


12:2 H. Zamani et al.

in energy inefficiency. Hence, improving the energy efficiency of critical applications running on
HPC systems is necessary to deliver better performance at a given power budget.
LU factorization is an algorithm used for solving dense linear algebra problems and is widely

used in many scientific and engineering applications [21]. It is included in several popular linear
algebra libraries, such as Linear Algebra Package (LAPACK) [4] and Linpack [26] bench-
marks. Existing LU factorization implementations are concerned primarily with performance,
ignoring the potential for energy savings that do not have a negative impact on performance.
When LU factorization is running on heterogeneous system equipped with GPUs, it divides
the workload between CPUs and GPUs. CPU handles the panel factorization, which is serial
in nature. The GPUs update the trailing matrix because it involves large computation that can
be highly parallelized. During the execution, either the CPU or GPUs could be on non-critical
paths that can experience idle time, or slack. These slacks can be exploited for energy savings
by exploring power-aware techniques such as Dynamic Voltage and Frequency Scaling

(DVFS).
Over the last few years, significant efforts have been made to apply various techniques, such

as DVFS [12, 22] and undervolting [34]. DVFS approaches have been employed to save energy
during underutilized execution phases of the execution, called slack, on CPUs [2, 20, 28, 29] and
GPUs [7, 13, 33, 34]. The amount of slack on different components can be estimated using algo-
rithmic knowledge to determine the appropriate level of DVFS so that all the components finish
execution at the same time. Hence, the main task is to accurately predict the slack during the ex-
ecution so that the exact frequency can be computed and DVFS can be enabled. Prior research
on LU factorization utilized the slack using a simple performance model in a single GPU environ-
ment [7]. It profiled the application to determine the execution time of the first iteration and then
estimated the slack for the next iterations based on the prior iteration. However, we develop amore
accurate performance model based on the amount of computation extracted from the algorithmic
knowledge for heterogeneous systems with multiple GPUs that does not need a profiling phase
and performance overhead. Also, we extend the DVFS technique to multiple GPUs and present
both performance and energy saving results with two GPUs. We derive the execution times of
a multicore CPU and multiple GPUs separately and verify the results through experiment. Then
the amount of slack is determined at every iteration of the LU factorization, frequency is calcu-
lated, and DVFS is enabled at runtime. Our measurement shows that DVFS reduces the energy
consumption by 15%.
DVFS techniques do not target the static power consumption, which is becoming predominant

in today’s technology. The static power can be reduced only through the voltage reduction,
called undervolting. However, undervolting below the threshold value will introduce errors.
Manufacturers specify large safety margins in the nominal frequency-voltage operating points of
CPUs, up to 30% [9, 11]. As a result, they are inherently conservative and not energy efficient [5].
Leng et al. investigate the voltage guardband of the GPUs and observe that there is about a
20% voltage guardband on different GPU architectures [16]. There are many efforts to operate
hardware at sub-nominal voltage levels on the CPUs [9, 11, 25, 37] and GPUs [16, 18, 32, 34].
However, most of this work focuses on applying undervolting in a conservative way, based
on the worst voltage constraint across all workloads and running frequencies. This limits
the potential gains since some applications can operate at a higher degree of undervolting.
Hence, we empirically extract the minimum safe voltage (Vsaf eMin ) of the underlying CPU/GPUs
for various running frequencies while executing the LU factorization. Using the extracted
Vsaf eMin for both CPUs and GPUs, we apply the undervolting during the execution of the
LU factorization. It is shown that undervolting reduces energy consumption by 16% beyond
DVFS.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:3

This article presents GreenMD, a framework that improves the energy efficiency of heteroge-
neous multi-GPU systems while maintaining the reliability and performance of LU factorization.
GreenMD is built on top of the LU factorization from the highly optimized linear algebra library
MAGMA. First, we develop accurate performance models for CPU, GPU, and PCIe bus based on
the algorithmic knowledge and underlying hardware details and verify them through rigorous ex-
periments. Then we predict the slack and employ the DVFS on both the CPU and GPUs during
the slack periods to save energy. GreenMD also extracts and utilizes the maximum level of un-
dervolting at a fixed frequency to improve the energy efficiency of the system without sacrificing
performance. GreenMD is portable, which means it can be used with any GPU and CPU architec-
ture by simply adjusting a few architecture-specific parameters. In summary, this article makes
the following contributions:

• Using algorithmic knowledge and hardware configuration, we develop a more accurate per-
formance model for CPU, GPUs, and the PCIe bus to estimate the execution time of the LU
factorization during the different iterations of the execution.
• We implement DVFS in CPU and single and multiple GPUs based on the accurate perfor-
mance models.
• We implement undervolting in CPU and single and multiple GPUs based on the empirical
observations.
• We evaluate the performance, energy savings, and reliability through real implementation
and achieve 31% total energy savings for double-precision LU factorization with a matrix of
size 18K*18K.

The rest of article is organized as follows. The background and motivation with profiling re-
sults are discussed in Section 2. A slack predictor is developed in Section 3 based on the CPU/GPU
performance models. Proposed methodology, including DVFS-based slack reclamation and under-
volting, is presented in Sections 4 and 5, respectively. Experimental evaluations and results are
provided in Section 6. Finally, related works and the conclusion are discussed in Sections 7 and 8.

2 BACKGROUND AND MOTIVATION

2.1 LU Factorization Overview

Figure 1 demonstrates an overview of the LU factorization algorithm. The left side shows the LU
factorization at iteration k, while the right side shows the LU factorization at iteration k+1. In a
matrix of size n*n, during iteration k, a set ofk∗n/b columns (the panel shown in yellow) is factored
on the CPU, where b is the block size and n is the row width. The remaining part of the matrix
is then subjected to the elementary transformations that result from the panel factorization. This
phase is called trailing matrix update. The updating of the trailing matrix requires kernel “row
swap” (DLASWP), “triangular solve” (DTRSM), and “matrix multiplication” (DGEMM). In other
words, updating the trailing sub involves swapping up k ∗ (n/b) rows of the trailing sub-matrix
(DLASWP), applying a triangular solver to the top k ∗n/b rows of the trailing sub-matrix (DTRSM),
and finally invoking the matrix multiplication for the part shown in blue (DGEMM). On the right
side, at iteration k+1, one column of tiles is transferred from the GPU to the CPU to get factorized
and be ready for the next iteration of LU factorization. This column of blocks, called the look-ahead
panel, which is used in the next iteration, is transferred before the GPU finishes the trailing matrix
update at iteration k. Look-ahead is a communication and computation overlapping technique that
reduces the GPU idle timewhile waiting for the CPU cores to deliver the panel factorization results.
This procedure is repeated several times, and in each iteration, the CPUs factor a panel shown in
yellow color, while the GPUs update their portions of the trailing matrix shown in the blue color.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:4 H. Zamani et al.

Fig. 1. Overview of the blocked LU factorization.

Fig. 2. Trace of the execution of multi-GPU version of double-precision LU factorization for a matrix of size

18K.

2.2 Profiling Observations

Figure 2 shows the partial timing profile for a double-precision LU factorization for a matrix of size
18K on the heterogeneous system with two GPUs. Since the profiling tools are not capable of ob-
serving the GPU and CPU timelines at the same time, we profile the LU factorization on the CPUs
and GPUs separately. For GPU, we used the Nvidia Visusal Profiler to profile LU factorization. The
NVIDIA Visual Profiler is a cross-platform performance profiling tool that delivers developers
vital feedback for optimizing CUDA C/C++ applications. In a heterogeneous multi-GPU system,
matrix decomposition algorithms, including matrix LU factorization algorithms, distribute the
workload between CPU and GPU at each iteration. Figure 2 shows the beginning trace of LU

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:5

factorization on a heterogeneous system with two GPUs for a matrix of size 18K. We enlarged the
timing profile to observe the details, but this resulted in the loss of information from the entire
LU factorization. Observation shows that there is no slack on the GPUs at the beginning of the LU
factorization. This is because, at earlier iterations, panel factorization, which is performed on the
CPU, takes less time than the trailing matrix update, which is performed on the GPU. However, the
amount of slack on the GPUs increases as LU factorization approaches the end of execution. This
is because the size of the trailing matrix update on two GPUs is decreasing over time and takes
less and less time to execute on the GPUs compared to the panel factorization. In the following,
we explain different components (1 to 7) in the figure so that we can develop a performance model
accurately.

• (1) At the beginning the whole matrix is divided and copied into the GPUs. The block
columns are distributed across multiple GPUs using a 1-D block-column cyclic distribution.
The even and odd block columns are transferred to GPU 0 and 1, respectively. In the case of
two GPUs. The input matrix size is 18K*18K, and the block size is 512*512. As a result, each
GPU holds 18 block columns, with each block column containing 36 blocks of 512*512 size.
Since the GPUs share the PCIe bus with the CPU, these column blocks are transferred in a
round-robin fashion.
• (2) In each iteration, one GPU is responsible for updating the look-ahead panel and sending
it to the CPU, while the other GPUs are updating the rest of the trailing matrix. After the
look-ahead panel update, the GPU continues to update the rest of trailing matrix along with
the other GPUs.
• (3) Panel factorization is done on CPU.
• (4) The factorized panel is sent to all GPUs for the update phase for the next iteration.
• (5) In the next iteration, the look-ahead panel update is done on a single GPU holding the
next panel.
• (6) The updated look-ahead panel is transferred to the CPU. This phase is done to overlap
the communication and computation.
• (7) Then, the rest of the trailing matrix, which is distributed across multiple GPUs, is updated
on the corresponding GPUs.

3 SLACK PREDICTOR

In each iteration, either the CPU or the GPU is in the critical path. The critical path consists of a
group of tasks that takes the maximum time among different paths. Identifying the critical path
allows us to extract slack duration in a non-critical path. We precisely estimate the slack length at
a given iteration and then reclaim the slack by utilizing the DVFS. Using the algorithmic knowl-
edge, we estimate the execution time of each iteration on the CPU/GPUs based on the amount of
operations and their compute capacities. Recall that the earlier paper on DVFS for LU factorization
used profiling with a simple performance model [7]. However, our techniques do not involve any
benchmarking and the performance can be directly computed.

3.1 Performance Model of LU Factorization on the CPU

By dividing the number of operations (workload) by the compute capability of the underlying
architecture, the execution time of the CPU can be estimated. The compute capability is defined
as Equation (1), where pcpu is the maximum peak performance. Peak performance is defined as
the maximum number of floating-point operations per second for the underlying architecture;
f req and Maxf r equency are the current running frequency and maximum frequency of the CPU,
respectively. The MAGMA library is highly optimized and is getting close to the maximum peak

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:6 H. Zamani et al.

performance.

Computecapabil ity = pcpu ×
f req

Maxf r equency
(1)

The number of operations or workload at kth iteration,Wpanel , required to perform panel factor-
ization on a single block column of matrix with size ofMk × b can be calculated as [10]

Wpanel =

(

Mk −
b

3

)

× b2. (2)

In LU factorization with matrix of sizem × n and block size b, Mk varies during each iteration
k, which can be calculated as 3:

Mk =

(

m

b
− k

)

× b . (3)

Hence, the amount of operations,Wpanel , will be estimated through Equation (4):

Wpanelk =

(

(
m

b
− k ) × b) −

b

3

)

× b2. (4)

Panel factorization is naturally a sequential program. So the estimation time for panel factoriza-
tion, TCPUk , for a CPU thread can be determined by Equation (5) for a given iteration k:

TCPUk =
(((m

b
) − k ) × b) − b

3 ) × b
2

pcpu ×
f r eq

Maxf r equency

. (5)

But with a huge number of computing cores provided by the multicore architectures, MAGMA
is written to use multi-threading even for panel factorization. Since using multiple threads brings
in extra overhead, the number of flops required for the panel factorization increases by about
b3 × loд (Ncpu−threads ), where Ncpu−threads is the number of threads participating in the panel
factorization [10]. As a result, we can estimate the panel factorization execution time of the multi-
threaded CPU at the kth iteration as 6:

T ′CPUk =
(((m

b
) − k ) × b) − b

3 ) × b
2
+ b3 × loд (Ncpu−threads )

pcpu ×
f r eq

Maxf r equency
× Ncpu−threads

. (6)

Since we would run the CPU at different frequencies for DVFS, we compared the estimated
values through Equation (5) against the measured values for various frequencies. The empirical
results are extracted for double-precision LU factorization with matrix of size 18K. The panel fac-
torization is running on the “CPU Intel(R) Core(TM)i7-6700k” while employing only one thread.
Figure 3 presents the analytical results for execution time of the panel factorization during differ-
ent iterations. The execution time is inversely proportional to the frequency. We also measured
the error rate of the execution time for different frequencies. Figure 4 shows the error rates for
different frequencies w.r.t different iterations. According to the results, the average error rate for
different iterations is less than 4% for different frequencies. The empirical results shown in Figure 4
demonstrate a different amount of error rate for different frequencies. This is because there is a
different amount of time needed to charge and discharge the transistors with different frequencies.
In higher frequencies, there is less time to charge and discharge the transistors. So timing errors
are one of the main reasons for faults/errors. However, in lower frequencies, the execution time in-
creases, and as a result, the probability of observing the errors increases as well. So the probability
of fault is dependent on both the frequency and the execution time [30]. Besides, different frequen-
cies can change the temperature of the processor, which could lead to different amounts of error
rate. In other words, the error rate is dependent on frequency, execution time, and temperature.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:7

Fig. 3. The estimated time of CPU w.r.t various frequencies.

Fig. 4. Error rate in performance model on the underlying CPU.

3.2 Performance Model of the GPU Kernel

Similar to the CPU performance model provided in Equation (5), we develop the GPU perfor-
mance model for one hardware thread and then extend it to consider all the GPU computing cores
(threads). However, unlike CPU, the GPU is an SIMT architecture and there is no resource conflict.
The GPU throughput is obtained simply by multiplying per-thread throughput with the number
of cores in the GPU. The GPU execution time is estimated by dividing the number of floating-point
operations by the GPU computation rate.
In each iteration of the LU factorization, the size of the trailing sub-matrix is reduced by the

block size from both row and column width. Given the matrix size as mxn and block size b, the
sub-matrix row and column width at iteration k can be calculated as

Rowwidthk =

(

m

b
− k

)

× b (7)

Columnwidthk =

(

n

b
− k
)

× b . (8)

Therefore, the total number of operations (workload) required for a trailing matrix update at a
given iteration k can be written as [10]

WorklaodGPUk =

((

m

b
− k

)

× b

)

∗

((

n

b
− k

)

× b

)2

. (9)

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:8 H. Zamani et al.

Fig. 5. The estimated time of single GPU w.r.t various frequencies using Equation (10).

Therefore, extending Equation (5) to the GPU, Equation (10) can be derived to estimate the execu-
tion time of each GPU at a given iteration k, where

• Nc is the number of cores per GPU.
• f req is the running frequency of the GPU.
• TGPUi@k is the time required for the kernel (trailing matrix update) running on the ith GPU
at a given iteration k.
• WorkloadGPUi@k is the total workload of the ith GPU at a given iteration k.

At iteration k , Equation (9) is used to compute the total number of floating-point operations
required. If multiple GPUs are employed, the computation load is distributed evenly among them,
and any extra panel assigned to certain GPUs due to the uneven number of panels is assigned a
workload calculated using Equation (9).

Which n is the matrix size,

TGPUi@k =
WorkloadGPUi@k

Pдpu ×
f r eq

Maxf r equency
× Nc

. (10)

Figure 5 shows the estimated execution time of double-precision LU factorization with an input
matrix of size 18K on a single GPU card for different running frequencies. The “GPU GTX 1660
super” card, which has a total of 1,408 processing cores, is used to update the trailing matrix.
To validate our performance model, we also extracted the empirical results and calculated the
execution time error rate for the same configurations. The kernel execution time is measured from
the host, which takes the kernel launch time and so forth into account. Figure 6 shows the error rate
of the execution time on a single GPU in the presence of various frequencies. The results show that
the average error rate is about 5%. However, the error rate is increased toward the last iterations.
This is because, with the update matrix getting smaller and smaller, the GPU is not fully utilized.
The execution time is getting smaller, which results in a larger error rate. Using Equation (10), we
also estimate the execution time of two GPUs. Figure 7 compares the estimated values of single
and double GPUs while running the trailing matrix update. The running frequency is fixed at the
default value of 1,980 MHz. It shows that the execution time of the GPU is inversely proportional
to the number of GPUs at different iterations. In the case of two GPUs, the execution time of the
trailing matrix is almost divided by two for different iterations. We also extracted the experimental
result for two GPUs and the average error rate for the estimated execution time was about 4.6%.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:9

Fig. 6. Error rate of GPU performance model provided in Equation (10).

Fig. 7. Estimated GPU time with single and two GPUs at default frequency of 1,980 MHz.

3.3 Performance Model of Data Transfer

We must first model the PCIe bus latency before we can model the transfer time between CPU
and GPU. We take the LogGP model [8] as a starting point and expand it to multiple streams.
According to the model, transferring a single chunk of size k bytes takes L+O+(k)B. The time it
takes for a single byte to transmit from the source to the destination endpoint is denoted by the L.
O specifies the amount of time the processor is working on the transmission. In other words, this is
the amount of time the CPU spends registering the DMA request with the controller. B represents
the PCIe bus’s bandwidth. We don’t have any overhead on the device side because we’re using
DMA transfer, which writes data directly into memory. Even with DMA transfers, the data is split
into data chunks and transmitted across PCIe in a continuous stream. We define g as the gap
between these chunks. This is the amount of time it takes to start a new transfer API. As a result,
transferring multiple chunks requires L+O+k1G+ (n−1)д+knG. When many streams are present,
each stream is transferred one at a time, and g will be the overhead to initiate a new transfer API

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:10 H. Zamani et al.

Fig. 8. The estimated copy time of double-precision LU factorization for a matrix of size 18K.

on a different stream. As a result, the time required to transfer k bytes utilizing n streams will be
determined using Equation (11). Hence, in case of double-precision LU factorization with matrix of
sizem×n, the copy time for each iteration can be extracted using Equation (12). Herem is the row
width of matrix; b is the block size or the panel width, which remains the same over the iterations.

Tcopyk = L +O + K/B + (n − 1) × д (11)

Tcopyk = L +O + ((m − k × b) × b × 8)/B + (n − 1) × д (12)

Even though the newer GPUs are equipped with dual copy engines and they might share re-
sources, which affects the transfer time, we are not considering the dual copy engine because in
case of LU factorization, the copy transfers are not occurring at the same time. Figure 8 shows
the estimated time between the CPU and GPU for different iterations of double-precision LU fac-
torization with matrix size of 18K. The estimated results illustrate that the copy time is propor-
tional and inversely proportional to the size of the data and bandwidth, respectively. L, O, g, and
B are extracted using a simple profiling phase. We also compared the estimated values with the
experimental results of the copy time for a matrix of size 18K in case of a single GPU (NVIDIA
GeForceGTX 1660 SUPER) and CPU (Intel(R) Core(TM) i7-6700k). Figure 9 shows that the error
rate is very negligible in the iterations when the PCIe bus is fully utilized. However, the error rate
increases due to under-utilization of the PCIe bus during the last iterations of LU factorization.
For example, the amount of data that is transferred between the CPU and GPU in the first and
last iterations of the LU factorization are 73 MB and 2.42 MB, respectively. On average, the error
rate of the estimation model is about 1.3% for different iterations, which is very small. However,
it may be observed that, compared to hundreds of msecs in CPU and thousands of msecs in GPU
execution times, the data transfer time is negligible.

4 DVFS-BASED SLACK RECLAMATION

A slack is a period of time when one computer component waits for another. Load imbalance,
inter-task or inter-process communication, and memory access stalls are all common causes of
slack. A Critical Path is a certain sequence of tasks that spans from the beginning to the end of
the execution and has zero slack. Slack is only observed in the non-critical path of the application.
While slack on non-critical paths is commonly utilized for energy savings, fully reclaiming them
without affecting application performance is difficult. During the LU factorization, slack occurs on
the CPU or GPU at each iteration, as shown in Figure 10. Slack occurs only when the CPU waits

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:11

Fig. 9. The error rate of the PCIe model for a matrix of size 18K.

Fig. 10. An overview of slack reclamation.

for the GPU to update the next panel or when the GPU waits for the CPU to factorize the panel.
If the CPU finishes earlier in an iteration, we can slow it down to finish at the same time as the
GPU and vice versa. As the panel and matrix update sizes change across iterations, the amount
of slack changes. Then we use DVFS on the CPU and GPU to take full advantage of the slack on
non-critical paths. We can reduce power consumption without affecting performance for the next
iteration by properly reducing the frequency of the processing units to only eliminate the slack.
Algorithm 1 provides the overview of the DVFS controller that estimates the panel factorization

time on the CPU, matrix update time on GPUs, and data copy time between the CPU and GPU

using the equations provided in Section 3. Let TCPU
k

, TGPUi@k , and T
Copy

k
represent the CPU time,

ith GPU execution time at iteration k, and the transfer time, respectively. The slack lengths of LU
factorization at each iteration for the CPU and GPU are given by Equations (13) and (14). These
values are extracted according to Equations (6), (10), and (12), respectively. In each iteration the
copy time is the summation of both H2D and D2H transfers that happens between CPU and GPUs.

slackCPUk = Max (TGPUi@k ) −T
CPU
k −T

Copy

k
; 0 ≤ i <

N

nb
(13)

slackGPUi@k = T
CPU
k +T

Copy

k
−TGPUi@k ; 0 ≤ i <

N

nb
(14)

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:12 H. Zamani et al.

ALGORITHM 1: Overview of DVFS methodology

Initialize ()

Profiling Phase ()

for i = 0, 1, ..., iteration − 1 do

cput ime ← cpuPredict ()

дput ime ← дpuPredict ()

copyt ime ← copyPredict ()

cpuSlacklenдth ← slackPrediction(cput ime ,дput ime , copyt ime )

if slacklenдth � 0 then

if cput ime < дput ime then

Invoke DVFSCPU ()

else

Invoke DVFSGPU ()

end if

end if

end for

If Equation (13) has a positive value, the CPU has slack time, and the CPU should wait for the
GPU to finish its execution. To find the slack on different GPUs, we use Equation (14) for each
individual GPU. Similarly, if it has a positive value, the GPU will have the slack. There is no slack
in the CPU or GPU when the value is 0.
We can reduce power consumption without affecting performance for the next iteration by

properly reducing the frequency of the processing units to only eliminate the slack. As we have
shown in the earlier section, the execution time of the LU factorization is proportional to the
frequency of computing units.
We use theAdvanced Configuration and Power Interface (ACPI) to change the CPU core’s

frequency at runtime to reduce the voltage/frequency transition time. Our frequency enforcement
is performed by manipulating each core’s “scaling_setspeed” file. When this device file is modified,
Linux triggers a group of system calls that adjust the CPU core’s frequency in about 40 microsec-
onds. Compared to the hundreds of msecs of CPU and GPU execution times per iteration (Figures 3
and 7), this overhead is negligible.
We derive the equation to find the optimum frequency for the units on the non-critical path

based on the current and target execution time. Equation (15) below is derived to calculate the
amount of optimum frequency, where fopt and fdef ault are the optimum and default frequencies
of the component with slack at a given iteration:

fopt = fdef ault ×
max(TCPU ,TGPU ) − slack

max(TCPU ,TGPU )
. (15)

The frequency of the CPU/GPUs is adjusted using the pseudo code provided in Algorithm 2.
We choose the minimum frequency if the adjusted frequency is less than the minimum defined
frequency. When an adjusted frequency is not supported by the hardware, two consecutive avail-
able frequencies are used to eliminate the slack. This is because only available discrete frequencies
offered by CPU and GPU DVFS are taken into account in GreenMD.

4.1 Scalability of the Proposed Method

With increasing the number of GPUs, since, using the algorithmic knowledge, the amount of oper-
ations are known on each GPU, we can still estimate the execution time of each GPU during each
iteration of the LU factorization, and as a result, we can find the slack. The amount of slack on the
CPU and GPUs will be varied based on the size of the input matrix and the number of GPUs. In

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:13

ALGORITHM 2: Frequency adjustment during the slack

if foptimum ≤ fmin then

foptimum = fmin

end if

if fmin ≤ foptimum ≤ fmax then

if foptimum � availablef r equencies then

flower ← adjacentf r equency (foptimum , availablef r equencies )

fupper ← adjacentf r equency (foptimum , availablef r equencies )

Adjustf r equency (slack ,flower ,fupper )

else if Adjustf r equency (slack ,foptimum ) then
end if

end if

this article, the input size of the input matrix was limited by memory size of the GPUs. For the
same input size of the matrix, if we increase the number of GPUs, the amount of slack will be even
more on the GPUs and we can save even more energy. This is because the main source of power
consumption is consumed by the GPUs in a heterogeneous system with GPUs. According to the
empirical results provided in the article, at earlier iterations, since the panel widths are larger, the
CPU takes more time than the GPU to factorize the panel and we still experience slack on the GPU
unless more CPUs and potentially GPUs are employed to help the CPU to factorize the panel. And
if the number of GPUs increases, in later iterations, when the trailing matrix size is getting smaller
and smaller, there could still be slack in the GPUs that can be utilized for energy saving.

5 UNDERVOLTING

Since we don’t compromise the LU cauterization’s performance, DVFS can only be utilized to re-
claim slack on non-critical path components. This is because using DVFS on critical paths degrades
the application’s overall performance for compute-intensive workloads [3]. DVFS is mainly con-
cerned with dynamic power consumption. However, the static power is becoming predominant
in today’s technology. Hence, we also employ undervolting (at a fixed frequency) to reduce both
static and dynamic power while maintaining performance.
To ensure that the microprocessor functions reliably under varying load and environmental con-

ditions, microprocessor manufacturers usually append an operational guard-band (a static voltage
margin) of up to 20% of the nominal voltage [36]. The guard-bands additionally take into consider-
ation errors caused by the load line, aging effects, noise, and calibration error [27]. Because these
errors do not occur frequently, significant energy savings can be achieved by lowering guard-band
voltage to a much lower supply voltage [19]. In our work, we aim to save energy by utilizing the
voltage guard-band between the nominal voltage and the actual OS safe voltage while maintaining
performance. To extractVsaf eMin during LU factorization, we take a similar approach as described
in [16]. We undervolt to the safe minimum voltage Vsaf eMin without introducing any fault into
the system. The system may experience soft errors if Vsaf eMin is exceeded.

To determine theVsaf eMin for LU factorization, we profile the LU factorization for small matrices.
According to [34], the sensitivity analysis is performed by lowering the voltage below the nominal
voltage (1.075 V). First, we run the program at nominal voltage and record the result as “golden
output.” We start with the corresponding voltage in the CPU and reduce the voltage in 10 mv steps
at a given fixed frequency. We run the application 100 times and record the number of faulty runs.
If the output does not match the golden output, the application’s run has failed. The frequency is
then changed, and the undervolting is repeated at a new fixed frequency. We extract theVsaf eMin

for both CPU and GPU with different running frequencies. This is because the maximum level

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:14 H. Zamani et al.

Fig. 11. CPU’s probability of failure w.r.t undervolting.

Fig. 12. GPU’s probability of failure w.r.t undervolting.

of undervolting could be different for different frequencies as observed in Figures 11 and 12. The
probability of failure for the CPU is shown in Figure 11. There is no error until the undervolting
level reaches 150 mv. At lower running frequencies, we can decrease the voltage even further (10
mv) without observing the error.
Similar to CPU, we extract the Vsaf eMin for the underlying GPU as well. For a maximum

frequency of 1,980 MHz, the GPU default voltage is 1.045 V. Similarly, the underlying GPU (GTX
1660 super) is undervolted in 10 mv steps. For each level of undervolting, the application is
executed 100 times and the corresponding output is compared to the golden output to verify
correctness. Similar to the CPU, the probability of GPU failure as well asVsaf eMin is extracted for
different frequencies, as depicted in Figure 12. According to the empirical results, we are able to
undervolt the GPU about 140 to 150 mv for different frequencies. Hence, in our method, we under-
volt the CPU and GPUs 150 mv and 140 mv, respectively. Prior to the application’s execution, the
GPUs are undervolted. This is due to the lack of a runtime API for undervolting the GPU during
execution. Undervolting the GPU is also done in a similar way as in [34], and as explained below in
Section 6.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:15

Table 1. Experimental Setup Configuration

Component CPU GPU

Architecture
Intel(R) Core(TM)

i7-6700k
NVIDIA GeForce
GTX 1660 SUPER

Minimum Frequency 800 MHz 300 MHz

Maximum Frequency 4,200 MHz 1,980 MHz

Memory 16 GB 6 GB

Cache

L1 (128 KB)
L2 (1 MB)
L3 (8 MB)

L1 (64 KB per SM)
L2 (1,536 KB)

OS Ubuntu 20.04

Table 2. Power Management and Undervolting APIs

API Description
nvmlDeviceSetPersistenceMode Enables persistent mode to prevent driver from unloading
nvmlDeviceSetPowerManagementLimit Sets new power limit of the GPUdevice
nvmlDeviceGetClock Retrieves the clock speed for the clock specified by the clock type and clock ID
nvmlDeviceSetGpuLockedClocks Sets clocks that device will lock to
nvmlDeviceGetTotalEnergyConsumption Reads the GPU’s total energy consumption
nvmlDeviceResetApplicationsClock Resets the application clock to the default value
linux-intel-undervolt Undervolts the Intel CPUs
cpupower frequency-set Sets the CPU’s frequency

6 EVALUATION

6.1 Implementation Details

All experiments are preformed on a heterogeneous system with 8-core Intel CPU and Two homo-
geneous GEFORCE GTX 1660 SUPER, whose architectural specifications are listed in Table 1. We
were able to evaluate the results for up to a 18Kmatrix size due to the GPU’s limited devicememory.
The proposed power management algorithm is embedded inside the application code and called
right before the next iteration. Considering the performance overhead of DVFS, the DVFSCPU ()

and DVFSGPU () functions are called if there is enough slack available in the next iteration.
We use “linux-intel-undervolt” and “cpupower frequency-set” APIs to undervolt and scale the

CPU frequency. These APIs can be used for Intel CPUswith an integrated voltage controller (FIVR).
In CPU, we change only the CPU frequency and do not touch the memory frequency. However,
in the case of GPU, since the GPU core and memory frequencies are coupled, changing the core
frequency might change the memory’s frequency as well.
For the GPU profiling phase and extracting the safe minimum voltage of the GPU, MSI After

Burner [1] was used. However, MSI After Burner is not supported on the Linux operating sys-
tem. So, to reduce the voltage of the GPU, we used a similar approach to that employed in [34].
Since there is no direct API to reduce the voltage, we reduce the voltage of the GPU by lowering
the GPU’s target power limit at a fixed frequency. To undervolt the GPU, several APIs from the
NVIDIA Management Library (NVML) are used as listed in Table 2.
It is not possible to truly disable GPU Boost in modern NVIDIA architectures without resorting

to very risky procedures involving flashing custom firmware. However, it is still possible to lock
the graphics frequency in recent GPUs. We use the NVML library’s “nvmlDeviceSetGpuLocked-
Clocks” API to fix the frequency and, as a result, the voltage. This API effectively locks the graphics
frequency, ensuring that it remains constant at the desired frequency with tiny variations, which
could be due to the auto-boosting option.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:16 H. Zamani et al.

Fig. 13. The amount of CPU and GPU slack for double-precision LU factorization with one GPU and matrix

of size 18K.

6.2 Results

We executed the LU factorization in presence with one and two GPUs. In the case of a single GPU,
the amount of slack on the CPU and GPU is shown in Figure 13 for a matrix size of 18K x 18K. The
slacks for CPU and single GPU are observed in iterations 0 to 21 and 22 to 34, respectively. This is
because, even though the GPU is equipped with a huge number of computing cores, it has a larger
ratio ofworkload/(compute − capability) compared with the CPU till iteration 21.
Since there is no slack on the GPU for iterations before iteration 21, we do not change the

GPU frequency until then. We only adjust the CPU frequency to reclaim the slack allowing both
the CPU and GPU to complete their tasks at the same time at a given iteration. If the amount
of adjusted frequency is less than the minimum frequency of the underlying architecture, we set
the frequency to the minimum frequency. Similarly, if the adjusted frequency is greater than the
maximum frequency, we set the frequency to the maximum frequency.
Along with slack reclamation, we also extracted the maximum level of undervolting when no

fault is introduced in the system. At a given frequency corresponding to each iteration, we apply
the maximum level of safe undervolting. The amount of energy consumed at the default scenario
(baseline) and proposed approach w.r.t iteration is shown in Figure 14. The x-axis represents the
iteration number, while the y-axis represents the amount of energy consumed during each itera-
tion. Using DVFS along with undervolting, for a matrix of size 18K, we were able to save the CPU
energy consumption up to 51%.
We also measured the energy consumption of the single GPU. Figure 15 shows the GPU’s energy

consumption for the default configuration as well as the proposed method. Because there is no
slack till iteration 21, the energy improvement comes only from undervolting. However, after that
both DVFS and undervolting lead to more energy reduction. Figure 15 shows that, on average, we
save energy about 18% on the single GPU.
We have also extracted the results for a heterogeneous system with two GPUs. In this case, we

observed less slack in the CPU at earlier iterations and more slack in the GPUs at later iterations,
compared to a single GPU. This is because the trailing matrix update is done in parallel in both
GPUs, reducing the update time and the CPU slack. Figure 16 shows the amount of slack for dif-
ferent iterations for both the CPU and GPUs. Compared with a single GPU case in Figure 13, the

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:17

Fig. 14. CPU energy improvement of double-precision LU factorization with single GPU for a matrix of size

18K.

Fig. 15. GPU energy improvement of double-precision LU factorization in the presence of single GPUs for a

matrix of size 18K.

slack at the CPU is reduced by almost half. We fully reclaim the CPU slack and adjust the CPU’s
frequency to a desired frequency, allowing both CPU and GPU iterations to be completed at the
same time. In the second half of iterations, we also change the frequency of the GPUs to reclaim
the slack in both GPUs. The frequencies are automatically and independently enabled by the API
during the execution.
Also, Figure 17 shows the amount of CPU energy consumption in the presence of DVFS and

undervolting. Compared to single GPU results, illustrated in Figure 14, we observe less energy
improvement in the CPU in the earlier iterations and more energy improvement during the late
iterations. This is because, in case of two GPUs, the CPU experiences less amount of slack during
the earlier iterations and more amount of slack during the late iterations, which leads to less and
more energy improvement during these periods, respectively.
Similar to the CPU, we also extracted the energy improvement for the GPU using the proposed

method. The energy consumption of the GPU for the default configuration and the proposed

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:18 H. Zamani et al.

Fig. 16. The amount of slack for double-precision LU factorization in the presence of two GPUs for a matrix

of size 18K.

Fig. 17. The CPU energy improvement of double-precision LU factorization with two GPUs for a matrix of

size 18K.

method is shown in Figure 18. Since there is no slack in the first half of the iterations, the energy
improvement comes only from undervolting the GPU. However, the energy improvement in the
second half of the iterations comes from both DVFS and undervolting. According to Figure 18,
on average, we save the total energy consumption of the GPUs about 21%. In comparison to the
results illustrated in Figure 15 for a single GPU, the small improvement in the energy savings
comes mainly from the undervolting part. This is because, even though the trailing matrix
execution time is reduced by half, the total power consumption doubles due to the use of two
GPUs keeping the energy consumption almost the same. Figures 19 and 20 show the total energy
consumption of LU factorization for a matrix of size 18K with single and two GPUs, respectively.
As shown in Figure 20, in the first half of iterations, when only the CPU experiences slack, we
save 26.2%, while in the second half of the iteration, when the GPUs only have slacks, we save
41.8%. However, the energy consumption is much less than the first half because the trailing
matrix gets smaller and the execution time reduces. Overall, there is a 31% energy improvement
in total energy for the entire LU factorization with two GPUs.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:19

Fig. 18. GPU energy improvement of double-precision LU factorization in the presence of two GPUs for a

matrix of size 18K.

Fig. 19. Total CPU and GPU energy improvement of double-precision LU factorization with single GPUs for

a matrix of size 18K.

7 RELATEDWORKS

There has been a lot of work done in recent years to investigate and improve the energy efficiency
of the kernels that are frequently utilized in scientific applications.Matrixmultiplication, LU factor-
ization, Cholesky, and QR decomposition are examples of such kernels. There are general methods
that are employed to increase the energy efficiency of the applications. Numerous methods have
been suggested, which can be categorized into the following categories: (1) studies on the effects of
DVFS on the execution of applications and (2) works that introduce the runtime models to predict
the GPU application performance and/or power consumption.
Jiao et al. [15] investigated the impacts of core and memory frequency on applications with

various features with regard to the effects of DVFS on various applications. The authors noted
that as some applications were more sensitive than others to the scaling of each frequency

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:20 H. Zamani et al.

Fig. 20. Total CPU and GPU energy improvement of double-precision LU factorization with two GPUs for a

matrix of size 18K.

domain, the effect of frequency scaling on performance and power consumption depended on
the characteristics of the applications. An alternate strategy for DVFS requires the development
of accurate performance and/or power models that enable GPU behavior prediction under various
voltage and frequency conditions. In an effort to accurately represent the execution characteristics
of GPGPU applications, GPU performance models are generally developed based on GPU pipeline
analysis [14, 24, 31], seeking to properly reflect the execution characteristics of GPGPU applica-
tions. In some research, the performance models are based on profiling as well as the algorithmic
knowledge of the application. For instance, in [7], they introduce a performance model based on
profiling the first iteration and then using the algorithmic knowledge to predict the next itera-
tions. Since the error rate is only dependent on the profiling results of the first iteration, the error
caused by profiling will be accumulated in the later iterations and will become around 11.4%. In
other works [6], they use a similar approach; however, using an online calibration, they avoid error
from accumulating and reduce the error rate, but this approach adds the overhead of the online
calibration to the overhead of the performance model and needs application changes ahead of time.
Some of the GPU DVFS runtime power modeling techniques are based on empirical techniques,

which call for the division of GPU micro-architectures and the analysis of the kernel binary
code [17]. Also, in [35], the authors use amicro-benchmark-basedmethodology to create a through-
put model for the instruction pipeline, shared memory access, and global memory access, the three
main components of GPU execution time, and they are able to predict the performance of the GPU
with a 5% to 15% error rate. However, these methods are frequently product specific and difficult
to port to other architectures.
In order to leverage the Dynamic Voltage and Frequency Scaling (DVFS) technique, we

present a performance model that incurs a maximum performance overhead of 5%. Our perfor-
mance model is derived from the general GPU performance model and can be adapted to suit
diverse compute-intensive applications with minor modifications to the introduced performance
models.

8 CONCLUSION

In this article, we present GreenMD, an energy-efficient framework to improve the energy con-
sumption of LU factorization on a heterogeneous mutli-GPU system. We profiled the execution

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:21

Table 3. Energy Improvement of CPU and GPU/GPUs in Heterogeneous

Systems with One GPU and Two GPUs

Energy Improvement (%)

CPU GPU/GPUs Total

Heterogeneous system with one GPU 51% 18% 32.4

Heterogeneous system with two GPUs 59% 21% 31%

trace of a system with two GPUs and explained various kernel executions and data transfers. This
gave rise to detailed analytical models to predict the CPU/GPU execution time and PCIe bus trans-
fer time. Then we applied DVFS to the CPU and GPUs based on the amount of slack predicted
through our analysis. We designed appropriate APIs and inserted them into the kernel to indepen-
dently control the DVFS at each iteration. We further improved the energy by reducing the voltage
of the CPU and GPUs independently based on the minimum threshold voltages to avoid error.
Since GreenMD employs the same programming interface as MAGMA’s LU factorization, it is

transparent to programs that use the LU factorization and does not require users to change the
application’s source code. GreenMD is portable and can be utilized with any GPU architecture.
Knowing how the workload is distributed across each underlying architecture and an understand-
ing of algorithms are both necessary for this. This means that GreenMD can be used with any
GPU architecture by just changing a few model parameters that are particular to each GPU ar-
chitecture. Also, the approach we propose can be used to improve a broad range of kernels. The
performance model will be adjusted and the appropriate level of undervolting will be determined
using the offline profiling phase and algorithm information.
GreenMD’s energy consumption was evaluated for two heterogeneous systems, one with a sin-

gle GPU and the other with two GPUs for a matrix size of 18K*18K. Our results as shown in Table 3
showed that CPU and GPU energy consumption improved by around 51% and 18%, respectively,
in a heterogeneous system with a single GPU. Also, in a heterogeneous system with two GPUs,
GreenMD reduces the energy consumption of the CPU and GPU by 59% and 21%, respectively. The
total energy saved during the entire execution is 31%.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their invaluable comments and
suggestions.

REFERENCES

[1] MSI Afterburner. [n. d.]. http://goo.gl/fs2pti.

[2] R. Begum, M. Hempstead, G. P. Srinivasa, and G. Challen. 2016. Algorithms for CPU and DRAM DVFS under ineffi-

ciency constraints. IEEE 34th International Conference on Computer Design (ICCD’16), 161–168.

[3] Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano, and Raffaele Tripiccione. 2017. Evaluation of DVFS

techniques on modern HPC processors and accelerators for energy-aware applications. Concurrency and Computa-

tion: Practice and Experience 29, 12 (2017), e4143.

[4] Anthony M. Castaldo and R. Clint Whaley. 2010. Scaling LAPACK panel operations using parallel cache assignment.

ACM Sigplan Notices 45, 5 (2010), 223–232.

[5] Saumya Chandra, Kanishka Lahiri, Anand Raghunathan, and Sujit Dey. 2009. Variation-tolerant dynamic power

management at the system-level. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17, 9 (2009),

1220–1232.

[6] Jieyang Chen, Hongbo Li, Sihuan Li, Xin Liang, Panruo Wu, Dingwen Tao, Kaiming Ouyang, Yuanlai Liu, Kai Zhao,

Qiang Guan, and Zizhong Chen. 2018. Fault tolerant one-sided matrix decompositions on heterogeneous systems

with GPUs. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC’18).

854–865. https://doi.org/10.1109/SC.2018.00071

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



12:22 H. Zamani et al.

[7] Jieyang Chen, Li Tan, Panruo Wu, Dingwen Tao, Hongbo Li, Xin Liang, Sihuan Li, Rong Ge, Laxmi Bhuyan, and

Zizhong Chen. 2016. GreenLA: Green linear algebra software for GPU-accelerated heterogeneous computing. In

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’16).

IEEE, 667–677.

[8] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos, Ramesh Subramo-

nian, and Thorsten Von Eicken. 1993. LogP: Towards a realistic model of parallel computation. In Proceedings of the

4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 1–12.

[9] Shidhartha Das, David Roberts, Seokwoo Lee, Sanjay Pant, David Blaauw, ToddAustin, Krisztián Flautner, and Trevor

Mudge. 2006. A self-tuning DVS processor using delay-error detection and correction. IEEE Journal of Solid-State

Circuits 41, 4 (2006), 792–804.

[10] S. Donfack, S. Tomov, and J. Dongarra. 2014. Dynamically balanced synchronization-avoiding LU factorization with

multicore and GPUs. In 2014 IEEE International Parallel Distributed Processing Symposium Workshops. 958–965.

[11] Dimitris Gizopoulos, George Papadimitriou, Athanasios Chatzidimitriou, Vijay Janapa Reddi, Behzad Salami, Osman

S. Unsal, Adrian Cristal Kestelman, and Jingwen Leng. 2019. Modern hardware margins: CPUs, GPUs, FPGAs Recent

System-Level Studies. IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS’19).

(2019), 129–134. DOI:10.1109/IOLTS.2019.8854386

[12] João Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomás. 2019. DVFS-aware application classification to im-

prove GPGPUs energy efficiency. Parallel Comput. 83 (2019), 93–117.

[13] João Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomás. 2019. Modeling and decoupling the GPU power

consumption for cross-domain DVFS. IEEE Trans. Parallel Distrib. Syst. 30, 11 (Nov. 2019), 2494–2506.

[14] Sunpyo Hong and Hyesoon Kim. 2010. An integrated GPU power and performance model. In Proceedings of the 37th

Annual International Symposium on Computer Architecture. 280–289.

[15] Y. Jiao, H. Lin, P. Balaji, and W. Feng. 2010. Power and performance characterization of computational kernels on

the GPU. In 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber,

Physical and Social Computing. 221–228. https://doi.org/10.1109/GreenCom-CPSCom.2010.143

[16] Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, and Vijay Janapa Reddi. 2015. Safe limits on volt-

age reduction efficiency in GPUs: A direct measurement approach. 48th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO’15). 294–307. https://doi.org/10.1145/2830772.2830811

[17] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vi-

jay Janapa Reddi. 2013. GPUWattch: Enabling energy optimizations in GPGPUs. ACM SIGARCH Computer Archi-

tecture News 41, 3 (2013), 487–498.

[18] Jingwen Leng, Yazhou Zu, and Vijay Janapa Reddi. 2014. Energy efficiency benefits of reducing the voltage guardband

on the Kepler GPU architecture. InWorkshop on Silicon Errors in Logic-System Effects (SELSE’14).

[19] J. Leng, Y. Zu, M. Rhu, M. S. Gupta, and V. J. Reddi. 2014. GPUVolt: Modeling and characterizing voltage noise in GPU

architectures. In 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED’14). 141–146.

https://doi.org/10.1145/2627369.2627605

[20] Ching-Chi Lin, You-Cheng Syu, Chao-Jui Chang, Jan-Jan Wu, Pangfeng Liu, Po-Wen Cheng, and Wei-Te Hsu. 2015.

Energy-efficient task scheduling for multi-core platforms with per-core DVFS. J. Parallel Distrib. Comput. 86 (Dec.

2015), 71–81.

[21] Xavier Luciani and Laurent Albera. 2015. Joint eigenvalue decomposition of non-defective matrices based on the LU

factorization with application to ICA. IEEE Transactions on Signal Processing 63, 17 (2015), 4594–4608.

[22] Xinxin Mei, Ling Sing Yung, Kaiyong Zhao, and Xiaowen Chu. 2013. A measurement study of GPU DVFS on energy

conservation. In Proceedings of the Workshop on Power-aware Computing and Systems. 1–5.

[23] R. M. Miller. 2013. Exascale computing. https://www.datacenterknowledge.com/archives/2010/12/10/exascale-

computing-gigawatts-of-power.

[24] Rajib Nath and Dean Tullsen. 2015. The CRISP performance model for dynamic voltage and frequency scaling in a

GPGPU. In Proceedings of the 48th International Symposium on Microarchitecture. 281–293.

[25] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, Dimitris Gizopoulos, Peter Lawthers, and

Shidhartha Das. 2017. Harnessing voltage margins for energy efficiency in multicore CPUs. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture. 503–516.

[26] Antoine Petitet. 2004. HPL-a portable implementation of the high-performance Linpack benchmark for distributed-

memory computers. http://www.netlib.org/benchmark/hpl/.

[27] N. Rohbani, M. Ebrahimi, S. Miremadi, and M. B. Tahoori. 2017. Bias temperature instability mitigation via adaptive

cache size management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 3 (March 2017), 1012–

1022. https://doi.org/10.1109/TVLSI.2016.2606579

[28] Barry Rountree, David K. Lowenthal, Bronis R. De Supinski, Martin Schulz, VincentW. Freeh, and Tyler Bletsch. 2009.

Adagio: Making DVS practical for complex HPC applications. In Proceedings of the 23rd International Conference on

Supercomputing. 460–469.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.



GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems 12:23

[29] Barry Rountree, David K. Lowenthal, Shelby Funk, Vincent W. Freeh, Bronis R. De Supinski, and Martin Schulz.

2007. Bounding energy consumption in large-scale MPI programs. In Proceedings of the 2007 ACM/IEEE Conference

on Supercomputing (SC’07). IEEE, 1–9.

[30] Smruti R. Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano, Abhishek Tiwari, and Josep Torrellas. 2008. VAR-

IUS: Amodel of process variation and resulting timing errors for microarchitects. IEEE Transactions on Semiconductor

Manufacturing 21, 1 (2008), 3–13. https://doi.org/10.1109/TSM.2007.913186

[31] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W. Cameron. 2013. A simplified and accurate model of power-

performance efficiency on emergent GPU architectures. In 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing. IEEE, 673–686.

[32] Li Tan, Shuaiwen Leon Song, Panruo Wu, Zizhong Chen, Rong Ge, and Darren J. Kerbyson. 2015. Investigating the

interplay between energy efficiency and resilience in high performance computing. In 2015 IEEE International Parallel

and Distributed Processing Symposium. IEEE, 786–796.

[33] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. 2019. The impact of GPU DVFS on the energy and

performance of deep learning: An empirical study. In Proceedings of the 10th ACM International Conference on Future

Energy Systems (e-Energy’19). Association for Computing Machinery, New York, NY, 315–325.

[34] Hadi Zamani, Yuanlai Liu, Devashree Tripathy, Laxmi Bhuyan, and Zizhong Chen. 2019. GreenMM: Energy efficient

GPU matrix multiplication through undervolting. In Proceedings of the ACM International Conference on Supercom-

puting. 308–318.

[35] Yao Zhang and John D. Owens. 2011. A quantitative performance analysis model for GPU architectures. In 2011 IEEE

17th International Symposium on High Performance Computer Architecture. 382–393. https://doi.org/10.1109/HPCA.

2011.5749745

[36] Yazhou Zu, Charles R. Lefurgy, Jingwen Leng, Matthew Halpern, Michael S. Floyd, and Vijay Janapa Reddi. 2015.

Adaptive guardband scheduling to improve system-level efficiency of the POWER7+. 48th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO’15). 308–321. DOI:10.1145/2830772.2830824

[37] Yazhou Zu, Charles R. Lefurgy, Jingwen Leng, Matthew Halpern, Michael S. Floyd, and Vijay Janapa Reddi. 2015.

Adaptive guardband scheduling to improve system-level efficiency of the POWER7+. In 2015 48th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’15). IEEE, 308–321.

Received 7 September 2022; revised 20 November 2022; accepted 24 December 2022

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 12. Publication date: June 2023.


