








Linux-based GPU driver. We omit the details due to the page

limit. CPU undervolting can be directly achieved on the Linux

system. We set the offset of the CPU core voltage using a

third-party tool intel-undervolt. Figure 5 (c) shows

the CPU energy efficiency before and after we set the opti-

mized voltage guardband. Please note unlike our testing GPU,

our testing CPU can achieve overclocking with the default

guardband, but an optimized guardband can help us achieve

higher energy efficiency.

Finding the optimized guardband is done by gradually low-

ering specific power settings of CPU/GPU to the point where

energy efficiency is maximized without process or OS crash.

The whole process can be done in less than 30 minutes and it

only needs to be done once during software installation. As

optimized guardband can be workload-dependent, we specif-

ically use the workload in matrix decomposition i.e., TMU

on GPU and PD on CPU to find optimized guardband. Also,

as shown in Figure 5 (b), we observe that setting to extreme

high clock frequencies for the GPU can weaken the reliability

of computation e.g., SDCs. So, we propose to incorporate

fault tolerance with overclocking by designing ABFT-OC.

3.1.2 Design of ABFT-OC. Reliable computation is the

foundation of our optimized matrix decomposition. As over-

clocking achieved through the use of optimized guardband

can lead to SDCs, we propose to use ABFT [4–6, 10–12, 14,

19, 20, 32, 33, 40, 41, 47–50] to handle SDCs during matrix

decompositions. Since the processor power state is under con-

trol and the corresponding SDC error rate is known, SDC

error rate is predictable during matrix decompositions. So

we propose the first ABFT that can adjust its fault tolerance

strength and overhead at runtime based on the predicted error

rate to minimize fault tolerance overhead and ensure correct-

ness. SDC refers to the kind of error that only causes incorrect

calculation results without process or system crash. When

using our optimized guardband, the SDC is caused by insuffi-

cient core voltage supply when at high clock frequencies. The

rate of SDC can increase as we increase the clock frequency

when we apply a optimized guardband at the same time.
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(a) Single-side checksum ABFT

(b) Full checksum ABFT

Figure 6. ABFT checksum for detecting and correcting SDCs

in matrix operations

Depending on where the hardware fault occurs, it may be

manifested as different kinds of SDC. For example, calcula-

tion error is usually caused by faults in the logic part of ALU

or FPU. Memory storage error is usually caused by faults

(e.g., bit flips) in the storage cells of DRAM, cache, or regis-

ters. For matrix operations, matrix elements can be repeatedly

accessed to obtain final results. If an element whose value

is corrupted gets repeatedly referenced, it may cause error

propagation. Depending on the cause of the error and the

computation pattern (i.e., how data is used/reused) of a matrix

operation, the error pattern can be different. The degrees of

error propagation [4] can be classified as: 0D, 1D, and 2D.

0D: a single standalone error with no error propagation; 1D:

an error propagates to entire/part of one row/column; 2D: an

error propagates beyond one row/column. So, we distinguish

different degrees of error propagation in Figure 5.

Table 1. Theoretical estimation on ABFT fault coverage (FC)

on the TMU operation of the 5
𝑡ℎ , 10𝑡ℎ , and 15

𝑡ℎ iteration of

LU decomposition if we apply different clock frequencies.

Iter. ABFT 1800MHz 1900MHz 2000MHz 2100MHz 2200MHz

5
𝑡ℎ Single Fault-free Full Coverage 99.86% 97.51% 96.45%

Full Fault-free Full Coverage Full Coverage Full Coverage Full Coverage

10
𝑡ℎ Single Fault-free Full Coverage 99.94% 98.92% 98.46%

Full Fault-free Full Coverage Full Coverage Full Coverage Full Coverage

15
𝑡ℎ Single Fault-free Full Coverage 99.98% 99.76% 99.65%

Full Fault-free Full Coverage Full Coverage Full Coverage Full Coverage

Algorithm 1: Adaptive-ABFT strategy

1 Function ABFT-OC():
In :Desired ABFT fault coverage 𝐹𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑

In :Desired GPU clock freq. 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

In :Default GPU clock freq. 𝐹𝐺𝑃𝑈
𝐵𝐴𝑆𝐸

In :Predicted operation execution time 𝑇 ′𝐺𝑃𝑈

2 𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 ← 𝐹𝐴𝐿𝑆𝐸

3 𝐹𝑢𝑙𝑙𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 ← 𝐹𝐴𝐿𝑆𝐸

4 while (𝜆𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

,0𝐷 > 0 || 𝜆𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

,1𝐷 > 0 ||

𝜆𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

,2𝐷 > 0) && !𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 &&

!𝐹𝑢𝑙𝑙𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 do

5 𝑇𝐺𝑃𝑈
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑

= 𝑇 ′𝐺𝑃𝑈 ×
𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐹𝐺𝑃𝑈
𝐵𝐴𝑆𝐸

6 if 𝐹𝐶𝑠𝑖𝑛𝑔𝑙𝑒 (𝐹
𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

,𝑇𝐺𝑃𝑈
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑

) ⩾ 𝐹𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑

then

7 𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 = 𝑇𝑅𝑈𝐸

8 else if 𝐹𝐶𝑓 𝑢𝑙𝑙 (𝐹
𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

,𝑇𝐺𝑃𝑈
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑

) ⩾ 𝐹𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑

then

9 𝐹𝑢𝑙𝑙𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 = 𝑇𝑅𝑈𝐸

10 else

11 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

= 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

− 100𝑀𝐻𝑧

12 end

13 end

14 return 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 , 𝐹𝑢𝑙𝑙𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘

ABFT is based on the idea that if we encode a certain

amount of matrix information in checksums before a matrix

operation and apply the same matrix operation to checksums,
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the checksum relation would still hold for the resulting matrix.

By verifying the checksum relations after the operation, we

can detect and correct errors in the result matrix. Depend-

ing on how much information is encoded in checksums, the

fault tolerance strength is different. As shown in Figure 6,

there are two commonly schemes for checksum encoding: 1

Single side checksum encodes matrices along either rows or

columns. Since it only encodes the matrix in one dimension,

it brings relative lower overhead. However, it can only effi-

ciently tolerate 0D error pattern. 2 Full checksum encodes

matrices along both rows and column at the same time. Since

it encodes matrices in both dimensions, it brings stronger

protection i.e., both 0D and 1D error patterns. However, it

also brings higher fault tolerance overhead.
Given that the fault tolerance strength is limited, we must

determine suitable ABFT protection according to the error
rate and limit the clock frequency range to ensure all errors
can be detected and corrected with a high probability. Other-
wise, undetected or uncorrected errors would cause serious
error propagation later, which requires recovery with high
overhead. In this work, we find that it is useful to estimate the
probability that a certain kind of ABFT can detect and correct
all errors given different error rates at different overclocking
frequencies. In order to do that, we first define an error rate
function 𝑅 given clock frequency derived from our profiling
results in Figure 5: 𝜆𝑓 ,𝐸𝑟𝑟𝑇 𝑦𝑝𝑒 = 𝑅(𝑓 , 𝐸𝑟𝑟𝑇𝑦𝑝𝑒) where 𝜆 is
the error rate of a certain error type (𝐸𝑟𝑟𝑇𝑦𝑝𝑒). The error type
can be 0D, 1D, or 2D. 𝑓 is the processor clock frequency.
Assuming the rate is constant for a given clock frequency, we
treat the distribution of probability errors that occur during a
period of time as the Poisson distribution. So, the probability
of having 𝑘 errors in a certain type during a period of time
𝑇 can be estimated using the Poisson distribution function:

𝑝 =

𝑒
−𝜆𝑓 ,𝐸𝑟𝑟𝑇 𝑦𝑝𝑒𝑇 (𝜆𝑓 ,𝐸𝑟𝑟𝑇 𝑦𝑝𝑒𝑇 )

𝑖

𝑖!
. Both single-side and full check-

sum encode the matrix for each matrix block individually.
They cannot tolerate more than one fault strike to a matrix
block during one error detection interval (i.e., one iteration of
matrix decomposition). Assuming the matrix is of size 𝑛 with
matrix block size 𝑏, single-side checksum ABFT can tolerate
up to 𝑆 =

𝑛
𝑏
× 𝑛

𝑏
0D errors, as long as two 0D errors do not

strike the same matrix block within one iteration of matrix
decomposition. Full checksum ABFT can tolerate up to 𝑆 0D
and 1D errors combined, as long as two 0D/1D errors do not
strike the same matrix block within one iteration of matrix de-
composition. Assuming error occurs randomly and uniformly
in time and space, we provide the theoretical estimation on
the probability that ABFT can detect and correct all errors in
one detection interval (i.e. Fault Coverage (FC)).

𝐹𝐶𝑠𝑖𝑛𝑔𝑙𝑒 (𝑓 ,𝑇 ) =(
𝑆∑︁

𝑘=0

𝑒−𝜆𝑓 ,0𝐷𝑇 (𝜆𝑓 ,0𝐷𝑇 )
𝑘

𝑘!

𝑘∏
𝑖=0

𝑆 − 𝑖

𝑆

)
𝑒−𝜆𝑓 ,1𝐷𝑇 𝑒−𝜆𝑓 ,2𝐷𝑇

𝐹𝐶𝑓 𝑢𝑙𝑙 (𝑓 ,𝑇 ) =

©­«
𝑆∑︁

𝑘=0

𝑆−𝑘∑︁
𝑗=0

𝑒−𝜆𝑓 ,0𝐷𝑇 (𝜆𝑓 ,0𝐷𝑇 )
𝑘

𝑘!

𝑒−𝜆𝑓 ,1𝐷𝑇 (𝜆𝑓 ,1𝐷𝑇 )
𝑗

𝑗 !

𝑘+𝑗∏
𝑖=0

𝑆 − 𝑖

𝑆

ª®¬
𝑒−𝜆𝑓 ,2𝐷𝑇

Table 1 show the example estimation results based on dif-

ferent GPU overclocking frequencies and the execution time

of the TMU operation in three selected iterations of the LU

decomposition. We define 𝐹𝐶 > 99.9999% as Full Cover-

age. Having the capability of fault coverage estimation, we

propose an adaptive-ABFT scheme. Unlike existing ABFT

works, which enable ABFT during the entire matrix decompo-

sition process, our adaptive-ABFT only enables ABFT error

detection and correction when the error rate is above 0. Al-

gorithm 1 shows the adaptive-ABFT strategy. We first check

the error rate function in Line 4. If the rate of any kind of

error is above zero, we check if applying ABFT can provide

enough fault coverage (Line 5 - 9). We prioritize single-side

ABFT over full ABFT to lower fault tolerance overhead. If

none of the ABFT schemes can provide enough fault cover-

age, we progressively lower the GPU clock frequency (Line

11) until enough fault coverage is provided. Finally, we return

the adjusted clock frequency together with flags indicating

if we need to do a single or full ABFT check. Please note

ABFT-OC would also work for CPU. We exclusively apply it

to GPU in our algorithm since SDCs only occur to the GPU

on our test system.

3.2 Bi-directional slack reclamation (BSR)

TMU’ TMU

DtoH HtoD

On GPU

On CPU

Slow down CPU using 
DVFS to reclaim slack

Speed up GPU using 
ABFT-OC to reclaim slack

Performance 
improvement

ABFT overhead

PD

PU' PU

Figure 7. Bi-directional slack reclamation (BSR)
The current best energy-saving approach, single directional

slack reclamation (SR) [7], saves energy by slowing down

tasks on the non-critical paths via DVFS. This work pro-

poses a novel Bi-directional slack reclamation (BSR) energy-

saving technique that reclaims slacks in two directions at

the same time using both ABFT-OC and DVFS. Specifically,

BSR reclaims slacks by simultaneously slowing down tasks

on the non-critical path using DVFS and speeding up tasks on

the critical path using ABFT-OC. An illustration of BSR is

shown in Figure 7. Compared with SR, BSR brings three

major advantages: 1 potential higher energy saving through

both DVFS and ABFT-OC at the same time; 2 performance

improvement in addition to energy saving optimization; 3

enabling performance-energy consumption trade-off.

3.2.1 Enhanced Algorithmic-based Slack Prediction. Slack

prediction is critical for making correct power status adjust-

ments so that energy saving can be maximized. As BSR en-

ables more opportunities for slack reclamation, it is more

critical for it to make accurate slack predictions. The state-of-

the-art algorithmic slack prediction was first proposed by [7].
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Table 2. Ratios of time complexity of PD, PU, TMU, transfer

size, and ABFT-related operations between 𝑘𝑡ℎ and 𝑘 + 1𝑡ℎ

iteration. 𝑛 and 𝑏 are the total size and the block size of the

input matrix respectively. PU of Cholesky and QR are omitted

since they do not affect the slack

Operation Computation

& Checksum

Update

Data Transfer Checksum Verifi-

cation

PD-Cho. 1 1 1

TMU-Cho. (1 + 𝑘) (1 −
𝑏

𝑛−𝑘𝑏−𝑏
)

N/A 1 − 𝑏
𝑛−𝑘𝑏−𝑏

PD-LU 1 − 6𝑏
3𝑛−(3𝑘−1)𝑏

1 − 1

𝑛−𝑘𝑏
1 − 1

𝑛−𝑘𝑏

PU-LU 1 − 𝑏
𝑛−𝑘𝑏−𝑏

N/A 1 − 𝑏
𝑛−𝑘𝑏−𝑏

TMU-LU 1 − 2𝑏
𝑛−𝑘𝑏

N/A 1 − 2𝑏
𝑛−𝑘𝑏

PD-QR 1 − 𝑏
6𝑛−(6𝑘+1)𝑏

1 − 𝑏
𝑛−𝑘𝑏−𝑏

1 − 𝑏
𝑛−𝑘𝑏−𝑏

TMU-QR 1 − 𝑏
𝑛−𝑘𝑏−𝑏

−
𝑏

𝑛−𝑘𝑏+𝑏
+

𝑏2

(𝑛−𝑘𝑏−𝑏 ) (𝑛−𝑘𝑏+𝑏 )

N/A 1 − 𝑏
𝑛−𝑘𝑏−𝑏

−
𝑏

𝑛−𝑘𝑏+𝑏
+

𝑏2

(𝑛−𝑘𝑏−𝑏 ) (𝑛−𝑘𝑏+𝑏 )

It mainly works by profiling the tasks in the 1
𝑠𝑡 iteration of

decomposition and using the profiled time together with ratios

of computational time complexity between 𝑘𝑡ℎ iteration and

the 1
𝑠𝑡 to predict the execution time of tasks in the 𝑘𝑡ℎ itera-

tion of decomposition. By leveraging algorithmic knowledge

and profiling results, algorithmic slack prediction can achieve

much higher prediction accuracy compared with statistical-

learning-based approaches and hardware-based approaches.

However, we find that the accuracy of current algorithmic

slack prediction highly relies on the profiling accuracy of the

1
𝑠𝑡 iteration and the assumption that computational efficiency

stays constant across different iterations on a given processor.

As the measurement of the 1
𝑠𝑡 iteration can be inaccurate

(e.g., when it is short) and the computational efficiency of

tasks can also change considerably throughout the decomposi-

tion process, all these inaccuracies can accumulate and cause

large prediction errors in the latter part of the decomposition

process, which lead to wrong slack reclamation decisions.

In BSR, we propose an enhanced algorithmic-based slack

prediction that greatly improves slack prediction accuracy.

The enhanced algorithmic-based slack prediction rely on the

profiled execution time of the 𝑝 last neighbor iterations to pre-

dict the execution time of the current iteration to reduce the

negative impacts bring by inaccurate profiling and changes

in computational efficiency since tasks in neighbor iterations

tend to have similar input sizes and thus similar computa-

tional efficiencies. Since a closer neighbor has a more ac-

curate estimation of computational efficiency, we apply dif-

ferent weights to different profiling results in our enhanced

algorithmic-based slack prediction. Specifically, the execution

time of a task in 𝑘𝑡ℎ iteration (𝑇
′𝑂𝑃
𝑘

) is predicted as:

𝑇
′𝑂𝑃
𝑘 = 𝑤1𝑟

𝑂𝑃
𝑘−1,𝑘𝑇

𝑂𝑃
𝑘−1 +𝑤2𝑟

𝑂𝑃
𝑘−2,𝑘𝑇

𝑂𝑃
𝑘−21 + ... +𝑤𝑝𝑟

𝑂𝑃
𝑘−𝑝,𝑘𝑇

𝑂𝑃
𝑘−𝑝

where 𝑟𝑂𝑃
𝑗,𝑘

is the ratio of theoretical time complexity of 𝑂𝑃

between 𝑗𝑡ℎ and 𝑘𝑡ℎ iteration, which can be calculated based

on the algorithm time complexity and relative change of the

input sizes of𝑂𝑃 . Table 2 shows the ratios of key components

of matrix decompositions. We omit the calculation process

due to the page limit.𝑇𝑂𝑃
𝑘−𝑖

is the actual profiled execution time

of 𝑂𝑃 of the 𝑖𝑡ℎ last neighbor. 𝑤1 is the weight we applied to

the 𝑖𝑡ℎ last neighbor. Through empirical study, we find that

𝑝 = 4 and 𝑤1 =
1

2
,𝑤2 =

1

4
,𝑤3 =

1

8
,𝑤4 =

1

8
can help provide

enough prediction accuracy for energy saving. When ABFT

is applied, the slack of the 𝑘𝑡ℎ iteration is predicted as:

𝑠𝑙𝑎𝑐𝑘𝑘 = 𝑇
′𝑇𝑀𝑈
𝑘 +𝑇

′𝑇𝑀𝑈 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 𝑢𝑝𝑑𝑎𝑡𝑒

𝑘
+𝑇

′𝑇𝑀𝑈 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 𝑣𝑒𝑟 𝑓

𝑘

𝑇
′𝑃𝑈
𝑘 +𝑇

′𝑃𝑈 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 𝑢𝑝𝑑𝑎𝑡𝑒

𝑘
+𝑇

′𝑃𝑈 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 𝑣𝑒𝑟 𝑓

𝑘

−𝑇
′𝑃𝐷
𝑘 −𝑇

′𝑃𝐷 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 𝑢𝑝𝑑𝑎𝑡𝑒

𝑘
−𝑇

′𝑃𝐷 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 𝑣𝑒𝑟 𝑓

𝑘

−𝑇
′𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

𝑘
−𝑇

′𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚

𝑘

3.2.2 Bi-directional slack reclamation strategies. Com-

pared with SR, BSR offers more flexibility by reclaiming

slacks from both directions, so the fractions of slacks that

are reclaimed by the two tasks are adjustable, which in turn

controls the performance-energy efficiency trade-off. So, we

define reclamation ratio (𝑟 ) to be the fraction of the slack

we try to reclaim by speeding up the task on the critical path

and 1 − 𝑟 to be the fraction we try to reclaim by slowing

down the task on the non-critical path. Algorithm 2 shows

our BSR algorithm that makes decisions at the beginning of

each matrix decomposition iteration. The execution time of

tasks and slack are predicted in Line 3 - 4 using our enhanced

algorithmic-based slack prediction. Given reclamation ratio 𝑟 ,

we calculate the desired execution time of tasks on CPU and

GPU in Line 5 - 11. We also consider the overhead of DVFS

operations in our calculation to minimize the impact on per-

formance. Line 12 - 15 calculate the desired CPU/GPU clock

frequencies and limit them within the available frequency

range. Line 16 - 17 calculates the projected execution time

if we apply the desired frequencies. Note that the projected

time may be different from the desired time since desired

frequencies could be out of the available range. Finally, we

make decisions on whether or not we adjust CPU/GPU clock

frequencies in Line 18 - 22. If the projected time suggests

that it can make a negative impact on the performance, it

will skip frequency adjustment for this iteration i.e., setting

AdjustCPU/GPU to FALSE. Note that this does not mean

we do not reclaim slack of this iteration. Since we still keep

the adjusted CPU/GPU frequencies from the last iteration,

the partial of slack can still be reclaimed. This strategy en-

sures we reclaim most of the slacks while minimizing perfor-

mance impact. Line 23 invokes our adaptive-ABFT strategy

for overclocking. Finally, we return the final decisions re-

garding CPU/GPU clock frequency adjustments and ABFT

protection strength for the current iteration.
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Algorithm 2: BSR strategy

1 Function BSR():
In :reclamation ratio 𝑟

In : iteration 𝑘

In :GPU DVFS latency 𝐿𝐺𝑃𝑈

In :CPU DVFS latency 𝐿𝐶𝑃𝑈

In :Desired ABFT fault coverage 𝐹𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑

2 Apply optimized guardband for both CPU and

GPU

3 𝑇 ′𝐶𝑃𝑈 ,𝑇 ′𝐺𝑃𝑈 , 𝑇 ′𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 ←

EnhancedAlgorithmicPrediction(𝑘)

4 𝑠𝑙𝑎𝑐𝑘𝑘 ←= 𝑇 ′𝐺𝑃𝑈 −𝑇 ′𝐶𝑃𝑈 −𝑇 ′𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

5 if 𝑠𝑙𝑎𝑐𝑘𝑘 > 0 then

6 𝑇𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

← 𝑇 ′𝐺𝑃𝑈 − (𝑠𝑙𝑎𝑐𝑘𝑘 × 𝑟 ) − 𝐿
𝐺𝑃𝑈

7 𝑇𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

← 𝑇𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

− 𝐿𝐶𝑃𝑈 −𝑇 ′𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

8 else

9 𝑇𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

← 𝑇 ′𝐶𝑃𝑈 − (𝑠𝑙𝑎𝑐𝑘𝑘 × 𝑟 ) − 𝐿
𝐶𝑃𝑈

10 𝑇𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

← 𝑇𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

− 𝐿𝐺𝑃𝑈 +𝑇 ′𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

11 end

12 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

← 𝑅𝑜𝑢𝑛𝑑𝑢𝑝 (𝐹𝐺𝑃𝑈
𝐵𝐴𝑆𝐸

× 𝑇 ′𝐺𝑃𝑈

𝑇𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 100𝑀ℎ𝑧)

13 𝐹𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

← 𝑅𝑜𝑢𝑛𝑑𝑢𝑝 (𝐹𝐶𝑃𝑈
𝐵𝐴𝑆𝐸

× 𝑇 ′𝐶𝑃𝑈

𝑇𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 100𝑀ℎ𝑧)

14 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

= 𝐿𝑖𝑚𝑖𝑡𝑇𝑜𝑅𝑎𝑛𝑔𝑒 (𝐹𝐺𝑃𝑈
𝑚𝑖𝑛 , 𝐹𝐺𝑃𝑈

𝑚𝑎𝑥 )

15 𝐹𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

= 𝐿𝑖𝑚𝑖𝑡𝑇𝑜𝑅𝑎𝑛𝑔𝑒 (𝐹𝐶𝑃𝑈𝑚𝑖𝑛 , 𝐹𝐶𝑃𝑈𝑚𝑎𝑥 )

16 𝑇𝐺𝑃𝑈
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑

= 𝑇 ′𝐺𝑃𝑈 ×
𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐹𝐺𝑃𝑈
𝐵𝐴𝑆𝐸

17 𝑇𝐶𝑃𝑈
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑

= 𝑇 ′𝐶𝑃𝑈 ×
𝐹𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐹𝐶𝑃𝑈
𝐵𝐴𝑆𝐸

18 𝑇𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑇 ′𝐺𝑃𝑈 ,𝑇 ′𝐶𝑃𝑈 +𝑇 ′𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 )

19 if 𝑇𝐺𝑃𝑈
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑

> 𝑇𝑚𝑎𝑥 then 𝐴𝑑 𝑗𝑢𝑠𝑡𝐺𝑃𝑈 ← 𝐹𝐴𝐿𝑆𝐸;

20 else 𝐴𝑑 𝑗𝑢𝑠𝑡𝐺𝑃𝑈 ← 𝑇𝑅𝑈𝐸;

21 if 𝑇𝐶𝑃𝑈
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑

> 𝑇𝑚𝑎𝑥 then 𝐴𝑑 𝑗𝑢𝑠𝑡𝐶𝑃𝑈 ← 𝐹𝐴𝐿𝑆𝐸;

22 else 𝐴𝑑 𝑗𝑢𝑠𝑡𝐶𝑃𝑈 ← 𝑇𝑅𝑈𝐸;

23 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘, 𝐹𝑢𝑙𝑙𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘 ←

ABFT-OC(𝐹𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝐹𝐺𝑃𝑈
𝐵𝐴𝑆𝐸

, 𝑇 ′𝐺𝑃𝑈 )

24 return 𝐴𝑑 𝑗𝑢𝑠𝑡𝐶𝑃𝑈 , 𝐴𝑑 𝑗𝑢𝑠𝑡𝐺𝑃𝑈 , 𝐹𝐶𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

,𝐹𝐺𝑃𝑈
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

,

𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘, 𝐹𝑢𝑙𝑙𝐴𝐵𝐹𝑇𝐶ℎ𝑒𝑐𝑘

3.2.3 Theoretical performance improvement and energy

saving analysis. Next, we provide a theoretical analysis of

performance improvement and energy saving. With losing

generality, we assume that the slack on the CPU in the fol-

lowing discussion for simplification. The performance im-

provement mainly comes from speeding up the tasks on

the critical path. So, the performance improvement of iter-

ation 𝑘 can be simply calculated as: Δ𝑇 = 𝑇𝑜𝑙𝑑
𝑘
− 𝑇𝑛𝑒𝑤

𝑘
=

𝑇𝐺𝑃𝑈
𝑘
− (𝑇𝐺𝑃𝑈

𝑘
− 𝑠𝑙𝑎𝑐𝑘𝑘 × 𝑟 ) = 𝑠𝑙𝑎𝑐𝑘𝑘 × 𝑟 . This suggests that

higher 𝑟 leads to higher performance. As for energy consump-

tion, the theoretical amount of energy saving on the CPU

when adopting BSR with reclamation ratio 𝑟 in the iteration 𝑘

can be estimated as:

Δ𝐸𝐶𝑃𝑈𝑘 = Δ𝐸
𝐶𝑃𝑈 _𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑘
+ Δ𝐸𝐶𝑃𝑈 _𝑠𝑡𝑎𝑡𝑖𝑐

𝑘

Δ𝐸
𝐶𝑃𝑈 _𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑘
= 𝐸

𝐶𝑃𝑈 _𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑙𝑑

𝑘
− 𝐸

𝐶𝑃𝑈 _𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑛𝑒𝑤

𝑘
=

𝑑𝐶𝑃𝑈 𝑃𝐶𝑃𝑈𝑡𝑜𝑡𝑎𝑙𝑇
𝐶𝑃𝑈
𝑘 −

𝛼𝐶𝑃𝑈
(
𝑓 𝐶𝑃𝑈 _𝑛𝑒𝑤

𝑓 𝐶𝑃𝑈 _𝑜𝑙𝑑

)2.4
𝑑𝐶𝑃𝑈 𝑃𝐶𝑃𝑈𝑡𝑜𝑡𝑎𝑙 (𝑇

𝐶𝑃𝑈
𝑘 + 𝑠𝑙𝑎𝑐𝑘𝑘 (1 − 𝑟 )) =

𝑑𝐶𝑃𝑈 𝑃𝐶𝑃𝑈𝑡𝑜𝑡𝑎𝑙𝑇
𝐶𝑃𝑈
𝑘 −

𝛼𝐶𝑃𝑈

(
𝑇𝐶𝑃𝑈
𝑘

𝑇𝐶𝑃𝑈
𝑘
+ 𝑠𝑙𝑎𝑐𝑘𝑘 (1 − 𝑟 )

)2.4
𝑑𝐶𝑃𝑈 𝑃𝐶𝑃𝑈𝑡𝑜𝑡𝑎𝑙

(𝑇𝐶𝑃𝑈
𝑘 + 𝑠𝑙𝑎𝑐𝑘𝑘 (1 − 𝑟 )) =(

1 − 𝛼𝐶𝑃𝑈
(𝑇𝐶𝑃𝑈

𝑘
)1.4

(𝑇𝐶𝑃𝑈
𝑘
+ 𝑠𝑙𝑎𝑐𝑘𝑘 × (1 − 𝑟 ))1.4

)
𝑑𝐶𝑃𝑈 𝑃𝐶𝑃𝑈𝑇𝐶𝑃𝑈

𝑘

Δ𝐸𝐶𝑃𝑈 _𝑠𝑡𝑎𝑡𝑖𝑐
𝑘

= (𝑇𝐶𝑃𝑈
𝑘 − 𝛼𝐶𝑃𝑈 (𝑇𝐶𝑃𝑈

𝑘 + 𝑠𝑙𝑎𝑐𝑘𝑘 (1 − 𝑟 )))

(1 − 𝑑𝐶𝑃𝑈 )𝑃𝐶𝑃𝑈𝑡𝑜𝑡𝑎𝑙

Similarly, we can estimate the energy saving on GPUs as

follows:

Δ𝐸𝐺𝑃𝑈
𝑘 =

(
1 − 𝛼𝐺𝑃𝑈

(𝑇𝐺𝑃𝑈
𝑘
)1.4

(𝑇𝐺𝑃𝑈
𝑘

− 𝑠𝑙𝑎𝑐𝑘 × 𝑟 )1.4

)
𝑑𝐺𝑃𝑈 𝑃𝐺𝑃𝑈

𝑡𝑜𝑡𝑎𝑙𝑇
𝐺𝑃𝑈
𝑘 +

(𝑇𝐺𝑃𝑈
𝑘 − 𝛼𝐺𝑃𝑈 (𝑇𝐺𝑃𝑈

𝑘 − 𝑠𝑙𝑎𝑐𝑘𝑘 × 𝑟 )) (1 − 𝑑
𝐺𝑃𝑈 )𝑃𝐺𝑃𝑈

𝑡𝑜𝑡𝑎𝑙

Where 𝛼𝐶𝑃𝑈 /𝐺𝑃𝑈 are total power reduction factors when

we use optimized guardband of CPU/GPU. We measure that

in our hardware profiling work Figure 5. For clock frequen-

cies out of the default range, we use constant values of the last

measured value to estimate (dashed line). 𝑇
𝐶𝑃𝑈 /𝐺𝑃𝑈

𝑘
are the

original task execution time of CPU/GPU. 𝑃
𝐶𝑃𝑈 /𝐺𝑃𝑈

𝑡𝑜𝑡𝑎𝑙
are the

total power of CPU/GPU at the default guardband and clock

frequencies. 𝑑𝐶𝑃𝑈 /𝐺𝑃𝑈 are the ratios of the CPU/GPU dy-

namic power in the total power consumption. The change of

CPU/GPU dynamic power is estimated using: 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∝ 𝑓 2.4

[17]. When the critical path is on the GPU, it is for sure we

can save energy on the CPU. However, whether or not we can

save energy on the GPU depends on 𝛼𝐺𝑃𝑈 and 𝑟 . Assuming

power reduction factor 𝛼𝐺𝑃𝑈 is fixed and minimized by apply-

ing optimized processor guardband, then the reclamation ratio

𝑟 controls the trade-off between performance improvement

and energy consumption. Higher 𝑟 leads to higher perfor-

mance but less energy saving, and vice versa. The highest

energy saving can be achieved with 𝑟𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = 0 without

performance improvement. The max 𝑟 that achieves maxi-

mum without impacting energy efficiency is hard to be solved

directly. So, we use a numerical approach to solve for 𝑟 . By

solving Δ𝐸𝐶𝑃𝑈
𝑘
+ Δ𝐸𝐺𝑃𝑈

𝑘
= 0 using Newton’s method, we are

able to get estimated solutions. For example, for decomposi-

tion with input 30730×30720, the averaged reclamation ratios

across all iterations are 0.28 for Cholesky, 0.26 for LU, and
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0.31 for QR, which approximately matches our experimental

results in Figure 11.

4 Experimental Evaluation

4.1 Evaluation Methodology

We compare BSR with two state-of-the-art energy-saving

approaches R2H and SR together with the original design in

the MAGMA library.

• Original: The original matrix decompositions in the

state-of-the-art MAGMA library. We keep the CPU/GPU

clock frequency fixed at the default (autoboost dis-

abled).

• R2H: The original matrix decompositions in the state-

of-the-art MAGMA library with CPU/GPU autoboost

feature enabled. The processor clock frequency is dy-

namically set according to the workload.

• SR: The state-of-the-art energy efficient matrix decom-

positions using single directional slack reclamation [7].

• BSR: Our proposed matrix decomposition with BSR en-

ergy efficiency optimization and ABFT-OC. Clock fre-

quencies can reach greater ranch where SDCs can occur

but are correctable by ABFT.

All the above versions are implemented for Cholesky, LU,

and QR decomposition for double precision inputs with block

size tuned for performance.

Table 3. Hardware/System Configuration for Experiments.

Processor Intel Core i7-9700K NVIDIA RTX 2080 Ti

Base Clock 3.5(↑by0.1)GHz 1.3(↑by 0.1)GHz

Overclocking 3.6-4.5(↑by0.1)GHz 1.4-2.2(↑by 0.1)GHz

Memory 32 GB RAM 12 GB RAM

Default guard-

band

Vcore offset: 0mV Graphics clock offset: 0

Optimized

guardband

Vcore offset: -150mV Graphics clock offset: +200
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Figure 8. Slack prediction error of the LU decomposition

using different approaches

4.2 Experimental Environment

All experiments are performed on a power-aware CPU-GPU

server. Table 3 lists hardware configuration of the experimen-

tal platform and system tools used for adjusting CPU/GPU

guardband/clock frequencies and for measuring the energy

consumption of CPU and GPU. Limited to the capability of

our test platform, we only measure the energy consumption

1 11 21 31 41 51

Decomposition Iteration

No FT Single-side ABFT Full ABFT

No FT

Single-ABFT

Full-ABFT

Adaptive 

ABFT 

Overhead Correct

0% 23.28%

8% 76.11%

12% 100.00%

4% 100.00%

Figure 9. Comparing overhead and correctness when different

ABFT scheme is applied in double precision LU decomposi-

tion with reclamation ratio 𝑟 = 0.25

of the CPU package and GPU device. For accurate measure-

ment of energy consumption and stable SDCs error rate at

reduced guardband, we adjust the external cooling system

to stabilize the CPU/GPU temperature at 45°C and 55°C

respectively. From the software perspective, all matrix de-

composition versions are built with GCC 7.4.0 and CUDA

11.6 with the highest optimization flags turned on. NVIDIA

cuBLAS 11.1 and Intel MKL 2020 are used as linear algebra

computing kernels. MKL is configured to use all CPU cores.

The operating system is Ubuntu 18.04.

4.3 Evaluation Results

4.3.1 Online slack prediction accuracy comparison. Fig-

ure 8 shows the relative online prediction error using only the

first iteration to predict [7] vs. our enhanced slack prediction

approach proposed in this work. We can see both approaches

can give less than 10% relative error for the first 2/3 of the

iterations. However, since [7] only depends on the profiling

result of the first iteration, the error caused by profiling and

prediction will accumulate and become significant (about

11.4% on average) as the decomposition progresses. Our en-

hanced algorithmic slack prediction uses an online calibration

approach to effectively avoid error from accumulating and

reducing relative prediction error to around 4% on average.

4.3.2 ABFT overhead and correctness comparison. Fig-

ure 9 shows the computational overhead and probability of

computing correctness when different ABFT schemes are

applied. We use double precision LU decomposition with

BSR reclamation ratio 𝑟 = 0.25 as an example. The correct-

ness is estimated by repeating the decomposition 100,000

times and comparing the results. We observe similar results

on other types of decompositions. Due to relative short slack

in the later part of decomposition, higher GPU clock frequen-

cies are needed, which reach degrees of overclocking that

can have SDC errors. If we do not apply any fault tolerance,

only 23.28% of the overall matrix decomposition tests out-

put correct results. If we apply single-side checksum ABFT,

it improves the percentage of tests with correct output to

76.11% since 0D errors can be effectively detected and cor-

rected. However, 1D error cannot be handled by single-side
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Figure 10. Time and energy saving breakdown of the 2𝑛𝑑 and 50
𝑡ℎ iteration of the LU decomposition (Input size: 30720× 30720).

Energy saving is compared with the original design. Positive values represent energy saving and negative values represent extra

energy costs.
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Figure 11. Pareto efficient performance-energy consumption trade-off enabled by adjusting the reclamation ratio. Input size:

30720 × 30720 double precision
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Figure 12. Overall energy saving and ED2P Reduction com-

pared with the original design. Input size: 30720 × 30720.
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Figure 13. Overall energy saving of LU compared with the

original design with different input matrix sizes

checksum ABFT. When full checksum ABFT is applied, it

can ensure all decomposition tests are correct, but it also

brings 12% overhead. Our adaptive-ABFT can adaptively

apply necessary levels of fault tolerance to ensure high re-

liability and low overhead. For example, when we set the

reclamation ratio 𝑟 = 0.25, the first 41 iterations are running

at fault-free clock frequencies (1700Mhz), so adaptive-ABFT

completely disables ABFT for eliminating unnecessary fault

tolerance overhead. For 42𝑡ℎ − 49𝑡ℎ iteration, the slacks need

to be reduced by BSR using more aggressive overclocking

(up to 1900Mhz), so it applies single-side checksum ABFT.

Finally, it applies full checksum ABFT after 50𝑡ℎ iteration

since higher clock frequencies are used (up to 2200Mhz). So,

with adaptive-ABFT, we can still ensure all decomposition

tests are correct with only 4% fault tolerance overhead.

4.3.3 Per iteration performance and energy comparison.

To understand how each of the different approaches affects the

performance and energy efficiency of matrix decompositions,

we show the profiling results of 2
𝑛𝑑 and 50

𝑡ℎ iteration of

the LU decomposition in terms of time and energy costs

breakdown in Figure 10. For the original version, we can see

the slack occurs on the CPU side for the 2𝑛𝑑 iteration and GPU

side for the 50𝑡ℎ iteration. For clarity, we refer to the case that

slack is on the CPU side as C and the case that slack is on

the GPU side as G in our following discussion. For R2H, we

observe noticeable energy saving in both C and G due to
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reduced energy consumption on the CPU side and GPU side

respectively. For SR, we see slack is fully reclaimed in G , but

not fully reclaimed in C due to the limited clock frequency

range on the CPU and longer slack length. For BSR, we test

different reclamation ratios 𝑟 and mark their values under the

bars. We set 𝑟 from 0 to a certain value that leads to maximum

achievable performance. This maximum 𝑟 is higher for C

than G since GPU has greater overclocking capabilities than

CPU in our system when we apply optimized guardband. We

can see maximum energy saving is achieved when 𝑟 = 0,

which is consistent with our previous theoretical analysis.

Maximum performance 𝑟 = 0.25 for C and G , which are

close to our theoretical estimation. When we increase 𝑟 , we

see an increase in energy consumption for the processor on

the critical path due to the increase in clock frequency. For C ,

we observe a slight increase in energy-saving since the slack

is long enough for the CPU to always run at the lowest clock

frequency, and reducing the total execution time can save

more CPU static energy. We also observe a slight decrease

in energy saving in G , mainly due to the slight increases in

clock frequencies. Even though it can still save energy since

1) the clock frequencies are low; 2) power reduction brings

by optimized guardband. Finally, Thanks to ABFT-OC, we

can exploit higher overclocking frequencies where we can

achieve higher performance and energy efficiency in C .

4.3.4 Overall energy saving and energy efficiency com-

parison. Next, we show the overall energy-saving capability

of different approaches in Figure 12(a). We evaluate all three

matrix decompositions with an input size of 30720 × 30720.

All four versions of each type of matrix decomposition pro-

duce a similar performance. To maximize energy saving the

reclamation ratio of BSR is set to 0. We can see that compared

with the state-of-the-art MAGMA library, our BSR is able

to save energy by 30.7% for Cholesky, 28.2% for LU, and

28.8% for QR. That is 1.31 × −1.49× more energy saving

compared with the current state-of-the-art SR energy saving

approach and 2.03 × −2.20× more energy saving compared

with R2H. In addition, we use 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐷𝑒𝑙𝑎𝑦2 (ED2P) to

measure the energy efficiency of matrix decompositions. As

shown in Figure 12(b), compared with the original design,

our BSR is able to reduce ED2P by 29.3%-31.6%. Compared

with R2H, BSR is able to reduce ED2P by 18.6%-20.7%. Fi-

nally, compared with SR, BSR is able to reduce ED2P by

10.8%-14.1%.

4.3.5 Overall energy saving on different input sizes. In

Figure 13, we show the results of applying energy-saving

approaches on LU decomposition with different input sizes.

Limited by the page space, we only show the results for LU de-

composition. Other matrix decompositions behave similarly.

We can see our BSR is able to stably save energy consumption

across different input matrix sizes ranging from 5120 × 5120

and above. Note that it is hard to save energy on smaller ma-

trices since they either lead to high fault tolerance overhead 
or small slacks that are hard to be reclaimed.

4.3.6 Overall Pareto efficient performance-energy con-

sumption trade-off. Finally, we show the overall Pareto ef-

ficient performance-energy consumption t rade-off enabled 
by adjusting the reclamation ratio in BSR. As shown in Fig-

ure 11, by adjusting the reclamation ratio to a minimum 0, we 
achieve max energy saving with similar performance to the 
original design. In this case, compared with the original de-

sign, BSR is able to save energy by 28.2%-30.7%. Compared 
with R2H, BSR is able to save energy by 17.1%-18.9%. Com-

pared with SR, BSR is able to save energy by 9.6%-11.7%. 
By increasing the reclamation ratio, we are able to adjust the 
performance or energy consumption of matrix decomposi-

tions. For example, with equal or less energy consumption, 
compared with the original design BSR is enable to improve 
the performance by 1.38×-1.51×. Also, compared with R2H, 
BSR is enable to improve the performance by 1.33×-1.43×. 
In addition, compared with SR, BSR is enable to improve the 
performance by 1.36×-1.43×. Finally, we see the results of 
BSR with different reclamation ratios form a Pareto set such 
that we cannot improve energy saving and performance at the 
same time without reliability degradation.

5 Conclusion

In this work, we focused on further improving the energy sav-

ing of matrix decompositions on CPU-GPU heterogeneous 
systems beyond existing state-of-the-art works. To achieve 
our goal, we first proposed ABFT-OC, a novel overclocking 
technique that is protected by ABFT to enable reliable com-

putation for key operations in matrix decompositions when 
overclocking. Next, based on ABFT-OC, we proposed BSR, 
a novel matrix decomposition framework, that aims to maxi-

mize energy saving while maintaining performance and relia-

bility. We evaluated BSR on three key matrix decomposition 
algorithms - Cholesky, LU, and QR. Experiments show that 
BSR is able to save up to 11.7% more energy compared with 
the current best energy saving optimization approach with no 
performance degradation and up to 14.1% ED2P reduction. 
Also, BSR enables the Pareto efficient performance-energy 
trade-off, which is able to provide up to 1.43× performance 
improvement without costing extra energy.
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A Artifact Appendix

A.1 Abstract

This artifact contains the software framework (PowerLA) for

energy saving matrix decomposition evaluation. It includes

the energy-saving implementations of Cholesky, LU, and QR

decomposition using H2R, SR, and BSR approaches. The

framework is built based on the hybrid matrix decomposition

algorithms in the MAGMA library. This artifact is available

at: https://doi.org/10.5281/zenodo.7317070

A.2 Hardware requirements

• x86 CPU and NVIDIA GPUs (tested on a server with

Intel Core i7-9700K with NVIDIA RTX 2080 Ti)

A.3 OS requirements

• Linux operating system (tested on Ubuntu 18.04)

A.4 Software dependencies/configurations

• For measuring CPU power: cpu-energy-meter

• For adjusting CPU clock frequency: cpupower

• For adjusting CPU core voltage: intel-undervolt

• For running GPU code: CUDA 11.4+.

• For measuring GPU power, control GPU clock offset:

NVIDIA GPU driver 450.80.02+.

• For enabling GPU overclocking, set Coolbits to the

maximum allowed. The Coolbits on the tested system

was set to 28.

• For compilation: GCC 7.5.0+ and NVCC 11.4+.

• For configuring the project: CMake 2.8+.
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A.5 Building our PowerLA framework

• The PowerLA framework was built based on the MAGMA

library v 2.5.4, so it uses the same build system as the

MAGMA library. Please follow the README.md in

the root directory to build PowerLA.

A.6 Running optimized matrix decompositions

1. The major three one-sided matrix decomposition algorithms

(Cholesky, LU, and QR) are optimized. They are implemented

in:

• Cholesky: ./src/dportf_gpu.cpp; ./src/sportf_gpu.cpp

• LU: ./src/dgetrf_gpu.cpp; ./src/sgetrf_gpu.cpp

• QR: ./src/dgeqrf_gpu.cpp; ./src/sgeqrf_gpu.cpp

In each source code file, we added the following variables

to control the energy-saving and fault-tolerance behavior of

each matrix decomposition.

• int tmu_curr_freq and int tmu_base_freq:

set the current and based clock frequency of GPU. They

should be the same.

• int tmu_base_offset: set the base clock offset

of GPU.

• int tmu_opt_offset: set the optimized clock off-

set of GPU.

• adj_gpu(device, tmu_base_freq, 338000):

set the power limit of GPU.

• int pd_curr_freq and int pd_base_freq:

set the current and based clock frequency of CPU. They

should be the same.

• bool reclaim_slack: control if we want to en-

able Slack Reclamation (BSR or SR).

• double reclamation_ratio: control how much

of the slack is reclaimed by the task on the critical path.

• bool overclock: control if we want to overclock

with undervolting.

• bool autoboost: control if we want to enable hard-

ware R2H.

• bool COL_FT and bool ROW_FT control if we want

to enable ABFT (single-side or full checksum)

2. Once the PowerLA framework is built, the MAGMA testing

binary executables can be used to run each matrix decompo-

sition with a specified input matrix size. The executables can

be run with:

<build dir>/testing/testing_*_gpu -N <size>

3. Configuring the variables for different modes

Original R2H SR BSR

reclaim_slack false false true true

reclaimnation_ratio N/A N/A 0 0-1

overclock false false false true

autoboost false true false false

COL_FT/ROW_FT false false false true

4. When each test finishes execution it will output:

• Energy consumption of CPU and GPU (total)

• Time cost (per operation & total)

• Predicted time cost (per iteration)

• The slack prediction error (total average)

• Clock frequency of CPU and GPU (per iteration)

• Decisions on slack reclamation (per iteration)
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