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ABSTRACT
While radio frequency (RF) based respiration monitoring for at-
home health screening is receiving increasing attention, robustness
remains an open challenge. In recent work, deep learning (DL)
methods have been demonstrated effective in dealing with non-
linear issues from multi-path interference to motion disturbance,
thus improving the accuracy of RF-based respiration monitoring.
However, such DL methods usually require large amounts of train-
ing data with intensive manual labeling efforts, and frequently not
openly available. We propose RF-Q for robust RF-based respiration
monitoring, using self-supervised learning with an autoencoder
(AE) neural network to quantify the quality of respiratory signal
based on the residual between the original and reconstructed sig-
nals. We demonstrate that, by simply quantifying the signal quality
with AE for weighted estimation we can boost the end-to-end (e2e)
respiration monitoring accuracy by an improvement ratio of 2.75
compared to a baseline.

CCS CONCEPTS
• Applied computing → Health informatics; Bioinformatics;
Health care information systems; •Human-centered comput-
ing→ Empirical studies in ubiquitous andmobile computing.

KEYWORDS
Vital signs monitoring, RF sensing, signal quality assessment, signal
reconstruction, unsupervised learning, autoencoder (AE)

ACM Reference Format:
Zongxing Xie*, Ava Nederlander*, Isac Park* and Fan Ye. 2023. Poster:
Quantifying Signal Quality Using Autoencoder for Robust RF-based Res-
piration Monitoring. In ACM/IEEE International Conference on Connected
Health: Applications, Systems and Engineering Technologies (CHASE ’23),
June 21–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3580252.3589999

1 INTRODUCTION
Continuous monitoring of respiration provides rich information
about common health conditions (e.g., sleep apnea and cardiac
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Figure 1: Overview of RF-Q. 1) The RF sensor measures respiration through
periodic variations in the reflected RF signals, which are modulated by the
movement of the chest wall during inhaling and exhaling. 2) The autoencoder
(AE) neural network is optimized to reconstruct the respiratory signal of
consistent patterns. 3) Therefore, the disturbed signal of unseen patterns
will show large deviation from the reconstructed signal. The respiratory rate
estimation is weighted on the signal quality quantified by the residual between
the original and reconstructed signals to achieve improved accuracy.

events), and is important to health status management, especially
among older adults. Furthermore, a recent study showed nocturnal
breathing signals to be indicative of progression of Parkinson’s
disease, related to degeneration in the brainstem areas that control
breathing. While wearable solutions (e.g., Fitbit and Apple Watch)
are popular for continuous monitoring, they require frequent charg-
ing and wearing, challenging older adults physically or cognitively,
thus hard to maintain compliance. In this context, researchers have
shown increased interest in device-free sensing, and demonstrated
promising results with RF technologies for at-home longitudinal
vital signs monitoring [3] without cooperative effort from users.

RF-based respiration monitoring works by measuring periodic
variations in the received RF signals caused by the movement of the
chest wall during inhaling and exhaling. However, in addition to
chest wall displacements, there exist other sources in the real world
scenarios that may vary and disturb RF signals in a nonlinear man-
ner, including large body movements and multi-path reflections
from cluttered environments. DL methods have been demonstrated
effective in dealing with nonlinear issues for robust RF-based res-
piration monitoring. Nevertheless, these models typically need a
substantial amount of supervised data for training, possibly only
after intensive labeling efforts, and frequently such data are not
openly accessible for the community.

To achieve that, we propose RF-Q [2] (see Figure 1) forRF-based
quality-aware respiration monitoring using AE, which is trained
with self-supervised learning on raw respiratory signals only, free
of domain expertise in providing ground truth labels or supervised
information, thus easy to scale. The intuition of using the recon-
struction error of AE to quantify signal quality is rooted in the
observation that a trained AE tends to reconstruct signals with
consistent patterns found in “regular” respiratory signals (e.g., with
periodic variations in time domain and condensed energy distri-
bution in frequency domain). In contrast, disturbed signals exhibit
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(a) Regular signal in time domain.
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(b) Regular signal in frequency domain.
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(c) Disturbed signal in time domain.
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(d) Disturbed signal in frequency domain.

Figure 2: Examples of regular and disturbed signals in time and frequency
domains. The regular signal has marginal residual between the original (Ori.)
and reconstructed (Rec.) signals in both time and frequency domain. In con-
trast, the disturbed signal shows large residual between Ori. and Rec. signals.

unpredictable and uncontrollable patterns that deviate significantly
from the reconstructed respiratory signals of regular patterns (see
Figure 2). We evaluate RF-Q on the RF respiratory data collected in
real world testbeds, and show that the proposed RF-Q improves the
average e2e accuracy of a baseline by a ratio of 2.75, higher than
1.94 achieved by SQD, a recent method.

2 RF-Q FRAMEWORK
Figure 1 shows the overall framework of RF-Q. The key component
of RF-Q is an autoencoder (AE) that is used to quantify the signal
quality. The AE has an “hourglass” structure, comprised of an en-
coder, a decoder, and one bottleneck in between, which has much
fewer neurons than the encoder and decoder. The bottleneck layer
is optimized to learn only compressed representation about the
more periodic vital signals, but ignore noises, such as jitters due to
disturbance. The consistent patterns have better chance than vary-
ing patterns to be captured and learned in the bottleneck for signal
reconstruction. Therefore, disturbed signals deviate significantly
from their reconstructed signals, while the regular signals are close
to corresponding reconstructed signals (see Figure 2). We quantify
signal quality based on the residual difference, as a larger resid-
ual difference indicates a higher likelihood of signal disturbance
and, therefore, poorer signal quality. We normalize the residual
to a value within [0, 1] as the signal quality score. For improved
accuracy of respiration rate estimation, we estimate RR based on
the reconstructed signal, and combine the consecutive RR estimates
in a weighted sum according to respective signal quality scores.

3 EVALUATION
To evaluate RF-Q, we use data collected in a real-world testbed of RF-
based respiration monitoring, which follows the setup of a relevant
work [4]. Figure 3 shows characteristics of data collected from
various settings, including during sleep and sedentary behaviors
with body movements. We build two independent data sets: the
first data set is of ∼ 40k samples for training, and the second data
set of ∼8k samples for testing. We evaluate the performance based
on the metric of respiration rate (RR) estimation error in the unit
of “breaths per minute” (bpm).
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(a) Box plots show RR estimation with
disturbed signals has higher error than
regular signals.
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(b) CDF curves show RR estimation with
asleep data has less errors than sedentary
data because of less disturbance.

Figure 3: Data characteristics. Results show that the accuracy of RRmonitoring
is largely dependent on the signal quality and the awareness of signal quality
is critical to robust RR monitoring.

Figure 4 shows the comparison of e2e performance between
different methods. We first implement a baseline estimator based
on Vital-Radio [1] to predict RR with original signals. Next, we use
the baseline estimator to predict RR with reconstructed signals from
the trained autoencoder. Then, in RF-Q, the estimated RRs from the
reconstructed signals are combined with the corresponding signal
quality scores for weighted estimation. In addition, we compare the
performance with SQD [4], a supervised method for signal quality
detection. When we compare the average accuracy of each method
to the baseline with original signals, we find that RF-Q achieves
an improvement ratio of 2.75, higher than 1.38 achieved by RR
estimation with reconstructed signals, and 1.94 achieved by SQD.
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Figure 4: Original signals (including both regular and disturbed ones) result in
a median RR error of 6.7 bpm with a baseline RR estimator. The reconstructed
signals from the trained autoencoder have a reduced median RR error (4.6
bpm). The RF-Q further reduces median RR error to 2.4 bpm. The SQD detects
and excludes the disturbed signals from the original signals and achieves a
reduced median RR error (3.2 bpm).

4 CONCLUSION AND FUTUREWORK
In this work, we present RF-Q that uses an autoencoder neural
network to quantify the signal quality for quality-aware and robust
RF respiratory monitoring. Experiments show that our proposed
RF-Q significantly improve the average accuracy of RR estimation
from a baseline estimator by a gain ratio of 2.75, which is higher
than a gain ratio of 1.94 achieved by a supervised method 𝑆𝑄𝐷 .
In the future, we plan to study and compare RF-Q with different
variants of AE. Furthermore, we plan to deploy RF-Q at the edge
for online health monitoring and analytics in real homes.
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