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Abstract

One-sided dense matrix decompositions (e.g., Cholesky, LU,
and QR) are the key components in scientific computing in
many different fields. Although their design has been highly
optimized for modern processors, they still consume a con-
siderable amount of energy. As CPU-GPU heterogeneous
systems are commonly used for matrix decompositions, in
this work, we aim to further improve the energy saving of one-
sided matrix decompositions on CPU-GPU heterogeneous
systems. We first build an Algorithm-Based Fault Tolerance
protected overclocking technique (ABFT—-0C) to enable us
to exploit reliable overclocking for key matrix decomposi-
tion operations. Then, we design an energy-saving matrix
decomposition framework, Bi-directional Slack Reclamation
(BSR), that can intelligently combine the capability provided
by ABFT-0OC and DVFS to maximize energy saving and
maintain performance and reliability. Experiments show that
BSRis able to save up to 11.7% more energy compared with
the current best energy saving optimization approach with no
performance degradation and up to 14.1% EnergyXDelay? re-
duction. Also, BSR enables the Pareto efficient performance-
energy trade-off, which is able to provide up to 1.43x perfor-
mance improvement without costing extra energy.
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1 Introduction

To meet performance requirements for current mission-critical
scientific computing, millions of computing cores are equipped
in modern High Performance Computing (HPC) systems con-
suming tens of megawatts of power [16]. With the increasing
need for higher performance, it is anticipated that future HPC
systems will consist of even more computing cores and con-
sume more power. As HPC systems are achieving higher
parallelism, how to achieve high performance and energy ef-
ficiency while ensuring computing reliability has become a
critical challenge for scientific computing.

As the type of processor that contributes the most of the
computing parallelism in many current and future HPC sys-
tems, Graphics Processing Units (GPUs), equipped with thou-
sands of low-power cores, offer high computational power
and energy efficiency. Many applications and libraries have
been designed and optimized for GPU accelerators [1, 3, 8, 9,
13,25, 34, 36, 42, 43]. Benefiting from the fact that GPUs are
designed for highly parallelizable computations while CPUs
are more efficient with serial computations, CPUs and GPUs
that are linked through fast interconnections [30, 31] are usu-
ally used together to form heterogeneous systems that can
efficiently handle a large spectrum of scientific computing
workloads. Many scientific applications or software begin
to have an optimized design for CPU-GPU heterogeneous
systems such as the MAGMA linear algebra library [15].

One-sided dense matrix decomposition such as Cholesky,
LU, and QR play a pivotal role in many scientific applica-
tions. Their state-of-the-art designs for CPU-GPU heteroge-
neous systems are proposed in [44, 45], and they have been
highly optimized in the MAGMA library and used as key
computational kernels by many applications across different
fields [18, 21, 23, 24, 35, 46, 53].

Many works have been done to improve the energy effi-
ciency of linear algebra operations. [7] proposed to use a
DVEFS-based approach to optimize matrix decompositions.
[2, 51, 52] seek to use reduced core supply voltage to reduce
the energy consumption of matrix-matrix multiplication op-
erations. Although much work has been done to improve the
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energy saving of matrix decomposition on CPU-GPU hetero-
geneous systems, it is still desirable to further improve their
energy saving since matrix decompositions as they still con-
sume a considerable amount of energy. Improving the energy
saving of matrix decomposition can lead to more energy-
efficient scientific computing. However, the major challenge,
as pointed out in [27, 28, 38, 51, 52], is that aggressive energy-
saving optimizations can weaken the reliability of the system
and cause performance degradation, which is unacceptable
for time-sensitive and mission-critical scientific applications.

In this work, we aim to further improve the energy saving
of one-sided matrix decompositions on CPU-GPU hetero-
geneous systems while maintaining performance and reli-
ability. We first build an Algorithm-Based Fault Tolerance
protected overclocking technique (ABFT-0C) to enable us
to exploit reliable overclocking for key matrix decomposi-
tion operations. Then, we design an energy-saving matrix
decomposition framework, Bi-directional Slack Reclamation
(BSR), that can intelligently combine the capability provided
by ABFT-0C and Dynamic Voltage and Frequency Scaling
(DVFS) to maximize energy saving and maintain perfor-
mance and reliability. Also, BSR enables the Pareto efficient
performance-energy trade-off. Specifically, our contributions
are listed as follows:

e We propose the first adaptive algorithm-based fault tol-
erance protected overclocking technique (ABFT-0C)
for matrix decompositions on CPU-GPU heterogeneous
systems. Overclocking with an optimized voltage guard-
band can enable us to exploit higher clock frequen-
cies with higher energy efficiency. However, aggressive
overclocking can decrease system reliability, so we
propose to couple ABFT with overclocking to enable
trustable computation. To reduce fault tolerance over-
head, we further propose a lightweight adaptive-ABFT
technique that automatically adjusts its fault tolerance
strength according to the error rate.

e Next, based on ABFT-0OC, we propose a novel slack-
based energy saving framework - Bi-directional Slack
Reclamation (BSR), which aims to exploit slack, pro-
cessor idle time, to save energy and enable flexible
Pareto efficient performance-energy trade-off. Differ-
ent from existing works, BSR reclaims slack in both
directions using both ABFT-0C and DVEFES to save
more energy and enable performance improvement.

e We implement our BSR on three key one-sided matrix
decompositions: Cholesky, LU, and QR. We evaluate
our implementation on a modern CPU-GPU hetero-
geneous system with Nvidia GPU. Experiments show
that BSR is able to save up to 11.7% more energy com-
pared with the current best energy saving optimiza-
tion approach with no performance degradation and up
to 14.1% Energy X Delay? reduction. Also, BSR en-
ables the Pareto efficient performance-energy trade-off,
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which is able to provide up to 1.43X performance im-
provement without costing extra energy.
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Figure 1. One iteration of LU decomposition
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Figure 2. Slacks occur when decomposing a 30720 X 30720
matrix on our heterogeneous system. Block size is optimized
for performance. Positive values represent slacks on the CPU
side and negative values represent slacks on the GPU side.

2 Related Works and Problem Statement

In this section, we first introduce the design of state-of-the-art
matrix decomposition on CPU-GPU heterogeneous systems
and we focus on discussing their key computing character-
istics. Then, we review how existing works leverage such
computing characteristics to optimize for energy efficiency.
Finally, we formulate our research problem and challenges.

2.1 State-of-the-art matrix decompositions

The state-of-the-art matrix decompositions for CPU-GPU het-
erogeneous systems use the blocked version matrix decom-
position algorithms. Blocks, logically divided sub-matrices,
form Panel and Trailing Matrix. The decomposition process
begins from the up left corner of the matrix and moves to-
wards the down right corner iteratively. An illustration of one
iteration of the LU decomposition is shown in Figure 1(a).
Each iteration includes three major operations: ‘1 Panel de-
composition (PD): L -1 X U11 «— A - 1; 2 Panel update



(PU): U12 « (L11)"! x A12; and '3 Trailing matrix update
(TMU): A’22 «— A22 —L21 x U12. Cholesky, LU, and QR de-
composition all share similar three operations. On CPU-GPU
heterogeneous systems, the three operations are assigned to
different processors based on their characteristics. PD is as-
signed to the CPUs since it is highly sequential. PU and TMU
are assigned to the GPUs as they are high parallelizable. As il-
lustrated in Figure 1(b), to overlap the computation on CPUs
and GPUs, a look-ahead optimization [26] is used that allows
the partial PU and TMU to be done first (i.e., PU” and TMU’),
so that the PD of the next iteration can be done with the rest
of PU and TMU concurrently. Depending on the computa-
tional power of the CPU/GPU and the amount of workload
assigned during decomposition, those concurrent tasks may
finish at different times, which leads to idle computing cycles
on the CPU or GPU. The idle is called slack. Figure 2 show
how slack length can change during Cholesky, LU, and QR
decompositions on our test platform.

2.2 Existing slack-based energy saving

Matrix decompositions have been designed to maximize their
usage on highly optimized BLAS-3 GPU kernels, so their
energy efficiency is inherently high, which leaves limited
room for further optimization. As for now, the most effective
class of energy-saving optimizations for matrix decomposi-
tions on CPU-GPU heterogeneous systems is DVFS-based
approaches, which aim to exploit different energy-saving tech-
niques when there are slacks.

On GPU ™Y
pu T A e
On CPU DtoH o PD || HtoD | .
A T B
Race: Execute at Halt: Reduce to
highest perf. lowest power state
(a) Race-to-Halt (R2H)
™
On GPU u
OnCPU DtoH H PD ‘l::>|->| HtoD
)
|
Slow down CPU

to reclaim slack
(b) Single directional slack reclamation (SR)

Figure 3. Existing slack-based energy saving
There are two main strategies for optimizing energy costs:

Race-to-Halt (R2H) [22, 37, 39] and Slack Reclamation (SR) [7].

As shown in Figure 3, the main idea of R2H is to timely re-
duce clock frequency to the minimum as soon as the tasks
on the non-critical path finish. The processor maintains its
minimum clock frequency during the slack to save energy.
This strategy is usually implemented by the hardware or the
operating system leveraging their workload monitoring ca-
pabilities. SR saves energy by slowing down the tasks on
the non-critical path. The reason this strategy can save en-
ergy is due to the relation between the dynamic power of
the processor and its clock frequency Pgynamic o f 24 117].
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Theoretically, SR is able to save more energy compared with
R2H [7]. Since the processor’s clock frequency need to be
adjusted before the execution of each task and the length of
slack can change as shown in Figure 2, some form of compu-
tation pattern prediction is necessary. In the start-of-the-art
SR [7], the authors propose to predict computation patterns
leveraging algorithmic knowledge in matrix decompositions.

2.3 Motivation of further improving energy saving

Despite a lot of research efforts have been made to improve
the energy saving of matrix decomposition on CPU-GPU
heterogeneous systems, it is still desirable to further improve
their energy saving since matrix decompositions are heavily
used in many scientific applications. Thus improving the
energy saving of matrix decomposition can lead to more
energy-efficient scientific computing.

2.4 Challenges of further improving energy saving

2.4.1 Performance degradation. DVFS is designed to en-
able performance-energy trade-off while maintaining pro-
cessor reliability. So, existing DVFS-based energy-saving
techniques can only be applied to tasks on the non-critical
path to avoid negatively impacting the overall performance.
This has already been extensively exploited by existing works.
To save even more energy, the only other choice is to apply
DVEFES-based energy-saving techniques to tasks on the critical
path, however, this will inevitably lead to performance degra-
dation to the overall decomposition since modern CPU and
GPU processors tend to have better energy efficiency when
running at lower clock frequencies.

2.4.2 Reliability degradation. Other approaches such as
processor undervolting can also be used to reduce the energy
cost of computation. Since it works by decreasing the core
supply voltage while maintaining the same clock frequencies,
it can save energy without performance degradation. However,
they can decrease system reliability [2, 51, 52]. Such reliabil-
ity degradation can be manifested as hard errors (e.g., process
or system crash) or SDCs (e.g., incorrect calculation, bit-flips
in memory cells), which can seriously decrease the reliabil-
ity of matrix decomposition. Although ABFT has been used
with undervolting in [2, 51] to improve the energy efficiency
of matrix-matrix multiplications and ensure computing cor-
rectness, applying existing ABFT techniques can still bring
considerable performance overhead. This overhead can be
especially high for matrix decompositions since the iterative
computing fashion is prone to error propagation, which needs
the strongest variant of ABFT, full checksum ABFT [4], to
provide sufficient protection.

2.5 Research questions

In this work, we try to answer the following research ques-
tions:



RQ:1 How to further improve energy saving of matrix de-
compositions on CPU-GPU heterogeneous system beyond
the state-of-the-art works?

RQ:2 How to maximize energy saving for matrix decompo-
sition while maintaining both performance and reliability at
the same time?

RQ:3 How to enable performance-energy trade-off in matrix
decomposition?
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Figure 4. Overview of our energy-saving matrix decomposi-
tion framework

3 Design of Energy-Saving Matrix
Decomposition

In this work, we propose to build a matrix decomposition
framework that maximizes energy saving while maintaining
both performance and reliability at the same time. Figure
4 shows the overview of our framework. We first focus on
enabling reliable computation when overclocking by cou-
pling ABFT with overclocking - ABFT-0C. To reduce fault
tolerance overhead, we further propose a lightweight adaptive-
ABFT technique that automatically adjusts its fault tolerance
strength according to the error rate. Next, based on ABFT-0C,
we propose a novel slack-based energy saving optimization
framework - BSR, which aims to exploit slack, to save en-
ergy and enable flexible Pareto efficient performance-energy
trade-off. Different from existing works, BSR reclaims slack
in both directions using both ABFT-0OC and DVFS to save
more energy and enable performance improvement.

3.1 Adaptive Algorithm-Based Fault Tolerance
Protected Overclocking (ABFT—0C)

To design a technique that maximize energy saving for ma-
trix decompositions, we seek hardware energy optimization
techniques beyond DVFS. DVFS has been extensively used
for energy saving by both hardware and applications. It op-
timizes energy efficiency by lowering the core voltage (V)
with the decrease of clock frequency for reducing energy
consumption. However, lowering frequency can inevitably
cause performance degradation. Processor voltage guardband
optimization largely mitigates this issue by allowing lowering
of the core voltage without decreasing clock frequency or
overclocking without violating the hardware power limit.

3.1.1 Voltage guardband optimization for overclocking.
In this work, we define overclocking as the processor state
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Figure 5. Profiling results of our testing CPU and GPU

where it sustains at a higher-than-default clock frequencies.
Figure 5 (a) shows the achievable overclocking frequency
range and their energy efficiency of our test GPU at different
clock frequencies after we apply voltage guardband optimiza-
tion. Please note unlike previous works that were based on
Windows-based GPU driver [27, 29, 51] where the core volt-
age can be directly adjusted and monitored, the Linux-based
GPU driver does not allow us to directly control and monitor
the GPU core voltage. Even though we find that optimizing
the voltage guardband of GPU on Linux is still achievable
through the clock offset command of the NVML API on



Linux-based GPU driver. We omit the details due to the page
limit. CPU undervolting can be directly achieved on the Linux
system. We set the offset of the CPU core voltage using a
third-party tool intel-undervolt. Figure 5 (c) shows
the CPU energy efficiency before and after we set the opti-
mized voltage guardband. Please note unlike our testing GPU,
our testing CPU can achieve overclocking with the default
guardband, but an optimized guardband can help us achieve
higher energy efficiency.

Finding the optimized guardband is done by gradually low-
ering specific power settings of CPU/GPU to the point where
energy efficiency is maximized without process or OS crash.
The whole process can be done in less than 30 minutes and it
only needs to be done once during software installation. As
optimized guardband can be workload-dependent, we specif-
ically use the workload in matrix decomposition i.e., TMU
on GPU and PD on CPU to find optimized guardband. Also,
as shown in Figure 5 (b), we observe that setting to extreme
high clock frequencies for the GPU can weaken the reliability
of computation e.g., SDCs. So, we propose to incorporate
fault tolerance with overclocking by designing ABFT—-0C.

3.1.2 Design of ABFT-OC. Reliable computation is the
foundation of our optimized matrix decomposition. As over-
clocking achieved through the use of optimized guardband
can lead to SDCs, we propose to use ABFT [4-6, 10-12, 14,
19, 20, 32, 33, 40, 41, 47-50] to handle SDCs during matrix
decompositions. Since the processor power state is under con-
trol and the corresponding SDC error rate is known, SDC
error rate is predictable during matrix decompositions. So
we propose the first ABFT that can adjust its fault tolerance
strength and overhead at runtime based on the predicted error
rate to minimize fault tolerance overhead and ensure correct-
ness. SDC refers to the kind of error that only causes incorrect
calculation results without process or system crash. When
using our optimized guardband, the SDC is caused by insuffi-
cient core voltage supply when at high clock frequencies. The
rate of SDC can increase as we increase the clock frequency
when we apply a optimized guardband at the same time.
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Figure 6. ABFT checksum for detecting and correcting SDCs
in matrix operations

Depending on where the hardware fault occurs, it may be
manifested as different kinds of SDC. For example, calcula-
tion error is usually caused by faults in the logic part of ALU

or FPU. Memory storage error is usually caused by faults
(e.g., bit flips) in the storage cells of DRAM, cache, or regis-
ters. For matrix operations, matrix elements can be repeatedly
accessed to obtain final results. If an element whose value
is corrupted gets repeatedly referenced, it may cause error
propagation. Depending on the cause of the error and the
computation pattern (i.e., how data is used/reused) of a matrix
operation, the error pattern can be different. The degrees of
error propagation [4] can be classified as: OD, 1D, and 2D.
0D: a single standalone error with no error propagation; 1D:
an error propagates to entire/part of one row/column; 2D: an
error propagates beyond one row/column. So, we distinguish
different degrees of error propagation in Figure 5.

Table 1. Theoretical estimation on ABFT fault coverage (FC)
on the TMU operation of the 5%, 10%, and 15" iteration of
LU decomposition if we apply different clock frequencies.

Iter. | ABFT | 1800MHz 1900MHz 2000MHz 2100MHz 2200MHz
Sth Single | Fault-free | Full Coverage 99.86% 97.51% 96.45%
Full | Fault-free | Full Coverage | Full Coverage | Full Coverage | Full Coverage
10t Single | Fault-free | Full Coverage 99.94% 98.92% 98.46%
Full | Fault-free | Full Coverage | Full Coverage | Full Coverage | Full Coverage
15th Single | Fault-free | Full Coverage 99.98% 99.76% 99.65%
Full | Fault-free | Full Coverage | Full Coverage | Full Coverage | Full Coverage

Algorithm 1: Adaptive-ABFT strategy

1 Function ABFT-0C () :
In :Desired ABFT fault coverage FCguesired
In :Desired GPU clock freq. F¢PY

&esired
In :Default GPU clock freq. Fy ¢p
In :Predicted operation execution time T"¢PV

2 SingleABFTCheck < FALSE
3 FullABFTCheck <« FALSE
4 while (AFGPU 0D >0l AFGPU 1D >0l

sire.

Apcru  ,p > 0) && 'SlngleABFTCheck &&

desired’

\Full ABFTCheck do
GPU  _ /GPU y Fiesirea
projected — Py,
; GPU GPU
6 if FCSi"QZE(FdESIred’ Tprojected) > FCaesired
then
7 | SingleABFTCheck = TRUE
8 else if FCp, (FSPY Tﬁij{z wteq) = FCesired
then
9 | FullABFTCheck = TRUE
10 else
GPU GPU
1 ‘ Fdesired Fdestred — 100MHz
12 end
13 end

14 return F(?P 4 »» SingleABFTCheck, FullABFTCheck
esire

ABFT is based on the idea that if we encode a certain
amount of matrix information in checksums before a matrix
operation and apply the same matrix operation to checksums,



the checksum relation would still hold for the resulting matrix.
By verifying the checksum relations after the operation, we
can detect and correct errors in the result matrix. Depend-
ing on how much information is encoded in checksums, the
fault tolerance strength is different. As shown in Figure 6,
there are two commonly schemes for checksum encoding: ‘1
Single side checksum encodes matrices along either rows or
columns. Since it only encodes the matrix in one dimension,
it brings relative lower overhead. However, it can only effi-
ciently tolerate OD error pattern. ‘2 Full checksum encodes
matrices along both rows and column at the same time. Since
it encodes matrices in both dimensions, it brings stronger
protection i.e., both 0D and 1D error patterns. However, it
also brings higher fault tolerance overhead.

Given that the fault tolerance strength is limited, we must
determine suitable ABFT protection according to the error
rate and limit the clock frequency range to ensure all errors
can be detected and corrected with a high probability. Other-
wise, undetected or uncorrected errors would cause serious
error propagation later, which requires recovery with high
overhead. In this work, we find that it is useful to estimate the
probability that a certain kind of ABFT can detect and correct
all errors given different error rates at different overclocking
frequencies. In order to do that, we first define an error rate
function R given clock frequency derived from our profiling
results in Figure 5: Ar grrrype = R(f, ErrType) where A is
the error rate of a certain error type (ErrType). The error type
can be 0D, 1D, or 2D. f is the processor clock frequency.
Assuming the rate is constant for a given clock frequency, we
treat the distribution of probability errors that occur during a
period of time as the Poisson distribution. So, the probability
of having k errors in a certain type during a period of time
T can be estimated using the Poisson distribution function:

e METTyrel (ApprrypeT)!

p= T . Both single-side and full check-
sum encode the matrix for each matrix block individually.
They cannot tolerate more than one fault strike to a matrix
block during one error detection interval (i.e., one iteration of
matrix decomposition). Assuming the matrix is of size n with
matrix block size b, single-side checksum ABFT can tolerate
up to § = # x 7 0D errors, as long as two 0D errors do not
strike the same matrix block within one iteration of matrix
decomposition. Full checksum ABFT can tolerate up to S 0D
and 1D errors combined, as long as two OD/1D errors do not
strike the same matrix block within one iteration of matrix de-
composition. Assuming error occurs randomly and uniformly
in time and space, we provide the theoretical estimation on
the probability that ABFT can detect and correct all errors in
one detection interval (i.e. Fault Coverage (FC)).

chingle(f T) =

i M l_[ S-i e~ AranT p=Ar2pT
=0 i=0 S
FCruu(f.T) =
S 5 e AponT) e ﬂleTuleT)f Hs-i
2 7 [1%

k=0 j=0 : i=0

e~ AranT

Table 1 show the example estimation results based on dif-
ferent GPU overclocking frequencies and the execution time
of the TMU operation in three selected iterations of the LU
decomposition. We define FC > 99.9999% as Full Cover-
age. Having the capability of fault coverage estimation, we
propose an adaptive-ABFT scheme. Unlike existing ABFT
works, which enable ABFT during the entire matrix decompo-
sition process, our adaptive-ABFT only enables ABFT error
detection and correction when the error rate is above 0. Al-
gorithm 1 shows the adaptive-ABFT strategy. We first check
the error rate function in Line 4. If the rate of any kind of
error is above zero, we check if applying ABFT can provide
enough fault coverage (Line 5 - 9). We prioritize single-side
ABFT over full ABFT to lower fault tolerance overhead. If
none of the ABFT schemes can provide enough fault cover-
age, we progressively lower the GPU clock frequency (Line
11) until enough fault coverage is provided. Finally, we return
the adjusted clock frequency together with flags indicating
if we need to do a single or full ABFT check. Please note
ABFT-0C would also work for CPU. We exclusively apply it
to GPU in our algorithm since SDCs only occur to the GPU
on our test system.

3.2 Bi-directional slack reclamation (BSR)

Speed up GPU using

ABFT overhead ABFT-OC to re\claim slack

K]

Slow down CPU using Performance
DVFS to reclaim slack improvement

Figure 7. Bi-directional slack reclamation (BSR)
The current best energy-saving approach, single directional

slack reclamation (SR) [7], saves energy by slowing down
tasks on the non-critical paths via DVFS. This work pro-
poses a novel Bi-directional slack reclamation (BSR) energy-
saving technique that reclaims slacks in two directions at
the same time using both ABFT-0C and DVFS. Specifically,
BSR reclaims slacks by simultaneously slowing down tasks
on the non-critical path using DVFS and speeding up tasks on
the critical path using ABFT—-OC. An illustration of BSR is
shown in Figure 7. Compared with SR, BSR brings three
major advantages: ‘1 potential higher energy saving through
both DVFS and ABFT-OC at the same time; ‘2 performance
improvement in addition to energy saving optimization; ‘3
enabling performance-energy consumption trade-off.

3.2.1 Enhanced Algorithmic-based Slack Prediction. Slack
prediction is critical for making correct power status adjust-
ments so that energy saving can be maximized. As BSR en-
ables more opportunities for slack reclamation, it is more
critical for it to make accurate slack predictions. The state-of-
the-art algorithmic slack prediction was first proposed by [7].



Table 2. Ratios of time complexity of PD, PU, TMU, transfer
size, and ABFT-related operations between k' and k + 1%
iteration. n and b are the total size and the block size of the
input matrix respectively. PU of Cholesky and QR are omitted
since they do not affect the slack

Operation | Computation Data Transfer | Checksum Verifi-
& Checksum cation
Update
PD-Cho. |1 1 1
TMU-Cho. | (1 7t i - N/A 1- —b—
k6E)
PD-LU [ 1- =5 1- 2= [1-1
PU-LU [1- 2~ N/A 1- 22—
TMU-LU |1--2. N/A 1- 2
PD-QR | 1- i -5 |- s
TMU-QR |1 - —b— - N/A 1 - 5 -
(n=kb=b) (n—kb+b) (n=kb=b) (n=Fkb+b)

It mainly works by profiling the tasks in the 1% iteration of
decomposition and using the profiled time together with ratios
of computational time complexity between k*” iteration and
the 1% to predict the execution time of tasks in the k%" itera-
tion of decomposition. By leveraging algorithmic knowledge
and profiling results, algorithmic slack prediction can achieve
much higher prediction accuracy compared with statistical-
learning-based approaches and hardware-based approaches.

However, we find that the accuracy of current algorithmic
slack prediction highly relies on the profiling accuracy of the
1% iteration and the assumption that computational efficiency
stays constant across different iterations on a given processor.
As the measurement of the 1% iteration can be inaccurate
(e.g., when it is short) and the computational efficiency of
tasks can also change considerably throughout the decomposi-
tion process, all these inaccuracies can accumulate and cause
large prediction errors in the latter part of the decomposition
process, which lead to wrong slack reclamation decisions.

In BSR, we propose an enhanced algorithmic-based slack
prediction that greatly improves slack prediction accuracy.
The enhanced algorithmic-based slack prediction rely on the
profiled execution time of the p last neighbor iterations to pre-
dict the execution time of the current iteration to reduce the
negative impacts bring by inaccurate profiling and changes
in computational efficiency since tasks in neighbor iterations
tend to have similar input sizes and thus similar computa-
tional efficiencies. Since a closer neighbor has a more ac-
curate estimation of computational efficiency, we apply dif-
ferent weights to different profiling results in our enhanced
algorithmic-based slack prediction. Specifically, the execution
time of a task in k" iteration (T,;OP ) is predicted as:

'OP _ OP oP
T, wlrk 1kT +wzrk sz

OP
k-21 T

+otwprd? ki
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where r P is the ratio of theoretical time complexity of OP

between j* h and k*" iteration, which can be calculated based
on the algorithm time complexity and relative change of the
input sizes of OP. Table 2 shows the ratios of key components
of matrix decompositions. We omit the calculation process
due to the page limit. TOP is the actual profiled execution time

of OP of the i*" last nelghbor. w is the weight we applied to
the i*" last neighbor. Through empirical study, we find that
p=4and wy = 3, wp = 3, w3 = 3, wy = g can help provide
enough prediction accuracy for energy saving. When ABFT
is applied, the slack of the k*” iteration is predicted as:

'TMU checksum verf
Tk
'PU checksum verf
Tk
'PD checksum verf
— Tk

_ T’Transfer checksum

’ 'TMU check dat
slack =T, TMU+Tk checksum update

'PU
Tk
_ T’PD _ T’PD checksum update
k k

n T];PU checksum update i

'Data Transfer

3.2.2 Bi-directional slack reclamation strategies. Com-
pared with SR, BSR offers more flexibility by reclaiming
slacks from both directions, so the fractions of slacks that
are reclaimed by the two tasks are adjustable, which in turn
controls the performance-energy efficiency trade-off. So, we
define reclamation ratio (r) to be the fraction of the slack
we try to reclaim by speeding up the task on the critical path
and 1 — r to be the fraction we try to reclaim by slowing
down the task on the non-critical path. Algorithm 2 shows
our BSR algorithm that makes decisions at the beginning of
each matrix decomposition iteration. The execution time of
tasks and slack are predicted in Line 3 - 4 using our enhanced
algorithmic-based slack prediction. Given reclamation ratio r,
we calculate the desired execution time of tasks on CPU and
GPU in Line 5 - 11. We also consider the overhead of DVFS
operations in our calculation to minimize the impact on per-
formance. Line 12 - 15 calculate the desired CPU/GPU clock
frequencies and limit them within the available frequency
range. Line 16 - 17 calculates the projected execution time
if we apply the desired frequencies. Note that the projected
time may be different from the desired time since desired
frequencies could be out of the available range. Finally, we
make decisions on whether or not we adjust CPU/GPU clock
frequencies in Line 18 - 22. If the projected time suggests
that it can make a negative impact on the performance, it
will skip frequency adjustment for this iteration i.e., setting
AdjustCPU/GPU to FALSE. Note that this does not mean
we do not reclaim slack of this iteration. Since we still keep
the adjusted CPU/GPU frequencies from the last iteration,
the partial of slack can still be reclaimed. This strategy en-
sures we reclaim most of the slacks while minimizing perfor-
mance impact. Line 23 invokes our adaptive-ABFT strategy
for overclocking. Finally, we return the final decisions re-
garding CPU/GPU clock frequency adjustments and ABFT
protection strength for the current iteration.



Algorithm 2: BSR strategy
1 Function BSR () :

In :reclamation ratio r
In titeration k
In :GPU DVFS latency L¢PV
In :CPU DVFS latency L¢PV
In :Desired ABFT fault coverage FCyesired
2 Apply optimized guardband for both CPU and
GPU
3 T/CPU TIGPU TlDataTransfer —
EnhancedAlgorithmicPrediction(k)
4 slackk - T/GPU _ T/CPU _ T/DataTransfer
5 if slack; > 0 then
6 Tfefged — T'SPU _ (slacky x r) — LGPU
CPU GPU CPU DataT
7 Tdesired < Tdesired -L =T ransfer
8 else
9 Tdiiged «— T'CPU _ (slacky x r) — LCPU
GPU CPU GPU DataT
10 desired desired L + 170 ransfer
1 end
T/GPU
12 | F$PY .« Roundup(F§ry, % TP 100Mhz)
T/CPU
13 | FSPU .« Roundup(F§hep % TP, 100Mhz)
GPU  _ 7+ .- GPU RGP
14 F‘ggge‘i = leltToRange(Frg;ng, Fggg
15 esireq = LimitToRange(F, ., F o
GPU  _ p/GPU . Fidred
16 projected — X o
CPU _ CPU , Foesrea
17 projected — T x FgﬁgE
18 Tmax — max(T/GPU T/CPU + T/DataTransfer)
1 | AT d > Tmax then AdjustGPU « FALSE;
20 else AdjustGPU < TRUE,
n | TP g > Tmax then AdjustCPU « FALSE;
22 else Ad justCPU < TRUE,
23 | FGPU . SingleABFTCheck, FullABFTCheck —
GPU GPU T/GPU
ABFT-OC(FCiesired, Fdesired’ BASE’ T )
24 return AdjustCPU, AdjustGPU, FSPY  FGPU
esire esire

SingleABFTCheck, FullABFTCheck

3.2.3 Theoretical performance improvement and energy
saving analysis. Next, we provide a theoretical analysis of
performance improvement and energy saving. With losing
generality, we assume that the slack on the CPU in the fol-
lowing discussion for simplification. The performance im-
provement mainly comes from speeding up the tasks on
the critical path. So, the performance improvement of iter-
ation k can be simply calculated as: AT = T]fld =Y =
TSPV — (TEPY — slacky x r) = slacky X r. This suggests that
higher r leads to higher performance. As for energy consump-
tion, the theoretical amount of energy saving on the CPU
when adopting BSR with reclamation ratio r in the iteration k
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,j E PU ﬁ ECPU dynamic ,j E PU _static

CPU_dynamic _ nCPU_dynamic_old _ nCPU_dynamic_new _
AE, =E, E, =
CPU pCPU +CPU
d PtotalTk -

cru (f CPUnew) 24 CPU pCPU (1-CPU
a (fCPUold ) d" P (T +slack(1-1)) =
CPU pCPU +CPU
d PtotalTk -
TCPU 2.4
aCPv k JCPU pCPU
TkCPU + slacki(1-r) total
(TEPY + slacke (1 - 1)) =
(TCPU)1.4
1— gCPU k JCPU pCPUTCPU
(TkCPU +slack X (1 —r))t4 k

AEEPU—SM”C — (TkCPU _ (XCPU(TkCPU + slackk(l _ r)))

CPU\ pCPU
(1 —d )Ptotal

Similarly, we can estimate the energy saving on GPUs as
follows:

AE]?PU — (1 _ aGPU GPUPGPUTkGPU+

total

(TkGPU)l'4
(TkGPU —slack x r)1'4)

(TSPY — aOPY(TEPY — slacky, x 1)) (1 - d°PU)PCPY

Where a“FU/GPU are total power reduction factors when
we use optimized guardband of CPU/GPU. We measure that
in our hardware profiling work Figure 5. For clock frequen-
cies out of the default range, we use constant values of the last
measured value to estimate (dashed line). ch PU/GPU

pCPU/GPU

original task execution time of CPU/GPU. P, are the
total power of CPU/GPU at the default guardband and clock
frequencies. dPY/9FU are the ratios of the CPU/GPU dy-
namic power in the total power consumption. The change of
CPU/GPU dynamic power is estimated using: Pgynamic o f**
[17]. When the critical path is on the GPU, it is for sure we
can save energy on the CPU. However, whether or not we can
save energy on the GPU depends on «®"V and r. Assuming
power reduction factor a®FU is fixed and minimized by apply-
ing optimized processor guardband, then the reclamation ratio
r controls the trade-off between performance improvement
and energy consumption. Higher r leads to higher perfor-
mance but less energy saving, and vice versa. The highest
energy saving can be achieved with 7,ax_energy = 0 without
performance improvement. The max r that achieves maxi-
mum without impacting energy efficiency is hard to be solved
directly. So, we use a numerical approach to solve for r. By
solving AE?P Uy AEEP U = 0 using Newton’s method, we are
able to get estimated solutions. For example, for decomposi-
tion with input 30730 x 30720, the averaged reclamation ratios
across all iterations are 0.28 for Cholesky, 0.26 for LU, and

are the



0.31 for QR, which approximately matches our experimental
results in Figure 11.

4 Experimental Evaluation
4.1 Evaluation Methodology

We compare BSR with two state-of-the-art energy-saving
approaches R2H and SR together with the original design in
the MAGMA library.
Original: The original matrix decompositions in the
state-of-the-art MAGMA library. We keep the CPU/GPU
clock frequency fixed at the default (autoboost dis-
abled).
R2H: The original matrix decompositions in the state-
of-the-art MAGMA library with CPU/GPU autoboost
feature enabled. The processor clock frequency is dy-
namically set according to the workload.
SR: The state-of-the-art energy efficient matrix decom-
positions using single directional slack reclamation [7].
BSR: Our proposed matrix decomposition with BSR en-
ergy efficiency optimization and ABFT-0OC. Clock fre-
quencies can reach greater ranch where SDCs can occur
but are correctable by ABFT.

All the above versions are implemented for Cholesky, LU,
and QR decomposition for double precision inputs with block
size tuned for performance.

Table 3. Hardware/System Configuration for Experiments.

Processor Intel Core i7-9700K NVIDIA RTX 2080 Ti
Base Clock 3.5(Tby0.1)GHz 1.3(Tby 0.1)GHz
Overclocking 3.6-4.5(Tby0.1)GHz 1.4-2.2(Tby 0.1)GHz
Memory 32 GB RAM 12 GB RAM
Default guard- Vcore offset: 0OmV Graphics clock offset: 0
band

Optimized Vcore offset: -150mV | Graphics clock offset: +200
guardband

Slack Prediction Error

2 12 22 32

Iteration

42 52

Profile First Iteration Online Calibration

Figure 8. Slack prediction error of the LU decomposition
using different approaches

4.2 Experimental Environment

All experiments are performed on a power-aware CPU-GPU
server. Table 3 lists hardware configuration of the experimen-
tal platform and system tools used for adjusting CPU/GPU
guardband/clock frequencies and for measuring the energy
consumption of CPU and GPU. Limited to the capability of
our test platform, we only measure the energy consumption
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Overhead Correct

No FT 0%  23.28%

Single-ABFT 8%  76.11%

12% 100.00%

Full-ABFT

Adaptive
ABFT

4% 100.00%

1 11 21 31 41
Decomposition Iteration

Single-side ABFT Full ABFT

51

No FT

Figure 9. Comparing overhead and correctness when different
ABFT scheme is applied in double precision LU decomposi-
tion with reclamation ratio r = 0.25

of the CPU package and GPU device. For accurate measure-
ment of energy consumption and stable SDCs error rate at
reduced guardband, we adjust the external cooling system
to stabilize the CPU/GPU temperature at 45°C and 55°C
respectively. From the software perspective, all matrix de-
composition versions are built with GCC 7.4.0 and CUDA
11.6 with the highest optimization flags turned on. NVIDIA
cuBLAS 11.1 and Intel MKL 2020 are used as linear algebra
computing kernels. MKL is configured to use all CPU cores.
The operating system is Ubuntu 18.04.

4.3 Evaluation Results

4.3.1 Online slack prediction accuracy comparison. Fig-
ure 8 shows the relative online prediction error using only the
first iteration to predict [7] vs. our enhanced slack prediction
approach proposed in this work. We can see both approaches
can give less than 10% relative error for the first 2/3 of the
iterations. However, since [7] only depends on the profiling
result of the first iteration, the error caused by profiling and
prediction will accumulate and become significant (about
11.4% on average) as the decomposition progresses. Our en-
hanced algorithmic slack prediction uses an online calibration
approach to effectively avoid error from accumulating and
reducing relative prediction error to around 4% on average.

4.3.2 ABFT overhead and correctness comparison. Fig-
ure 9 shows the computational overhead and probability of
computing correctness when different ABFT schemes are
applied. We use double precision LU decomposition with
BSR reclamation ratio r = 0.25 as an example. The correct-
ness is estimated by repeating the decomposition 100,000
times and comparing the results. We observe similar results
on other types of decompositions. Due to relative short slack
in the later part of decomposition, higher GPU clock frequen-
cies are needed, which reach degrees of overclocking that
can have SDC errors. If we do not apply any fault tolerance,
only 23.28% of the overall matrix decomposition tests out-
put correct results. If we apply single-side checksum ABFT,
it improves the percentage of tests with correct output to
76.11% since 0D errors can be effectively detected and cor-
rected. However, 1D error cannot be handled by single-side
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Figure 12. Overall energy saving and ED2P Reduction com-
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can ensure all decomposition tests are correct, but it also
brings 12% overhead. Our adaptive-ABFT can adaptively
apply necessary levels of fault tolerance to ensure high re-
liability and low overhead. For example, when we set the
reclamation ratio r = 0.25, the first 41 iterations are running
at fault-free clock frequencies (1700Mhz), so adaptive-ABFT
completely disables ABFT for eliminating unnecessary fault
tolerance overhead. For 42" — 49" iteration, the slacks need
to be reduced by BSR using more aggressive overclocking
(up to 1900Mhz), so it applies single-side checksum ABFT.
Finally, it applies full checksum ABFT after 50" iteration
since higher clock frequencies are used (up to 2200Mhz). So,
with adaptive-ABFT, we can still ensure all decomposition
tests are correct with only 4% fault tolerance overhead.

4.3.3 Per iteration performance and energy comparison.
To understand how each of the different approaches affects the
performance and energy efficiency of matrix decompositions,
we show the profiling results of 2"¢ and 50'" iteration of
the LU decomposition in terms of time and energy costs
breakdown in Figure 10. For the original version, we can see
the slack occurs on the CPU side for the 2"¢ iteration and GPU
side for the 50" iteration. For clarity, we refer to the case that
slack is on the CPU side as ‘C and the case that slack is on
the GPU side as ‘G in our following discussion. For R2H, we
observe noticeable energy saving in both ‘C and ‘G due to



reduced energy consumption on the CPU side and GPU side
respectively. For SR, we see slack is fully reclaimed in ‘G, but
not fully reclaimed in ‘C due to the limited clock frequency
range on the CPU and longer slack length. For BSR, we test
different reclamation ratios r and mark their values under the
bars. We set r from O to a certain value that leads to maximum
achievable performance. This maximum r is higher for ‘C
than ‘G since GPU has greater overclocking capabilities than
CPU in our system when we apply optimized guardband. We
can see maximum energy saving is achieved when r = 0,
which is consistent with our previous theoretical analysis.
Maximum performance r = 0.25 for ‘C and ‘G, which are
close to our theoretical estimation. When we increase r, we
see an increase in energy consumption for the processor on
the critical path due to the increase in clock frequency. For ‘C ,
we observe a slight increase in energy-saving since the slack
is long enough for the CPU to always run at the lowest clock
frequency, and reducing the total execution time can save
more CPU static energy. We also observe a slight decrease
in energy saving in ‘G, mainly due to the slight increases in
clock frequencies. Even though it can still save energy since
1) the clock frequencies are low; 2) power reduction brings
by optimized guardband. Finally, Thanks to ABFT-0C, we
can exploit higher overclocking frequencies where we can
achieve higher performance and energy efficiency in ‘C .

4.3.4 Overall energy saving and energy efficiency com-
parison. Next, we show the overall energy-saving capability
of different approaches in Figure 12(a). We evaluate all three
matrix decompositions with an input size of 30720 x 30720.
All four versions of each type of matrix decomposition pro-
duce a similar performance. To maximize energy saving the
reclamation ratio of BSR is set to 0. We can see that compared
with the state-of-the-art MAGMA library, our BSR is able
to save energy by 30.7% for Cholesky, 28.2% for LU, and
28.8% for QR. That is 1.31 X —1.49X more energy saving
compared with the current state-of-the-art SR energy saving
approach and 2.03 X —2.20X more energy saving compared
with R2H. In addition, we use Energy x Delay® (ED2P) to
measure the energy efficiency of matrix decompositions. As
shown in Figure 12(b), compared with the original design,
our BSR is able to reduce ED2P by 29.3%-31.6%. Compared
with R2H, BSR is able to reduce ED2P by 18.6%-20.7%. Fi-
nally, compared with SR, BSR is able to reduce ED2P by
10.8%-14.1%.

4.3.5 Overall energy saving on different input sizes. In
Figure 13, we show the results of applying energy-saving
approaches on LU decomposition with different input sizes.
Limited by the page space, we only show the results for LU de-
composition. Other matrix decompositions behave similarly.
We can see our BSR is able to stably save energy consumption
across different input matrix sizes ranging from 5120 X 5120
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and above. Note that it is hard to save energy on smaller ma-
trices since they either lead to high fault tolerance overhead
or small slacks that are hard to be reclaimed.

4.3.6 Overall Pareto efficient performance-energy con-
sumption trade-off. Finally, we show the overall Pareto ef-
ficient performance-energy consumption trade-off enabled
by adjusting the reclamation ratio in BSR. As shown in Fig-
ure 11, by adjusting the reclamation ratio to a minimum 0, we
achieve max energy saving with similar performance to the
original design. In this case, compared with the original de-
sign, BSR is able to save energy by 28.2%-30.7%. Compared
with R2H, BSR is able to save energy by 17.1%-18.9%. Com-
pared with SR, BSR is able to save energy by 9.6%-11.7%.
By increasing the reclamation ratio, we are able to adjust the
performance or energy consumption of matrix decomposi-
tions. For example, with equal or less energy consumption,
compared with the original design BSR is enable to improve
the performance by 1.38x-1.51%. Also, compared with R2H,
BSR is enable to improve the performance by 1.33%x-1.43x.
In addition, compared with SR, BSR is enable to improve the
performance by 1.36x-1.43%. Finally, we see the results of
BSR with different reclamation ratios form a Pareto set such
that we cannot improve energy saving and performance at the
same time without reliability degradation.

5 Conclusion

In this work, we focused on further improving the energy sav-
ing of matrix decompositions on CPU-GPU heterogeneous
systems beyond existing state-of-the-art works. To achieve
our goal, we first proposed ABFT-0C, a novel overclocking
technique that is protected by ABFT to enable reliable com-
putation for key operations in matrix decompositions when
overclocking. Next, based on ABFT-0C, we proposed BSR,
a novel matrix decomposition framework, that aims to maxi-
mize energy saving while maintaining performance and relia-
bility. We evaluated BSR on three key matrix decomposition
algorithms - Cholesky, LU, and QR. Experiments show that
BSR is able to save up to 11.7% more energy compared with
the current best energy saving optimization approach with no
performance degradation and up to 14.1% ED2P reduction.
Also, BSR enables the Pareto efficient performance-energy
trade-off, which is able to provide up to 1.43x performance
improvement without costing extra energy.
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A Artifact Appendix
A.1 Abstract

This artifact contains the software framework (PowerLA) for
energy saving matrix decomposition evaluation. It includes
the energy-saving implementations of Cholesky, LU, and QR
decomposition using H2R, SR, and BSR approaches. The
framework is built based on the hybrid matrix decomposition
algorithms in the MAGMA library. This artifact is available
at: https://doi.org/10.5281/zenodo.7317070

A.2 Hardware requirements

e x86 CPU and NVIDIA GPUs (tested on a server with
Intel Core i17-9700K with NVIDIA RTX 2080 Ti)

A.3 OS requirements
e Linux operating system (tested on Ubuntu 18.04)

A4 Software dependencies/configurations

e For measuring CPU power: cpu-energy-meter

e For adjusting CPU clock frequency: cpupower

e For adjusting CPU core voltage: intel-undervolt

e For running GPU code: CUDA 11.4+.

e For measuring GPU power, control GPU clock offset:
NVIDIA GPU driver 450.80.02+.

e For enabling GPU overclocking, set Coolbits to the
maximum allowed. The Coolbits on the tested system
was set to 28.

e For compilation: GCC 7.5.0+ and NVCC 11.4+.

e For configuring the project: CMake 2.8+.



A.5 Building our PowerLA framework

e The PowerLLA framework was built based on the MAGMA
library v 2.5.4, so it uses the same build system as the
MAGMA library. Please follow the README . md in
the root directory to build PowerLA.

A.6 Running optimized matrix decompositions

1. The major three one-sided matrix decomposition algorithms
(Cholesky, LU, and QR) are optimized. They are implemented
in:

o Cholesky: ./src/dportf_gpu.cpp; ./src/sportf_gpu.cpp
e LU: /src/dgetrf_gpu.cpp; ./src/sgetrf_gpu.cpp
e QR: /src/dgeqrf_gpu.cpp; ./src/sgeqrf_gpu.cpp

In each source code file, we added the following variables
to control the energy-saving and fault-tolerance behavior of
each matrix decomposition.

e int tmu_curr_fregandint tmu_base_freq:
set the current and based clock frequency of GPU. They
should be the same.

e int tmu_base_offset: setthe base clock offset
of GPU.

e int tmu_opt_offset:setthe optimized clock off-
set of GPU.

e adj_gpu(device, tmu_base_freq, 338000):
set the power limit of GPU.

e int pd_curr_freq and int pd_base_freq:
set the current and based clock frequency of CPU. They
should be the same.

e bool reclaim_slack: control if we want to en-
able Slack Reclamation (BSR or SR).

e double reclamation_ratio: control how much
of the slack is reclaimed by the task on the critical path.

e bool overclock: control if we want to overclock
with undervolting.

e bool autoboost:control if we want to enable hard-
ware R2H.

e bool COL_FTandbool ROW_FT controlif we want
to enable ABFT (single-side or full checksum)

2. Once the PowerL A framework is built, the MAGMA testing
binary executables can be used to run each matrix decompo-
sition with a specified input matrix size. The executables can
be run with:

<build dir>/testing/testing_x_gpu —-N <size>
3. Configuring the variables for different modes

Original R2H SR  BSR

reclaim_slack false false true true
reclaimnation_ratio N/A N/A O 0-1
overclock false false false true
autoboost false true false false
COL_FT/ROW_FT false false false true

4. When each test finishes execution it will output:

e Energy consumption of CPU and GPU (total)
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e Time cost (per operation & total)

e Predicted time cost (per iteration)

e The slack prediction error (total average)

e Clock frequency of CPU and GPU (per iteration)
e Decisions on slack reclamation (per iteration)
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