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Abstract

Transposable elements (TE) are selfish genetic elements that can cause harmful mutations.
In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes
are mutations caused by TE insertions. Several factors likely limit the accumulation of expo-
nentially amplifying TEs within genomes. First, synergistic interactions between TEs that
amplify their harm with increasing copy number are proposed to limit TE copy number. How-
ever, the nature of this synergy is poorly understood. Second, because of the harm posed
by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit
transposition. However, as in all immune systems, there is a cost of autoimmunity and small
RNA-based systems that silence TEs can inadvertently silence genes flanking TE inser-
tions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc
retrotransposon within a neighboring gene was found to trigger the germline silencing of ald,
the Drosophila Mps1homolog, a gene essential for proper chromosome segregation in mei-
osis. A subsequent screen for suppressors of this silencing identified a new insertion of a
Hobo DNA transposon in the same neighboring gene. Here we describe how the original
Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that
this local gene silencing occurs in cis and is dependent on deadlock, a component of the
Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE inser-
tions. We further show how the additional Hobo insertion leads to de-silencing by reducing
flanking piRNA biogenesis triggered by the original Doc insertion. These results support a
model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local
determinants of transcription. This may explain complex patterns of off-target gene silencing
triggered by TEs within populations and in the laboratory. It also provides a mechanism of
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sign epistasis among TE insertions, illuminates the complex nature of their interactions and
supports a model in which off-target gene silencing shapes the evolution of the RDC
complex.

Author summary

Transposable elements (TEs) are selfish DNA elements that can move through genomes
and cause mutation. In some species, the vast majority of DNA is composed of this form
of selfish DNA. Because TEs can be harmful, systems of genome immunity based on small
RNA have evolved to limit the movement of TEs. However, like all systems of immunity,
it can be challenging for the host to distinguish self from non-self. Thus, TE insertions
occasionally cause the small RNA silencing machinery to turn off the expression of critical
genes. The rules by which this inadvertent form of autoimmunity causes gene silencing
are not well understood. In this article, we describe a phenomenon whereby a TE inser-
tion, rather than silencing a nearby gene, rescues the silencing of a gene caused by another
TE insertion. This reveals a mode of TE interaction via small RNA silencing that may be
important for understanding how TEs exert their effects on gene expression in popula-
tions and across species.

Introduction

Transposable elements (TE) are selfish elements that can cause DNA damage, mutation, chro-
mosome rearrangements, and sterility. In Drosophila, even early investigations estimated that
about half of the spontaneous mutations that cause visible phenotypes are caused by TE inser-
tions [1]. Nonetheless, despite their harm, TEs can greatly proliferate in the genomes of sexu-
ally reproducing species [2]. A consequence of TE proliferation is that diverse systems of
genome defense have evolved that limit transposition through DNA methylation, repressive
chromatin, direct transcriptional repression, and small-RNA silencing. There is substantial
crosstalk between these modes of genome defense. For example, small RNAs generated from
harmful TE transcripts can silence TEs through cytoplasmic post-transcriptional silencing but
also enter the nucleus to trigger DNA methylation and transcriptional repression [3,4].

In animals, small RNAs designated piwi-interacting RNAs (piRNAs) play a critical role in
genome defense within reproductive tissues. piRNAs are derived from TE sequences recog-
nized by the piRNA machinery and diverted from canonical mRNA processing into a piRNA
generating pathway. By shunting TE transcripts toward piRNA biogenesis, the host is able to
destroy TE transcripts and also generate a pool of antisense piRNAs that further repress TEs
throughout the genome. Interestingly, like other systems of immunity, genomic immunity can
be costly when the distinction between self and non-self is disrupted. For example, in Arabi-
dopsis thaliana, selection can act against DNA-methylated TE insertions that reduce the
expression of flanking genes [5]. Off-target gene silencing by systems of genome defense, and
subsequent selective effects, has been observed in a variety of organisms [6-17]. However,
genic silencing by flanking TEs is hardly universal within a genome. For example, in maize,
the capacity to trigger the formation of flanking heterochromatin can vary significantly among
TE families [13]. The cause of this variation is poorly understood.

Studies in Drosophila, where DNA methylation is absent and piRNAs are the primary line
of defense against TEs, show that TE insertions can trigger the spreading of heterochromatin
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and transcriptional silencing of genes [16-23]. In the germline, TE insertions also have the
capacity to trigger the production of piRNAs from flanking sequences [24-27]. The mecha-
nism of flanking piRNA biogenesis that spreads from a TE insertion can be explained by a gen-
eral model whereby Piwi-piRNA complexes target nascent TE transcripts [28-31] followed by
recruitment of the histone methyltransferase SETDB1/Egg [32-35]. Upon H3K9 methylation
by SETDBI, germline TE insertions may be co-transcriptionally repressed and converted to
piRNA generating loci by subsequent recruitment of the HP1 paralog Rhino [27,28,36]. In the
germline, clusters of TE insertions transcribed in both directions become a source of sense and
anti-sense piRNA and are known as dual-strand piRNA clusters [37,38]. Recruitment of Rhino
coincides with non-canonical transcription within the TE insertion and transcripts are
directed into a pathway of RNA processing that lacks standard capping, splicing and polyade-
nylation [27,37,39,40]. Since non-canonical transcription can ignore TE encoded termination
signals [40] and extend beyond the target TE insertion, transcripts designated for piRNA pro-
cessing can yield piRNAs from genomic regions outside the TE insertion. This occurs presum-
ably through phased piRNA biogenesis [41-43], since transcripts derived from unique
genomic regions flanking the TE will not be the initial target of TE-derived piRNAs that trigger
ping-pong biogenesis.

In Drosophila, there is evidence that TEs with the capacity to induce flanking H3K9 methyl-
ation through piRNA targeting are deleterious due to the silencing of neighboring genes
[14,15]. However, there is striking variation in the capacity for TE insertions to trigger these
effects. Across two independent strains, only about half of euchromatic insertions show a sig-
nature of locally induced H3K9 methylation [15]. Why some TEs trigger local piRNA biogene-
sis and/or repressive chromatin and others do not is poorly understood, though a variety of
factors are known to contribute. One factor is clearly the class of TE. In maize, only some TE
families appear to induce local heterochromatin formation [13] and in Drosophila, the LTR
class appears to exert a stronger effect on local chromatin compared to other families [15].
Such differences may be explained by regulatory sequences embedded within the particular TE
family or class. For example, elements primarily expressed in somatic cells of the ovary trigger
a greater degree of flanking H3K9 methylation in cultured ovarian somatic cells [29]. Addi-
tionally, TE insertions that lack a promoter and are thus not expressed can fail to trigger flank-
ing piRNA biogenesis in the germline [44].

In the absence of regulatory sequences encoded within TE insertions, the capacity for a TE
fragment to nucleate local repression and piRNA biogenesis depends on the interaction
between the individual insertion and the transcriptional environment [45]. A recent investiga-
tion of flanking piRNA biogenesis triggered by transgenes showed that transcription in oppos-
ing directions (convergent transcription) may enhance conversion of TEs into standalone
piRNA clusters with flanking piRNA biogenesis [26]. A recent study has also shown that zinc
finger recruitment to DNA motifs can also mediate the nucleation of Rhino at standalone clus-
ters [46]. However, there is no general model that explains variation in the capacity for TEs to
become dual-strand piRNA clusters and why some TEs insertions have strong effects on the
expression of flanking genes while others do not.

In a genetic analysis of the Drosophila MpsI locus, we identified TE insertions that have a
complex influence on gene expression whereby insertions can either trigger local gene
silencing or de-silencing. Using polyA mRNA-seq and small RNA sequencing, we show
how the fate of transcripts from this locus shifts between canonical mRNA processing and
PpiRNA biogenesis in the presence of different TE insertions. We further show that germline
gene silencing induced by a Doc insertion depends on deadlock, a component of the Rhino-
Deadlock-Cutoff (RDC) complex. The RDC complex plays a critical role in converting dis-
persed TE insertions into stand-alone dual-strand clusters within the germline [27,40,46].
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Moreover, we show this gene silencing occurs in cis, suggesting that genic piRNAs them-
selves do not silence strongly in trans. Rather, the genic piRNAs appear primarily as a read-
out of silencing in cis. This complex effect of TE insertions supports a model in which the
capacity for one TE to silence flanking genes depends on local patterns of transcription that
can be altered by other TE insertions. This represents a case of compensatory mutation or
sign epistasis between TE insertions, whereby the harm or benefit of an allele depends on
genetic background [47].

Results

A DNA transposon insertion rescues a retrotransposon insertion allele of
Mpsl

The Drosophila homolog of Mps1, ald, is a conserved protein kinase that is a key component of
the meiotic and mitotic spindle assembly checkpoint present in most organisms [48-51].
While Mps1 has both mitotic and meiotic function, the Drosophila fully recessive Mps1**®
allele acts only in the germline through an effect on meiosis and is caused by a Doc non-LTR
retrotransposon insertion into the 3’ end of the neighboring gene alt, rather than Mps1 itself
[52,53] (Fig 1). alt and Mps1 are convergently transcribed with transcripts overlapping at the
3’ end, a configuration that has been proposed to enable TE insertions to trigger flanking
PpiRNA biogenesis and local gene silencing [26]. To understand why a transposon insertion in
one gene could affect the function of another gene, a genetic screen was performed to identify
suppressors of the Doc Mps1*'® allele [54]. In this screen, seven stocks were isolated that sup-

1A15

pressed nondisjunction caused by the Mps allele yet retained the Doc insertion.
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Fig 1. Annotation of TE structure and insertion positions for Mps1*’® and Mps1*'>"*"*"" a]leles within alt. Transcript annotations and stranded mRNA-
seq mappings from (blue[+] and green [-]density plots) from ovaries of mated females are from Flybase (www.flybase.org) and [56]. The MpslA15 Doc
insertion is 5° truncated by 827 bp and located within the 4th/5th exon of alt, in the sense direction of the alf transcript. The Mps1'>"® Hobo insertion is
internally deleted, inserted in the sense direction of alt and located in the first intron, 1188 bp from the first alt TSS.

https://doi.org/10.1371/journal.pgen.1010598.9001

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010598  February 21, 2023 4/23


http://www.flybase.org/
https://doi.org/10.1371/journal.pgen.1010598.g001
https://doi.org/10.1371/journal.pgen.1010598

PLOS GENETICS

Transposon mediated de-silencing by altered piRNA biogenesis

Subsequent genetic mapping performed on one of these stocks indicated that the revertant
allele (reconfirmed rate of X chromosome non-disjunction: Control: 2/1813; Mps1*'*/
Mps1*": 182/748; Revertant.131/Revertant.131: 1/557) was in close proximity to the original
Doc insertion, so whole genome sequencing of five revertant lines was performed to identify
the nature of the revertant lesion. This sequencing revealed no proximal nucleotide differences
between the Mps1*'® and revertant alleles and no differences in coverage that would be
expected from gene duplication (S1 Fig), but did identify a new Hobo insertion within the
flanking gene alt (Fig 1). In fact, this insertion was identified in all five revertant stocks, indi-
cating that the identified stocks all carried the same lesion, designated Mps1'>"",

PCR and Sanger sequencing confirmed the nature of the Doc and Hobo insertions (Fig 1
and S1 File). The original Mps1*'® Doc insertion is 5’ truncated and lacks the first 827 nucleo-
tides containing the promoter [55]. The Doc is inserted within the fourth of six exons in the
sense orientation with respect to alt, thus placing a target for germline antisense Doc piRNAs
within the alt transcript. The Hobo insertion contains the 5" and 3’ ends of the consensus Hobo
element, but is internally deleted. Similar to the Doc insertion, it is in the sense orientation
with respect to the alt transcript, but is inserted within the first intron, 1188 bp from the first
TSS. Previous studies indicate that Piwi can repress gene promoter function via TE insertions
near the TSS [29].

Local gene silencing by a Doc insertion is ameliorated with insertion of the

Hobo element

Since the MpslAI * allele has an effect on meiosis, but not mitosis [52], we determined how the

two TE insertions influence the germline expression of flanking genes by performing polyA
mRNA-seq on early 0-2 hour embryos. This approach enables an analysis of germline expres-
sion without contamination of somatic tissues of the ovary. In eggs laid by females homozy-
gous for the Mps1*'* allele, MpsI and the neighboring gene alt have no expression (Fig 2).
Interestingly, the silencing effect of the Doc insertion spreads beyond MpsI to also cause
silencing of CG7524, which is divergently transcribed with respect to Mps1, while additional
genes are not affected. Thus, the Doc insertion into alt leads to the germline silencing of alt
and two other genes. polyA mRNA-seq on embryos from MpsI*'>"*” homozygous females
indicates that the Hobo insertion near the 5’ end of alt restored the expression of MpsI and the
flanking gene CG7524. However, the silencing of alt persists. The Hobo insertion does not
cause additional silencing of other flanking genes, such as CG7655, which is divergently tran-
scribed with respect to alt (Fig 2).

Altered gene expression is associated with altered genic piRNA profiles

Since TE insertions have the capacity to induce flanking piRNA biogenesis, we investigated
small RNA profiles from whole ovaries in three different experiments. By comparing results
with polyA mRNA-seq, we would be able to compare modes of transcript processing from this
locus, between the standard RNA processing pathway that includes polyadenylation with the
alternative pathway of germline dual-strand piRNA biogenesis mediated by the RDC complex
that bypasses polyadenylation [27,40]. Small RN As were classified as piRNAs based on size
(23-30 nt) and showed both U-bias and ping-pong signatures (S2 Fig). In the absence of either
the Doc or Hobo insertion, +/+ ovaries indicate a modest population of piRNAs derived from
the site of convergent transcription between Mps! and alt (Fig 3A). Of note, these piRNAs are
essentially derived from only one strand, in the sense orientation with respect to alt transcrip-
tion. Across the entire region, there is no evidence that piRNAs are generated through bidirec-
tional transcription since piRNAs derived from one strand do not have a corresponding
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Fig 2. A Hobo insertion triggers germline de-silencing of two genes silenced by the Mps1*'® Doc insertion.
Germline polyA mRNA TPM values from 0-2 hour embryos laid by homozygous mothers. yw/yw indicates the
wildtype strain used for the original screen. The scheme above each graph describes which TE insertions (yellow
arrowheads) were present in mothers of each experiment. Error bars are S.E. In the presence of only the Mps1** Doc
insertion, CG7524, Mps1 and alt are silenced in the germline of Mps1*'® homozygous mothers. In Mps1*'>"
homozygous mothers, the Mps1*!>™" Hobo insertion restores germline expression of CG7524 and Mps1 in the
presence of th Doc insertion, but expression of alt is not restored. Red indicates the names of the genes affected by the
Doc insertion.

https://doi.org/10.1371/journal.pgen.1010598.g002

population derived from the alternate strand. Thus, in the absence of TE insertions, piRNAs
from this region appear to be generated through the pathway that generates sense 3’'UTR genic
piRNAs [57].
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Fig 3. A Doc insertion within alt triggers the formation of genic piRNA biogenesis from both strands which is disrupted by a Hobo insertion. A) Small
RNAs derived from convergently transcribed MpsI and alt are single stranded and in the same direction of the genic transcripts. B) Results across multiple libraries
indicate that the Doc insertion of the Mps1'* allele triggers dual-strand piRNA biogenesis across multiple genes. C) The Hobo insertion of the Mps14!>"™" allele
disrupts Doc triggered dual-strand genic piRNA biogenesis. D) Quantification of mapped reads from combined libraries indicates piRNAs derived from both
strands of Mps1 are reduced by approximately three-fold in Mps1*>™ compared to Mps1*!® but maintained at similar levels in both from alt.

https://doi.org/10.1371/journal.pgen.1010598.g003
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The insertion of the Doc element in Mps1*'* homozygotes changes this pattern dramatically
(Fig 3B). In all three experiments (Fig 3B, Libraries 1,2,3), the Doc insertion is associated with
conversion to piRNA biogenesis from both strands. This is evident in alt, where the Doc inser-
tion is located, but extends across three genes on one side. Interestingly, while piRNAs derived
from both strands are identified from CG14322, this gene is not silenced, perhaps because the
5’ end of this gene is distant. 23-30 nucleotide RNAs produced from this region have a strong
5" U bias and a ping-pong signature (S2 Fig). This supports a model whereby piRNAs are gen-
erated through either phased-piRNA biogenesis on transcripts generated through bidirectional
transcription from within the Doc element or spreading of a standalone dual-strand cluster
from the Doc element. The ping-pong piRNA biogenesis signature supports the latter model,
but there is also a weak phasing signature as noted by a modest peak of single nucleotide 3’
end to 5° end distances on the plus strand. This signature is not present on the minus strand.
Other dual strand clusters also have a signature of both modes of piRNA biogenesis [42].

The Hobo insertion changes this pattern of flanking piRNA biogenesis (Fig 3C, Libraries
1,2,3). At the site of the Hobo insertion near the alt TSS, a new population of sense and anti-
sense flanking piRNA emerges and these dual strand piRNAs retain a ping-pong signature
(S2 Fig). While there is an apparent shift in the location of piRNAs derived from alt, the total
abundance of alt sense and antisense piRNA is similar in MpsI*"* and Mps1*'>"" homozy-
gotes (Fig 3A). However, the Hobo insertion is associated with a substantial, though incom-
plete, reduction of sense and antisense piRNAs derived from flanking genes. In particular,
there is an approximate threefold reduction of sense and antisense piRNAs derived from the
de-silenced MpsI (Fig 3D). Overall, while alt maintains a population of sense and antisense
piRNAs with the Hobo insertion, sense and antisense piRNA biogenesis from flanking genes
becomes greatly reduced. It is not apparent why the Doc insertion has the capacity to induce
dual-strand cluster formation across multiple genes, but the Hobo element insertion lacks this
capacity. One possibility is that endogenous piRNA abundance differs between these two ele-
ments and the abundance of piRNAs is important in triggering the formation of a dual-strand
cluster. Indeed, in both strains, piRNAs that target the Doc element are about 10-fold more
abundant than piRNAs that target the Hobo element (S3 Fig). This is consistent with a model
in which abundant piRNAs trigger dual-strand cluster formation at the site of the Doc inser-
tion, but the Hobo element, with fewer endogenous piRNAs, has reduced capacity to do the
same.

Doc mediated silencing in cis is dependent on the RDC complex
component deadlock

As the RDC complex licenses the formation of dual-strand clusters [27], we sought to deter-
mine if the suppression of Mpsl depended on the RDC component deadlock (Fig 4A). polyA
mRNA-seq on ovaries revealed that the suppression of MpsI and alt is deadlock dependent.
Low expression in deadlock heterozygotes that are homozygous for the Mps14"
restored in deadlock™° /deadlock’ transheterozygotes [58-60]. We attribute the discrepancy
in CG7524 to the fact that this experiment was performed in ovaries rather than 0-2 Hour
embryos (deadlock mutants are sterile). We also noticed through SNP analysis of polyA
mRNA-seq reads that deadlock dependent silencing via the Doc insertion only happens in cis
(Fig 4B). In Mps1*'® heterozygotes, only one allele is expressed. However, in deadlock transhe-

allele is

terozygotes, expression of the silenced allele is restored. Small RNA sequencing of ovaries also
showed a dramatic change in local piRNA biogenesis in deadlock transheterozygotes. In partic-
ular, there was a striking increase in the production of small RNAs from the minus strand

(S4 Fig) of the 3’ end of the alf transcript near the site of the Doc insertion.
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Fig 4. Silencing of Mps1 by the Doc insertion is in cis and dependent on deadlock. A) TPM of polyA mRNA-seq on
whole ovaries. Silencing of Mps1 and alt by the Doc insertion depends on functional deadlock. B) Deadlock dependent
silencing of MpsI by the Doc insertion occurs in cis. In the absence of functional Deadlock, SNP analysis of polyA
mRNA-seq reads reveals the de-silencing of the suppressed allele in Mps1*'® / + heterozygotes.

https://doi.org/10.1371/journal.pgen.1010598.9004

The de-silencing Hobo insertion alters flanking intronic and exonic RNA
expression

How does the Hobo element insertion alter the local landscape of dual-strand piRNA biogene-
sis and flanking gene silencing? One possibility is that the Hobo insertion triggers transcrip-
tional silencing of alt. Alternatively, regulatory sequences embedded in the Hobo element may
alter processivity of alt transcription, reducing the capacity for the truncated Doc insertion
embedded in the alt transcript to serve as a piRNA target that nucleates the formation of a
genic dual-strand cluster. In this case, the disruption of the Doc dual-strand cluster by Hobo
would depend on canonical mRNA processing signals embedded in Hobo such as transcrip-
tion termination (S1 File). This may be explained by the fact that piRNA abundance to the
Hobo element is less than piRNA abundance to Doc. Fewer endogenous Hobo piRNAs may
lack sufficient capacity to trigger the properties of a dual-strand cluster that ignore transcrip-
tional termination signals at the Hobo insertion. To test the hypothesis that alteration of down-
stream expression of alt by Hobo mediates rescue of Mps1 expression, we performed
quantitative RT-PCR with random hexamers to quantify steady-state RNA transcript abun-
dance of both intronic and exonic sequences flanking the Hobo insertion. One primer pair was
located in the intron 66 nucleotides upstream of the Hobo insertion (S1 File), one primer pair
was located in the intron 53 nucleotides downstream of the Hobo insertion and one primer
pair was located in a downstream exon. Fig 5A shows that the insertion of the Hobo element
has a significant effect on the expression of flanking intronic and exonic sequences (p<0.001
for the interaction between primer location and Hobo insertion). In particular, the insertion of
the Hobo element in the same direction as alt leads to increased RNA abundance of intronic
sequence immediately upstream of the Hobo transposon. This suggests that general transcrip-
tional activity of alt upstream of Hobo is not likely to explain its effect on MpsI silencing. In
contrast, the insertion of the Hobo element greatly decreases the abundance of downstream
intronic and exonic RNA transcripts. These results support a model (Fig 5B) for the mecha-
nism of how the Hobo insertion rescues deadlock-mediated Doc silencing of MpsI. In particu-
lar, lower expression of downstream RNA caused by the Hobo insertion renders the Doc
element (also embedded within the alt transcript) as a weaker target and weaker trigger for
piRNA-mediated gene silencing of flanking genes. We propose that transcription stop/polya-
denylation sequences in the Hobo element limit RNA polymerase processivity through alt,
though the Hobo element may also impact transcript stability downstream as well (See S1 File
for description of putative transcription stop sequences in Hobo).

Silencing and de-silencing act zygotically

piRNAs that repress TEs in Drosophila are transmitted maternally and maintain continuous
silencing across generations [36,61-64]. piRNAs also have the capacity to maintain off-target
gene silencing through maternal transmission [65,66]. This maternal transmission also can
enable paramutation [67,68]. Therefore, we tested whether the silencing or de-silencing of
Mps1 depended on the maternal silencing state. This was achieved through quantitative
RT-PCR of Mps1 from ovarian mRNA collected from females generated through reciprocal
crosses between wildtype, Mps1*'> and Mps1*'>™ homozygotes. For each of the three pairs of
crosses, reciprocal females did not show differences in the expression of MpsI (Fig 6). Thus,
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Fig 5. The insertion of the Hobo element alters local RNA expression of intronic and exonic sequence. A) gPCR
was performed on random hexamer cDNA generated from ovary total RNA. Values were normalized to rp49 and
maximum value for each amplicon made equal to 1 to enable analysis of relative expression. Upstream and
Downstream 1 PCR amplicons are intronic and immediately flank the Hobo insertion. Downstream 2 amplicon is
derived from an exon sequence. The Hobo insertion alters local expression by increasing transcript abundance of
intronic sequence immediately upstream of the insertion, but decreases transcript abundance downstream. B) Model
for disruption of Doc triggered silencing of MpsI. The presence of the Doc element within the alt transcript triggers the
formation of a dual-strand cluster that spreads into MpsI. The Hobo insertion blocks processivity of the alt transcript,
presumably through transcriptional termination. In this case, the Doc insertion is no longer a target for cluster
formation.

https://doi.org/10.1371/journal.pgen.1010598.9005

there is no maternal effect on either silencing or de-silencing. This indicates that genic piRNAs
generated from one allele neither silence nor de-silence through a maternal effect or zygotically
in trans, though maternal Doc and Hobo piRNAs may certainly play an important role in
establishing the silencing in the first place. Additionally, +/Mps1*'>"*" genotypes have similar
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Fig 6. Relative expression (plate normalized) of Mps1 in ovaries is determined strictly by genotype and the dose of
A15 alleles, indicating a strict zygotic effect on gene expression. Reciprocal progeny of all three pairwise crosses
show similar expression levels, indicating no maternal effect. Expression levels of Mps1 in Mps1#*°/+ and Mps141*/
Mps1*'>™" are intermediate between Mps1*'°/Mps1*'® homozygotes and +/+ (or MpsI*'>™/Mps1*'>7*")
homozygotes, indicating a strict dose effect of MpsI*'> on MpsI expression. Relative expression levels are normalized
to maximum 1.0.

https://doi.org/10.1371/journal.pgen.1010598.9006
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expression to wildtype homozygotes and approximately twice the expression level of
+/Mps1*"> and Mps1*'>""/Mps1*" genotypes (Fig 6). Thus, the effect of these alleles on Mps1
expression appears additive.

Discussion

Systems of genome defense can maintain genome integrity through the repression of TEs, but
off-target effects can lead to gene silencing. These off-target effects have been proposed to con-
tribute to the burden of TEs themselves [5,14]. However, TE insertions near genes do not uni-
versally lead to flanking gene silencing. The underlying causes for variation in the effects of TE
insertions are not well known. Here we report a pair of TE insertions where one insertion
causes gene silencing and the other restores gene expression.

Silencing in cis of Mps1 is dependent on the RDC complex component deadlock. We pro-
pose that the original gene silencing of MpsI caused by the Doc insertion in alf can be
explained by conversion of the Doc element and three neighboring genes (Mps1, alt and
CG7524) into a germline, standalone dual-strand cluster. Even though the truncated Doc inser-
tion lacks a promoter, this conversion is likely explained by the insertion of a sense Doc target
within a transcript driven by the alt promoter. The Doc fragment in sense orientation likely
functions as a target for abundant endogenous Doc piRNAs. This conversion is perhaps
enhanced by convergent transcription between MpsI and alt that produces sense piRNAs
derived from the 3’ end of alt [26]. Upon conversion to a standalone dual-strand cluster,
silencing of functional transcripts is likely caused by transcripts being directed away from stan-
dard mRNA processing into a pathway of piRNA biogenesis [27,39,40]. In this case, flanking
piRNA biogenesis from both strands can be considered a readout of genic co-transcriptional
repression. However, it also suggests that the function of dual-strand clusters is not simply to
generate a source of piRNAs but also to directly prevent individual TE insertions from produc-
ing functional transcripts. How does the Hobo insertion lead to de-silencing? The Hobo inser-
tion still retains the Hobo promoter and TE insertions near gene TSS’s have been shown to
block PollI recruitment to genic promoters [29]. We showed increased expression of intron
transcripts immediately upstream of the Hobo insertion, but reduced expression downstream
of the insertion. Transcriptional repression or processivity of alt by the Hobo insertion thus
likely precludes the Doc fragment from being a sufficient target for Piwi-piRNAs that can trig-
ger conversion into a piRNA producing locus. We propose that even though transcription of
dual-strand clusters frequently bypasses transcription termination signals [40], the de-silenc-
ing of Mpsl1 is likely caused by transcriptional termination triggered by the Hobo insertion. Of
note, Hobo piRNAs are less abundant than Doc piRNAs in both strains. If formation of a dual-
strand cluster depends on the dose of piRNAs, the Doc element may have a sufficient abun-
dance to trigger the properties of a cluster that inhibit capping, splicing and termination. The
Hobo element, with fewer piRNAs, may retain the properties of transcriptional termination
and thus abolish the Doc mediated cluster. Considering the cost of off-target gene silencing,
some residual recognition of transcriptional termination signals within dual-strand clusters
may be important to prevent excessive silencing of flanking genes. Importantly, while the
Hobo insertion leads to a substantial reduction in the abundance of both sense and antisense
Mps1 piRNAs, flanking piRNA biogenesis is not completely blocked. In this case, one might
expect that Mps1 may be partially silenced. Nonetheless, both polyA mRNA-seq and RT-qPCR
analysis reveal that the Hobo insertion completely restores the expression of Mps1. This sup-
ports the "all-or-nothing" model whereby euchromatic TEs can trigger either weak or strong,
but not intermediate, silencing [24,26].
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Strikingly, we found no evidence for maternal effects on the expression of Mps1, either for
silencing alleles or de-silencing alleles. In Drosophila, maternal effects by piRNA play an
important role in TE repression. This is revealed in syndromes of hybrid dysgenesis where
paternal transmission of TEs causes excessive transposition if the mother lacks a correspond-
ing pool of germline piRNAs. Maternal effects in TE regulation also reveal differences in how
PiRNA source loci depend on piRNAs for either their establishment or maintenance. Func-
tional pericentric dual-strand clusters (such as 42AB) require maternal piRNAs but depletion
of Piwi in adult ovaries does not lead to loss of cluster chromatin marks [36] Therefore, dual-
strand cluster chromatin can be maintained in the absence of nuclear piRNAs. In contrast,
standalone transgenes that trigger flanking piRNA biogenesis require piRNA production for
maintenance of Rhino, HP1 and H3K9me3 chromatin [26]. Moreover, while maternal inheri-
tance of I-element transgenes along with a substantial pool of I-element targeting piRNAs can
trigger piRNA biogenesis from flanking regions in progeny, this mode of inheritance is not
associated with altered chromatin signatures [26]. Overall, it is unclear why maternal effects
and paramutation triggered by piRNAs can occur for some genes and not others [65-68].

The costs of gene silencing triggered by TEs have been proposed to shape the dynamics of TEs
in populations [5,14]. However, TE insertions do not universally trigger flanking gene repression.
In some cases, the expression of neighboring genes can be enhanced [69]. For example, an Accord
LTR insertion in Drosophila melanogaster can enhance the expression of the cytochrome P450
gene Cyp6gl and provide resistance to DDT [70]. In Drosophila simulans, a Doc insertion near
Cyp6g1 has a similar effect and has been the target of positive selection [71]. Enhanced expression
is attributed to the regulatory sequences carried by these elements. Here we present a case where
TE insertions can alter the germline expression of a gene in opposing ways by altering the local
profile of piRNA biogenesis. Formally, this represents a case of sign epistasis [47]. Since the Hobo
insertion alone is predicted to be deleterious through alt silencing, but beneficial when combined
with the Doc insertion, this satisfies the condition of sign epistasis. Theory has shown that TE
dynamics within populations may not solely be influenced by their single effects, but also their
epistatic interactions [72-74]. As genomic TE density increases, the likelihood for such interac-
tions is expected to increase. In the face of a shifting landscape of genomic TE abundance, selec-
tion may fluctuate in the degree to which mechanisms of gene silencing are tolerated with respect
to off-target gene silencing [75,76]. In addition to the proposed direct co-evolutionary arms races
between specific TE families and mechanisms of genome defense [77,78], this global fluctuation
of the TE landscape may further contribute to the patterns of positive selection observed in the
PiRNA machinery [79-88]. This may be especially true for components of the nuclear RDC com-
plex where, unlike in the cytoplasm where an off-target small RNA may simply knockdown a sin-
gle transcript, genomic autoimmunity can be very costly due to complete gene silencing. We
propose that fluctuations in genomic TE density and abundance cause strong fluctuating selection
on the processivity of non-canonical transcription and piRNA processing from within dual-
strand clusters and outward to flanking genes. Likewise, the capacity for genic piRNAs to induce
off-target cluster formation in trans may experience strong fluctuating selection. The degree to
which piRNA abundance plays a role in triggering silencing, in both cis and trans, may thus be an
important target of selection, when TE loads fluctuate, to avoid off-target effects that could dan-
gerously amplify within a genome.

Materials and methods

Al5

Identification of the Hobo insertion Mps1™ "~ revertant allele

From an EMS screen [54] to identify suppressors of the Mps1*'® Doc insertion allele of ald
seven stocks were identified that suppressed non-disjunction. Genetic mapping was then
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performed to identify the position of the lesion. After one round of recombination with chro-
mosomes carrying P-element w+ insertions immediately flanking Mps1 and alt, among 351
recombinant chromosomes tested, we were not able to segregate the suppressor lesion away
from the Mps1*'® lesion. This indicated that the suppressor lesion was very close to Mps1 itself.
Further analysis revealed that the Doc insertion was retained and no nucleotide variants were
identified in this region. To identify the nearby suppressor lesion, we performed whole
genome sequencing on the original Mps1*'®
prepared from homozygous males or females using the Qiagen DNeasy Blood and Tissue Kit.
For each sample 500 ng of DNA was sheared to approximately 600-bp fragments using a Cov-
aris $220 sonicator. KAPA HTP Library Prep Kit for Illumina and Bioo ScientificNEXTflex
DNA barcodes were used to prepare libraries which were size selected to 500-700 bp. Libraries
were quantified using a Bioanalyzer (Agilent Technologies) and a Qubit Fluorometer (Life
Technologies). All libraries were pooled and sequenced as 150-bp paired-end samples on an
IMlumina NextSeq 500 in High-Output mode. Illumina Real Time Analysis version 2.4.11 was
run to demultiplex reads and generate FASTQ files.

FASTAQ files were aligned to release 6 of the D. melanogaster reference genome using bwa
version 0.7.7-r441 [89]. SNPs and insertion/deletion polymorphisms were identified using
SAMtools and BCFtools (version 0.1.19-44428cd) [90]. Transposable elements were identified
as previously described [91]. Briefly, split and discordant read pairs were isolated using SAM-
Blaster [92] and individual reads were annotated using a BLAST search of the canonical Dro-
sophila melanogaster transposable element database [93]. A position with multiple reads from
a single TE was defined as a putative TE insertion site and was then manually analyzed. Using
this approach, the Hobo insertion was identified. Further PCR and Sanger sequencing was
used to confirm structure and insertion location within alt. Non-disjunction in Mps1*"
homozygotes and rescue in Mps1*'>** homozygotes was also reconfirmed per [94].

stock and five of the revertant lines. DNA was

polyA mRNA-seq

To measure functional gene expression within the germline that is not shunted into piRNA
biogenesis, we performed polyA mRNA-seq of total RNA collected from 0-2 hour old
embryos laid by wildtype, Mps1*"°/Mps1*'> and Mps1*'>™"/Mps1*'>"*" females. polyA
mRNA-seq was also performed on ovaries of females with the following genotypes: del*/del ;
Mps1*/Mps1™', del*/del ; Mps1™*'®/Mps1*™>, del™>°/del’; Mps1*/Mps1*'®, del™>°/del’;
Mps1*"°/Mps1**>. Since zygotic gene expression does not begin until about two hours after
egg deposition, RNA-seq from 0-2 hour embryos provides a measure of germline gene expres-
sion. In contrast, ovary RNA-seq provides expression from a mixture of germline and somatic
compartments. However, this was necessary for analysis of deadlock mutants since such
females are sterile. RNA was obtained from three different collections of pooled embryos or
ovaries per genotype. polyA mRNA-seq libraries were generated from 100ng of high-quality
total RNA, as assessed using the Bioanalyzer (Agilent). Libraries were made according to the
manufacturer’s directions for the TruSeq Stranded mRNA LT Sample Prep Kit-sets A and B
(Ilumina, Cat. No. RS-122-2101 and RS-122-2102). Resulting short fragment libraries were
checked for quality and quantity using the Bioanalyzer (Agilent) and Qubit Fluorometer (Life
Technologies). Libraries were pooled, requantified and sequenced as 75bp paired reads on a
high-output flow cell using the Illumina NextSeq instrument. Following sequencing, Illumina
Primary Analysis version RTA 2.4.11 and bcl2fastq2 v2.20 were run to demultiplex reads for
all libraries and generate FASTQ files. TPM estimates were obtained using the CLC Genomics
Workbench.
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Small RNA-seq

Small RNA-seq was performed using two approaches from RNA collected from whole ovaries
of wildtype, Mps1*'*/Mps1*'® and Mps1*'>"*"/Mps1*">"*" females and deadlock genotypes.
One set of sequencing experiments were performed according to the manufacturer’s directions
for the TruSeq Small RNA Sample Preparation Kit (Illumina, RS-200-0012). The protocol was
adapted to incorporate a 2S blocking DNA oligo for removal of prevalent Drosophila small
ribosomal RNA from the sequencing library [95]. Libraries were amplified with 13 PCR cycles
and resulting small RNA libraries were cut per the manufacturer’s methods for 20-40 nt
cDNA inserts. Short fragment libraries were checked for quality and quantity using the Bioa-
nalyzer and Qubit Fluorometer (Life Technologies). Equal molar libraries were pooled,
requantified and sequenced as 75 bp single read on the Illumina NextSeq 500 instrument
using NextSeq Control Software 2.2.0.4. At least 6M reads were generated per library, and fol-
lowing sequencing, Illumina Primary Analysis version RTA 2.4.11 and bcl2fastq2 v2.20 were
run to demultiplex reads for all libraries and generate FASTQ files. A slight modification was
made for del™®/del’; Mps1*'°/Mps1*'® and del*/del ; Mps1*'*/Mps1#"* libraries. Equal
molar libraries were pooled, requantified and sequenced as 75 bp single read on the Illumina
NextSeq 500 instrument using NextSeq Control Software 4.0.1. At least 6M reads were gener-
ated per library, and following sequencing, Illumina Primary Analysis version RTA 2.11.3.0
and bcl-convert-3.10.5 were run to demultiplex reads for all libraries and generate FASTQ
files.

Additional small RNA-seq (Libraries 2 and 3 in Fig 3) was performed using an altered pro-
tocol. Pooled RNA samples were split and half the sample was oxidized [96]. RNA from each
sample was ligated to 3" and 5" adapters using an rRNA blocking procedure [95] and subjected
to direct reverse-transcription with unique barcoded RT primers. Barcoded RT products were
pooled and size selected on a 10% acrylamide gel for the appropriate size of small RNA cDNAs
(18-30 nt) appended to the additional sequence added by the adapters and RT primer. Size
selection was facilitated by completing the same procedure in parallel on 18 and 30 nt RNA oli-
gonucleotides. This procedure of pooled size selection allowed all cDNA samples to be
extracted under identical conditions. Full protocol is provided in S2 File. Size selected RT
products were extracted from acrylamide, subjected to 15 cycles (non-oxidized) and 18 cycles
(oxidized) of PCR and sequenced.

For all small RNA sequencing experiments, reads were bioinformatically trimmed of adapt-
ers, unique molecular identifiers (6bp), size selected between 23 and 30 nt and miRNA/tRNA/
rRNA depleted using the CLC Genomic Workbench or cutadapt [97] and bwa [89] and sam-
tools [90]. Subsequent analysis revealed that the oxidation step did not significantly deplete
miRNAs so these libraries are simply referred to as Libraries 2 and 3.

From small RNA analysis, 23 to 30 nt small RNA reads were mapped with bwa to release
6.33 of the Drosophila melanogaster reference, counts analyzed with BEDTools [98] and visual-
ized with R. Nucleotide composition and biogenesis signatures were analyzed with the unitas
package [99].

Quantitative RT-PCR

RNA was collected from whole ovaries. For the analysis of the effects of the Hobo insertion,
three independent pools of ovaries were collected for each genotype and the experiment was
technically replicated for each RNA sample in triplicate. Total RNA was subjected to random
hexamer reverse transcription (SuperScript IV) and qPCR performed (PowerUP SYBR Green
Mastermix) on alt and rp49 (UpstreamF: AGC CTT TAT GAG TCA CTC CA, UpstreamR:
CAA CAT GCA ATG CTG CTT TA; DownstreamlF:TAA TGA ATG AGT GCG AGT AC,
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DownstreamIR: TCG CAG CAG CAT CAC TGA TAA; Downstream2F:AGG CTA AGC TTC
GCG AAC TA, Downstream2R: GCG TCA ACT TGT CAT TCA GA; rp49F1: ATC GGT TAC
GGA TCG AAC AA; rp49R1: GAC AAT CTC CTT GCG CTT CT). Statistical analysis and visu-
alization was performed on averages of the three technical replicates per sample, with three
samples having one of three technical replicates removed due to rp49 failure. The linear model
for expression (normalized to rp49 expression and normalized by maximum value for each
primer) in R tested for an interaction between Hobo insertion status and position relative to
the insertion. For maternal effect analysis by RT-PCR, the experiment was performed in sets of
three whereby three daughters were sampled for each of three mothers, thus providing replica-
tion across mothers of a given genotype for a total of 9 samples per genotype/mother combina-
tion. Total RNA was subjected to Oligo dT reverse transcription (NEB WarmStart RTx) and
qPCR performed (NEB Luna qPCR MasterMix) on MpsI and rp49 (aldF2: CTG GGC TGC
ATC CTT TAC CT; aldR2: TGG CCA TAT GAA CCA GCA TG; rp49F1: ATC GGT TAC GGA
TCG AAC AA; rp49R1: GACAAT CTC CTT GCG CTT CT). Each set of three daughters were
analyzed on separate plates and statistical analysis was performed using a GLM model

(family = gaussian) in R whereby the difference in ald and rp49 Ct values were modeled as a
function of plate effects, genotype effects and individual mother effects across cohorts of sis-
ters. No significant effect of the individual mother was found, so this effect was removed from
the model. However, a significant effect of plate was identified. Plate values of the difference
between ald and rp49 Ct were normalized based on the estimate of this plate effect and further
testing was performed using a GLM model for specific comparisons of genotype and to test for
maternal effects. Relative expression values are shown normalized to the maximum difference
between ald and rp49 Ct values, scaled according to gPCR amplification efficiency of 100%.
Primer efficiency values were estimated in real-time and estimated between 98 and 102%
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