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ABSTRACT

High resolution topographic data are necessary to understand benthic habitat, quantify
proc- esses at the water-sediment interface, and support computational fluid dynamics
models for both surface and hyporheic hydraulics. In riverine systems, these data are
typically collected using traditional surveying methods (total station, DGPS, etc.), airborne
or terrestrial laser scanning, and photogrammetry. Recently, handheld surveying
equipment has been rapidly acquiring popularity in part due to its processing
capacity, price, size, and versatility. One such device is the iPhone LiDAR, which could
have a good balance between precision and ease of use and is a potential replacement
for conventional measuring tools. Here, we eval- uated the accuracy of the LIDAR
sensor and a Structure from Motion (SfM) method based on photos collected using
the iPhone Cameras. We compared the LIDAR and SfM elevations to those from a
high-precision laser scanner for an experimental rough water-worked gravel- bed
channel with boulder-like structures. We observed that both the LIDAR and SfM
meth-

ods captured the overall streambed morphology and detected large (Hs 2 15 cm) and
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Introduction

Channel and floodplain topography is an essential
input to hydraulic models that are vital for predict-
ing realistic streamflow properties (Monsalve et al.
2017) and determining interactions between the
bed and surface flow (Tonina and Jorde 2013).
Accurate measurements of the topographic
characteristics of riverine beds, including large,
macro, and micro roughness (Figure 1b), are
critical to construct these numerical flow models
(Colombini and Stocchino 2005; Pokrajac et al.
2006; Roussinova et al. 2008; Kazemi et al. 2017;
Lee 2018; Kuwata and Kawaguchi 2019; Dey et
al. 2021; Kadivar et al. 2021). All computational
fluid dynamics (CFD) models use the channel
geometry to solve for the flow field in a given
domain, resulting in a detailed description of flow
variables that can vary in time and space such as
velocity and forces (Tonina and Jorde 2013). In
open channel flow, streambed top- ography can be
described as the superimposition of several
topographic features (Duffin et al. 2021), which
span from large scale bed elevations gra- dients,
like pool and bars (meters to hundreds of meters
horizontal length scale), to local bed eleva- tion
changes, like boulders and lateral expansions
(tenths of a meter to a meter) (Figure 1).
Whereas

the large-scale topography defines the channel
shape and streambed surface, the local bed
elevation change controls the local roughness of
the streambed surface. This roughness (Figure 1b)
may include large-roughness elements, such as
boulders, scour holes and depositional areas (~
decimeters to meter length scale, H;), macro-
roughness elements, like particle clusters (~ few
centimeters to deci- meter) and micro-roughness
elements, which are about the size of individual
gravel grains in the riv- erbed (few millimeters to
centimeters). As the spa- tial scale of a study
decreases, the geometry of small elements or
clusters of small elements, and their associated
macro- and micro-roughness, becomes more and
more important because it plays a key role in
controlling turbulence properties and energy and
momentum exchange within the entire fluid
domain (Paola 1985; Antonia and Krogstad 2001;
Poggi et al. 2003; Jim,enez 2004; Leonardi et
al. 2006; Schultz and Flack 2009; Doosttalab et al.
2016; Vanderwel and Ganapathisubramani 2019).
The def- inition or magnitude of large, macro, or
micro roughness varies depending on the study or
field of study. For example, in river applications,
macro- roughness elements are grains that rarely
move in typical flow conditions, usually boulders
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Figure 1. An example of the laboratory flume bed surface appearance and roughness scales. a) Photograph of the
measured section in one of our experiments. Two boulders were included in this case. The perspective in this
image helps identifying individual grains and their size relative to the boulders. b) DEM of the surface measured
using a laser scanner. A similar per- spective to the photograph was used to compare details in figures a
and b. Examples of the different scales of roughness that are present in our experiments are shown, which are
superimposed on the large-scale topography of the simulated streambed.

in diameter) or the largest grain fractions (e.g. Dss,
where the subscript represents the 84th percentile
grain size) in the sediment bed (Canovaro and
Solari 2007; Ferguson 2007; Nitsche et al. 2012;
Schneider et al. 2015; Monsalve et al. 2017).
However, in machining process, macro-roughness
can be in the order of fractions of a millimeter
(Kartal et al. 2017). In our case, the definitions of
roughness scales are based on the sizes of our
grain size distribution (GSD), boulders, and
topographic features such as scour and deposition
areas.

The recent
surveying
equipment and digital photogrammetry has
reduced the time, costs, and complexity associated
with  field campaigns and topographic
measurements (Fonstad et al. 2013; Morgan et
al. 2017; James et al. 2019; King et al. 2022;
Tavani et al. 2022). For example, the Apple
iPhone LiDAR is rapidly acquiring popu- larity for
3D representation of solid objects and sur- faces in
part due to its processing capacity, price, size,
and versatility (Luetzenburg et al. 2021) and
Structure from Motion Multi-View Stereo (SfM) is
rapidly becoming one of the most reliable alterna-
tives for topographic surveys (Westoby et al. 2012;
Carrivick et al. 2016; Smith et al. 2016; James et al.
2017; Marteau et al. 2017; Anderson et al. 2019;
Kumar Karmacharya et al. 2019). Hereinafter, we
refer to the Apple iPhone LiDAR as iPhone-LiDAR

for simplicity.
When representing the measured surfaces
both
the iPhone-LiDAR and SfM methods can achieve a
precision and accuracy of a few millimeters. The
topographic surfaces generated by SfM are
usually

development of handheld

reported as being highly accurate (e.g. Fonstad et
al. 2013; Javernick et al. 2014; Woodget et al. 2015;
Carrivick et al. 2016; Marteau et al. 2017; Masteller
and Finnegan 2017; Morgan et al. 2017;
Pearson et al. 2017; Tabesh et al. 2019;
Luetzenburg et al. 2021). The magnitudes of the
elevation errors asso- ciated with SfM vary
depending on the scale of the survey, but in
general, they are in the range of mm to a few
centimeters (Smith et al. 2016). In the case of the
iPhone-LiDAR, given that the device has only been
publicly available since 2020, there are fewer
studies that have analyzed its accuracy, but
reported errors as small as 6 mm when
measuring snow depths (King et al. 2022) or + 10
mm for small rect- angular objects (Luetzenburg
et al. 2021; Tavani et al. 2022) have been
reported. However, the accur- acy of the iPhone-
LiDAR on the complex topogra- phies that
commonly occur in river systems may differ from
these values.

In this study, we evaluate the accuracy of

the
iPhone-LiDAR sensor to measure emergent (dry)
rough gravel-bed channel topographies created in
a laboratory flume that include boulder-like struc-
tures, relatively flat but locally rough beds (micro-
roughness), and scoured regions
(macroroughness) (Figure 1). We also evaluate the
accuracy of digital topographic surfaces
constructed from photos col- lected using the
iPhone Cameras and the Structure from Motion
(SfM) method. We compare the iPhone-LiDAR and
SfM derived topographic surfa- ces to those
created using a high-precision laser scanner and

analyze the sources, characteristics, and
distribution of the residuals between the
laser



scanned elevations and those of the two other
tech- niques. We use a set of different and
complemen- tary techniques to assess the
accuracy of the iPhone- LiDAR and SfM to have a
better understanding of the different type of
errors that may be present when using the
iPhone to collect data. Our methods include raster-
to-raster and point-to-point compari- sons of bed
surface elevations, and Fourier trans- form and
power spectral density analyses of topographic
profiles. Finally, a general description of cost-
effectiveness when using the iPhone-LiDAR is
provided to determine its applicability.

Methods
Laboratory experiments

We conducted two experiments that simulated the
formation and evolution of bedforms in a
mountain river at the Mountain StreamLab,
University of Idaho (Budwig and Goodwin 2012).
The experimen- tal configuration is based on the
studies of Monsalve and Yager (2017) and
Monsalve et al. (2017). Therefore, here we only
focus on the most important similarities and
differences. The setup is a simplification of a
typical mountain river containing large roughness
elements, represented by staggered concrete
hemispheres. For simplicity, hereinafter, we refer
to these elements as boulders. The boulders were
15.24 cm in diameter and were mounted over
foam cylinders. The flume is 2 m wide and 20 m
long but was partitioned with a wall to reduce the
channel's width to 0.76 m and to create easier
access to the test section from inside the flume.
The test section was 8 m downstream of the
upstream end of the flume to ensure fully
developed turbulent flow before the first row of
simulated boulders. The major difference in
experimental conditions com- pared to Monsalve
and Yager (2017) and Monsalve et al. (2017) is
that we did not feed sediment at the upstream end
of the flume. The initial bed consisted of a 30 cm
thick sediment layer whose GSD ranged from 2 to
32 mm with a median grain size of 11 mm (Dsg)
and 5%, 16t, and 84t percentiles of 4.1, 5.9,
and 19.8 mm, respectively. The longitudinal slope
of our experiments was 2.7%, the bed started
with a flat surface (except for the boulders) and
we let it adjust to the imposed flow conditions
(Table 1) until we visually observed that the
bedforms were stable and practically no sediment
was exiting the flume.

We conducted two experiments in which we
var- ied the boulder spacing between experiments
but held the flow discharge roughly constant
(Table 1). We chose these two boulder spacings
because it affects the flow field and controls the
flow diver- gence around the boulders
consequently it results in
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different topographies (e.g. scour and deposition
characteristics) and therefore roughness. We
meas- ured the bed topography and flow at the
beginning (Initial, I) and end (Final, F) of each
experiment to provide us four different
topographies to test the iPhone-LiDAR and SfM.

Measurements

At the beginning and end of each experiment, in a
representative area of the test section that
included one boulder in Casel and two boulders in
Case2 (Table 1), we measured the bed topography
using a high-speed laser displacement sensor, took
photo- graphs from different angles for SfM
photogram- metry, and scanned the bed with the
iPhone-LiDAR using the Polycam software. We
used a class II high-speed, high-accuracy CCD
Laser Displacement Sensor model LK-G402 made
by Keyence Corporation. This is a red
semiconductor laser with wavelength of 655 nm,
output power of 0.95 mW, and measuring range
of about 20 cm. At reference distance (400 mm)
it has a spot diameter of
0.29 mm and vertical accuracy of 0.1 mm.
Hereinafter, we refer to this sensor simply as the
laser. The laser was mounted on a motorized cart
above the flume that was programmed to move at
intervals of 1 mm in the horizontal plane (stopping
for about 1 s at each location) and record the eleva-
tion data. Thus, the resolution of our laser observa-
tions is 1 mm x 1 mm. The elevation at a given
location is the average of three individual
measure- ments taken within the time the cart
stopped at that place. All data were collected under
dry bed condi- tions. For comparison purposes,
these measurements will be considered the true
elevation values.

We used the application

iPhone
13 Max Pro, operating system i0S 16, for our
iPhone-LiDAR measurements. The technical capa-
bilities of the iPhone-LiDAR are the same as the
previous iPhone model (iPhone Pro 12 released in
2020) and are well described by Luetzenburg et al.
(2021), and only the principal characteristics are
mentioned here. The iPhone-LiDAR operates at
wavelengths of 8XX nm, uses a Vertical Cavity
Surface Emitting Lasers (or VCSELs) to emit the
laser, and the direct time of flight of the pulses is
measured with a Single Photon Avalanche
Photodiodes (SPADs). The size and range (5 m) of
the field of view (FoV) is constrained by flash illu-
mination. A total of 576 points are emitted by the
VCSEL when the device is activated. When measur-
ing, Polycam displays a triangulated mesh over the
object’s surface while the iPhone is recording and
pre-processing the elevations. As the user moves
the device to collect more data, Polycam
updates the

‘Polycam’ on an



o)
4 (=) A. MONSALVE ET

Table 1. Summary of the primary characteristics of the experiments and surface mesh

generated by the iPhone-LiDAR and SfM.

Variable Casell CaselF Case2l Case2F
Flow discharge (I/s) 573 57.3 57.0 57.0
Average flow depth (cm) 7.7 85 9.0 9.8
Boulder spacing (m) 0.762 0.762 0.61 0.61
Measured area (m?) 0.252 0.293 0.717 0.786
Measured length (m) 0.630 0.620 1.138 1.209
Measured width (m) 0.400 0.472 0.630 0.650
Number vertices iPhone-LiDAR 14,858 12,067 17,580 20,897
Number faces iPhone-LiDAR 27,505 22,420 32,616 37,980
Resolution iPhone-LiDAR (mm)” 56 8.2 9.9 9.2
Number vertices SfM 1576,19 18%,40 318,775 335,597
Number faces SfM 314519,20 37%,55 637,198 670,882
Resolution SfM (mm)” 14 13 17 17
Number of photos SftM 261 285 589 197

*Approximate resolution based on the average edge length of the triangulated irregular mesh.

mesh in real-time and shows the areas that are
effectively measured and those outside the FoV in
different colors. These features allow the user to
identify zones that could have been missed or that
need additional scans. The iPhone 13 Pro
models are equipped with a barometer, three-axis
gyroscope, and accelerometer, which are used by
Polycam to determine the three spatial
coordinates of the meas- ured surfaces. The
software post-process the data directly on the
iPhone and the results can be exported in
different mesh and point cloud formats. In all
cases we used “obj” format. We further post-
processed the data using the open-source system
MeshLab for processing and editing 3D irregular
tri- angular meshes (available in meshlab.net) to
reduce the scan to only the region of analysis and
visualize the results. No filtering, cleaning, scaling,
or remeshing was conducted. The average
resolution of the iPhone-LiDAR surfaces was
between 5.6 and

9.9 mm (Table 1).

We wused the iPhone cameras to take
photographs of the studied area and reconstruct
the bed topog- raphy using SfM photogrammetry
using AgiSoft Metashape Professional, version
1.8.4. We used the wide camera, which has a 12
MP resolution with f/1.5 aperture and focal
length of 6 mm. All our measurements were
collected using the automatic mode, resulting in
exposure times approximately between 1/40 to
1/60 s. We worked in an indoor environment using
artificial diffuse lightning. Thus, the illumination
was consistent for all of the photo- graphs and the
different study cases. SfM techniques and theory
has been described in great detail in other
studies (e.g. Fonstad et al. 2013; Javernick et
al. 2014; Woodget et al. 2015; Carrivick et al.
2016; Masteller and Finnegan 2017; Morgan et al.
2017; Luetzenburg et al. 2021), therefore, we only
mention the characteristics and properties of
the data collected. Given that we were working
over a relatively small area and had access to
the study zone from all directions, our
photographs over- lapped more than 90%,
which is higher than the

80% forwards and 60% sidewards recommended
by AgiSoft. In each case we used all the collected
pho- tos, but we disabled and excluded from
photogram- metric processing those images with
quality value lower than 0.5 units as suggested by
AgiSoft. Thus, the final number of photos used in
each case was variable (Table 1). To scale and
reference the gener- ated cloud points, we placed
six control points, three at the upstream and three
at the downstream end of the measurement area
and measured their locations using the laser.
Additionally, we identified reference points that
are common in different images to help the
software with photo alignment. In average the
resolution of the SfM irregular tri- angle meshes
was approximately 1 mm (Table 1).

Evaluation of differences in elevation

After post-processing the iPhone-LiDAR and SfM
data, we obtained 3D representations of the topog-
raphy in Wavefront .obj format that contained the
coordinates, texture (color), and normals of each
vertex and the faces that make each polygon of an
irregular triangular mesh. This geometrical
represen- tation allowed us to compare surfaces
with different resolutions and extract differences
in elevations at any location within the study
zone.

For a general evaluation of the ability of the
iPhone-LiDAR and SfM to capture topography and
roughness elements in gravel bed channels, we
com- pared the generated surface elevations to the
laser observations wusing a raster-to-raster
approach. In this case all surfaces were mapped
onto a 1 x 1 mm uniform mesh to create a Digital
Elevation Model (DEM) and differences in
elevations were evaluated using a DEM of
Difference (DoD). We quantified the residuals or
errors as the difference in elevations (Dz; Y4 z; - z
where the subscript j corresponds to the laser
and [ to the iPhone-LiDAR or SfM method) at
each vertex (i). Then, we calculated the mean
absolute error (MAE, Eq. 1), mean (Dz Eq. 2)

and standard deviation (rp;, Eq. 3) of the



residuals to determine the accuracy and precision
of the surface representations of the iPhone-
LiDAR and SfM:

MAE v, — 1073
n

Eq.
Pn
_ DZ,'

Dz % —4— Eq.

SMWWMWM i AL 2

oz % Tlpz L Dz

n Eq.

3

where n is the total number of vertices in a DEM.
We also explored the characteristics of Dz;
between the laser scan and the iPhone-LiDAR
or SfM using a point-to-point approach. In this
case, we compared the elevation of each vertex of
the generated surfaces with that of the closest
point of the laser scan in terms of horizontal
distance. Compared to the raster-to-raster
approach this method does not depend on data
interpolation, therefore, it helped us to
characterize how the sim- plifications of surface
features of the iPhone-LiDAR and SfM methods
affected the errors. In this case, when the vertex of
the iPhone-LiDAR or SfM sur- face contains a point
that is a short distance away from a point in the
laser scan, Dz; between these two points
effectively measures the difference between the
two methods because the two points are at
about the same horizontal location. But, as the
distance between the laser and corresponding
SfM/iPhone-LiDAR point increases, a portion of Dz;
is due to a true elevation difference because the 2
points are measuring different locations. The
resid- ual’'s (DzP distribution and standard
deviation could therefore be used as an indicator
of how much the surface obtained using the
iPhone-LiDAR or SfM was simplified.

Surface roughness simplifications

We cannot determine the iPhone-LiDAR resolution
of captured roughness elements only using the
iPhone-LiDAR technical specifications
Luetzenburg et al. (2021) determined an accuracy
and error in precision of 1 cm when measuring
objects with side length larger than 10 cm.
However, these values were obtained based on
the length, width, and height of isolated objects
and not on continuous rough surfaces. We
expanded their analysis by eval- uating different
roughness scales, including macro- and micro-
roughness, of our scanned beds to deter- mine the
size of the surface features that were prop- erly
captured. We applied fast Fourier transform (FFT)
and power spectral density estimation (SDE)
based on the Welch’s method on extracted longitu-
dinal profiles from our scans to explore what
rough- ness components were similar and
different between
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the laser scan, iPhone-LiDAR, and SfM. We used
Delaunay triangulations with linear interpolations
to sample the iPhone-LiDAR and SfM surfaces at
equally spaced locations (1 mm resolution) to
apply

the FFT and

Results

General characteristics of the processed digital
surfaces

At a resolution of 1 mm x 1 mm, the laser scan was
able to capture the texture of the sediment
beds in
detail (Figure 1). Even small features such as
imper- fections in the boulders, noticeable as
black/dark grey holes in the photo (Figure 1a) and
in digital reconstruction (Figure 1b), were present
in the laser data. In general, the laser data had little
noise or erroneous measurements. We removed
less than 0.5% of the points, which were easily
identifiable because the laser output file registered
them as hav- ing an elevation of -0.99 m. We
observed that all the registered errors were
associated with points where the laser spot was
not precisely focused on a single location, such as
at the edge of a grain.

The iPhone-LiDAR was

capture
the most distinct topographical features in all
cases. For example, it correctly measured the
overall shape and dimensions of the boulders,
relatively flat regions, and scour and deposition
zones (Figure 2). However, small roughness
elements, such as small individual grains, were
omitted in the surface repre- sentation. Therefore,
all surfaces created using the iPhone-LiDAR data
appear to be a smoothened ver- sion of the laser
scan. The threshold grain size that can be
measured by the iPhone-LiDAR will be dis- cussed
in the next section. The surfaces generated using
SfM display great resemblance to those meas- ured
with the laser, even the size, location, and
orientation of small grains are well represented
(Figure 2).

able to accurately

Differences in elevation using raster
comparisons

The iPhone-LiDAR/laser DOD residual means
(Figure 3) were close to zero in all cases (Table 2),
with a maximum Dz of 0.65 mm for Casell. These
small means (Table 2) confirm negligible bias or
systematic errors in the iPhone-LiDAR surfaces
and that most of the error is effectively random
error described by the standard deviation of the
residuals (ro; Eq. 3). For simplicity and to provide
a gener- ally applicable example, we focus on
Case2F to graphically display and explain all the
results.

The standard deviation of the errors for
the 1 x 1 mm grid comparison was between
3.24 and
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Laser scan iPhone LIiDAR Structure from Motion
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Figure 2. Bed surface elevations measured (laser scan) and generated (iPhone-LiDAR and SfM) for each case.
Different meth- ods are display in columns and cases in rows. Flow direction is from right to left. Surfaces are
colored by elevation. In the fig- ure, we used blue and green shades of color to highlight scoured and
deposited areas, respectively. The color scale is only a reference as some of the boulder's edges appear
colored as green.
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Figure 3. Differences in elevations (or DoD) in Case2F between the surfaces generated by the laser scan and
those from the

a) iPhone-LiDAR and b) SfM. These DoD had a 1 mm resolution. A positive value indicates that the measured
elevation (laser) was higher than that obtained using the iPhone-LiDAR or SfM. The distribution of the
residuals for the c) iPhone-LIDAR and d) SfM is colored using the same color scale to highlight magnitude and
density. Segmented lines represent fits to a normal dis- tribution in c) and a Laplacian distribution in d).

Table 2. Characteristics of the errors when comparing the measured elevations using the laser scan to

resolution in each case.

Average error (D-z, _mm) Error standard deviation (rp,, _mm) Mean absolute error
DEM (MAE, mm)

Topography Resolution iPhone- StM iPhone- StM iPhone- StM
used (mm) LiDAR LiDAR LiDAR

Casell 1.0 -0.65 0.39 324 3.16 247 2.18
CaselF 1.0 0.09 0.12 3.58 1.90 277 1.21
Case2l 1.0 -0.11 0.13 4.26 212 3.25 1.56
Case2F 1.0 -0.07 -0.01 3.83 240 2.98 1.64
Casell 5.6 -0.67 038 3.25 3.19 247 220
CaselF 8.2 0.07 0.03 3.57 233 275 1.29
Case2l| 9.9 -0.10 0.14 4.32 2.24 3.30 1.61

Case2F 9.2 -0.10 -0.03 3.83 2.33 2.96 1.63
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Figure 4. Distribution of differences in elevation using a point-to-point approach in Case2F comparing the laser
scan to the surfaces generated by the a) iPhone-LiDAR and b) SfM. The residuals are colored by point counts
(color bar) to highlight the location of points at different distances between the laser scan and the iPhone-

LIDAR/SfM. The variability in rp; considering

c) cumulative distances and d) individual intervals. Given that we colored the residuals by count number
some individual points at a distance longer than 2 mm are not clearly visible in b).

426 mm
and

3.16 mm for SfM (Table 2). In all cases rp,; and
MAE were smaller for the SfM compared to the
iPhone-LiDAR. These rp; are similar in size to the
smallest grain size fractions on the bed, e.g. Ds
Ya

4.1 mm, but rp, does not represent the size of the
smallest captured grains. We analyzed the
depend- ency of these results to the selected 1 x
1 mm grid size by calculating Dz and rp, on
DEMs with the iPhone-LiDAR resolution (a
coarser grid). We observed that the estimated rp,
remained practically constant when we
coarsened the DoD resolution (changes < 0.5
mm) indicating that our results and analysis are
valid at the spatial scale on which we are
working.

The spatial distribution and magnitude of errors
represented in the DoD also show no systematic
errors and suggests that most of the elevations dif-
ferences stem  from  simplifications or
smoothening of the surfaces and removal of the
micro roughness (Figure 3). For example, the
shape of individual grains can be observed in the
iPhone-LiDAR DoD (Figure 3a) as an orange or
purple (extreme values in the color bar) colored
surface indicating that those grains were not
captured by this technique. In contrast, the
outlines of single grains are observed in the SfM
DoD (Figure 3b). This observation sug- gests that
the SfM method simplifies the grain edges, but
the general shape is well represented. In both the
iPhone-LiDAR and SfM, the largest errors were
located at the base of the boulders where an
abrupt change in elevation occurs.

for the iPhone-LiDAR and 1.9

The differences in rp, between the
iPhone-
LiDAR and SfM can be furthered compared
using the distributions of errors for each

method (Figure 3c and d). The distribution of
errors for the iPhone- LiDAR is broader (Figure
3c, larger rp;) compared to the SfM (Figure 3d,

smaller rp;). In terms of



)

agnitide "U8'65% and 99.53% of all the
elevation differences were within an error of
#0.01 cm for the iPhone-LiDAR (Figure 3c) and
SfM, respectively (Figure 3d). These differences in
oz could be con- sidered small, but they have an
important impact on the probability distribution
that describes the error -characteristics. To
analyze if the residuals follow a certain
distribution we used the Kolmogorov- Smirnov
(K-S) goodness-of-fit test (95% confi- dence). The
K-S tests the null hypothesis that the residuals in
the iPhone-LiDAR come from a stand- ard normal
distribution (Figure 3c) and in the SfM come from
a Laplace distribution (Figure 3d), against the
alternative that the residuals do not come from
such distributions. The p value of both K-S tests
was larger than 0.05 for both techniques, thus we
cannot reject the null hypothesis and sug- gests
that these distributions are good approxima- tions
of the actual residual distributions.

Differences in elevation using point to point
comparisons

The spatial distribution of the residuals
considering a point-to-point approach
complements the distri- butions of residuals
from the raster analysis. Most of the iPhone-
LiDAR and SfM surfaces have a cor- responding
point at a distance of 0.7 mm from the points in
the laser data (yellow region in Figure 4a and b).
This small distance, relative to the GSD of the
bed, suggest that both the iPhone-LiDAR and SfM
are likely measuring the same grain or bed fea-
ture as the laser. As the distance increases
between points on the laser and closest
corresponding points on the iPhone-LiDAR/SfM,
more scatter around the mean (i.e. residual
practically equals to zero) was observed (Figure
4a and b), especially for the iPhone-LiDAR
where individual points start to
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Figure 5. Bed surface elevation profile and analysis of its signal. a) Longitudinal profile along one of the boulders
in Case2F extracted from the measured (laser scan) and generated surfaces (iPhone-LIDAR and SfM). The
red segmented area is dis- played in b). b) A detailed view of the generated bed surface elevations. c) Fourier
transform of the profile shown in a). d) An enlarged view of the red segmented area in c). €) An enlarged view
of the red segmented area in d). f) Power spectral density of the profile shown in a).

disperse relatively far from the zone that
represents a residual of 0 m. The increase in the
residual mag- nitude with larger distance (Figure
4a and b) between corresponding points suggests
that the points are sampling different bed
features or that the SfM/iPhone-LiDAR couldn’t
capture the actual surface elevation at that given
location.

We also analyzed how the distance between
points on the laser and closest corresponding
points on the iPhone-LiDAR/SfM affects the
variability in rp,; We considered two cases:
cumulative distance and individual intervals.
Cumulative distance means that, for example, at a
distance of 10-3 m all points between 10-5 and
10-3 m are considered in the rp, calculation, being
10-5 the smallest observed dis- tance between a
laser observation and the corre- sponding iPhone-
LiDAR/SfM point. Individual intervals indicate that
ro, is calculated for only one distance interval at a
time. In this case, evenly spaced distance values
on a logarithmic scale were used. For example,
between 10-4 and 2.154-10-4 m, then 2.154-10-4
to 4.641-10* m and so forth. When considering
increasingly longer cumulative distances between
corresponding points, [rp; remains almost
constant for the iPhone-LiDAR and SfM methods
(Figure 4c). This is because although the
dispersion of the residuals of the corresponding
points increases, the number of points around the
mean residual value (residual of ~0 m approxi-
mately) also increases, thus maintaining rp;: If
intervals of distances between corresponding
points are instead considered (Figure 4d), ro,
magnitudes are similar to those calculated using
cumulative dis- tances up to 2 mm. Then, for longer
distances, rp; increases reaching a value of ~2 cm
at a distance of 1 cm. This suggest that in the
coarser areas of the

mesh both methods, iPhone-LiDAR and SfM, fail
the accurately represent the true elevation of the
surface. Similar to the DoD calculations, in the
point-to-point approach the rp, of the SfM is
smaller than that of the iPhone-LiDAR (Figure 4c
and d), but is about 1 mm larger than that
calcu- lated using DoD in both cases.

Simplifications of small-scale roughness

When comparing the surfaces generated by the
iPhone-LiDAR to those measured by the laser
scan it can be observed that the smallest grains
and the small-scale features tend to disappear
resulting in a relatively smooth surface (Figure 2).
The SfM surfa- ces closely resemble those of the
laser scan, but some details are also lost (Figure
3b). The iPhone- LiDAR and SfM methods can
accurately capture the bedform heterogeneity and
large- and macro-rough- ness elements, for
instance, the boulder and the regions of scour and
deposition (Figure 5a). However, when analyzing
at the smaller scale of micro-roughness elements
(Figure 5b), the charac- teristics of the
smoothening can be evaluated. The iPhone-LiDAR
profile maps the general surface of the bed but
removes some elevation heterogeneity, simplifying
the topography along the mean elevation of the
fine scale roughness (Figure 5b). In the SfM profile,
the elevations of individual fine scale rough- ness
peaks are well characterized, but the corre-
sponding valleys were smoothened. At this small
spatial scale, the SfM method seems to fail in
repro- ducing the sharp gradients that can be
found at the grain’s edges, which can be seen as an
apparent off- set (towards the right in this case) of
the surface ele- vations. Still, the SfM surface
generally captures the
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detailed form and large- and macro-roughness
of

our beds (Figure 5b). Using the Fourier
transforms and power spectral density analysis
we estimated the sizes of the features that were
captured in the differ- ent methods. All signals
seem to have a similar Fourier transform, which
can be visually identified considering the
coefficients in the Fourier transform (FOkP) in
Figure 5c, especially up to approximately
frequency k % 20 m-1, equivalent to a feature
size of 5 cm (Figure 5d). Then, from k % 20
m-! to 100 m-! the iPhone-LiDAR’s Fourier
transform departs from that of the laser scan,
suggesting that the smoothening of the bed
surface occurs for grains sizes between 5 cm
and 1 cm. For k larger than 100 m-! the
Fourier transform is practically zero suggesting
that features smaller than 1 cm are not mapped
by the iPhone-LiDAR (Figure 5d). In the case of
the SfM the Fourier transform is similar to that
of the laser scan up to approximately k % 60
m-1, equivalent to a feature size of 1.67 cm
(Figure 5e). Then, nearly from k % 60 m-! to
400 m-! the SfM’s Fourier transform appears to
have smaller coefficients, which suggests that
grain sizes between 0.25 to 1.67 cm are
smoothened. For frequencies larger than 400 m-
L, the coefficients are almost zero suggesting that
SfM does not capture features smaller than 0.25
cm (Figure 5e).

The power spectral density (PSD) analysis is a
complementary method that helps interpretation
what was shown using Fourier transforms. All PSD
signals overlapped up to approximately k %4 20 m-
L (Figure 5f). For 20 < k < 100 m-! the iPhone-
LiDAR’s PSD decreases at a higher rate than the
laser and SfM PSD. This is the spatial region where
surface smoothening occurs. For k > 100 m-! the

iPhone-LiDAR PSD seems to maintain the slope
with frequency of the previous region, but
oscillates and has noise around that overall slope,
which may suggest that those PSD values are
beyond the meth- od’s capturing capabilities. The
SfM PSD overlaps with the laser scan PSD up to
approximately k % 60 m-! (Figure 5f). Then, for
60 < k < 400 m-! the SfM PSD departs from the

laser PSD and decreases at a higher rate. This may
explain why some valleys and small grains are
smoothened by this method (Figure 5b).

Discussion

Our analysis the surfaces generated using the
iPhone-LiDAR and SfM revealed that both methods
can accurately capture the general form and large-
and macro-roughness of bed surfaces at the spatial
scale of the elements of our experiments (mm
to tens of cm). Furthermore, the SfM method can
include small scale elements, thus accounting
for

small scale bed roughness. This is reflected in
Dz,

which is negligible, and rp, where the iPhone-

LiDAR and SfM have values below 4.3 and 3.2 mm,
respectively (Table 2), which are close to the 5th
per- centile of the GSD, D5 % 4.1 mm. However, the
properties of the residuals and the sources of these
errors as well as the advantages and
disadvantages of each method need to be
considered when select- ing a method for practical
applications.

In our case, iPhone-LiDAR, collecting, process-
ing, and post-processing data with the iPhone was
faster and easier than with the SfM from a user’s
perspective. As a reference, scanning the bed of
Case2F using Polycam took us about 3 min and
processing the data ~8 min. In the case of SfM, tak-
ing the almost 200 photos took about 25 min, but
processing the data, including loading and
referenc- ing the images and creating the surfaces,
took us about 24 h. The interface of Polycam, with
its real- time update of the scanned surface and
relatively fast processing, allows someone to
examine the results immediately with the
possibility of amending problems before leaving
the location. The iPhone- LiDAR requires
practically no configuration when scanning. The
mesh resolution and vertex locations are
determined automatically by the Polycam. Local
adjustments of the generated surface are also
defined by the software when an object is scanned
from different angles. Although having the
software determine all the mesh parameters may
result in an easier use of the technique in most
cases, not having the ability to configure the
acquisition parameters could lead to problems in
capturing a desired bed feature.

The simplification or smoothening of the
surfaces may be one drawback of the iPhone-
LiDAR com- pared to SfM. Grains between 1 and 5
cm are sim- plified by the iPhone-LiDAR, thus
affecting the representation of surface roughness.
However, losing this scale of roughness may not be
a practical prob- lem when modeling open channel
flow with two dimensional, 2D, models. In these
models, the mesh usually includes the general
geometry or shape of a channel and the most
relevant topographic features such as large
boulders or cobble clusters, but, local roughness is
parametrized using a roughness coeffi- cient
(Tonina and Jorde 2013). On the other hand,
modeling small-scale turbulence processes in a 3D
flow model using a smoothened surface may intro-
duce errors because boundary layers are poorly
rep- resented (Kadivar et al. 2021).

An advantage of the SfM over the laser is the
possibility of capturing areas of the bed that are
hid- den in a plan view perspective, especially
around pockets of grains. Some areas were not
reached because the laser could be operated
only from a



direction perpendicular to the bed surface.
However, changing locations and angles allowed
the cameras and our SfM-generated surface to
capture these pla- ces. These unmeasured areas
could be a source of error in our analysis, but we
did not have a method to directly measure the
elevation of such small places.

In our study, the elevation errors of the iPhone-
LiDAR surfaces are smaller than previously
reported. For example, Luetzenburg et al. (2021)
reached an accuracy of 1 cm when measuring small
objects and King et al. (2022) reported an RMSE
of 6 mm in snow depth measurements. In our case,
given that our systems are not biased, the RMSE is
equivalent to rp, and had average values close
to
3.7 mm. This can be considered a relatively small
magnitude and an accurate result considering that
the laser scan had a resolution of 1 x 1 mm and the
smallest grains in the bed were only 2 mm in
size. We based our Fourier transform and Power
Spectral analysis on visual interpretations and we
are aware that the defined k ranges could be
slightly different but this would have a limited
impact on our result interpretation.

Conclusion

We analyzed the accuracy of surfaces produced
using the iPhone iPhone-LiDAR and SfM compared
to a high precision laser scan. The iPhone-LiDAR-
generated surfaces accurately represented the
large- scale bed elevation variability and macro-
roughness in our experimental cases. However,
micro rough- ness elements, e.g. small grains
present in the bed grain size distribution, were
not mapped, resulting in a smoother bed surface
than that mapped by the laser scan. Although the
removal of micro bed fea- tures may be considered
a problem in some cases, it must be evaluated
relative to the scale of a particular study. Studies
where the main bed features are larger than 5
cm, the threshold below which the iPhone-LiDAR
starts simplifying the elements, can use this tool to
obtain a reliable surface representa- tion. On the
other hand, if accurate estimates of the small-scale
structure of turbulence are needed from a
numerical model that uses the bed surface, a good
representation of this surface micro roughness is
required and the iPhone-LiDAR would not be an
appropriate instrument to measure the bed
surface. SfM, on the other hand, was consistently
more accurate than the iPhone-LiDAR and it was
able to capture even the smallest grains present in
the bed. However, it involved a relatively more
complex workflow. In practical applications, we
recommend evaluating the cost-effectiveness of
both methods and to decide on the method
depending on the
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roughness resolution needed, time availability for
producing and evaluating the generated
surfaces, and the spatial range of application.
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