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The magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) model has been successfully
applied to global magnetospheric simulations in recent years. However, the PIC region was restricted
to be one or more static boxes, which is not always sufficient to cover the whole physical structure of
interest efficiently. The FLexible Exascale Kinetic Simulator (FLEKS), which is a new PIC code and allows
a dynamic PIC region of any shape, is designed to break this restriction. FLEKS is usually used as the PIC
component of the MHD with adaptively embedded particle-in-cell (MHD-AEPIC) model. FLEKS supports
dynamically activating or deactivating cells to fit the regions of interest during a simulation. An adaptive
time-stepping scheme is also introduced to improve the accuracy and efficiency of a long simulation.
The particle number per cell may increase or decrease significantly and lead to load imbalance and
large statistical noise in the cells with fewer particles. A particle splitting scheme and a particle merging
algorithm are designed to limit the change of the particle number and hence improve the accuracy of the
simulation as well as load balancing. Both particle splitting and particle merging conserve the total mass,
momentum, and energy. FLEKS also contains a test-particle module to enable tracking particle trajectories
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due to the time-dependent electromagnetic field that is obtained from a global simulation.
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1. Introduction

Multi-scale plasma simulations are challenging due to the lim-
itation of computational resources. Fluid models are efficient for
global simulations, but kinetic-scale physics is missing. Fully ki-
netic codes, such as particle-in-cell (PIC) codes and Vlasov solvers,
contain electron and ion scale physics. However, it is extremely
computationally expensive to resolve the global scale and the elec-
tron scale at the same time for three-dimensional (3D) global
simulations. Traditional hybrid models, which usually treat elec-
trons as a massless fluid and simulate ions with a PIC method or
a Vlasov solver, incorporate ion-scale physics into global simula-
tions by sacrificing electron-scale kinetic physics. Another class of
hybrid methods embeds a kinetic code into a global fluid model
so that the kinetic code can resolve the regions where the kinetic
physics is important, and the fluid model handles the rest of the
domain efficiency. In recent years, independent groups have devel-
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oped models that couple either a PIC code [1] or a Vlasov solver
[2] with a fluid model. Besides the hybrid models, extended fluid
models, such as the five-, six- or ten-moment models, have also
been developed to incorporate beyond-MHD physics into multi-
scale simulations [3,4].

Sugiyama and Kusano [5] demonstrated the concept of coupling
a PIC code with a fluid code. The magnetohydrodynamics (MHD)
with embedded particle-in-cell (MHD-EPIC) model developed by
Daldorff et al. [1] is the first mature coupled model that is capable
of running 3D large-scale simulations. The MHD-EPIC model usu-
ally covers the dayside or/and the tail magnetic reconnection sites
with the PIC code when it is applied to simulate the dynamics
of magnetospheres [6-9]. Multiple isolated PIC domains are sup-
ported so that a few regions of interest can be covered by the PIC
code in one simulation [6]. However, in an MHD-EPIC simulation,
each PIC region is restricted to be a static box, which is not always
efficient or suitable to cover the whole physical structure of inter-
est due to either the limitation of computational resources or geo-
metric complexity of the physical region. Recently, Shou et al. [10]
developed the magnetohydrodynamics with adaptively embedded
particle-in-cell (MHD-AEPIC) model, which allows changing the lo-
cation of an active PIC region dynamically.
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In this paper, we introduce a new code, the FLexible Ex-
ascale Kinetic Simulator (FLEKS), which is designed and imple-
mented to be the PIC component of the MHD-AEPIC model. FLEKS
shares some similarities with the Adaptive Mesh Particle Simulator
(AMPS) used in the work by Shou et al. [10], but FLEKS provides
a more flexible grid design. FLEKS uses the parallel data structures
provided by the AMReX library [11,12]. The grid of FLEKS has to
be uniform and Cartesian, but the active PIC region is not limited
to be a box anymore since the PIC cells can be turned off to fit the
region of interest. Furthermore, FLEKS also supports switching on
and off grid cells dynamically for MHD-AEPIC simulations.

FLEKS employs the non-relativistic Gauss’s law satisfying energy-
conserving semi-implicit method (GL-ECSIM) [13] as the base PIC
solver. The time step of the semi-implicit PIC methods is lim-
ited by the Courant-Friedrichs-Lewy (CFL) condition based on the
macro-particle velocities in order to be accurate [14]. Since the
speed of macro-particles may change significantly during a long
MHD-AEPIC simulation, the simulation will be either too slow
or inaccurate with a fixed time step. To keep the simulation ef-
ficient and accurate at the same time, FLEKS uses an adaptive
time-stepping algorithm, which still satisfies the requirement of
the energy-conserving semi-implicit method (ECSIM) [15] to keep
energy conservation. Section 2 describes the adaptive grid and
temporal discretization of FLEKS.

The statistical noise of macro-particles is the primary source
of numerical error in typical PIC simulations. Dozens to hundreds
of particles per cell are usually used to achieve a balance be-
tween accuracy and computational cost. Since there are much
more macro-particles than grid cells in a kinetic PIC simulation,
particle-related calculations, such as updating particle positions
and velocities, dominate the total computational time. In addition,
a massively parallel simulation can be significantly slowed down
due to the imbalance of macro-particle numbers among the par-
allel processes. On the other hand, the decrease of the number of
macro-particles in some cells increases the statistical noise and re-
duces the accuracy. A particle resampling algorithm that is able to
control the macro-particle number per cell is crucial for improving
both the simulation efficiency and accuracy. More macro-particles
need to be added into the cells that contain fewer macro-particles
than required to represent the plasma velocity-space distribution
accurately. This goal is usually achieved by splitting particles. In
the cells with more macro-particles than some threshold, a parti-
cle merging algorithm needs to be applied to reduce the number
of macro-particles and speed up the simulation. A particle resam-
pling algorithm is even more crucial for a PIC code with adaptive
mesh refinement (AMR), where the motion of macro-particles be-
tween the coarse and fine cells alters the macro-particle number
per cell dramatically [16,17]. Besides particle resampling, we note
that the load balance of a PIC code can also be improved by dy-
namically distributing the cell patches among the processors based
on the work per patch, which is defined as a combination of the
particle and field calculations [18].

Both the particle splitting and particle merging processes re-
place the original particles with a set of new particles. Lapenta
[19] suggested that the replacement should maintain the following
properties:

1. The plasma moments evaluated on the simulation grid, which
are used to update electric and magnetic fields, should not be
changed by the replacement.

2. The replacement should keep the original particle phase space
distributions.

It is more challenging to achieve these two goals for a particle
merging algorithm than for a particle splitting algorithm, because
it is inevitable to lose information when replacing original parti-
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cles with fewer particles. A few algorithms have been designed to
merge particles. Lapenta [19] introduced two algorithms to merge
particles that are close to each other in the phase space. The al-
gorithm C1 merges two particles into one, and the algorithm C2
merges three particles into two. The algorithm C2 conserves the
mass, momentum, and energy of the particles, and also the charge
densities on the grid, but it is not straightforward to extend to 2D
and 3D. Vranic et al. [20] also proposed an algorithm to merge
particles into two new particles while conserving the overall mass,
momentum, and energy, and the original particles are chosen by
binning particles in the momentum space. Instead of merging a
few particles into one or two, the algorithms designed by Assous
et al. [21], Welch et al. [22], Pfeiffer et al. [23], and Faghihi et al.
[24] use a set of particles to replace the old ones. Assous et al.
[21] and Welch et al. [22] focused on the conservation of the grid
quantities, but the fine structures in the velocity space may not be
well preserved. Pfeiffer et al. [23] generated the new particle ve-
locities from a distribution function and adjusted the velocities to
conserve energy afterward. Faghihi et al. [24] created new particles
with a uniform distribution inside a phase space bin, and adjusted
the weights to conserve the moments. As a general rule, the par-
ticles selected for merging should be close to each other in the
phase space to minimize the error that is introduced by merging.
Besides the method of binning the velocity space [20,24], Teunis-
sen and Ebert [25] applied a k-d tree to find the particles that are
closest to each other, and Luu et al. [26] showed how to parti-
tion particles with the Voronoi diagram. Timokhin [27] proposed
a simple method that deletes particles randomly and adjusts the
weights of remaining particles to conserve the total mass, but nei-
ther momentum nor energy is conserved. Our new particle merg-
ing algorithm implemented into FLEKS searches for 6 particles that
are close in phase space and merges them into 5 particles while
preserving mass, momentum and energy and also minimizes the
change in the phase space distribution. The details of the splitting
and merging algorithms are described in section 4.

Tracking the motion of macro-particles is useful for investigat-
ing the particle trajectories and the energization of particles. FLEKS
provides a parallel test particle module to follow the motion of
macro-particles and save the particle trajectory data to disk. The
test particle module can be used either inside the PIC code, or as
an independent component directly coupled to the MHD model.
Section 5 describes the implementation details of the test particle
module.

The paper is organized as follows. Section 2 describes the grid
design of FLEKS. Section 3 introduces the adaptive time-stepping
scheme. Section 4 focuses on the particle splitting and particle
merging algorithms. Section 5 discusses the implementation of the
test particle module. Section 6 presents numerical tests to demon-
strate the capability of the adaptive active PIC regions, the role of
the particle resampling algorithms, the parallel efficiency of FLEKS,
and examples of global simulations with FLEKS. Finally, section 7
presents the conclusions.

2. Adaptive grid

Since the MHD-EPIC model was developed by Daldorff et al. [1],
we have developed new features to make it more flexible to use.
It now supports multiple independent PIC domains to cover sev-
eral regions of interest [6], and it also allows rotating a PIC box
domain to align with the features of interest [28]. However, a box
is not always suitable or efficient to cover the region of interest.
For example, if a PIC box is used to cover the whole dayside mag-
netopause, which is close to a paraboloid, the box will cut through
the planet and introduce extra difficulties, and the PIC box will also
contain a large portion of cells, where the kinetic effects are not
important, which slows down the simulation. A flexible grid that
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Fig. 1. A schematic shows the improvement of the MHD-AEPIC (right) model from the MHD-EPIC (left) model.

allows creating an active PIC domain that approximates the shape
of a paraboloid to fit the magnetopause can solve this problem.
A dynamically adaptive grid is also useful to improve the efficiency
of some simulations. For instance, the near-Earth X-line may move
from the inner magnetotail to the middle or even far magnetotail
[29], and an adaptive grid that only covers the environment around
the X-line is much more efficient than a large PIC box that covers
the whole magnetotail. The MHD-AEPIC algorithm is designed to
solve these problems and FLEKS is the key component. Fig. 1 shows
the conceptual difference between the MHD-EPIC and MHD-AEPIC
models.

FLEKS still requires the shape of the full PIC grid to be a box,
and the Cartesian grid has to be uniform (this is a requirement
of the GL-ECSIM algorithm). But FLEKS allows switching off part
of the cells to approximately fit a region of any shape. The most
straightforward approach is switching on/off each cell indepen-
dently. However, this approach has several drawbacks, as discussed
below, so we make the algorithm a bit more sophisticated. We
divide the whole PIC domain into patches (Fig. 2(a)). Each patch
contains N cells in each direction, and one can turn on or turn
off each patch. The patch size N is required to be larger or equal
to 2. We do not allow N =1 (switching on/off each cell indepen-
dently) for the following reasons. FLEKS requires two ghost cell
layers for coupling with MHD at the PIC region boundary. If N =1,
the boundary ghost cells of an active region may overlap with the
physical cells of another active region, and hence introduces more
difficulties to handle the boundary ghost cells. A large patch size
also benefits the coupling efficiency. In MHD-AEPIC simulations,
the fluid model controls the status of the patches based on geo-
metric and physics-based criteria [29]. The fluid model passes the
bit-wise patch status array to FLEKS through the Message Passing
Interface (MPI), and the size of this array is reduced significantly
with a larger patch size (proportional to N=3 in 3D). In this pa-
per, we use the word ‘active’ to describe the patches or cells that
are switched on. The active cells do not have to be connected, and
the boundary ghost cells of the active regions are filled in with the
information obtained from the fluid model [1]. Fig. 2(a) shows an
example that contains two separated active regions.

FLEKS uses the data structures provided by the AMReX library
to store the fields and also the particles. After the patch status
array is obtained from the fluid model, FLEKS uses the functions
provided by the AMReX library to divide the active regions into
blocks. AMRex does not require all the blocks to have the same
size. We note that the patch and the block are two independent
concepts. The patches are only used to activate or deactivate cells.
For example, the ‘L’ shape active region in Fig. 2(a) consists of 3
patches and it can be divided into 2 blocks (Fig. 2(b)).

FLEKS allows activating or deactivating patches during a simu-
lation. If the active regions change, FLEKS will produce a new set
of blocks to cover the new active regions. With the function pro-
vided by AMReX, FLEKS copies the fields and particles from the
old blocks to the new ones for the cells that are already active and
deletes the information of the newly deactivated cells. The newly
activated cells are filled in with the information obtained from the
fluid model as what is done for FLEKS initialization.

FLEKS has two ghost cell layers, but the outer layer is only used
to receive and store the magnetic fields, which are necessary for
calculating currents on the nodes of the inner ghost cell layer from
J =V x B in normalized units. The currents are used to generate
particles with correct velocities in the inner layer ghost cells. To
simplify the description, we ignore the outer layer in Fig. 2(c) and
also in the rest of the paper unless otherwise specified. The prin-
ciple of setting boundary conditions of the electromagnetic fields
and the particles is still the same as the MHD-EPIC coupling al-
gorithm [1]. However, the non-box shape of an active region intro-
duces some extra implementation difficulties. There are three types
of ghost cells for a block: the internal ghost cells (blue cells in
Fig. 2(c)), the exclusive boundary ghost cells (gray cells in Fig. 2(c))
and the shared boundary ghost cells (cyan cells in Fig. 2(c)). The
internal ghost cells are not boundary cells, and there is no need to
apply boundary conditions. The exclusive boundary ghost cells are
not overlapped with any cells of the neighboring blocks, and they
should be filled in with new macro-particles as the particle bound-
ary condition. The shared boundary ghost cells are overlapped with
the boundary ghost cells of the neighboring blocks, and only one
of these blocks should generate boundary particles. Here is the al-
gorithm to choose the block for populating new particles. The first
step is to distinguish the boundary ghost cells from the internal
ghost cells. Then, for each boundary ghost cell, either the exclusive
type or the shared type, we loop through its at most 26 neighbor-
ing cells (3D) in a fixed order (we choose to loop through all the
face neighbors first, then the edge neighbors, and finally the corner
neighbors), skip the nonexistent cells and find out the first neigh-
boring cell that is either a physical cell or an internal ghost cell.
If this neighboring cell is inside the physical domain of this block,
this block should generate particles inside this boundary ghost cell.
For example, in Fig. 2(c)), C1 and C3 are overlapped with each
other. We loop through the neighboring cells of C1 and find C2
is its first neighboring cell that is either a physical cell or an in-
ternal ghost cell (C2 is a physical cell), so block-1 should generate
particles in C1 since C2 is inside block-1. We repeat the same pro-
cedure for the cell C3, and find C4 is its first neighboring cell that
is either a physical cell or an internal ghost cell (C3 is an internal
ghost cell), but block-2 should not generate particles in C3 since
C4 is outside the physical domain of block-2.

The electric fields are node-based in FLEKS. For a node that is
shared by multiple blocks, such as the one indicated by a red-cross
in Fig. 2(c)), only one block should take care of the shared node
when solving the linear equations of the electric fields. The afore-
mentioned algorithm is also applied to choose the proper block for
a shared node.

In a typical MHD-AEPIC simulation, the MHD model usually
solves the MHD equations with the Hall term and a separate elec-
tron pressure equation. The conversions between the MHD vari-
ables and the PIC quantities can be found in [1].

3. Adaptive time-stepping

The time step of the energy-conserving semi-implicit method
(ECSIM) is subject to the accuracy condition vypsAt/Ax <1 just
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Fig. 2. The black lines represent the cells of a PIC domain. The red dashed lines in (a) show the patches, and one patch contains 4 x 4 cells in this example. In (a), the active
patches/cells are colored by dark gray, and light gray area represents the ghost cells of the active PIC regions. (b) shows the blocks of the active regions. (c) shows the inner
layer of the ghost cells of two blocks, and the red dots represent the macro-particles that are generated in the ghost cells as the particle boundary condition. Blue ghost cells
are internal ghost cells, which are overlapped with the physical cells of the neighboring blocks. The gray cells are exclusive boundary ghost cells, and they should be filled
in with macro-particles as the boundary condition. The cyan cells are also boundary ghost cells, but they are overlapped with the boundary ghost cells of the neighboring
blocks, and only one of the blocks should generate boundary particles. The C1..C4 labels and the two red crosses are used in the main text describing the algorithm. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

as other semi-implicit PIC methods [14], where vy is the max-
imum root mean square of macro-particle velocities. For a long
MHD-AEPIC simulation, v,ns may vary significantly, so an adaptive
time-stepping algorithm that adjusts time-step accordingly will
improve the simulation efficiency and accuracy. However, the en-
ergy conservation property of ECSIM is sensitive to the temporal
discretization scheme, and the adaptive time-stepping algorithm
should not break the conservation.

Our adaptive time-stepping algorithm is summarized in Fig. 3.
At the end of one cycle, both the electromagnetic fields and the
particle velocities are at time stage t", and the particle locations
are at the staggered stage t"*1/2. The difference between t"*1/2

and t" is t"t1/2 —t" = At"/2. The maximum speed Vs can be
obtained with the particle velocities at t", and a new time step
At"™1 can be calculated from At"™t! = CFL . Ax/v.ns. However,
during the next cycle of updating the electromagnetic fields and
particle velocities from t" to t"*1, the time step should be At" in-
stead of At"t1, so that the particle location X"t1/2 is still at the
middle of t" and t"*!, and the energy conservation property of
ECSIM is preserved. In order to adjust the time step for the next
cycle, we use the time step (At" + At"t1)/2 for updating the par-
ticle location from X"t1/2 to X"t3/2. The velocity V™! at t"*1 is
not centered exactly between t"+1/2 and t"*3/2 but the deviation
(AP — A o (8 In Vs /0) (At™)? is second order since the Vips
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Fig. 3. The adaptive temporal discretization.

used to calculate the time steps changes continuously with time.
Therefore the second-order accuracy of updating particle locations
is still satisfied.

4. Particle resampling

Particle resampling algorithms are used to control the macro-
particle number of each cell. At the end of every computational
cycle, a particle splitting (merging) algorithm is applied to generate
(remove) macro-particles for the cells that contain fewer (more)
particles than the splitting (merging) threshold. The goal of split-
ting and merging is to stop the number of particles per cell (ppc)
from dropping or increasing continually. Essentially, the particle re-
sampling algorithms use a new set of particles to replace the old
ones. Our guiding principle of designing the algorithms is that the
replacement should preserve the original particle phase space dis-
tribution as much as possible. In order to conveniently apply the
resampling algorithms, FLEKS stores the particle data cell by cell.

4.1. Particle splitting

Our particle splitting algorithm is essentially the same as the
one introduced by Lapenta [19], in which one particle is split into
two children particles. The children particles have the same ve-
locity as their parent particle, but their locations are oppositely
displaced slightly along the velocity direction. By displacing the
new particles along the velocity direction, the orbits of the new
particles are still close to the orbit of the old particle.

The particle splitting will be triggered for the cells with ppc
less than the splitting threshold, which is 80% of the initial ppc by
default, and we will use this number for all the simulations pre-
sented in section 6. Initially, the particles that are close to each
other have similar weights, but the weights may become quite dif-
ferent later due to the transport of particles and also the particle
splitting and merging. For each cell, we choose to split the heavi-
est N particles to minimize the particle weight variance, where N
is the difference between the current ppc and the splitting thresh-
old.

4.2. Particle merging

The essence of particle merging is replacing a set of particles
with a new set, which contains fewer particles than the old set.
Particle merging reduces the particle number in some cells and
improves simulation speed. In general, particle merging has a neg-
ative impact on the accuracy of a simulation because (1) the re-
placement introduces errors, and (2) fewer particles lead to larger
statistical noise in the subsequent simulation. The statistical noise
increasing is inevitable, but the errors caused by the replacement
can be minimized with a proper merging algorithm.

Our particle merging algorithm consists of two steps: (1) se-
lecting 6 particles that are close to each other in the phase space,
and (2) merging these 6 particles into 5. In the following subsec-
tions, we will describe the merging step first, and what follows is
the selecting step.

Computer Physics Communications 287 (2023) 108714

4.2.1. Merging particles

Once the 6 old particles for merging have been obtained from
the selecting step, we use 5 new particles to replace them. The
replacement should not alter the original phase space distribution
significantly. However, it is not trivial to quantitatively measure the
change of the phase space. The conservation of total mass, mo-
mentum, and energy can be used as a guidance and indicator of
preserving phase space structure. However, satisfying the conser-
vation property is not good enough, it is still possible that the new
particle set occupies a very different velocity space volume than
the old set. Previous methods [30,20] usually generate new parti-
cles with velocities that are different from the velocities of the old
particles, and extra actions are usually required to ensure the new
particles are not too far away from the old ones in the velocity
space. To avoid this difficulty, we choose to delete one of the 6 old
particles and distribute its mass to the remaining 5 particles under
the constraint of conserving total mass, momentum vector, and en-
ergy. The weights of these 5 particles change, but their velocities
are inherited from the old ones, so the new particle set occupies
almost the same phase space volume as the old set.

The total mass, momentum and energy of the old particle set
are:

Noig Noiq Noig

1
We=) Wi Pe=) wivi,  e=) owivi, (1)
i=1 i=1 i=1

where w is the macro-particle mass, v is the particle velocity, p is
the momentum, e is the particle energy and N,y = 6. From these
6 particles, we find the pair that is closest to each other in the
6D phase space (Fig. 4(d)), then remove the lighter one of this
pair and adjust the weights of the rest 5 particles to satisfy the
conservation requirement:

Nﬂé’W Nﬂé’W NHEW

1
2
Wi = Z Winew, Pt= Z Wi newVi, €r= Z EWi,newvi(z)
i=1 i=1 i=1
Wi new >0 (3)

where we choose Npeyw =5 since there are 5 quantities to con-
serve. The velocities v; are known, and the new weights w; pey are
the 5 unknowns of the linear equations (2) under the constraint of
positivity (3). If the solution does not satisfy the constraint, we
skip this merging.

To minimize the impact of the merging on the phase space dis-
tribution, we need to quantify a distance in the 6D phase space.
The actual definition will be described in the next subsection, here
we simply assume that the appropriate distance function exists.

By deleting the lighter particle from a pair that is closest to
each other in the phase space, it is likely that its heavier neigh-
bor will gain most of the weight and the other 4 particles adjust
their weights relatively slightly. By inheriting the velocities and lo-
cations from the old particles, the new particles occupy almost the
same phase space volume as the old particles (Fig. 4(d) and (e)), so
there is no room for the phase space structure to change dramat-
ically. Compared to the schemes that allow choosing new particle
velocity with fewer restrictions [20], our merging algorithm is less
efficient to reduce the particle number because (1) the new parti-
cle set still contains 5 particles, and (2) the merging may fail when
the constraint w; zew > 0 can not be satisfied. If it is required, our
algorithm can be modified to use a N4 that is larger than 6 by
deleting No4 — 5 particles. However, as it can be seen from the
following numerical test section, merging 6 particles into 5 is al-
ready efficient enough for our typical applications.

Our algorithm conserves 5 quantities, i.e., mass, momentum,
and energy, and the new particle set contains 5 particles. In prin-
ciple, the conservation quantities can be extended to include the
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Fig. 4. Schematics of the algorithm of merging macro-particles. See text for details.

pressure tensor, which contains 6 independent variables, by re-
ducing Ngig (Noig > 10) particles to Npeyw = 10 (mass, momentum
and pressure tensor). The more quantities are conserved, the more
accurate the merging algorithm is. But the merging may become
less efficient since it requires more particles that are close to each
other in the 6D space. The trade-off between accuracy and effi-
ciency needs to be investigated in the future.

4.2.2. Selecting particles

To minimize the phase space change, the particles selected for
merging should be close to each other in the 6D phase space. Sev-
eral strategies have been proposed for selecting particles, including
binning particles in the phase space [24], partitioning phase space
with Voronoi diagram [26], and using k-d tree data structure [25].
For the sake of simplicity, we choose the binning strategy. The di-
mension of the 6D phase space is so high that even only splitting
each direction into 3 pieces leads to 3% = 729 bins in total. Our
typical simulations use about 100 particles per cell initially, and it
is likely few phase space bins contain enough particles for merg-
ing with 38 bins. To avoid this problem, we only bin particles in
the 3D velocity space and skip the merging if the 6D volume occu-
pied by the selected particles is too large. This approach takes into
account the spatial distribution of the selected particles, but also
implies reducing the variance in the velocity space is more crucial
than controlling the spatial location variance, because all the parti-
cles are already in the same spatial cell, i.e., they can not be too far
away from each other in the spatial dimensions. Inside each veloc-
ity space bin, we choose 6 particles that are closest to each other
for merging.

The particle merging algorithm needs to calculate the distance
between two macro-particles in the 6D phase space. The distance
is defined as:

d=—+c— (4)
X

where As is the spatial distance and Av is the distance in the ve-
locity space between the two particles. The normalization in space
is the simulation cell size Ax. The velocity is normalized to the
particle thermal velocity in the cell

N, 1/2

1
Vih = N Z vi —v[? (3)

P iz

where v; is the particle velocity, v is the cell bulk velocity and N
is the number of particles in the cell. We note that the thermal ve-
locity defined above is used to measure the separation of particles
in the velocity space, so the particle weight is not involved in the
calculation. The constant c; in (4) determines the relative impor-
tance of the spatial distance Alzp and the velocity distance Av.
We choose c; =2 based on our experience with many numerical
tests.

At the end of each computational cycle, the following algorithm
is performed to select particles for merging if the ppc of a cell is
larger than the merging threshold, which is 1.5 times of the initial
ppc by default:

1. Bin the particles in the velocity space. For each spatial cell
(Fig. 4(a)), we create a grid in the velocity space ranging from
(Vx — Vth, Vy — Vi, Vz — Vi) t0 (Vx + Vep, Vy + Vi, Vz + Vin),
and assign particles to velocity bins (Fig. 4(b)). The velocity
grid is divided into npy, = [O.SN},/3
where N, is the current ppc of the cell and the constant 0.8
is chosen based on numerical experiments. We note that each
bin contains a buffer region (Fig. 4(c)), and the particles in
the buffer region may also belong to other bins. We use 1/8
of the velocity space bin size as the width of the buffer re-
gion (Fig. 4(c)). Due to the existence of the buffer region, one
particle may belong to multiple bins, but it can only be se-
lected for merging at most once during one cycle. The binning
is done for each cell, which usually contains about 100 parti-
cles per species, and np;, is about 4. These particles are linked
to the 4 x 4 x 4 bins without copying the particle data. The
memory cost for binning particles is negligible.

2. Select particles from a bin. If there are more than 6 particles
inside a bin, including the buffer region, we choose a cluster
of 6 particles from them. For each velocity bin, we calculate
the velocity center of the associated particles (black cross in
Fig. 4(c)), and find the 6 particles closest to the center in the

bins in each direction,
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Fig. 5. The file structure for storing test particles.

3D velocity space. If a particle in the buffer region has been
selected for merging by a neighboring bin, this particle should
not be selected again.

3. Limit the 6D distance. The previous step selects particles only
based on the distance in the velocity space. This step ensures
the selected particles are also close to each other in the 6D
phase space. We find the 6D center (blue cross in Fig. 4(d)) of
these 6 particles, and the 6D distance d of all the 6 particles
to the center should be less than 0.6. Again, the constant 0.6
is chosen based on numerical experiments.

4, Merge 6 particles into 5 with the algorithm described in sec-
tion 4.2.1.

The particle selection method used in step 2 prefers selecting par-
ticles in the center of a bin. Without applying the buffer region
in step 1, the particles near the edge of a bin are less likely to
be chosen for merging. On the other hand, it is more likely that a
bin extended with a buffer region contains more than 6 particles,
which improves the merging efficiency. Based on our numerical
experiments, applying the buffer region does not improve the sim-
ulation results significantly, but it is still kept by default to avoid
the aforementioned potential issues.

5. Test particle module

An independent test particle (TP) module is designed to track
the motion of the macro-particles for FLEKS. It can be used either
as an auxiliary component of the PIC algorithm or as an inde-
pendent component. The TP module uses the same algorithm to
move particles as the GL-ECSIM algorithm. When the TP module is
used with the PIC component together, the TP module shares the
same grid layout as the PIC component and uses the electromag-
netic fields calculated by PIC to update test particles. When the
PIC component is turned off, FLEKS becomes a pure test particle
code, and the TP module can directly obtain the grid structure and
electromagnetic fields from the MHD model. Compared to the em-
bedded PIC simulations, the pure test particle simulations are only
one-way coupled, i.e.,, the MHD model provides the electromag-
netic fields for FLEKS, but there is not any feedback from FLEKS to
the MHD model.

In a 3D simulation, it is common to track the motion of mil-
lions of test particles, and a few thousand steps of the update will
easily produce a few hundred Gigabytes of particle trajectory data.
The test particle module should organize the data properly to im-
prove both the 10 performance of writing data to disk and also
the efficiency of reading the trajectory of a particle for data anal-
ysis. To reduce the 10 frequency, the TP module of FLEKS saves
the particle trajectory data every 100 cycles, and all the proces-
sors write to the same file with MPI-IO APIs. We note that if a
test particle moves from one processor to another in the middle of
two 10 operations, its trajectory data should also be transferred to
the destination processor. Besides the particle trajectory data file,
a particle ID list file, which maps a particle ID to its data location
in the particle data file, is also created. An example of these two
files is shown in Fig. 5. With this file structure, we find it is effi-
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cient to find the trajectory data of a particular particle from a data
set of one hundred Gigabytes. If a larger data set is required in the
future, we will consider using an advanced I/O library, such as the
ADIOS 2 system [31], and data reduction techniques [32].

6. Numerical tests

6.1. Two-dimensional fast magnetosonic wave propagation with
adaptive PIC region

We use a two-dimensional (2D) fast magnetosonic wave propa-
gation test to demonstrate the capability of FLEKS’s adaptive grids.
The same initial condition as what is described in [1] is applied
here to produce a propagating fast magnetosonic wave. The simu-
lation domain of the MHD code is —160/3 < x < 160/3 and —40 <
y < 40. Two independent PIC domains are used. The left domain
in Fig. 6 covers the region of —40 < x <0 and —20 < y < 20 with
a grid resolution of Ax = Ay =1/16. The right domain covers the
region of 20 < x <40 and —10 < y < 10 with a grid resolution
of Ax= Ay =1/8. All cells of the right PIC domain are always
switched on during the simulation. For the left domain, only the
cells that satisfy the following conditions are switched on:

Ly
r< —
10
or (6)
Ly Ly t mod 200 Ly Ly t mod 200
cx IO d s g x EMOC SR
4 4 200 8 10 200

where r is the distance to the center of the PIC domain, Ly is the
length of the PIC domain, which is 40 in this case, and t is the sim-
ulate time. The central PIC cells (r < Ly/10) are always switched
on, and the outer shell of active PIC cells keeps changing during
the simulation. A movie that shows the adaptation of the active
PIC region is provided as an online supplement. We note that the
simulation parameters for these two PIC domains can be specified
independently. For example, the cell size is different for these two
PIC domains as it is described above, and the ion-electron mass
ratio m;/me is 25 for the left domain and it is 100 for the right
domain. Both PIC domains use CFL = 0.2, and 900 particles per
cell (ppc) per species.

Fig. 6 shows the plasma velocity Uy and the area of the active
PIC cells at the beginning and at t = 400. The interface between
the active PIC region and the MHD region is smooth, and there is
not any significant artificial effect observed.

6.2. One-dimensional non-linear magnetosonic wave evolution

The evolution of the magnetosonic wave is non-linear. The wave
may finally evolve into a shock, where the plasma phase space
distributions may become non-Maxwellian. So the non-linear evo-
lution of the magnetosonic wave simulation is suitable for testing
the particle resampling algorithms.

In section 6.1, the wave vector is perpendicular to the back-
ground magnetic field direction. To make the particle phase space
distribution further away from Maxwellian and hence more chal-
lenging for the particle resampling algorithms, we use a more
general setting that the background magnetic field is neither per-
pendicular nor parallel to the wave vector in this 1D test. The
initial conditions of the 1D magnetosonic wave for the density (p),
pressure (p), magnetic fields (Bx, By and B;), and velocities (uy,
uy and u;) are:
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Fig. 6. The velocity Uy of the 2D fast magnetosonic wave test at the beginning (left) and at t =400 (right). The black rectangles show the area of the PIC grids. Inside each
PIC grid, the semi-transparent area, which is enclosed by red lines, represents the active PIC region. Since all PIC cells are active for the right PIC grid, the black lines and

the red lines are overlapped.

Bx(x) = Bgcos(0)
By (x) = Bo[sin(0) + 8 sin(kx — wt)]

B;(x)=0
) AT
ux(x) =34sin() 5—— sin(kx — wt)
vy — V§
V2
Uy (x) =8cos(9)V—A sin(kx — wt) (7)
p

u,(x)=0

2
p(X) = po |:1 +8 sin(G)% sin(kx — a)t):|
V2 —v2

2
p(x) = po |:1 +vé sin(@)% sin(kx — a)t)i| ,
v p—

P Vs
where y is the specific heat ratio, v4 = J% is the Alfven speed,
Vs = % is the sound speed, and 6 is the angle between the

wave vector, which is the x-direction here, and the background
magnetic field. The phase speed v, = w/k is the fast magnetosonic
speed:

Vi = % {v% +v2 +[(v] +v2)? — 4v2v? cos? 9]1/2} Y (8)
In this paper, we use y =5/3, Bo =0.1, 6 =30°, po=1, po =
0.0001, k =27 /A =27 /64, and § = 0.5. We note that the pertur-
bation § = 0.5 is not small so that the solution will evolve to the
nonlinear stage soon. Since the goal of this test is to compare the
simulation results with and without particle resampling, it is suit-
able and acceptable to use such a large perturbation.

The 1D simulation domain is —32 < x < 32 with a cell size
Ax = 0.05. The initial number of particles per cell per species is
900, and CFL = 0.2. The simulation results at ¢ = 200 are pre-
sented in Fig. 7. To distinguish between the physical density and
macro-particle number per cell, we use ‘mass density’ to repre-
sent the physical density, and ‘number density’ is the number of
macro-particles per simulation cell or phase space bin. At t = 200,
the wave already evolves into a non-linear state, and the veloc-
ity shows a sharp gradient near x = 20. The minimum and max-
imum number of ppc are about 500 and 3140, respectively, for
the simulation without applying particle resampling. For the sim-
ulation with particle resampling, the minimum ppc is about 750
and the maximum ppc is about 1360, and these numbers are

close to the splitting limit 0.8 x 900 = 720 and the merging limit
1.5 % 900 = 1350. It suggests that the particle resampling algo-
rithms are effective in controlling particle numbers. Except for the
particle number, the physical quantities of these two simulations
are very similar to each other. The only noticeable difference is
that the electric field E, of the simulation with particle resampling
is noisier near x = 20 due to the reduction of particle number.
Fig. 7(b) shows the ion phase space distribution for particles be-
tween x =21 and x = 21.2. The two mass density distributions are
comparable even though the particle number densities are quite
different.

Fig. 8 shows the simulation speed, which represents the num-
ber of PIC cells that are updated per second per CPU core. For
the first 700 cycles, both simulations become slower and slower
due to the imbalance of the particle number per CPU core. Later,
the minimum and maximum ppc reach the splitting and merging
thresholds and the particle splitting algorithms start controlling
the further change of the minimum and maximum ppc, so the
simulation speed stops dropping for the simulation with parti-
cle resampling. At the end of the simulation, the simulation with
particle resampling is almost twice faster than the one without
particle resampling.

6.3. Two-dimensional double-current-sheet magnetic reconnection

Magnetic reconnection is regarded as one of the most impor-
tant physical processes for energy transfer between magnetic field
and plasma in the space plasma environment, so it is also widely
used to benchmark the performance of a kinetic plasma modeling
code. Here, we use a two-dimensional (2D) asymmetric magnetic
reconnection problem to test the particle resampling algorithms,
because the particle distributions near the reconnection site can
be non-Maxwellian. It is crucial to demonstrate that the particle
resampling algorithms preserve the non-Maxwellian distributions.

A double current sheet is used to initialize the simulation so
that the whole system is symmetric, and periodic boundary con-
ditions can be applied in all directions. The simulation domain is
—64 <x <64 and —16 < y < 16. The background magnetic field is
initialized as:

Bx(y) = (#) [tanh (%Ly/‘l) — tanh (%’M)]

— By,
9)
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Fig. 7. The 1D magnetosonic wave simulation results at t = 200. (b) shows phase space distributions at x =21 that is marked with a dashed black line in (a). The upper panel
of (b) shows the results without particle resampling, and the lower panel shows the results with particle resampling.

where B; =1 and B; =2 are the asymptotic magnetic field am-
plitudes. Ly, =32 is the width of the simulation domain, and the
centers of the two current sheets are at y = —8 and y = 8, respec-
tively. The plasma pressure is set to balance the magnetic field
pressure pg = B2/2. To mimic the plasma environment of Earth’s
magnetopause, the asymptotic plasma beta 8 = (p; + pe)/pp are
3.6 and 0.15 on the “1” and “2” sides, respectively. The initial pres-
sure ratio between electrons and ions is p;/pe. =5 in the whole
simulation domain. The ion temperature is:

Ti(y) = (—Ti'1 ;Ti’z) [tanh (_y +8Ly/4) — tanh (—y —?/4)}

+Tiz.
(10)
Ti1 =133 and T;, =3.33 are used in the simulation. With the
pressure and temperature given above, the corresponding densities
and ion inertial lengths are n; = 1.127, np = 0.0736, d; 1 = 0.942
and d;; = 3.69. For all the simulations presented in this subsec-
tion, the grid resolution is Ax=1/16, and the CFL is 0.4.
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Fig. 8. The simulation speed of the 1D magnetosonic wave simulations.

Figs. 9 and 10 show the fields near the reconnection site at
t =20 with 100 and 400 initial ppc, respectively. The left (right)
columns of Figs. 9 and 10 are the results without (with) apply-
ing particle resampling. Due to the magnetic reconnection plasma
flow, the electron ppc around the current sheet increases to about
250 (950), and the minimum ppc in the inflow region reduces to
less than 50 (200) in Fig. 9 (Fig. 10) without applying the parti-
cle resampling algorithms. After applying the particle resampling
algorithms, the electron ppc becomes more uniform in the whole
domain. With the threshold parameters described in section 4, the
particle splitting (merging) threshold ppc is 80 (150) and 320 (600)
for the simulations with the initial ppc of 100 and 400, respec-
tively. The minimum electron ppc in the right column of Fig. 9
(Fig. 10) is about 83 (325), and the maximum ppc is about 190
(630). The minimum ppc in the simulate is just a few particles
more than the splitting threshold since the splitting algorithm is
effective in generating new particles. The difference between the
maximum ppc and the merging threshold is larger, but the maxi-
mum ppc is still much smaller than that in the simulation without
applying particle resampling.

Figs. 9 and 10 also compare the physical quantities of the sim-
ulations. All simulations show essentially the same structures, in-
cluding the off-diagonal electron tensor. It demonstrates that the
particle resampling algorithms do not introduce any significant ar-
tificial effect.

Fig. 11 shows the electron phase space distributions from three
sampling locations near the reconnection site. These three sam-
pling locations are marked with black rectangles in the first rows
of Figs. 9 and 10. From top to bottom, we label these three sam-
pling boxes as box-A, box-B, and box-C. In Fig. 11, rows (a) and
(b) show distributions from box-A, rows (c) and (d) show distri-
butions from box-B, and rows (e) and (f) show distributions from
box-C. Each column shows the distributions from the same simula-
tion, and the simulation parameters, i.e., the initial ppc and turning
on/off the particle resampling algorithms, are described at the top
of Fig. 11. Rows (a), (c) and (e) show the density distributions, and
rows (b), (d) and (f) show the macro-particle number distributions
in phase space. Fig. 11 demonstrates that the particle resampling
algorithms preserve the phase space distributions well. The parti-
cle resampling does not change the particle number too much at
the sampling location box-A (row (b)), and the ‘U’-shape density
distribution is well preserved (row (a)). From rows (d) and (f), it
is clear that the particle resampling significantly reduces the par-
ticle number around the distribution centers, so the centers of the
density distribution (rows (c) and (e)) with particle resampling are
noisier. But the density distribution structure, which consists of a
core and a crescent distribution, is still clearly preserved in row

10
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(c) and also in (e1) and (e2). The distributions of (e3) and (e4) are
also very similar to each other.

Fig. 12 shows the total energy variation of the simulations. As
it is explained in [8], by default, we use numerical parameters that
sacrifice the energy conservation a little bit to suppress numerical
oscillations, so the total energies decrease slowly in Fig. 12. After
about 4000 steps (t = 20), the total energies reduce about 2.5% and
6% for simulations with 400 ppc and 100 ppc, respectively. This
figure clearly demonstrates that particle resampling has little in-
fluence on the energy conservation property of the PIC algorithm.

Although the particle resampling is applied in every time step,
it is computationally efficient so that it only takes less than 0.1%
of the total simulation time in this test.

6.4. Strong and weak parallel scalings

3D asymmetric magnetic reconnection simulations are used to
test the strong and weak scaling of FLEKS on the Frontera cluster
[33] at the Texas Advanced Computing Center. Each node of Fron-
tera has two Intel Xeon Platinum 8280 (Cascade Lake) processors.
Each processor contains 28 cores operating at 2.7 GHz base fre-
quency. The setup of the 3D test is similar to the 2D simulation
in the previous subsection, and it is uniform in the z-direction.
This test case is similar to the PIC part of a typical MHD-AEPIC
magnetospheric simulation, other than that, there is no other spe-
cial algorithmic or hardware reason for choosing this problem. We
run each case three times and report the average timing here.
We did not reserve nodes for the study, instead, these simulations
were submitted to the cluster as normal jobs. Since FLEKS uses
the parallel field and particle data structures provided by AMReX,
the scaling results largely depend on the performance of AMReX
[11,12]. Fig. 13 shows the weak scalings. With 8 cells per core,
the performance is still good with up to about 10k cores. With
163 cells per CPU core, it reaches good performance even with
28,672 cores. Fig. 14 shows the strong scalings of two problems.
The speedup is not too far away from the ideal scaling up to about
7k (Fig. 14(a)) or 14k (Fig. 14(b)) CPUs for these problems.

So far, FLEKS is parallelized with MPI only, and the iterative
solvers [8] require data exchange among MPI processors for each
iteration, so the scaling performance of FLEKS is not as good as ex-
plicit PIC codes that are parallelized with a combination of MPI and
OpenMP [34,35]. From the timing results, we notice the cost of the
linear solvers and particle redistributions increase and they reduce
the parallelization efficiency for simulations with a large number
of cores. Since AMReX already supports MPI/OpenMP hybrid paral-
lelization, we are also planning to support OpenMP in the future,
and it will help to reduce the data exchange among MPIs.

6.5. Magnetospheric simulations

Magnetospheric simulations represent the most important ap-
plication of MHD-AEPIC. Here, we show examples of how FLEKS
benefits magnetosphere modeling. The global MHD magnetosphere
model uses the same setup as the simulations presented in [7,28],
but the active PIC region is not limited to be a box anymore. Fig. 15
shows how the active PIC region can efficiently cover the dayside
magnetopause, including the dawn-side and dusk-side flanks, and
also the cusp region at the same time.

The test particle module enables us to follow the trajectories of
particles in the magnetosphere. Fig. 16 shows an example of test
particles in Earth’s magnetosphere.

7. Conclusion

In this paper, we introduce a new kinetic code FLEKS, which
is designed as the kinetic component of the MHD-AEPIC model
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Fig. 9. 2D magnetic reconnection results with (right column) or without (left column) particle resampling. The initial particle number per cell is 100. The black boxes in the
top row indicate where the distribution functions shown in Fig. 11 are taken from.
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Fig. 11. Each column shows the phase space distributions from the same simulation. The first two rows, middle two rows and the last two rows represent the distributions
of box-A, box-B and box-C, respectively. From top to bottom, the black rectangles in Figs. 9 and 10 show the locations of box-A, box-B and box-C. Rows (a), (c) and (e) are
physical density distributions. Rows (b), (d) and (f) show particle number per phase space bin.

[10,29]. To support long simulations with varying global configu- sign an adaptive time-stepping algorithm to adjust PIC time step
rations, FLEKS allows activating or deactivating cells dynamically accordingly. The adaptive time-stepping scheme preserves the en-
during a simulation to fit the regions of interest. This feature ergy conservation property of the ECSIM algorithm.

was introduced by Shou et al. [10] first, but FLEKS is more flex- Since the number of particles per cell may change dramatically
ible since the minimum activation unit is a patch containing N during a long simulation and leads to load imbalance and loss of
(N > 2) cells in each direction instead of a large block used in accuracy in the cells with fewer particles, a particle splitting and
[10], and FLEKS supports multiple independent PIC domains in an a particle merging algorithms are designed to control the change
MHD-AEPIC simulation. During a long simulation, since the plasma of ppc. The particle merging algorithm selects 6 particles that are
properties inside the active PIC region may change greatly, we de- close to each other in the phase space and combines them into

12



Y. Chen, G. Téth, H. Zhou et al.

0.00 1
—0.01{ STl
-0.02 T
W
u —0.03 S
| oo
-0.04 “heel
Without resampling, 400 ppc \~\
—0.05 -eeeee With resampling, 400 ppc \*\
---With resampling, 100 ppc \\\
—0.06 1 Without resampling, 100 ppc S
00 25 50 75 100 125 150 17.5 20.0
time

Fig. 12. The total energy variation of the double-current-sheet magnetic reconnec-
tion simulations.

- Weak scaling

—— 8x8x8 cells per core

24— 16x16x16 cells per core

i~
N

ing
=}

[y
o

Normalized execution time
- [
» [ee]

=
N}

1.0

112 224

448

896 1792 3584
Number of cores

7168 14336 28672
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5 new particles. The merging conserves the total mass, momen-
tum, and energy, and it also preserves the phase space structure as
much as possible by inheriting velocities from the old particles. We
have presented several non-trivial tests showing that the particle
splitting and merging algorithm does not introduce any spurious
features.

The particle resampling improves the efficiency of FLEKS sub-
stantially by not allowing the ppc to drop to very small values or
increase to unnecessarily high values. In addition, load balancing
the PIC domain becomes much easier with roughly the same num-
ber of particles in each grid cell. Indeed, FLEKS shows excellent
weak and strong parallel scaling. Finally, the test-particle module
expands the capability of FLEKS, and provides a useful tool for
investigating the transport and energization of particles in mag-
netospheres.

With the AMR data structures provided by AMReX, we are mi-
grating FLEKS to an AMR grid. Since the particle resampling al-
gorithms can be directly applied to control the particle number
variation near the interface of the coarse and fine cells without
any modification, we do not see any difficulty on the particle side
so far. However, the electric field solver may need to be extended
to handle the resolution change. We will report our progress once
the development is done. AMReX also provides support for GPU,
and we are planning to port FLEKS to GPU in the future.

FLEKS improves the quality and efficiency of MHD-AEPIC simu-
lation results significantly. For example, Wang et al. [29] use FLEKS
inside the Space Weather Modeling Framework to model a com-
plete magnetospheric storm with kinetic reconnection in the tail.
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Fig. 14. The strong scaling of FLEKS. Panels (a) and (b) show the scaling of simu-
lations with 1.835 million and 14.68 million cells, respectively. The red solid lines
represent speedup, and the red dashed lines correspond to perfect speedup. The
blue lines show the number of PIC cells per CPU core.

Fig. 15. An MHD-AEPIC simulation of Earth’s magnetosphere with the dayside mag-
netopause and the cusps covered by FLEKS. The black lines indicate the edge of the
active PIC region.
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Appendix A. Software and data availability

The MHD-AEPIC model, including FLEKS, is publicly avail-
able through the https://clasp.engin.umich.edu/research/theory-
computational-methods/swmf-downloadable-software website af-
ter registration. The input files for performing the numerical tests
are available through the Zenodo repository (https://doi.org/10.
5281/zenodo.7523641).
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