wi (s09,)%2. In the cases where ¢ = 2m + 1 and p is
even, Com(H (1), W (s02m+3, fsubreg))Z2 is identified with a vertex algebra of the form
Ws(ospl‘QT)ZQ. Using the methods of this paper, we are only able to prove rationality
of Wi (50243, foubreg) When r = 1. However, the rationality for all such p and ¢ is
a special case of McRae’s result [82]. As a consequence, we obtain further examples
where Conjecture 1.1 is true; see Remark 7.1. Note that Main Theorem 2 (4) follows
immediately from part (3) together with the duality between subregular W-algebras of
type B and principal W-superalgebras of 0spss,, appearing in [25].

It turns out that the cases ¢ = 2m + 1 and ¢ = 2m + 2 do not account for all rational
algebras of the form Wi (5023, fsubreg). We will show that

COHl(H(l), Wk (502m+37 fsubreg))Z2 = Ws<05p1|2r>Z2a

fork:f(2m+l)+%ands:f(rJr%)Jrﬂ%. In the case m > 2r — 1,

Conjecture 1.1 would then imply the rationality of Wy (502,43, fsubreg) €ven though k is

1 In a recent preprint that appeared a few months after this paper was submitted, Robert McRae has
proven the Kac-Wakimoto-Arakawa conjecture in full generality [82, Main Theorem 4].
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not an admissible level; see Remark 7.2. In the case r = 1, these examples are rational
by Main Theorem 2 (4d). These are new examples of rational W-algebras that are not
covered by the Kac-Wakimoto-Arakawa conjecture, and it is an interesting problem to
find more such examples and ultimately to classify them.

The rationality of W,_1/2(sP2n42, fmin) for r € Z>; given by Main Theorem 2 (5),
is another case of the Kac-Wakimoto-Arakawa rationality conjecture. We will show that
Wy —1/2(8P2n+2; fmin) is an extension of the rational vertex algebra L.,.(sp2,) ® Wi (sp2r)
for s = —(r + 1) + 52524 This was conjectured in [13] and proven in [75] in the case
n = 1.

Main Theorem 2 (6a) is proven by showing that Com(Ly_1/2(sp2s), Lr(sp2n) ®
L_y/5(sp2n)) is isomorphic to Wi (spax) for £ = —(k 4 1) + %, which is a new
level-rank duality. Similarly, Main Theorem 2 (6b) and (6¢) are proven by showing that

both cosets are extensions of the rational vertex algebra

® Wy, (spar) @ W, (shax))
=1

with £; = —(k+1)+ % and s; = —(k+1)+ % Note that (6b) implies
that Ly (sp2y) is an extension of @, (W, (spar) @ W, (spax)) with £;, s; as above. This
is analogous to the statement in [12] that Ly(gl,) is an extension of @, Wy, (glx) with
b=~k = %, which is an analogue of the Gelfand-Tsetlin subalgebra of U(gl,,).

1.2. Triality from kernel vertex algebras

Motivated from four-dimensional GL-twisted IV = 4 supersymmetric Yang-Mills theo-
ries, certain kernel vertex algebras in type A were conjecturally introduced in [22]. Here,
we will introduce analogues for orthosymplectic type and explain how this provides an-
other perspective on triality. The kernel vertex algebras also play an important role in
the context of the quantum geometric Langlands program and our conjectures are closely
related to the ideas sketched in Section 10.4 of [49].

Let g be either a simple Lie algebra of type B,C, D or 05p1‘2n.2 Let P denote the
set of dominant weights of g, and R C PT the subset corresponding to the tensor ring
generated by the standard representation of g; that is, A € R if and only if the irreducible
highest-weight representation p, is a submodule of some iterated tensor product of the
standard representation of g. Let g’ = s02,41 if g = 0sp;j2, and vice versa, and let
g = g otherwise. Note that there is a one-to-one correspondence of irreducible finite
dimensional non-spin representations of 502,41 and 0spy3,,, such that characters agree.
A similar statement also holds for the quantum (super)groups [18]. Let 7 denote the
induced map on dominant weights. If g is neither of type s02,11 nor of type ospy|2,, then

2 The case g = 502 can also be included and we refer to [26] for discussion of the kernel vertex algebra
and its relative semi-infinite cohomology.
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let 7 be the identity on PT. Motivated from Theorem 4.1 we let ¢ be generic and ¢’
related to ¢ by the formula

1 1

54_&:2, if g is of type C,

1 1 PR

5_,_&:1, if g is of type D,

1 + 1 1 if g is of t osp
i — =1, 1 1S OI type 1|2n»
20 ¢

1 1 PR
54_27#:1, if g is of type B.

Let V¢ " (g) and Ve he (g') be the universal affine vertex (super)algebras of g and
¢ at levels ¢ — kY and ¢/ — hY,. Let M?(\) = V*~"s (A) and M?' (A) = V¥ v’ (r(\))
be the Weyl modules at these levels whose top level is the irreducible highest-weight
representation of g of highest weight A, respectively of g’ of highest weight 7(\). Then
set

| =P M) @ M (V).
AER

More generally, let f, f’ be nilpotent elements in g, g’ and let M}b()\) and M]?,/()\) be the

images under quantum Hamiltonian reduction of M?#(\) and M ¢ (M) corresponding to
f and f’, respectively. Then set

Alg, o, f. 1) = D MP(N) @ MY (N,

AER

so that Alg,¢] = Alg, $,0,0]. The conjecture is that these objects can be given the
structure of a simple vertex superalgebra for generic ¢. In the case that g is of type
D, f =0, and f’ is a principal nilpotent, this is the coset theorem of type D of [12].
Moreover, the case of arbitrary f and f’ the principal nilpotent is the main theorem of
[11] applied to the coset theorem. In that paper also many similar algebras are studied.
Note that in order for g = so3 to fit in the s04,,+1-series, we use the Killing form rescaled
by two as bilinear form, i.e., in our convention V*(s03) = V2?*(sly) = V2 (sp,). This can
be thought of as to setting the dual Coxeter number of so3 to one.

For f = f" = 0, the case of g = s03 and g = o0sp;p is proven in [22] and the case
of g = spo in [23] and these are the affine vertex superalgebra of 9(2,1;1 — ¢) at level
one, respectively, the minimal quantum Hamiltonian reduction of d(2,1; (1 — ¢)/2) at
level 1/2, which is the one-parameter family of large N = 4 superconformal algebras at
central charge —6.

Cosets can often also be characterized as relative semi-infinite Lie algebra cohomolo-
gies. It seems that the cohomology approach is suitable to put our trialities into a more
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general perspective. Let g be a simple Lie algebra, B a basis for g and B’ a dual basis.
Let F(g) be two copies of free fermions in the adjoint representation of g with gen-
erators {b%,¢* |z € B, 2’ € B'} and operator products b®(z)c¥ (w) ~ Spy(z —w)™h
Consider the affine vertex algebra of g at level —2hY, V=21 (g), and let z(2) be the field
corresponding to x € g. Let d := dy be the zero-mode of the field

z€eB z,yeB

which squares to zero. Let F (g) denote the subalgebra of F(g) generated by the b* and
c®' (these are just dim g pairs of symplectic fermions). For a module M for V_th(g)
the relative complex is

(g, d) = (M F(g))'

and this relative complex is preserved by d [50, Prop. 1.4.]. The cohomology is denoted
by H*(g, M). As shown in [50] and explained in Section 2.5 of [20], it satisfies

C if n= _WO()‘)a

(1.5)
0 otherwise.

HE (g, V) @ V2 () = {

Here wy is the unique Weyl group element that interchanges the fundamental Weyl
chamber with its negative. It is reasonable to expect that one can construct similar
complexes with similar properties for affine vertex superalgebras and it would be very
interesting to do so for at least g = 05py3,,. In order to include the case n = 0, we define
master chiral algebra and cohomology to be trivial, that is s0¢ := $01 := spg := 05py)9 =
{ }Yand A[{ },¢] :=C as well as H*"°({ },C)=C.

Conjecture 1.2. With the above set-up, and f, f’ nilpotent in g, g’, respectively:

(1) The object Alg, ¢, f, f’] can be given the structure of a one-parameter vertex super-
algebra.

(2) For generic ¢, Alg,d, f, f'] is a simple vertex operator superalgebra extending
WOl (g, £) @ Wl (o f).

(3) There exists a generalization of relative semi-infinite Lie superalgebra cohomology
for g = 0spy)2,, satisfying (1.5).

(4) For all integers m > n > 0, we have the following isomorphisms of one-parameter
vertex algebras.
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(a) Forw’:ﬁandi-l-ﬁ:z

’ 1
W;bB(n, m) = {0 (Oﬁplgn, W;bo(n,m —n) @ Alospy|on, 5" 1”) 5
Wi (m,m) 2 Com (V=" (0sp120), Alosprjzm: ¥/, fopay-2,:0])

1 11
(b) For o' = 57 and 3 + 7 =1,

, 1
W{pc(n, m) = {0 (5p2n, VV;/’C(n7 m—n)® Alspan, 3 1//]) ,
Wi (m,m) 2 Com (V=" (spn). Alopam: ¥/, Fopays-,:0]) -

(c) Forw’:ﬁandﬁ+#:l,

W;/JD(n,m) = H;gl’o (sogn,Wﬂ)(n, m—n)® Alsog,, 1 — w’]) ,

"

Wf}o (m7 TL) = COHl (Vw/72n+1(502n)a A[502m+17 1/}/7 fsozm,72n+1 ) O]) .

(d) For ¢ = i and i + ﬁ =1 and m > n in the second case,

W;ﬂo(n, m) = H;gl’o (502n+1, WipB(n, m—n)® Alsoa,y1,1 — z/)’]) ,

1"

W;l)D (m7 n) = Com (V¢I_2n(502n+1)7 A[5U2ma ¢l7 f5027n72n71 ’ O]) .

Both sides of the conjectured isomorphisms have the same affine vertex superalgebra
and the same quotient of W (¢, \) as commuting pair of subalgebras.

The relative semi-infinite cohomology part of (4) of the conjecture for n = 0 is Feigin-
Frenkel duality [48]. The coset part of (4) should be viewed as a generalization of coset
realization of principal W-algebras, e.g. the case n = 0 of (4)(a) corresponds to the coset
realization of principal W-superalgebras of osp;js, of [24] and the case (4)(d) to the
coset realization of principal W-algebras of type D of [12]. Our conjecture is a natural
extension to orthosymplectic type of our conjectures for type A made in Section 10 of
[37]. The relative semi-infinite cohomology part of this conjecture is proven for subregular
W-algebras of type A and B [26]. We sketched a proof strategy in Section 10 of [37] for
type A, and we expect that all our conjectures for type A as well as orthosymplectic
type can be proven uniformly.

Besides its importance in physics and quantum geometric Langlands, our conjectures
provide a way to relate representation categories in a nice way. For example, if Con-
jecture 4 (a) is correct, then the functor HXMY (0spja,, 7 ® Alospija,, 3 — ']) maps

/

W;bo (n,m — n)-modules to Wg’B (n,m)-modules. It is reasonable that such a functor has
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nice monoidal properties. Indeed in the type A and subregular W-algebra case, this is
true, namely there is a block-wise equivalence of categories and an isomorphism be-
tween the superspaces of logarithmic intertwining operators [26]. Also the coset part of
the conjecture should be useful to connect representation categories. For example, the
coset realization of principal W-algebras of type ADFE has been used to prove a braided
monoidal equivalence between a simple current twist of ordinary modules of the affine
vertex algebra at admissible level, and a subcategory of modules of the principal W-
algebra appearing as the coset; see [19, Thm. 7.1] for the precise statement. In the case
g = sly the admissible level result appeared in [28, Thm. 7.4], and a theorem at generic
level was also established in [29, Prop. 5.5.2]. Note that these results prove variants of a
conjecture made in the context of quantum geometric Langlands, see [3, Conj. 6.3]. It is
work in progress to study the categories of ordinary modules of Ly (0spy)2,,) at admissi-
ble level, and especially to show that they are braided equivalent to subcategories of the
principal W-algebras of type B that appear as the cosets.

1.8. Geometry and conformal field theory

The Alday-Gaiotto-Tachikawa (AGT) correspondence is a relation between four-
dimensional gauge theories and two-dimensional conformal field theories [4]. It yields
interesting connections to geometry, for example a celebrated result of Schiffmann and
Vasserot [92] asserts that the principal W-algebra of type A acts on the equivariant
cohomology of the moduli space of instantons on C2. There is a generalization to equiv-
ariant cohomology of Uhlenbeck spaces where principal W-algebras of simply-laced type
act [15], and the authors expect that their construction can be generalized to the non
simply-laced case. This is interesting as conjecturally the Y, y r-algebras of Gaiotto and
Rapcik, that is the cosets of W-superalgebras of the triality of type A, act on moduli
spaces of spiked instantons [89], and we hope that a nice geometric interpretation also
exists in the orthosymplectic case. Note that at least a nice four-dimensional physics
interpretation exists for them [55]. In all the above mentioned works, it has been shown
that a subalgebra of a Heisenberg vertex algebra, characterized as the kernel of certain
screening operators, acts on an equivariant cohomology. Another crucial problem is thus
to develop explicit screening realizations. Naoki Genra has already provided nice screen-
ing realizations of W-superalgebras [53] and the main obstacle of making them more
explicit are screening realizations of affine vertex superalgebras. Screening realizations
should also provide a different proof of the trialities with the advantage that it should
give further insights on the connection of representation theories. From the physics per-
spective the screening charges provide the interaction term in the action of the conformal
field theory. A duality of conformal field theories is then an isomorphism of symmetry
algebras, that is underlying vertex algebras, together with a matching of correlation func-
tions. Our trialities in type A at low rank have already led to new dualities of conformal
field theories [27] and likely there are more to be discovered.
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1.4. Outline

This paper is organized as follows. In Section 2 we review the basic terminology and
examples of vertex algebras that we need. We also prove that extensions of a rational
vertex algebra are rational under hypotheses that hold in all our examples. In Section 3,
we introduce the W-(super)algebras Wiqﬁ((n,m) for i = 1,2 and X = B,C,D,O that
we need. In Section 4, we state our main result and also discuss the special cases which
recover Feigin-Frenkel duality and various coset realizations of principal W-algebras. In
Section 5 we discuss the free field limits of WZZ;( (n,m) and the strong generating types of
the algebras C?X(n, m). In Section 6 we prove Main Theorem 1 by explicitly computing
the truncation curves realizing C;PX (n,m) as quotients of W (¢, \). In Section 7 we prove
Main Theorem 2. In Appendix A, we give the explicit truncation curve for C;/’ s(n,m),
from which all other truncation curves can be derived. Finally, in Appendices B, C, and
D, we classify the pointwise coincidences between the simple quotients Cy ;x (n, m), and
the algebras W, (spa,.), Ws(s02,)%2, and Ws(ﬁﬁpl‘gr)ZQ. These coincidences are needed
in the proof of Main Theorem 2.

2. Vertex algebras

We will assume that the reader is familiar with vertex algebras, and we use the same
notation as our previous paper [37]. In this section, we briefly recall the definition and
basic properties of free field algebras, W-algebras, and the two-parameter even spin
algebra W (¢, A). We then prove some general results on extensions of rational vertex
algebras which are needed in the proof of Main Theorem 2.

2.1. Free field algebras
Recall that a free field algebra is a vertex superalgebra V with weight grading

V= Vi, V=c,

de%ZZO
with strong generators {X| i € I'} satisfying OPE relations
X(2) X7 (w) ~ ai,j(z—w)_Wt(Xi)_Wt(Xj), ai; €C, a;; =0 ifwt(X*)+wt(X7) ¢ Z.

Note V is not assumed to have a conformal structure. We now recall the four families of
standard free field algebras that were introduced in [37].

Even algebras of orthogonal type. For each n > 1 and even k > 2, Oey(n, k) is the vertex
algebra with even generators a',...,a"™ of weight %, which satisfy

ai(z)aj(w) ~0; (2 — w)_k.
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In the case k = 2, Oey(n, k) is just the rank n Heisenberg algebra H(n). Note that
Oecv(n, k) has no conformal vector for k£ > 2, but for all k it is a simple vertex algebra
and has full automorphism group the orthogonal group O,,.

Even algebras of symplectic type. For each n > 1 and odd k > 1, Sev(n, k) is the vertex
algebra with even generators a?, b’ for i = 1,...,n of weight g, which satisfy

ai(z)bj(w) ~ 0;i(z — w)*k, bi(z)aj (w) ~ —0; (2 — w)*k,

, . o (2.1)
a'(z)a’ (w) ~ 0, b (2)t (w) ~ 0.

In the case k = 1, Sev(n, k) is just the rank n By-system S(n). For k > 1, Sev(n, k)
has no conformal vector, but for all k it is simple and has full automorphism group the
symplectic group Sps,,-

0Odd algebras of symplectic type. For each n > 1 and even k > 2, Spqq(n, k) is the vertex
superalgebra with odd generators a’,b’ for i = 1,...,n of weight £, which satisfy

ai(z)bj(w) ~0; (2 — w)fk7 bj(z)ai(w) ~ =08 i(z— w)fk,

o o (2.2)
a'(z)a’ (w) ~ 0, b (2)b? (w) ~ 0.

In the case k = 2, Spdqa(n, k) is just the rank n symplectic fermion algebra A(n). Note
that Sodqd(n, k) has no conformal vector for k > 2, but for all k it is simple and has full
automorphism group Sp,,,.

0dd algebras of orthogonal type. For each n > 1 and odd k > 1, we define Ooqq(n, k) to
be the vertex superalgebra with odd generators a’ for i = 1,...,n of weight %, satisfying

a'(z)a? (w) ~ §; j(z —w) ™", (2.3)

For k =1, Opda(n, k) is just the free fermion algebra F(n). As above, Ooq4(n, k) has no
conformal vector for k£ > 1, but it is simple and has full automorphism group O,,.

2.2. W-algebras

Let g be a simple, finite-dimensional Lie (super)algebra equipped with a nondegen-
erate, invariant (super)symmetric bilinear form ( | ), and let f be a nilpotent element
in the even part of g. Associated to g and f and any complex number k, is the W-
(super)algebra W¥ (g, f). The definition is due to Kac, Roan, and Wakimoto [68], and it
generalizes the definition for f a principal nilpotent and g a Lie algebra given by Feigin
and Frenkel [47].

First, let {¢®}acs be a basis of g which is homogeneous with respect to parity. We
define the corresponding structure constants and parity by

0 g“ even,
[qa’q,@] = faﬁ q"/’ |a| =
; ! 1 ¢* odd.
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The affine vertex algebra of g associated to the bilinear form ( | ) at level k is strongly
generated by {X*},ecs with OPEs

X (2) X (w) ~ k(q*la”)(z = w) 2+ Y fP X (w)(z —w)
YyES

We define X,, to be the field corresponding to ¢, where {qq }acs is the dual basis of g
with respect to (| ).

Let f be a nilpotent element in the even part of g, which we complete to an sly-triple
{f,z,e} C g satisfying [z,e] = e, [z, f] = —f, [e, f/] = 22. Then g decomposes as

g= @ Ok, or = {a € g|[z,a] = ka}.
keiZ

Write S = J,, Sk and S; = U~ Sk, where S}, corresponds to a basis of gy.

Asin [71], one defines a complex C(g, f, k) = Vk(g)®F(g+)®F(g%), where F(g, ) is a
free field superalgebra associated to the vector superspace g4 = @kelz>o gk, and F(g%)
is the neutral vertex superalgebra associated to g1 with bilinear form (a,b) = (f|[a, b]).
F(g4) is strongly generated by fields {¢qa, ¢ }acs,, where ¢, and ¢ have opposite
parity to ¢®. The operator products are

Pa(2)@? (W) ~ dap(z —w) ™l pal2)pp(w) ~ 0~ % (2)p (w).

F(g 1 ) is strongly generated by fields {®s}acs, and ®* and ¢* have the same parity.
2

Their operator products are

Do (2)®p(w) ~ (¢, ¢")(z —w) ™" ~ (fllg%, ¢"])(z — w) ™.

There is a Z-grading on C(g, f, k) by charge, and a weight one odd field d(z) of charge

minus one,

A= 3 (DX L S (1)l et

aeSy a,B,7€S+

(2.4)
D (Fla)e™ + Y e,
OcES+ aes%

whose zero-mode dy is a square-zero differential on C(g, f, k). The W-algebra WF(g, f)
is defined to be the homology H(C(g, f, k), do). It has Virasoro element L = Lg,, + 0z +
Len + Ly, where

1
Lag = s 2 (=D X X
82k +hY) aes( ) « ’
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Lch = Z (_ma : (paasoa : +(1 - ma) : (Bgo“)goa :)7

aeS4

Lye = = : (09Y)D,, : . (2.5)

Here mq = j if @ € ;. The central charge of L is computed to be

k: sdim g

«@ 1 :
—12k(zlx) = > (~Dl(12m? - 12ma +2) - 5 sdimgy. (26)

aeSy

Denote by g/ the centralizer of f in g, and let a = g/ N go, which is a Lie subsuper-
algebra of g. By [71, Thm. 2.1], W*(g, f) contains an affine vertex superalgebra of type
a. In particular, W¥(g, f) contains elements I* for a € g,

—1)lel
— X Z Ivlfaﬁ : W@B:+% Z fﬁa’y(pﬁq)’y (2.7)

B,yeSt ﬁGS%

and satisfying

1
[IoAI°] = f2P 1 + X (k(qalqﬁ) +35 (mg(qa,qﬁ) — figo(4,4") — k1 (4%, q ))) (2.8)
with & 1 the supertrace of gg on g 1. The key structural theorem is the following.

Theorem 2.1. [71, Thm 4.1] Let g be a simple finite-dimensional Lie superalgebra with an
invariant bilinear form (| ), and let x, f be a pair of even elements of g such that ad x
is diagonalizable with eigenvalues in %Z and [z, f] = — f. Suppose that all eigenvalues of
ad = on g/ are non-positive, so that g¥ = @jgo gf. Then

(1) For each q* € g{j, (7 > 0) there exists a dg-closed field K* of conformal weight
1+ 7, with respect to L.

(2) The homology classes of the fields K*, where {q®} is a basis of gf, strongly and
freely generate the vertex algebra W¥ (g, f).

(3) HO(C(ga f7 k)a dO) = Wk(ga f) and HJ(C(gv fv k)7d0) =0 Zf] 7£ 0.
One can also consider the reduction of a module, i.e., for a V*(g)-module M, the

homology of the complex H(M ® F(g4+) ® F(g%),do) is a W¥(g, f)-module that we
denote by Hy, ;(M), that is

Hi s (M) = H(M ® F(g4) ® F(g, ), do). (2.9)
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2.3. Translation of W-algebras

We summarize a very useful result of Tomoyuki Arakawa, Boris Feigin and one of

s [11]. For this we consider two affine vertex algebras of type g, the first one, V, of

level k£ and the second one, L, of level /. Denote the generators of the first one by X

and the generators of the second one by Y¢. As complexes we take the previous one

C(g, f.k) =V ® F(g4) ® F(gy) and also C(g, f,k,{) = V® L® F(g+) ® F(g1). In

addition to the differential dy of last subsection, we also define the differential dj, as the
zero-mode of the field

d'(z) =d(z) + Z (=Dl yepe .

a€eS4

Then the homology with respect to dy is just the quantum Hamiltonian reduction on
the V subalgebra of V' ® L, while the homology with differential dj, is the reduction with
respect to the diagonal action at level k+ ¢. We now restrict to ¢ being a positive integer
and consider L = Ly(g) the simple affine vertex algebra of g at level £. The main result
of [11] is

Theorem 2.2. [11] As vertex algebras
HO(C(ga fa k)? dO) & L= HO(O(97 f7 ka e)a d/O)

The conformal vector of the right-hand side is not the sum of the standard conformal
vectors of the left-hand side. We will use this theorem for the case L = L,,(spay) for
m € Zxo, [ a minimal nilpotent, and k£ = —1/2. In this case, Ho(C(g, f, k),do) = C is
trivial, and we can use the theorem to get a nice decomposition of L., (spay,), see (7.8).
This then allows us to prove rationality of Com(Ly,(5P2n—2), Lm ($P2r)).

Remark 2.1. Let a = g/ N go. Then the affine subalgebras of W¥(g, f) and W**+¢(g, f)
are V*(a) and V*(a) for some levels s,t depending on k, k + £. Moreover, L has an action
of Li_4(a). Recall that I* is nontrivial in Ho(C(g, f,k),do) and I* + Y* is nontrivial
in Ho(C(g, f,k,¢),d}). The homology classes [I* + Y*]',[I*] of these fields generate
homomorphic images N*(a) of V*(a) and N’(a) of V*(a) inside Ho(C(g, f,k, do) ® L and
Ho(C(g, f,k,£),df). Consider the cases:

« If V. = VP’(g), then both homologies are subalgebras of C(g, f,k,f) (see the
discussion before [11, Lem. 4.1]), so in this instance the subalgebra V'(a) of
WEH (g, f) C Ho(C(g, f,k,{),d}) is the diagonal subalgebra of V*(a) ® L;_,(a) C
Hy(C(g, f,k),dy) ® L generated by I* + Y.

o The embedding Vi(a) C V*(a) ® L;_s(a) C WF(g, f) ® L induces the embedding
N'(a) € N*(a) ® Ly—s(a) € Ho(C(g, f, k), do) ® L, mapping [I* + Y] to [I*] +Y*.
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2.4. Singular vectors

In this subsection, we compute some conformal weights of singular vectors in principal
W-algebras at nondegenerate admissible levels. We use

Lemma 2.1. [37, Lem. 3.3] Let g be a simple Lie algebra, p,p"

its Weyl vector and Weyl
covector, and set a = —0 if (v,rV) =1 and @ = =05 if (v,rV) =rY. HererV is the lacity
of g and 6,0, are the highest root and highest short root. Set A = ntaY — (p,av)a
Denote by Sing(V') the weight of the singular vector of V' of lowest conformal weight.
Then for k = —hY + % of (co)principal admissible weight, singular vectors of affine and

principal YW-algebra have weight

(1) Sing(V¥(g)) = 35 AA+2p),
(2) SingW*(g)) = 3= A(A+2p) — A\p" for k a nondegenerate admissible level.

Corollary 2.1. Denote by Sing(V') the weight of the singular vector of V' of lowest con-

u

formal weight. Then for k = —hY + % of (co)principal admissible weight, we have

(1) Sing(V¥(spay)) = v(u —n) for v odd, and Sing(V*(spa,)) = 2(u —2n + 1) for v
even,

(2) Sing(VF¥(s02541)) = v(u—2n+2) for v odd, and Sing(V*(s02n41)) = %(u—2n+1)
for v even,

(3) Sing(W*(sp2n)) = (v —2n+ 1)(u —n) for v odd, and Sing(W*(spa,)) = (% — 2n +
2)(u —2n + 1) for v even and for k a nondegenerate admissible level,

(4) Sing(W*(s02,41)) = (v —2n + 1)(u — 2n + 2) for v odd, and Sing(W*(s02,11)) =
(5 —n)(u—2n+1) for v even and for k a nondegenerate admissible level.

Proof. Consider the lattice Z™ with orthonormal basis €y, ..., €,. We embed root and
coroots in rescalings of this lattice in the standard way, e.g. the simple positive roots

of 509,11 are €; — €a,...,6,_1 — €n, €n, and for spy, they are 61\;52 e, 6”*\1/;" AV 2e,.
Especially,

(1) g = s02,41 and v odd. Then 0 = 6 = € + €3, p¥ = ney + (n — e + -+ + €p,
p=3(2n—1)e1 + (2n —3)ea + -+ - + €,) and so pf¥ =2n — 2 and p¥# =2n — 1. It
follows that A\ = (u — 2n + 2)6.

(2) g = 509,41 and v even. Then 05 = ¢; and 6 = 2¢;. Thus pfY = 2n—1 and 65p" = n.
It follows that A = (u — 2n + 1)6,.

(3) g = span, and v odd. Then 6 = \/2¢; and p¥ = %((271— ler+(2n—3)ea+--+en),
p= %(nel +(n—1)eg+---+¢,). Thus pf¥ =n and 0p¥ = 2n—1 and X\ = (u—n)6.

(4) g = spay, and v even. Then 6, = \%(61 +¢3) and Y = v/2(e; +€3). Thus pfY = 2n—1
and p¥0; = 2n — 2 and A\ = (u — 2n + 1)6,.
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Inserting in the formula of Lemma 2.1 gives the claim. O

Remark 2.2.Let 1 < m < n. Then there is an embedding ¢ : Spap_om, —
SPpoy, Of Spon_op, In spo, sending the simple roots of sps, _on, to the simple roots
6"‘“\;5”“ s 6”*\;5_6" ,V/2¢€,, of 5pay, _om. Denote by X® YV the fields of V*(spay,_2.m)
and V’“(spgn) corresponding to the elements x € sps,_om,y € Sp2,. Then ¢ induces
an embedding of V*(spa,_om) in VF(spa,) sending X® to Y*) for x € spa,_oy,. This
embedding can be characterized via nilpotent elements as follows: Let f; = e_ 5. and

g; be the subspace of g{il of /2¢; weight zero for i = 1,...,m and go := sp2,, so that
gi = span—o; and especially g,, = t(span—2m).

2.5. Universal two-parameter even spin Weo-algebra

We briefly recall the universal two-parameter vertex algebra W (c,A) of type
W(2,4,...), which was conjectured to exist in the physics literature [17], and was con-
structed in [75]. It is defined over the polynomial ring C[e, A] and is generated by a
Virasoro field L of central charge ¢, and a weight 4 primary field W*. In addition, it is
strongly and freely generated by the fields {L, W?2!| i > 2} where W2 = I/V(A‘I)I/V%’2 for
1> 3.

W< (e, \) is simple as a vertex algebra over C|[c, A], but there is a discrete family of
prime ideals I = (p(c, \)) C Clc, A] for which the quotient

WL (e, N) = W (e, \) /T - W (¢, \),

is not simple as a vertex algebra over the ring C[e, A]/I. We denote by W5V(c, A) the

simple quotient of We¥'I(c, \) by its maximal proper graded ideal Z. After a suitable

localization, all one-parameter vertex algebras of type W(2,4,...,2N) for some N sat-

isfying some mild hypotheses, can be obtained as quotients of W (e, A) in this way;

see [34, Thm. 2.1]. The distinct generators of such ideals arise as irreducible factors of

Shapovalov determinants, and are in bijection with such one-parameter vertex algebras.
We also consider We¥+!(c, \) for maximal ideals

I:(C—Co,/\—)\o), Co,)\oe(c.

Then WV (c, \) and its quotients are vertex algebras over C. Given maximal ideals
Iy = (c—co,A—Xp) and I} = (c— 1, A — A1), let Wy and W be the simple quotients of
wevlo (e, X) and W11 (e, N). A criterion for Wy and W, to be isomorphic is given by [75,
Thm. 8.1]; aside from a few degenerate cases, we must have ¢y = ¢; and A\g = A;. This
implies that aside from the degenerate cases, all other coincidences among the simple
quotients of one-parameter vertex algebras We"+! (¢, \) and W/ (¢, \), correspond to
intersection points of their truncation curves V(I) and V(.J).
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We record a slight improvement to the results of [75] for later use. By [75, Thm. 8.1,
case (4)], for ¢ # 1,25, the Virasoro algebra Vir® is realized as a quotient of W (¢, \)
by setting

1

A=+ 7 (2.10)
7/(c — 25)(c — 1)

and taking the simple quotient. This occurs because the weight 4 field becomes singular,
and hence all higher descendants W?2* for k > 2 also vanish in the simple quotient. It is
straightforward to check that the truncation curve for W¥(spa,,) given by [75, Eq. A.1],
in the case n =1 coincides with (2.10). It follows that [75, Thm. 9.3], which is stated in
the range 2 < n < m, actually holds for 1 < n < m. Similarly, [75, Thm. 9.4] which is
stated for n > 2, also holds for n > 1.

Next, the truncation curve for W¥(s04,)%2 given in [75, Thm. 6.3] for n > 3, in fact
holds for n = 2 as well. In this case,

. . \Z (1+2k)(4+ 3k)
WE(s04)%2 2 (Vir® ® Vir®) ™2, =
(s04) (Vir® ® Vir®) c Yk
where Zs acts by permutation. This truncation curve was computed in [84] and is easily
seen to coincide with the specialization of the curve for W¥(s05,)%2 to the case n = 2.
Therefore [75, Thm. 9.1], which was stated in the range 3 < n < m, actually holds for
2 < n < m. Similarly, [75, Thm. 9.4] holds for all n > 1 and m > 2.

2.6. Ezxtensions of rational vertex operator algebras

An extension of a lisse (Cy-cofinite) vertex algebra is also lisse [2, Prop. 5.2]. We also
need a general result that says that extensions of a rational vertex algebra are rational
as well. One such statement is [57, Thm. 3.5]. One assumption, however, is a positivity
assumption on conformal weights of modules, and this assumption is not satisfied in most
of our cases of interest. Another such statement is [33, Cor. 1.1], which however only
applies to Z-graded vertex algebra extensions. We need to consider %Z—graded vertex
superalgebra extensions, and so we now ensure that the rationality result generalizes to
this setting.

We first recall the main basic theorems of [76,57,30,32,33] using [38, Section 2]. Let
V' be a vertex operator algebra and C = (C,K, 1, Aq e.e,le,Te,Ree) be a category of
V-modules with a natural vertex and braided tensor category structure in the sense
of [58-66]. The tensor bifunctor is denoted by X, the tensor identity is just the vertex
operator algebra V itself and will be denoted by 1. The associativity constraint, the left
and right unit constraint and the braiding are denoted by A, [, r, R.

Definition 2.1. [76] An algebra is a triple (A, 1a,t4) with A an object in C and multipli-
cation pyg : AX A — A and an embedding of tensor unit ¢4 : 1¢ — A that satisfy
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(1) Multiplication is associative: pg0(ida Muas) = pao(paXidg)oda a4 : AR(AKA) —
A

(2) Multiplication is unital: ps 0 (ta Kida) =14 : 1c KA — A and pg o0 (idaXey) =
ra: A1 — A

(A, 114,t4) is a commutative algebra if additionally
(3) Multiplication is commutative: pg o Ra 4 = pra: AKA— A

We will use the short-hand notation A for an algebra (A, 114,t4).

Definition 2.2. [76] Let A be an algebra, and define C4 to be the category of pairs (X, pux),
where X is an object in C and pux : AR X — X is a morphism in C subject to

(1) Unit property: lx = px o (ta Kidx) : 1¢ ¥ X — X
(2) Associativity: px o (ida Mux) = px o (pa Ridx)oAg ax t AR (AR X) — X.

A morphism f € Home, (X1, px, ), (X2, x,)) is & morphism f € Home (X7, X2) such
that pix, o (ida ¥ f) = fopx,.

When A is commutative, define C{2¢ to be the full subcategory of C4 containing local
objects: those (X, ux) such that px cRx a0Ra x = px.

There is an induction functor 4 : C — C4 that maps an object X € C to (AKX, uX
Idx) and a morphism ¢ : X — Y to Ida K¢ : F(X) — F(Y), see [32] for more details.

Super commutative algebras are defined similarly in [30]. The structural categorical
results are summarized in the following theorem.

Theorem 2.3. Let C be a braided tensor category and let A be a commutative algebra in
C. Then the following results hold:

(1) The category Ca is a tensor category ([76, Thm. 1.5], [32, Thm. 2.55]).

(2) The subcategory Ci° is a braided tensor category ([76, Thm. 1.10], [32, Thm. 2.55]]).

(3) The induction functor Fa : C — Ca is monoidal ([76, Thm. 1.6], [32, Thm. 2.59]).

(4) The induction functor satisfies Frobenius reciprocity, that is, it is left adjoint to the
forgetful functor Ga from C4 to C:

Home, (Fa(W), X) = Home (W, Ga(X)) (2.11)

for objects W in C and X in Ca (see for example [76, Thm. 1.6(2)], [32, Lem. 2.61]).
(5) Let W be an object in C. Then Fa(W) is in C¥¢ if and only if the monodromy is
trivial, that is Maw := Rw,a o Raw = idagw ([32, Prop. 2.65]).
(6) Let C° be the full subcategory of objects in C that induce to C}¢. Then the restriction
of the induction functor Fa : C® — C¥¢ is a braided tensor functor ([32, Thm. 2.67]).
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The next theorem tells us that we can use the categorical results to study extensions
of vertex algebras.

Theorem 2.4. Let V' be a vertex operator algebra, and let C be a category of V-modules
with a vertex tensor category structure in the sense of [58—66]. Then the following results
hold:

(1) A wvertex operator algebra extension V. C A in C is equivalent to a commutative
associative algebra in the braided tensor category C with trivial twist and injective
unit ([57, Thm. 3.2]).

(2) The category of modules in C for the extended vertex operator algebra A is isomorphic
to the category of local C-algebra modules C°¢ ([57, Thm. 3.4]).

(3) The results in (1) and (2) hold for a vertex operator superalgebra extension: The
vertex operator superalgebra extension V. C A in C such that V is in the even sub-
algebra A° is equivalent to a commutative associative superalgebra in C whose twist
0 satisfies 0° = id 4. The category of generalized modules for the vertex operator su-
peralgebra A is isomorphic to the category of local C-superalgebra modules Ci¢ ([30,
Thm. 3.13, 3.14]).

(4) The isomorphism given in [57, Thm. 3.4] and [30, Thm. 3.14] between the category
of modules in C for the extended vertex operator (super)algebra A and the category
of local C-algebra modules Ci¢ is an isomorphism of vertex tensor (super)categories
([32, Thm. 3.65]).

A tensor category is called a fusion category if it is semisimple with finitely many
inequivalent simple objects and every object is rigid. In particular in that case there is a
trace and thus a notion of dimension of objects. The following theorem gives conditions
under which a vertex algebra extension has a semisimple representation category.

Theorem 2.5. [33, Theorem 5.12] Suppose U and W are braided fusion categories of
modules for simple self-contragredient vertex operator algebras U and W, respectively,
and

A:EBU@WZ-
el

is a simple Z-graded vertex operator algebra extension of U @ W in C = U KW where
the U; are distinct simple modules in U including Uy = U and the W; are modules in VW
such that

dim HOmw(VV, Wl) = 61‘,0-

Then dime A > 0 and the category of (grading-restricted, generalized) A-modules in C
s a braided fusion category.
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We need to generalize this theorem to the case where A is possibly a vertex opera-
tor superalgebra and possibly %Z—graded. Let V be a vertex operator algebra and C a
category of V-modules. We assume this category to be braided fusion. Let A O V be an
object in C that itself carries the structure of a vertex algebra or vertex superalgebra.
We assume V to be Z-graded, but A does not need to be. However, we assume A to
be Zs-graded, A = Ag ® Aj, such that Aj is a Z-graded vertex algebra containing V/,
V C Aj. In other words, Ag is a Zs-orbifold of A and so Az is a self-dual simple current
[81].% Let C¥° and C}ffﬁc be the categories of local A and Aj-modules that lie in C. Note
that C4 = (Ca,)a by [39, Section 3.6] and since a local A-module is necessarily local as
a module for the subalgebra Ay, also Cl{¢ = (Cfﬁc)lgc.

Let M be a simple object in C}f"g and let F : CIX(_JC — C4 be the induction functor and
G the restriction functor. We have G(F(M)) & M & N with N = A; K M. The modules
M and N are graded by conformal weight, i.e.

M= P M, N= & N,

n€Z+hy neZ+hy

for some complex numbers Ay, hy. The monodromy R 4. aroRar, 4; is either the identity
on N or minus the identity on N, see [30] for details. In the latter case, we call any
submodule of F(M) a twisted module and the subcategory of C4 whose objects are
direct sums of twisted modules is denoted by C''. The module F(M) is either simple or
a direct sum of two simple modules [32, Prop. 4.18 and Cor. 4.22]. In the latter case one
has M = N and by Frobenius reciprocity Home, (M,M®&M) =Home, (F(M),F(M)),
i.e. these two simple summands of F(M) need to be inequivalent. We are interested in
three cases and their properties are given in [32, Section 4.2].

(1) Aisa %Z—graded vertex algebra, especially conformal weights of Aj are in Z + %
In this case F(M) is always simple. Moreover it is local if and only if hpy = hy + %
mod 1. Otherwise it is twisted. See Section 4.2.2 and especially Lemma 4.29 of [32].

(2) Ais a %Z-graded vertex superalgebra, especially conformal weights of A; are in
Z+ 1. F(M) is local if and only if hps = hy +1 mod 1 and otherwise it is twisted.
F(M) is simple if it is local. If F(M) is twisted then either it is simple or M = N
and F(M) is a direct sum of two simple objects. This type of extension is Section
4.2.3 of [32).

(3) A is a Z-graded vertex superalgebra. In this case F(M) is always simple. Moreover
it is local if and only if hy; = Ay mod 1. Otherwise it is twisted. See Section 4.2.1
and especially Lemma 4.26 of [32].

3 A simpler proof of this statement is given in Appendix A of [31], observing that the argument there is
the same for vertex superalgebras.



T. Creutzig, A.R. Linshaw / Advances in Mathematics 409 (2022) 108678 23

If we assume that A is a simple vertex (super)algebra, then the action of A on a non-zero
A-module cannot have a kernel and so especially M and N cannot be zero. Assume that
A is simple.

Assume that V = U ® W is the tensor product of two vertex operator algebras and
assume that

A() = @Uz ® W;
el

for some index set I. Here the U; are distinct simple U-modules and we set U = Uy and
W = Wy. Also, assume that the U; and W; are objects of vertex tensor categories Cyy of
U-modules and Cy of W-modules, that are braided fusion categories Then the Deligne
product C = Cy K Cy is a vertex tensor category as well [33, Thm. 5.5]. The W; are
not necessarily distinct, but one requires that Hom(W, W;) = 0 for ¢ # 0. Under these
assumptions Cfg is a braided fusion category as well by Theorem 2.5. We now prove that
Clo¢ and CYY are also semisimple.

The following is similar to the proof of [25, Thm. 5.13]. Let D be either C° or CY".
Let X,Y be two simple modules in D and consider an exact sequence £ : 0 — X —
Z —'Y — 0. We show that it splits. Let M be a direct summand of G(Y'). There are

two cases

(1) Y=2FM)and G(Y)=M @ N with N =A; XM and M 2 N or
(2) FIM)=2Y oW with W2Y and G(F(M)) =M & M.

We use Frobenius reciprocity. In the first case
Hom, (¥, Z) = Home, (F(M), Z) = Homgye (M, G(2)) = Homege (M, G(X) & G(Y)
= Homclﬁg(M,g(X @Y)) =Home, (F(M),X®Y)=Home,(V,X®Y)
and hence E splits. In the second case
Home, (Y ® W, Z) =Home, (F(M), Z) = Homcleg (M,G(2))

=Homey: (M, G(X) @ (V)
:Homcljg(M,Q(X @Y)) =Home, (F(M),X DY)
=Home, (YW, X®Y)

and hence F splits as well. Summarizing:

Proposition 2.1. (%Z—graded vertex superalgebra generalization of [33, Thm. 5.12])
Let A = Ay @ A7 be a simple vertex (super)algebra of one of the three types listed above
extending the Z-graded self-contragredient simple vertex algebra U @ W. Assume that
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A =2PUiew;

i€l

for some index set I. Here the U; are distinct simple U-modules and we set U = Uy
and W = Wy. Also assume that the U; and W; are objects of verter tensor categories
that are braided fusion categories Cy,Cw of U respectively W-modules. Assume that
Hom(W,W;) =0 fori# 0. Let C = Cyy ®Cy. Then both C¥¢ and CY* are semisimple.

Proposition 2.2. Let V be a simple vertex superalgebra of CET-type and let m be a simple
rank n Heisenberg subalgebra of V' with

Vv=pwn

A€L

the decomposition of V into generalized weight spaces for w. Here L is the set of A € C"
with Vy # 0. If C = Com(m, V) acts semisimply on V, then L C C is a subgroup of
C™ and there are simple C-modules C, such that Vy = 1y ® Cy as ® @ C-modules. In
particular, ™ acts semisimply on V.

Proof. Vj is a vertex subalgebra of V. Since V is simple, V is spanned by {u,v|u €
V,n € Z} for any non-zero v € V [43, Cor. 4.2]. Thus A\, u € L implies 1 — X\ € L as well.
For w,v in V, there exists m € Z such that u,,v # 0 [40, Prop. 11.9] and so A\, u € L
implies y + A € L as well. It follows that each V) is a simple Vj-module and that L is a
subgroup of C".

If V, is not completely reducible as a m-module, then there exists a length two self-
extension of 7. It is generated by v € Vj, s.t. there is a Heisenberg field X (z) whose
zero-mode X acts nilpotently, i.e. Xov = w # 0 and X,v = 0 for n > 0 and such
that w is a vacuum vector for m, i.e. w € C. C is simple, since it acts semisimply
on itself and since vertex algebras can’t be decomposable as modules for themselves.
Hence there exists y € C and m € Z such that y,w = |0). But this means that
Xoymv = YmXov = ymw = |0), i.e. y,v is a vector at the top level of V' and not in
the kernel of Xy, contradicting that V is of CFT-type. It follows that Vj is completely
reducible as a m-module and hence the only possibility is that Vj = 7 ® C. Each V) is
a simple Vp-module and so it must be of the form V) = 7\ ® C) for simple C-modules

Cy\. O

Proposition 2.3. Let V' be a simple lisse vertex superalgebra of CFT-type and U be the
affine subalgebra generated by the weight one subspace of V. Let W = Com(U,V) and
assume that W is self-contragredient. If W is rational, then so is V.

Proof. By [42] applied to the even subalgebra of V', U is necessarily the tensor product
of a Heisenberg vertex algebra of some rank and an integrable affine vertex algebra L.
The bilinear form on the weight one subspace is non-degenerate since V' is simple and so
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especially it is non-degenerate on the Heisenberg subalgebra, so that the Proposition 2.2
applies. The commutant U = Com(W, V) of W in V is an extension of L ® V}, for some
lattice vertex algebra Vi, (see [25, Lem. 5.8] or [42]). L needs to be positive definite for V'
being of CFT-type. Since the (categorical) dimension of any simple lattice vertex algebra
module is one and the one of any integrable representation is positive, it follows that U
is rational by [76, Thm. 3.3]. Hence Proposition 2.1 (respectively already [33, Thm. 5.12]
if V is an integer graded vertex algebra) applies to V as an extension of U @ W, and so
V is rational as well. O

By [77, Cor. 3.2], a simple integer graded vertex operator algebra is self-dual if its
conformal weight one space is in the kernel of the Virasoro mode L;. This holds especially
if the conformal weight one space vanishes.

Corollary 2.2. (Corollary of [77, Cor. 3.2]) Let W be a simple integer graded vertex op-
erator algebra of CFT-type with no fields of conformal weight one. Then W is its own
contragredient dual.

Especially Proposition 2.3 applies if W is a simple rational principal W-algebra as-
sociated to a simple Lie algebra or an order two orbifold of a simple rational principal
W-algebra.

We need another corollary of Proposition 2.1. For this let V' be a simple vertex (su-
per)algebra and Wy, W5 be simple vertex (super)subalgebras. Let L, W5 be simple vertex
(super)subalgebras of Wa, such that Com(Ws, V) = Wi, Com(L, W) = W3 and such
that W, W3 are actually integer graded self-contragredient vertex operator algebras. As-
sume that there are braided fusion categories Cy,, C1,Cs of modules for the vertex algebras
L, W1, W3, such that V' is an object in C := Cy, X Cy W C3. Then W5 corresponds to a
commutative (super)algebra object in D := Cr, K Cs, that we also denote by W5. We thus
have an induction functor F : D — Dy, with right adjoint denoted by G. For an object
M in Dyy, one has by Frobenius reciprocity

HOHIDW2 (W27 M) = HOI’H'D(W?, ® L, Q(M))

Hence a simple object M in Dy, with the property that Homp (W3®L, G(M)) is non-zero
necessarily is isomorphic to W5. This implies

Com(Ws,V) = Com(W3 ® L, V)
and thus
W1 = Com(Wa, V) = Com(W3 ® L, V) = Com (W3, Com(L,V)) .

The setting of Proposition 2.1 thus holds for Wy = U, W5 = W, Com(L,V) = A4, i.e.
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Corollary 2.3. With the above setting, the categories of local and twisted Com(L,V)-
modules that lie in Cy W Cs are semisimple. Especially if W1 and W3 are rational and
lisse, then so is Com(L, V).

3. Hook-type Wh-algebras in types B, C, and D

In this section, we define the eight families of W-(super)algebras that we need in a
unified framework. First, let g be a simple Lie (super)algebra of type B, C, or D; in
particular, g is either 502,41, $Pgy,, §02,, Or 08p,, |5, We further assume that g admits a
decomposition

g=aDb® pa @ po, (3.1)

with the following properties.

(1) a and b are Lie sub(super)algebras of g. Here b is either 05,11 or sp,,,, and a can
be $025,4+1, 53y, 502n, OT 08Py o),

(2) pq and py transform as the standard representations of a and b, respectively.

(3) pa and pp have the same parity, which can be even or odd.

Note that if a = 0spy2,,, pa €ven means that p, = C2"1 as a vector superspace, whereas
pa 0dd means that p, = CH?" If g = 05Pn|2n, We use the following convention for its
dual Coxeter number h".

“2n—2 type B - o
hV:{m " ype sdim(osp ) = 220D g )

—2”+22_m type C 2

In this notation, type B (respectively C) means that the subalgebra b C g is of type
B (respectively C'), and the bilinear form on 0sp,,|2,, is normalized so that it coincides
with the usual bilinear form on b. The cases we need are the following.

e Case 1B: g = 509, 19m+12, b =509,41, a=509,41, Pa ® pp even.
o Case 1C: g = 08Py, 1 1)2n, 0 =802m41, a=5py,, Pa @ pp odd.

e Case 1D: g = s09p49m+1, b =802,m+1, 0 =502, Pa ® pp even.

o Case 10: g = 08Py, 1920, b =802m41, = 08pyj9,, Pa ® pp odd.
o Case 2B: g = 08Py, 112m: 0 =Poy,, 0 =802,41, Pa @ pp odd.

o Case 2C: g =8Py, 19y b =15py,, a=spy,, Pa ® pp even.

o Case 2D: g = 08Poy|0,, b =58Py, a =502, Pa @ pp odd.

o Case 20: g = 08P1j9p10m, 0 =8Py, 0= 08Py, Pa ® pp even.

Corresponding to (3.1), we have an embedding V*(b) ® V¥(a) < V*(g), where the
level ¢ is given as follows.
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(1) In cases 1B, 1D, 2C, and 20, ¢ = k,
(2) In cases 1C and 10, £ = —%,
(3) In cases 2B and 2D, ¢ = —2k.

Let fp € g be the nilpotent element which is principal in b and trivial in a. The
corresponding W-algebras W¥(g, fo) will be called hook-type W-algebras since they are
analogous to the hook-type W-algebras of type A introduced in [37]. Let dq = dim pq
and dp = dim pp. In particular, dy = 2m + 1 if b = s09,,41, and dp = 2m if b = sp,,,,.

It follows from the decomposition (3.1) that in all cases, W¥(g, fy) is of type

dq
W(ldim“,2,4,...,2m,(db2+1) )

The affine subalgebra is V*(a) for some level ¢, which we describe below. The fields in

weights 2,4, ...,2m are even and are invariant under a. The d, fields in weight d"2+ L can

be even or odd, and they transform as the standard a-module. By [37, Cor. 3.5], we may
assume without loss of generality that the fields in weights 2,4, ...,2m lie in the affine
coset Com(V*(a), W*(g, f)), and that the d, fields in weight d“;l are primary for the
action of V(a).

Write g = @, pa, where pg denotes the d-dimensional representation of the slo-triple

{f,z,e}. Then each py gives rise to a field of conformal weight % in W¥(g, fp), and
the corresponding ghosts give rise to a central charge contribution
(d—1)(d?> —2d - 1)

Cq = — 5 . (33)

The central charge ¢ of W¥(g, fo) is then computed to be

Cc = Cg + Cdilaton + Cghost7

o — k sdim g
Skt hg ’
o — kx 2m(m+1)(2m + 1) b =609m41 (3.4)
dilaton 2m(4m2 . 1) b— o,

2 4
Cprin = 6m~ — 8m~,
Cghost = Cprin T Sdacdb-

Here the formula for ¢4, is obtained by specializing (3.3). Finally, the level ¢ of the affine
subalgebra V*(a) C W¥(g, fo) is given by

1 a4 = $§02,, 502,41,

) (3.5)
3 a = 5Poy, 05P1|2n,

tzfi(db—l)X{
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where we have + if py ® pp is even and — if it is odd. For a = 0sp;|2,,, we must replace
dq by dg — 2 = sd,, where sd, means superdimension. Recall that in this case, pq is
called even (respectively odd) if the 2n-dimensional standard module for sps, is even
(respectively odd). We will always replace k with the critically shifted level ¢p = k+ hY,
where hY denotes the dual Coxeter number of g. We now describe the examples we need
in more detail.

3.1. Case 1B

For g = 5095, +2m+2, we have ¥ = k + 2n 4+ 2m. We define

W%B (n7 m) = Wk (502n+2m+27 f502m+1 )7
which has affine subalgebra V¥ ~2"(s05,,41). We consider the following extreme cases.

(1) If m > 1and n = 0, fso,,,,, is also the principal nilpotent in §02,, 42, so V\/IbB(O7 m) =
WY =2 (505, 12).

(2) For m = 0 and n > 1, fso, € 502,42 is the zero nilpotent, so W}/’B(n, 0) =
VY72 (505,41 2).

(3) It m =n = 0, W{5(0,0) = V¥(s05), which is just the rank one Heisenberg algebra
H(1).

3.2. Case 1C

For g = 08Py, 11)2,, We have ¢ =k +2m — 2n — 1. We define

W;/’C(n, m) = Wk(°5p2m+1|2n7 fs02mi1)s

which has affine subalgebra V—%/2-"=1/2(sp,,). Here we are using the convention (3.2)
that 05pay,41)2, has dual Coxeter number 2m — 2n — 1.

(1) If m > 1 and n = 0, g = s0241 and fso,, ., is the principal nilpotent, so
Wi (0,m) = W¥=2m+ (504, 11).

(2) Ifm =0and n > 1, g = 0spy)y, and feo, = 0, 50 Wi(n,0) = V427 (0sp, o).
Note that even for m = 0, we use the convention (3.2) that osp;js, has dual Coxeter
number —2n — 1. With this choice, we have the embedding V~=*=""1/2(spy,) —
V¢+2n+1(05131|2n)-

(3) If m =n =0, W/,(0,0) = C.
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3.8. Case 1D
For g = 509, +2m+1, we have ¢ = k + 2n 4+ 2m — 1. We define

W;Z)D (n7 m) = Wk (502’ﬂ+2m+17 f502m+1)a

which has affine subalgebra Vw*Q”H(ﬁOQn).

(1) If m > 1 and n = 0, g = 502,41 and feo,,,., is principal, so WfD(O,m) =
WY=2mtl (505, 14).

(2) fm=0and n>1, g=509,41 and foo, = 0, 50 W (n,0) = V¥ =241 (505, 1).

(3) If m >1andn =1, g = 5023 and fso,, ., € 502m,43 is the subregular nilpo-
tent, so WIZ’D(L m) = WY 2" 1(509,, 13, fsubreg). In this case, the affine subalgebra
V¥~1(s05) is just H(1).

(4) Im=n=0, W}, (0,0) =C.

3.4. Case 10
For g = 08Py, 2j2n, We have ¢ =k + 2m — 2n. We define

Wipo (n,m) = Wk(°5p2m+2\2na fs02mi1)s

which has affine subalgebra V =%/ 27" (08p1)2,). We are using the convention (3.2) that
05P2m422n has dual Coxeter number 2m — 2n, whereas the dual Coxeter number of
08P1|2, 1S taken to be ZLEL.

(1) If m > 1 and n = 0, g = $02p42 and fso,,,,, is the principal nilpotent, so
W (0,m) = W2 (509,,19).

(2) If m = 0 and n > 1, we have g = o08pyp, and foo, = 0, s0 W/5(n,0) =
V¢+2"(05p2|2n). As above, even for m = 0, we use the convention (3.2) that 0sp|a,,
has dual Coxeter number —2n. We then have an embedding

V_w/Q_n(Uﬁqun) — Vw+2n(05132|2n>7

where the dual Coxeter number of 0spy)2,, is chosen to be %

(3) If m =n =0, Wi5(0,0) = V¥ (0spy9) = H(1).
3.5. Case 2B
For g = 08Py, 1)2m, We have ¢y =k +m —n +1/2. For m > 1 and n > 0, we define

W;bB(n, m) = Wk(05p2n+1|2m, f5p27n),
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which has affine subalgebra V =2%=27%2(50,,,,1). We are using the convention (3.2) that

08P, 4 1|2 has dual Coxeter number 22=20+L,

(1) If m > 1 and n =0, g = 08py)3,, and fsp,,, is the principal nilpotent, so W;bB(O,m)
is the principal W-superalgebra W’l’_m_l/2(05p1‘2m).
(2) f m=1and n>1, g=08p,, 15 and fsp, is the minimal nilpotent, so
W;pB(”v 1) = Ww+n_3/2(05p2n+1|2, Jmin)-
(3) If m =0 and n > 1, we need a different definition. We set

Ws(n,0) == V=22 (500, 1) @ F(2n 4 1).

Here F(2n + 1) is the rank 2n + 1 free fermion algebra, which has an action of
L1(8095,41). Therefore W;Z’B (n,0) has a diagonal action of V=2¥=27+2(505 ).
(4) If m = n =0, we define W;Z’B(O,O) = F(1).

3.6. Case 2C
For g = 5Py, 1 9,m, We have ¢ =k +n+m + 1. For m > 1 and n > 0, we define

W;pc(n7 m) = Wk (5p2n+2m7 f5P2m)a

which has affine subalgebra V¥ —"—3/2 (span)-

(1) If m > 1 and n =0, g = spay, and fsp,,, is the principal nilpotent, so W;Z’C(O,m) =
Wwimil(ﬁpgm).
(2) f m=1andn>1, g =5py, o and fsp,, is the minimal nilpotent. Then

W;/)C(n7 1) = Wd)in72(5p2n+27 ,fmin)~
(3) If m =0 and n > 1, we define
Wi (n,0) = V¥ (spy,) @ S(n).
Here S(n) is the rank n Bv system, which has an action of L_; 5(sp2y). Therefore
Wit (n,0) has a diagonal action of V¥~"=3/2(spy,,).
(4) If m = n =0, we define W;pc((), 0) =C.
3.7. Case 2D

For g = 08Py, We have ¢y =k +m —n+ 1. For m > 1 and n > 0, we define

W;ﬂD(nﬂ m) = Wk(05p2n|2m7 f5p2m)7
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which has affine subalgebra V=2¥=27%3(g0,, ). We are using the convention (3.2) that
05P5y, 2, has dual Coxeter number m —n + 1.

(1) Ifm >1landn =0, g = spay, and fp,,, is the principal nilpotent. Then Wg’D(O, m) =
WY (spay,).

(2) If m > 1 and n =1, g = 08py)5,, and fsp,,, is the principal nilpotent, so W;pD(l, m)
is the principal W-superalgebra Ww*m(05p2‘2m). Note that in this case, the affine
subalgebra V ~2¥*1(s0,) is just the Heisenberg algebra H(1).

(3) m=1andn > 1, g = 05py, s, and fsp, is the minimal nilpotent so W;bD(n, 1) =
W12 (08p9,,12, frnin)-

(4) If m =0 and n > 1, we define

WY (n,0) := V=224 2(50,,) @ F(2n).
Here F(2n) is the rank 2n free fermion algebra, which admits an action of L;(so02y,).
Then W;bD(n, 0) admits a diagonal action of V~2¥=27+3(50,,).

(5) If m =n =0, we define WJ,(0,0) = C.

3.8. Case 20

For g = 08py|9,, 25, We have p =k +m +n + 1/2. For m > 1 and n > 0, we define

W;Z)O (TL, m) = Wk(05p1\2n+2m7 f5p2m)7

which has affine subalgebra V¥~="~!(0osp;|2,). We are using the convention (3.2) that

05P1 |2, + 2, has dual Coxeter number 2m42ntl

2n+1
-

, and the dual Coxeter number of 0spy|2,,
is taken to be

(1) fm > 1 and n = 0, g = 08Py, and fsp,, is principal. Then Wi (0,m) =
W2 (08p12).-

(2) Ifm=T1andn > 1, g = 08py),,42, and fsp, is the minimal nilpotent, so W;bo(n, 1) =
Ww*n73/2(°5p1|2n+27 fmin)-

(3) If m =0 and n > 1, we define

Wi (n,0) := V=1 2(0sp, 5 ) @ S(n) @ F(1).

Recall that S(n) ® F(1) admits an action of L_;/5(08p1|2y,), SO Wgo(n, 0) admits a
diagonal action of qu_”_l(osp”gn).
(4) If m =n =0, we define VV;"O(O7 0) = F(1).
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3.9. Affine cosets

Our main objects of study are the affine cosets of these W-algebras. In fact, in the
case where a is either 502, 502,11, Or 05p1|2,,, the action of a integrates to an action of
the corresponding connected (super)group SOg,,, SOgp,41, Or SOspy2,,, and this action
further extends to the double cover Og,,, Ogpy1, Or Osp1|2n. In these cases, we need to
take the Zs-orbifold of the corresponding affine coset. Here is the list of these algebras.

Case 1B:

Com(V¥=2"(509,,41), W5(n, m))% m>1,n>1,
Com (V¥ 2" (509,11), V¥ 2" (s09712))%> m=0, n>1,
Clp(n,m) = ( (F0znt1) (502+2)) = (3.6)
W¢—2m<502m+2>22 m>1 n=0,
H(1)Z2 m=n=0.
In all cases, Cf’ 3(n,m) has central charge
(W +mp—m—n—1)2my —2m —2n — 1)(¢) + 2my — 2m — 2n)
(¥ —1)p '
Case 1C:
Com(V~¥/27n=1/2(apy,,), Wi (n, m)) m>1,n>1,
Com(V—¥/2=n=1/2(5p,,), V¥*+2"+ 1 (0sp, 5, ) m =0, n>1,
Cipc(n;m) = ( (5P2n) (05P1)2n)) > 3.7)
WY =2m+l (5001 1) m>1, n=0,
C m=n=0.

If we define the central charge of C to be zero, then in all cases, Cf’c(n, m) has central

charge
. (=mAn+md)(1—2m+2n+ 1+ 2my) (=1 — 2m + 2n + 2¢ + 2my))
(W =1y '
Case 1D:
Com(V¥ =21 (504,,), WY, (1, m)) %2 m>1,n>1,
Com(?—[(l),Ww*Qm*l(sonJrs, fsubrcg))Z2 m 2 ]-7 n= ]-7
Clp(mm) = § Com(VP=21+1(s05,), V21 (g0, 1))% m=0, n>1,  (3.8)
W —2m+1 (502m+1) m>1, n=0,
C m=mn=0.

In all cases, C;b (n,m) has central charge
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(—m—n+my)(1 —2m —2n+ ¢+ 2my)(—1 — 2m — 2n + 29 + 2ma))

C= — .

(=1
Case 10:
Com(V =¥/ (08p1j9,), Wip(n,m))%2  m>1, n>1,
Com (V=27 (05p1|2,), VY2 (08pyn,)) m =0, n>1,
Clyfmmy = 4 SO (051120), V2" (05yy2,) L.
Ww_Zm(ﬁongrz)Z? m>0, n=0,
H(1)%2 m=n=0.
In all cases, Cibo (n,m) has central charge
. (l=-m+n+¢+my)(=1—2m+2n+ 2m)(=2m + 2n + ¢ + 2m))
(v =1y '
Case 2B:
Com (V=2 =2712(509,, 1), Wiy (n, m))%2
m>1,n>1,
Com(V —2¥=242(50,,,,1), V22" (505, 1) @ F(2n + 1)) %2
" . m=0,n>1,
CQB(TL; m) - Ww,m,1/2(05p1|2m)22 (310)
m>1, n=0,
F(1)22
m=n=0.
In all cases, C;p 5(n,m) has central charge
. (mAn—9¢+2my)(1 —2m + 2n +4my) (=1 — 2m + 2n + 2¢ + 4ma))
20(2¢ — 1)
Case 2C:
Com(V¥="=3/2(spy,, ), Wi (n,m)) m>1, n>1,
¥ Com(V¥="73/2(sp5,,), V¥~ 1 (sp2,) @ S(n)) m =0, n>1,
= A1
CQC(n7m) Wwim71(5p2m) m > 1, n = 0, (3 )
C m=mn=

In all cases, Cgc (n,m) has central charge

c:_(—m—n—|—2m¢)(—1—m—n+w+2mw)(—1—2m—2n—2¢—|—4mw)

Y(2g—1)
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Case 2D:
Com(V=2¢=2n43 (505, ) W, (n,m)) %> m>1,n>1,
Corn(’;’-[(l),V\W—m(05132|2m))z2 m>1, n=1,
Cyp(n,m) = { Com(V—2¢=2n+3(50,, ) V=20=20+2(50, ) @ F(2n))2> m =0, n > 1,
szfmfl(sme) m2>1,n=0,
C m=n=0.
(3.12)

In all cases, Cg (1, m) has central charge

(—m+n+2myY) (=1 —m+n+ ¢+ 2my)(—1 — 2m + 2n — 2¢ + 4map)

c=— .
P(2¢ - 1)

Case 20:

Com(V”’_"—l(osp”gnLW;Z’O(n,m))Z2

m>1, n>1,
Com(V¥="!(05p1j2n), Vw—"_l/z(ﬂﬁpuzn) ® S(n) ® F(1))%
pu— >
Cyn(n,m) =3 - O n=1, (3.13)

WH=m=1/2(06p 5, ) 22
m>1, n=0,
F(1)22
m=mn=0.

In all cases, C;Z’O (n,m) has central charge

C:_(—m—n—1/)—}—27711/))(1—2m—2n+4m1p)(—1—2m—2n+2¢+4mw)

2(2¢ — 1)

We shall regard 1 as a formal variable and the algebras C;/’X(n,m) for i = 1,2 and
X = B,C,D, 0, as one-parameter vertex algebras with parameter . If ¢y € C is a
complex number, Cgp)?(mm) will always denote the specialization of C?’X(n,m) to the
value ¢ = 1)y. For generic values of g, this coincides with the actual coset, although it
can be a proper subalgebra of the coset if ¥ is a negative rational number.

Theorem 3.1. Fori=1,2 and X = B,C, D, O, Cfx(n,m) is simple as a one-parameter
vertex algebra; equivalently this holds for generic values of .

Proof. In all cases where WZ[}( (n,m) is a quantum Hamiltonian reduction, namely the
cases where n +m > 1, and m > 1 when i = 2, the simplicity of WZ@( (n,m) and of its
affine coset follows from parts (1) and (2) of [37, Thm. 3.6]. In the cases X = B, D, 0
where CZ.#X (n,m) is the Zy-orbifold of the affine coset, the simplicity follows from [41].
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In the cases W;l’ «(n,0), the simplicity of the affine coset follows from [25, Prop. 5.4],
and in the cases X = B, D, O, the simplicity of Cg’ «(n,0) again follows from [41]. Finally,
the claim is obvious in the all cases when n =m =0. O

4. Main result
The main result in this paper is analogous to [37, Thm. 1.1].

Theorem 4.1. For all integers m > n > 0, we have the following isomorphisms of one-

parameter verter algebras.

Cly(n,m) = CL(n,m —n) = Cly(m,n), o = ﬁ, i + wi =2, (4.1)
Ci/’c(n,m) = C;%(n,m —n) Cfg(m,n), P = i, 1 + 1 1, (4.2)
2¢ (R
e S SR T
sp(n,m) = Cip(n,m —n) =C{,(m,n—1), Y = 50 5 + i 1, (4.3)
1 1 1

C%O(nam) = C%B(”’?m - Tl) = Cg)D(m + lan)v ¢, = Ea E + 2¢// =1. (44)

Note that C;[’D (n,m) for m >n and Cy,(n,m) for m < n belong in different families,
and similarly for Cf’o (n,m). For the rest of this section we discuss some special cases of

this result.
4.1. Special cases of (4.1)
In the case n = 0 of (4.1), we have

C(0,m) = WY1 2(0sp, ., ) B2,

Co(0,m) = WP =12 (05py g, ) 22

The isomorphism C;b 5(0,m) = C;%(O, m) is the Zs-invariant part of Feigin-Frenkel dual-
ity for principal W-algebras of 05pq)a,,,, which was proven in a different way in [24].

Remark 4.1. A special case of Theorem 6.3 is that the OPE algebra of
W¢/_m_1/2(05p1‘2m), which is a simple current extension of le_m_lﬂ(ospl‘gm)Zz
by an odd field of weight 275 js uniquely determined by W‘/’/_m_l/Q(uspmm)Z?.
Therefore our result implies the full Feigin-Frenkel duality WY¥—"~1/ 2(05)31‘27")

Ww'—m_1/2(05p1\2m)-
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In the case m = 0 of (4.1), we have

CY5(n,0) = Com(V 272742 (50,, 1), V272 (505, 1) @ F(2n + 1)) 22,

c;‘}; (0,n) = Ww//_n_1/2(05131|2n)22~

Therefore the isomorphism Cig(n,0) =2 C;Z’,; (0,n) implies that both
WY =n=1/2(0gp, |,,) and Com(V~2¢=2%2(s0,, 1), V=224 (505, 1) @ F(2n + 1))
are simple current extensions of W¥" —n~1/ 2(05p1|2n)z2 by an odd field in weight 2%,
As above, Theorem 6.3 then implies

W2 (0gpyo,) & Com (V27202 (505, 1), V2072 (505, 11) @ F (20 + 1))

& Com(V72w72"+2 (502n+1), V*2¢*2n+1(502n+1) (24 L1(502n+1)).
(4.5)

We recover the coset realization of principal W-superalgebras of 0sp;|z,, which was
proven in a different way in [24].

4.2. Special cases of (4.2)
In the case n = 0, the isomorphism Cf’c((),m) & C;%(O,m) for ¢/ = ﬁ, is just
Feigin-Frenkel duality in types B and C, since C%(O,m) = W¥—2m+l(s09,.. 1) and

Con(0,m) = WY == L(gp,, ).
In the case m = 0, we have

C?C(n, 0) = Com(v_¢/2_n_1/2(5p2n)v Vw+2n+1(05p1|2n))3

Cipc (O, 77,) = Ww//72n+1 (502n+1)7

so the isomorphism C;bc(n,O) > Cﬁfé (0,n) yields a new coset realization of type B and
C principal W-algebras. Recall that we are using the convention (3.2) that ospy, has
dual Coxeter number —2n — 1. If we instead use the dual Coxeter number 2”2—"'1, so that
V¥ (spay,) embeds in V¥ (0spyja,,), then we have Cl(n,0) = Com(V*(span), VF (05p1j2n))

for k = —3(¢ 4+ 2n + 1). We obtain

Corollary 4.1. For alln > 1, we have the following isomorphism of one-parameter vertex
algebras

14+2k+2n

k k ~ s - _ - @ @
Com(V" (span), V7 (0sp1)2,)) = W' (5020 41), r (2n—1)+ A+ htn)

(4.6)

This realization of W (s09,11) is very different from the coset realization of W*(g)
for g simply-laced given in [12] since it involves affine vertex superalgebras. Although
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we are not aware of this statement being previously conjectured in the literature, both
algebras were known to have the same strong generating type and graded character; see
[35, Cor. 7.4] and [36, Cor 5.7].

4.8. Special cases of (4.3)

In the case n = 0, the isomorphism C;bD(O,m) = Cﬂ,((),m) is again Feigin-Frenkel
duality in types B and C, since

CgD(O7m) = WY Hspy,,),

CipD(Ov m) = W¢/72m+1(502m+1)-
In the case n =1 and m > 1, we have

Cyp(1,m) = Com(H(1), W’ ™™ (08pg)5,,)) %2,

Clo(1,m —1) = Com(H(1), WY 2" (500,11, Foubreg)) -

Therefore the isomorphism Cg’ p(l,m) = Cf’ ll)(l, m — 1) recovers the Zs-invariant part of
the duality

Com(H (1), W ="+ (509,41, fuubreg)) = Com(H(L), W™ (0py,)) (4.7)

of Genra, Nakatsuka and one of us [25].

~

Remark 4.2. The isomorphism CY,(1,m) = Cﬁ;(l, m — 1) can be used to give
a new proof of (4.7) as follows. Both Com(H(1), Ww/_2m+1(502m+1, fsubreg)) and
Com(H(1), W‘Z’_m(osp2|2m)) are simple current extensions of C;Z’D(l, m), where the exten-
sion is generated by an even field w in weight 2m+-1. The generators of c;” »(1,m) and w do
not close under OPE, and new strong generators are needed in weights 2m+3,2m—+35, . ...
It can be shown that there is a unique simple current extension of C;Z’ (1, m) with these
properties, such that w4m,41)w # 0. The proof is similar to, but more involved than the
proof of Theorem 6.3, and is omitted.

m = 0 of (4.3), we have Wi, (1,0) := H(1) ® F(2) and

In the case n = nd
H(1 )®.7:( ))Z2 =~ F(2)02. Also, C{,(0,0) = H(1)%2. We recover

1a
C3p(1,0) = Com(H(1),
the isomorphism #(1)%2

4.4. Special cases of (4.4)

In the case n = 0, the isomorphism Cf’O(O,m) = C}/’,;(O,m) is just the Zo-invariant
part of Feigin-Frenkel duality in type D, since
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Cf’O(O, m) = Ww72m(502m+2)Z2’

Cl5(0,m) = W' =2 (505, 12)%2.

As in Remark 4.1, this statement together with Theorem 6.3, gives a new proof of the
full duality.

In the case m = 0 and n > 2, we have

€y (n,0) 2 Com (V20" =2043(50,,), V20" =2042(50,,) @ F(2n))22 (4.8)
=~ Com(V 2" =23 (50,,), V2" =274 2 (60, ) ® Ly (502, ))%2. .

Since Cipo((),n — 1) = WY¥=27+2(50,,,)%2, the isomorphism C}[’O(O,n -1) = C;/’;(n,O)
recovers the Zs-invariant part of the coset realization of principal W-algebras of type D

proven in [12]. Finally, this statement together with Theorem 6.3, gives a new proof of
the coset realization of W¥' ~27+2(50,,,).

4.5. Sketch of proof

(1)

(5)

The proof of Theorem 4.1 involves the following steps.

Using the free field limits of WZ@( (n,m), together with some classical invariant theory,
we find strong generating sets for C;Z’X(n,m) for i = 1,2 and X = B,C,D,0. If
a = §po,, and if a = s09, or a = 502,41 and pg ® pyp is odd, we will find minimal
strong generating sets. In the remaining cases, namely, a = 05p;3,,, and a = 502, or
a = 509,41 and py ® pp is even, we will not find minimal strong generating sets at
this stage, but we will deduce them later as a consequence of Theorem 4.1.

We show that in all cases, C;/’X (n,m) has a subalgebra C'y (n,m) generated by the
weights 2 and 4 field, which is isomorphic to a quotient W of WeV:lixnm (¢ ), for
some ideal I; x ».m € Cle, A]. In particular, W;é( (n,m) is an extension of V'(a) @ W

% which transform as the standard

by d, fields of appropriate parity in weight
a-module.

We show that the existence of such an extension of V*(a) ®W uniquely and explicitly
specifies the ideal I;x n m.

We compute coincidences between the simple quotient Cﬁiwyix(n,m) and principal
W-algebras of type C, by finding intersection points on their truncation curves.
Using Corollary 2.1, we prove that C?X(n,m) = C;/’X(n, m) as one-parameter vertex
algebras. In particular, C?X (n,m) is isomorphic to the simple quotient W (¢, A)
in all cases.

The isomorphisms in Theorem 4.1 all follow from the explicit formulas for I;x p m.
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5. Large level limits

In this section, we describe the large level limits of fo(n, m) and the strong gener-
ating types of C?X(n, m).

5.1. Case 1C

Recall that W{pc(n, m) has affine subalgebra V=%/27"=1/2(gp, ), even fields in weights
2,4,...,2m which are invariant under sps,, and 2n odd fields of weight m + 1,
which transform as the standard representation of sps,. By [37, Cor. 3.5], we may
assume without loss of generality that the fields in weights 2,4,...,2m commute
with V—%/2=7=1/2(gp, ), and the weight m + 1 fields are primary with respect to
V—¥/2=n=1/2(gp, ). By [37, Cor. 3.4], the free field limit of Wipc(n,m) is

Ocv (20 +1,2) @ ((Q) Oev(1,4i)) @ Soaa(n, 2m + 2).
i=1
Lemma 5.1. Forn+m > 1, Cf’c(n, m) is of type
W(2,4,...,201+m)(1+n)—2)
as a one-parameter vertex algebra. Equivalently, this holds for generic values of ¥.

Proof. First, it follows from [37, Lem. 4.2] that Cipc(n,m) has limit

m

(R Ocu(1,40)) ® (Soaa(n, 2m + 2))°">".

i=1
By [37, Thm. 4.3], (Soaa(n,2m + 2))Sp2" is of type
We2m+2,2m+4,...,2(L+m)(1+n) —2).

Since @, Oev(1,4i) is of type W(2,4,...,2m), it follows from [37, Lem. 4.2] that
Cf’c(n, m) is of type W(2,4,...,2(1+m)(1+n)—2). O

5.2. Case 2B

Recall that for m > 1, Wf’B(n,m) has affine subalgebra V=2¥=2"+2(50,, 1), even
fields in weights 2,4, ...,2m which commute with V~2¢=2"+2(505, ), and 2n + 1 odd
fields of weight 27+ which are primary with respect to V=2¥=2""2(s0,, ) and trans-
form as the standard representation of $05,11. The free field limit of Wf’B(n,m) is

therefore
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m

Ocv(2n® +1,2) @ (Q) Ocv(1,4i)) @ Opaa(2n + 1,2m + 1).
i=1

Lemma 5.2. Forn+m > 1, C;bB(n,m) is of type

W(2,4,...,4(m+1)(n+1) - 2)

as a one-parameter vertex algebra. Equivalently, this holds for generic values of .
Proof. By [37, Lem. 4.2] as above, C{(n, m) has limit

m

() Ocx(1,4)) @ (Ooaa(2n +1,2m +1)) 7.
i=1

By [37, Thm. 4.4], (Ogaa(2n + 1,2m + 1)) %>+ is of type

We2m+22m+4,...,4m+1)(n+1) —2),

so the claim follows as above. 0O

5.8. Case 2C

Recall that for m > 1, W;bc (n,m) has affine subalgebra V¥~"73/2(sp,,,), even fields in
weights 2,4, ...,2m which commute with V¥~"=3/2(sp,,), and 2n even fields of weight
2m—+1

5=, which are primary with respect to y¥—n=3/2 (sp2n) and transform as the standard
representation of spy,. The free field limit of W;bc(n, m) is therefore

m

Ocv(2n” +1,2) @ (Q) Oev(1,4i)) @ Sev(n, 2m + 1).

i=1

Lemma 5.3. Forn+m > 1, C;bc(n, m) s of type

W(2,4,...,201+n)(1+m+n)—2)
as a one-parameter vertex algebra. Equivalently, this holds for generic values of .
Proof. By [37, Lem. 4.2], C;bc(n,m) has limit

m

(R Oy (1,40)) @ (Sey(n, 2m + 1))

i=1

By [37, Thm. 4.2], (Sey(n,2m + 1))°™>" is of type
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WEe2m+22m+4,...,2(1 +n)(L+m+n) —2),
so the claim follows. O
5.4. Case 2D

Recall that for m > 1, W;pD(n, m) has affine subalgebra V =2¢=27%3(50,,,), even fields
in weights 2,4,...,2m which commute with V~2¥=2"%3(50,,.), and 2n odd fields of
weight %, which are primary with respect to V=2¥=27+3(50,,) and transform as the
standard representation of sog,,. The free field limit of W;/’ p(n,m) is therefore

m
Ocv(2n* = 1,2) @ (Q) Ocv(1,4i)) @ Opqa(2n,2m + 1).
i=1
Lemma 5.4. Forn+m > 1, C;pD(n,m) is of type
W(2,4,...,2(m+1)2n+1) —2)
as a one-parameter vertex algebra. Equivalently, this holds for generic values of ¥.

Proof. By [37, Lem. 4.2], C,,(n, m) has limit

m

(®06v(1,4i)) ® (Ooda(2n,2m + 1))

i=1

OQn

By [37, Thm. 4.4], (Opaa(2n, 2m + 1)) **" is of type
Wem+2,2m+4,...,2(m+1)2n+1) — 2),
so the claim follows. O

Next, we consider the cases C}(n, m) and C’f’D (n,m) where we are not able to find a
minimal strong generating set at this stage.

5.5. Case 1B

Recall that Wiﬁ »(n,m) has affine subalgebra V¥ ~2"(s05,,41), even fields in weights
2,4,...,2m which commute with V¥~2"(509,,,1), and 2n + 1 even fields in weight m +
1 which are primary with respect to V¥~2"(s09,,1) and transform as the standard
representation of 505,41. The free field limit of Wf’B (n,m) is then

m

Ocv(2n” +1,2) @ (Q) Oev(1,4i)) @ Ocy (20 + 1,2m + 2).

i=1
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Lemma 5.5. As a one-parameter vertex algebra, Cf’B(n, m) is of type W(2,4,...,2N) for
some N satisfying 2N > 2(1+n)(3 +2m + 2n) — 2.

Proof. By [37, Lem. 4.2], CibB(n,m) has limit

m

(@) Oc(1,4i) ® (Oe(2n+ 1, 2m +2)) """
i=1

By [37, Thm. 4.5], ((’)ev(2n +1,2m + 2))02"+1 is of type W(2m +2,2m +4,...,2N) for
some 2N > 2(1 4 n)(3 + 2m + 2n) — 2, so the claim follows. O

Remark 5.1. The lower bound on NN is a consequence of Weyl’s second fundamental
theorem of invariant theory for Oy, 41 [95]. We have an isomorphism of differential graded
rings

gr(Oey(2n + 1,2m +2)) " = C @D vilom,

i>0

where each V; & C?"*+! as an Oy, 1-module. The generators of ClP,~o V;]92n+1 are all
quadratics, and the ideal of relations is generated by determinants of degree 2n + 2 in
these quadratics. The relation of minimal weight has weight 2(1 +n)(3 4+ 2m + 2n), and
the statement that (Oey(2n + 1,2m + 2))02"+1 is of type W(2m + 2,2m +4,...,2(1 +
n)(3 + 2m + 2n) — 2) is equivalent to this relation being a decoupling relation for the
generator in weight 2(1 +n)(3 + 2m + 2n). We will see later (Corollary 6.1) that in fact
2N =2(1+n)(3+2m+2n) — 2.

5.6. Case 1D

Recall that WY, (n,m) has affine subalgebra V¥=27+1(50,,), even fields in weights
2,4,...,2m which commute with V¥~2"+1(50,,,), and 2n additional even fields of weight
m + 1 which are primary with respect to V¥~2"+1(s0,) and transform as the standard
representation of s05,. The free field limit of Wf’ 1 (n,m) is therefore

m

Ocv(2n® = 1,2) @ (Q) Ocv(1,4i)) @ Ocy(2n,2m + 2).
i=1

Lemma 5.6. As a one-parameter vertex algebra, Cf’D (n,m) is of type W(2,4,...,2N) for
some N satisfying 2N > 2(1 +m +n)(1 + 2n) — 2.

Proof. First, [37, Lem. 4.2] shows that C}ZJD (n,m) has limit

m

() Ocv(1,40)) @ (Ocy(2n,2m + 2))

i=1

Oa2n
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Again by [37, Thm. 4.5], (Oey(2n,2m + 2))02" is of type W(2m+2,2m +4,...,2N) for
some 2N > 2(1 +m +n)(1+ 2n) — 2, so the claim follows. O

As above, the relation of minimal weight among the generators has weight 2(1 +m +
n)(142n), and again we will see later (Corollary 6.1) that 2N = 2(1+m+n)(1+2n)—2.

Finally, we consider the cases CipO (n,m) and C;po(n, m). We need two new ingredients:
the description of orbifolds of certain free field algebras under Osp,s,,, and the adaptation
of the method of studying affine cosets by passing to their orbifold limits developed in
[35], to cosets of Vk(asp1|2n). We begin by restating the versions of Sergeev’s first and
second fundamental theorems of invariant theory for Ospyjy, that we need; these are
specializations of [90, Thm. 1.3] and [91, Thm. 4.5]. First, we consider the invariants in
the ring of functions on a sum of copies of the standard module with odd parity.

Theorem 5.1. For k > 0, let Uy, be a copy of the standard Ospys,,-module C2n | which
has odd subspace spanned by {xk,yri| 1 =1,...,n}, and even subspace spanned by z.
Then the ring of invariant polynomial functions

R =CID U7

E>0
is generated by the quadratics
1o 1
Gab = 5 ;(%‘,ayi,b + TipYia) + 5 Zab a,b>0.

Let Qqp be commuting indeterminates satisfying Qqp = Qb,o- The kernel of the map

C[Qa,b] — Ra Qa,b — qa,b

is generated by polynomials p; of degree 2n + 2 in the variables Qg p corresponding to a
rectangular Young tableau of size 2 x (2n+2), filled by entries from a standard sequence
I of length 4n 44 from the set of indices {0,1,2,...}. The entries must weakly increase
along rows and strictly increase along columns.

For the invariants in the ring of functions on a sum of copies of the standard module
with even parity, a few modifications are needed.

Theorem 5.2. For k > 0, let U be a copy of the standard Ospmn—module c2 | with
even subspace spanned by {zk;, yxi| ¢ = 1,...,n} and odd subspace spanned by zi,. Then
the ring of invariant polynomial functions

R = CIEP U] ruen

k>0
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is generated by the quadratics

n

1

1
Gab =5 Z;(xi,ayi,b ~Tipia) ~ Fam G020,
=

Let Qqp be commuting indeterminates satisfying Qap = —Qb,a- The kernel of the map

(C[Qa,b] - Ra Qa,b = Qa,b

is generated by polynomials pr of degree 2n + 2 in the variables QQqp corresponding to a
rectangular Young tableau of size 2 x (2n+ 2), filled by entries from a standard sequence
I of length 4n+4 from the set of indices {0,1,2,...}. The entries must strictly increase
along rows and weakly increase along columns.

In both cases, the precise form of the relations can be found in [91], but is not needed
for our purposes. We only need the conformal weight of the relations which can be read
off from the entries in the corresponding Young tableau.

Next, we recall that V¥(ospyj2,) comes from a deformable family in the sense of
[35] as follows. Let x be a formal variable satisfying k? = k, and let F be the ring of
complex-valued rational functions of k of degree at most zero, with possible poles only
at kK = 0. In other words, F' consists of functions of the form %, where d > 0 and
p is a polynomial of degree at most d. There is a vertex algebra V over F' such that
V/(k — V)V = Vk(0spya,) for all k # 0. Here (k — vk)V denotes the ideal generated
by x — k. In the notation of [35],

V* = lim V = H(2n® +n) @ A(n),

K— 00

where H(2n? + n) denotes the Heisenberg algebra of rank 2n? +n = dim sp,,, and A(n)
denotes the rank n symplectic fermion algebra.

We now consider vertex algebras W* which admit a homomorphism Vk(osp”gn) —
WF with the following properties:

(1) There exists a deformable family W defined over the ring F of rational functions
of degree at most zero in k, with poles in some at most countable set K, such that

W/ (k= VEYW 2 WF for all VE ¢ K.

(2) The map V*(0sp|2,,) — W¥ is induced by a map of deformable families V — W.
(3) W™ =limy_,00 W decomposes as

W =P @ W 2= H(2n% +n) @ A(n) @ W,

for some vertex subalgebra WW C W™,
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(4) The action of 0sp;|2, on W infinitesimally generates an action of the Lie supergroup
SOspy2,,, and W decomposes into finite-dimensional SOsp;|,,,-modules.

Under these circumstances, we obtain

Theorem 5.3.
(1) C = Com(V, W) is a deformable family, and
C/(k = VE)C = C* = Com(V*(0spy)3,), WF),

for generic k.
(2) SOspyja, acts on W, and we have an isomorphism

C>® 22 Com(V>®°, V™ @ W)SOPiizn

>~ Com(H(2n* 4+ n) ® A(n), H(2n? +n) @ A(n) @ W) OPiizn (5.1)
o~ WSOSPI\ZH.

(3) For generic k, W* admits a decomposition

Whe @B vF() ek, (5.2)

AepPt

where PT denotes the set of dominant weights of 05p1|2n, VE(X) are the corresponding
Weyl modules, and the multiplicity spaces C¥()\) are irreducible C*-modules.

The proof of the first two statements is the same as the proof of [35, Thm. 6.10], and
only uses the fact that finite-dimensional SOspy,-modules are completely reducible.
Similarly, the proof of the third statement is the same as the proof of [37, Thm. 4.12]. It
is apparent than in our main examples, namely W* = Wlo(n m) and W;bo (n,m) these
hypotheses are satisfied. Moreover, these algebras are in fact modules over the double
cover Ospy g, of SOSpy5,,, and it is the Zy-orbifold of the coset that we actually need to
study.

5.7. Case 10

Recall that Wfo(n, m) has affine subalgebra V*’”/Q*”(oﬁpmn), even fields in weights
2,4, ...,2m which commute with V‘Wg_”(ospmn), and 2n odd fields and one even field
of weight m + 1, which are primary with respect to V‘W2_"(05p1‘2n) and transform as
the standard representation of 0sp;jz,. The free field limit of W}/’O(n, m) is therefore

m

Ocv (20 + 1, 2) @ Soaa(n, 2) @ (Q) Oev(1,44)) @ Soaa(n, 2m +2) @ Ocy(1,2m + 2).

i=1
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Lemma 5.7. As a one-parameter vertex algebra, Cf’o(n, m) has a strong generating set of
type W(2,4,...), which need not be minimal. If it admits a finite strong generating set
of type W(2,4,...,2N) for some N, we must have 2N > 2(3 +2m)(1 +n) — 2.

Proof. First, it follows from Theorem 5.3 that Cf’o(n, m) has limit

m

(R) Ocu(1,40)) ® (Soaa(n, 2m +2) ® Oey(1,2m +2)) 712",
=1

We assign Soqa(n,2m + 2) @ Ogy(1,2m + 2) the good increasing filtration where the
weight m + 1 generators {a’,b'| i = 1,...,n} of Spaa(n,2m + 2), and the weight m + 1
generator a of Ogy(1,2m + 2) all have degree 1. Then

gr((‘sodd(n7 2m + 2) X Oev(l, om -+ 2))OSP12n>
Ospy2n
= gr<30dd(n, 2m + 2) ®(’)ev(1,2m+2)> ~ R,

where R is the ring of invariants in Theorem 5.1. Then (Sodd(n, 2m +2) ® Ocy(1,2m +
2))08}31‘2” is strongly generated by the corresponding fields

zn: (: (0%a) (@) : +: (8Pai) (@) : ) + % (0%a)(@Pa): ab> 0,

i=1

1

Wa,b = 5

which have weight 2m + 2+ a + b. As usual, there are linear relations among these fields
and their derivatives, and the subsets

{0*waa0l @ >0}, {wap|a>b>0}

span the same vector space. Therefore the fields {wsq0| @ > 0}, which have weight
2m+ 2+ 2a, are a strong generating set. This shows that (SOdd(n, 2m+2) @ Ouy(1,2m +
2))OSp1‘2" has a strong generating set of type W(2m +2,2m +4,...), which proves this
first statement since Ogy(1,4) ® Oy (1,8) ® - - @ Oey(1,4m) is of type W(2,4,...,2m).

Next, the relation of minimal weight given by Theorem 5.1 corresponds to the 2 x
(2n + 2), Young tableau with bottom row consisting of 0’s and top row consisting of 1’s.
This relation therefore has weight 2(3 4+ 2m)(1 +n). If there exists a decoupling relation

W2a,0 = P(wo,0,w2,0,--.,wW2a-2,0), (5.3)

where P is a normally ordered polynomial in wg g, ws,0, - . . ;Wa2q—2,0 and their derivatives,
the weight 2a + 2m+ 2 of this relation must therefore be at least 2(3+2m)(1+n). Start-
ing with this relation, we claim that there exist similar decoupling relations expressing
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wap,o for all b > a as normally ordered polynomials in wp g, ws,0, .. .,wW2,—2,0 and their
derivatives. Therefore if (5.3) is such a relation of minimal weight, then Cipo (n, m) would
be of type W(2,4,...,2N) for 2N = 2a + 2m.

To construct these decoupling relations, we regard Spaq(n, 2m+2) ® Oy (1, 2m+2) as
a subalgebra of A(n) ® H(1), where A(n) = Soqa(n,2) is the rank n symplectic fermion
algebra and H (1) = O (1,2) is the rank one Heisenberg algebra. As in [37], let ef, f°
denote the generators of A(n), which satisfy

e'(2) 1 (w) ~ 8ij(z —w) 72, fI(2)e! (w) ~ =0i (2 —w) 72,

4 . , . (5.4)
e'(z)e’ (w) ~ 0, f*(2) ! (w) ~ 0,
and let o be the generator of H(1) satisfying a(z)a(w) ~ (z —w)~2. Then Spqq(n, 2m +
2) ® Oey(1,2m + 2) is realized inside A(n) ® H(1) via
al — € oR/2 1l b — € or/2=1 i a € ok/2=1,,
(k—1)! (k—1)! (k—1)!

Next, let

n
T =

(- @) 2 eDf +) + 5 - (Ga)ac: € (A(n) @ H(1) O,

1

1
24

Note that r does not lie in the subalgebra (Sodd(n, 2m + 2) ® Ouy(1,2m + 2))OSp1'2“;
however, the mode r(;) preserves this subalgebra. A calculation shows that for all a > 0,

T'(1)W2a,0 = (—1)m+1(2a +2m + 4)w2a+2,0 + - (55)

where the remaining terms are of the form 82i+2w2a,2i’0 for 0 < i < a. Now suppose we
have a decoupling relation of the form (5.3). Applying (1), we obtain a relation

(=)™ (2a + 2m + 4)waq42,0 = 71y P(wo,0,w2,0, - - -, W2a—2,0)-

It follows from (5.5) together with the fact that (w2 0)(0)w2;,0 is a total derivative for all
1,j > 0, that the right hand side is a normally ordered polynomial in wq g, w20, ., w240
and their derivatives. All appearances of wa, o and its derivatives can be eliminated by
substituting (5.3) and its derivatives. Therefore we can express wao,420 as a normally
ordered polynomial in wop g, w2,0, . .,wW2,—2,0 and their derivatives.

Inductively, assume that we have constructed such relations

Waa12i,0 = Paat2i(wo,0,w2,0, -+, W2a—2,0), 0<i<t. (5.6)
As above, applying r (1) to both sides of waa 12,0 = Paat2t(w0,0,w2,0, - - - ,W24-2,0) yields

(=)™ (2a + 2t + 2m + 4)woat2t+2,0 = r(1) Paa+t2e42(Wo,0, W20, - - - ,W2a—2,0)-
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Again, the right hand side can be written as a normally ordered polynomial in
wWo,0,W2.0,--.,w2q+2t,0 and their derivatives. All appearances of wag0,w2q+420,---,

waq+2t,0 and their derivatives can be eliminated using the previous decoupling relations
(5.6) for0<i<t. O

We will see later (Corollary 6.1) that Cf’o(n,m) is of type W(2,4,...,2(3+2m)(1 +
n) — 2), so the relation of weight 2(3 + 2m)(1 + n) must in fact be a decoupling relation.

5.8. Case 20

Recall that W;bo(n, m) has affine subalgebra V’/’*”*l(ospugn), even fields in weights
2,4, ...,2m which commute with Vd’*"’l(ospmn), and 2n even fields and one odd field
of weight 27";1, which are primary with respect to V¢7n71(05p1‘2n) and transform as

the standard representation of 05pys,,. The free field limit of W;po(n, m) is therefore

m

Ocv (20 + 1, 2) @ Soaa(n, 2) @ (Q) Oev(1,4i)) @ Sev(n, 2m + 1) @ Ogaa(1,2m + 1).

i=1

Lemma 5.8. As a one-parameter vertex algebra, C;po(n, m) has a strong generating set of
type W(2,4,...), which need not be minimal. If it admits a finite strong generating set
of typeW(2,4,...,2N) for some N, we must have 2N > 4(1+n)(1+m+n) — 2.

Proof. First, it follows from Theorem 5.3 that Cg’o(n, m) has limit

m

(R) Ocu(1,4)) ® (Sev (n, 2m + 1) © Ooqa(L, 2m + 1)) 7112,

i=1

So to prove the first statement, it suffices to show that (Sev(n, 2m + 1) ® Ooqa(l,2m +

1))OSP1‘2" is of type W(2m + 2,2m + 4,...). The argument is similar to the proof of
Lemma 5.7, and is based on Theorem 5.2. First, in terms of the weight 2’”2“ generators
{a',b'| i =1,...,n} of Sey(n,2m+1), and the weight QmTH generator ¢ of Ooqq(1l,2m+

1), we have strong generators

n

Wap = %Z (: (0%a") (@) : —: (8Pa’)(D°V) : ) —

$(0°9)(8"0) ;, a,b>0,

DN | =

which have weight 2m + 1+ a+b. Not all of these are necessary, and it is easy to see that
the subset {waq+1,0| @ > 0} suffices to strongly generate. Since these fields have weights
2m +2,2m +4,. .., this proves the first statement.

Next, the relation of minimal weight among these generators corresponds to the 2 x
(2n + 2) Young tableau with both rows consisting of 0,1,...,2n + 1, so this relation has
weight 4(1+mn)(1+m+mn). If there exists a decoupling relation for any of the generating
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fields, the lowest possible weight where this could occur is therefore 4(1+n)(14m+n).
As in the case of Lemma 5.7, if there exists a decoupling relation for wgs41,0 for some
2a4+1 > (1 +2n)(3+ 2m + 2n), it is easy to construct similar decoupling relations
expressing wap1,0 for all b > a as normally ordered polynomials in w; o, w30, - ., W2e—1,0
and their derivatives. O

Again, Corollary 6.1 implies that the relation of weight 4(1 4+ n)(1+ m + n) is in fact
a decoupling relation.

5.9. On subalgebras of C;pX(n, m)

Even though C;/’X (n,m) is of type W(2,4,...), it is not yet obvious that it can be
obtained as a quotient of WeV:Tix.n.m (¢, \) because it remains to show that it is generated
by the weights 2 and 4 fields. This will be shown in the next section, and the following
weaker statement will be needed.

Lemma 5.9. For i = 1,2 and X = B,C,D, 0, C?X(n,m) is generated by the fields in
weights 2,4, ...,2m + 4.

Proof. It suffices to show that the free field limit has this property. In all cases, this limit
has the form

m

() Oev(1,4i)) @ A,

=1

where A is a free field algebra and G is either Ogy,41, Spa,,; O2n, Or Ospy|a,,- In all cases,
it is straightforward to check that the fields in weights 2m + 2 and 2m + 4 are sufficient
to generate all the fields in higher weights 2m + 6,2m + 8, ... which strongly generate
A The proof is similar to the proof of [79, Lem. 4.2], and is omitted. O

Fori=1,2and X = B,C, D, O, let
ég)X(nam) g CZpX(nvm)

be the subalgebra generated by the weights 2 and 4 fields. Let {w?"| 1 <r < N} be the
strong generators of C;pX (n,m) corresponding to the large level limits which are given by
Lemmas 5.1-5.8. (Here we are excluding the degenerate cases where N = 1). Without
loss of generality, we may assume that w? = L and W* = w*, that is, w* has been chosen
to be primary with respect to L and normalized as in [75]. Set W*" = W{,W?"~2, for
r>3.

For 3 <r < N, we can write

W2 = \w? 4, A € C, (5.7)
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where the remaining terms are normally ordered monomials in {L,w?®| 2 < s < r}. If
A\ # 0 for all r, then C¥(n,m) = C¥(n,m). Otherwise, let M > 2 be the first integer
such that Ayr41 = 0.

Lemma 5.10. With M as above, {L,W*,... W?M} close under OPE, so that C’fx(n,m)
is of type W(2,4,...,2M).

Proof. First, since {L,w?*| 2 < s < N} close under OPE and ), # 0 for 3 < r < M,
we can replace w?® with W?2° for 3 < s < M. It follows that W(QI:)WQj is a normally
ordered polynomial in {L,W?$| 2 < s < M} and their derivatives whenever 2i + 2j —
k—1<2M + 1. Since Apr41 = 0, W(41)W2M is also a normally ordered polynomial in
{L,W?%|2<s< M}.

Next, we need to show that W(%)WQM is a normally ordered polynomial in
{L,W?%| 2 < s < M} and their derivatives, that is, dw?>*2 does not appear. The
argument is a slight modification of the proof of [75, Lemma 3.3], except that we replace
W2M+2 with w?m+2, Write

4 1172M M2
WoW=" =asomw 2 4+ Cuam,

(5.8)
Wfo)WQM :b4,2M5‘w2M+2 + D472M,
where Cyanr, Dyon depend only on {L,W?$| 2 < s < M} and their derivatives. Note
that (5.7) implies that a4 0n = Apr41 = 0.
Recall the Jacobi relation

Loy (Wioy W) = (Ly W) o) WM + Wt (Loy W) (59)
+ Q(L(l)W4)(1)W2M + (L(O)W4)(2)W2M.

First, L(g)(W(%)WM/[) = b4’2ML(2)8w2M+2 + L(2)Dy 20, and since Dy opy only depends

on L,W*, ..., W?M and their derivatives, L2yDy 20 does not contribute to the coeffi-

2M+2

cient of w . Next, we have

L2)0w*M*2 = —(9L) (9yw*M*? + O(L (2w *2).

By weight considerations, L(Q)wQM“‘Q only depends on L, W4, ..., W?M and their deriva-
tives. Modulo terms which depend on L, W*, ..., W?M and their derivatives, we have

L)0w*M*2 = —(9L)w?M T2 = 2L w?M*? = 2(2M + 2)w?M 2.

So the left hand side of (5.9) is 2(2M + 2)by 2prw*™ 2, up to terms which do not depend
on Ww2M+2.

Next, the term (LoyW*)oyW? from (5.9) vanishes because W* is primary. The
term W(%)(L(Q)WQM) from (5.9) does not contribute to the coefficient of w?M+2

since L(Q)WQM only depends on L,W*, ..., W?M=2 and their derivatives. The term
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2LyWH WM from (5.9) contributes 8W4 w2M — 8ay, opmw?M+2. The term
(1) 1) (1)
(LoyW*)@yW?M from (5.9) contributes BW W2M 2W4 W2M —2a4 o pyw?M+2,
Equating the coefficients of w?M*2, we obtaln 2(2M + 2)b4 am = 6ason, so that
baonm = 2M+2a4 om = 0. This proves the above claim that W )WQM does not depend
on Ow2M+2.
Similarly, for 4 < 2¢ < 25 < 2M and 2i 4 25 = 2M + 4, write

WE W =ag; 5;w*M*? 4 Co; 9, (5.10)
W W2 =b; ;00" +2 4 D, o, '
where Cy; 27, Da; 2; depend only on {L, W?$| 2 < s < M} and their derivatives. A similar
modification of the proof of [75, Lemmas 3.3, 3.4, and 3.5] show that the constants
@2i 2M+4—2i, b2i 20 +a—2; are scalar multiplies of as o) = Apr1, hence they all vanish.

Next, since W?2M+4 — W(4)W2M 2 and W2?M+2 is a normally ordered polynomial in
L,W*4, ..., W?M and their derivatives, we have Aps41o = 0. As above, for 4 < 2i < 2j <
2M and 2i + 25 = 2M + 6, write

W(le)WQ] :a2i,2jW2M+4 + 02i72j; (5 11)
W(Q()i)WQj =b; 2j0w* ™M™ 4 Do; o5,
where Cy; 25, Da;2; depend only on {L,W?$| 2 < s < M} and their derivatives. The
same argument shows that for 4 < 21, ag; apr4+6—2i, b2i,2m+6—2; are all scalar multiplies
of ag,2anr = Aar2 = 0, hence they all vanish. In particular, for 4 < 27 < 2j < 2M and 2i+
2j = 2M + 6, all terms in the OPE of W2 (2)W?2/(w) depend only on L, W4, ... WM,
By induction on r, the same procedure shows that for 4 < 2i < 2§ < 2M, 2/ +
2j < 2M + 2r, and 2r < 2M, all terms in the OPE of W?2!(2)W?% (w) depend only on
LW4, ... WM g

Theorem 5.4. Fori =1,2 and X = B,C, D, 0O, (f;px(mm) 18 a one-parameter quotient
of W (¢, \) for some ideal I;x n m.

Proof. We will prove this only for (fil’D (n,m) since the proof in the other cases is similar.
First, for n > 1 and m = 0,

CY,(n,0) = Com(VY 2" (50,,), V¥ ™2 (509, 1)) 22,

which is generated by the weights 2 and 4 fields and arises as a quotient of W*e(c, \)
[34, Thm. 3.3]. In particular, it coincides with CNfJD (n,0). Similarly, for n =0 and m > 1,
CY(0,mm) = WH(509,,11) so the same holds by [75, Cor. 5.2].

We assume next that n > 1 and m > 1, and let {L, W4, ..., W?2M} be the strong
generating set for @iﬁ »(n,m) given by Lemma 5.10. We need a slightly different argument
in the cases M > 7 and M < 7.
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Suppose first that M > 7. By [75, Thm. 3.10], to show that C’f’D(n,m) is a quotient
of W (e, \) it suffices to prove that {L,W?"| 2 < r < 7} satisfy the OPE relations of
[75]; equivalently, all Jacobi identities of type (W2, W20 W?2¢) for a + b+ c < 8 hold as
a consequence of [75, Eq. (2.6)-(2.9)]. In this notation, W? = L, as in [75].

By [34, Thm. 2.1], this condition is automatic if the graded character of C,(n,m)
coincides with that of W (e, A) up to weight 13. By Lemma 5.6, the first relation among
the generators {L,w?"| r > 2} of CipD(n, m) and their derivatives occurs in weight 2(m +
n+1)(2n + 1), and since n, m > 1, there are no normally ordered relations in Cf’D(n, m)
among these fields in weight below 18. Therefore the character of Cf’D(n,m) coincides
with that of W (¢, A) in weight up to 14. Since M > 7, C?D(n,m) and Cf’D(n,m) have
the same graded character up to weight 14, so the conclusion holds.

Finally, suppose that M < 7. Since Ap;41 = 0 and A, # 0 for 2 < r < M, there can
be no nontrivial normally ordered relations among the generators {L, W4, ... W?2M} of
qu p(n,m) in weight up to 2M, since this property holds for the corresponding fields
{L,w*, ..., w?M}. Equivalently, all Jacobi relations among {L, W4, ... W?2M} of type

(W2, W2 w2e), 2a 4 2b+ 2¢ < 2M + 2,

must hold as a consequence of [75, Eq. (2.6)-(2.9)] alone. Therefore the OPEs
W2 (2)W?2 (w) for 2i + 25 < 2M are the same as those of W!V(c, \) for some ideal
I CCle, M.

If we use the same procedure as the construction We(c, A) given by [75, Thm. 3.9],
beginning with the fields L, W*,..., W2 and the OPEs W2 (2)W?% (w) for 2i + 2j <
2M, we can formally define new fields W?2M+2r — (W(A‘l))TWQM for all » > 1, and then
define the OPE algebra of all fields {L, W*,... W2M W2M+2r| » > 1} recursively so
that they are the same as the OPEs in W!¥(c, \). In particular, this realizes CY’D(n, m)
as a one-parameter quotient of W¥(c, \) by some vertex algebra ideal Z containing a
field in weight 2M + 2 of the form W2M+2 — p(L W4, ... W?2M) where P is a normally

2

ordered polynomial in L, W2, ..., W?M and their derivatives. 0O

Corollary 5.1. Forn+m > 1, W;g((mm) is an extension of V'(a) @ W, where W is a
quotient of WeV-lixnm (¢ X), for some ideal I;x nm C Cle, N.

6. Proof of main result
6.1. Step 1: computation of truncation curves

In this subsection, we shall compute the ideals I;x . C Clc, A] such that Cfy (n,m)
is realized as a quotient of WeV:lix.nm(c \). More precisely, we will parametrize the

corresponding variety V(I;x n.m) C C? by giving a rational map

(biX,n,m :C \P — V(IiX,n,m)a (I)iX,n,m(w) = (C(lb)a A(¢))
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Here P is the finite set consisting of poles ¢(1)) and A(¢)). Note first that in the cases
n=0,m>1,and X = C, D, there is nothing to prove because

C?C(O,m) = Cf’c((),m) = Ww_2m+1(502m+1) = C?D(O’m) = C%D(Ovm)’

Ci(0,m) = C(0,m) = WYY (spay,) = Ciyy(0,m) = C51(0,m). o
The truncation curve for W¥=2"+1(s0,,,,1) already appears in [75], and coincides with
the truncation curves for both (fibc(n, m) and CNibD(n, m) specialized to n = 0. Similarly,
the truncation curve for W¥~™~1(spy,,) from [75] coincides with the truncation curves
for both Cg’c(n, m) and Cg’D(n, m) when n = 0.

The following cases must also be treated separately, and will be discussed briefly at
the end of this section.

(1) é (1, m) and égD(l,m), where a = 509,
(2) ¢V (O m), C%O(O,m), égB(O,m), and égo(o,m) where a = 0. In these cases,
X ( ,m) is a simple current extension of Cin (0, m) of order two.

é

In all other cases, a is simple and our approach will be uniform, and from now on we
assume this to be the case. We postulate that W is a one-parameter quotient of W*e(c, \)
and that V*(a) ® W admits an extension which has d, additional strong generating fields

. dp+1
of weight ==

and appropriate parity, which transform in the standard representation
pa of a. We will show that these data uniquely determine the truncation curve for W, or
equivalently, the formula A(v)).

Let p be a vector in this copy of p, which is primary with respect to the action of
Vt(a). Without loss of generality, we may take p to be a highest-weight vector in this

representation of a. This forces the following OPEs:

Cas

O (e

ot —w 2+ (o JwG-w 62

Here p = %, Cas is the Casimir eigenvalue of the standard representation of a, and

hY is the dual Coxeter number of a. Additionally, the OPEs of W*, W6 and W#® with p
must have the following form:

WD) ~ Fop()(e = w) 0+ (kb -t ) w)e = )
+ <k232p+k3 cLp: +>(w)(zw)2
+ <k483p—|— ks : (OL)p: +ke : LOp : +>(w)(z —w)™t,

WO (2)p(w) ~ krp(w)(z — w)™° + <kgé)p +- -)(w)(z —w) T
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WS (2)p(w) ~ kop(w)(z —w) ™% +- - . (6.3)

This is because our vertex algebra is strongly generated by V*(a) ® W together with the
fields of weight % transforming in the standard representation of a. Since the fields
W2 commute with V*(a), each term appearing in these OPEs has the same Cartan
weight as p relative to the Cartan subalgebra of a. Moreover, only those terms which
depend on p, L, and their derivatives are needed in our calculations, so all other terms
are omitted in (6.3).

Next, we impose the following Jacobi identities

Loy (Wiyp) — W(1)(L(2 p) — (LoyW*))p

—2(LyWh)@yp — (LyWh)yp = 0, (6.4)
Lz)(Wioyp) — W(O)(L(z)p) — (LoyW*)syp = 3(LyW*) 2)p

= 3(LyWhyp — (LgyWhp =0, (6.5)
Ly (Wioyp) — W(O)(L(4) ) = (LoyW*)@)p — HLyW*) 3)p — 6(L2yWH)(2)p

—4(LsW p = (LyW*)op =0, (6.6)
Lz (Wyp) — W(1)(L(3) ) = (LoyWH)@p — 3(LayW*) @3)p

= 3(LyWh@p — (LW ap =0, (6.7)
Loy (Wiyp) — W(Q)(L(Q) ) = (LoyW*)@yp

—2(LayW*)gp = (LiyW*)2)p = 0, (6.8)
Loy (Wgyp) — W(o)(L(z)P) — (LioyW*)@)p

—2(LyWhyp — (LenyWh)(op =0, (6.9)
W(O) (W(ﬁ)p) - W(6)(W(A6)P) - (W&)W4)( 6P =0, (6.10)
Wiy (Winyp) = Wiy (Winp) — Wiy W)6)p — AW W) 510 — 6(W iy W) ayp
— AWy W) @yp — (WiyWh)@p =0, (6.11)
Wi (Wiyp) — Wi (Wiyp) — (W, o)W )P — (WHWH)s)p =0, (6.12)
Wity (Wizyp) = Wy (Wigyp) — (Wioy W) (s)p = 0, (6.13)
Wiy (W) = W (Wihyp) — (W, o)W )P — (Wi W) mp = 0. (6.14)

Note that (6.4) has weight u + 1, and a computation shows that the coefficient of dp
depends only on ki, ko, ks together with the level ¢ of a, and the parameters n, m. Sim-
ilarly, (6.5) has weight u + 1, and the coefficient of Op depends only on ki, k4, k5, ke
together with ¢, n, m. Next, (6.6), (6.7), and (6.8) all have weight u, and hence are scalar
multiples of p; these equations depend only on ky,..., kg, together with t,n,m. Also,
(6.9) has weight p+ 2, and the coefficient of 9*p depends only on ks, k4, ke together with
t,n,m.
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Next, (6.10), (6.11), and (6.12) all have weight u, and hence are scalar multiples of
p; these equations depend only on ky, . .., ks, together with A, ¢, n, m. Finally, (6.13) and
(6.14), all have weight u, and hence are scalar multiples of p; these equations depend
only on kg, ..., kg, together with A\, ¢,n,m.

Using the Mathematica package of Thielemans [93], we can solve these equations to
obtain a unique solution for ko, ..., kg and X\ as functions of ¢,n,m. We then set ¢ to
be the level of the affine subalgebra V*(a), which depends on 7 and n. Solving for \ in
terms of 1, n, m, and using the formulas for ¢ = ¢(¢, n, m) appearing in Subsection 3.9,
gives the explicit rational parametrizations

(I)iX,n,m : C \P — V(IiX,n,m)7 ‘I)iX,n,m(w) = (c(w)v /\W)),

for i = 1,2 and X = B,C,D,O. The explicit formula for Yop ,, (1)) is given in Ap-
pendix A, but we do not give the others because as we shall see in the next section, all
others can be obtained from this one together with various symmetries.

Finally, we comment on how this argument must be modified in the cases where
a = 509, or a = 0 and we take a Zs-orbifold. First, in the case éf’D(l,m), the affine
subalgebra is a Heisenberg algebra H(1), and we normalize the generator J so that the
two fields p* transforming as p, satisfy

J(2)pE(w) ~ +(z —w) L. (6.15)
Then J satisfies
J(2)J(w) ~ (¢ —1)(z —w) 2. (6.16)
We replace the level ¢ in the above argument by ¢ — 1, we replace (6.2) with

2 + 2map — 2m — 3
2(¢ - 1)

L) ~ ( Jow)e = w2+ (ap+ e - w7 (617)

and we solve the same system of equations to determine .
Next, in the case égD(l,m), if we normalize the Heisenberg field J so that (6.15)
holds, we have

J(2)J(w) ~ (1 —2¢)(z — w) 2. (6.18)
Again, we replace the level t by 1 — 21, we replace (6.2) with

v+ 2myp —m

L) ~ (s

Jotw)e = w24 (o Y -w 619)

and we apply the same procedure.
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Finally, in the remaining cases C}(0,m), é{pO(O, m), (fg’B (0,m), and é;”o(o, m), we let
p be a generator of the simple current extension of Cin(O, m) of weight u, and we replace
(6.2) with

L(=)p(w) ~ )z =)+ 0+ () =) (6.20)
The variable ¢ no longer appears, and rest of the argument is the same.

6.2. Step 2: symmetries of truncation curves

Theorem 6.1. For m > n >0 and m +n > 1, we have the following identities

1
®2B,n,m(¢) = ‘I)QO,n,m—n(@) = ©2B,m,n( w )7

20— 1
élc,n,m(w) = @QC,n,m—n(i) = (I)lc,m,n(w/(f 1)7
1 2 (6.21)
®2p.nm (V) = q)le”:mfn(@) = ‘Plo,m,nq(w — 1),

1 (
q)lO,n,m(w = (DIB,n,m—n - :(I)QD,m-&-l,n a7 N/
Proof. The explicit formulas for ®;x n m(¢) in all cases can be computed using the
approach in the previous subsection. These symmetries follow immediately from our
formulas. O

It turns out that all eight functions ®;x (%) can be expressed uniformly in terms
of one of them. From (6.21), it clear that within each of the four triality classes, there is a
uniform expression, so what remains is to find an expression that relates the expressions
from different triality classes. The explicit formula for ®35 ,, ., (1) appears in Appendix A
as (A.1). Here n, m are nonnegative integers, but if we are allowed to replace them with
half-integers, we obtain the following.

Theorem 6.2.

©10,n,m(w) = (I)2B,n,m+% (%)a (622)
(I)QD,n,m(w) = ¢2B,n—%,m(d})7 (623)
(I)lc,n,m(w) = ¢237n+%,m+% (%) (624)

By (6.21), we can recover ®1p,m(¥), ®ipnm(¥), and P, m (1), from
<I>1O,n7m+n(i), <I>2D7n,m+n(ﬁ), and @107n7n+m(ﬁ), respectively. Together with (6.22) -
(6.24), this shows that all functions ®;x . m(¢) for i = 1,2 and X = B,C, D, O, can be
recovered from these symmetries together with the explicit formula (A.1) for @op p m (V).
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6.3. Step 3: exhaustiveness

The last step in the proof of Theorem 4.1 is to show that (le’X (n,m) = C;’Z’X (n,m) for
i=1,2and X = B,C, D, O. The isomorphisms in Theorem 4.1 then follow immediately
from the symmetries in Theorem 6.1. For a particular value of ¢ € C, let Cy ;x(n,m)
and Cy ;x(n, m) denote the simple quotients of these algebras.

In view of Lemma 5.9 and Theorem 5.4, it suffices to show that (fle (n,m) contains the
strong generating fields of CfX (n,m) in weights 2,4, ...,2m + 4. We give the proof only
for é;l’ (n,m) since the argument in the other cases is the same. The truncation curve
(A.1) for é;p 3(n,m) and the truncation curve for W?*(sps, ), which appears in Appendix
A of [75], intersect at the point (¢, A) given in (A.2). This intersection gives rise to the
following isomorphism:

5 ~ 1+ 2m—2n _ 1+2m+2r
Cw,ZB(n»m) - Ws(5p2r)v ’l/} - 2(1 +om + 27‘)’ §= (7‘ + 1) + 4(n I 7“) .
(6.25)

Note that s is a nondegenerate admissible level for sp,, whenever 1 + 2m + 2r and
n + 1 are coprime. By Corollary 2.1, for ¢ and r sufficiently large, the universal algebra
W?(spa,) has a singular vector in weight 4(m+1)(n+1), and no singular vector in lower
weight. Also, by [75, Rem. 5.3], Ws(spa,) is generated by the weights 2 and 4 fields for
all non-critical values of s, hence this holds for the simple quotient W;(spa,) as well. It
follows that Cy2p(n,m) contains all fields in weights 2,4,...,4(m + 1)(n + 1) — 2, so
it must coincide with Cy 2p(n, m). Since this holds at infinitely many values of ¢ and
7, it holds for the universal objects as well. This shows that CYy(n, m) = C¥g(n, m) as
one-parameter vertex algebras. Repeating this argument in the other cases completes
the proof of Theorem 4.1.

As a consequence of Theorem 4.1 and the minimal strong generating types for
CgB (n,m) and CgD(n, m) given earlier, we immediately obtain

Corollary 6.1. For n+m > 1, we have the following minimal strong generating types as
one-parameter verter algebras.

(1) Cly(n,m) is of type W(2,4,...,2(1 4+ n)(3 + 2m + 2n) — 2),
(2) CYo(n,m) is of type W(2,4,...,2(1 +m +n)(1 + 2n) — 2),
(3) Cf’o(n,m) is of type W(2,4,...,2(3+2m)(1 +n) — 2),

(4) C;/’O(n,m) is of type W(2,4,...,4(1 +n)(1+ m+n) — 2).

A remarkable feature of the truncation curves is that their pairwise intersection points
are all rational points. We expect, but do not prove, that these four families of curves
account for all nontrivial truncations of W (¢, A); an equivalent conjecture is also due
to Prochdzka [88]. In Appendices B, C, and D, we will give the explicit classification
of coincidences between the simple quotients Cy ;x(n,m) and the algebras W;(spa,),
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Ws(509,)%2, and Wi(0spy ) %2; certain isomorphisms of this kind will be needed for our
rationality results in Section 7.

6.4. Uniqueness and reconstruction

The algebras W;é((n,m) satisfy a uniqueness theorem which is analogous to [37,
Thm. 9.1 and Thm. 9.8].

Theorem 6.3. For alln,m withn+m >1,i=1,2, and X = B,C, D, O, the full OPE
algebra ofW;’g((n, m) is determined completely from the structure ofoX (n,m), the action
of the Lie algebra a on the fields which transform as the standard representation p,, and
the nondegeneracy condition on these fields given by [37, Thm. 3.5]. In particular,

(1) If A;/’X(n,m) is a one-parameter vertex algebra which extends V'(a) ® C;Z’X(n, m) by

dq fields in conformal weight d"2+ L of correct parity, which are primary with respect

to V*(a) as well as the total Virasoro field, and satisfy the nondegeneracy condition,
then A?X(n, m) = W;@( (n,m), as one-parameter vertex algebras.

(2) The same result holds if we specialize to a particular value of 1, and replace
AV (n,m) and W (n,m) by their simple quotients Ay ix(n,m) and Wy ix (n,m).

In the cases where a is simple, the proof is the same as the proof of [37, Thm. 9.1]
in the case m > 1, and is omitted. In the cases WZ/’D(l,m) where a = so09, the affine
subalgebra is a Heisenberg algebra H(1), and we normalize the generator J such that
(6.15) holds. By the same argument as the proof of [37, Thm. 9.1] in the case m = 1, all
OPEs in W;bD(l,m) are uniquely determined by the structure of C?D(l, m) and (6.15),
(6.16), and (6.18).

Finally, in the cases C;[’B(O,m), Cf’o((),m), C;pB(O,m)7 and C;/’O(O,m), a is zero and
C;pX(07m) is just the Zs-orbifold of C;Z’X(O,m). In these cases, the argument showing
the uniqueness of order two simple current extensions of C?}( (0,m) by one field in the
appropriate weight and parity, is even easier and is left to the reader.

7. Rationality results

By combining Theorem 4.1 with the theory of extensions of rational vertex superal-
gebras, we prove many new rationality results in this section.

7.1. Affine vertex superalgebras of 0spy|ay,

Among the most fundamental examples of rational vertex algebras are the simple
affine vertex algebras Lj(g) at positive integer level k [52]. For Lie superalgebras, it
is known that the only examples of lisse affine vertex superalgebras are Ly (05p;j2,) for
k > 0 [56], but the rationality is only known for n = 1 [21]. In this case, it is a consequence
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of the fact that Ly (osp;j2) is an extension of Ly (spz) times a rational Virasoro algebra.
This perspective generalizes naturally to the case n > 1, where the Virasoro algebra is
replaced by a principal W-algebra of type C.

Theorem 7.1. For all positive integers n, k, the vertexr superalgebra Ly(0spq)2,) is lisse

and rational, and is an extension of Li(span) @ We(spay,), for £ = —(n+ 1) + 11;5213“

Proof. [73, Prop. 8.1 and 8.2] tells us that Ly (sp2,) embeds into Ly (05p1)2,) if & is a pos-
itive integer. Since Ly (sp2y) is rational, Ly (0sp;j2,,) is completely reducible as a module
for Ly (sp2y). It follows that Com(Lg(sp2n), Lk (05p1j2,,)) is simple by [25, Prop. 5.4].

Next, since & > —(n + 1), it follows from [35, Thm. 8.1] that Com(Ly(sp2y),
L (05p1)2,,)) is a homomorphic image of Cf’c(m 0) = Com(V*(spay, ), VF(05p1j2,)), where
k= —%(¢+2n+1). Since Com(Ly,(sp2n), L1 (08p1)2,,)) is simple, it must be the simple
quotient Cy 1c(n,0). Combining this with Corollary 4.1, together with Feigin-Frenkel
duality, we obtain

1+k+n

Com(Lk(ﬁpgn), Lk(ﬁﬁpl‘gn)) = Wg(ﬁpgn), {= 7(71 + 1) + m,

which is lisse and rational [8]. We thus have that both Ly (0sp1|2,) and its even subalgebra

L (0sp1j2,)%
index; otherwise, at least one of the finitely many irreducible modules of the lisse vertex

2 are extensions of a lisse vertex algebra. This extension must be of finite

algebra must appear with infinite multiplicity. This is impossible since conformal weight
spaces of Ly(05pq)2,), and its even subalgebra Lk(05p1|2n)z2, are finite dimensional. It
follows that both these extensions are lisse. Rationality of Lk(ospmn)z2 follows from

Proposition 2.3, and rationality of Ly (0spij2,) then follows from [25, Thm. 5.13]. O
7.2. Rationality of Wi (0sp1|2n,)

A celebrated result of Arakawa [8] says that for a simple Lie algebra g, Wy(g) is lisse
and rational when £ is a nondegenerate admissible level for g. When g is simply-laced,
recall from [12] that

k+hY

Com(LkH(g), Lk(g) & L1(g)) = Wg(g),where ¢=—h"+ m

(7.1)

In particular, this realizes Wy(g) for all nondegenerate admissible levels £.

We consider the analogous diagonal coset for type B. First, if k is an admissible
level for §02,.1 we have an embedding Ly 1(s02n11) < Li(502,11) @ L1(s02,,) [70].
Additionally, L;(s02,41) acts on the free fermion algebra F(2n + 1), and

Com(Ly41(502n11), Lr(502n11) ® L1(502,41))

& Com(Lj+1(802n41), Li(s02p+1) @ F(2n + 1)).
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In the notation of Theorem 4.1, recall the isomorphism

CYs(n,0) = Com(V =2 =242 (504, 1), V220 (500, 1) @ F(2n + 1)) 22
/ I _p— 1 1 (72)
= CYp(0,m) 2 WY T2 (0sp, 1y, )52, " + 7= 2.

Suppose that the level —21) — 2n + 1 is admissible for §02,,1, that is,

o —2m+1=—(2n—1)+ L,
q
where p,q € N are coprime and p > 2n — 1 if ¢ is odd, and p > 2n is g is even. In
this case, by [35, Thm. 8.1 and Rem. 8.3] the simple quotient Cy 25(0,n) coincides with
Com (L 1(502n11), L (502,11) ® F(2n41))%2, which we expect to be lisse and rational
by analogy with the simply-laced case. This motivates the following conjecture.

Conjecture 7.1. The principal W-superalgebra Wy _;,—1/2(08p1)5,) Where ¢/ = 55—,
is lisse and rational if

(1) p,q € N are coprime,
(2) p>2n—1if qis odd,
(3) p>2nif g is even.

By (4.1), this conjecture implies that Wy, 1/2(08pPy)2,,) is also lisse and rational at
the Feigin-Frenkel dual level, where ¢’ = ﬁ = p2_-11-;1_

As in the case of Wy(g) for a Lie algebra g, we expect that rational vertex su-
peralgebras Wk(05p1|2n) will serve as building blocks for many non-principal rational
W-superalgebras. In the next subsection, we will give examples of subregular W-algebras
of 502,43 and principal W-superalgebras of 0sps|2,,42 with this property.

Using the realization C;bB(O, m) = V\/w_m_l/Q(05)31‘27,1)%7 we are able to prove some
cases of Conjecture 7.1 using the coincidences appearing in Appendices B and C.

Theorem 7.2.

(1) Fork=—(m+3)+ 42(7£-_+i) and r € N, Wy(0sp1j2m,) is lisse and rational when m+r

and 1+ 2r are coprime.

(2) Fork=—(m+3)+ % and r € N, Wy(0spyj2m) 4s lisse and rational when

r and 1 4+ 2m are coprime.

Proof. By Theorem B.3, for k = —(m + %) + 42(2171“)’ we have

Cy2p(0,m) = VVzpﬂnq/z(0533'1|2m)Z2 = Ws(sp2r), s=—(r+1)+
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Since s is a nondegenerate admissible level for sp,,., the first statement follows.

Similarly, Theorem B.3 also shows that for k = —(m + 1) + %, we have

1+2m+2r

Cw,ZB(Oam) = Ww—m—l/Z(UﬁpHQm)Zz = Ws(5p2r)a s = 7(7n + 1) + Ar

Again, s is a nondegenerate admissible level for §p,,., so the second statement follows. O

We have a similar result coming from coincidences with algebras of the form

Wi (s02,)%2.

Theorem 7.3. For k = —(m+ %) + st andr €N, Wh(08p1)2m) is lisse and rational
when 2r — 1 and 2m are coprime.

Proof. By Theorem C.3, for k = —(m + 1) + Fmta,—7 We have

Cy28(0,m) = Ww_m—l/z(oﬁpmm)zz > Wi(s02,)%2, s=—(2r —2) + #
Since s is a nondegenerate admissible level for $0s,., the claim follows. O
In the case of W¥(0spy)2), it was shown in [20] that the diagonal coset
C5 = Com(V"2(sly), V" (sly) ® La(sl2))
is a quotient of W (¢, A) with parametrization
_ 3641 N 2(r +2)(r +4)(—5248 — 44887 — 352r% +132r% + 110%)
22+7r)4+r)’ 7(r — 2)(r + 8)(68 + 42r + 7r2)(352 + 354r + 59r2)

A calculation shows that Cy 2 C3p(0,1) = W¥3/2(0spy|5) %2, where ) and r are related
by ¢ = 5 ( 4 H ory =3 (2 H . Since the simple quotient C, , is lisse and rational whenever

r is admissible for 5[2, we obtain

Theorem 7.4. Wy, _3/5(0spy2) is lisse and rational when v = 2(24:_2 or ) = 4212 , and

r is admissible for ;[2.
7.3. Subregular W-algebras of type B

Recall that Wi (802m+3, fsubreg) for m > 1 is exceptional in the sense of [14] when
k=—-2m+1)+ % is admissible and ¢ = 2m + 2 or 2m + 1; see Table 1 of [14]. It is
therefore lisse [7], but the rationality is only known in the case m = 1 [46]. We will prove
the rationality in all cases where ¢ = 2m + 2, and in all cases where ¢ = 2m + 1 and p
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is odd. In the missing cases where ¢ = 2m + 1 and p is even, we will see that rationality
would follow from Conjecture 7.1.
Recall that Com(H(1), Wy—2m—1(502m+3, fsubmg))z2 can be identified with

Cyp(l,m). We set ¢ = % as above, and we begin with the case ¢ = 2m + 2.

Theorem 7.5. For all ) = % such that r € N and m + 1 and 2r 4+ 1 are coprime,

Wy —2m—1(802m+43, fsubreg) 15 lisse and rational.

Proof. By Theorem B.2, we have

Cw,lD(lv m) = Com('H(l), W¢—2m—1(502m+37 fsubreg))z2
2m+2r+ 3

>~ Ws(spa), s=—(r+1)+ 202 +1)

Note that the first isomorphism holds by [35, Thm. 8.1 and Rem. 8.3]. Under the above
arithmetic condition, s is a nondegenerate admissible level for §p,,., so Cy.1p(1,m) is lisse
and rational. Therefore Com( (1), Wy—_2m—1(502m+3, fsubreg)), being a simple current
extension of Cy1p(1,m) is also lisse and rational. It then follows from Proposition 2.3
that Wy _2m—1(502m+3, fsubreg) is lisse and rational as well. O

Recall from (4.3) in the case n = 1 that

Com(H (1), Wy—2m—1(502m+3, fsubreg))”? = Com(H(1), Ww'—m(05pz|2m+2>)zza

;1
V=55

This is the Zo-invariant part of the duality (4.7) proved in [25]. We obtain

Corollary 7.1. For v’ = ?H_l;% such that r € N and m + 1 and 2r + 1 are coprime,

Wy —m (05P2)2m12) @8 lisse and rational.

The fact that Wy —m (05P3|a,,,42) is lisse was also pointed out in [25] as a consequence
of (4.7) together with the lisseness of Wy, _2m—1(802m+3, fsubreg)-
Next, we consider the case where ¢ = 2m + 1 and p is odd.

Theorem 7.6. For ¢y = 2”;:;7%:1“ such that r € N and r and 2m + 1 are coprime,
Wep—2m—1(802m+3, fsubreg) @5 lisse and rational.

Proof. By Theorem C.2 and [35, Thm. 8.1 and Rem. 8.3], we have

Cw,lD(lv m) = Com(H(l), Ww—2m—1(502m+37 .fsubreg;))z2
2r

= WS(EUQT)Z2, S = _(QT — 2) + m
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As above, s is a nondegenerate admissible level for §0s,, so Cy1p(1,m) is lisse and
rational. Therefore Com(H (1), Wy —2m—1(802m+3, fsubreg)) is also lisse and rational, and
so is Ww72m71(502m+37 fsubreg)~ O

Corollary 7.2. For ' = % such that r € N and r and 2m + 1 are coprime,

Wy - (08Ps)2m12) 18 lisse and rational.

We now consider the case where ¢ = 2m + 1 and p is even. By Theorem D.2, we have

2(m+r+1) 1. m+r+1
~Y Z
Cy1p(1,m) = W (0spyj2,) ™2, Y= “oma1 SZ—(T+§)+W~
(7.3)
For r =1, we have Cy 1p(1,m) = )/Vs(ospm)z2 2 Cqy,2, where
2(2+m) 3 2+m 6
_ @@ 7 = — — _— = _2 .
V= omy1 STty @ T omt1

Since a is admissible for ;[2, it follows from Theorem 7.4 that

Corollary 7.3. For v = 22(72n++"1l), Wy —2m—1(802m+43, fsubreg) is lisse and rational. Simi-

larly, for ¢’ = %, Wy~ (08P2,m12) 18 lisse and rational.

Remark 7.1. If ¢ = %ﬂ‘l), m 4+ r 4+ 1 and 2m + 1 are coprime, and r > 1, we are
not able to prove the rationality of Wy,_2m—1(502m+3, fsubreg) Using the methods of this
paper. However, due to McRae’s recent proof of the Kac-Wakimoto-Arakawa conjecture
in full generality [82], these algebras are indeed rational. In view of (7.3) together with

Proposition 2.3, it follows that Ws(0spy|2,) is rational when s = —(r + %) + mli’;l This

proves an additional family of cases of Conjecture 7.1.

It is natural to ask whether the examples where k = —(2m +1) + £ is admissible and
q = 2m+2 or 2m+1, account for all cases where Wi, (502m+3, fsubreg) is lisse and rational.
It turns out that this is not the complete list. For example, we have isomorphisms

C’PJD(l?m) = Ws(osplp)zz = Ca,27

¢:2m_17 S:_§+2m—1’ a=dm=d

Since a is a positive integer for m > 1, we obtain

Corollary 7.4. For 1) = %, Wy—am—1(802m+3, fsubreg) 1 lisse and rational. Similarly,
for ¢ = 2m=1 Wy —m (05Pg)2m12) @8 lisse and rational.

4m

Remark 7.2. The examples in Corollary 7.4 fit into the third family of coincidences in
Theorem D.2; namely,
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2(m —r+1) 5:7(T+1)+ m+1—r

Cyap(l,m) = Ws(05p1|2r)Z2a Y= T+om_2r’ ) T o1 o

: m—+1—r
Since 57=9=5;

V\/s(ospl‘gr)Z2 is lisse and rational whenever m > 2r — 1, and hence that the following

= % for p = 2m — 2r + 1 and ¢ = 1, Conjecture 7.1 would imply that

algebras are lisse and rational:

2m—1r+1
W¢—2m—1(502m+37 fsubreg), 1/) = w, m > 2r—1,
14 2m —2r (7.5)
W¢’—m<05p2|2m+2)7 m, m > 2r — 1.

7.4. Minimal W-algebras of type C

Here we prove another case of the Kac-Wakimoto rationality conjecture, which in-
volves the minimal W-algebras W, _1/2(8P2n+2, fmin) for all integers r,n > 1. Recall
that in the case m = 1, W;pc(n, 1) = WY """ 2(spa, 49, fmin), and has affine subalge-
bra V¥—n—3/2 (sp2y). If we specialize to the case 1) = MQHT for r a positive integer,
it was shown in [13] that we have an induced embedding of simple vertex algebras
Ly (sp2n) — Wr_1/2(8P2n+2, fmin). By [35, Thm. 8.1], the coset

Com(L(sp2n), Wr—1/2(5P2n+2; fiin))
is simple and coincides with the simple quotient Cy 2¢(n,1) of C;Z’C (n,1).

Theorem 7.7. For all positive integers n,r, Wy._1,2(5Pant2, fmin) i lisse and rational,

and is an extension of Ly (spa,) @ Ws(spe,) for s = —(r +1) + 3}:521;

Proof. By Theorem B.4 and [35, Thm. 8.1], for ¢ = w and r a positive integer we
have

CTL',QC(na 1) = Com(LT(EPQn)7 WT—1/2(5p2n+23 fmin) = Ws(5p2r)7
1+n+r

— (1)
s=—r+ D)+ 375

(7.6)
Since s is a nondegenerate admissible level for Wq(spa,.), Cw’QC(n, 1) is lisse and rational.
Therefore W,._1/2(8P2n12, fmin) is an extension of L, (sp2y,) ®W;(sp2,), and hence is also
lisse and rational by Proposition 2.3. O

The isomorphism (7.6) was first conjectured in [13], and was shown in [75] to be
equivalent to the explicit truncation curve; see [75, Conj. 7.4]. This curve is also given
by ®2¢,n,m(¥) in the case m = 1, which can be obtained from the formula (A.1) for
Dop n,m(¥), together with (6.21) and (6.24).
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Remark 7.3. In the case r = 0 and ¢ = 3"'22"7 Cy2c(n,1) is the simple quotient of

WEeV(e, \), where I is the maximal ideal generated by c and (A+ 77%%%)' Using
[75, Eq. (3.6) and (3.8)] and the recursive structure of the OPE algebra of W (c, A)
given by [75, Thm. 3.9], it is not difficult to check that the generators L and W* of
Whev(c, A) lie in the maximal proper ideal, so Cy 2c(n, 1) = C. Therefore Theorem 7.7
holds for r = 0 as well. This provides an alternative proof of the fact that Lo(sp2,) —

W_1/2(8P2n+2, fmin) is a conformal embedding for all n > 1 [5].
7.5. Cosets of type C

It is a longstanding conjecture that if A C V are both lisse and rational vertex algebras,
the coset C = Com(A,V) is also lisse and rational. This is a theorem if A is a lattice
vertex algebra [31], but otherwise is it known only in isolated examples. In fact, there
are even more general situations where coset vertex algebras can be lisse and rational.
For example, (7.1) implies that when g is simply-laced, Com(Lg+1(g), Lr(g) ® L1(g)) is
lisse and rational for all admissible levels k. We expect the following generalization of
this statement to hold.

Conjecture 7.2. Let g be a simple, finite-dimensional Lie algebra, r a positive integer,
and k an admissible level for g. Then the coset Com(Ly+,(g), Li(g) ® L. (g)) is lisse and
rational.

This is known for all admissible levels k in the special case g = sly and r = 2 [1,20], and
also when k is a positive integer and r = 2 in the case of Eg [78].* The next result gives
another special case and will be useful for proving the rationality of other interesting
cosets later.

Theorem 7.8. For k € Z>1, the coset

Com(Ly—1/2(5P2n), Li(5p2n) @ L_1/2(sP2n)) = We(spar),

with £ = —(k + 1) + 52 In particular, this coset is lisse and rational.

Proof. Note that [69, Cor. 4.1] tells us that Lj_;/2(sp2,) embeds into Ly(sp2,) ®
L_1/5(sp2n) if k is a positive integer. Hence we get that Com(Ly_1/2(5p2n), Li(sp2,) ®
L_1/5(sp2n)) is simple as well, again by [25, Prop. 5.4], which applies since Ly (sp2,) ®
L_1/5(sp2n)) is an ordinary module for Lj_;/5(sp2y), and that category is completely
reducible [9]. Thus by Theorem B.4 and [35, Thm. 8.1]

1+n+k

Com<Lk71/2(5p2n)>Lk(5p2n> ® S(”)) = We(ﬁpzk), = _(k + 1) + m

4 Note that the argument of [78] for admissible k also applies if one uses [33, Thm. 5.5].
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The vertex algebra S(n) decomposes as S(n) = L_12(sp25) DL _1 /2(w1) with w; the first
fundamental weight of spa,, i.e., the top level of L_; /5(w1) is the standard representation
of spa,. Since w; is not in the root lattice of spa,, Ly_1/2(sp2n) cannot be a submodule
of Ly(sp2n) ® L_1/9(wr). It follows that

Com(Ly—1/2(502n), Li(sp2n) ® L_1/2(sP2n)) = Com(Ly_1/2(sP2n), Lr(sp2n) @ S(n)),
which completes the proof. O

The category of ordinary modules of Lj_1/2(sp2,) is semisimple [9] and we denote by
Py, the set of weights such that Lj_;/5()) is an ordinary module for Lj_; /5(spa2n). We
have

Li(sp2n) © L_1/a(sp2n) = €D Li—1/2(N) @ M(N). (7.7)
)\GP}J‘WQ

Here each multiplicity space M ()) is either a direct sum of Wy(spey)-modules or zero.
In fact M(A) can only be non-zero if A is in the root lattice @ of spa,, and so we restrict
the sum to Py N Q. Finally, M (0) = Wy(spay).

Let fmin be a minimal nilpotent element. The minimal reduction functor Hy ¢, at
level k, see (2.9), has the property that for an irreducible highest-weight module Ly ())
of the affine vertex algebra of g, the reduction Hy, .. (Li(\)) is an irreducible ordinary
module of the minimal W-algebra W¥ (g, fmin) as long as k is not a positive integer [10].
We aim to determine the A, such that Hy r, .. (Lx—1/2(N)) = Wi_1/2(5P2n, fmin)-

Lemma 7.1. For g = spa, and k € Z>1, Hy g, (Lp—1/2(N)) = Wi_1/2(8P2n, fmin) implies
A = mwy with m € {0,2k + 1}.

Proof. The minimal W-algebra has an affine subalgebra of type sps,_2. The top level of
Hy, oo (Li—1/2(A)) is described in [10, (66)] (see also [71, (6.14)]), and has highest weight
A restricted to the Cartan subalgebra of sps,_5. The conformal weight of the top level is
the conformal weight of the top level of Lj_1/2(\) minus A(x), where x is in the Cartan
subalgebra of the slo-triple for the quantum Hamiltonian reduction; see Section 2.2.

In the case of g = sps,, we embed the root system as usual in Z™ with orthonormal
basis {€1, ..., €, }. Then simple positive roots are a;; = %(61—62), ey Q1 = %(en_l—
€n), @n = V/2¢,. The longest short co-root is 8Y = v/2(e; + €2) and the Weyl vector is
p= %(nel + (n—1)ea + - - - + €,). The sly-triple corresponds to the longest root, that
is v/2¢; and so it follows that the top level of Hy fin (Lig—1/2())) has spa,, o weight zero
if and only if A = mw; is a multiple of the first fundamental weight w; = 6—12 Moreover
A is an admissible weight if and only if \0Y < 2k + 2n + 1 — 2h = 2k + 1 with h = 2n
the Coxeter number of sps,. The conformal weight of the top level is for A = mws,

AA+2p) m< m+2n >’

tom+1l T 9\ %kront1
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i.e. it vanishes if either m =0orm=2k+1. O

Recall from Remark 7.3 that H_1 /5 5, . (L_1/2(sp2,)) = C. Applying Theorem 2.2 to
(7.7) with L = Ly(sp2,) and V = L_y/5(sp2n) yields

Li(sp2n) = Li(span) ® C = Li(sp2n) @ H_q)9, 5., (L_1/2(5p2,))

= Hk71/27fmin (Lk(5p2n) & (Lfl/g(ﬁpgn)) (78)
= EB Hy 172, i (Li—1/2(X)) @ M(X).
AEPLNQ

Since (2k + 1)w; is not in the root lattice @ of spa,, we can use Lemma 7.1 to conclude
that

1+n+k
Com(wk71/2(5p2na fmin); Lk(5p2n)) = We(ﬁp%), { = —(k + 1) + m
Recall Theorem 7.7 saying that
Com(Li(span_2), Wi 1/2(sPams fauin)) = Wa(span), 5 = —(k+1) + — %
k p2n72 ) k—1/2 p2n7 min - S P2k ) - 1 + m T 2]€

We can thus employ Corollary 2.3 with V. = Li(spa,), W1 = Wi(spag), Wo =
Wi—1/2(8P2n, fmin), W3 = Wi(spar) and L = Ly (sp2n—2) to conclude that

Corollary 7.5. For k € Z>1 and n € Z>s the coset Com(Ly(span—2), Li(spayn)) is lisse
and rational and is an extension of Wy(spar) @ Wi (spar) with £ = —(k + 1) + 1E0EE

T+roni2k
and s = —(k+1)+ 1+72l:_]f_2k,

Remark 7.4. By Remark 2.1 the embedding of L (spa,—2) in Li(spay) is the standard
one described in Remark 2.2 (and m = 1).

The standard coset conformal vector of the coset Com(Ly(sp2n—2), Li(5p2n)) is the
difference of the Sugawara vectors of Ly (spay,) and L (sp2,—2). Note that the conformal
vector of Wy(spar) ® Ws(spar) is not the standard coset conformal vector. The contra-
gredient dual and being of CFT-type depend on the choice of a conformal vector, e.g.
the coset Com(Lyg(sp2n—2), Li(5p2n)) is self-contragredient and of CFT-type with the
standard coset conformal vector. On the other hand, neither the lisse nor rationality
properties depend on a choice of conformal vector.

We can iterate, i.e. apply Corollary 2.3 with V' = Li(sp2,), L = Li(8P25—2(m+1))
Wi = Com(Ly(sp2n—2m), Lk(5P2n)), Wa = Li(sp2n—2m), Wz = Com(Li(sP2n—2(m+1))>
Lk (span—2m)). Then the induction hypothesis is that W1 = Com(Lg (sPpan—2m ), Lk ($p2n))
is rational and lisse. The base case has just been proven and the induction step is again
Corollary 2.3.
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Corollary 7.6. For k € Z>1,n,m € Z>1 and n > m the coset Com(Ly(sp2n—2m),
Ly (spay)) is lisse and rational and is an extension of

® Wi, (spar) @ W, (spak)) (7.9)
i=1

with ; = —(k + 1) + 7220k and s, = —(k+ 1) + g3 5T

As above, the embedding of L (span—2m) in Li(spay) is the standard one described
in Remark 2.2.

This coset is isomorphic to another interesting coset via level-rank duality. For this
we use that Ly(spay,) and L, (spay) form a commuting pair in F(4nk) [67, Prop. 2]; a
detailed proof is given in the appendix of [85]. We can thus apply the idea of the proof
of [12, Thm. 13.1], namely

Com (L (sp2n—2m), Lk (span))
= Com (L (span—2m), Com (L, (spax ), F (4nk)))
= Com (Lk(sp2n—2m) ® Ln(spar), F(4nk))
= Com (L, (sp2r), Com (L (span—om), F(4nk)))
( , F(4(n —m)k)) @ F(4mk))
= Com (L, (8p2r)s Ln—m (p2r) @ F(4dmk)) .

( )
= Com (L, (sp2r), Com (L (span—2m)
(
Corollary 7.6 thus gives us
Corollary 7.7. For k,n,m € Z>y and n > m, the coset
Com (Ly(spak), Ln—m(spar) @ F(4mk))

is lisse and rational and is an extension of
&) Wi, (spar) @ W, (spar))
i=1

with & = ~(k+ 1) + g2 nd s = —(k+ 1) + Rty

7.6. Gelfand-Tsetlin algebras in types B, C and D

Consider the sequence of upper left corner inclusions gly C gl C --- C gl,, 41, and
let Z; denote the center of U(g;). The Gelfand-Tsetlin algebra is the commutative sub-
algebra of U(gl,,+1) which is generated by {Z;| i = 1,...,n + 1} [44]. In the setting of
affine Lie algebras, the analogous object needs to be defined in a different way because
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the center of the universal enveloping algebra is trivial for noncritical levels. In [12],
it was shown that for all k,n € Z>1, the coset Com(Ly(gl,—1), Lx(gly)) is isomorphic

to We(gl) for £ = —k + k;gi;l. Iterating this construction shows that Lx(gl,) is an

extension of @, Wy, (gly) with ¢; = —k = % This was regarded in [12] as a

noncommutative, affine analogue of the Gelfand-Tsetlin subalgebra I' of U(gl,). Even

though ®?=1 W, (gli) is noncommutative, its Zhu algebra is commutative, and it maps
to T' via the Zhu functor [96].
For types B and D, a similar observation appears in [34]. For k,n € N, the cosets

Dy (n) = Com(Ly(502,), Li(502,41)) 22, Ex(n) = Com(Ly(502,11), L (502,42))%2,
(7.10)
were called generalized parafermion algebras of orthogonal types. Just as the realization
of Li(gl,) as an extension of @, Wy, (gly) comes from the chain of inclusions gly C
glo C --- C gl,, the chains of inclusions soy C s03 C - C 509,42 and s02 C 503 C --- C
$09,,41 imply that Lg(so2,42) and L (s02,41) are extensions of

H@Dr(1) @E(1) @Dp(2) @Ex(2) @ -+ @ Di(n — 1) @ E(n — 1) ® Dr(n) @ Ex(n),

HRDR(1) @ E(1) ®Dp(2) @ EL(2) ® - @Dp(n — 1) @ Ex(n — 1) @ Dy(n).
(7.11)

Therefore the algebras (7.11) can be regarded as analogues of the Gelfand-Tsetlin algebra,
and they also have commutative Zhu algebras. Since Di(m) = Cgi2m—1,10(m,0) and
Ek(m) = Cryom,18(m,0), it follows from Theorems C.1 and C.2 that for r € N and
k = 2r,

o+ 2r — 2
Dor(m) 2 W, (s02,)%2, 5= —(2r—2) 4 20t =2
2m+2r —1 (7 12)
2m +2r — 1 '
Ear(m) 2 Wi(s03,)%2,  s=—(2r—2)+ Com+2r

In particular, if & = 2r is even, the Gelfand-Tsetlin subalgebras of Lo, (s02,41) and

Loy (809,,42) are tensor products of rational vertex algebras of the form W, (502T)Z2.

Similarly, for » € N and k = 2r + 1, it follows from Theorems D.1 and D.2 that

1 m+4r
Da, =Wy r Z2, = 9 I Lo —1°
2r4+1(m) = W (08py)2,) 5 (r+ 2) + 2m+2r —1 (7.13)
1 m+r .
~ Z3 — — O —
Earsr(m) 2 Walospyer)™,  s=—(r+ )+ ==

So if K = 2r + 1 is odd, the Gelfand-Tsetlin subalgebras of Lo, 1(s02,41) and
Loy41(s09,42) are tensor products of algebras of the form Ws(osplpr)Z?, which are
expected to be rational by Conjecture 7.1.

In type C, it follows from Corollary 7.5 that for all k,n € Z>1, L(sp2y,) is an extension
of the rational vertex algebra
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n

) Wi, (spar) @ W, (sp2x))

i=1

with ¢; = —(k+1) + % and s; = —(k+1)+ % Again, we regard this

as a Gelfand-Tsetlin subalgebra of L (sp2,,), and its Zhu algebra is commutative.
Appendix A. Explicit truncation curve for C;" 5(n, m)

Here we give the explicit parametrization of the truncation curve for C;p »(n,m). For
all n,m withn+m > 1,

Clp(n,m) ZWE (e, N,

I2B,n,m

where the ideal I>p , m, is described explicitly via the parametrization

2B,n,m ()
(=m4n =9 +2m)(1 = 2m + 2n + 4myp) (=1 — 2m + 2n + 2¢ + dm))
20(2¢ — 1) ’
A2B.n,m (V)
202y —1)f

T(—m+n+ ¢ +2my)(—1 —2m + 2n + 4map)(1 — 2m + 2n — 2¢ + dmap)gh’
f=—19m 4 80m® — 16m® + 19n — 240m2n + 80m*n + 240mn? — 160m>n? — 80n>
+ 160m2n® — 80mn* + 16n° + 49¢ + 114map
— 364m>y — 640m>y + 160m°y — 76ny
+ 728mna) + 1440m?nap — 640m*ny — 364n2y) — 960mn>y + 960m>n2y + 160n>y
— 640m>n3y + 160mn*y — 19692 — 380map? + 2184m2? + 2240m>y? — 640m>y?
+ 228n4)? — 2912mnap? — 3840m>nap? + 1920m*nep? 4+ 728n24)? + 1920mn21)>
—1920m3n?y? — 320n31? + 640m>n31? + 392¢3
+ 760map3 — 4368m21p® — 4480m3y3
+ 1280m°3 — 304n)® + 2912mna)® + 5760m>ny® — 2560m*ny® — 1920mn2y3
+1280m>n2y> — 392¢* — 912myp?
+2912m%y* + 5120m>3¥* — 1280m°y* + 304ny?

— 3840m2nyp* + 1280m*nip* + 608map® — 2560m>¢° + 512m>¢°,

g = —T44m? — 8mn + 4n> + 14¢p — 16m>) + 16mnap — 28¢% + 16m21)?,

h = 5m — 20m> — 5n 4 60m3n — 60mn? + 20n> + 491 — 20map + 120m3+p + 10n)
— 240m2nap + 120mn2y — 98¢% + 40map? — 240m3p? — 20ma>
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+ 240m>nap? — 40map3 + 160m>y3. (A1)

Using this explicit parametrization (A.1) as well as the truncation curve for W*(sps,.)
which appears in Appendix A of [75], it is easy to verify that these curves intersect at
the point (¢, \) given by

r(—1—2m+4n — dmr + 4nr)(1 + 2m + 2n + 2r — 4mr + 4nr)
2(n+r)(1+2m+2r) ’
2(n+7r)(1+2m+2r)f
7(142r)2n+r — 2mr + 2nr)(1 + 2m — dmr + 4nr)gh’

f = —68n — 408mn — 816m>n — 544m>3n + 136n2

C = —

+ 544mn? + 544m*n? + 961> + 192mn3

— 497 — 256mr — 360m>r + 64m3r + 304mrr — 212nr — 1000mnr — 1456m>nr

— 608m3nr + 92n2r — 1296mn2r — 2960m*n’r

+ 1824n3r + 3264mn’r — 576n*r — 19612

— 632mr? — 176m>r? + 608m>r? — 772nr? — 3000mnr? — 496m3nr? + 4832m>nr?
+ 6400212 — 5792mn*r? — 9664m>n2r? + 4176n3r? + 6432mn>r? — 1600n*r? — 39213
— 328mr3 4 2368m2r® + 2272m3r® — 1280m*r® — 1544nr® — 5824mnr® 4 928m>nr3
+ 3840m>nr® + 22400213 — 4512mn’r3 — 4480m2n2r?

+ 1312037 + 2560mn3r> — 640ntr3

— 392r* 4+ 608mr* + 2912m2r* — 1280m3r* — 912ns* — 2784mnr + 1600m>nr?

— 640m3nrt — 128n2r* + 640mn>rt 4+ 1920m>*n2r?

—960n%r* — 1920mn3rt 4 6400174

+ 608mr® — 1216m2r5 — 128m>r5 4 256m™r5 — 608nr> + 2432mnr® + 384m2nr®
—1024m3nr® — 1216n%r° — 384mn2r® + 1536m2n?r°

+128n3r° — 1024mn>r® + 256n*r°,
g = —T7—28m — 28m? + 14n + 28mn — 24n>

— 14r — 28mr — 28nr — 16mnr + 16n%r

— 2872 + 16m2r? — 32mnr? + 16n%r2,
h = —44n — 88mn — 49r — 108mr — 20m?r — 78nr + 20mnr

+ 40n2r — 98r2 — 20mr? + 40nr? — 120mnr? + 120022 — 40mr> + 80m?r3

+ 40nr® — 160mnr® + 80n>r>. (A.2)

In the next three Appendices, we classify coincidences between the simple quo-
tients Cy 158(n,m), Cy,1p(n, m), Cyp 2p(n, m), and Cy 2c(n, m) and the algebras W;(spa,.),
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Wi (s02,)%2, and Ws(osplpr)Zz. There are coincidences at central charges ¢ = 0,1, —24,
22 1
T 502
additional coincidences correspond to intersection points on the truncation curves. This

where the algebra degenerates; see [75, Thm. 8.1]. Aside from these points, all

follows from [75, Cor. 8.2], together with a case-by-case analysis to rule out possible
additional coincidences at points where the formula for A is not defined. The details are
omitted since the argument is similar to the proof of special cases appearing in Sec-
tion 9 of [75]. Via our triality results, similar coincidences can be found for Cy 1c(n, m),
Cy.2p(n,m), Cy10(n,m), and Cy 20(n, m) and these are also omitted.

Appendix B. Coincidences with type C principal VW-algebras
Theorem B.1. (Type 1B) We have the following coincidences.

Cy1B(n,m) = Wi(spa,),

form,n>0andr > 1.

()= e
(8) ¥ = 1+2m;m2n+2r’ S:_(T+1)+2(1+12+752J;j:2r)’
e e R S )

2m+n—r r—m-—n
ﬂg)w:m,% S:_(r+1)+m;m
(6) v = 2(m —r) ’ S:_(T+1)+2r—2m—2n—1’ T m.

Theorem B.2. (Type 1D) We have the following coincidences

walD(nv m) =W, (5P2r),

form,n>0andr > 1.

m n T n T

m n — —nNn T
O 7 P T
(B)wzl §(1+;n) ’ S:_(r+1)1+ 202r +2n—1) °
W= girmesy  f= Do
(5) ¥ = 2m2;2i12—7ai~1— SRR 12_(227?1_27721":?’



T. Creutzig, A.R. Linshaw / Advances in Mathematics 409 (2022) 108678 73

m+n-—r r—m
(5)1/J=ﬁ7 S:—(7‘+1)+m,

r#m, n+m.
Theorem B.3. (Type 2B) We have the following coincidences

C1P;QB (n7 m) =W, (5p2r>7

form,n>0andr > 1.

(1)1/}:14-222711;22;;—27"7 s:—(r+1)+1+2:(1__2:)+2r, Pt
2) V= gy 4= e

(3) p="0 " s:—(r+1)+%, rn—m,
()= 5—5— s=—<r+1)+%7 r#m—n,
(5)¢:2m;(2£:3;_1, 8:4’"“)“_172?_1?)”7 r#m,
() 0= T2t s )

Theorem B.4. (Type 2C) We have the following coincidences

Cllh?C(nv m) =W, (5P2r)>

form,n>0andr > 1.

1+m+n+r I+m+n+r
(Q)w_W7 23——(T+1)+W;
(3) v = +2:21n:—n1;r = 8:_(r+1)+1—|—2n—l——t;—nr—|—2r7
() v = gty 8=ttt
(5)1/;:%, s:—(rJrl)Jr%, r£m,
14+2m+2n —2r 1—-2m+2r

0= Sgm—ar -1 = 0FD+

22r —2m —2n—1)°
Appendix C. Coincidences with orbifolds of type D principal VW-algebras
Theorem C.1. (Type 1B) We have the following coincidences

Cw,lB(na m) = Ws (5027“)227
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form,n >0 andr > 2.

2(m+n+r) 2n+2r—1
1 = - =—2r-2)4+ ——
(1) ¢ om0 S @ )+2(m+n+r);
1+2m+2n 2r—2n—1
2 = — =—2r-2)+ ———
()/lzzj 2(m+r) I S (T )+ 2(m+'f‘) }
1+m4+n—r r—m-—-n-—1
= =—(2r-2)+ —— 1.
() =G s= @b e rdm

Theorem C.2. (Type 1D) We have the following coincidences
valD(nﬂm) = WS(EUZT)Z2,

form,n >0 andr > 2.

2m +2n+2r — 1 2(n+r—1)
(1) ¥ +1—|—2m ’ s (2r )+2m—|—2n—|—27‘—1’
m4+n r—n
o TJFQT,-FQS 2 (T )+m+r7 2 2 2 1
+2m +2n — 2r r—2m — 2n —
2 = =—(2r—2 1.
(3) ¥ i s (2r —2)+ r—m—1) r#m+

Theorem C.3. (Type 2B) We have the following coincidences
Cy25(n,m) = W,(s0s,)%2,

form,n >0 and r > 2.

2m —2n+2r —1 2r—2n—1
1 = =—(2r—2
(1) ¢ _ m2 2’ § (2r )+2m2—2712+2r1—1’
m — 2n — 2r r—2m —
AV =Zaram_y > T Dt
m-—n 2n+2r —1
(3) ¥ = s=—(2r—2)+

om+2r—1’ 2om+2r—1°

Theorem C.4. (Type 2C) We have the following coincidences
Cyac(n,m) = W,(s0s,)%2,

form,n >0 andr > 2.

m-+n-+r n—+r

(1) ¥ om y (2r )+m—|—n(—|—7" )
14+2m+2n 20r—-n—1

(2) ¥ 2(2m +2r — 1)’ 5 (2r )+2m+2r—1’
l+m+n—r 2r—-m—-n-—1

(8) v = ———F—, s=—(2r—-2)+ ( )

1+2m—2r 2r—2m—1
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Appendix D. Coincidences with orbifolds of W (0sp12,.)%2
Theorem D.1. (Type 1B) We have the following coincidences

Cyap(n,m) = W,(ospy)2,) %2,

form,n>0andr > 1.

1+2m+2n+ 2r 1 n+r
1 = — i
(1) ¥ ST s §r+2)+1—|—2m+2n—|—2r’
+2m+2n r—n
2 = = — Z R,
il wrr ey v A G -V S T
(3) ¥ 14+2m+2n —2r (+1)+2r—2m—2n—1
= S = —I(7r — .
1+2m—2r 2 2(2r —2m —1)

Theorem D.2. (Type 1D) We have the following coincidences

Cy1p(n,m) = W(ospy)a,) 2,

form,n >0 andr > 1.

2(m+n+r) 1 m+n+r
1 = = — - -
Wy (1—|—2m) ’ s (r+2)+2n—|—2r—1’
2(m+n 1 1—-2n+2r
2 = —— = — - - =
Y= omra T U Y saam
2(m+n—r) 1 r—m-—n
(3) = 1+2m—2r" 8__(T+§)+2T—2m—1'

Theorem D.3. (Type 2B) We have the following coincidences
Cy2p(n,m) = Ws(ﬁﬁpuzr)zza

form,n>0andr >1.

m—-n+r 1 r—n

(1)1?:7» SZ—(T+§)+W7 r#Fn—m,
m-—-n-—r 1 r—m

B =Sy U TP
m—n 1 n+r

T A e

Theorem D.4. (Type 2C) We have the following coincidences

Cw,QC(na m) = WS(05P1|27‘)Z27

form,n>0andr > 1.

75
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14+2m+2n+2r 1 14+ 2n+2r
1 = = _ il
(1) v im I e G LT e s
1+2m +2n 1 m+r
A= Ty
14+2m+2n—2r 1 r—m
3) ¢ = =—(r+= .
(3) ¥ 4(m —r) ’ s <r+2)+2r—2m—2n—1’ r#m
Corollary D.1. All isomorphisms Wk(05p1|2m)z2 = Wg(osp”gn)Z? occur in the following
list:
1 m+n 1 m
k:— - k:— — _
(m+3) + — (m+2)+2(m+n)7 o)
1. m+n 1 n ’
L= — = {=— = .
(n—|—2)+ 2n ' (n+2>+2(m+n)

This has central charge

(I1+2m)(1+2n)2mn —m —n)
2(m +n) '

c=—
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