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Abstract: We give a complete description of the vertex algebra of global sections of
the chiral de Rham complex of an arbitrary compact Ricci-flat Kähler manifold.

1. Introduction

The chiral de Rham complex �ch
X is a sheaf of vertex superalgebras that exists on any

smooth manifold X in either the algebraic, complex analytic or smooth settings. It is
bigraded by degree and conformalweight, and contains the ordinary deRhamsheaf as the
weight zero component. The deRhamdifferential extends to a square-zero differential on
the entire structure which preserves conformal weight and raises the degree by one. This
sheaf was introduced by Malikov, Schechtman and Vaintrob in [13], and has attracted
significant attention in both the physics and mathematics literature. The space of global
sections�(X,�ch

X ) is always a vertex superalgebra, and it is known to have extra structure
when X is endowed with geometric structures. For example, if X has a Riemannian
metric, it has anN = 1 superconformal structure, and when X is Kähler or hyperkähler
this is enhanced to an N = 2 structure and N = 4 structure, respectively [1]. In
these cases, certain covariantly closed differential forms on X also give rise to fields
in �(X,�ch

X ). For example, when X is Calabi-Yau it was shown in [3] that �(X,�ch
X )

contains a subalgebra generated by 8 fields that was introduced by Odake [15].
Until recently, a complete description of �(X,�ch

X ) was not known in any examples
other than an affine space or a torus. In [2], for any congruence subgroup G ⊂ SL(2,R),
Dai constructed a basis of the G-invariant global sections of the chiral de Rham complex
on the upper half plane, which are holomorphic at the cusps. The vertex operations are
determined by a modification of the Rankin-Cohen brackets of modular forms. In [18],
the second author showed that for a compact Ricci-flat Kähler manifold with holonomy
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group SU (d) or Sp( d
2 ), �(X,�ch

X ) is isomorphic to a certain subalgebra of the bcβγ -
system of rank d = dim X which is invariant under the action of an infinite-dimensional
Lie algebra of Cartan type. An explicit description of this invariant spacewas conjectured
in [18] and this conjecture was proven in the case d = 2 using results on the invariant
theory of arc spaces developed in [11]. This allowed a complete description of�(X,�ch

X )

for all K3 surfaces; it is isomorphic to the simple (small)N = 4 superconformal algebra
with central charge c = 6 [16,17].

Very recently, in a series of papers [7–9]we have proven the arc space analogues of the
first and second fundamental theorems of invariant theory for the general linear, special
linear, and symplectic groups. Thiswas achieved by providing a standardmonomial basis
for these invariant spaces that extends the standardmonomial basis in the classical setting.
These results provide the needed ingredients to complete the description of �(X,�ch

X )

for a general compact Ricci-flat Kähler manifold. Unfortunately, this approach does not
generalize to Kähler manifolds which are not Ricci-flat, since there is no method to
describe the global sections of tensor powers of the tangent and cotangent bundles. In
general, �(X,�ch

X ) need not be isomorphic to a subalgebra of a free field algebra which
is invariant under a Lie algebra of Cartan type.

The plan of the paper is following. In Sect. 2, we introduce the βγ − bc system. In
Sect. 3, we introduce the Lie algebras of Cartan type and their actions on the βγ − bc
systems. In Sect. 4, we calculate the subspaces of invariant elements in βγ −bc systems
under the action of special series and Hamiltonian series of Lie algebras of Cartan type,
by reducing this to the invariant theory of arc spaces. Finally, in Sect. 5, we calculate the
space of global sections of the chiral de Rham complexes on compact Ricci-flat Kähler
manifolds.

2. βγ − bc System

2.1. Vertex algebras. In this paper, we will follow the formalism of vertex algebras
developed in [6]. A vertex algebra is the data (A, Y, L−1, 1). In this notation,

(1) A is aZ2-graded vector space overC. TheZ2-grading is called parity, and |a| denotes
the parity of a homogeneous element a ∈ A.

(2) Y is an even linear map

Y : A → End(A)[[z, z−1]], Y (a) = a(z) =
∑

n∈Z
a(n)z

−n−1.

Here z is a formal variable and a(z) is called the field corresponding to a.
(3) 1 ∈ A is called the vacuum vector.
(4) L−1 is an even endomorphism of A.

They satisfy the following axioms:

• Vacuum axiom. L−11 = 0; 1(z) = I d; for a ∈ A, n ≥ 0, a(n)1 = 0 and a(−1)1 = a;
• Translation invariance axiom. For a ∈ A, [L−1, Y (a)] = ∂a(z);
• Locality axiom. Let z, w be formal variables. For homogeneous a, b ∈ A, (z −
w)k[a(z), b(w)] = 0 for some k ≥ 0, where [a(z), b(w)] = a(z)b(w) − (−1)|a||b|
b(w)a(z).

For a, b ∈ A, n ∈ Z≥0, a(n)b is their nth product and their operator product expansion
(OPE) is

a(z)b(w) ∼
∑

n≥0

(a(n)b)(w)(z − w)−n−1.
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The Wick product of a(z) and b(z) is : a(z)b(z) : = (a(−1)b)(z). The other negative
products are given by

: ∂na(z)b(z) : = n!(a(−n−1)b)(z).

For a1, . . . , ak ∈ A, their iterated Wick product is defined to be

: a1(z) · · · ak(z) : = : a1(z)b(z) :, b(z) = : a2(z) · · · ak(z) : .

We often omit the formal variable z when no confusion can arise.
We say that A is generated by a subset {αi | i ∈ I } if A is spanned by all words in

the letters αi , and all products, for i ∈ I and n ∈ Z. We say thatA is strongly generated
by {αi | i ∈ I } if A is spanned by words in the letters αi , and all products for n < 0.
Equivalently, A is spanned by the monomials

{: ∂k1αi1 · · · ∂km αim : | i1, . . . , im ∈ I, k1, . . . , km ≥ 0}.
For a, b ∈ A, the following identities will be frequently used.

: ab :(n) =
∑

k<0

a(k)b(n−k−1) + (−1)|a||b| ∑

ke0

b(n−k−1)a(k), (2.1)

a(n)b =
∑

k∈Z
(−1)k+1(−1)|a||b|(b(k)a)(n−k−1)1. (2.2)

2.2. βγ − bc system. Let V be a d-dimensional complex vector space. The βγ -system
S(V ) and bc-system E(V ) were introduced in [4]. The βγ -system S(V ) is strongly
generated by even elements βx ′

(z), x ′ ∈ V and γ x (z), x ∈ V ∗. The nontrivial OPEs
among these generators are

βx ′
(z)γ x (w) ∼ 〈x, x ′〉(z − w)−1.

The bc-system E(V ) is strongly generated by odd elements bx ′
(z), x ′ ∈ V and cx (z), x ∈

V ∗. The nontrivial OPEs among these generators are

bx ′
(z)cx (w) ∼ 〈x, x ′〉(z − w)−1.

Here for P = β, γ, b or c, we assume a1Px1 + a2Px2 = Pa1x1+a2x2 .
Let

W(V ) := S(V ) ⊗ E(V ).

Let αx = ∂γ x . Then βx ′
and αx satisfy

βx ′
(z)αx (w) ∼ 〈x, x ′〉(z − w)−2.

Let S+(V ) be the subalgebra of S(V ) generated by βx ′
and αx , so that S+(V ) is a system

of 2d free bosons. Let

W+(V ) := S+(V ) ⊗ E(V ).
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If V ′ is a vector space and ψ : V → V ′ is a linear isomorphism, let ψ∗ : V ′∗ → V ∗
be the induced map on dual spaces. Then ψ induces an isomorphism of vertex algebras

W(ψ) : W(V ) → W(V ′),

βx ′ �→ βψ(x ′), bx ′ �→ bψ(x ′), γ x �→ γ (ψ∗)−1(x), cx �→ c(ψ∗)−1(x).
(2.3)

Note that W(ψ) restricts to an isomorphism W+(V ) ∼= W+(V ′).
Fix x ′

1, . . . , x ′
d , a basis of V and let x1, . . . , xd be the dual basis of V ∗. Let S0 be the

set of β
x ′

i
(n), α

xi
(n), b

x ′
i

(n), cxi
(n), 1 ≤ i ≤ d, n < 0. These operators are supercommutative.

Let SW (V ) = C[S0] be the algebra generated by these operators. There is a canonical
isomorphism of SW (V ) ⊗C C[γ x1

(−1)] modules,

π̃ : SW (V ) ⊗C C[γ x1
(−1), . . . , γ

xd
(−1)] → W(V ), a ⊗ f �→ a f 1.

In particular,W(V ) is a freeC[γ x1
(−1), . . . , γ

xd
(−1)]-module. Restricting π̃ to SW (V )⊗{1},

we get an isomorphism of SW (V ) modules,

π : SW (V ) → W+(V ), a �→ a1. (2.4)

2.3. Subalgebras of W+(V ). Let

Q(z) =
d∑

i=1

: βx ′
i (z)cxi (z) :, L(z) =

d∑

i=1

(: βx ′
i (z)∂γ xi (z) : − : bx ′

i (z)∂cxi (z) :),

J (z) = −
d∑

i=1

: bx ′
i (z)cxi (z) :, G(z) =

d∑

i=1

: bx ′
i (z)∂γ xi (z) :,

(2.5)

Note that L is a Virasoro field inW(V ) of central charge zero, and bx ′
i , cxi , βx ′

i , γ xi are
primary of weights 1, 0, 1, 0 with respect to L . Also, J generates a Heisenberg algebra
and the zero mode J(0) induces an additional Z-grading called the degree; note that bx ′

i ,
cxi , βx ′

i , γ xi have degrees −1, 1, 0, 0. Finally, we recall that L can be replaced with the
Virasoro field T = L − 1

2∂ J . This has central charge c = 3d, and bx ′
i , cxi , βx ′

i , γ xi are
primary of weights 1

2 ,
1
2 , 1, 0 with respect to T . The subalgebra of W+(V ) generated

by Q, T, J, G (equivalently, Q, L , J, G) is isomorphic to the N = 2 superconformal
algebra with central charge c = 3d.

Next, let

D(z) = : bx ′
1(z)bx ′

2(z) · · · bx ′
d (z) :, E(z) = : cx1(z)cx2(z) · · · cxd (z) :,

B(z) = Q(z)(0)D(z), C(z) = G(z)(0)E(z).
(2.6)

If d = 2l is even, let

D′(z) =
l∑

i=1

: bx ′
2i−1(z)bx ′

2i (z) :, E ′(z) =
l∑

i=1

: cx2i−1(z)cx2i (z) :,

B ′(z) = Q(z)(0)D′(z), C ′(z) = G(z)(0)E ′(z).

(2.7)
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Definition 2.1. Let A0(V ) be the vertex algebra generated by the fields (2.5) and (2.6).
Let A1(V ) be the vertex algebra generated by the fields (2.5) and (2.7).

The algebraA0(V ) was introduced by Odake in [15] and was studied extensively in the
case d = 3. It is easy to verify that the fields (2.5) and (2.6) strongly generate A0(V ).
Similarly, A1(V ) is strongly generated by the fields (2.5) and (2.7), and is isomorphic
to the simple small N = 4 superconformal vertex algebra with central charge c = 3d.
In [18], we have shown thatW+(V ) is a unitary representation of A0(V ) and A1(V ).

3. Lie Algebras of Cartan Type and their Action on βγ − bc System

3.1. Lie algebras of Cartan type. The space of algebraic vector fields on V is a graded
Lie algebra

Vect(V ) = ⊕n≥−1Vectn(V ), Vectn(V ) = Symn+1(V ∗) ⊗ V .

If x1, . . . , xd is a basis of V ∗, then any element v ∈ Vectn(V ) can be written as v =∑d
i=1 Pi

∂
∂xi

, where Pi is a homogeneous polynomial of degree n +1. For
∑d

i=1 Pi
∂

∂xi
∈

Vectn(V, ω0) and
∑d

j=1 P ′
j

∂
∂x j

∈ Vectm(V ),
⎡

⎣
d∑

i=1

Pi
∂

∂xi
,

d∑

j=1

P ′
j

∂

∂x j

⎤

⎦ =
∑

i, j

(Pi
∂ P ′

j

∂xi

∂

∂x j
− P ′

j
∂ Pi

∂x j

∂

∂xi
) ∈ Vectn+m(V ).

This Lie algebra is called the general series. For a k-form ω ∈ ∧k V ∗, let

Vectn(V, ω) = {v ∈ Vectn(V )|Lvω = 0},
Vect(V, ω) =

⊕

n≥−1

Vectn(V, ω).

Here Lv is the Lie derivative of v. Note that Vect(V, ω) is a graded Lie subalgebra of
Vect(V ). We now consider Vect(V, ω) for some particular choices of ω.

(1) If ω0 = dx1 ∧ · · · ∧ dxd ,

Vectn(V, ω0) =
{

d∑

i=1

Pi
∂

∂xi
∈ Vectn(V )|

∑ ∂

∂xi
Pi = 0

}
.

The Lie algebra Vect(V, ω0) is called the special series. Vect0(V, ω0) is a Lie algebra
isomorphic to sld(C).

(2) If d = 2l is even and ω1 = ∑l
i=1 dx2i−1 ∧ dx2i . The Lie algebra Vect(V, ω1)

is called the Hamiltonian series, and Vect0(V, ω1) is a Lie algebra isomorphic to
spd(C).

(3) If d = 2l + 1 and ω = dx2l+1 +
∑l

i=1(xl+i dxi − xi dxl+i ). The Lie algebra

{v ∈ Vect(V )|Lvω = Pω, P ∈ Sym∗(V ∗)}
is called the contact series.

The general series, special series, Hamiltonian series and contact series are called
the Lie algebras of Cartan type and constitute an important class of simple infinite
dimensional Lie algebras. In this paper, we consider the special series and Hamiltonian
series.
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3.2. The actions of Lie algebras of Cartan type on βγ − bc systems. Vect(V ) has
a canonical action on W(V ) according to the Part III of [14]. Let L : Vect(V ) →
Der(W(V )) be the map given by

L
(

∑

i

Pi (x1, . . . , xd)
∂

∂xi

)
=

∑

i

(Q(0) : Pi (γ
x1, . . . , γ xd )bx ′

i :)(0). (3.1)

Clearly L is a homomorphism of Lie algebras.

4. Vect(V, ωi )-Invariants

For R ⊂ W(V ), let

RVect(V,ωi ) = {a ∈ R |L(g)a = 0, for any g ∈ Vect(V, ωi )}
be the space of Vect(V, ωi )-invariants. In [18], the second author has shown that

Lemma 4.1. A0(V ) ⊂ W(V )Vect(V,ω0) and A1(V ) ⊂ W(V )Vect(V,ω1).

Theorem 4.2. If d = dim V = 2, W(V )Vect(V,ω0) = A0(V ).

It was conjectured in [18] that for all d,W(V )Vect(V,ω0) = A0(V ) andW(V )Vect(V,ω1) =
A1(V ). In this section, we will prove this conjecture.

4.1. Vect0(V, ωi )[t]-invariants. Let g0 = Vect0(V, ωi ). Let g0[t] = ⊕n≥0g0tn be the
Lie algebra given by

[gi t
i , g j t

j ] = [gi , g j ]t i+ j , for gi , g j ∈ g0.

The action of g0 on V induces an action of g0[t] on SW (V ), which is given by

gtnβ
x ′

i
(−k) = β

gx ′
i

(−k+n), n < k, gtnβ
gx ′

i
(−k) = 0, n ≥ k,

gtnb
x ′

i
(−k) = b

gx ′
i

(−k+n), n < k, gtnb
gx ′

i
(−k) = 0, n ≥ k,

gtncxi
(−k) = cgxi

(−k+n), n < k, gtncgxi
(−k) = 0, n ≥ k,

gtnγ
xi
(−k) = γ

gxi
(−k+n), n < k − 1, gtnγ

gxi
(−k) = 0, n ≥ k − 1.

Note that SW (V ) is a ring with a derivation ∂ , given by ∂ P(−k) = k P(−k−1), for
P = βx ′

i , bx ′
i , cxi and αxi . For R ⊂ SW (V ), let Rg0[t] denote the subspace of g0[t]-

invariants in R.
As preparation for the next lemma, we recall the following results from [8,9,12].

Given an algebraic group G over C and a finite-dimensional G-module V , the arc space
J∞(G) is an algebraic groupwhich acts on the arc space J∞(V ). The quotient morphism
V → V//G induces a morphism J∞(V ) → J∞(V//G), so we have a morphism

J∞(V )//J∞(G) → J∞(V//G). (4.1)

In particular, we have a ring homomorphism

C[J∞(V//G)] → C[J∞(V )]J∞(G). (4.2)
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IfV//G is smoothor a complete intersection, andC[V ]has nonontrivial one-dimensional
G-invariant subspaces, it was shown in [11] that (4.2) is an isomorphism, although
in general it is neither injective nor surjective. If (4.2) is surjective, it follows that
C[J∞(V )]J∞(G) is generated as a differential algebra by the subalgebra C[V ]G .

More explicitly, let Vj ∼= V for j ≥ 0, and fix a basis {x1, j , . . . , xn, j } for Vj . Let

S = C[⊕ j≥0 Vj ]. The map C[J∞(V )] = C[x ( j)
1 , . . . , x ( j)

n | j ≥ 0] → S sending

x ( j)
i �→ xi, j is an isomorphism of differential algebras, where the differential ∂ on S is
given by ∂(xi, j ) = ( j + 1)xi, j+1. In particular, the subalgebra S0 = C[V0] generates S
as a differential algebra.

For j ≥ 0, let Ṽ j ∼= V and let L = ∧ ⊕
j≥0 Ṽ j . Fix a basis {y1, j , . . . , yn, j } for Ṽ ∗

j
and extend the differential on S to an even differential ∂ on S ⊗ L , defined on generators
by ∂(yi, j ) = ( j + 1)yi, j+1. There is an action of J∞(G) on S ⊗ L , and we may consider
the invariant ring (S ⊗ L)J∞(G). Let L0 = ∧

(Ṽ0) ⊂ L , and let 〈(S0 ⊗ L0)
G〉 be the

differential algebra generated by (S0 ⊗ L0)
G , which lies in (S ⊗ L)J∞(G).

Since G acts on the direct sum V ⊕k of k copies of V , we have a map

C[J∞(V ⊕k//G)] → C[J∞(V ⊕k)]J∞(G). (4.3)

Theorem 4.3 ([12, Thm. 7.1]). Suppose that (4.3) is an isomorphism for all k ≥ 1. Then
(S ⊗ L)J∞(G) = 〈(S0 ⊗ L0)

G〉.
In fact, under the above hypothesis, all differential algebraic relations in (S⊗L)J∞(G)

are consequences of relations among the generators of (S0 ⊗ L0)
G , and their derivatives

[10, Thm. 3.1 (2)]), but this stronger fact will not be needed in this paper. By [8, Cor.
1.5], the hypothesis of Theorem 4.3 is satisfied in the case G = Sp2d and V = C

2d .
In the case G = SLd and V = C

d ⊕ (Cd)∗, this hypothesis is not satisfied since
(4.3) is surjective for all k but fails to be injective when k ≥ d + 3; see [9, Thm. 1.2].
However, the surjectivity of (4.3) for all k in this case is enough for our purposes, due
to the following:

Theorem 4.4 ([10, Thm. 3.1 (1)]). Suppose that (4.3) is surjective for all k ≥ 1. Then
(S ⊗ L)G∞ = 〈(S0 ⊗ L0)

G〉.
This applies to the case of G = SLd and V = C

d ⊕ (Cd)∗. Note that if (4.3) fails to
be injective for some k, it need not be the case that all differential algebraic relations in
(S ⊗ L)G∞ are consequences of relations in (S0 ⊗ L0)

G and their derivatives, but this
does not affect our results.

Lemma 4.5. Recall the isomorphism π : SW (V ) → W+(V ) given by (2.4).

(1) If g0 = Vect0(V, ω0), as a ring with a derivation ∂ , SW (V )g0[t] is generated by

π−1(Q(z)), π−1(L(z)), π−1(G(z)), π−1(J (z)), π−1(E(z)),

π−1(B(z)), π−1(C(z)), π−1(D(z)).

(2) If g0 = Vect0(V, ω1), as a ring with a derivation ∂ , SW (V )g0[t] is generated by

π−1(Q(z)), π−1(L(z)), π−1(G(z)), π−1(J (z)), π−1(E ′(z)),
π−1(B ′(z)), π−1(C ′(z)), π−1(D′(z)).



196 A. R. Linshaw, B. Song

Proof. For the first statement, g0 = sld , and we have an isomorphism of sld [t]-modules

SW (V ) ∼= C[J∞(V ⊕ V ∗)] ⊗
∧ ( ⊕ j≥0

(
Vj ⊕ V ∗

j )
) = S ⊗ L ,

where V = C
d . Under the linear isomorphism (2.4), the above fields correspond to

the generators of the subalgebra (S0 ⊗ L0)
SLd , which by Theorem 4.4 generate (S ⊗

L)J∞(SLd ) = (S ⊗ L)sld [t] as a differential algebra.
The second statement is proven in the same way using Theorem 4.3, since g0 = sp2d

and we have an isomorphism of sp2d [t]-modules

SW (V ) ∼= C[J∞(V )] ⊗
∧ ( ⊕ j≥0 Vj

) = S ⊗ L ,

where V = C
2d . Then the above fields correspond to the generators of (S0 ⊗ L0)

Sp2d ,
and hence generate SW (V )sp2d [t] as a differential algebra. ��

4.2. Vect(V, ωi )-invariants. Let SWn(V ) be the linear subspace of SW (V ) which is
spanned by the monomials of γ(i−1), β(i), b(i), c(i), i < 0 with the property that the
number of c in the monomial plus double of the number of γ in the monomial is n. We
then have the grading

SW (V ) = ⊕n≥0SWn(V ).

Since the actionofg0[t]on SW (V )preserves SWn(V ), SW (V )g0[t] = ⊕n≥0SWn(V )g0[t].

Lemma 4.6. Let a ∈ W(V )Vect(V,ωi ) be homogeneous with respect to conformal weight.
Then

(1) a ∈ W+(V ). In particular, we may write a = π(ak + ak−1 + · · · ) where π is given
by (2.4), and an ∈ SWn(V ).

(2) The leading term ak is Vect0(V, ωi )[t]-invariant.

Proof. It is easy to see that Vect−1(V, ωi ) = Vect−1(V ). So for any a ∈ W(V )Vect(V,ωi ),

L( ∂
∂x j

)a = β
x ′

j

(0)a = 0 for any 1 ≤ j ≤ d. Therefore γ
xi
(−1) does not appear in a, so

that a ∈ W+(V ). Since a has fixed conformal weight, it is apparent that it has the form
a = π(ak + ak−1 + · · · ) with an ∈ SWn(V ). This proves (1).

Next, let g j = Vect j (V, ωi ). It is easy to see that π is g0-equivariant. So ak is
g0-invariant. Let v1 = x21

∂
∂x2

∈ g1 and g1 = x1
∂

∂x2
∈ g0. Let

K1 =
∑

l≥1

γ
x1
(−l−1)g1t l .

We have

0 = L(v1)a = (2 : (: γ x1cx1 :)bx ′
2 :(0) + : (: γ x1γ x1 :)βx ′

2 :(0))π(ak + ak−1 + · · · ).
Consider the homogeneous component SWk+2(V ):

0 = (L(v1)a)k+2 = 2
∞∑

l=1

γ
x1
(−l−1)g1t lak = 2K1ak .
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Similarly, let v0 = x21
∂

∂x1
− 2x1x2

∂
∂x2

∈ g1 and g0 = x1
∂

∂x1
− x2

∂
∂x2

∈ g0. Let

K0 =
∑

l≥1

γ
x1
(−l−1)g0t l −

∑

l≥1

γ
x2
(−l−1)g1t l .

We have K0ak = 0.
Inductively, let Kn = [K0, Kn−1], for n ≥ 2, then Knak = 0.

[K0, γ
x1
(−l)] =

l−2∑

s=2

γ
x1
(−s)γ

x1
(−l+s).

[K0, g1t j ] = 2
∑

s≥1

γ
x1
(−s−1)g1t j+s .

So inductively, we obtain

Kn =
∑

li ≥1

cl1,...,ln (

n∏

i=1

γ
x1−li −1)g1t l1+···+ln .

Here cl1,...,ln are positive numbers. When l is large enough, g1t lak = 0. Let L be the
largest number such that g1t Lak �= 0. If L ≥ 1 then

0 = KLak = c1,...,1(γ
x1−2))

L g1t Lak �= 0.

So g1t Lak = 0.. Since g0 is a simple Lie algebra, g0[t] is generated by g0 and g1t . So
ak is g0[t]-invariant. ��
Theorem 4.7. W(V )Vect(V,ω0) = A0(V ); W(V )Vect(V,ω1) = A1(V ).

Proof. For thefirst equation, letg0 = Vect0(V, ω0). ByLemma4.5, anyak ∈ SWk(V )g0[t]
can be represented as a polynomial in ∂ lπ−1(Q(z)), ∂ lπ−1(L(z)), ∂ lπ−1(G(z)),∂ lπ−1

(J (z)), ∂ lπ−1(E(z)), ∂ lπ−1(B(z)), ∂ lπ−1(C(z)), ∂ lπ−1(D(z)). Let b be the corre-
sponding normally ordered polynomial in ∂ l L(z), ∂ l G(z), ∂ l J (z), ∂ l E(z), ∂ l B(z),
∂ lC(z), ∂ l D(z). We have π−1(b) = bk + bk−1 + · · · , bn ∈ SWn(V ) with bk = ak .

If a ∈ W(V )Vect(V,ω0),π−1(a) = ak+ak−1+· · · .ByLemma 4.6, ak ∈ SWk(V )g0[t].
So there is a b ∈ A0(V )with π−1(b) = bk +bk−1+ · · · and ak = bk . Thus π−1(a−b) =
(ak−1 − bk−1)+ · · · and a − b is Vect(V, ω0)-invariant. By induction on k, we conclude
a ∈ A0(V ). SoW(V )Vect(V,ω0) = A0(V ).

The proof for the second equation is similar. ��

5. Chiral de Rham Complex

LetW = W(Cd) and x ′
1, . . . , x ′

d be a standard basis ofC
d . ThenW has stronggenerators

β i = βx ′
i , bi = bx ′

i , γ i = γ xi and ci = cxi , and is a free C[γ 1
(−1), . . . , γ

d
(−1)] module.

If X is a complex manifold and (U, γ 1, . . . , γ d) is a complex coordinate system of
X , O(U ) is a C[γ 1

(−1), . . . , γ
d
(−1)]-module by identifying the action of γ i

(−1) with the

product of γ i . The chiral de Rham complex�ch
X is a sheaf of vertex algebras on X whose

algebra of sections �ch
X (U ) is given by

�ch
X (U ) = W ⊗

C[γ 1
(−1),...,γ

d
(−1)] O(U ).
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In particular, �ch
X (U ) is the vertex algebra with strong generators β i (z), bi (z), ci (z) and

f (z), f ∈ O(U ). The nontrivial OPEs among these generators are

β i (z) f (w) ∼ ∂ f

∂γ i
(w)(z − w)−1, bi (z)c j (w) ∼ δi

j (z − w)−1,

as well as the normally ordered product relations

: f (z)g(z) : = f g(z), for f, g ∈ O(U ).

Let γ̃ 1, . . . , γ̃ d be another set of coordinates on U , with

γ̃ i = f i (γ 1, . . . , γ d), γ i = gi (γ̃ 1, . . . , γ̃ d).

We have the following coordinate change equations:

∂γ̃ i (z) =
d∑

j=1

: ∂ f i

∂γ j
(z)∂γ j (z) : ,

b̃i (z) =
d∑

j=1

: ∂g j

∂γ̃ i
( f (γ ))(z)b j (z) : ,

c̃i (z) =
d∑

j=1

: ∂ f i

∂γ j
(z)c j (z) : , (5.1)

β̃ i (z) =
d∑

j=1

: ∂g j

∂γ̃ i
( f (γ ))(z)β j (z) : +

d∑

k=1

: (: ∂

∂γ k
(
∂g j

∂γ̃ i
( f (γ )))(z)ck(z) :)b j (z) : .

5.1. Global sections. There are four sections Q(z), L(z), J (z) and G(z) from (2.5)
in �ch

X (U ). For a general complex manifold X , L(z) and G(z) are globally defined
and have the same form in any local coordinate system. The fields Q(z) and J (z) are
globally defined if and only if the first Chern class c1(T X) vanishes, but their zeromodes
Q(0) and J(0), are always globally defined [13]. The operators L(1) and J(0) give �ch

X a
Z≥0 × Z-grading by conformal weight k and degree l, respectively.

�ch
X =

⊕

k,l

�ch
X [k, l].

Note that the zero mode Q(0) of Q(z) is the chiral de Rham differential, and it preserves
conformal weight and raises the degree by one.

If X is a Calabi-Yau manifold with a nowhere vanishing holomorphic d-form w0, let
(U, γ1, . . . , γd) be a coordinate system on X such that locally,

w0|U = dγ 1 · · · dγ d .

The eight sections Q(z), L(z), J (z), G(z), B(z), C(z), D(z) and E(z) from (2.5) and
(2.6) in �ch

X (U ) are globally defined on X [3].



The Global Sections of Chiral de Rham Complexes on Compact 199

If X is a hyperkählermanifoldwith holomorphic symplectic formw1, let (U, γ1, . . . , γd)

be a coordinate system on X such that locally,

w1|U =
d
2∑

i=1

dγ 2i−1 ∧ dγ 2i .

Then the eight sections Q(z), L(z), J (z), G(z), B ′(z), C ′(z), D′(z) and E ′(z) from (2.5)
and (2.7) in �ch

X (U ) are globally defined on X [1].

Definition 5.1. If X is a Calabi-Yau manifold with a nowhere vanishing holomorphic
d-form, letA0(X) be the vertex algebra which is strongly generated by the eight global
sections given by Q(z), L(z), J (z), G(z), B(z), C(z), D(z) and E(z) on X .

If X is a hyperkähler manifold, letA1(X) be the vertex algebra which is strongly gen-
erated by the eight global sections given by Q(z), L(z), J (z), G(z), B ′(z), C ′(z), D′(z)
and E ′(z) on X .

The following theorem was proven in [18].

Theorem 5.2. If X is a d-dimensional compact Kähler manifold with holonomy group
G = SU (d) and w0 is a nowhere vanishing holomorphic d-form, then

�(X,�ch
X ) ∼= W+(Tx X)Vect(Tx X,w0|x ).

If X is a d-dimensional compact Kähler manifold with holonomy group G = Sp( d
2 ) and

w1 is a holomorphic symplectic form, then the space of global section of �ch
X

�(X,�ch
X ) ∼= W+(Tx X)Vect(Tx X,w1|x ).

Thus we have

Theorem 5.3. If X is a d-dimensional compact Kähler manifold with holonomy group
G = SU (d), then

A0(X) = �(X,�ch
X ) ∼= A0(C

d).

If X is a d-dimensional compact Kähler manifold with holonomy group G = Sp( d
2 ),

then the eight global sections given by Q(z), L(z), J (z), G(z), B ′(z), C ′(z), D′(z) and
E ′(z) strongly generate

A1(X) = �(X,�ch
X ) ∼= A1(C

d).

Proof. If X is a d-dimensional compact Kähler manifold with holonomy group G =
SU (d), there must be a nowhere vanishing holomorphic d-form w0. By Theorem 5.2,
�(X,�ch

X ) ∼= W+(Tx X)Vect(Tx X,w0|x ). By Theorem 4.7, W+(Tx X)Vect(Tx X,w0|x ) is iso-
morphic to A0(C

d). So �(X,�ch
X ) ∼= A0(C

d). The isomorphism maps the global sec-
tions given by Q(z), L(z), J (z), G(z), B(z), C(z), D(z) and E(z) to Q(z), L(z), J (z),
G(z), B(z),C(z), D(z) and E(z) themselves. So the eight global sections given by Q(z),
L(z), J (z), G(z), B(z), C(z), D(z) and E(z) strongly generate �(X,�ch

X ) ∼= A0(C
d).

Similarly, if X is a d-dimensional compact Kähler manifold with holonomy group
G = Sp( d

s ), there must be a holomorphic symplectic form w1. Then by Theorem
5.2, �(X,�ch

X ) ∼= W+(Tx X)Vect(Tx X,w0|x ). By Theorem 4.7, W+(Tx X)Vect(Tx X,w0|x ) is
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isomorphic to A0(C
d). So �(X,�ch

X ) ∼= A0(C
d). The isomorphism maps the global

sections given by Q(z), L(z), J (z), G(z), B ′(z), C ′(z), D′(z) and E ′(z) to Q(z), L(z),
J (z), G(z), B ′(z), C ′(z), D′(z) and E ′(z) themselves. So the eight global sections given
by Q(z), L(z), J (z), G(z), B ′(z),C ′(z), D′(z) and E ′(z) strongly generate�(X,�ch

X ) ∼=
A0(C

d). ��

5.2. Covering maps. Let X and Y be compact complex manifolds and let p : Y → X
be a covering map. By the definition of chiral de Rham complex, the inverse image sheaf
p−1�ch

X = �ch
Y . A global section of �ch

X pulls back to a global section of �ch
Y . Let

p∗ : �(X,�ch
X ) → �(Y,�ch

Y )

be the pullback map. If p is an isomorphism, then p∗ is clearly an isomorphism.
If p is a finite normal coveringmap, let G(Y, p) be its covering transformation group.

For any g ∈ G(y, p), the action of g on Y , ρ(g) : Y → Y induces an automorphism
ρ(g)∗ : �(Y,�ch

Y ) → �(Y,�ch
Y ). Let �(Y,�ch

Y )G(Y,p) be the invariant subalgebra under
the induced action of G(Y, p).

Proposition 5.4. p∗ induces an isomorphism of vertex algebras�(X,�ch
X ) → �(Y,�ch

Y )
G(Y,p).

Proof. Obviously, p∗ is an injective morphism of vertex algebras. For any g ∈ G(Y, p),
p ◦ ρ(g) = p. So ρ(g)∗ ◦ p∗ = p∗. For any section a ∈ �(X,�ch

X ), ρ(g)∗(p∗(a)) =
p∗(a), so p∗(a) is G(Y, p)-invariant.

On the other hand, assume p is an n-sheet covering map. There is an open cover
{Uα} of X such that each p−1(Uα) is the disjoint union of open sets Vα,i in Y , and
p|Vα,i : Vα,i → Uα is an isomorphism. Let ã ∈ �(Y,�ch

Y )G(Y,p), and define

aα = 1

n

n∑

i=1

((p|Vα,i )
−1)∗(ã|Vα,i ).

For another open set Uβ in the open cover, it is easy to see aα|Uα∩Uβ = aβ |Uα∩Uβ , so
there is an a ∈ �(X,�ch

X ) with a|Uα = aα . It is easy to see that p∗(a) = ã, since ã is
G(Y, p)-invariant. ��

5.3. Global sections: general case. For a compact Ricci-flat Kähler manifold, we have
the following properties (Proposition 6.22, 6.23 in [5]).

Proposition 5.5. Let X be a compact Ricci-flat Kähler manifold. Then X admits a finite
cover isomorphic to the product Kähler manifold T 2l × X1 × X2 · · · × Xk, where T 2l is
a flat Kähler torus and X j is a compact, simply connected, irreducible, Ricci-flat Kähler
manifold for j = 1, . . . , k.

Proposition 5.6. Let X be a compact, simply-connected, irreducible, Ricci-flat Kähler
manifold of dimension d. Then either d ≥ 2 and its holonomy group is SU (d), or d ≥ 4
is even and its holonomy group is Sp( d

2 ). Conversely, if X is a compact Kähler manifold
and its holonomy group is SU (d) or Sp( d

2 ), then X is Ricci-flat and irreducible and X
has finite fundamental group.
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Lemma 5.7. Let G be a group and let N ∼= Z
k be a subgroup with finite index in G.

Then there is a subgroup M of N such that the index of M in N is finite, and M is a
normal subgroup of G.

Proof. Let N1, . . . , Nl be all of the conjugate subgroups of N in G, and let M = ∩Ni ,
so that M is a normal subgroup of G. Since the index of Ni in G is finite, for any g ∈ G,
there is an integer mi > 0 such that gmi ∈ Ni . Let m = m1 · · · ml . Then gm ∈ Ni for
all 1 ≤ i ≤ l, so that gm ∈ M . If g1, . . . , gk are generators of N , there exist positive
integers m1, . . . , mk such that gmi

i ∈ M . Since N is a free abelian group, the index of
M in N is no more than m1 · · · mk . ��
Proposition 5.8. The finite covering map in Proposition 5.5 can be chosen to be a normal
covering map.

Proof. Let Y = T 2l × X1 × X2 · · · × Xk be the finite cover in Proposition 5.5, and
let p : Y → X be the covering map. It induces an injective morphism of fundamental
groups p∗ : π1(Y, y) → π1(X, x) for x = p(y). Since each Xi is simply connected,
π1(Y ) ∼= π1(T 2l) ∼= Z

2l . Since p is a finite covering map, the index of p∗(π1(Y, y)) in
π1(X, x) is finite. By Lemma 5.7, there is a finite index subgroup M of π1(Y, y), such
that p∗(M) is a normal subgroup of π1(X, x). We have a covering map p1 : Y → Y
(given by the covering map T 2l → T 2l ) with p1∗(π1(Y, y1)) = M ⊂ π1(Y, y) for
some y1 ∈ p−1

1 (y). Then the covering map p ◦ p1 : Y → X is a finite normal covering
map since p∗ ◦ p1∗(π1(Y, y1)) = p∗(M) is a normal subgroup of π1(X, x) with finite
index. ��
Theorem 5.9. Let X be a compact Ricci-flat Kähler manifold. Let Y = T 2l × X1 ×
X2 · · · × Xk be the finite cover of X in Proposition 5.5. Let p : Y → X be the finite
normal covering map in Proposition 5.8, and let G(Y, p) be the covering transformation
group. Then

�(X,�ch
X ) ∼= (�(T 2l ,�ch

T 2l )
⊗

(⊗n
i=1A0(Xi ))

⊗
(⊗k

i=n+1A1(Xi )))
G(Y,p)

through p∗.

Proof. Assume the dimension of Xi is di . By Proposition 5.6, we can assume the holon-
omy group of Xi is SU (di ) for 1 ≤ i ≤ n and the holonomy group of X j is Sp(

d j
2 ) for

n < j ≤ k. By Theorem 5.3,

�(Y,�ch
Y ) = �(T 2l ,�ch

T 2l )
⊗

(⊗n
i=1A0(Xi ))

⊗
(⊗k

i=n+1A1(Xi ))

By Proposition 5.4, �(Y,�ch
Y ) ∼= �(Y,�ch

Y )G(Y,p) through p∗. So

�(X,�ch
X ) ∼= (�(T 2l ,�ch

T 2l )
⊗

(⊗n
i=1A0(Xi ))

⊗
(⊗k

i=n+1A1(Xi )))
G(Y,p)

through p∗. ��
Since �(T 2l ,�ch

T 2l )
∼= W+(C

2l), the above theorem gives the space of global sections
of chiral de Rham complex on compact Ricci-flat Kähler manifolds explicitly.
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