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Introduction 

Channel and floodplain topography is an essential 
input to hydraulic models that are vital for predict- 
ing realistic streamflow properties (Monsalve et al. 
2017) and determining interactions between the 
bed and surface flow (Tonina and Jorde 2013). 
Accurate measurements of the topographic 
characteristics of riverine beds, including large, 
macro, and micro roughness (Figure 1b), are 
critical to construct these numerical flow models 
(Colombini and Stocchino 2005; Pokrajac et al. 
2006; Roussinova et al. 2008; Kazemi et al. 2017; 
Lee 2018; Kuwata and Kawaguchi 2019; Dey et 
al. 2021; Kadivar et al. 2021). All computational 
fluid dynamics (CFD) models use the channel 
geometry to solve for the flow field in a given 
domain, resulting in a detailed description of flow 
variables that can vary in time and space such as 
velocity and forces (Tonina and Jorde 2013). In 
open channel flow, streambed top- ography can be 
described as the superimposition of several 
topographic features (Duffin et al. 2021), which 
span from large scale bed elevations gra- dients, 
like pool and bars (meters to hundreds of meters 
horizontal length scale), to local bed eleva- tion 
changes, like boulders and lateral expansions 
(tenths of a meter to a meter) (Figure 1). 
Whereas 

the large-scale topography defines the channel 
shape and streambed surface, the local bed 
elevation change controls the local roughness of 
the streambed surface. This roughness (Figure 1b) 
may include large-roughness elements, such as 
boulders, scour holes and depositional areas (~ 
decimeters to meter length scale, Hs), macro-
roughness elements, like particle clusters (~ few 
centimeters to deci- meter) and micro-roughness 
elements, which are about the size of individual 
gravel grains in the riv- erbed (few millimeters to 
centimeters). As the spa- tial scale of a study 
decreases, the geometry of small elements or 
clusters of small elements, and their associated 
macro- and micro-roughness, becomes more and 
more important because it plays a key role in 
controlling turbulence properties and energy and 
momentum exchange within the entire fluid 
domain (Paola 1985; Antonia and Krogstad 2001; 
Poggi et al. 2003; Jim,enez 2004; Leonardi et 
al. 2006; Schultz and Flack 2009; Doosttalab et al. 
2016; Vanderwel and Ganapathisubramani 2019). 
The def- inition or magnitude of large, macro, or 
micro roughness varies depending on the study or 
field of study. For example, in river applications, 
macro- roughness elements are grains that rarely 
move in typical flow conditions, usually boulders 
(> 256 mm 
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ABSTRACT 

High resolution topographic data are necessary to understand benthic habitat, quantify 

proc- esses at the water-sediment interface, and support computational fluid dynamics 

models for both surface and hyporheic hydraulics. In riverine systems, these data are 

typically collected using traditional surveying methods (total station, DGPS, etc.), airborne 

or terrestrial laser scanning, and photogrammetry. Recently, handheld surveying 

equipment has been rapidly acquiring popularity in part due to its processing 

capacity, price, size, and versatility. One such device is the iPhone LiDAR, which could 

have a good balance between precision and ease of use and is a potential replacement 

for conventional measuring tools. Here, we eval- uated the accuracy of the LiDAR 

sensor and a Structure from Motion (SfM) method based on photos collected using 

the iPhone Cameras. We compared the LiDAR and SfM elevations to those from a 

high-precision laser scanner for an experimental rough water-worked gravel- bed 

channel with boulder-like structures. We observed that both the LiDAR and SfM 

meth- 

ods captured the overall streambed morphology and detected large (Hs 2 15 cm) and 
macro (5 cm < Hs < 15 cm) scales of topographic variations (Hs, roughness). The 

SfM technique also captured small scale (Hs <5cm) roughness whereas the LiDAR 

consistently simplified it with errors of ~3.7 mm. 

http://crossmark.crossref.org/dialog/?doi=10.1080/24705357.2023.2204087&domain=pdf&date_stamp=2023-04-21
https://doi.org/10.1080/24705357.2023.2204087
mailto:angelm@uidaho.edu
http://orcid.org/0000-0002-7369-1602
http://www.tandfonline.com/
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Figure 1. An example of the laboratory flume bed surface appearance and roughness scales. a) Photograph of the 

measured section in one of our experiments. Two boulders were included in this case. The perspective in this 

image helps identifying individual grains and their size relative to the boulders. b) DEM of the surface measured 

using a laser scanner. A similar per- spective to the photograph was used to compare details in figures a 

and b. Examples of the different scales of roughness that are present in our experiments are shown, which are 

superimposed on the large-scale topography of the simulated streambed. 
 

in diameter) or the largest grain fractions (e.g. D84, 
where the subscript represents the 84th percentile 
grain size) in the sediment bed (Canovaro and 
Solari 2007; Ferguson 2007; Nitsche et al. 2012; 
Schneider et al. 2015; Monsalve et al. 2017). 
However, in machining process, macro-roughness 
can be in the order of fractions of a millimeter 
(Kartal et al. 2017). In our case, the definitions of 
roughness scales are based on the sizes of our 
grain size distribution (GSD), boulders, and 
topographic features such as scour and deposition 
areas. 

The recent development of handheld 
surveying 

equipment and digital photogrammetry has 
reduced the time, costs, and complexity associated 
with field campaigns and topographic 
measurements (Fonstad et al. 2013; Morgan et 
al. 2017; James et al. 2019; King et al. 2022; 
Tavani et al. 2022). For example, the Apple 
iPhone LiDAR is rapidly acquiring popu- larity for 
3D representation of solid objects and sur- faces in 
part due to its processing capacity, price, size, 
and versatility (Luetzenburg et al. 2021) and 
Structure from Motion Multi-View Stereo (SfM) is 
rapidly becoming one of the most reliable alterna- 
tives for topographic surveys (Westoby et al. 2012; 
Carrivick et al. 2016; Smith et al. 2016; James et al. 
2017; Marteau et al. 2017; Anderson et al. 2019; 
Kumar Karmacharya et al. 2019). Hereinafter, we 
refer to the Apple iPhone LiDAR as iPhone-LiDAR 
for simplicity. 

When representing the measured surfaces 
both 

the iPhone-LiDAR and SfM methods can achieve a 
precision and accuracy of a few millimeters. The 
topographic surfaces generated by SfM are 
usually 

reported as being highly accurate (e.g. Fonstad et 
al. 2013; Javernick et al. 2014; Woodget et al. 2015; 
Carrivick et al. 2016; Marteau et al. 2017; Masteller 
and Finnegan 2017; Morgan et al. 2017; 
Pearson et al. 2017; Tabesh et al. 2019; 
Luetzenburg et al. 2021). The magnitudes of the 
elevation errors asso- ciated with SfM vary 
depending on the scale of the survey, but in 
general, they are in the range of mm to a few 
centimeters (Smith et al. 2016). In the case of the 
iPhone-LiDAR, given that the device has only been 
publicly available since 2020, there are fewer 
studies that have analyzed its accuracy, but 
reported errors as small as 6 mm when 
measuring snow depths (King et al. 2022) or ± 10 
mm for small rect- angular objects (Luetzenburg 
et al. 2021; Tavani et al. 2022) have been 
reported. However, the accur- acy of the iPhone-
LiDAR on the complex topogra- phies that 
commonly occur in river systems may differ from 
these values. 

In this study, we evaluate the accuracy of 
the 

iPhone-LiDAR sensor to measure emergent (dry) 
rough gravel-bed channel topographies created in 
a laboratory flume that include boulder-like struc- 
tures, relatively flat but locally rough beds (micro- 
roughness), and scoured regions 
(macroroughness) (Figure 1). We also evaluate the 
accuracy of digital topographic surfaces 
constructed from photos col- lected using the 
iPhone Cameras and the Structure from Motion 
(SfM) method. We compare the iPhone-LiDAR and 
SfM derived topographic surfa- ces to those 
created using a high-precision laser scanner and 
analyze the sources, characteristics, and 
distribution  of  the  residuals  between  the  
laser 
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scanned elevations and those of the two other 
tech- niques. We use a set of different and 
complemen- tary techniques to assess the 
accuracy of the iPhone- LiDAR and SfM to have a 
better understanding of the different type of 
errors that may be present when using the 
iPhone to collect data. Our methods include raster-
to-raster and point-to-point compari- sons of bed 
surface elevations, and Fourier trans- form and 
power spectral density analyses of topographic 
profiles. Finally, a general description of cost-
effectiveness when using the iPhone-LiDAR is 
provided to determine its applicability. 

 
Methods 

Laboratory experiments 

We conducted two experiments that simulated the 
formation and evolution of bedforms in a 
mountain river at the Mountain StreamLab, 
University of Idaho (Budwig and Goodwin 2012). 
The experimen- tal configuration is based on the 
studies of Monsalve and Yager (2017) and 
Monsalve et al. (2017). Therefore, here we only 
focus on the most important similarities and 
differences. The setup is a simplification of a 
typical mountain river containing large roughness 
elements, represented by staggered concrete 
hemispheres. For simplicity, hereinafter, we refer 
to these elements as boulders. The boulders were 
15.24 cm in diameter and were mounted over 
foam cylinders. The flume is 2 m wide and 20 m 
long but was partitioned with a wall to reduce the 
channel’s width to 0.76 m and to create easier 
access to the test section from inside the flume. 
The test section was 8 m downstream of the 
upstream end of the flume to ensure fully 
developed turbulent flow before the first row of 
simulated boulders. The major difference in 
experimental conditions com- pared to Monsalve 
and Yager (2017) and Monsalve et al. (2017) is 
that we did not feed sediment at the upstream end 
of the flume. The initial bed consisted of a 30 cm 
thick sediment layer whose GSD ranged from 2 to 
32 mm with a median grain size of 11 mm (D50) 
and 5th, 16th, and 84th percentiles of 4.1, 5.9, 
and 19.8 mm, respectively. The longitudinal slope 
of our experiments was 2.7%, the bed started 
with a flat surface (except for the boulders) and 
we let it adjust to the imposed flow conditions 
(Table 1) until we visually observed that the 
bedforms were stable and practically no sediment 
was exiting the flume. 

We conducted two experiments in which we 
var- ied the boulder spacing between experiments 
but held the flow discharge roughly constant 
(Table 1). We chose these two boulder spacings 
because it affects the flow field and controls the 
flow diver- gence around the boulders 
consequently it results in 

different topographies (e.g. scour and deposition 
characteristics) and therefore roughness. We 
meas- ured the bed topography and flow at the 
beginning (Initial, I) and end (Final, F) of each 
experiment to provide us four different 
topographies to test the iPhone-LiDAR and SfM. 

 
Measurements 

At the beginning and end of each experiment, in a 
representative area of the test section that 
included one boulder in Case1 and two boulders in 
Case2 (Table 1), we measured the bed topography 
using a high-speed laser displacement sensor, took 
photo- graphs from different angles for SfM 
photogram- metry, and scanned the bed with the 
iPhone-LiDAR using the Polycam software. We 
used a class II high-speed, high-accuracy CCD 
Laser Displacement Sensor model LK-G402 made 
by Keyence Corporation. This is a red 
semiconductor laser with wavelength of 655 nm, 
output power of 0.95 mW, and measuring range 
of about 20 cm. At reference distance  (400 mm)  
it  has  a  spot  diameter  of 
0.29 mm and vertical accuracy of 0.1 mm. 
Hereinafter, we refer to this sensor simply as the 
laser. The laser was mounted on a motorized cart 
above the flume that was programmed to move at 
intervals of 1 mm in the horizontal plane (stopping 
for about 1 s at each location) and record the eleva- 
tion data. Thus, the resolution of our laser observa- 
tions is 1 mm x 1 mm. The elevation at a given 
location is the average of three individual 
measure- ments taken within the time the cart 
stopped at that place. All data were collected under 
dry bed condi- tions. For comparison purposes, 
these measurements will be considered the true 
elevation values. 

We used the application ‘Polycam’ on an 

iPhone 
13 Max Pro, operating system iOS 16, for our 
iPhone-LiDAR measurements. The technical capa- 
bilities of the iPhone-LiDAR are the same as the 
previous iPhone model (iPhone Pro 12 released in 
2020) and are well described by Luetzenburg et al. 
(2021), and only the principal characteristics are 
mentioned here. The iPhone-LiDAR operates at 
wavelengths of 8XX nm, uses a Vertical Cavity 
Surface Emitting Lasers (or VCSELs) to emit the 
laser, and the direct time of flight of the pulses is 
measured with a Single Photon Avalanche 
Photodiodes (SPADs). The size and range (5 m) of 
the field of view (FoV) is constrained by flash illu- 
mination. A total of 576 points are emitted by the 
VCSEL when the device is activated. When measur- 
ing, Polycam displays a triangulated mesh over the 
object’s surface while the iPhone is recording and 
pre-processing the elevations. As the user moves 
the device to collect more data, Polycam 
updates the 
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Table 1. Summary of the primary characteristics of the experiments and surface mesh 

generated by the iPhone-LiDAR and SfM. 

Variable Case1I Case1F Case2I Case2F 

Flow discharge (l/s) 57.3 57.3 57.0 57.0 
Average flow depth (cm) 7.7 8.5 9.0 9.8 
Boulder spacing (m) 0.762 0.762 0.61 0.61 

Measured area (m2) 0.252 0.293 0.717 0.786 
Measured length (m) 0.630 0.620 1.138 1.209 
Measured width (m) 0.400 0.472 0.630 0.650 
Number vertices iPhone-LiDAR 14,858 12,067 17,580 20,897 
Number faces iPhone-LiDAR 27,505 22,420 32,616 37,980 

Resolution iPhone-LiDAR (mm)* 5.6 8.2 9.9 9.2 
Number vertices SfM 157,19

6 
189,40

9 
318,775 335,597 

Number faces SfM 314,20
9 

378,55
9 

637,198 670,882 

Resolution SfM (mm)* 1.4 1.3 1.7 1.7 

Number of photos SfM 261 285 589 197 

*Approximate resolution based on the average edge length of the triangulated irregular mesh. 

 

mesh in real-time and shows the areas that are 
effectively measured and those outside the FoV in 
different colors. These features allow the user to 
identify zones that could have been missed or that 
need additional scans. The iPhone 13 Pro 
models are equipped with a barometer, three-axis 
gyroscope, and accelerometer, which are used by 
Polycam to determine the three spatial 
coordinates of the meas- ured surfaces. The 
software post-process the data directly on the 
iPhone and the results can be exported in 
different mesh and point cloud formats. In all 
cases we used “.obj” format. We further post- 
processed the data using the open-source system 
MeshLab for processing and editing 3D irregular 
tri- angular meshes (available in meshlab.net) to 
reduce the scan to only the region of analysis and 
visualize the results. No filtering, cleaning, scaling, 
or remeshing was conducted. The average 
resolution of the iPhone-LiDAR surfaces was 
between 5.6 and 
9.9 mm (Table 1). 

We used the iPhone cameras to take 
photographs of the studied area and reconstruct 
the bed topog- raphy using SfM photogrammetry 
using AgiSoft Metashape Professional, version 
1.8.4. We used the wide camera, which has a 12 
MP resolution with f/1.5 aperture and focal 
length of 6 mm. All our measurements were 
collected using the automatic mode, resulting in 
exposure times approximately between 1/40 to 
1/60 s. We worked in an indoor environment using 
artificial diffuse lightning. Thus, the illumination 
was consistent for all of the photo- graphs and the 
different study cases. SfM techniques and theory 
has been described in great detail in other 
studies (e.g. Fonstad et al. 2013; Javernick et 
al. 2014; Woodget et al. 2015; Carrivick et al. 
2016; Masteller and Finnegan 2017; Morgan et al. 
2017; Luetzenburg et al. 2021), therefore, we only 
mention the characteristics and properties of 
the data collected. Given that we were working 
over a relatively small area and had access to 
the study zone from all directions, our 
photographs over- lapped more than 90%, 
which is higher than the 

80% forwards and 60% sidewards recommended 
by AgiSoft. In each case we used all the collected 
pho- tos, but we disabled and excluded from 
photogram- metric processing those images with 
quality value lower than 0.5 units as suggested by 
AgiSoft. Thus, the final number of photos used in 
each case was variable (Table 1). To scale and 
reference the gener- ated cloud points, we placed 
six control points, three at the upstream and three 
at the downstream end of the measurement area 
and measured their locations using the laser. 
Additionally, we identified reference points that 
are common in different images to help the 
software with photo alignment. In average the 
resolution of the SfM irregular tri- angle meshes 
was approximately 1 mm (Table 1). 

 
Evaluation of differences in elevation 

After post-processing the iPhone-LiDAR and SfM 
data, we obtained 3D representations of the topog- 
raphy in Wavefront .obj format that contained the 
coordinates, texture (color), and normals of each 
vertex and the faces that make each polygon of an 
irregular triangular mesh. This geometrical 
represen- tation allowed us to compare surfaces 
with different resolutions and extract differences 
in elevations at any location within the study 
zone. 

For a general evaluation of the ability of the 
iPhone-LiDAR and SfM to capture topography and 
roughness elements in gravel bed channels, we 
com- pared the generated surface elevations to the 
laser observations using a raster-to-raster 
approach. In this case all surfaces were mapped 
onto a 1 x 1 mm uniform mesh to create a Digital 
Elevation Model (DEM) and differences in 
elevations were evaluated using a DEM of 
Difference (DoD). We quantified the residuals or 
errors as the difference in elevations (Dzi ¼ zj - zl 
where the subscript j corresponds to the laser 
and l to the iPhone-LiDAR or SfM method) at 
each vertex (i). Then, we calculated the mean 
absolute error (MAE, Eq. 1), mean (Dz, Eq. 2) 

and standard deviation (rDz, Eq. 3) of the 



JOURNAL OF 

ECOHYDRAULICS 

5 
 

   

MAE ¼   i¼1  

n 

 

residuals to determine the accuracy and precision 
of the surface representations of the iPhone-
LiDAR and SfM: 

Pn  jDzij 

the laser scan, iPhone-LiDAR, and SfM. We used 
Delaunay triangulations with linear interpolations 
to sample the iPhone-LiDAR and SfM surfaces at 
equally spaced locations (1 mm resolution) to 
apply 

 Pn  Dzi 

 

 
rDz ¼ 

Dz ¼   i¼1  
n 

sffi
P

ffiffiffiffiffi
n

ffiffiffiffiffiffi ffi ffi

D

ffi ffi ffi

z

ffi ffi ffi ffi

-

ffiffiffiffiffi

D

ffiffiffi

z

ffiffiffi ffiffi2ffi 

 

 
 

Eq. 
2 

 
Eq. 
3 

Results 

General characteristics of the processed digital 

surfaces 

where n is the total number of vertices in a DEM. 
We also explored the characteristics of Dzi 

between the laser scan and the iPhone-LiDAR 
or SfM using a point-to-point approach. In this 
case, we compared the elevation of each vertex of 
the generated surfaces with that of the closest 
point of the laser scan in terms of horizontal 
distance. Compared to the raster-to-raster 
approach this method does not depend on data 
interpolation, therefore, it helped us to 
characterize how the sim- plifications of surface 
features of the iPhone-LiDAR and SfM methods 
affected the errors. In this case, when the vertex of 
the iPhone-LiDAR or SfM sur- face contains a point 
that is a short distance away from a point in the 
laser scan, Dzi between these two points 
effectively measures the difference between the 
two methods because the two points are at 
about the same horizontal location. But, as the 
distance between the laser and corresponding 
SfM/iPhone-LiDAR point increases, a portion of Dzi 
is due to a true elevation difference because the 2 
points are measuring different locations. The 
resid- ual’s (DziÞ distribution and standard 
deviation could therefore be used as an indicator 
of how much the surface obtained using the 
iPhone-LiDAR or SfM was simplified. 

 
Surface roughness simplifications 

We cannot determine the iPhone-LiDAR resolution 
of captured roughness elements only using the 
iPhone-LiDAR technical specifications . 
Luetzenburg et al. (2021) determined an accuracy 
and error in precision of 1 cm when measuring 
objects with side length larger than 10 cm. 
However, these values were obtained based on 
the length, width, and height of isolated objects 
and not on continuous rough surfaces. We 
expanded their analysis by eval- uating different 
roughness scales, including macro- and micro-
roughness, of our scanned beds to deter- mine the 
size of the surface features that were prop- erly 
captured. We applied fast Fourier transform (FFT) 
and power spectral density estimation (SDE) 
based on the Welch’s method on extracted longitu- 
dinal profiles from our scans to explore what 
rough- ness components were similar and 
different between 

At a resolution of 1 mm x 1 mm, the laser scan was 
able to capture the texture of the sediment 
beds in 
detail (Figure 1). Even small features such as 
imper- fections in the boulders, noticeable as 
black/dark grey holes in the photo (Figure 1a) and 
in digital reconstruction (Figure 1b), were present 
in the laser data. In general, the laser data had little 
noise or erroneous measurements. We removed 
less than 0.5% of the points, which were easily 
identifiable because the laser output file registered 
them as hav- ing an elevation of -0.99 m. We 
observed that all the registered errors were 
associated with points where the laser spot was 
not precisely focused on a single location, such as 
at the edge of a grain. 

The iPhone-LiDAR was able to accurately 
capture 

the most distinct topographical features in all 
cases. For example, it correctly measured the 
overall shape and dimensions of the boulders, 
relatively flat regions, and scour and deposition 
zones (Figure 2). However, small roughness 
elements, such as small individual grains, were 
omitted in the surface repre- sentation. Therefore, 
all surfaces created using the iPhone-LiDAR data 
appear to be a smoothened ver- sion of the laser 
scan. The threshold grain size that can be 
measured by the iPhone-LiDAR will be dis- cussed 
in the next section. The surfaces generated using 
SfM display great resemblance to those meas- ured 
with the laser, even the size, location, and 
orientation of small grains are well represented 
(Figure 2). 

 
Differences in elevation using raster 

comparisons 

The iPhone-LiDAR/laser DOD residual means 
(Figure 3) were close to zero in all cases (Table 2), 
with a maximum Dz of 0.65 mm for Case1I. These 
small means (Table 2) confirm negligible bias or 
systematic errors in the iPhone-LiDAR surfaces 
and that most of the error is effectively random 
error described by the standard deviation of the 
residuals (rDz, Eq. 3). For simplicity and to provide 

a gener- ally applicable example, we focus on 
Case2F to graphically display and explain all the 
results. 

The standard deviation of the errors for 
the 1 x 1 mm grid comparison was between 
3.24 and 

the FFT and 
SDE. 

n 
  i¼1 i  

Eq. 
1 
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Figure 2. Bed surface elevations measured (laser scan) and generated (iPhone-LiDAR and SfM) for each case. 

Different meth- ods are display in columns and cases in rows. Flow direction is from right to left. Surfaces are 

colored by elevation. In the fig- ure, we used blue and green shades of color to highlight scoured and 

deposited areas, respectively. The color scale is only a reference as some of the boulder’s edges appear 

colored as green. 

 

Figure 3. Differences in elevations (or DoD) in Case2F between the surfaces generated by the laser scan and 

those from the 

a) iPhone-LiDAR and b) SfM. These DoD had a 1 mm resolution. A positive value indicates that the measured 

elevation (laser) was higher than that obtained using the iPhone-LiDAR or SfM. The distribution of the 

residuals for the c) iPhone-LiDAR and d) SfM is colored using the same color scale to highlight magnitude and 

density. Segmented lines represent fits to a normal dis- tribution in c) and a Laplacian distribution in d). 
 

Table 2. Characteristics of the errors when comparing the measured elevations using the laser scan to 

those generated by the iPhone-LiDAR and SfM. For this raster comparison, two DoD resolutions were used for 

sensitivity analysis with 1 mm corresponding to the laser scan and other values to the iPhone-LiDAR 

resolution in each case. 
 

DEM 
 Average error (D-z,  mm)   Error standard deviation (rDz,  mm)   Mean absolute error 

(MAE, mm)  
Topography 
used 

Resolution 
(mm) 

iPhone-
LiDAR 

SfM iPhone-
LiDAR 

SfM iPhone-
LiDAR 

SfM 

Case1I 1.0 -0.65 0.39 3.24 3.16 2.47 2.18 
Case1F 1.0 0.09 0.12 3.58 1.90 2.77 1.21 
Case2I 1.0 -0.11 0.13 4.26 2.12 3.25 1.56 
Case2F 1.0 -0.07 -0.01 3.83 2.40 2.98 1.64 
Case1I 5.6 -0.67 0.38 3.25 3.19 2.47 2.20 
Case1F 8.2 0.07 0.03 3.57 2.33 2.75 1.29 
Case2I 9.9 -0.10 0.14 4.32 2.24 3.30 1.61 

Case2F 9.2 -0.10 -0.03 3.83 2.33 2.96 1.63 
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Figure 4. Distribution of differences in elevation using a point-to-point approach in Case2F comparing the laser 

scan to the surfaces generated by the a) iPhone-LiDAR and b) SfM. The residuals are colored by point counts 

(color bar) to highlight the location of points at different distances between the laser scan and the iPhone-

LiDAR/SfM. The variability in rDz considering 

c) cumulative distances and d) individual intervals. Given that we colored the residuals by count number 

some individual points at a distance longer than 2 mm are not clearly visible in b). 
 

4.26 mm  for  the  iPhone-LiDAR  and  1.9  
and 
3.16 mm for SfM (Table 2). In all cases rDz and 
MAE were smaller for the SfM compared to the 
iPhone-LiDAR. These rDz are similar in size to the 
smallest grain size fractions on the bed, e.g. D5 
¼ 
4.1 mm, but rDz does not represent the size of the 
smallest captured grains. We analyzed the 
depend- ency of these results to the selected 1 x 
1 mm grid size by calculating Dz and rDz on 
DEMs with the iPhone-LiDAR resolution (a 
coarser grid). We observed that the estimated rDz 
remained practically constant when we 
coarsened the DoD resolution (changes < 0.5 
mm) indicating that our results and analysis are 
valid at the spatial scale on which we are 
working. 

The spatial distribution and magnitude of errors 
represented in the DoD also show no systematic 
errors and suggests that most of the elevations dif- 
ferences stem from simplifications or 
smoothening of the surfaces and removal of the 
micro roughness (Figure 3). For example, the 
shape of individual grains can be observed in the 
iPhone-LiDAR DoD (Figure 3a) as an orange or 
purple (extreme values in the color bar) colored 
surface indicating that those grains were not 
captured by this technique. In contrast, the 
outlines of single grains are observed in the SfM 
DoD (Figure 3b). This observation sug- gests that 
the SfM method simplifies the grain edges, but 
the general shape is well represented. In both the 
iPhone-LiDAR and SfM, the largest errors were 
located at the base of the boulders where an 
abrupt change in elevation occurs. 

The  differences  in  rDz  between  the  
iPhone- 

LiDAR and SfM can be furthered compared 
using the distributions of errors for each 
method (Figure 3c and d). The distribution of 
errors for the iPhone- LiDAR is broader (Figure 
3c, larger rDz) compared to the SfM (Figure 3d, 

smaller rDz). In terms of 
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magnitude, 98.65% and 99.53% of all the 
elevation differences were within an error of 
±0.01 cm for the iPhone-LiDAR (Figure 3c) and 
SfM, respectively (Figure 3d). These differences in 
rDz could be con- sidered small, but they have an 

important impact on the probability distribution 
that describes the error characteristics. To 
analyze if the residuals follow a certain 
distribution we used the Kolmogorov- Smirnov 
(K-S) goodness-of-fit test (95% confi- dence). The 
K-S tests the null hypothesis that the residuals in 
the iPhone-LiDAR come from a stand- ard normal 
distribution (Figure 3c) and in the SfM come from 
a Laplace distribution (Figure 3d), against the 
alternative that the residuals do not come from 
such distributions. The p value of both K-S tests 
was larger than 0.05 for both techniques, thus we 
cannot reject the null hypothesis and sug- gests 
that these distributions are good approxima- tions 
of the actual residual distributions. 

 
Differences in elevation using point to point 

comparisons 

The spatial distribution of the residuals 
considering a point-to-point approach 
complements the distri- butions of residuals 
from the raster analysis. Most of the iPhone-
LiDAR and SfM surfaces have a cor- responding 
point at a distance of 0.7 mm from the points in 
the laser data (yellow region in Figure 4a and b). 
This small distance, relative to the GSD of the 
bed, suggest that both the iPhone-LiDAR and SfM 
are likely measuring the same grain or bed fea- 
ture as the laser. As the distance increases 
between points on the laser and closest 
corresponding points on the iPhone-LiDAR/SfM, 
more scatter around the mean (i.e. residual 
practically equals to zero) was observed (Figure 
4a and b), especially for the iPhone-LiDAR  
where  individual  points  start  to 
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Figure 5. Bed surface elevation profile and analysis of its signal. a) Longitudinal profile along one of the boulders 

in Case2F extracted from the measured (laser scan) and generated surfaces (iPhone-LiDAR and SfM). The 

red segmented area is dis- played in b). b) A detailed view of the generated bed surface elevations. c) Fourier 

transform of the profile shown in a). d) An enlarged view of the red segmented area in c). e) An enlarged view 

of the red segmented area in d). f) Power spectral density of the profile shown in a). 
 

disperse relatively far from the zone that 
represents a residual of 0 m. The increase in the 
residual mag- nitude with larger distance (Figure 
4a and b) between corresponding points suggests 
that the points are sampling different bed 
features or that the SfM/iPhone-LiDAR couldn’t 
capture the actual surface elevation at that given 
location. 

We also analyzed how the distance between 
points on the laser and closest corresponding 
points on the iPhone-LiDAR/SfM affects the 
variability in rDz: We considered two cases: 

cumulative distance and individual intervals. 
Cumulative distance means that, for example, at a 
distance of 10-3 m all points between 10-5 and 
10-3 m are considered in the rDz calculation, being 

10-5 the smallest observed dis- tance between a 
laser observation and the corre- sponding iPhone-
LiDAR/SfM point. Individual intervals indicate that 
rDz is calculated for only one distance interval at a 

time. In this case, evenly spaced distance values 
on a logarithmic scale were used. For example, 
between 10-4 and 2.154-10-4 m, then 2.154-10-4 
to 4.641-10-4 m and so forth. When considering 
increasingly longer cumulative distances between 
corresponding points, rDz remains almost 
constant for the iPhone-LiDAR and SfM methods 
(Figure 4c). This is because although the 
dispersion of the residuals of the corresponding 
points increases, the number of points around the 
mean residual value (residual of ~0 m approxi- 
mately) also increases, thus maintaining rDz: If 

intervals of distances between corresponding 
points are instead considered (Figure 4d), rDz 

magnitudes are similar to those calculated using 
cumulative dis- tances up to 2 mm. Then, for longer 
distances, rDz increases reaching a value of ~2 cm 

at a distance of 1 cm. This suggest that in the 
coarser areas of the 

mesh both methods, iPhone-LiDAR and SfM, fail 
the accurately represent the true elevation of the 
surface. Similar to the DoD calculations, in the 
point-to-point approach the rDz of the SfM is 

smaller than that of the iPhone-LiDAR (Figure 4c 
and d), but is about 1 mm larger than that 
calcu- lated using DoD in both cases. 

 
Simplifications of small-scale roughness 

When comparing the surfaces generated by the 
iPhone-LiDAR to those measured by the laser 
scan it can be observed that the smallest grains 
and the small-scale features tend to disappear 
resulting in a relatively smooth surface (Figure 2). 
The SfM surfa- ces closely resemble those of the 
laser scan, but some details are also lost (Figure 
3b). The iPhone- LiDAR and SfM methods can 
accurately capture the bedform heterogeneity and 
large- and macro-rough- ness elements, for 
instance, the boulder and the regions of scour and 
deposition (Figure 5a). However, when analyzing 
at the smaller scale of micro-roughness elements 
(Figure 5b), the charac- teristics of the 
smoothening can be evaluated. The iPhone-LiDAR 
profile maps the general surface of the bed but 
removes some elevation heterogeneity, simplifying 
the topography along the mean elevation of the 
fine scale roughness (Figure 5b). In the SfM profile, 
the elevations of individual fine scale rough- ness 
peaks are well characterized, but the corre- 
sponding valleys were smoothened. At this small 
spatial scale, the SfM method seems to fail in 
repro- ducing the sharp gradients that can be 
found at the grain’s edges, which can be seen as an 
apparent off- set (towards the right in this case) of 
the surface ele- vations. Still, the SfM surface 
generally captures the 
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detailed form and large- and macro-roughness 
of 
our beds (Figure 5b). Using the Fourier 
transforms and power spectral density analysis 
we estimated the sizes of the features that were 
captured in the differ- ent methods. All signals 
seem to have a similar Fourier transform, which 
can be visually identified considering the 
coefficients in the Fourier transform (FðkÞ) in 
Figure 5c, especially up to approximately 
frequency k ¼ 20 m-1, equivalent to a feature 
size of 5 cm (Figure 5d). Then, from k ¼ 20 
m-1 to 100 m-1 the iPhone-LiDAR’s Fourier 
transform departs from that of the laser scan, 
suggesting that the smoothening of the bed 
surface occurs for grains sizes between 5 cm 
and 1 cm. For k larger than 100 m-1 the 
Fourier transform is practically zero suggesting 
that features smaller than 1 cm are not mapped 
by the iPhone-LiDAR (Figure 5d). In the case of 
the SfM the Fourier transform is similar to that 
of the laser scan up to approximately k ¼ 60 
m-1, equivalent to a feature size of 1.67 cm 
(Figure 5e). Then, nearly from k ¼ 60 m-1 to 
400 m-1 the SfM’s Fourier transform appears to 
have smaller coefficients, which suggests that 
grain sizes between 0.25 to 1.67 cm are 
smoothened. For frequencies larger than 400 m-

1, the coefficients are almost zero suggesting that 
SfM does not capture features smaller than 0.25 
cm (Figure 5e). 

The power spectral density (PSD) analysis is a 
complementary method that helps interpretation 
what was shown using Fourier transforms. All PSD 
signals overlapped up to approximately k ¼ 20 m-

1 (Figure 5f). For 20 < k < 100 m-1 the iPhone- 

LiDAR’s PSD decreases at a higher rate than the 
laser and SfM PSD. This is the spatial region where 
surface smoothening occurs. For k > 100 m-1 the 

iPhone-LiDAR PSD seems to maintain the slope 
with frequency of the previous region, but 
oscillates and has noise around that overall slope, 
which may suggest that those PSD values are 
beyond the meth- od’s capturing capabilities. The 
SfM PSD overlaps with the laser scan PSD up to 
approximately k ¼ 60 m-1 (Figure 5f). Then, for 
60 < k < 400 m-1 the SfM PSD departs from the 

laser PSD and decreases at a higher rate. This may 
explain why some valleys and small grains are 
smoothened by this method (Figure 5b). 

 
Discussion 

Our analysis the surfaces generated using the 
iPhone-LiDAR and SfM revealed that both methods 
can accurately capture the general form and large- 
and macro-roughness of bed surfaces at the spatial 
scale of the elements of our experiments (mm 
to tens of cm). Furthermore, the SfM method can 
include small scale elements, thus accounting 
for 

small scale bed roughness. This is reflected in 
Dz, 
which is negligible, and rDz where the iPhone- 

LiDAR and SfM have values below 4.3 and 3.2 mm, 
respectively (Table 2), which are close to the 5th 
per- centile of the GSD, D5 ¼ 4.1 mm. However, the 
properties of the residuals and the sources of these 
errors as well as the advantages and 
disadvantages of each method need to be 
considered when select- ing a method for practical 
applications. 

In our case, iPhone-LiDAR, collecting, process- 
ing, and post-processing data with the iPhone was 
faster and easier than with the SfM from a user’s 
perspective. As a reference, scanning the bed of 
Case2F using Polycam took us about 3 min and 
processing the data ~8 min. In the case of SfM, tak- 
ing the almost 200 photos took about 25 min, but 
processing the data, including loading and 
referenc- ing the images and creating the surfaces, 
took us about 24 h. The interface of Polycam, with 
its real- time update of the scanned surface and 
relatively fast processing, allows someone to 
examine the results immediately with the 
possibility of amending problems before leaving 
the location. The iPhone- LiDAR requires 
practically no configuration when scanning. The 
mesh resolution and vertex locations are 
determined automatically by the Polycam. Local 
adjustments of the generated surface are also 
defined by the software when an object is scanned 
from different angles. Although having the 
software determine all the mesh parameters may 
result in an easier use of the technique in most 
cases, not having the ability to configure the 
acquisition parameters could lead to problems in 
capturing a desired bed feature. 

The simplification or smoothening of the 
surfaces may be one drawback of the iPhone-
LiDAR com- pared to SfM. Grains between 1 and 5 
cm are sim- plified by the iPhone-LiDAR, thus 
affecting the representation of surface roughness. 
However, losing this scale of roughness may not be 
a practical prob- lem when modeling open channel 
flow with two dimensional, 2D, models. In these 
models, the mesh usually includes the general 
geometry or shape of a channel and the most 
relevant topographic features such as large 
boulders or cobble clusters, but, local roughness is 
parametrized using a roughness coeffi- cient 
(Tonina and Jorde 2013). On the other hand, 
modeling small-scale turbulence processes in a 3D 
flow model using a smoothened surface may intro- 
duce errors because boundary layers are poorly 
rep- resented (Kadivar et al. 2021). 

An advantage of the SfM over the laser is the 
possibility of capturing areas of the bed that are 
hid- den in a plan view perspective, especially 
around pockets of grains. Some areas were not 
reached because the laser could be operated 
only from a 



JOURNAL OF 

ECOHYDRAULICS 

11 
 

 

direction perpendicular to the bed surface. 
However, changing locations and angles allowed 
the cameras and our SfM-generated surface to 
capture these pla- ces. These unmeasured areas 
could be a source of error in our analysis, but we 
did not have a method to directly measure the 
elevation of such small places. 

In our study, the elevation errors of the iPhone- 
LiDAR surfaces are smaller than previously 
reported. For example, Luetzenburg et al. (2021) 
reached an accuracy of 1 cm when measuring small 
objects and King et al. (2022) reported an RMSE 
of 6 mm in snow depth measurements. In our case, 
given that our systems are not biased, the RMSE is 
equivalent to rDz and had average values close 

to 
3.7 mm. This can be considered a relatively small 
magnitude and an accurate result considering that 
the laser scan had a resolution of 1 x 1 mm and the 
smallest grains in the bed were only 2 mm in 
size. We based our Fourier transform and Power 
Spectral analysis on visual interpretations and we 
are aware that the defined k ranges could be 
slightly different but this would have a limited 
impact on our result interpretation. 

 
Conclusion 

We analyzed the accuracy of surfaces produced 
using the iPhone iPhone-LiDAR and SfM compared 
to a high precision laser scan. The iPhone-LiDAR- 
generated surfaces accurately represented the 
large- scale bed elevation variability and macro-
roughness in our experimental cases. However, 
micro rough- ness elements, e.g. small grains 
present in the bed grain size distribution, were 
not mapped, resulting in a smoother bed surface 
than that mapped by the laser scan. Although the 
removal of micro bed fea- tures may be considered 
a problem in some cases, it must be evaluated 
relative to the scale of a particular study. Studies 
where the main bed features are larger than 5 
cm, the threshold below which the iPhone-LiDAR 
starts simplifying the elements, can use this tool to 
obtain a reliable surface representa- tion. On the 
other hand, if accurate estimates of the small-scale 
structure of turbulence are needed from a 
numerical model that uses the bed surface, a good 
representation of this surface micro roughness is 
required and the iPhone-LiDAR would not be an 
appropriate instrument to measure the bed 
surface. SfM, on the other hand, was consistently 
more accurate than the iPhone-LiDAR and it was 
able to capture even the smallest grains present in 
the bed. However, it involved a relatively more 
complex workflow. In practical applications, we 
recommend evaluating the cost-effectiveness of 
both methods and to decide on the method 
depending on the 

roughness resolution needed, time availability for 
producing and evaluating the generated 
surfaces, and the spatial range of application. 
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