
TYPE Original Research
PUBLISHED 08 June 2023
DOI 10.3389/fncom.2023.1148284

OPEN ACCESS

EDITED BY

Feng Liang,
Xi’an Jiaotong University, China

REVIEWED BY

Zhang Jian,
Xi’an Jiaotong University, China
Yu Zhang,
Zhejiang Lab, China

*CORRESPONDENCE

Ramashish Gaurav
rgaurav@vt.edu

RECEIVED 19 January 2023
ACCEPTED 16 May 2023
PUBLISHED 08 June 2023

CITATION

Gaurav R, Stewart T C and Yi Y (2023) Reservoir
based spiking models for univariate Time Series
Classification.
Front. Comput. Neurosci. 17:1148284.
doi: 10.3389/fncom.2023.1148284

COPYRIGHT

© 2023 Gaurav, Stewart and Yi. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(C C BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Reservoir based spiking models
for univariate Time Series
Classification

Ramashish Gaurav1*, Terrence C. Stewart2 and Yang Yi1

1Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States,
2University of Waterloo Collaboration Centre, National Research Council of Canada, Waterloo, ON,
Canada

A variety of advanced machine learning and deep learning algorithms achieve
state-of-the-art performance on various temporal processing tasks. However,
these methods are heavily energy inecient—they run mainly on the power
hungry CPUs and GPUs. Computing with Spiking Networks, on the other hand,
has shown to be energy ecient on specialized neuromorphic hardware, e.g.,
Loihi, TrueNorth, SpiNNaker, etc. In this work, we present two architectures of
spiking models, inspired from the theory of Reservoir Computing and Legendre
Memory Units, for the Time Series Classification (TSC) task. Our first spiking
architecture is closer to the general Reservoir Computing architecture and we
successfully deploy it on Loihi; the second spiking architecture di ers from the first
by the inclusion of non-linearity in the readout layer. Our second model (trained
with Surrogate Gradient Descent method) shows that non-linear decoding of the
linearly extracted temporal features through spiking neurons not only achieves
promising results, but also o ers low computation-overhead by significantly
reducing the number of neurons compared to the popular LSM based models—
more than 40x reduction with respect to the recent spiking model we compare
with. We experiment on five TSC datasets and achieve new SoTA spiking results (—
as much as 28.607% accuracy improvement on one of the datasets), thereby
showing the potential of our models to address the TSC tasks in a green energy-
ecient manner. In addition, we also do energy profiling and comparison on Loihi
and CPU to support our claims.

KEYWORDS

Legendre Memory Units, Time Series Classification (TCS), Spiking Neural Network (SNN),
Surrogate Gradient Descent, Loihi, Reservoir Computing (RC)

1. Introduction

Almost all of the signals around us are intrinsically temporal (e.g., audio/speech,
sensor signals, etc.) or have a temporal component to it (e.g., video/vision signals, etc.).
Machine Learning (ML) and Deep Learning (DL) algorithms, no doubt, have catered
well to the growing processing needs of temporal datasets (Pan et al., 2022)—with
respect to scalability, variety, and robustness, etc. However, one evident drawback of the
traditional ML/DL algorithms [e.g., LSTM (Hochreiter and Schmidhuber, 1997), HIVE-
COTE (Lines et al., 2018), ResNet (He et al., 2016), etc.] is their energy inefficiency when
deployed on general purpose CPUs/GPUs/FPGAs. This energy-intensive characteristic of the
conventional/DL Time-Series models makes them poorly suited to the energy constrained
devices/applications. On the contrary, Spiking Neural Networks (SNNs), the next generation
of neural networks is gaining prominence due to their promise of low power and low
latency AI when deployed on specialized neuromorphic hardware, e.g., Intel’s Loihi, IBM’s
TrueNorth, SpiNNaker, etc.

Frontiers in Computational Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1148284
mailto:rgaurav@vt.edu
https://doi.org/10.3389/fncom.2023.1148284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1148284/full
https://www.frontiersin.org/articles/10.3389/fncom.2023.1148284/full
https://www.frontiersin.org/articles/10.3389/fncom.2023.1148284/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

ˇ

Gaurav et al.

For simpler Time-Series datasets (e.g., signals from sensors),
Reservoir Computing (Lukoševicius and Jaeger, 2009) based
models are not only fast but also perform at par with complex
time-series models (Bianchi et al., 2020), e.g., LSTM-FCN (Karim
et al., 2017). In the Reservoir Computing (RC) paradigm, the input

10.3389/fncom.2023.1148284

LMU memory cells (or the Delay Networks) can be implemented
using spiking neurons; we refer to this implementation here as
the Legendre Delay Network (LDN)—more details in Voelker and
Eliasmith (2018). The LDN is based on the Linear Time-Invariant
(LTI) system,

units are connected to a reservoir of randomly interconnected
non-linear internal units with static weights, which is then further
connected to a single trainable linear readout layer. The reservoir
of internal units generate a high-dimensional temporal feature-
map (i.e., extract temporal features from the input) on which

ẋ(t) = Ax(t) + Bu(t) (1a)

y(t) = Cx(t) + Du(t) (1b)

the linear readout layer performs a linear transformation. Note
that the connection weights of the readout layer are trained using
regression methods.

In this work, the primary problem we aim to address is:
“How do we leverage the computational efficiency of Reservoir
Computing methods to develop spiking architectures for Time
Series Classification (TSC)?—which are not only energy efficient
but also high performing.” To this end, we present two spiking
network architectures for the Time Series Classification (TSC)
task of univariate signals. We develop our spiking models
with neuromorphic hardware compatibility in mind, especially
deployment on Intel’s Loihi boards.

Echo State Network (ESN) (Jaeger, 2001), Liquid State Machine
(LSM) (Maass et al., 2002), and Delayed Feedback Reservoir
(DFR) (Appeltant et al., 2011; Bai and Yi, 2018) are widely
studied/used RC models. Since the ESNs are non-spiking, they
aren’t suitable for neuromorphic hardware deployment. DFRs on
the other hand are spiking networks, but to the best of our
knowledge, they haven’t been evaluated on any neuromorphic
hardware. Furthermore, DFRs are much simpler architectures that
merely keep track of temporally shifted inputs (Nowshin et al.,
2020); they do not extract temporal features from the input signal.
LSMs too are composed of spiking neurons and have been recently
deployed on Loihi (Shenoy Renjal, 2019) (authors do a proof-of-
concept demonstration with experiment on a small subset of a
speech dataset) and on the SpiNNaker-103 board (Patiño-Saucedo
et al., 2022). However, the dedicated circuits for synapses and
spiking neurons in Loihi make it more efficient for processing low
dimensional input signals than Spinnaker2 with general purpose
ARM processors (Yan et al., 2021). Note that SpiNNaker-103 is
less energy efficient than SpiNNaker2 (Yan et al., 2021) (and
plausibly Loihi), since it is an older generation SpiNNaker1 board
and does not have the MAC array. Note that apart from the RC
based spiking models, a few DL inspired SNNs for TSC also
exist; however, either they are too complex models which employ
convolutions to extract features (Dominguez-Morales et al.,
2018; Gautam and Singh, 2020) or use a relatively high number
of trainable parameters in their architectures [more than 120000 in
Fang et al. (2020)—although, for multivariate TSC]. This makes
them less desirable for the resource constrained Edge/IoT
devices. We next briefly introduce the Legendre Memory Unit
(Voelker et al., 2019) which has the characteristics of a RC
model.

Legendre Memory Unit (LMU) (Voelker et al., 2019) is a novel
type of memory cell for RNNs that is based on the Delay Network
(Voelker and Eliasmith, 2018); LMU has already shown promise in a
wide range of AI tasks (Blouw et al., 2020; Chilkuri and Eliasmith,
2021; Chilkuri et al., 2021). Voelker et al. (2019) mention that the

where u(t), x(t), ẋ(t), and y(t) are the system’s input, system’s state,
its time derivative, and system’s output, respectively; A, B, C, and D
are the time-invariant matrices defining the LT I system. Note that
the spiking model of the LDN can be implemented using the
principles of Neural Engineering Framework (NEF) (Eliasmith and
Anderson, 2003; Stewart, 2012). Also note that NEF/LDN performs
better than LSMs for implementing time delays (Voelker, 2019). We
base both of our spiking models for TSC on LDN, and find that they
indeed perform better than LSMs.

While one of our proposed spiking models follows the
architecture of conventional RC models, our other model
introduces non-linearity in the readout layer, such that the readout
layer post the reservoir has a hidden layer of spiking neurons
before the output layer. Direct training of SNNs is non-trivial;
conventional back-propagation algorithm to train ANNs is not
applicable to SNNs natively. This is primarily due to the non-
differentiability of spikes while calculating the gradient of the loss
function, as well as, due to the inherent temporality of SNNs.
Although, a few methods exist to train SNNs (Pfeiffer and Pfeil,
2018), with the ANN-to-SNN conversion being extensively studied
(Rueckauer and Liu, 2018; Bu et al., 2021; Li et al., 2021; Datta and
Beerel, 2022; Gaurav et al., 2022b), where an already trained ANN is
converted to an SNN by replacing the rate neurons (e.g., ReLU)
with spiking neurons (e.g., Integrate & Fire), along with the
other required network modifications. However, the ANN-to-SNN
conversion suffers with two apparent disadvantages—(1): it fails to
leverage the inherent temporal dynamics of SNNs while training
and (2): it rips off any opportunity to train a high performance
SNN on existing neuromorphic hardware in an energy efficient
manner. Direct training of SNNs (Lee et al., 2016; Wu et al.,
2018, 2019; Neftci et al., 2019; Zheng et al., 2021) intends to
address these two problems. At the heart of direct training (most
recent works), lies the approximation of the spike derivative with a
surrogate derivative, which enables the back-propagation of the
error-gradients to the deeper layers. In our second model with
non-linear readout layer, we use this Surrogate Gradient Descent
(SurrGD) approach to train it; we provide more details later. Note
that this work is an extension of our previous work (Gaurav et
al., 2022a) (recently published) where we developed a Spiking
Reservoir Computing (SRC) model and deployed it on Loihi— in
one of the firsts. For the sake of completeness, we present the
relevant details of our previous work here. Sections 2.3, 3.1.1, 3.2,
4.1, and 5.1 are reused from our previous work. We next lay down
our major contributions [contributions from Gaurav et al. (2022a)
are italicized, rest are novel to this work]:

1. We propose two novel spiking architectures for the TSC of
univariate signals

Frontiers in Computational Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

L[y(t)]

Y(s)

−1 <

Gaurav et al.

• Spiking Legendre Reservoir Computing (SLRC) model (note
that SRC model is renamed to SLRC)

• Legendre Spiking Neural Network (LSNN) that achieves
SoTA spiking results on used datasets

2. In one of the firsts, we deploy our SLRC model on Loihi and
do inference. Loihi has been gaining prominence within the
neuromorphic community with timely updates to the hardware
(Davies et al., 2018; Intel, 2021; Orchard et al., 2021). For
efficiency reasons stated above and up-to-date hardware, we
aimed our work toward Loihi deployment.

3. The LSNN model is highly resource efficient—uses as low as
120 (or lesser) number of spiking neurons (depends on a hyper-
parameter d—explained later), and is more than 40x resource
efficient than the compared LSM based model. It is also more
than 30x energy efficient than its non-spiking counterpart.

4. We support our claims with exhaustive experiments on five
TSC datasets, along with energy profiling on CPU and Intel’s
Loihi-1 board.

We organize our paper as follows. In Section 2, we describe

10.3389/fncom.2023.1148284

duration of u(t)). To implement a system where the input is u(t),
and the output is y(t), a straightforward way is to determine the
Transfer function of such a system where it maps u(t) to the delayed
output u(t − θ). Transfer functions are written as a ratio of terms in
the complex variable s; the terms are the Laplace transforms of the
input u(t) and the output y(t). To decompose y(t) (in Equation 2) as a
function of u(t) and θ (to facilitate the calculation of the Transfer
function), we observe the following.

An important property of the Impulse function (i.e., the Dirac’s
δ(t) function) is that when a shifted Impulse, i.e., δ(t − θ) is
convolved with another time domain function, e.g., f (t), it sifts out
the value of the function f at time t − θ ; also called as the sifting
property. That is:

f (t) � δ(t − θ) = f (t − θ) (3)

where � is the convolution operator. Therefore, we can rewrite the
Equation (2) as a convolution of the input signal u(t) and δ(t − θ) as
follows (note, here f (t) is replaced by u(t), and δθ (t) is short for δ(t
− θ)):

the theory behind our proposed spiking models: SLRC and LSNN,
followed by the Section 3 where we explain the training and
evaluation details of our experiments. We then present a detailed

y(t) = u(t) � δθ (t) (4a)

= u(t − θ) (4b)

analysis of our results in the Section 4, followed by a discussion on
our models and energy consumption in Section 5. We then finally
conclude this work and lay down the future work prospects in the
Section 6.

Now that we have decomposed y(t) into u(t) and δθ (t) in
the Equation (4a), we can further simplify the Equation (4a)
by taking its Laplace transform, i.e., L[y(t)] = L[u(t) �
δθ (t)] = L[u(t)]L[δθ (t)] (convolution in time domain becomes
multiplication in Laplace domain); we can rearrange it as follows:

2. Methods

In this section, we describe the theoretical underpinnings of
our proposed spiking models. We start with a brief explanation of
the LDN [proposed by Voelker and Eliasmith (2018) with
detailed explanations in Voelker (2019)], followed by the specifics

L[u(t)]
= L[δθ (t)] (5a)

H⇒
U(s)

= e−θ s (5b)

H⇒ F (s) = e−θ s (5c)

of the Surrogate Gradient Descent (SurrGD) method. We then
describe the architecture of our two proposed spiking univariate-
TSC models—the Spiking Legendre Reservoir Computing (SLRC)
model and the Legendre Spiking Neural Network (LSNN) model.
Note that both the models are based on the LDN; in the SLRC
model, the LDN is implemented with spiking neurons (using the
principles of NEF), whereas in the LSNN model, the LDN is
implemented with regular matrix operations. We use the Nengo
(Stewart, 2012; Bekolay et al., 2014) and PyTorch (Paszke et al.,
2019) libraries to build the SLRC and LSNN models, respectively.
Henceforth, all the instances of neuron imply Integrate &
Fire (IF) spiking neuron, unless otherwise stated.

where e−θ s in Equation (5b) is the Laplace transform of the shifted
Impulse function δθ (t), and F (s) is the Transfer function of the
system which implements a delay of θ time-seconds. Note that a
Transfer function can be converted to an LT I state-space model
(Equation 1) if and only if it can be written as a proper ratio of finite
order polynomials in s (Brogan, 1991); Voelker presents a detailed
derivation for the same in Voelker (2019), thereby obtaining the
state space matrices A and B (in Equation 1a) as follows (we do not
use Equation 1b in our models):

(

A = [a]i,j , ai,j = (2i + 1)
(−1) i− j+ 1 i

i

≥ j

j
(6a)

2.1. Legendre delay network (LDN) B = [b]i, bi = (2i + 1)(−1)i (6b)

LDN is a type of an RNN (or a dynamical system) which
implements a continuous-time delay of an input signal. We can
mathematically represent a delay of an input signal u(t) as follows:

y(t) = u(t − θ) (2)
where θ � R + is the time-seconds by which the input u(t) is
delayed, and y(t) is the delayed output (by design, θ is limited to the

for i, j � [0, d − 1] (more details in Voelker and Eliasmith,
2018; Voelker, 2019; Voelker et al., 2019). Note that here d is the
dimension/order of the LTI ’s state-space vector x(t) (in Equation
1), i.e., x(t) � Rd (hereby, we refer x(t) as the LDN’s state-space
vector). Also note that this x(t) can be used to obtain a delayed
input with any delay of φ � (0, θ) time-seconds.

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

1 τ

i
l

l

l
i

=

 1

1 1

∂S[t]

(1+|x|) j

Gaurav et al.

2.1.1. Approximating the canonical LTI system
through a neural LTI system

To implement the LDN via spiking neurons in Nengo (for the
SLRC model) we need to approximate the state-space (Equation 1a
and Figure 1A) of the canonical LT I system in the neural domain.
We can do that by approximating the integral function (Figure 1A)
with a continuous-time first order low-pass filter h(t) = τ e

− t
(in

Figure 1B) in the neural domain; Figure 1B shows the neural LT I
system described by the following equation:

10.3389/fncom.2023.1148284

the Back-propagation Through Time algorithm to account for the
temporality in SNNs, however, we also need to address the non-
differentiabilty of the spikes for a successful direct training. The
spiking function of a neuron i in layer l, i.e., Sl[t] in an SNN
(conventionally) depends on its membrane potential Vi [t] and its
chosen membrane threshold Vthr; Si[t] can formally be written as
follows:

Si[t] = 2(V l[t] − Vthr) (12)

x(t) = h(t) � (A′x(t) + B′u(t)) (7) where 2(.) is simply the Heaviside step function.
The goal is find the matrices A′ and B′, such that both the

systems—the canonical and the neural, are equivalent. We can do
The derivative of the loss function L (of an SNN) w.r.t. weights

W (following the chain rule) is below:
that taking the Laplace transform of the Equations (1a) and (7), and
equating them. Note that the Laplace transform of Equation (1a) is

sX(s) = AX(s) + BU(s) (8)

∂ L X ∂ L ∂S[t] ∂V[t]
∂ I[t]
∂W

t
∂S[t] ∂V[t] ∂ I[t] ∂W

(13)

and of Equation (7) is
X(s) = H(s)(A′X(s) + B′U(s)) (9)

where H(s) = L[h(t)] = 1+sτ . Upon rearranging the Equation
(9) (with H(s) replaced) to resemble the Equation (8), we get the
following equation (proof in Supplementary material):

sX(s) =
τ

(A′ − I)X(s) +
τ

B′U(s) (10)

Equating the coefficients of X(s) and U(s) on the RHS in both
the equations (i.e., Equations 10 and 8) gives us the following values
for the A′ and B′ matrices (to implement the neural LT I system):

A′ = τA + I and (11a)

B′ = τB (11b)

where A and B are defined in the Equations (6a) and (6b),
respectively, and I is the Identity matrix.

Note that Nengo implements the discretization of continuous-
time systems internally with default 1 t = 0.001 and ZOH method.
For the LSNN model, where the LDN is implemented via regular
matrix operations (in PyTorch), and not through a neural LT I
system, we obtain the value of A′ and B′ matrices by explicit
discretization of the continuous-time LT I system (Equation 1) with
1 t = 0.001 and ZOH method. Also, in both models, we refer the
state-space vector x(t) as the extracted out temporal features of the
input u(t).

2.1.2. Tunable parameters of LDN
In the SLRC model, the tunable parameters of the LDN are

its state-space vector’s (i.e., x(t)’s) dimension d � Z + , low-pass
filter’s (i.e., h(t)’s) time-constant τ � R + , and the length of the
rolling window i.e., θ � R + of the input signal u(t) which the LDN
encodes in its memory. In the LSNN model, the tunable parameters
of the LDN are d and θ only, since we do not employ neural
approximation in LSNN.

2.2. Surrogate gradient descent (SurrGD)

As mentioned in the Section 1, direct training of SNNs with
standard back-propagation algorithm is not feasible. We can use

One can observe in Equation (13) that the partial derivative

∂V[t] (in light of Equation 12) is always 0, except when the
argument to the Heaviside step function 2(.) is 0, at which,
the derivative is undefined; in fact, this ill defined gradient can be
formulated as the Dirac’s δ(t) function. Consequently, either the
error gradients vanish in the deeper layers (when the S[t]’s
derivative is 0) or explode (when the S[t]’s derivative is undefined),
resulting in frozen or infinite weights, respectively.

To alleviate this problem, authors in Zenke and Ganguli (2018)
and Neftci et al. (2019) discussed the usage of surrogate derivatives
in place of the actual undefined derivative of S[t]. Zenke and
Ganguli (2018) use the partial derivative of the negative half of the
fast sigmoid function, i.e., f ′(x) = 1

2 (where x = Vl[t] −
Vthr in our case) as a surrogate derivative; we use the same in
this work. Note that this method of using surrogate derivatives to
implement the gradient descent to update weights is also known as
the Surrogate Gradient Descent (SurrGD) method.
Now that we have briefly explained the LDN and SurrGD, we next
explain our proposed spiking models.

2.3. Spiking Legendre Reservoir Computing
(SLRC) model

In this section, we propose and describe the architectural details
of our first spiking-TSC model—the Spiking Legendre Reservoir
Computing (SLRC) model. As the name suggests, this model’s
architecture (Figure 2A) is inspired from the conventional RC
architectures, where it has an input layer, followed by a reservoir
of spiking neuron ensembles, and an output layer; albeit, we
add an extra ensemble of spiking neurons between the reservoir
and the output layer. Note that the spiking neurons in all the
ensembles in the SLRC model rate-encode the input signals. The
input layer/node INP is connected to the reservoir RES with a
connection weight of τB (Equation 11b), and the reservoir RES is
recurrently connected with a connection weight of τ A + I (Equation
11a). The number of ensembles in the reservoir RES is equal to
the order of the LDN, i.e., d, such that each is sensitive to only
one of the dimensions of x(t). Since the reservoir RES is further
connected to an ensemble ENS with an identity connection weight
I , the ensemble ENS simply collects and represents the extracted

Frontiers in Computational Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

4

Gaurav et al. 10.3389/fncom.2023.1148284

FIGURE 1

Appromixation of Equation (1a) of the Canonical LTI system through a Neural LTI system. (A) Canonical LTI system. (B) Neural LTI system.

FIGURE 2

In (A), I is the input node; C1 , C2 are the output nodes. Weights between ENS and OTP are learned through regression method. Nodes are deployed
o -chip; Ensembles (RES and ENS) are deployed on-chip. In (B), a sample input signal u(t) is shown, and (C) shows the extracted x(t) from spiking
LDN.

out d-dimensional temporal features, i.e., x(t), and aids in the
learning of the connections to the output layer OTP. Note that a full
connection matrix (to connect the spiking neurons) is internally
obtained in Nengo by pre and post multiplying the matrices {τB,
τA + I , and I} with a randomly generated Encoder matrix and a
computed Decoder matrix, respectively. More details on the
Encoder and Decoder matrices can be found in NEF (Eliasmith
and Anderson, 2003; Stewart, 2012). All the connections here are
static, except the connections between the ENS and OTP, which are
learned offline through the Least Squares Regression method with
L2 regularization.

2.3.1. Network design hyper-parameters
Apart from the LDN parameters d, θ , and τ , other architectural

parameters in the SLRC model are the number of spiking neurons,
i.e., Nsn in each ensemble, their minimum and maximum firing
rates, i.e., FRmin and FRmax, respectively, and their representational
radius r; more details about these parameters can be found in
Eliasmith and Anderson (2003). To briefly demonstrate the LDN’s
state-space output x(t) for a sample input signal (Figure 2B),

Figure 2C shows the extracted temporal features, i.e., x(t) for
arbitrarily chosen values of d, τ , θ , Nsn, FRmin, FRmax, and r of
the RES ensembles. Note that these are the signals which are fed
to and represented by the ENS, and on which the weights are
learned upon by the readout layer connections to the OTP
nodes. Note that the reservoir RES has d ensembles; and each
ensemble has the same number of spiking neurons—Nsn. However,
since the connected ensemble ENS collectively represents the d-
dimensional temporal features x(t), we set it to have a higher
number of spiking neurons—Nsn×d (arbitrarily set, d > 4 while
tuning). Another parameter which varies between the RES and
the ENS is the radius r—we set it separately as rRES and rENS.
This is done because the RES computes the temporal features
x(t), while the ENS simply collects and represents those features.
Note that for the time-series datasets where each sample is
independent of the other and fed in online fashion to the SLRC
model, one can choose to either inhibit the RES neurons or not
inhibit it between the samples; more details in the Section 3.2.
In case one chooses to inhibit the RES, two architectural
parameters need to be set—the magnitude and the duration of
the inhibition.

Frontiers in Computational Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

l l

dt τ i

i i

I l
 i

t
− I l

 i

ur

X
l

j

i 2

i i
l

l l l
j

l l l

− 1 t

l

l l l
j

i i i

τvol

t

Gaurav et al.

2.4. Legendre Spiking Neural Network
(LSNN) model

We next propose and describe the architectural details of our
second spiking-TSC model—the Legendre Spiking Neural Network
(LSNN) model. Similar to the SLRC model, this model uses the
LDN to extract the high dimensional temporal features x(t) from
the input signal u(t). Before diving into the architecture of the
LSNN model, let us define the neuron’s membrane potential (V(t))
and current (I(t)) state equations (in continuous-time domain),
used in our LSNN model.

2.4.1. IF neuron’s state equations
Equations (14a), (14b), and (15) define the IF neuron state

equations (i is the index of the neuron in layer l):

dVi (t)
=

RIi (t)
when Vl(t) < Vthr (14a)

vol

Vl(t) ← 0 when Vl(t) ≥ Vthr (14b)

and

d
d
(t)

=
τc

(t)
+

j

Wj,iS
l−1(t) (15)

where τvol and τcur are the membrane voltage and current time
constants, respectively, and R is the membrane resistance. Our
state equations differ from Neftci et al. (2019) in ways that we do
not consider the leak term (Burkitt, 2006) in the ODE for V(t)
(Equation 1 in Neftci et al., 2019) and the recurrent term in the
ODE for I(t) (Equation 2 in Neftci et al., 2019). Also, we
conveniently set the value of R to 1 and keep the time constants
tunable. We define the discrete-time equations later.

2.4.2. LSNN architecture
Now that we have formally described the neuron state

equations, we next describe the architecture of our proposed LSNN
model—Figure 3. It comprises of an input node I (INP) to feed
the input signal u(t) to the network, followed by the LDN node—
which constitutes of static linear matrix operations. The LDN maps
the univariate input to the d-dimensional temporal features x(t),
which are then relayed to the IF neurons (in pairs) in the ENC
layer; as the name suggests, the ENC layer neurons rate-encode the
extracted x(t) to binary spikes. Every pair of the IF neurons in the
ENC layer consists of a positive encoder and a negative encoder—
which encodes the positive and negative part of the feature signal
x(t), respectively. Note that only one of the encoder neurons in each
pair is active at a time. The ENC layer neurons are next densely
connected to the HDN layer of IF neurons through an all-to-all
connection. Note that there is only one HDN layer of IF neurons
which is then densely connected to the OTP layer (where Ci are class
nodes). In our model, only the connections between the ENC layer
to HDN layer and the HDN layer to OTP layer are trained; rest of the
connections remain static. Also, the usage of surrogate derivatives
in the HDN layer enables the error gradient flow backwards to the
ENC layer, thereby updating the hidden layer connections.

10.3389/fncom.2023.1148284

2.4.3. Discrete-time state equations
Here, we describe the discrete-time functioning of the LSNN

components. For simulation ease, we first extract and save the
temporal features of the entire training and test set, from the LDN.
We then simulate the rest of the network, i.e., the spiking part
with extracted temporal features as the input (green connections) to
the ENC layer. Note that in each simulation time-step, the entirety
of the spiking network is simulated, which enables us to have
current time-step values from the previous layers (more details in
sections below).

2.4.3.1. ENC layer
Encoding neurons in the ENC layer follow the state equations

defined below (here l is ENC layer only):

Il[t] = ρ × ǫi mod 2 × x� i �[t] + ι (16a)

Vl[t] = Vl[t − 1] + Ii [t] (16b)

where i � [0, 1, , 2d − 1], ρ and ǫi mod 2 are the IF neuron’s gain and
encoder values, respectively, where ǫ0 = 1 and ǫ1 = −1, and ι is the
bias current (Eliasmith and Anderson, 2003). x[t] � Rd is the
temporal feature vector from the LDN. Note that when V[t] reaches
the threshold Vthr, a spike is generated (Equation 12) and it is reset
to 0 (Equation 14b).

2.4.3.2. HDN layer
HDN layer IF neurons follow the state equations defined below

(l is one HDN layer in LSNN model) :

Ii [t] = αIi [t − 1] +
X

Wj , i S
l−1 [t] (17a)

j

Vi [t] = Vi [t − 1] + Ii [t] (17b)

where α is a current decay constant (α = exp(τcur
), 1t = 0.001).

Here, too Vi [t] is reset once it reaches the threshold Vthr (Equation
14b) and a binary spike is generated (Equation 12).

2.4.3.3. OTP layer
The OTP layer nodes function similar to the IF neurons in the

HDN layer, except that they do not output a spike and their voltage
decays with time (hence, we do not qualify them as IF neurons);
they follow the equations below (here l is just the OTP layer):

Ii [t] = αIi [t − 1] +
X

Wj , i S
l−1 [t] (18a)

j

Vl[t] = βVl[t − 1] + Il[t] (18b)

where β is a voltage decay constant (β = exp(−1t), 1t = 0.001).
Note that Equation (18a) and (17a) are same. We define the
classification loss function on the maximum voltage of the output
nodes (over all the simulation time-steps). We use the PyTorch’s
negative log likelihood loss function, i.e., NLLLoss(ŷpred, ytrue)
to calculate the loss, where ytrue are the true classes and ŷpred =
log(softmax(x)), x = max(Vl[t]).

2.4.4. Network design hyper-parameters
The number of ENC layer neurons depends on the order d of the

LDN, i.e., NENC = 2 × d. We arbitrarily set the number of HDN layer

Frontiers in Computational Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

FIGURE 3

Architecture of our LSNN model (all neurons are IF spiking). The INP is connected to the LDN through a static connection weight of 1. The outputs
from the LDN, i.e., x(t) (the green connections) are relayed as is to the relay stops where each individual feature signal is multiplied by the static
weights of 1 and 1 (simultaneously), i.e., the blue connections and fed to ENC. Only the connections in black are trained.

neurons to NH D N = 3 × d. The number of OTP layer nodes is equal
to the number of classes, which is 2 in all our experimented datasets.
With respect to the LDN, as mentioned in Section 2.1.2, only d and θ
are tunable. With respect to the neurons in the ENC layer, their
gain and bias values, i.e., ρ and ι, respectively, are kept tunable. The
neurons in the HDN layer have their τcur set tunable. In addition,
all the IF neurons (in the ENC and HDN layers) have their voltage
decay constant β = 1 (i.e., no voltage decay) and Vthr set tunable. In
the OTP layer, the voltage time-constant τvol is kept tunable, thus
the voltage decay constant β is tunable. Overall, the following hyper-
parameters were tuned during our LSNN experiments: LDN
dimension d, rolling window θ (in seconds), gain ρ, bias ι, τcur, τvol,
and Vthr.

3. Experiments

In this section, we outline the implementation level details of
our proposed models and the conducted experiments, and finally
present the accuracy results. We also detail out the derivative
models of the LSNN model with which compare/benchmark
against. We start with the datasets description, followed by the
training, deployment, and evaluation details of the SLRC and the
LSNN model, followed by the results.

3.1. Datasets

We train and evaluate our models on univariate binary-TSC
datasets. For the SLRC model, we use only the ECG5000 dataset;
and for the LSNN model, we use the ECG5000 along with four
others, experimented with in Dey et al. (2022)—Ford-A, Ford-

compare our results with, but also to show the application of our
models in sensor domain. We briefly describe each of the five
datasets next. Note that all these datasets are available at the Time
Series Classification website.1

3.1.1. ECG5000
This dataset consists of 500 training samples and 4, 500 test

samples of ECG signals; each sample si � R140 . The dataset has 5
classes: N, R-on-T PVC, PVC, SP, and UB—class definitions are in
Table 1 that also shows the sample distribution and sample
counts for all the 5 classes. As can be inferred from the Table 1,
the ECG5000 dataset is heavily imbalanced. Note that the class N
corresponds to a normal/healthy heartbeat, and rest of the classes
correspond to abnormal/unhealthy heartbeat. We therefore group
all the 4 abnormal classes into one class. Thus, the ECG5000 time-
series classification task is modeled as a binary classification task
between healthy and unhealthy heartbeats; a few authors do the
same (Matias et al., 2021; Oluwasanmi et al., 2021; Biloborodova et
al., 2022).

3.1.2. Ford-A
This dataset consists of 3, 601 training and 1, 320 test samples

of the engine noise signals; each sample si � R500. The task is
to diagnose whether or not a certain disorder exists based on the
engine noise—thus, a binary TSC problem. We discard the last 1
training sample to suit the experiment’s batch requirements.

B, Wafer, and Earthquakes. We chose these datasets not only to 1 http://www.timeseriesclassification.com/index.php

Frontiers in Computational Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
http://www.timeseriesclassification.com/index.php
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al.

TABLE 1 Training and test samples distribution and count of the ECG5000
dataset.

10.3389/fncom.2023.1148284

TABLE 2 Hyper-parameter values over which grid-search is done for the
S L R C model on ECG5000 dataset.

Class

Normal (N)

Training set

58.4% (292)

Test set

58.38% (2627)

Hyper-
parameters

Deployment platforms

Values on Loihi Values on CPU

R-on-T premature ventricular
contraction (R-on-T PVC)

Premature ventricular contraction
(PVC)

Supra-ventricular premature beat (SP)

Unclassified beat (UB)

35.4% (177)

2.00% (10)

3.80% (19)

0.40% (2)

35.33% (1590) d

θ
1.91% (86)

FRmin

3.89% (175) FRmax

0.49% (22) rRES

rENS

{6, 8, 10}

{0.10, 0.12, 0.14}

{40, 60, 80}

{100, 120, 140}

{0.5, 1.0, 1.5}

{0.5, 1.0, 1.5}

{6, 8, 10}

{0.12, 0.14}

{75, 150}

{250, 350}

{0.5, 1.0, 1.5, 2.0}

{0.5, 1.0, 1.5, 2.0}

Nsn {100, 200} {100, 200}

3.1.3. Ford-B
It is similar to Ford-A, except that while the training data of

3, 636 samples were collected under typical operating conditions,
the test data of 810 samples were collected under noisy conditions.
Note that here too, each sample si � R500, and the task is to identify
whether or not a disorder exists in the engine subsystem.

3.1.4. Wafer
This dataset consists of 1, 000 training samples and 6, 164 test

samples of the sensor signal recorded during the processing of
wafers; each sample si � R152 and belong to either normal or
abnormal class, thus, a binary TSC task. We discard the last 14 test
samples to suit the experiment’s batch size requirements.

3.1.5. Earthquakes
This dataset consists of 322 training and 139 test samples of the

recorded seismic data; each sample si � R512 . The task is to predict
whether or not a major event is about to occur based on the seismic
data—thus, a binary TSC task. We discard the last 1 test sample to
suit the experiment’s batch size requirements.

3.2. SLRC model training and evaluation

We next describe the experiment details of our proposed SLRC
model. We start with the hyper-parameter tuning details, followed
by the deployment details on the Loihi neuromorphic hardware and
the CPU.

3.2.1. Hyper-parameter tuning
As noted earlier, for the SLRC model, we experimented with

just the ECG5000 dataset, where each sample is independent of
the other. For such disjointed ECG signals each having their
own class, through some preliminary experiments we found that
inhibition of the RES neurons between the samples while training
helps in achieving higher training and test accuracy. This is
because the inhibition of the RES neurons helps it clear out the
memory of the previous input signal. Therefore, following the
basic investigative experiments, we set the magnitude and the
duration of the inhibition to be 8 and 50 time-steps, respectively. In
addition to setting the inhibition parameters, we also set the τ
parameter to 0.1—we found that varying it doesn’t improve the

results significantly. Next, we begin training our SLRC model along
with tuning the rest of the hyper-parameters. Table 2 shows the
hyper-parameter values over which the grid-search is done—for
both the platforms: Loihi and CPU. For each of the platforms, we
choose the hyper-parameter combination for inference which
provides the best training accuracy. Note that, to account for the
random initialization of the Nengo networks, we conduct grid-
search with two different SEED values (3 & 9). Also note in Table 2,
that θ is limited to maximum 0.14s, since each ECG signal is only
140 time-steps long and we consider 1 time-step = 1ms. We next
present the platform specific deployment details.

3.2.2. Loihi-1 deployment
We use the NengoLoihi simulator to deploy our SLRC model

on the Loihi-1 boards. Note that on Loihi-1, the IF neurons
suffer from firing rate quantization errors, i.e., their firing rates
are quantized. This is because the spikes on Loihi-1 are binary,
i.e., they assume a value of either a 0 or a 1. This coupled with
IF neurons having integral Inter Spike Interval (ISI), results in
them to fire only at certain designated firing rates, e.g., at 500 Hz
(when ISI = 2), 333 Hz (when ISI = 3), 250 Hz (when ISI = 4),
200 Hz (when ISI = 5), and so on... This unfortunately limits
their ability to differentiate between multiple inputs (more details
later). Consequently, the spiking networks on Loihi-1 have poor
expressivity and limited discriminatory power. Therefore, to limit
the effects of quantization errors, we train our SLRC model with
low minimum and maximum firing rates for Loihi deployment. The
accuracy results are mentioned in the Table 3.

3.2.3. CPU deployment
We use the Nengo simulator to deploy our SLRC model on

CPUs. Note that on CPUs, the IF neurons do not suffer from
firing rate quantization errors. This is because the spikes on CPUs
can be graded, which allows the IF neurons to have a continuous
spectrum of firing rates (more details later). Consequently, they
can distinctively represent each input, and the IF neurons based
spiking networks on CPUs have better expressivity and higher
discriminatory power. Therefore, we perform grid-search with
higher minimum and maximum firing rates on CPUs than on Loihi.
The accuracy results are mentioned in Table 3.

Frontiers in Computational Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

TABLE 3 ECG5000 test accuracy with corresponding hyper-parameters.

SLRC Model Parameters Test accuracy -

SEED Nsn

9 100

3 200

FRmin FRmax

80 120

150 350

d θ rRES rENS

6 0.14 1.5 0.5

10 0.12 0.5 1.0

on platform

80.20% - on Loihi

91.97% - on CPU

3.3. LSNN model training and evaluation

Here, we describe the experiment details of our proposed LSNN
model. We start with its hyper-parameter tuning details, followed
by that of its derivative models. We then present the results
obtained with LSNN and its derivatives on the five TSC datasets.
Note that we do not deploy this model on Loihi, it was trained and
evaluated on CPUs only. We used the Adam optimizer (Kingma
and Ba, 2014) for all our LSNN related experiments.

3.3.1. Hyper-parameter tuning
As mentioned in Section 2.4.4, we fix the number of neurons

in the ENC and HDN layers to 2 × d and 3 × d, respectively, and
the tunable parameters in the LSNN model are d, θ , ρ, ι, τcur,
τvol, and Vthr—which we tune differently in cognizance of the
datasets; in addition, we also tune the learning rate η. The number
of training epochs and batch size too, varies with the dataset; they
are, training epochs: 50 for ECG5000 and Wafer, 250 for Ford-
A, Ford-B, and Earthquakes, and batch size: 50 for ECG5000 and
Wafer, 40, 18, 23 for Ford-A, Ford-B, and Earthquakes, respectively.
For a dataset, the number of epochs and batch size are kept the
same across all its related experiments. Note that, unlike the case
with SLRC, there is no need to inhibit the LDN here, since it is
implemented via the matrix operations (in the LSNN model) and
there is no residual memory of the previous input. We conducted
a few preliminary LSNN experiments on the ECG5000 dataset
to investigate the effects of the tunable hyper-parameters; which
we later adapt to all the datasets and conduct our exhaustive
experiments. During the preliminary experiments with ECG5000,
we also found that the hard reset of V[t] and no normalization of
the LDN extracted features x(t) improve the inference accuracies;
therefore, we keep this setting for the rest of the datasets. Table 4
shows the dataset specific hyper-parameters’ values over which the
grid search is done—for three different runs with SEED � {6, 9,
100}. Note that we shuffle the training data every 20 epochs for
all the experiments, and calculate the test accuracy on the entire
test set every training epoch. Table 5 shows the test accuracy results
for all the experimented datasets, obtained over all the (dataset
specific) hyper-parameter combinations and the threeSEED values;
we provide further explanations of Table 5 in Section 4.

3.3.2. Derivative models of LSNN
In this section, we do the ablation study of the LSNN

model. We next explain the derivative models of the LSNN
which were employed to characterize the practicality of the
LSNN’s architecture. The first derivative of LSNN is obtained by
removing the spiking hidden layer (HDN) altogether—to resemble

the conventional RC architecture, and the second one is obtained by
switching the spiking neurons to the non-spiking ReLU neurons.
Note that for all the derivatives’ experiments with each dataset, we
use the related hyper-parameters’ values mentioned in the Table 4,
and execute three runs with SEED� {6, 9, 100}.

3.3.2.1. No hidden layer
To qualify if the HDN layer of spiking neurons is necessary

in the LSNN model’s architecture for a superior performance, we
compare our LSNN against its derivative model with no HDN
layer; such that the derivative now resembles a conventional RC
architecture. It now has the LDN which maps the input to the high
dimensional temporal features x(t), followed by the ENC layer of
2 × d encoding neurons densely connected to the OTP layer, i.e.,
with no non-linearity in between. We call this model as LSNNnhdn.

3.3.2.2. Non-spiking model
To qualify how the LSNN performs against its non-spiking

counterpart, we replace the spiking neurons in the LSNN’s
architecture with non-spiking ReLU neurons. Since the ANNs do
not need to separately encode the positive and negative part of the
input, we replace the ENC layer with an Input layer of d nodes,
followed by a Hidden layer of 3 × d number of ReLU neurons. In
the Output layer, we collect the outputs from the class nodes over
all the simulation time-steps and apply the same procedure as in
Section 2.4.3.3 to calculate the loss and back-propagate it. We call
this non-spiking variant as LSNNnspk.
Table 5 shows the results obtained with the LSNNnhdn and
LSNNnspk models, in comparison to the other SoTA results. Code
at: https://github.com/R-Gaurav/spiking-models-for-TSC.

4. Result analysis

Here, we present a detailed analysis of the experiment results
obtained from our models: the SLRC and the LSNN models. We
start with SLRC model’s result analysis followed by that of the
LSNN.

4.1. SLRC model’s result analysis

The test accuracy results mentioned in Table 3 are obtained
from the hyper-parameter combination (refer Table 2) which gave
the best training accuracy. As can be seen in the Table 3, we
obtained 80.20% and 91.97% test accuracy on the ECG5000 dataset,
on Loihi and CPU, respectively. Note that we rounded off the
class prediction scores to calculate accuracy. To the best of our
knowledge, our spiking results for the ECG5000 dataset with
neuromorphic deployment are the first, therefore, we could not

Frontiers in Computational Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://github.com/R-Gaurav/spiking-models-for-TSC
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

TABLE 4 Hyper-parameters values over which the grid-search is done for the LSNN experiments, for each of the three runs with di erent SEED values.

Hyper-
params

ECG5000

d {12, 14}

θ {0.12}

ρ {1, 2, 4}

ι {0, 0.5}

τcur {5e-3, 10e-3, 15e-3}

τvol {10e-3, 20e-3, 30e-3}

Vthr {1, 1.5}

η {0.005, 0.01, 0.05}

WAFER

{10, 12, 14}

{0.11, 0.13, 0.15}

{1, 2, 4}

{0, 0.5}

{5e-3, 10e-3, 15e-3}

{10e-3, 20e-3, 30e-3}

{1, 1.5}

{0.005, 0.01, 0.05}

Datasets

FORD-A

{10, 12, 16, 24}

{0.025, 0.05, 0.1, 0.15}

{2, 4}

{0, 0.5}

{5e-3, 10e-3}

{20e-3, 30e-3}

{1, 1.5}

{0.005, 0.01}

FORD-B

{10, 12, 16, 24}

{0.025, 0.05, 0.1, 0.15}

{2, 4}

{0, 0.5}

{5e-3, 10e-3}

{20e-3, 30e-3}

{1, 1.5}

{0.005, 0.01}

EARTHQUAKES

{10, 12, 16, 24}

{0.025, 0.05, 0.1, 0.15}

{2, 4}

{0, 0.5}

{5e-3, 10e-3}

{20e-3, 30e-3}

{1, 1.5}

{0.001, 0.005, 0.01}

In case of Ford-A, Ford-B, and Earthquakes, the combinations of d = {10, 12} with θ = {0.025, 0.05, 0.1}, and d = {16, 24} with θ = {0.1, 0.15} were considered.

TABLE 5 Comparison of test accuracy results (in %) obtained from our LSNN model and its derivatives.

Dataset
Non-spiking
Acc. (SoTA)

Spiking
Acc. (SoTA)

LSNN Acc.

Maxacc Meanacc

LSNNnhdn Acc.

Maxacc Meanacc

LSNNnspk Acc.

Maxacc Meanacc

ECG5000

WAFER

FORDA

FORDB

EARTHQUAKES

98.43 (Pereira and
Silveira, 2019)

100.00 (Karim et al.,
2017)

97.33 (Karim et al., 2017)

92.86 (Lines et al., 2018)

83.54 (Karim et al., 2017)

–

98.85 (Dey et al.,
2022)

80.37 (Dey et al.,
2022)

64.32 (Dey et al.,
2022)

71.94 (Dey et al.,
2022)

98.49 98.19±0.21

99.51 99.38±0.17

93.56 93.36±0.19

82.72 81.98±0.88

80.43 79.95±0.68

97.73 97.22±0.37

99.38 99.30±0.06

89.62 88.25±1.67

77.78 76.46±1.06

79.71 78.74±1.37

98.42 98.18±0.18

99.82 99.76±0.05

93.03 92.98±0.07

81.98 81.90±0.12

81.88 79.71±1.56

Acc. stands for accuracy; Maxacc and Meanacc stand for the maximum accuracy and mean of the maximum accuracies (mean ± std) over 3 runs. We compare our results with only the SoTA
spiking ones (Dey et al., 2022). The italicized values indicate accuracy values from non-spiking models. The bold values indicate the highest accuracy results.

FIGURE 4

(A, B) Show the firing rate profile of IF neurons on Loihi and CPU, respectively. Note r = 1. (A) Tuning Curves on Loihi. (B) Tuning Curves on CPU.

compare our results with any. We present a comparison with non-
spiking results on the ECG5000 dataset later. As can be seen, the
spiking results on CPU are higher than that on Loihi. This is due
to the IF neurons having a more continuous spectrum of firing
rates on CPU than on Loihi—explained in detail in the next
paragraph.

4.1.1. Quantization error comparison on CPU and
Loihi

To better illustrate the firing rate quantization error difference
on Loihi-1 and CPU, Figure 4 shows the tuning curves (or the
firing rate profiles) of 15 random IF neurons on Loihi-1 and
CPU. As can be seen in case of Loihi-1 (Figure 4A), the tuning

Frontiers in Computational Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al.

curves are quite smooth only until 100 Hz, beyond which they
are jagged. That is, the firing rates on Loihi are quantized—
multiple scalar inputs elicit the same firing rate value, and the
quantization effect on firing rates becomes more prominent after
100 Hz or so. Therefore, we keep the IF neurons’ firing rates on
Loihi around 100 Hz. However, in case of CPU (Figure 4B), the
tuning curves are smooth all along the firing rate spectrum. That is,
each scalar input elicits different firing rate values. Therefore, we
can leverage this higher variability to our advantage by keeping
higher minimum and maximum firing rates, as well as by utilizing a
broader spectrum.

With respect to improving the results on Loihi, we tried
to further fine tune the hyper-parameters around the values
mentioned in the Table 3 (with respect to Loihi experiments)—
FRmax � [110, 112, , 130], FRmin � [70, 72, , 90], rRES �
[1.1, 1.2, , 2.0], rENS � [0.1, 0.2, , 0.9]—one parameter at a time
in an arbitrary order. However, fine tuning on Loihi did not
improve the results than already mentioned in the Table 3. One
specific trend that we did observe between the accuracy results and
the order d of the LDN (keeping the rest of the hyper-parameters
same), is that on CPU, the results improved with the increase
in d, but on Loihi, the results worsened; this worsening can be
attributed to the firing rate quantization effect on Loihi. Higher
d implies richer temporal information in the state-space vector
x(t); however, due to the limited representational capacity of the
spiking networks on Loihi-1, they could not leverage it and the
models overfitted. This wasn’t the case with the spiking networks
on CPU, which very well differentiated and leveraged the high
dimensional state-spaces to improve the classification accuracy,
with increase in d.

4.2. LSNN model’s result analysis

We start by rementioning that for each dataset, we obtained
the prediction accuracy on the entire test set every training epoch,
and the ECG5000 dataset was molded to suit the binary TSC task;
therefore, we compare our results on it with works which do the
same. The results reported in the Table 5 under the LSNN’s and its
derivative models’ columns are defined as follows: Maxacc denotes
the maximum test accuracy obtained over all the hyper-parameter
combinations (dataset specific, refer Table 4) across all the three
runs with different SEED values, and Meanacc denotes the mean of
the maximum test accuracies (over all the dataset specific hyper-
parameter combination) obtained in each of the three runs. We
also mention the State-of-The-Art (SoTA) results obtained with the
non-spiking methods [e.g., LSTM-FCN (Karim et al., 2017) and
HIVE-COTE (Lines et al., 2018)] for completeness, but compare
ours with only the other spiking results for fairness. As can be seen
in the Table 5, the Maxacc results obtained with the LSNN model
completely outperforms the latest spiking results on the Wafer,
Ford-A, Ford-B, and the Earthquakes dataset reported by Dey et al.
(2022). In fact, with the LSNN model, considering the Maxacc

results, we get an improvement of 0.668%, 16.412%, 28.607%, and
11.802% in classification accuracy (over Dey et al., 2022) for Wafer,
Ford-A, Ford-B, and Earthquakes datasets, respectively. On the

10.3389/fncom.2023.1148284

ECG5000 dataset, the LSNN model obtains a maximum accuracy
of 98.49% which interestingly outperforms the current SoTA
98.43% obtained by a non-spiking model (Pereira and Silveira,
2019), although, by a small margin. Also note that the Meanacc

results under the LSNN column are very close to the Maxacc

results (also under LSNN) with minimal standard deviation, while
also being better than those obtained by Dey et al. (2022). We
next analyse the accuracy results obtained by the LSNN model’s
derivatives.

Considering the Maxacc and Meanacc accuracy results obtained
with the LSNNnhdn model (where the network is still spiking,
but with no HDN layer), we see that they too outperform the
results obtained by Dey et al. (2022), with 0.536%, 11.509%,
20.927%, and 10.801% improvement (w.r.t. Maxacc results under
LSNNnhdn) on Wafer, Ford-A, Ford-B, and Earthquakes datasets,
respectively. Note that the Maxacc and Meanacc results under
the LSNNnhdn column are relatively poorer than those obtained
with the LSNN model (especially for Ford-A and Ford-B); this
implies that non-linearity in the readout layer (i.e., the HDN layer) is
necessary for a superior performance. Next, considering the
Maxacc and Meanacc accuracy results obtained with the LSNNnspk

model, where the spiking neurons are replaced with non-spiking
ReLU neurons, it is encouraging to note that the LSNN model
performs either similar or better than its non-spiking counterpart.
Generally, ANN-to-SNN conversion does not yield a superior
performing SNN (than its isomorphic ANN). This seconds the
strength of the SurrGD approach to train the SNNs from scratch,
such that the training takes into account and leverages the
temporal dynamics of the SNN. Note that our non-spiking LSNN
model (i.e., LSNNnspk) does not outperform the SoTA non-spiking
results. This can be attributed to the simplicity of our LSNNnspk ’s
architecture compared to that of the complex models such as
LSTM-FCN.

Similar to the SLRC experiments on CPUs, we observed that
the performance of LSNN model improves with the increase in
d [of the LDN’s state-space output x(t)]. This can be due to two
reasons here: (1) richer temporal information to train and infer
upon, and (2) increased number of neurons in the architecture.
We also note that our LSNN’s neurons generate binary spikes,
thus, they too suffer from the firing rate quantization error.
However, as seen in the Table 5 with respect to the ECG5000
dataset, the performance of LSNN and LSNNnhdn is better than
that of the SLRC model on Loihi (and even on CPU). This
positive difference could be due to the exact calculation of the
state-space vector x(t) in LSNN (and LSNNnhdn), in contrast to
its approximation in the SLRC model—as the LDN in the SLRC
model is implemented via spiking neurons (both on Loihi and
CPU). This approximation coupled with the firing rate quantization
error on Loihi-1, severely limits the expressivity and discriminatory
power of the LDN extracted features x(t). With respect to SLRC
on CPU, although the spikes are graded, the state-vector x(t) is
still approximated, and further represented via the ENS which
contributes to added information loss in x(t) (also true in case
of Loihi deployment). We also surmise that iterative SurrGD
in LSNNnhdn perhaps offers a better fit to the data than the
Least Squares Regression fitting in SLRC, although, this should be
thoroughly investigated.

Frontiers in Computational Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al.

5. Discussion

We now present a detailed discussion on our proposed models,
starting with the SLRC model, followed by the LSNN model. We
then present the energy consumption analysis of our models on
CPU and Loihi-1.

5.1. Discussion on the SLRC model

In light of the limitations of the SLRC model described in the
paragraph above, one may question the necessity of approximating
and further representing the temporal features x(t) via spiking
neurons in the model. This was done because of the following
reasons:

• First, the SLRC model serves the purpose to show that the
LDN can be entirely implemented with spiking neurons, and a
spiking RC based model can be built with it

• Second, following the NEF theory, the approximation and
representation of vectors can be improved by increasing the
number of neurons in the ensembles

• Third, although further representation of the approximated
temporal features x(t) could have been avoided by having the
RES constituted directly of spiking neurons (and connecting
the OTP nodes to the RES neurons directly), the architectural
decision to break the RES into ensembles and then collectively
represent the x(t) via another ENS was taken due to the
following two sub-reasons:

– No separate ensembles in the RES would mean that all
the neurons would be sensitive to all the dimensions of
x(t), thereby poorly approximating the state-space vector
(for the same total number of neurons as with splitting the
RES into ensembles—each composed of lesser number of
neurons)

– The number of learnable readout connections from the
RES neurons to the OTP nodes would be too high, thereby
increasing the SLRC model’s complexity

Therefore, where the approximation of the temporal features
x(t) is implicit due to the spiking implementation of the LDN,
further representing it via a smaller ENS of neurons lowers down
the SLRC model’s complexity. We note that the SLRC model,
compared to the LSNN is quicker to train (due to the Least Squares
Regression method) and more neuromorphic-hardware friendly
(as demonstrated by us via its deployment and inference on Loihi-
1). However, to overcome the limitations of the approximation
and representation of x(t), thereby increasing the SLRC model’s
performance, one would be needed to employ ensembles with
large number of neurons—but this comes at the cost of higher
computational complexity.

We further note that Loihi-2 [which has been recently released
(Orchard et al., 2021)] overcomes the binary spikes limitation of
Loihi-1 by offering 32-bit graded spikes implementation, similar to
CPU. Therefore, we expect that our SLRC model when deployed on
the Loihi-2 boards, would achieve similar test accuracy results as

10.3389/fncom.2023.1148284

that on CPU. Also note that in our SLRC model, the inhibition of
the RES neurons is not always necessary. For a continuous stream
of inputs, i.e., for an online input signal where the class of a current
scalar input depends on the previous inputs, intervening inhibition
would be adverse.

5.2. Discussion on the LSNN model

To mitigate the performance extenuating effect of the
approximation and representation of the temporal features x(t) by
the spiking LDN, we decided to explicitly calculate x(t) through
regular matrix operations in the LSNN model. This helps in two
ways. First, the accurate and information-rich temporal features
x(t) helps us achieve better test results compared to the SLRC
model. Second, it also helps in reducing the number of neurons
required in our LSNN model; for d-dimensional x(t), we require 2
× d neurons in the ENC layer, followed by 3 × d neurons in the
HDN layer. Thus, the LSNN model requires a total of 5 × d
number of spiking neurons. Considering the values of d in our
LSNN experiments (refer Table 4), the minimum and maximum
number of employed neurons in our LSNN model is 50 and 120,
respectively, which is far below the number of neurons required in
the SLRC model, where each ensemble has either 100 or 200
neurons, and the minimum number of ensembles is 6 (refer
Table 2). In Table 5, we compared our spiking results with the
current SoTA on 4 experimented datasets (Dey et al., 2022), where
the authors have used LSMs as their spiking reservoir model.
We note that the authors (Dey et al., 2022) use a minimum and
maximum of 2500 and 5000 spiking neurons, respectively, in their
reservoir, with additional 15 neurons in their Gaussian Spike
Encoder layer; these numbers are significantly higher than ours in
the LSNN model (more than 40x).

One may argue that the computational resource efficiency and
the superior inference performance of the LSNN model perhaps
comes at the cost of increased energy consumption, since there
is no spiking reservoir in the LSNN model, rather a non-spiking
LDN module to extract the temporal features. However, we note
that the non-spiking LDN module offers minimal computation
overhead due to the linear static matrix operations. The Loihi-1
(Davies et al., 2018) and Loihi-2 (Orchard et al., 2021) chips have
3 and 6 (respectively) number of embedded x86 processor cores—
which can be efficiently used for non-spiking LDN preprocessing
to extract the temporal features, before they are encoded to spikes
(Davies et al., 2021). SpiNNaker-2 has MAC arrays which also offer
the feasibility of inexpensive matrix operations in neuromorphic
setting (Yan et al., 2021). We next analyze the energy consumption
of the SLRC, LSNN, and LSNNnspk models on CPU and Loihi-1.
We did not do energy profiling on GPUs because previous works
(Blouw et al., 2019; Patel et al., 2021) have shown that energy
consumption on GPU is generally higher than that on Loihi for
per sample inference. This is because the GPUs are optimized
for parallel processing of data (and not online). Moreover, the
application domain of our work is most well-suited to small
IoT/Edge devices with sensors and batteries (GPUs are generally
space consuming).

Frontiers in Computational Neuroscience 12 frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

TABLE 6 Comparison of energy consumption (per sample) in milli-Joules (mJ) of our spiking models—SLRC and LSNN model, and the non-spiking
variant of LSNN, i.e., LSNNnspk on CPU and Loihi-1.

Platform
Max

SLRC

Min Mean

LSNN

Max Min Mean

LSNNnspk

Max Min Mean

CPU

LOIHI-1

7359.72

91.94

5262.13

85.06

6285.71 ± 803.61

87.30 ± 2.08

3031.73

90.91

2189.45

73.40

2689.23 ± 248.30

81.65 ± 5.79

2780.94

–

2319.15

–

2553.59 ± 163.20

–

The bold values indicate the minimum energy consumption values.

5.3. Discussion on energy consumption

Table 6 shows the energy consumption (in milli-Joules) of our
proposed models, per sample, on Intel Core i5-5257U CPU and
Nahuku32 board (built with Loihi-1 chips). Note that for energy
consumption analysis, we did not train/evaluate the models on the
CPU or Loihi-1 boards with the training/test data. We rather built
our SLRC, LSNN, and LSNNnspk models in Nengo with randomly
generated matrices and executed them with Nengo simulator on
CPU and with NengoLoihi simulator on Loihi-1. An input signal
of 140 time-steps was randomly generated, and for all the analyzed
models, we set d = 10. For the SLRC model, we use the hyper-
parameters’ values mentioned in the first row of the Table 3; we keep
each model (and its hyper-parameters) unchanged while executing
it on CPU and Loihi-1 (we ran each model for 10 times on both
platforms). Max, Min, and Mean columns in Table 6 for each model
denote the maximum, minimum, and mean ± std of the energy
consumption measurements in mJ. As can be seen in the Table 6,
LSNN on Loihi-1 reports the minimum energy consumption scores
per input sample. Compared to LSNNnspk, on average (i.e., Mean),
LSNN on Loihi-1 is 31.27 times more energy efficient. Compared to
SLRC model too on Loihi-1, on average, LSNN reports lower energy
consumption (87.30mJ vs. 81.65 mJ, respectively). It’s interesting
to note that for d = 10 and Nsn = 100, where the SLRC model has
1250 neurons and LSNN has meager 50 neurons, the gain in
energy efficiency with LSNN on Loihi-1 isn’t much. However, on
CPU, we see that on average, LSNN is 2.34 times more energy
efficient than SLRC—this small gain to an extent is explained by
the disparity in the number of neurons. To investigate further, we
built a simple spiking network to represent a scalar over time. The
network consisted of an input node (outputting 1) connected to
an ensemble of N neurons that was probed. For N = 100 and N
= 4096 each, we ran the network for 10 times on Loihi-1, and
measured the energy consumption for each run. We found that for
N = 100 and N = 4, 096, the network consumed 59.94 ± 0.59 mJ
and 63.46 ± 0.57 mJ on average, respectively. Therefore, we surmise
that energy consumption on Loihi-1 does not increase dramatically
with the number of neurons. Detailed energy consumption plots
can be found in the Supplementary material.

Note that we did not do inference with the LSNN model
on Loihi, because PyTorch does not support Loihi deployment;
as well as, because of the cross-library (i.e., PyTorch and
Nengo/NengoLoihi) challenges to port trained weights. However,
Loihi-2 which has been recently released, supports three-factor
learning rules (based on the surrogate gradient approach, Zenke
and Ganguli, 2018), and SNNs on it can be trained/deployed by
using Intel’s Lava library (Intel, 2021); thus, the LSNN model is

quiet well-suited for training and inference-mode deployment on
Loihi-2. Next, we revisit the Table 5 and make a subtle remark
with respect to the LSNN’s results on the Ford-B dataset. We see
that authors (Dey et al., 2022) achieve 64.32% accuracy on Ford-
B with an LSM based model, where unlike the training data, the
test samples are noisy. However, the LSNN model and its
derivatives achieve far better accuracy on Ford-B (28.607% max
improvement). This subtly hints toward the LDN (and
subsequently the LSNN) being more robust to noise than LSMs—
although, this needs to be properly investigated. Nonetheless,
with respect to the LSNN’s (and LSNNnhdn’s) overall inference
performance in Table 5, compared to Dey et al. (2022), we see
that the LSNN has a clear advantage over the popular LSMs—
both in terms of accuracy and resource efficiency. One likely
limitation of both SLRC and LSNN models could be the large set of
hyper-parameters to tune (Tables 2, 4). In our LSNN experiments,
although exhaustive with a wide range of hyper-parameters’ values
(and 3 runs each), we could not identify any conclusive trends
between the individual hyper-parameters and test accuracy, other
than, that test accuracy increases with the increase in order d of
the LDN (which is expected). There were a few weak correlations
suggesting higher values of neuron gain ρ, and higher values of θ
for higher values of d being helpful to LSNN’s performance. Also,
lower values of learning rate, i.e., η < 0.05 demonstrated better
fit.

6. Conclusion and future work

The literature around spiking TSC is not very rich; only a few
popular spiking models exist, namely: the LSMs and the DFRs,
and a few others (Dominguez-Morales et al., 2018; Fang et al.,
2020; Gautam and Singh, 2020). There’s a scarcity of spiking TSC
models which are not only high performing but also resource
efficient and neuromorphic hardware friendly. In this work, we
presented two novel spiking models for the TSC task of univariate
signals, along with their theoretical details and detailed empirical
analysis. We first presented an entirely spiking, RC based model—
the SLRC model, which was deployed on Loihi-1 for inference
and also served as a precursor to our next improved model— the
LSNN (if one counts its spiking derivative with no hidden
layer—the LSNNnhdn as another, then in total three spiking models
were presented). We also did the energy consumption analysis of
both our models on CPU and Loihi neuromorphic hardware, and
observed that the LSNN model not only establishes a new SoTA
spiking results on the experimented datasets, but also achieves
the best energy efficiency (on average) on Loihi-1, among the

Frontiers in Computational Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al.

compared models. We also found that the energy consumption
gap between the spiking networks (on Loihi-1) with as much as
40 times the difference in the number of spiking neurons, is not
much—although, this observation should be put to rigorous tests.
However, in the context of our work, this leaves enough room
to further introduce deeper layers, or more neurons in a layer, or
increase the dimensionality d of the state-space vector in the
LSNN model to improve its performance, without being at the
risk of dramatically increasing its energy consumption on Loihi.
To further establish the efficacy of our LSNN model, we intend
to evaluate it on the entire set of the multi-class univariate
TSC datasets, publicly available at the Time Series
Classification website. We note that currently, our proposed spiking
models are limited to univariate signals, we plan to address this
limitation too in future. Another avenue which was looked over in
this work, is the neuromorphic on-chip training of the spiking
models; both, SLRC and LSNN models were trained off-chip. As
stated in the previous section, SNNs can be trained on Loihi-2
with Lava using Three-Factor Rule based learning; this could be
another promising direction to look into. In the end, the key
takeaway of this work should be the LSNN model, which not only
performs better compared to the LSM based models, but is also
frugally resource efficient with minimum energy consumption on
Loihi-1.

Data availability statement

Publicly available datasets were analyzed in this study. The
datasets can be found here: https://www.timeseriesclassification.
com/.

Author contributions

RG proposed, designed, and experimented with the models
presented in this work, and wrote the manuscript. TS discussed
the design of the models and provided valuable inputs to refine
and improve them. RG, TS, and Y Y analyzed the results, with Y Y
overseeing the development of the models and supervising this

10.3389/fncom.2023.1148284

project. All authors reviewed the manuscript, contributed to the
article, and approved the submitted version.

Funding

This work was supported in part by the U.S. National Science
Foundation (NSF) under Grants CCF-1750450, ECCS-1731928,
ECCS-2128594, and CCF-1937487.

Acknowledgments

We gratefully acknowledge Intel for providing us the cloud
access to Loihi-1 boards, and thank Shiya Liu for fruitful
discussions on our work. We also thank Virginia Tech’s ARC for
providing us the computing resources to run our experiments.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2023.1148284/full#supplementary-material

References

Appeltant, L., Soriano, M., Van der Sande, G., Dankaert, J., Massar, S., Dambre, J.,
et al. (2011). “Reservoir computing using a delayed feedback system: towards photonic
implementations,” in 16th Annual Symposium of the IEEE Photonics Benelux Chapter
(IEEE/LEOS), 125–128.

Bai, K., and Yi, Y. (2018). DFR: an energy-efficient analog delay feedback reservoir
computing system for brain-inspired computing. ACM J. Emerg. Technol. Comput. Syst.
14, 1–22. doi: 10.1145/3264659

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D.,
et al. (2014). Nengo: a Python tool for building large-scale functional brain models.
Front. Neuroinform. 7, 48. doi: 10.3389/fninf.2013.00048

Bianchi, F. M., Scardapane, S., Løkse, S., and Jenssen, R. (2020).
Reservoir computing approaches for representation and classification of
multivariate time series. IEEE Trans. Neural Netw. Learn. Syst. 32, 2169–2179. doi:
10.1109/TNNLS.2020.3001377

Biloborodova, T., Skarga-Bandurova, I., Skarha-Bandurov, I., Yevsieieva, Y., and
Biloborodov, O. (2022). “ECG classification using combination of linear and non-linear

features with neural network,” in Challenges of Trustable AI and Added-Value on
Health.

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). “Benchmarking
keyword spotting efficiency on neuromorphic hardware,” in Proceedings of the 7th
Annual Neuro-Inspired Computational Elements Workshop (New York, NY), 1–8.

Blouw, P., Malik, G., Morcos, B., Voelker, A. R., and Eliasmith, C. (2020). Hardware
aware training for efficient keyword spotting on general purpose and specialized
hardware. arXiv preprint arXiv:2009.04465.

Brogan, W. L. (1991). Modern Control Theory. Pearson Education India.

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T. (2021). “Optimal
ANN-SNN conversion for high-accuracy and ultra-low-latency spiking
neural networks,” in International Conference on Learning Representations
(Vienna).

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybernet. 95, 1–19. doi: 10.1007/s00422-006-0068-6

Frontiers in Computational Neuroscience 14 frontiersin.org

https://www.timeseriesclassification.com/
https://www.timeseriesclassification.com/
https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/articles/10.3389/fncom.2023.1148284/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncom.2023.1148284/full#supplementary-material
https://doi.org/10.1145/3264659
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/TNNLS.2020.3001377
https://doi.org/10.1007/s00422-006-0068-6
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

ˇ

´

Gaurav et al.

Chilkuri, N., Hunsberger, E., Voelker, A., Malik, G., and Eliasmith, C. (2021).
Language modeling using LMUS: 10x better data efficiency or improved scaling
compared to transformers. arXiv preprint arXiv:2110.02402.

Chilkuri, N. R., and Eliasmith, C. (2021). “Parallelizing legendre memory unit
training,” in International Conference on Machine Learning (PMLR), 1898–1907.

Datta, G., and Beerel, P. A. (2022). “Can deep neural networks be converted to ultra
low-latency spiking neural networks?” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (Antwerp: IEEE), 718–723.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P.,
et al. (2021). Advancing neuromorphic computing with loihi: a survey of results and
outlook. Proc. IEEE 109, 911–934. doi: 10.1109/JPROC.2021.3067593

Dey, S., Banerjee, D., George, A. M., Mukherjee, A., and Pal, A. (2022). “Efficient
time series classification using spiking reservoir,” in 2022 International Joint Conference
on Neural Networks (IJCNN) (Padua: IEEE), 1–8.

Dominguez-Morales, J. P., Liu, Q., James, R., Gutierrez-Galan, D., Jimenez-
Fernandez, A., Davidson, S., et al. (2018). “Deep spiking neural network model for
time-variant signals classification: a real-time speech recognition approach,” in 2018
International Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro, Brazil:
IEEE), 1–8.

Eliasmith, C., and Anderson, C. (2003). Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. MIT Press.

Fang, H., Shrestha, A., and Qiu, Q. (2020). “Multivariate time series classification
using spiking neural networks,” in 2020 International Joint Conference on Neural
Networks (IJCNN) (Glasgow: IEEE), 1–7.

Gaurav, R., Stewart, T. C., and Yi, Y. (2022a). “Spiking reservoir computing for
temporal edge intelligence on loihi,” in 2022 IEEE/ACM 7th Symposium on Edge
Computing (SEC) (Los Alamitos, CA: IEEE Computer Society), 526–530.

Gaurav, R., Tripp, B., and Narayan, A. (2022b). “Spiking approximations of the
maxpooling operation in deep SNNs,” in 2022 International Joint Conference on Neural
Networks (Padua: IJCNN), 1–8.

Gautam, A., and Singh, V. (2020). CLR-based deep convolutional spiking neural
network with validation based stopping for time series classification. Appl. Intell. 50,
830–848. doi: 10.1007/s10489-019-01552-y

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Las Vegas, NV).

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Intel (2021). Taking Neuromorphic Computing with Loihi 2 to the Next Level.
Technology Brief.

Jaeger, H. (2001). The “Echo State” Approach to Analysing and Training Recurrent
Neural Networks-With an Erratum Note. Bonn: German National Research Center for
Information Technology GMD Technical Report.

Karim, F., Majumdar, S., Darabi, H., and Chen, S. (2017). Lstm fully
convolutional networks for time series classification. IEEE Access 6, 1662–1669.
doi: 10.1109/ACCESS.2017.2779939

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep
spiking neural networks using backpropagation. Front. Neurosci. 10, 508. doi:
10.3389/fnins.2016.00508

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). “A free lunch from
ANN: towards efficient, accurate spiking neural networks calibration,” in International
Conference on Machine Learning (Honolulu, HI: PMLR), 6316–6325.

Lines, J., Taylor, S., and Bagnall, A. (2018). Time series classification with hive-
cote: the hierarchical vote collective of transformation-based ensembles. ACM Trans.
Knowledge Discov. Data 12. doi: 10.1145/3182382

Lukoševicius, M., and Jaeger, H. (2009). Reservoir computing approaches
to recurrent neural network training. Comput. Sci. Rev. 3, 127–149.
doi: 10.1016/j.cosrev.2009.03.005

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing
without stable states: a new framework for neural computation based on

10.3389/fncom.2023.1148284

perturbations. Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760
407955

Matias, P., Folgado, D., Gamboa, H., and Carreiro, A. V. (2021). “Robust anomaly
detection in time series through variational autoencoders and a local similarity
score,” in International Conference on Bio-inspired Systems and Signal Processing 2021
(Vienna), 91–102. doi: 10.5220/0010320500910102

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Nowshin, F., Liu, L., and Yi, Y. (2020). “Energy efficient and adaptive analog ic
design for delay-based reservoir computing,” in 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS) (Springfield, MA).

Oluwasanmi, A., Aftab, M. U., Baagyere, E., Qin, Z., Ahmad, M., and Mazzara, M.
(2021). Attention autoencoder for generative latent representational learning in
anomaly detection. Sensors 22, 123. doi: 10.3390/s22010123

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B., Sommer,
F. T., et al. (2021). “Efficient neuromorphic signal processing with loihi 2,” in 2021 IEEE
Workshop on Signal Processing Systems (SiPS) (Coimbra: IEEE), 254–259.

Pan, W., Zhang, W., and Pu, Y. (2022). Fractional-order multiscale attention
feature pyramid network for time series classification. Appl. Intell. 53, 8160–8179.
doi: 10.1007/s10489-022-03859-9

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“PyTorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32 (Vancouver, BC).

Patel, K., Hunsberger, E., Batir, S., and Eliasmith, C. (2021). A spiking neural
network for image segmentation. arXiv preprint arXiv:2106.08921.

Patiño-Saucedo, A., Rostro-González, H., Serrano-Gotarredona, T., and Linares-
Barranco, B. (2022). Liquid state machine on spinnaker for spatio-temporal
classification tasks. Front. Neurosci. 16, 819063. doi: 10.3389/fnins.2022.819063

Pereira, J., and Silveira, M. (2019). Unsupervised representation learning and
anomaly detection in ECG sequences. Int. J Data Mining Bioinform. 22, 389–407.
doi: 10.1504/IJDMB.2019.101395

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities
and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) (Florence), 1–5.

Shenoy Renjal, A. (2019). Liquid state machine model with homeostasis and
supervised stdp on neuromorphic loihi processor (Master’s thesis).

Stewart, T. C. (2012). A technical overview of the neural engineering framework.
Univ. Waterloo 110.

Voelker, A., Kajic, I., and Eliasmith, C. (2019). “Legendre memory units:
continuous-time representation in recurrent neural networks,” in Advances in Neural
Information Processing Systems 32.

Voelker, A. R. (2019). Dynamical systems in spiking neuromorphic hardware (Ph.D.
thesis). Vancouver, BC: University of Waterloo.

Voelker, A. R., and Eliasmith, C. (2018). Improving spiking dynamical networks:
accurate delays, higher-order synapses, and time cells. Neural Comput. 30, 569–609.
doi: 10.1162/neco_a_01046

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the AAAI Conference
on Artificial Intelligence (Honolulu, HI), 1311–1318.

Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Höppner, S., et al.
(2021). Comparing loihi with a spinnaker 2 prototype on low-latency keyword
spotting and adaptive robotic control. Neuromorph. Comput. Eng. 1, 014002. doi:
10.1088/2634-4386/abf150

Zenke, F., and Ganguli, S. (2018). Superspike: supervised learning
in multilayer spiking neural networks. Neural Comput. 30, 1514–1541.
doi: 10.1162/neco_a_01086

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). “Going deeper with directly-
trained larger spiking neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence (Vancouver, CA), 11062–11070.

Frontiers in Computational Neuroscience 15 frontiersin.org

https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1007/s10489-019-01552-y
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1145/3182382
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.3389/fncom.2023.1148284
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.5220/0010320500910102
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3390/s22010123
https://doi.org/10.1007/s10489-022-03859-9
https://doi.org/10.3389/fnins.2022.819063
https://doi.org/10.1504/IJDMB.2019.101395
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1162/neco_a_01046
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1088/2634-4386/abf150
https://doi.org/10.1162/neco_a_01086
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

