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The magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) model has been successfully 
applied to global magnetospheric simulations in recent years. However, the PIC region was restricted 
to be one or more static boxes, which is not always sufficient to cover the whole physical structure of 
interest efficiently. The FLexible Exascale Kinetic Simulator (FLEKS), which is a new PIC code and allows 
a dynamic PIC region of any shape, is designed to break this restriction. FLEKS is usually used as the PIC 
component of the MHD with adaptively embedded particle-in-cell (MHD-AEPIC) model. FLEKS supports 
dynamically activating or deactivating cells to fit the regions of interest during a simulation. An adaptive 
time-stepping scheme is also introduced to improve the accuracy and efficiency of a long simulation. 
The particle number per cell may increase or decrease significantly and lead to load imbalance and 
large statistical noise in the cells with fewer particles. A particle splitting scheme and a particle merging 
algorithm are designed to limit the change of the particle number and hence improve the accuracy of the 
simulation as well as load balancing. Both particle splitting and particle merging conserve the total mass, 
momentum, and energy. FLEKS also contains a test-particle module to enable tracking particle trajectories 
due to the time-dependent electromagnetic field that is obtained from a global simulation.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Multi-scale plasma simulations are challenging due to the lim-
itation of computational resources. Fluid models are efficient for 
global simulations, but kinetic-scale physics is missing. Fully ki-
netic codes, such as particle-in-cell (PIC) codes and Vlasov solvers, 
contain electron and ion scale physics. However, it is extremely 
computationally expensive to resolve the global scale and the elec-
tron scale at the same time for three-dimensional (3D) global 
simulations. Traditional hybrid models, which usually treat elec-
trons as a massless fluid and simulate ions with a PIC method or 
a Vlasov solver, incorporate ion-scale physics into global simula-
tions by sacrificing electron-scale kinetic physics. Another class of 
hybrid methods embeds a kinetic code into a global fluid model 
so that the kinetic code can resolve the regions where the kinetic 
physics is important, and the fluid model handles the rest of the 
domain efficiency. In recent years, independent groups have devel-
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oped models that couple either a PIC code [1] or a Vlasov solver 
[2] with a fluid model. Besides the hybrid models, extended fluid 
models, such as the five-, six- or ten-moment models, have also 
been developed to incorporate beyond-MHD physics into multi-
scale simulations [3,4].

Sugiyama and Kusano [5] demonstrated the concept of coupling 
a PIC code with a fluid code. The magnetohydrodynamics (MHD) 
with embedded particle-in-cell (MHD-EPIC) model developed by 
Daldorff et al. [1] is the first mature coupled model that is capable 
of running 3D large-scale simulations. The MHD-EPIC model usu-
ally covers the dayside or/and the tail magnetic reconnection sites 
with the PIC code when it is applied to simulate the dynamics 
of magnetospheres [6–9]. Multiple isolated PIC domains are sup-
ported so that a few regions of interest can be covered by the PIC 
code in one simulation [6]. However, in an MHD-EPIC simulation, 
each PIC region is restricted to be a static box, which is not always 
efficient or suitable to cover the whole physical structure of inter-
est due to either the limitation of computational resources or geo-
metric complexity of the physical region. Recently, Shou et al. [10]
developed the magnetohydrodynamics with adaptively embedded 
particle-in-cell (MHD-AEPIC) model, which allows changing the lo-
cation of an active PIC region dynamically.
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In this paper, we introduce a new code, the FLexible Ex-
ascale Kinetic Simulator (FLEKS), which is designed and imple-
mented to be the PIC component of the MHD-AEPIC model. FLEKS 
shares some similarities with the Adaptive Mesh Particle Simulator 
(AMPS) used in the work by Shou et al. [10], but FLEKS provides 
a more flexible grid design. FLEKS uses the parallel data structures 
provided by the AMReX library [11,12]. The grid of FLEKS has to 
be uniform and Cartesian, but the active PIC region is not limited 
to be a box anymore since the PIC cells can be turned off to fit the 
region of interest. Furthermore, FLEKS also supports switching on 
and off grid cells dynamically for MHD-AEPIC simulations.

FLEKS employs the non-relativistic Gauss’s law satisfying energy-
conserving semi-implicit method (GL-ECSIM) [13] as the base PIC 
solver. The time step of the semi-implicit PIC methods is lim-
ited by the Courant–Friedrichs–Lewy (CFL) condition based on the 
macro-particle velocities in order to be accurate [14]. Since the
speed of macro-particles may change significantly during a long 
MHD-AEPIC simulation, the simulation will be either too slow 
or inaccurate with a fixed time step. To keep the simulation ef-
ficient and accurate at the same time, FLEKS uses an adaptive 
time-stepping algorithm, which still satisfies the requirement of 
the energy-conserving semi-implicit method (ECSIM) [15] to keep 
energy conservation. Section 2 describes the adaptive grid and 
temporal discretization of FLEKS.

The statistical noise of macro-particles is the primary source 
of numerical error in typical PIC simulations. Dozens to hundreds 
of particles per cell are usually used to achieve a balance be-
tween accuracy and computational cost. Since there are much 
more macro-particles than grid cells in a kinetic PIC simulation, 
particle-related calculations, such as updating particle positions 
and velocities, dominate the total computational time. In addition, 
a massively parallel simulation can be significantly slowed down 
due to the imbalance of macro-particle numbers among the par-
allel processes. On the other hand, the decrease of the number of 
macro-particles in some cells increases the statistical noise and re-
duces the accuracy. A particle resampling algorithm that is able to 
control the macro-particle number per cell is crucial for improving 
both the simulation efficiency and accuracy. More macro-particles 
need to be added into the cells that contain fewer macro-particles 
than required to represent the plasma velocity-space distribution 
accurately. This goal is usually achieved by splitting particles. In 
the cells with more macro-particles than some threshold, a parti-
cle merging algorithm needs to be applied to reduce the number 
of macro-particles and speed up the simulation. A particle resam-
pling algorithm is even more crucial for a PIC code with adaptive 
mesh refinement (AMR), where the motion of macro-particles be-
tween the coarse and fine cells alters the macro-particle number 
per cell dramatically [16,17]. Besides particle resampling, we note 
that the load balance of a PIC code can also be improved by dy-
namically distributing the cell patches among the processors based 
on the work per patch, which is defined as a combination of the 
particle and field calculations [18].

Both the particle splitting and particle merging processes re-
place the original particles with a set of new particles. Lapenta 
[19] suggested that the replacement should maintain the following 
properties:

1. The plasma moments evaluated on the simulation grid, which 
are used to update electric and magnetic fields, should not be 
changed by the replacement.

2. The replacement should keep the original particle phase space 
distributions.

It is more challenging to achieve these two goals for a particle 
merging algorithm than for a particle splitting algorithm, because 
it is inevitable to lose information when replacing original parti-
2

cles with fewer particles. A few algorithms have been designed to 
merge particles. Lapenta [19] introduced two algorithms to merge 
particles that are close to each other in the phase space. The al-
gorithm C1 merges two particles into one, and the algorithm C2 
merges three particles into two. The algorithm C2 conserves the 
mass, momentum, and energy of the particles, and also the charge 
densities on the grid, but it is not straightforward to extend to 2D 
and 3D. Vranic et al. [20] also proposed an algorithm to merge 
particles into two new particles while conserving the overall mass, 
momentum, and energy, and the original particles are chosen by 
binning particles in the momentum space. Instead of merging a 
few particles into one or two, the algorithms designed by Assous 
et al. [21], Welch et al. [22], Pfeiffer et al. [23], and Faghihi et al. 
[24] use a set of particles to replace the old ones. Assous et al. 
[21] and Welch et al. [22] focused on the conservation of the grid 
quantities, but the fine structures in the velocity space may not be 
well preserved. Pfeiffer et al. [23] generated the new particle ve-
locities from a distribution function and adjusted the velocities to 
conserve energy afterward. Faghihi et al. [24] created new particles 
with a uniform distribution inside a phase space bin, and adjusted 
the weights to conserve the moments. As a general rule, the par-
ticles selected for merging should be close to each other in the 
phase space to minimize the error that is introduced by merging. 
Besides the method of binning the velocity space [20,24], Teunis-
sen and Ebert [25] applied a k-d tree to find the particles that are 
closest to each other, and Luu et al. [26] showed how to parti-
tion particles with the Voronoi diagram. Timokhin [27] proposed 
a simple method that deletes particles randomly and adjusts the 
weights of remaining particles to conserve the total mass, but nei-
ther momentum nor energy is conserved. Our new particle merg-
ing algorithm implemented into FLEKS searches for 6 particles that 
are close in phase space and merges them into 5 particles while 
preserving mass, momentum and energy and also minimizes the 
change in the phase space distribution. The details of the splitting 
and merging algorithms are described in section 4.

Tracking the motion of macro-particles is useful for investigat-
ing the particle trajectories and the energization of particles. FLEKS 
provides a parallel test particle module to follow the motion of 
macro-particles and save the particle trajectory data to disk. The 
test particle module can be used either inside the PIC code, or as 
an independent component directly coupled to the MHD model. 
Section 5 describes the implementation details of the test particle 
module.

The paper is organized as follows. Section 2 describes the grid 
design of FLEKS. Section 3 introduces the adaptive time-stepping 
scheme. Section 4 focuses on the particle splitting and particle 
merging algorithms. Section 5 discusses the implementation of the 
test particle module. Section 6 presents numerical tests to demon-
strate the capability of the adaptive active PIC regions, the role of 
the particle resampling algorithms, the parallel efficiency of FLEKS, 
and examples of global simulations with FLEKS. Finally, section 7
presents the conclusions.

2. Adaptive grid

Since the MHD-EPIC model was developed by Daldorff et al. [1], 
we have developed new features to make it more flexible to use. 
It now supports multiple independent PIC domains to cover sev-
eral regions of interest [6], and it also allows rotating a PIC box 
domain to align with the features of interest [28]. However, a box 
is not always suitable or efficient to cover the region of interest. 
For example, if a PIC box is used to cover the whole dayside mag-
netopause, which is close to a paraboloid, the box will cut through 
the planet and introduce extra difficulties, and the PIC box will also 
contain a large portion of cells, where the kinetic effects are not 
important, which slows down the simulation. A flexible grid that 
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Fig. 1. A schematic shows the improvement of the MHD-AEPIC (right) model from the MHD-EPIC (left) model.
allows creating an active PIC domain that approximates the shape 
of a paraboloid to fit the magnetopause can solve this problem. 
A dynamically adaptive grid is also useful to improve the efficiency 
of some simulations. For instance, the near-Earth X-line may move 
from the inner magnetotail to the middle or even far magnetotail 
[29], and an adaptive grid that only covers the environment around 
the X-line is much more efficient than a large PIC box that covers 
the whole magnetotail. The MHD-AEPIC algorithm is designed to 
solve these problems and FLEKS is the key component. Fig. 1 shows 
the conceptual difference between the MHD-EPIC and MHD-AEPIC 
models.

FLEKS still requires the shape of the full PIC grid to be a box, 
and the Cartesian grid has to be uniform (this is a requirement 
of the GL-ECSIM algorithm). But FLEKS allows switching off part 
of the cells to approximately fit a region of any shape. The most 
straightforward approach is switching on/off each cell indepen-
dently. However, this approach has several drawbacks, as discussed 
below, so we make the algorithm a bit more sophisticated. We 
divide the whole PIC domain into patches (Fig. 2(a)). Each patch 
contains N cells in each direction, and one can turn on or turn 
off each patch. The patch size N is required to be larger or equal 
to 2. We do not allow N = 1 (switching on/off each cell indepen-
dently) for the following reasons. FLEKS requires two ghost cell 
layers for coupling with MHD at the PIC region boundary. If N = 1, 
the boundary ghost cells of an active region may overlap with the 
physical cells of another active region, and hence introduces more 
difficulties to handle the boundary ghost cells. A large patch size 
also benefits the coupling efficiency. In MHD-AEPIC simulations, 
the fluid model controls the status of the patches based on geo-
metric and physics-based criteria [29]. The fluid model passes the 
bit-wise patch status array to FLEKS through the Message Passing 
Interface (MPI), and the size of this array is reduced significantly 
with a larger patch size (proportional to N−3 in 3D). In this pa-
per, we use the word ‘active’ to describe the patches or cells that 
are switched on. The active cells do not have to be connected, and 
the boundary ghost cells of the active regions are filled in with the 
information obtained from the fluid model [1]. Fig. 2(a) shows an 
example that contains two separated active regions.

FLEKS uses the data structures provided by the AMReX library 
to store the fields and also the particles. After the patch status 
array is obtained from the fluid model, FLEKS uses the functions 
provided by the AMReX library to divide the active regions into 
blocks. AMRex does not require all the blocks to have the same 
size. We note that the patch and the block are two independent 
concepts. The patches are only used to activate or deactivate cells. 
For example, the ‘L’ shape active region in Fig. 2(a) consists of 3 
patches and it can be divided into 2 blocks (Fig. 2(b)).

FLEKS allows activating or deactivating patches during a simu-
lation. If the active regions change, FLEKS will produce a new set 
of blocks to cover the new active regions. With the function pro-
vided by AMReX, FLEKS copies the fields and particles from the 
old blocks to the new ones for the cells that are already active and 
deletes the information of the newly deactivated cells. The newly 
activated cells are filled in with the information obtained from the 
fluid model as what is done for FLEKS initialization.
3

FLEKS has two ghost cell layers, but the outer layer is only used 
to receive and store the magnetic fields, which are necessary for 
calculating currents on the nodes of the inner ghost cell layer from 
�J = ∇ × �B in normalized units. The currents are used to generate 
particles with correct velocities in the inner layer ghost cells. To 
simplify the description, we ignore the outer layer in Fig. 2(c) and 
also in the rest of the paper unless otherwise specified. The prin-
ciple of setting boundary conditions of the electromagnetic fields 
and the particles is still the same as the MHD-EPIC coupling al-
gorithm [1]. However, the non-box shape of an active region intro-
duces some extra implementation difficulties. There are three types 
of ghost cells for a block: the internal ghost cells (blue cells in 
Fig. 2(c)), the exclusive boundary ghost cells (gray cells in Fig. 2(c)) 
and the shared boundary ghost cells (cyan cells in Fig. 2(c)). The 
internal ghost cells are not boundary cells, and there is no need to 
apply boundary conditions. The exclusive boundary ghost cells are 
not overlapped with any cells of the neighboring blocks, and they 
should be filled in with new macro-particles as the particle bound-
ary condition. The shared boundary ghost cells are overlapped with 
the boundary ghost cells of the neighboring blocks, and only one 
of these blocks should generate boundary particles. Here is the al-
gorithm to choose the block for populating new particles. The first 
step is to distinguish the boundary ghost cells from the internal 
ghost cells. Then, for each boundary ghost cell, either the exclusive 
type or the shared type, we loop through its at most 26 neighbor-
ing cells (3D) in a fixed order (we choose to loop through all the 
face neighbors first, then the edge neighbors, and finally the corner 
neighbors), skip the nonexistent cells and find out the first neigh-
boring cell that is either a physical cell or an internal ghost cell. 
If this neighboring cell is inside the physical domain of this block, 
this block should generate particles inside this boundary ghost cell. 
For example, in Fig. 2(c)), C1 and C3 are overlapped with each 
other. We loop through the neighboring cells of C1 and find C2 
is its first neighboring cell that is either a physical cell or an in-
ternal ghost cell (C2 is a physical cell), so block-1 should generate 
particles in C1 since C2 is inside block-1. We repeat the same pro-
cedure for the cell C3, and find C4 is its first neighboring cell that 
is either a physical cell or an internal ghost cell (C3 is an internal 
ghost cell), but block-2 should not generate particles in C3 since 
C4 is outside the physical domain of block-2.

The electric fields are node-based in FLEKS. For a node that is 
shared by multiple blocks, such as the one indicated by a red-cross 
in Fig. 2(c)), only one block should take care of the shared node 
when solving the linear equations of the electric fields. The afore-
mentioned algorithm is also applied to choose the proper block for 
a shared node.

In a typical MHD-AEPIC simulation, the MHD model usually 
solves the MHD equations with the Hall term and a separate elec-
tron pressure equation. The conversions between the MHD vari-
ables and the PIC quantities can be found in [1].

3. Adaptive time-stepping

The time step of the energy-conserving semi-implicit method 
(ECSIM) is subject to the accuracy condition vrms�t/�x < 1 just 
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Fig. 2. The black lines represent the cells of a PIC domain. The red dashed lines in (a) show the patches, and one patch contains 4 × 4 cells in this example. In (a), the active 
patches/cells are colored by dark gray, and light gray area represents the ghost cells of the active PIC regions. (b) shows the blocks of the active regions. (c) shows the inner 
layer of the ghost cells of two blocks, and the red dots represent the macro-particles that are generated in the ghost cells as the particle boundary condition. Blue ghost cells 
are internal ghost cells, which are overlapped with the physical cells of the neighboring blocks. The gray cells are exclusive boundary ghost cells, and they should be filled 
in with macro-particles as the boundary condition. The cyan cells are also boundary ghost cells, but they are overlapped with the boundary ghost cells of the neighboring 
blocks, and only one of the blocks should generate boundary particles. The C1...C4 labels and the two red crosses are used in the main text describing the algorithm. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
as other semi-implicit PIC methods [14], where vrms is the max-
imum root mean square of macro-particle velocities. For a long 
MHD-AEPIC simulation, vrms may vary significantly, so an adaptive 
time-stepping algorithm that adjusts time-step accordingly will 
improve the simulation efficiency and accuracy. However, the en-
ergy conservation property of ECSIM is sensitive to the temporal 
discretization scheme, and the adaptive time-stepping algorithm 
should not break the conservation.

Our adaptive time-stepping algorithm is summarized in Fig. 3. 
At the end of one cycle, both the electromagnetic fields and the 
particle velocities are at time stage tn , and the particle locations 
are at the staggered stage tn+1/2. The difference between tn+1/2
4

and tn is tn+1/2 − tn = �tn/2. The maximum speed vrms can be 
obtained with the particle velocities at tn , and a new time step 
�tn+1 can be calculated from �tn+1 = CFL · �x/vrms . However, 
during the next cycle of updating the electromagnetic fields and 
particle velocities from tn to tn+1, the time step should be �tn in-
stead of �tn+1, so that the particle location Xn+1/2 is still at the 
middle of tn and tn+1, and the energy conservation property of 
ECSIM is preserved. In order to adjust the time step for the next 
cycle, we use the time step (�tn + �tn+1)/2 for updating the par-
ticle location from Xn+1/2 to Xn+3/2. The velocity V n+1 at tn+1 is 
not centered exactly between tn+1/2 and tn+3/2, but the deviation 
(�tn+1−�tn) ∝ (∂ ln vrms/∂t)(�tn)2 is second order since the vrms
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Fig. 3. The adaptive temporal discretization.

used to calculate the time steps changes continuously with time. 
Therefore the second-order accuracy of updating particle locations 
is still satisfied.

4. Particle resampling

Particle resampling algorithms are used to control the macro-
particle number of each cell. At the end of every computational 
cycle, a particle splitting (merging) algorithm is applied to generate 
(remove) macro-particles for the cells that contain fewer (more) 
particles than the splitting (merging) threshold. The goal of split-
ting and merging is to stop the number of particles per cell (ppc) 
from dropping or increasing continually. Essentially, the particle re-
sampling algorithms use a new set of particles to replace the old 
ones. Our guiding principle of designing the algorithms is that the 
replacement should preserve the original particle phase space dis-
tribution as much as possible. In order to conveniently apply the 
resampling algorithms, FLEKS stores the particle data cell by cell.

4.1. Particle splitting

Our particle splitting algorithm is essentially the same as the 
one introduced by Lapenta [19], in which one particle is split into 
two children particles. The children particles have the same ve-
locity as their parent particle, but their locations are oppositely 
displaced slightly along the velocity direction. By displacing the 
new particles along the velocity direction, the orbits of the new 
particles are still close to the orbit of the old particle.

The particle splitting will be triggered for the cells with ppc 
less than the splitting threshold, which is 80% of the initial ppc by 
default, and we will use this number for all the simulations pre-
sented in section 6. Initially, the particles that are close to each 
other have similar weights, but the weights may become quite dif-
ferent later due to the transport of particles and also the particle 
splitting and merging. For each cell, we choose to split the heavi-
est N particles to minimize the particle weight variance, where N 
is the difference between the current ppc and the splitting thresh-
old.

4.2. Particle merging

The essence of particle merging is replacing a set of particles 
with a new set, which contains fewer particles than the old set. 
Particle merging reduces the particle number in some cells and 
improves simulation speed. In general, particle merging has a neg-
ative impact on the accuracy of a simulation because (1) the re-
placement introduces errors, and (2) fewer particles lead to larger 
statistical noise in the subsequent simulation. The statistical noise 
increasing is inevitable, but the errors caused by the replacement 
can be minimized with a proper merging algorithm.

Our particle merging algorithm consists of two steps: (1) se-
lecting 6 particles that are close to each other in the phase space, 
and (2) merging these 6 particles into 5. In the following subsec-
tions, we will describe the merging step first, and what follows is 
the selecting step.
5

4.2.1. Merging particles
Once the 6 old particles for merging have been obtained from 

the selecting step, we use 5 new particles to replace them. The 
replacement should not alter the original phase space distribution 
significantly. However, it is not trivial to quantitatively measure the 
change of the phase space. The conservation of total mass, mo-
mentum, and energy can be used as a guidance and indicator of 
preserving phase space structure. However, satisfying the conser-
vation property is not good enough, it is still possible that the new 
particle set occupies a very different velocity space volume than 
the old set. Previous methods [30,20] usually generate new parti-
cles with velocities that are different from the velocities of the old 
particles, and extra actions are usually required to ensure the new 
particles are not too far away from the old ones in the velocity 
space. To avoid this difficulty, we choose to delete one of the 6 old 
particles and distribute its mass to the remaining 5 particles under 
the constraint of conserving total mass, momentum vector, and en-
ergy. The weights of these 5 particles change, but their velocities 
are inherited from the old ones, so the new particle set occupies 
almost the same phase space volume as the old set.

The total mass, momentum and energy of the old particle set 
are:

wt =
Nold∑
i=1

wi, pt =
Nold∑
i=1

wivi, et =
Nold∑
i=1

1

2
wiv

2
i , (1)

where w is the macro-particle mass, v is the particle velocity, p is 
the momentum, e is the particle energy and Nold = 6. From these 
6 particles, we find the pair that is closest to each other in the 
6D phase space (Fig. 4(d)), then remove the lighter one of this 
pair and adjust the weights of the rest 5 particles to satisfy the 
conservation requirement:

wt =
Nnew∑
i=1

wi,new , pt =
Nnew∑
i=1

wi,newvi, et =
Nnew∑
i=1

1

2
wi,new v2i (2)

wi,new > 0 (3)

where we choose Nnew = 5 since there are 5 quantities to con-
serve. The velocities vi are known, and the new weights wi,new are 
the 5 unknowns of the linear equations (2) under the constraint of 
positivity (3). If the solution does not satisfy the constraint, we 
skip this merging.

To minimize the impact of the merging on the phase space dis-
tribution, we need to quantify a distance in the 6D phase space. 
The actual definition will be described in the next subsection, here 
we simply assume that the appropriate distance function exists.

By deleting the lighter particle from a pair that is closest to 
each other in the phase space, it is likely that its heavier neigh-
bor will gain most of the weight and the other 4 particles adjust 
their weights relatively slightly. By inheriting the velocities and lo-
cations from the old particles, the new particles occupy almost the 
same phase space volume as the old particles (Fig. 4(d) and (e)), so 
there is no room for the phase space structure to change dramat-
ically. Compared to the schemes that allow choosing new particle 
velocity with fewer restrictions [20], our merging algorithm is less 
efficient to reduce the particle number because (1) the new parti-
cle set still contains 5 particles, and (2) the merging may fail when 
the constraint wi,new > 0 can not be satisfied. If it is required, our 
algorithm can be modified to use a Nold that is larger than 6 by 
deleting Nold − 5 particles. However, as it can be seen from the 
following numerical test section, merging 6 particles into 5 is al-
ready efficient enough for our typical applications.

Our algorithm conserves 5 quantities, i.e., mass, momentum, 
and energy, and the new particle set contains 5 particles. In prin-
ciple, the conservation quantities can be extended to include the 
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Fig. 4. Schematics of the algorithm of merging macro-particles. See text for details.
pressure tensor, which contains 6 independent variables, by re-
ducing Nold (Nold > 10) particles to Nnew = 10 (mass, momentum 
and pressure tensor). The more quantities are conserved, the more 
accurate the merging algorithm is. But the merging may become 
less efficient since it requires more particles that are close to each 
other in the 6D space. The trade-off between accuracy and effi-
ciency needs to be investigated in the future.

4.2.2. Selecting particles
To minimize the phase space change, the particles selected for 

merging should be close to each other in the 6D phase space. Sev-
eral strategies have been proposed for selecting particles, including 
binning particles in the phase space [24], partitioning phase space 
with Voronoi diagram [26], and using k-d tree data structure [25]. 
For the sake of simplicity, we choose the binning strategy. The di-
mension of the 6D phase space is so high that even only splitting 
each direction into 3 pieces leads to 36 = 729 bins in total. Our 
typical simulations use about 100 particles per cell initially, and it 
is likely few phase space bins contain enough particles for merg-
ing with 36 bins. To avoid this problem, we only bin particles in 
the 3D velocity space and skip the merging if the 6D volume occu-
pied by the selected particles is too large. This approach takes into 
account the spatial distribution of the selected particles, but also 
implies reducing the variance in the velocity space is more crucial 
than controlling the spatial location variance, because all the parti-
cles are already in the same spatial cell, i.e., they can not be too far 
away from each other in the spatial dimensions. Inside each veloc-
ity space bin, we choose 6 particles that are closest to each other 
for merging.

The particle merging algorithm needs to calculate the distance 
between two macro-particles in the 6D phase space. The distance 
is defined as:

d = �s

�x
+ c1

�v

vth
(4)

where �s is the spatial distance and �v is the distance in the ve-
locity space between the two particles. The normalization in space 
is the simulation cell size �x. The velocity is normalized to the 
particle thermal velocity in the cell
6

vth =
⎛
⎝ 1

Np

Np∑
i=1

|vi − v|2
⎞
⎠

1/2

(5)

where vi is the particle velocity, v is the cell bulk velocity and Np
is the number of particles in the cell. We note that the thermal ve-
locity defined above is used to measure the separation of particles 
in the velocity space, so the particle weight is not involved in the 
calculation. The constant c1 in (4) determines the relative impor-
tance of the spatial distance �l3D and the velocity distance �v . 
We choose c1 = 2 based on our experience with many numerical 
tests.

At the end of each computational cycle, the following algorithm 
is performed to select particles for merging if the ppc of a cell is 
larger than the merging threshold, which is 1.5 times of the initial 
ppc by default:

1. Bin the particles in the velocity space. For each spatial cell 
(Fig. 4(a)), we create a grid in the velocity space ranging from 
(vx − vth, v y − vth, vz − vth) to (vx + vth, v y + vth, vz + vth), 
and assign particles to velocity bins (Fig. 4(b)). The velocity 
grid is divided into nbin =

⌈
0.8N1/3

p

⌉
bins in each direction, 

where Np is the current ppc of the cell and the constant 0.8 
is chosen based on numerical experiments. We note that each 
bin contains a buffer region (Fig. 4(c)), and the particles in 
the buffer region may also belong to other bins. We use 1/8 
of the velocity space bin size as the width of the buffer re-
gion (Fig. 4(c)). Due to the existence of the buffer region, one 
particle may belong to multiple bins, but it can only be se-
lected for merging at most once during one cycle. The binning 
is done for each cell, which usually contains about 100 parti-
cles per species, and nbin is about 4. These particles are linked 
to the 4 × 4 × 4 bins without copying the particle data. The 
memory cost for binning particles is negligible.

2. Select particles from a bin. If there are more than 6 particles 
inside a bin, including the buffer region, we choose a cluster 
of 6 particles from them. For each velocity bin, we calculate 
the velocity center of the associated particles (black cross in 
Fig. 4(c)), and find the 6 particles closest to the center in the 
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Fig. 5. The file structure for storing test particles.

3D velocity space. If a particle in the buffer region has been 
selected for merging by a neighboring bin, this particle should 
not be selected again.

3. Limit the 6D distance. The previous step selects particles only 
based on the distance in the velocity space. This step ensures 
the selected particles are also close to each other in the 6D 
phase space. We find the 6D center (blue cross in Fig. 4(d)) of 
these 6 particles, and the 6D distance d of all the 6 particles 
to the center should be less than 0.6. Again, the constant 0.6 
is chosen based on numerical experiments.

4. Merge 6 particles into 5 with the algorithm described in sec-
tion 4.2.1.

The particle selection method used in step 2 prefers selecting par-
ticles in the center of a bin. Without applying the buffer region 
in step 1, the particles near the edge of a bin are less likely to 
be chosen for merging. On the other hand, it is more likely that a 
bin extended with a buffer region contains more than 6 particles, 
which improves the merging efficiency. Based on our numerical 
experiments, applying the buffer region does not improve the sim-
ulation results significantly, but it is still kept by default to avoid 
the aforementioned potential issues.

5. Test particle module

An independent test particle (TP) module is designed to track 
the motion of the macro-particles for FLEKS. It can be used either 
as an auxiliary component of the PIC algorithm or as an inde-
pendent component. The TP module uses the same algorithm to 
move particles as the GL-ECSIM algorithm. When the TP module is 
used with the PIC component together, the TP module shares the 
same grid layout as the PIC component and uses the electromag-
netic fields calculated by PIC to update test particles. When the 
PIC component is turned off, FLEKS becomes a pure test particle 
code, and the TP module can directly obtain the grid structure and 
electromagnetic fields from the MHD model. Compared to the em-
bedded PIC simulations, the pure test particle simulations are only 
one-way coupled, i.e., the MHD model provides the electromag-
netic fields for FLEKS, but there is not any feedback from FLEKS to 
the MHD model.

In a 3D simulation, it is common to track the motion of mil-
lions of test particles, and a few thousand steps of the update will 
easily produce a few hundred Gigabytes of particle trajectory data. 
The test particle module should organize the data properly to im-
prove both the IO performance of writing data to disk and also 
the efficiency of reading the trajectory of a particle for data anal-
ysis. To reduce the IO frequency, the TP module of FLEKS saves 
the particle trajectory data every 100 cycles, and all the proces-
sors write to the same file with MPI-IO APIs. We note that if a 
test particle moves from one processor to another in the middle of 
two IO operations, its trajectory data should also be transferred to 
the destination processor. Besides the particle trajectory data file, 
a particle ID list file, which maps a particle ID to its data location 
in the particle data file, is also created. An example of these two 
files is shown in Fig. 5. With this file structure, we find it is effi-
7

cient to find the trajectory data of a particular particle from a data 
set of one hundred Gigabytes. If a larger data set is required in the 
future, we will consider using an advanced I/O library, such as the 
ADIOS 2 system [31], and data reduction techniques [32].

6. Numerical tests

6.1. Two-dimensional fast magnetosonic wave propagation with 
adaptive PIC region

We use a two-dimensional (2D) fast magnetosonic wave propa-
gation test to demonstrate the capability of FLEKS’s adaptive grids. 
The same initial condition as what is described in [1] is applied 
here to produce a propagating fast magnetosonic wave. The simu-
lation domain of the MHD code is −160/3 < x < 160/3 and −40 <
y < 40. Two independent PIC domains are used. The left domain 
in Fig. 6 covers the region of −40 < x < 0 and −20 < y < 20 with 
a grid resolution of �x = �y = 1/16. The right domain covers the 
region of 20 < x < 40 and −10 < y < 10 with a grid resolution 
of �x = �y = 1/8. All cells of the right PIC domain are always 
switched on during the simulation. For the left domain, only the 
cells that satisfy the following conditions are switched on:

r <
Lx
10

or

r <
Lx
4

+ Lx
4

t mod 200

200
and r >

Lx
8

+ Lx
10

t mod 200

200
,

(6)

where r is the distance to the center of the PIC domain, Lx is the 
length of the PIC domain, which is 40 in this case, and t is the sim-
ulate time. The central PIC cells (r < Lx/10) are always switched 
on, and the outer shell of active PIC cells keeps changing during 
the simulation. A movie that shows the adaptation of the active 
PIC region is provided as an online supplement. We note that the 
simulation parameters for these two PIC domains can be specified 
independently. For example, the cell size is different for these two 
PIC domains as it is described above, and the ion-electron mass 
ratio mi/me is 25 for the left domain and it is 100 for the right 
domain. Both PIC domains use CFL = 0.2, and 900 particles per 
cell (ppc) per species.

Fig. 6 shows the plasma velocity Ux and the area of the active 
PIC cells at the beginning and at t = 400. The interface between 
the active PIC region and the MHD region is smooth, and there is 
not any significant artificial effect observed.

6.2. One-dimensional non-linear magnetosonic wave evolution

The evolution of the magnetosonic wave is non-linear. The wave 
may finally evolve into a shock, where the plasma phase space 
distributions may become non-Maxwellian. So the non-linear evo-
lution of the magnetosonic wave simulation is suitable for testing 
the particle resampling algorithms.

In section 6.1, the wave vector is perpendicular to the back-
ground magnetic field direction. To make the particle phase space 
distribution further away from Maxwellian and hence more chal-
lenging for the particle resampling algorithms, we use a more 
general setting that the background magnetic field is neither per-
pendicular nor parallel to the wave vector in this 1D test. The 
initial conditions of the 1D magnetosonic wave for the density (ρ), 
pressure (p), magnetic fields (Bx , B y and Bz), and velocities (ux , 
uy and uz) are:
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Fig. 6. The velocity Ux of the 2D fast magnetosonic wave test at the beginning (left) and at t = 400 (right). The black rectangles show the area of the PIC grids. Inside each 
PIC grid, the semi-transparent area, which is enclosed by red lines, represents the active PIC region. Since all PIC cells are active for the right PIC grid, the black lines and 
the red lines are overlapped.
Bx(x) = B0 cos(θ)

B y(x) = B0 [sin(θ) + δ sin(kx− ωt)]

Bz(x) = 0

ux(x) = δ sin(θ)
v2A vp

v2p − v2s
sin(kx− ωt)

uy(x) = δ cos(θ)
v2A
vp

sin(kx− ωt)

uz(x) = 0

ρ(x) = ρ0

[
1+ δ sin(θ)

v2A
v2p − v2s

sin(kx− ωt)

]

p(x) = p0

[
1+ γ δ sin(θ)

v2A
v2p − v2s

sin(kx − ωt)

]
,

(7)

where γ is the specific heat ratio, v A = B0√
ρ0

is the Alfven speed, 

vs =
√

γ p0
ρ0

is the sound speed, and θ is the angle between the 
wave vector, which is the x-direction here, and the background 
magnetic field. The phase speed vp = ω/k is the fast magnetosonic 
speed:

v2p = 1

2

{
v2A + v2s + [(v2A + v2s )

2 − 4v2s v
2
A cos

2 θ]1/2
}

., (8)

In this paper, we use γ = 5/3, B0 = 0.1, θ = 30◦ , ρ0 = 1, p0 =
0.0001, k = 2π/λ = 2π/64, and δ = 0.5. We note that the pertur-
bation δ = 0.5 is not small so that the solution will evolve to the 
nonlinear stage soon. Since the goal of this test is to compare the 
simulation results with and without particle resampling, it is suit-
able and acceptable to use such a large perturbation.

The 1D simulation domain is −32 < x < 32 with a cell size 
�x = 0.05. The initial number of particles per cell per species is 
900, and CFL = 0.2. The simulation results at t = 200 are pre-
sented in Fig. 7. To distinguish between the physical density and 
macro-particle number per cell, we use ‘mass density’ to repre-
sent the physical density, and ‘number density’ is the number of 
macro-particles per simulation cell or phase space bin. At t = 200, 
the wave already evolves into a non-linear state, and the veloc-
ity shows a sharp gradient near x = 20. The minimum and max-
imum number of ppc are about 500 and 3140, respectively, for 
the simulation without applying particle resampling. For the sim-
ulation with particle resampling, the minimum ppc is about 750 
and the maximum ppc is about 1360, and these numbers are 
8

close to the splitting limit 0.8 ∗ 900 = 720 and the merging limit 
1.5 ∗ 900 = 1350. It suggests that the particle resampling algo-
rithms are effective in controlling particle numbers. Except for the 
particle number, the physical quantities of these two simulations 
are very similar to each other. The only noticeable difference is 
that the electric field E y of the simulation with particle resampling 
is noisier near x = 20 due to the reduction of particle number. 
Fig. 7(b) shows the ion phase space distribution for particles be-
tween x = 21 and x = 21.2. The two mass density distributions are 
comparable even though the particle number densities are quite 
different.

Fig. 8 shows the simulation speed, which represents the num-
ber of PIC cells that are updated per second per CPU core. For 
the first 700 cycles, both simulations become slower and slower 
due to the imbalance of the particle number per CPU core. Later, 
the minimum and maximum ppc reach the splitting and merging 
thresholds and the particle splitting algorithms start controlling 
the further change of the minimum and maximum ppc, so the 
simulation speed stops dropping for the simulation with parti-
cle resampling. At the end of the simulation, the simulation with 
particle resampling is almost twice faster than the one without 
particle resampling.

6.3. Two-dimensional double-current-sheet magnetic reconnection

Magnetic reconnection is regarded as one of the most impor-
tant physical processes for energy transfer between magnetic field 
and plasma in the space plasma environment, so it is also widely 
used to benchmark the performance of a kinetic plasma modeling 
code. Here, we use a two-dimensional (2D) asymmetric magnetic 
reconnection problem to test the particle resampling algorithms, 
because the particle distributions near the reconnection site can 
be non-Maxwellian. It is crucial to demonstrate that the particle 
resampling algorithms preserve the non-Maxwellian distributions.

A double current sheet is used to initialize the simulation so 
that the whole system is symmetric, and periodic boundary con-
ditions can be applied in all directions. The simulation domain is 
−64 < x < 64 and −16 < y < 16. The background magnetic field is 
initialized as:

Bx(y) =
(
B1 + B2

2

)[
tanh

(
y + L y/4

δ

)
− tanh

(
y − L y/4

δ

)]
− B2,

(9)
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Fig. 7. The 1D magnetosonic wave simulation results at t = 200. (b) shows phase space distributions at x = 21 that is marked with a dashed black line in (a). The upper panel 
of (b) shows the results without particle resampling, and the lower panel shows the results with particle resampling.
where B1 = 1 and B2 = 2 are the asymptotic magnetic field am-
plitudes. L y = 32 is the width of the simulation domain, and the 
centers of the two current sheets are at y = −8 and y = 8, respec-
tively. The plasma pressure is set to balance the magnetic field 
pressure pB = B2/2. To mimic the plasma environment of Earth’s 
magnetopause, the asymptotic plasma beta β = (pi + pe)/pB are 
3.6 and 0.15 on the “1” and “2” sides, respectively. The initial pres-
sure ratio between electrons and ions is pi/pe = 5 in the whole 
simulation domain. The ion temperature is:
9

Ti(y) =
(
Ti,1 + Ti,2

2

)[
tanh

(
y + L y/4

δ

)
− tanh

(
y − L y/4

δ

)]
+ Ti,2.

(10)

Ti,1 = 1.33 and Ti,2 = 3.33 are used in the simulation. With the 
pressure and temperature given above, the corresponding densities 
and ion inertial lengths are n1 = 1.127, n2 = 0.0736, di,1 = 0.942
and di,2 = 3.69. For all the simulations presented in this subsec-
tion, the grid resolution is �x = 1/16, and the CFL is 0.4.
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Fig. 8. The simulation speed of the 1D magnetosonic wave simulations.

Figs. 9 and 10 show the fields near the reconnection site at 
t = 20 with 100 and 400 initial ppc, respectively. The left (right) 
columns of Figs. 9 and 10 are the results without (with) apply-
ing particle resampling. Due to the magnetic reconnection plasma 
flow, the electron ppc around the current sheet increases to about 
250 (950), and the minimum ppc in the inflow region reduces to 
less than 50 (200) in Fig. 9 (Fig. 10) without applying the parti-
cle resampling algorithms. After applying the particle resampling 
algorithms, the electron ppc becomes more uniform in the whole 
domain. With the threshold parameters described in section 4, the 
particle splitting (merging) threshold ppc is 80 (150) and 320 (600) 
for the simulations with the initial ppc of 100 and 400, respec-
tively. The minimum electron ppc in the right column of Fig. 9
(Fig. 10) is about 83 (325), and the maximum ppc is about 190 
(630). The minimum ppc in the simulate is just a few particles 
more than the splitting threshold since the splitting algorithm is 
effective in generating new particles. The difference between the 
maximum ppc and the merging threshold is larger, but the maxi-
mum ppc is still much smaller than that in the simulation without 
applying particle resampling.

Figs. 9 and 10 also compare the physical quantities of the sim-
ulations. All simulations show essentially the same structures, in-
cluding the off-diagonal electron tensor. It demonstrates that the 
particle resampling algorithms do not introduce any significant ar-
tificial effect.

Fig. 11 shows the electron phase space distributions from three 
sampling locations near the reconnection site. These three sam-
pling locations are marked with black rectangles in the first rows 
of Figs. 9 and 10. From top to bottom, we label these three sam-
pling boxes as box-A, box-B, and box-C. In Fig. 11, rows (a) and 
(b) show distributions from box-A, rows (c) and (d) show distri-
butions from box-B, and rows (e) and (f) show distributions from 
box-C. Each column shows the distributions from the same simula-
tion, and the simulation parameters, i.e., the initial ppc and turning 
on/off the particle resampling algorithms, are described at the top 
of Fig. 11. Rows (a), (c) and (e) show the density distributions, and 
rows (b), (d) and (f) show the macro-particle number distributions 
in phase space. Fig. 11 demonstrates that the particle resampling 
algorithms preserve the phase space distributions well. The parti-
cle resampling does not change the particle number too much at 
the sampling location box-A (row (b)), and the ‘U’-shape density 
distribution is well preserved (row (a)). From rows (d) and (f), it 
is clear that the particle resampling significantly reduces the par-
ticle number around the distribution centers, so the centers of the 
density distribution (rows (c) and (e)) with particle resampling are 
noisier. But the density distribution structure, which consists of a 
core and a crescent distribution, is still clearly preserved in row 
10
(c) and also in (e1) and (e2). The distributions of (e3) and (e4) are 
also very similar to each other.

Fig. 12 shows the total energy variation of the simulations. As 
it is explained in [8], by default, we use numerical parameters that 
sacrifice the energy conservation a little bit to suppress numerical 
oscillations, so the total energies decrease slowly in Fig. 12. After 
about 4000 steps (t = 20), the total energies reduce about 2.5% and 
6% for simulations with 400 ppc and 100 ppc, respectively. This 
figure clearly demonstrates that particle resampling has little in-
fluence on the energy conservation property of the PIC algorithm.

Although the particle resampling is applied in every time step, 
it is computationally efficient so that it only takes less than 0.1%
of the total simulation time in this test.

6.4. Strong and weak parallel scalings

3D asymmetric magnetic reconnection simulations are used to 
test the strong and weak scaling of FLEKS on the Frontera cluster 
[33] at the Texas Advanced Computing Center. Each node of Fron-
tera has two Intel Xeon Platinum 8280 (Cascade Lake) processors. 
Each processor contains 28 cores operating at 2.7 GHz base fre-
quency. The setup of the 3D test is similar to the 2D simulation 
in the previous subsection, and it is uniform in the z-direction. 
This test case is similar to the PIC part of a typical MHD-AEPIC 
magnetospheric simulation, other than that, there is no other spe-
cial algorithmic or hardware reason for choosing this problem. We 
run each case three times and report the average timing here. 
We did not reserve nodes for the study, instead, these simulations 
were submitted to the cluster as normal jobs. Since FLEKS uses 
the parallel field and particle data structures provided by AMReX, 
the scaling results largely depend on the performance of AMReX 
[11,12]. Fig. 13 shows the weak scalings. With 83 cells per core, 
the performance is still good with up to about 10k cores. With 
163 cells per CPU core, it reaches good performance even with 
28,672 cores. Fig. 14 shows the strong scalings of two problems. 
The speedup is not too far away from the ideal scaling up to about 
7k (Fig. 14(a)) or 14k (Fig. 14(b)) CPUs for these problems.

So far, FLEKS is parallelized with MPI only, and the iterative 
solvers [8] require data exchange among MPI processors for each 
iteration, so the scaling performance of FLEKS is not as good as ex-
plicit PIC codes that are parallelized with a combination of MPI and 
OpenMP [34,35]. From the timing results, we notice the cost of the 
linear solvers and particle redistributions increase and they reduce 
the parallelization efficiency for simulations with a large number 
of cores. Since AMReX already supports MPI/OpenMP hybrid paral-
lelization, we are also planning to support OpenMP in the future, 
and it will help to reduce the data exchange among MPIs.

6.5. Magnetospheric simulations

Magnetospheric simulations represent the most important ap-
plication of MHD-AEPIC. Here, we show examples of how FLEKS 
benefits magnetosphere modeling. The global MHD magnetosphere 
model uses the same setup as the simulations presented in [7,28], 
but the active PIC region is not limited to be a box anymore. Fig. 15
shows how the active PIC region can efficiently cover the dayside 
magnetopause, including the dawn-side and dusk-side flanks, and 
also the cusp region at the same time.

The test particle module enables us to follow the trajectories of 
particles in the magnetosphere. Fig. 16 shows an example of test 
particles in Earth’s magnetosphere.

7. Conclusion

In this paper, we introduce a new kinetic code FLEKS, which 
is designed as the kinetic component of the MHD-AEPIC model 
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Fig. 9. 2D magnetic reconnection results with (right column) or without (left column) particle resampling. The initial particle number per cell is 100. The black boxes in the 
top row indicate where the distribution functions shown in Fig. 11 are taken from.

Fig. 10. 2D magnetic reconnection results with (right column) or without (left column) particle resampling. The initial particle number per cell is 400 that is 4 times more 
than in Fig. 9. The black boxes in the top row indicate where the distribution functions shown in Fig. 11 are taken from.
11
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Fig. 11. Each column shows the phase space distributions from the same simulation. The first two rows, middle two rows and the last two rows represent the distributions 
of box-A, box-B and box-C, respectively. From top to bottom, the black rectangles in Figs. 9 and 10 show the locations of box-A, box-B and box-C. Rows (a), (c) and (e) are 
physical density distributions. Rows (b), (d) and (f) show particle number per phase space bin.
[10,29]. To support long simulations with varying global configu-
rations, FLEKS allows activating or deactivating cells dynamically 
during a simulation to fit the regions of interest. This feature 
was introduced by Shou et al. [10] first, but FLEKS is more flex-
ible since the minimum activation unit is a patch containing N 
(N ≥ 2) cells in each direction instead of a large block used in 
[10], and FLEKS supports multiple independent PIC domains in an 
MHD-AEPIC simulation. During a long simulation, since the plasma 
properties inside the active PIC region may change greatly, we de-
12
sign an adaptive time-stepping algorithm to adjust PIC time step 
accordingly. The adaptive time-stepping scheme preserves the en-
ergy conservation property of the ECSIM algorithm.

Since the number of particles per cell may change dramatically 
during a long simulation and leads to load imbalance and loss of 
accuracy in the cells with fewer particles, a particle splitting and 
a particle merging algorithms are designed to control the change 
of ppc. The particle merging algorithm selects 6 particles that are 
close to each other in the phase space and combines them into 
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Fig. 12. The total energy variation of the double-current-sheet magnetic reconnec-
tion simulations.

Fig. 13. The weak parallel scaling results of FLEKS. The execution time with 112 
CPU cores is used as the reference. For perfect scaling the normalized execution 
time would be 1.0 for all runs.

5 new particles. The merging conserves the total mass, momen-
tum, and energy, and it also preserves the phase space structure as 
much as possible by inheriting velocities from the old particles. We 
have presented several non-trivial tests showing that the particle 
splitting and merging algorithm does not introduce any spurious 
features.

The particle resampling improves the efficiency of FLEKS sub-
stantially by not allowing the ppc to drop to very small values or 
increase to unnecessarily high values. In addition, load balancing 
the PIC domain becomes much easier with roughly the same num-
ber of particles in each grid cell. Indeed, FLEKS shows excellent 
weak and strong parallel scaling. Finally, the test-particle module 
expands the capability of FLEKS, and provides a useful tool for 
investigating the transport and energization of particles in mag-
netospheres.

With the AMR data structures provided by AMReX, we are mi-
grating FLEKS to an AMR grid. Since the particle resampling al-
gorithms can be directly applied to control the particle number 
variation near the interface of the coarse and fine cells without 
any modification, we do not see any difficulty on the particle side 
so far. However, the electric field solver may need to be extended 
to handle the resolution change. We will report our progress once 
the development is done. AMReX also provides support for GPU, 
and we are planning to port FLEKS to GPU in the future.

FLEKS improves the quality and efficiency of MHD-AEPIC simu-
lation results significantly. For example, Wang et al. [29] use FLEKS 
inside the Space Weather Modeling Framework to model a com-
plete magnetospheric storm with kinetic reconnection in the tail.
13
Fig. 14. The strong scaling of FLEKS. Panels (a) and (b) show the scaling of simu-
lations with 1.835 million and 14.68 million cells, respectively. The red solid lines 
represent speedup, and the red dashed lines correspond to perfect speedup. The 
blue lines show the number of PIC cells per CPU core.

Fig. 15. An MHD-AEPIC simulation of Earth’s magnetosphere with the dayside mag-
netopause and the cusps covered by FLEKS. The black lines indicate the edge of the 
active PIC region.
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Fig. 16. The locations (left) and the example trajectories (right) of test particles.
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Appendix A. Software and data availability

The MHD-AEPIC model, including FLEKS, is publicly avail-
able through the https://clasp .engin .umich .edu /research /theory-
computational -methods /swmf -downloadable -software website af-
ter registration. The input files for performing the numerical tests 
are available through the Zenodo repository (https://doi .org /10 .
5281 /zenodo .7523641).

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2023 .108714.
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