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Abstract: We give a complete description of the vertex algebra of global sections of
the chiral de Rham complex of an arbitrary compact Ricci-flat Kdhler manifold.

1. Introduction

The chiral de Rham complex Qg? is a sheaf of vertex superalgebras that exists on any
smooth manifold X in either the algebraic, complex analytic or smooth settings. It is
bigraded by degree and conformal weight, and contains the ordinary de Rham sheaf as the
weight zero component. The de Rham differential extends to a square-zero differential on
the entire structure which preserves conformal weight and raises the degree by one. This
sheaf was introduced by Malikov, Schechtman and Vaintrob in [13], and has attracted
significant attention in both the physics and mathematics literature. The space of global
sections I' (X, 93}1) is always a vertex superalgebra, and it is known to have extra structure
when X is endowed with geometric structures. For example, if X has a Riemannian
metric, it has an A/ = 1 superconformal structure, and when X is Kéhler or hyperkihler
this is enhanced to an N' = 2 structure and N' = 4 structure, respectively [1]. In
these cases, certain covariantly closed differential forms on X also give rise to fields
in I'(X, QSP). For example, when X is Calabi-Yau it was shown in [3] that I"(X, Qg?)
contains a subalgebra generated by 8 fields that was introduced by Odake [15].

Until recently, a complete description of I'(X, Qg?) was not known in any examples
other than an affine space or a torus. In [2], for any congruence subgroup G C SL(2, R),
Dai constructed a basis of the G-invariant global sections of the chiral de Rham complex
on the upper half plane, which are holomorphic at the cusps. The vertex operations are
determined by a modification of the Rankin-Cohen brackets of modular forms. In [18],
the second author showed that for a compact Ricci-flat Kihler manifold with holonomy
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group SU(d) or Sp(%), e, Qg?) is isomorphic to a certain subalgebra of the bcfy -
system of rank d = dim X which is invariant under the action of an infinite-dimensional
Lie algebra of Cartan type. An explicit description of this invariant space was conjectured
in [18] and this conjecture was proven in the case d = 2 using results on the invariant
theory of arc spaces developed in [11]. This allowed a complete description of I' (X, 93}“)
for all K3 surfaces; it is isomorphic to the simple (small) N' = 4 superconformal algebra
with central charge ¢ = 6 [16,17].

Very recently, in a series of papers [7-9] we have proven the arc space analogues of the
first and second fundamental theorems of invariant theory for the general linear, special
linear, and symplectic groups. This was achieved by providing a standard monomial basis
for these invariant spaces that extends the standard monomial basis in the classical setting.
These results provide the needed ingredients to complete the description of I'(X, QS}‘)
for a general compact Ricci-flat Kdhler manifold. Unfortunately, this approach does not
generalize to Kéhler manifolds which are not Ricci-flat, since there is no method to
describe the global sections of tensor powers of the tangent and cotangent bundles. In
general, I'(X, Q‘;;‘) need not be isomorphic to a subalgebra of a free field algebra which
is invariant under a Lie algebra of Cartan type.

The plan of the paper is following. In Sect. 2, we introduce the 8y — bc system. In
Sect. 3, we introduce the Lie algebras of Cartan type and their actions on the 8y — bc
systems. In Sect. 4, we calculate the subspaces of invariant elements in 8y — bc systems
under the action of special series and Hamiltonian series of Lie algebras of Cartan type,
by reducing this to the invariant theory of arc spaces. Finally, in Sect. 5, we calculate the
space of global sections of the chiral de Rham complexes on compact Ricci-flat Kihler
manifolds.

2. By — bc System

2.1. Vertex algebras. In this paper, we will follow the formalism of vertex algebras
developed in [6]. A vertex algebra is the data (A, Y, L_y, 1). In this notation,

(1) AisaZ,-graded vector space over C. The Z;-grading is called parity, and |a| denotes
the parity of a homogeneous element a € A.
(2) Y is an even linear map

YA End(Allz 27 Y@ =a@) =Y amz "

nez

Here z is a formal variable and a(z) is called the field corresponding to a.
(3) 1 € Ais called the vacuum vector.
(4) L_; is an even endomorphism of A.

They satisfy the following axioms:

e Vacuumaxiom.L_11 = 0;1(z) = Id;fora € A,n > 0,a¢,)1 =0anda—1)1 =a;

e Translation invariance axiom. Fora € A, [L_1, Y (a)] = da(z);

e Locality axiom. Let z, w be formal variables. For homogeneous a,b € A, (z —
w)ka(z), b(w)] = 0 for some k > 0, where [a(z), b(w)] = a(z)b(w) — (—1)lllP!
b(w)a(z).

Fora,b € A, n € Z=o, amb is their n™ product and their operator product expansion
(OPE) is

a(z)b(w) ~ Z(a(n)b)(w)(z _ w)—n—l.

n>0
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The Wick product of a(z) and b(z) is : a(z)b(z) : = (a(—1)b)(z). The other negative
products are given by

10"a(2)b(2) 1 = nl(an—1b) ().
Foray, ..., a; € A, their iterated Wick product is defined to be
rar(@) - ap(@) r=ra1@b) . b)) =raxz) - ak(2) -

We often omit the formal variable z when no confusion can arise.

We say that A is generated by a subset {«| i € I} if A is spanned by all words in
the letters o, and all products, fori € I and n € Z. We say that A is strongly generated
by {«| i € I}if A is spanned by words in the letters ', and all products for n < 0.
Equivalently, A is spanned by the monomials

(ki gkmadm i i €1, k. Ky > O}

For a, b € A, the following identities will be frequently used.

cab ) = Za(k)b(n—k—l) + (—1lallel Zb(n—k—l)a(k)» (2.1)
k<0 ke0
amb =Y (=D (=D bgya) k1)1 22)
keZ

2.2. By — bc system. Let V be a d-dimensional complex vector space. The By -system
S(V) and bc-system E(V) were introduced in [4]. The Sy-system S(V) is strongly
generated by even elements ,Bx/(z), x" € V and y*(z), x € V*. The nontrivial OPEs
among these generators are

B @y  (w) ~ (x, x')(z — w) L.

The bc-system £ (V) is strongly generated by odd elements b (z),x’ € Vandc*(z),x €
V*. The nontrivial OPEs among these generators are

b () (w) ~ (x, x')(z —w) 7.

Here for P = B, y, b or ¢, we assume aj P*! + ay P2 = pa*i+aze,
Let

W(V) :=S(V)QEWV).
Let o* = 9y*. Then ﬂ"/ and o satisfy
B (@)art (w) ~ {x, x')z —w) .

Let 54+ (V) be the subalgebra of S(V') generated by ,B)‘/ and o, so that S; (V) is a system
of 2d free bosons. Let

Wi(V) = 8:(V) @ EV).
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If V' is a vector space and vy : V — V' is a linear isomorphism, let ¢* : V/* — V*
be the induced map on dual spaces. Then ¢ induces an isomorphism of vertex algebras

W) : W(V) — WV,

IBx/ e ﬂW(x/)’ bx/ . blp(x/)’ TN y(W*)fl(X)’ RN C(w*),l(x)' (2.3)

Note that WW() restricts to an isomorphism W, (V) = W, (V).

Fix x|, ..., x), abasis of V and let xy, ..., x4 be the dual basis of V*. Let Sy be the
set of ﬂz;), afr’;), bfr"’), c?r"l), 1 <i <d,n < 0. These operators are supercommutative.
Let SW(V) = C[So] be the algebra generated by these operators. There is a canonical
isomorphism of SW (V) ®c (C[y(x_ll)] modules,

7 SWV)®c Clylyy, . vl > W), a® f > afl.

In particular, W(V) is a free C[y(x_'l), e y(x_d])]—module. Restricting 7 to SW (V) ®{1},
we get an isomorphism of SW (V') modules,

T :SWV)—> Wi(V), ar> al. 2.4)
2.3. Subalgebras of W, (V). Let

d d
0@ =) Y@@ L@ =Y IRV —: b (DI (2) ),
i=1 i=1
J J (2.5)
J@ ==Y b @ G =) bRy,

i=1 i=1

Note that L is a Virasoro field in W(V) of central charge zero, and bYi, i, ,Bxi/, y¥i are
primary of weights 1, 0, 1, 0 with respect to L. Also, J generates a Heisenberg algebra

and the zero mode J() induces an additional Z-grading called the degree; note that b,
cti, ,3"; , ¥ have degrees —1, 1, 0, 0. Finally, we recall that L can be replaced with the
Virasoro field T = L — %3] . This has central charge ¢ = 3d, and bxt{, cti, 5x§’ yXi are
primary of weights %, %, 1, 0 with respect to 7. The subalgebra of W, (V) generated
by O, T, J, G (equivalently, Q, L, J, G) is isomorphic to the N/ = 2 superconformal
algebra with central charge ¢ = 3d.

Next, let
D(z) =:b"1()b"2(2) - b (2) 1, E(2) =: M (@)™ (@) - cM(2) (2.6)
B(z) = Q(2))D(2), C@)=G@)0nE®R).
If d = 2l is even, let
I i
D' (z) = Z bY2i-1(2)b2 (7) 1, E'(z) = Z L U1 ()M (2) o

i=1 i=1
B'(2) = Q(2)0)D'(2), C'(z) = G@)0E'(2).
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Definition 2.1. Let Ao (V) be the vertex algebra generated by the fields (2.5) and (2.6).
Let A; (V) be the vertex algebra generated by the fields (2.5) and (2.7).

The algebra Ao (V) was introduced by Odake in [15] and was studied extensively in the
case d = 3. It is easy to verify that the fields (2.5) and (2.6) strongly generate Ay(V).
Similarly, A; (V) is strongly generated by the fields (2.5) and (2.7), and is isomorphic
to the simple small N' = 4 superconformal vertex algebra with central charge ¢ = 3d.
In [18], we have shown that W, (V) is a unitary representation of Ay(V) and A (V).

3. Lie Algebras of Cartan Type and their Action on Sy — bc System

3.1. Lie algebras of Cartan type. The space of algebraic vector fields on V is a graded
Lie algebra

Vect(V) = @&,>—1Vect,(V), Vect,(V) = Sym"“(V*) ® V.
If x1 - xd is a basis of V*, then any element v € Vect, (V) can be written as v =
Zl 1 P, IR where P; is a homogeneous polynomial of degree n + 1. For Zfl 1 Pise 9

1 9x;
Vect,, (V, wp) and Z | P di € Vect,, (V),

/

d d
P 9 aP: 9 JIP;
ZP' , p’ — p._/__P—— € Vect, Vv
i= o ]Zl ! 0x;j ;( Cox; 0x; T dxj ox : ot

This Lie algebra is called the general series. For a k-form w € AKV*, let
Vect,, (V, w) = {v € Vect,(V)|L,w = 0},
Vect(V, w) = @ Vect, (V, w).
n>—1
Here L, is the Lie derivative of v. Note that Vect(V, w) is a graded Lie subalgebra of
Vect(V). We now consider Vect(V, w) for some particular choices of w.
(1) fwg =dxi A--- ANdxyg,

d
a a
VeCtn(V, CUO) = {Z Pla S VeCtn(V)l ZaP, = 0} .
14 14

i=1
The Lie algebra Vect(V, wo) is called the special series. Vecty(V, wp) is a Lie algebra
isomorphic to sl;(C).

(2) If d = 2l is even and w| = Zi:l dxpi—1 N dxpi. The Lie algebra Vect(V, wi)
is called the Hamiltonian series, and Vecto(V, w1) is a Lie algebra isomorphic to
5pq(C).

3) Ifd =2l+1and w = dxy41 + Zé:l (x14idx; — x;dx14;). The Lie algebra

{v € Vect(V)|Lyw = Pw, P € Sym*(V*)}
is called the contact series.

The general series, special series, Hamiltonian series and contact series are called
the Lie algebras of Cartan type and constitute an important class of simple infinite
dimensional Lie algebras. In this paper, we consider the special series and Hamiltonian
series.
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3.2. The actions of Lie algebras of Cartan type on By — bc systems. Vect(V) has
a canonical action on W(V) according to the Part III of [14]. Let £ : Vect(V) —
Der(W(V)) be the map given by

9 ,
L (Z Pi(xl,...,xd)g) = Q0 : Py .y ObY )0, B

Clearly £ is a homomorphism of Lie algebras.

4. Vect(V, w;)-Invariants
For R Cc W(V), let

RVeV.0) — (4 ¢ R |L(g)a =0, for any g € Vect(V, w;)}
be the space of Vect(V, w;)-invariants. In [18], the second author has shown that
Lemma 4.1. Ay(V) C W(V)¥*!V-20) gng Ay (V) ¢ W(V)Yeet(V.on),
Theorem 4.2. If d = dim V = 2, W(V)"ec!(V.20) = Ao (V).

It was conjectured in [ 18] that for all 4, W(V)VeelV-@0) = Aq(V) and W(V) VetV —
A1 (V). In this section, we will prove this conjecture.

4.1. Vecty(V, w;)[t]-invariants. Let go = Vecto(V, w;). Let golt] = @,>0g0t" be the
Lie algebra given by

lgit', g;1'] = [gi, g1, for g, g € go.

The action of gg on V induces an action of go[¢] on SW(V), which is given by

X gx! gx!
gt",B(fk) = Blhamy 1 <k, gt"B =0, n=k,
x! . gx| gx; .
gt"b(_k) = b(—k+n)’ n <k, gt”b(_k) =0, n >k,
gt”c?"_k) = C§f2+ll)’ n <k, gt”c‘(gf"k) =0, n>k,

gtny(x_ik) = V(AZC/;.,,)’ n<k-—1, gt"y(g_x,i) =0, n>k—1.

Note that SW (V) is a ring with a derivation 9, given by 9 P_x) = kP_x_1), for
P = ,3"!'/, b, c* and . For R C SW(V), let R9] denote the subspace of go[t]-
invariants in R.

As preparation for the next lemma, we recall the following results from [8,9,12].
Given an algebraic group G over C and a finite-dimensional G-module V, the arc space
Joo(G) 1s an algebraic group which acts on the arc space Jo (V). The quotient morphism
V — V /G induces a morphism Joo (V) — Joo(V / G), so we have a morphism

Joo (V) [ Joo(G) = Joo (V] G). (4.1)
In particular, we have a ring homomorphism

Clloo (V) G)] — Clls(V)]/=(E), (4.2)
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If V /G is smooth or acomplete intersection, and C[ V'] has no nontrivial one-dimensional
G-invariant subspaces, it was shown in [11] that (4.2) is an isomorphism, although
in general it is neither injective nor surjective. If (4.2) is surjective, it follows that
(C[JOO(V)]JC”(G) is generated as a differential algebra by the subalgebra C[v1°.

More explicitly, let V; = V for j > 0, and fix a basis {x; j, ..., x,,;} for V;. Let
S = CI;=0 V;l. The map ClJoo(V)] = Clx{”, ..., x| j = 0] — S sending
xi(] ) s x;,j is an isomorphism of differential algebras, where the differential d on § is
given by 9(x; ;) = (j + 1)x; j+1. In particular, the subalgebra Sy = C[Vj] generates S
as a differential algebra.

For j >0,let V; = V and let L = A D=0 V;. Fix abasis {y1 j, ..., ya.j} for \7].*
and extend the differential on S to an even differential d on S ® L, defined on generators
by 0(y;,j) = (j + 1)y, j+1. There is an action of Jo(G) on § ® L, and we may consider
the invariant ring (S ® L)’ Let Ly = A(Vo) C L, and let ((Syp ® L0)Y) be the
differential algebra generated by (S ® L), which lies in (S ® L)/=(©).

Since G acts on the direct sum V® of k copies of V, we have a map

ClJoo (VI G)] — ClJoo(VE) =G, (4.3)

Theorem 4.3 ([12, Thm. 7.1]). Suppose that (4.3) is an isomorphism for all k > 1. Then
(S ® L)>D = (S ® Lo)).

In fact, under the above hypothesis, all differential algebraic relations in (S® L)7>(©)
are consequences of relations among the generators of (Sy ® L)Y, and their derivatives
[10, Thm. 3.1 (2)]), but this stronger fact will not be needed in this paper. By [8, Cor.
1.5], the hypothesis of Theorem 4.3 is satisfied in the case G = Spyg and V = CcH,

In the case G = SLy and V = C? @ (C9)*, this hypothesis is not satisfied since
(4.3) is surjective for all £ but fails to be injective when k > d + 3; see [9, Thm. 1.2].
However, the surjectivity of (4.3) for all k in this case is enough for our purposes, due
to the following:

Theorem 4.4 ([10, Thm. 3.1 (1)]). Suppose that (4.3) is surjective for all k > 1. Then
(S ® L)~ = ((So ® Lo)Y).

This applies to the case of G = SLyand V = C4 @ (C4)*. Note that if (4.3) fails to
be injective for some k, it need not be the case that all differential algebraic relations in
S ® L)% are consequences of relations in (Sp ® L) and their derivatives, but this
does not affect our results.

Lemma 4.5. Recall the isomorphism 7w : SW(V) — W, (V) given by (2.4).

(1) If go = Vecto(V, wy), as a ring with a derivation 3, SW (V)9 is eenerated by

7 N0@), T (L@), n T (G @), n T (J(2), n N E @),
7 Y (B(2)), 17 1(C(2)), 7 (D(2)).

(2) If go = Vecto(V, w1), as a ring with a derivation 3, SW (V)9 is eenerated by

7 Q@) TN (L@, nT N (G, T (@), nTHE (2)),
7 Y B (2)), 771 (C' (), n (D' (2)).
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Proof. For the first statement, gy = sly, and we have an isomorphism of sl;[#]-modules
SW(V) = Clloo(VO VHI® N\ (B0 (Vi@ VH)) =SB L,

where V = C?. Under the linear isomorphism (2.4), the above fields correspond to
the generators of the subalgebra (Sy ® Lg)3L<, which by Theorem 4.4 generate (S ®
L)/>~SLa) = (§ @ L)®'4l!] a5 a differential algebra.

The second statement is proven in the same way using Theorem 4.3, since gy = sp,,
and we have an isomorphism of sp,,[¢]-modules

SW(V) = Clla(V)]1® \ (@20 V) =S®L.

where V = C2¢. Then the above fields correspond to the generators of (Sp ® LO)SPM s
and hence generate SW (V)*P24!"] a5 a differential algebra. |

4.2. Vect(V, w;)-invariants. Let SW, (V) be the linear subspace of SW (V) which is
spanned by the monomials of y;_1y, By, bay, ciy, i < 0 with the property that the
number of ¢ in the monomial plus double of the number of y in the monomial is n. We
then have the grading

SW(V) = @n=0SWy (V).
Since the action of go[¢]on SW (V') preserves SW,, (V), SW (V)91 = @, - o SW,, (V)80

Lemma 4.6. Let a € W(V)"V-9) be homogeneous with respect to conformal weight.
Then

(1) a € Wi (V). In particular, we may write a = w(ay + ay—1 + - - - ) where 1 is given
by 2.4), and a,, € SW, (V).
(2) The leading term ay is Vecty(V, w;)[t]-invariant.

Proof. Ttis easy to see that Vect_ (V, w;) = Vect_{(V).Soforanya € W(V)VeetV.i)
L(%)a = ﬁ:({)a = 0 forany 1 < j < d. Therefore y(x_"l) does not appear in a, so
J
that a € W, (V). Since a has fixed conformal weight, it is apparent that it has the form
a =mn(ax +ak—1+---) with a, € SW,(V). This proves (1).
Next, let g; = Vect;(V, w;). It is easy to see that 7 is go-equivariant. So ay is
go-invariant. Let v; = xlzaaTz €grand g = xla% € go. Let

K = ZV(X_ll_l)gltl-
1>1

We have
0=Lna=Q:Cye" b2 o) +: Cyy™ DB (o m(ax +ar_1+---).

Consider the homogeneous component SWj2(V):

oo
0= (LNaa =2 v _et'a =2K1a.
=1
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s _ .29 b _ F) F)
Similarly, let vg = x7 i 2x1x2m € g1 and gp = X a7 — 27 € 90 Let

X 1 X !
Ko = E V(_ll_l)gof - E V(_21_1)glt .
=1 I>1

We have Kga; = 0.
Inductively, let K,, = [Ko, K,,—1], for n > 2, then K, ax = 0.

-2
x x x
[Ko, V(_ll)] = Z V(_]S)V(_]lﬂy
s=2
[Ko, gltj] = 22 V(x_ls_l)gltjﬂ-
s>1

So inductively, we obtain

n
_ X1 I+
Ko=) ey, (v _pa* .
i=1

1i>1

Here ¢y, ... 1, are positive numbers. When [ is large enough, g 1tlap = 0. Let L be the
largest number such that g1#%a; # 0. If L > 1 then

0=Krax =ci, 1" raittar #0.

So gitta; = 0.. Since gy is a simple Lie algebra, go[t] is generated by go and g7. So
ay. is go[t]-invariant. m|
Theorem 4.7. W(V)Vec!(V-@0) — A, (V); W(V)YeclV-oD) = Ay (V).
Proof. For the firstequation, let go = Vecto(V, wo). By Lemma4.5,any gy € SW; (V)8ol]
can be represented as a polynomial in 8171_1(Q(z)), olg—1 (L(2)), 3’7~ 1(G(2)),3' 7w~}
(J(2)), 3'n~YE(2)), 3'n Y (B(2)), 3'n~1(C(2)), 371 (D(2)). Let b be the corre-
sponding normally ordered polynomial in 8'L(z), 8'G(z), 8'J(z), 3'E(z), 3'B(z),
8'C(2), 3" D(z). We have =1 (b) = by + b1 +---, b, € SW, (V) with by = a.

Ifa e W(V)VeetlV.o0) =14y = gy +ag_1+--- . By Lemma4.6,a; € SW; (V)%
Sothereisab € Ay(V) withw ~1(b) = by +bx_1+--- anday = by. Thus 7~ (a—b) =
(ax—1 —bx—1)+--- and a — b is Vect(V, wp)-invariant. By induction on k, we conclude
a € Ay(V). So W(V)VeetV.oo) — Aq(V).

The proof for the second equation is similar. O

5. Chiral de Rham Complex

LetW = W(C%) and X}, ..., x, beastandard basis of C<.Then W has strong generators
Bl = B%, bl = b,y =% and ¢ = ¢*, and is a free (C[y(LI), . y(‘il)] module.
If X is a complex manifold and (U, y', ..., y?) is a complex coordinate system of
X,0OW)isa (C[y(l_ NRREE y(d_l)]—module by identifying the action of y(i_l) with the
product of y?. The chiral de Rham complex Qg? is a sheaf of vertex algebras on X whose
algebra of sections Qg(h(U ) is given by

Q?(U):W@CW(LU a1 OW).
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In particular, Qg(h(U ) is the vertex algebra with strong generators 8/ (z), b’ (z), ¢! (z) and
f (@), f € OU). The nontrivial OPEs among these generators are

: 9 o .
B' (@) f (w) ~ 8—;(w)(z —w)~!, b @) w) ~ 8z —w),

as well as the normally ordered product relations
1 f(2)8(2) 1 = fg(2), for f, g € O).
Let )71, el )7d be another set of coordinates on U, with
Pr=rot ooy vi=gah e

We have the following coordinate change equations:

R T L
a)/ () = Z : m(Z)aV/(Z) Ly

j=1

. d agj .

by=>): a7 @Y @)
j=1
d .

) 9f! )
Y0 =Y e 5.1

.
I
—

L9 P S T2 o
3 FON@E @) +k§ GG ONEOE@ @)

=
~

I
M N

~.
I
—

5.1. Global sections. There are four sections Q(z), L(z), J(z) and G(z) from (2.5)
in Qg(h(U ). For a general complex manifold X, L(z) and G(z) are globally defined
and have the same form in any local coordinate system. The fields Q(z) and J(z) are
globally defined if and only if the first Chern class ¢ (7 X) vanishes, but their zero modes
Qo) and J(p), are always globally defined [13]. The operators Ly and J(g) give Qg? a
Z>o x Z-grading by conformal weight k and degree /, respectively.

o = P k. 1.
k.l

Note that the zero mode Q () of Q(z) is the chiral de Rham differential, and it preserves
conformal weight and raises the degree by one.
If X is a Calabi-Yau manifold with a nowhere vanishing holomorphic d-form wy, let
(U, y1, ..., vaq) be a coordinate system on X such that locally,
woly =dy" - dy”.
The eight sections Q(z), L(z), J(2), G(z), B(z), C(z), D(z) and E(z) from (2.5) and
(2.6) in Q§M(U) are globally defined on X [3].
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If X is ahyperkéhler manifold with holomorphic symplectic form wy,let (U, yy, ..., v4)

be a coordinate system on X such that locally,

d
2

wily = Zdyzi—l AdyY.
i=1

Then the eight sections Q(z), L(z), J(z), G(z), B'(z), C'(z), D'(z) and E’ (z) from (2.5)
and (2.7) in Qg}’(U) are globally defined on X [1].

Definition 5.1. If X is a Calabi-Yau manifold with a nowhere vanishing holomorphic
d-form, let A (X) be the vertex algebra which is strongly generated by the eight global
sections given by Q(z), L(z2), J(2), G(2), B(z), C(2), D(z) and E(z) on X.

If X is a hyperkihler manifold, let A (X) be the vertex algebra which is strongly gen-
erated by the eight global sections given by Q(z), L(z), J(z), G(z), B'(z), C'(z), D'(z)
and E’'(z) on X.

The following theorem was proven in [18].

Theorem 5.2. If X is a d-dimensional compact Kdhler manifold with holonomy group
G = SU(d) and wq is a nowhere vanishing holomorphic d-form, then

F(X, Qg?) ~ W+(TXX)VeCt(Tnyw0‘X)'

If X is a d-dimensional compact Kdhler manifold with holonomy group G = §, p(%) and
w1 is a holomorphic symplectic form, then the space of global section of ngh

T(X, Q) = W, (T, X) Ve TeXowilo),
Thus we have

Theorem 5.3. If X is a d-dimensional compact Kdihler manifold with holonomy group
G = SU(d), then

Ao(X) =T(X, Q) = Ag(C).

If X is a d-dimensional compact Kdhler manifold with holonomy group G = S p(%),
then the eight global sections given by Q(z), L(z), J(z), G(z2), B'(z), C'(z), D'(z) and
E'(z) strongly generate

A1(X) =T(X, Q) = A (CY).

Proof. If X is a d-dimensional compact Kéhler manifold with holonomy group G =
SU(d), there must be a nowhere vanishing holomorphic d-form wgy. By Theorem 5.2,
T(X, Q) = Wi (T, X)VeetTxXowole) By Theorem 4.7, W, (T, X) VectTxXwol) g jgo-
morphic to Ag(C?). So I'(X, Q%h) = Ap(C?). The isomorphism maps the global sec-
tions given by Q(z), L(z), J(2), G(2), B(z), C(2), D(z) and E(z) to Q(2), L(2), J(2),
G(2), B(2),C(2), D(z) and E(z) themselves. So the eight global sections given by Q(z),
L(z), J(2), G(2), B(2), C(2), D(z) and E(z) strongly generate I"(X, Qg?) = Ay(CY.

Similarly, if X is a d-dimensional compact Kéhler manifold with holonomy group
G = Sp(%), there must be a holomorphic symplectic form w;. Then by Theorem

5.2, T(X, QM) = W, (T, X)VeeTxX-wol) By Theorem 4.7, Wy (T, X) VectTxX.wol) g
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isomorphic to Ag(C%). So I'(X, Q%;‘) = Ap(C%). The isomorphism maps the global
sections given by Q(z), L(z), J(z), G(2), B'(z), C'(z), D'(z) and E'(z) to Q(z), L(z),
J(2),G(2), B'(z), C'(2), D'(z) and E’'(z) themselves. So the eight global sections given
by 0(z), L(z), J(2), G(z), B'(2),C'(z), D' (z) and E’(z) strongly generate I" (X, QS}‘) =
Ao(CY). u]

5.2. Covering maps. Let X and Y be compact complex manifolds andlet p : ¥ — X
be a covering map. By the definition of chiral de Rham complex, the inverse image sheaf
p1QSh = QM. A global section of QS pulls back to a global section of Q. Let

p*iT(X, QM — ry, o

be the pullback map. If p is an isomorphism, then p* is clearly an isomorphism.

If p is a finite normal covering map, let G (Y, p) be its covering transformation group.
For any g € G(y, p), the action of gon Y, p(g) : Y — Y induces an automorphism
p(g)* : T(Y, Q%h) — I'(Y, Q;h). Let (Y, Q;h)G(Y”’) be the invariant subalgebra under
the induced action of G (Y, p).

Proposition 5.4. p* induces anisomorphism of vertex algebrasT' (X, Qg(h) — I'(Y, Q‘}',h)
G(Y.p)

Proof. Obviously, p* is an injective morphism of vertex algebras. Forany g € G(Y, p),
pop(g) = p.Sop(g)* o p* = p*. Forany section a € I'(X, QM. p(8)*(p*(a)) =
p*(a), so p*(a) is G(Y, p)-invariant.

On the other hand, assume p is an n-sheet covering map. There is an open cover
{Uq} of X such that each p’l(Uo,) is the disjoint union of open sets V,; in Y, and
Plv,; i Vai = Uy is an isomorphism. Let a € I'(Y, Q;h)G(Y"’), and define

1 n
ao =~ ((plv, )" @ly,).

i=1

For another open set Ug in the open cover, it is easy to see ay |UamUﬁ =ag |U¢,mUﬁ, SO
there is an a € I'(X, QS}‘) with a|y, = ay. It is easy to see that p*(a) = a, since a is
G (Y, p)-invariant. |

5.3. Global sections: general case. For a compact Ricci-flat Kéhler manifold, we have
the following properties (Proposition 6.22, 6.23 in [5]).

Proposition 5.5. Let X be a compact Ricci-flat Kdhler manifold. Then X admits a finite
cover isomorphic to the product Kéihler manifold T?' x X| x X5 - -+ x X, where T? is
a flat Kdhler torus and X j is a compact, simply connected, irreducible, Ricci-flat Kihler
manifold for j =1, ... k.

Proposition 5.6. Let X be a compact, simply-connected, irreducible, Ricci-flat Kdhler
manifold of dimension d. Then either d > 2 and its holonomy group is SU(d), ord > 4
is even and its holonomy group is S p(%). Conversely, if X is a compact Kdihler manifold
and its holonomy group is SU(d) or Sp(%), then X is Ricci-flat and irreducible and X
has finite fundamental group.
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Lemma 5.7. Let G be a group and let N = 7 be a subgroup with finite index in G.
Then there is a subgroup M of N such that the index of M in N is finite, and M is a
normal subgroup of G.

Proof. Let Nq, ..., N; be all of the conjugate subgroups of N in G, and let M = NN;,
so that M is a normal subgroup of G. Since the index of N; in G is finite, for any g € G,
there is an integer m; > 0O such that g" € N;. Letm = m---m;. Then g" € N; for

all 1 <i <I,sothat g € M. If gy, ..., gk are generators of N, there exist positive
integers m!, ..., mF such that g{"l € M. Since N is a free abelian group, the index of
M in N is no more than m' - - - m*. O

Proposition 5.8. The finite covering map in Proposition 5.5 can be chosen to be a normal
covering map.

Proof. LetY = T? x X; x X5--- x X be the finite cover in Proposition 5.5, and
let p : Y — X be the covering map. It induces an injective morphism of fundamental
groups py : w1 (Y,y) — m(X, x) for x = p(y). Since each X; is simply connected,
m(Y) Z m(TH) = 7. Since p is a finite covering map, the index of p.(mw;(Y, y)) in
m1(X, x) is finite. By Lemma 5.7, there is a finite index subgroup M of m;(Y, y), such
that p,.(M) is a normal subgroup of 71 (X, x). We have a covering map p; : ¥ — Y
(given by the covering map T2 — T%) with p1.(m1(Y,y1)) = M C m(Y, y) for
some y| € pl_l(y). Then the covering map p o p; : ¥ — X is a finite normal covering
map since py o p1x (w1 (Y, y1)) = p«(M) is a normal subgroup of 7 (X, x) with finite
index. O

Theorem 5.9. Let X be a compact Ricci-flat Kiihler manifold. Let Y = T x X1 x
X5 - -+ x Xi be the finite cover of X in Proposition 5.5. Let p : Y — X be the finite
normal covering map in Proposition 5.8, and let G(Y, p) be the covering transformation
group. Then

Fx, Q) = @, Q) Q@1 Ao (X)) Q@111 A1 (X)) O TP

through p*.

Proof. Assume the dimension of X; is d;. By Proposition 5.6, we can assume the holon-

omy group of X; is SU(d;) for 1 <i < n and the holonomy group of X is Sp(%) for
n < j < k. By Theorem 5.3,

LY, Q5" =TT, Q5% Q)@ Ao(X)) Q@41 A1 (Xi)
By Proposition 5.4, T'(Y, Qg,h) =T(Y, Q(}:/h)G(Y,p) through p*. So
Fx, Q%) = @1, Q5 Q)@ Ao (X)) Q@)1 A1 (X)) T TP

through p*. O

Since I'(T?, QCThz,) = W, (C?), the above theorem gives the space of global sections
of chiral de Rham complex on compact Ricci-flat Kéhler manifolds explicitly.
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